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Abstract 

Exposure to particulate matter air pollution with an aerodynamic diameter less than 2.5 

μm (PM2.5), particularly during the 3rd trimester of pregnancy, has been associated with adverse 

impacts on maternal and fetal health. Pregnant women are mobile and locations they spend time 

in contribute to their personal PM2.5 exposures, while their total exposures are the mixtures of 

multiple sources and affected by multiple factors. Environmental health disparities groups 

including racial and ethnic minorities, marginalized, and lower income populations are 

disproportionally burdened by elevated PM2.5 exposure and may be more susceptible to its 

adverse health effects.  

This dissertation used 48-hr integrated, personal PM2.5 measurements and concurrent 

GPS records collected from 213 low-income, predominately Hispanic women in their 3rd 

trimester living in Los Angeles, CA, to investigate the impacts of activity spaces on personal 

PM2.5 exposures (Chapter 2), derive the main sources contributing to personal PM2.5 mass 

(Chapter 3), and determine the influence of microenvironmental exposures estimated with a 

stochastic exposure model and total personal exposures (Chapter 4).  

This research found indoor sources dominated personal PM2.5 exposures, where 

combined indoor source contributions (i.e., secondhand smoking, crustal) were more than triple 

those of outdoor sources (i.e., traffic, aged and fresh sea salt, and fuel oil). In addition, 

environmental exposures encountered within the activity spaces that participants frequented 

contributed significantly to personal PM2.5 exposure, with greater exposure to parks and 

greenness linked with lower personal exposures. Finally, the simulated personal exposures better 

approximated the distribution of personal measurements with the addition of more refined indoor 
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source terms. However, total predicted PM2.5 exposure was highly correlated with outdoor PM2.5 

which is contrary to the patterns observed with measurements. 

Overall, the findings of this dissertation shed light on the complexity of sources and 

determinants of personal PM2.5 exposures during pregnancy in an environmental health 

disparities population, as well as the need for refined exposure assessment methods to capture 

the true variability in exposure and aid in the design of relevant interventions to reduce 

exposures. 



1 

Chapter 1 Introduction  

This chapter gives an overview of the dissertation research, starting by providing 

background to the research studies and knowledge gaps as well as introducing the research goals 

and study population. The dissertation structure is also laid out next for readers to follow. 

1.1. Introduction 

Air pollution is defined as particulate, gaseous, and (semi-)volatile matter “emitted from 

an anthropogenic, biogenic, or geogenic source” (Daly & Zannetti, 2007), present in the 

microscale, mesoscale, synoptic and global scale of atmospheric motions that can cause short- or 

long-term harm to human, animal or plant health, or to the environment (Hickey et al., 2014; 

Painter, 1974; Seinfeld & Pandis, 2006). In the twentieth century, several widely publicized 

incidents raised public concern about particulate matter (PM) air pollution effects on population 

health, such as the historical London Fog episode in 1952 with around 12,000 deaths (Bell & 

Davis, 2017). Since then, epidemiological studies have demonstrated that short- and long-term 

air pollution exposure is a significant risk factor for various diseases (Benbrahim-Tallaa et al., 

2012; Brandt et al., 2014; Buffler et al., 2005; Chen et al., 2016; Gan et al., 2011; Kim et al., 

2004) and increased mortality (Dockery et al., 1993) as illustrated by the Harvard Six Cities 

study (Dockery et al., 1993; Krewski et al., 2003). 

Systemic inequities have resulted in persistent environmental health disparities, in which 

certain groups are heavily exposed to air pollution, leading to higher health risks (Bae et al., 

2007; Houston et al., 2004; Tian et al., 2013). Studies have shown that low-income Hispanic 

populations, especially in California, are disproportionally burdened by elevated air pollution 

exposures and worse health outcomes, such as diabetes, lower bone mineral density, and 
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respiratory diseases (Alderete et al., 2017; Chen et al., 2015; Chen et al., 2016; Houston et al., 

2014; Pastor et al., 2004; Pulido et al., 1996). However, there is little known about the major 

determinants of PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) exposure 

in this population (i.e., where and when they experience the highest exposures, and which 

sources contribute the most to their personal exposures). Human mobility and the high 

spatiotemporal variability in some of the major sources contributing to PM2.5 (such as traffic) 

provide an added complexity when trying to accurately estimate personal exposures in 

epidemiological studies. 

For women during pregnancy, air pollution impacts on both their own as well as their 

fetus’ health are major concerns (Dadvand et al. 2014; Ghosh et al. 2014). The health effects 

may vary in different time windows, since the fetus develops different organ systems at different 

weeks; therefore, exposure in different trimesters may have different health outcomes (Stieb et 

al. 2012; Zhu et al. 2015). Public health researchers have conducted studies focused on decreased 

birth weight related to in-utero exposure to PM2.5 during pregnancy (Fleischer et al., 2014; Hyder 

et al., 2014; Pedersen et al., 2013; Rich et al., 2015; Stieb et al., 2012, 2016; Twum et al., 2016; 

Zhu et al., 2015). For example, several studies have demonstrated that PM2.5 exposure during the 

3rd trimester of pregnancy had the highest impact on the infant’s gestational weight gain and 

birthweight (Huang et al., 2015; Rich et al., 2015; Romão et al., 2013; Savitz et al., 2014; 

Schembari et al., 2015). 

Most of health studies focused on personal exposure to air pollution of outdoor origin 

with exposures assigned based on modeled pollutant distribution surfaces. The methods used to 

estimate these surfaces have evolved from the nearest monitoring site (i.e., EPA monitoring 

sites) (Ebisu et al., 2014; Harris et al., 2014), to spatially interpolated outdoor exposures based 
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on multiple monitoring sites (Clark et al., 2010; Gauderman et al., 2005; Kim et al., 2004) and 

sophisticated spatiotemporal models of outdoor concentrations (Brunst et al., 2015; Chen et al., 

2016; Gehring et al., 2010; Hyder et al., 2014). While spatiotemporal modeled air pollution 

surfaces provide the advantage of being able to assess the outdoor, residential exposures of large 

study populations, they suffer from exposure measurement error which usually leads to 

attenuated statistical power in epidemiological analyses.  

Since individuals are mobile and spend the majority of their time indoors (Wallace, 

1996), their “true” personal exposure is best approximated by the time-weighted average 

concentration they experience in and across several microenvironments, most commonly 

categorized as indoors, outdoors, and in transit (Gray et al., 2011; Zeger et al., 2000). The 

personal exposures for large populations can be estimated using microenvironment models 

(USEPA, 2020).  

Personal monitoring is the gold standard approach to accurately capture the true personal 

exposures in the breathing zone. Accordingly, personal monitoring studies can disentangle the 

contributions of indoor and outdoor environments on personal exposures based on when and 

where those sampled have interacted with their environments (Adgate et al., 2004a; Rabinovitch 

et al., 2016; Steinle et al., 2015). These improvements have resulted in more accurate personal 

exposure estimates which greatly reduce measurement error and increase the understanding of 

how an individual’s time-activity patterns affect personal exposures.  

Furthermore, since PM2.5 itself is a mixture of various organic and inorganic elements, its 

composition, and thus toxicity, may vary based on the sources from which it originated (Berger 

et al., 2018; Masiol et al., 2017; Zhai et al., 2017). Several studies have conducted source 

apportionment analyses on speciated PM2.5 measurement data collected at designated U.S. 
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Environment Protection Agency (USEPA) ambient monitoring sites that are part of the Speciated 

Trends Network (STN). The aim of STN is to resolve the main sources that contribute to the 

outdoor PM2.5 mixture and to investigate their impacts on the health of pregnant women (Bell et 

al., 2010; Dadvand et al., 2014; Ng et al., 2017; Pereira et al., 2014). However, identifying the 

main sources of personal PM2.5 measurements will better serve health studies because toxicity 

may vary depending on this personal mixture. The information on major determinants (e.g., 

time-activities, spaces individuals frequented) and main sources of personal PM2.5 exposures will 

facilitate the design of interventions that reduce exposures by connecting major sources and 

where and when pregnant women are exposed.   

The paucity of knowledge of pregnant women’s personal PM2.5 exposures, especially the 

lack of information about the major determinants and main sources that contribute to  personal 

PM2.5 mass, hinders our ability to assess health effects and provide targeted interventions. This 

knowledge gap is often larger for populations burdened by environmental health disparities 

because very few studies have focused on their personal PM2.5 exposures. This dissertation aims 

to produce a better understanding of personal PM2.5 exposures for an environmental health 

disparities population, including the main determinants (e.g., activity spaces, time-activities) and 

sources that contribute to personal exposures during pregnancy. To accomplish this, this 

dissertation analyzed personal data collected from a sample of 213 women enrolled in the 

“Maternal And Developmental Risks from Environmental and Social Stressors (MADRES)” In-

Utero Air Pollution Exposure Study. The sample participants are low-income, predominantly 

Hispanic pregnant women living in Los Angeles, CA, with personal PM2.5 measurements and 

concurrent GPS tracking data collected over a 48-hr period in their 3rd trimester. This study 
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provided a unique opportunity to understand the personal PM2.5 exposures of this at-risk 

population. 

GPS records can be used to shape individuals’ activity spaces and delineate their time-

activities across microenvironments during the 48-hr sampling period; therefore, environmental 

exposures within activity spaces which might affect their personal PM2.5 can be examined. 

Furthermore, the personal monitoring filters were speciated and analyzed for chemical 

composition information, which in turn was used to identify and resolve the major sources that 

contributed to these women’s personal PM2.5 exposures. The integration of individual-level GPS 

tracking and personal monitoring data further allowed us to explore how characteristics at the 

individual, residential neighborhood and activity space levels interact to affect total and source-

resolved personal PM2.5 exposures during pregnancy.  

The MADRES participants in this study provide a convenient sample of women of 

childbearing age who are burdened by environmental health disparities in Los Angeles, CA for 

whom personal measurements were collected. A stochastic inhalation exposure model would be 

used to generate microenvironment level PM2.5 exposures for this population without the 

personal measurements. The MADRES personal measurements were used to examine how well 

the model outputs approximated personal exposures. The results can help shape the model 

parameters and improve model personal exposures from multiple sources in large populations.  

1.2. Dissertation Structure 

The remainder of this dissertation is organized into three studies, each of which focuses 

on one aspect of understanding personal PM2.5 exposures (Figure 1.1). Study 1 (Chapter 2) aims 

to investigate the main determinants that affected personal PM2.5 exposures. The activity spaces 

were derived from GPS tracks to delineate the spaces in which individuals interact with their 
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environments (Kwan, 1999; Newsome et al., 1998; Sherman et al., 2005). Generalized linear 

models were next applied to examine the impacts of the main factors, i.e., environmental 

exposures within activity spaces, time-activities, indoor environments, and outdoor PM2.5, on 

variations of personal exposures. 

 

Figure 1.1. Dissertation research framework  

Study 2 (Chapter 3) focuses on identifying the main sources that contributed to personal 

PM2.5 exposures. The USEPA-developed Positive Matrix Factorization (PMF) model was used to 

resolve the main sources and quantify the mass contributions (Norris et al., 2014). In-depth 

personal data analysis was then conducted to confirm the source identities and their origins. 

Study 3 (Chapter 4) examines how well personal PM2.5 exposures can be modeled for 

environmental health disparities women with childbearing age. The USEPA-developed Air 

Pollutants EXposure (APEX) model was used to estimate personal exposures at the 

microenvironment level (USEPA, 2020). Multiple scenarios were set to compare the impacts of 
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refining model parameters on personal estimates. MADRES personal measurements were then 

used to examine how well the model outputs approximated the actual (i.e., measured) exposures. 

Ultimately, this research provided an opportunity to: (1) understand the personal PM2.5 

exposures of this environmental health disparities population during pregnancy, including major 

determinants, complex PM2.5 sources, and the multiple microenvironments that contributed to 

personal exposures; and (2) lay out a foundation to reduce exposure measurement error in health 

studies, aid in designing relevant interventions to reduce health disparities. The results may 

inform appropriate interventions from urban planning perspectives, such as increasing greenness 

and park area city wide to reduce personal PM2.5 exposures, which will potentially benefit both 

the mother’s health and the child’s health at birth and beyond.  

The final chapter of the dissertation concludes the work by highlighting the major 

findings and implications of the three studies as a whole. 
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Chapter 2 The Impact of GPS-derived Activity Spaces on Personal PM2.5 
Exposures in the MADRES Cohort 

This chapter is focused on investigating how exposures encountered within the activity spaces, as 

well as the time activities, home characteristics and residential neighborhood exposures, 

contributed to the personal PM2.5 exposures during the 3rd trimester of pregnancy among 

MADRES participants. The chapter starts by introducing the research background, then followed 

by the data and methods used in this study, along with results, discussions and conclusion. 

2.1. Introduction 

Air pollution is a significant risk factor for various adverse health outcomes including 

respiratory infections (Kim et al. 2004), asthma (Brandt et al., 2014), cardiovascular disease 

(Gan et al. 2011), diabetes (Chen et al., 2016), and increased mortality (Bell and Davis 2017; 

Dockery et al. 1993; Garcia et al. 2016), among others. Studies of health impacts in pregnant 

women show air pollution exposure affects the mother’s health (Dadvand et al. 2014; Ghosh et 

al. 2014) and may result in adverse birth outcomes (Fleischer et al. 2014; Pereira et al. 2014; 

Rich et al. 2015; Ritz et al. 2007). Third trimester exposure to PM2.5 has been associated with 

low fetal birthweight (Hyder et al. 2014; Stieb et al. 2016; Twum et al., 2016; Zhu et al. 2015) 

and adverse health effects in childhood (Dadvand et al. 2011; Hsu et al. 2015; Rosa et al. 2020). 

Environmental health disparities also play a role, with specific racial or ethnic groups and lower 

socioeconomic status groups disproportionately exposed to higher concentrations of air pollution 

(Bae et al. 2007; Houston et al. 2004; Tian et al., 2013). In turn, these disparities are linked with 

increased susceptibility to multiple adverse health effects including obesity (Rossen, 2014), 

diabetes (Alderete et al. 2017; Chen et al. 2016), and respiratory outcomes (Grineski et al. 2015).  
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Most epidemiological studies rely on ambient concentrations to represent individuals' 

personal exposures to air pollution of outdoor origin (Gauderman et al. 2015; Pun et al. 2017). 

These coarse resolution approaches vary from assigning the value of the nearest monitoring site 

(Gauderman et al. 2015; Masiol et al. 2017) to spatially interpolated outdoor exposures based on 

multiple monitoring sites (Berger et al. 2018; Zhai et al. 2017) or sophisticated spatiotemporal 

models of outdoor concentrations (Beckx et al. 2009; Dadvand et al. 2013; Hu et al. 2015; 

McGuinn et al. 2016; Weaver et al. 2019). Several studies have used the aforementioned 

approaches to investigate the health effects of PM2.5 exposure during pregnancy on maternal and 

child health outcomes, e.g. intrauterine inflammation (Nachman et al., 2016), stillbirth (Rammah 

et al., 2019), low birth weight (Hyder et al. 2014; Li et al., 2019; Twum et al., 2016), and 

childhood over-weight or obesity (Mao et al., 2017). While these models provide a cost-effective 

way to assess exposure to outdoor, residential air pollution in large population studies, they 

inherently suffer from exposure measurement error since they assume individuals are stationary, 

and they do not account for exposures encountered within activity spaces while mobile. They 

also ignore pollution sources in the indoor environment and time-activity patterns (i.e., time 

spent indoors or in transit).  

Activity spaces represent “the local areas within which people move or travel in the 

course of their daily activities” (Gesler & Albert, 2000). Environmental exposures within these 

“local” areas or activity spaces are thought to be more correlated with personal exposures since 

they are more aligned with where and how individuals have contact or interact with their 

environments. As such, activity space methods provide promising advances in the field of 

environmental exposure science to understand health impacts (Golledge, 1997; Sharp et al., 

2015; Sherman et al., 2005; Tamura et al., 2017; Wang et al., 2018). Several studies have used 
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activity space methods to account for spatiotemporal variations in pollution in relation to an 

individual’s whereabouts by recording when and where an individual move and how long they 

stay at one place or spend in transit (Gerharz et al., 2009; Goodchild, 2007; Nazelle et al. 2013; 

Nyhan et al. 2016; Steinle et al., 2015; Zenk et al. 2011). Several studies have correlated 

environmental features in the residential neighborhood (i.e., road network, green space) with 

personal exposures (Dadvand et al., 2012b; Kim et al., 2004). However, very few studies to date 

have investigated the role of activity space-based exposures on personal PM2.5 exposures.  

Moreover, personal monitoring can be used to measure air pollutant concentrations in the 

breathing zone and accurately assess total, personal PM2.5 exposure (Dadvand et al. 2012b; Majd 

et al. 2018; Shang et al. 2019). Personal monitoring is considered the gold standard external 

exposure assessment approach since it captures personal, indoor, and outdoor sources of air 

pollution encountered across activity spaces and within microenvironments based on actual time-

activity patterns. As such, it greatly reduces exposure measurement error and can increase 

statistical power to observe health associations when they exist (Gray et al., 2011; Zeger et al. 

2000). However, despite its advantages, personal monitoring studies have been limited since they 

are generally more burdensome and expensive to conduct.  

Among the few studies which measured personal PM2.5 exposure in pregnancy, Dadvand 

et al. (2012b) monitored 54 participants for 48 hours and found higher residential neighborhood 

greenness was associated with lower personal, home-indoor, and home-outdoor PM2.5 levels. 

Greenness was also associated with more time spent at home, outdoors. In a study of 17 pregnant 

women in the 3rd trimester, Zamora et al. (2018) found that personal PM2.5 exposure was 

frequently more than double ambient concentrations, and the majority of PM2.5 mass came from 

the indoor residential environment. Jedrychowski et al. (2006) found a significant positive 
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association between personal PM2.5 exposures and residential proximity to industrial plants in 

407 non-smoking pregnant women in the 2nd trimester. Taken together, these studies show that 

pregnant women’s personal exposure to PM2.5 can be impacted by a variety of factors including 

indoor sources, time-activity patterns, and exposures encountered within residential 

neighborhoods and activity spaces.  

Therefore, this research project aimed to investigate how exposures encountered within 

activity spaces contribute to PM2.5 exposures during the 3rd trimester of pregnancy, using highly 

resolved personal exposure and geolocation monitoring data. The relationships between personal 

PM2.5 measurements and GPS-extracted activity space-based exposures and time-activity 

patterns were first examined; then a model was built to explain the variability in personal PM2.5 

exposure based on these as well as individual and residential neighborhood characteristics to 

identify key exposure determinants in an environmental health disparities population of primarily 

low-income, Hispanic pregnant women living in Los Angeles, CA. 

2.2. Method 

Personal and environmental data used in this research, along with the main analytical 

methods, are laid out in this section. 

2.2.1. Data Collection 

Given the MADRES personal data used in this study, firstly the study design for 

MADRES cohort is briefly introduced here, followed by the description of the personal data used 

in this study including 48-hr personal PM2.5 measurements, the concurrent GPS tracks, and 

questionnaire answers. 
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2.2.1.1. Study design 

This study recruited 213 women who were enrolled in the MADRES cohort study during 

their 3rd trimester visit for this intensive 48-hour personal PM2.5 exposure monitoring study 

between October 2016 and March 2020 (Appendix A, Table S2.1). MADRES is an ongoing 

prospective pregnancy cohort with the goal of understanding environmental and social 

determinants of maternal and child health outcomes among predominantly low-income, Hispanic 

women and their babies. The details of eligibility, enrollment, and follow-up in MADRES are 

described elsewhere (Bastain et al., 2019). Here, the aspects related to this personal monitoring 

arm of the larger study are briefly outlined. MADRES women were eligible to participate if they 

were in the 3rd trimester at the time of recruitment, ≥18 yrs old, and could speak either English or 

Spanish fluently. Exclusion criteria included: (1) HIV positive status; (2) physical, mental, or 

cognitive disabilities that prevent participation; (3) current incarceration; or (4) living in a 

smoking household, defined as having at least one smoker living full-time in the same residence 

as the pregnant woman. In practice, the non-smoking household criterion was not applied 

consistently throughout the study and thus was eliminated. Informed consent was obtained for 

each participant. The University of Southern California’s Institutional Review Board (IRB) 

approved the study protocol. 

2.2.1.2. Personal PM2.5 exposure and geolocation monitoring 

Once consented, participants were asked to wear a customized crossbody purse that 

contained all the sampling devices for 48 hours as they conducted their usual daily activities. The 

purse contained a personal Gilian Plus Datalogging pump (Sensidyne, Inc.) that was 

programmed to sample air continuously through an inlet tube at a 1.8 LPM flow rate and a 50% 

cycle (starting midnight on day following recruitment till midnight of the second day of 
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sampling, once 48 hours were completed). The tube was connected to a PM2.5 Harvard Personal 

Environmental Monitor (PEM) size-selective impactor with a pre-weighed 37 mm Teflon filter 

loaded inside (2 µm pore size; Pall, Inc.) to collect a 48-hour integrated (or averaged) sample. 

The PEM sampling inlet was mounted on the purse’s shoulder strap to sample air at the 

participant's breathing level. Pumps were flow calibrated with the specific PEM sampler prior to 

each deployment using a TSI Inc. flow meter. Participants were instructed to carry the purse and 

sampling apparatus with them at all times, with a few exceptions to reduce burden and improve 

wear compliance. These included when it was unsafe to do so (e.g., driving), while showering or 

in high humidity, while sleeping, or while staying in one physical room for a prolonged period. 

In these cases, they were instructed to place the sampler near them, elevated above ground level, 

away from walls, and unobstructed by any objects.  

In addition, an Android smartphone was included in the purse with the madresGPS 

geolocation app pre-installed and programmed to log location (GPS and metadata) and motion 

sensor data and network connectivity status continuously at 10-sec intervals for the 48-hour 

monitoring duration. The madresGPS app logs timestamp, latitude and longitude, location 

accuracy (m), and source of location (i.e., smartphone GPS sensor or network (WiFi or cellular)). 

The GPS source provided altitude (m), velocity (m/sec), number of satellites in view and in use 

when available. Smartphones were connected to a power bank to ensure enough power for a 48-

hr runtime. All sampling devices were demonstrated to participants at recruitment and then 

securely sealed in a dedicated section of the purse to prevent loss or damage.  

Once the 48-hour monitoring period was completed, the sampling pump shut down and 

GPS app stopped logging data automatically. Trained bilingual staff arranged a home pickup 

visit usually on the following day to retrieve the sampling devices and complete a short exit 
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survey with participants (described below). PEMs were disassembled and pump and GPS app 

data were downloaded (and decrypted in the case of GPS) on the same day in the USC Exposure 

Analytics Laboratory. Filters were then analyzed gravimetrically to determine post-sampling 

PM2.5 mass after a minimum of 24 hours equilibration period using a MT5 microbalance (Mettler 

Toledo, Columbus, OH, USA) in a dedicated chamber. 

2.2.1.3. Questionnaires 

At enrollment and during the 1st, 2nd and 3rd trimesters, MADRES participants responded 

to interviewer-administered questionnaires during in-person visits or phone interviews by trained 

bilingual staff. Questions included demographics (age, race, education, marital status, household 

income, country of origin), housing characteristics such as type of dwelling and building age, 

indoor sources such as presence and use of gas stoves, heating, and current tobacco smoke 

exposure (primary and secondhand). Participants' residential locations were determined based on 

reported address at the 3rd trimester timepoint and geocoded for residential neighborhood 

exposure assessment. 

Once the participants completed the 48-hour monitoring period, trained staff conducted 

an exit survey during the equipment pick up visit asking about sampling device wear times, time-

activity patterns (e.g., time spent indoors and outdoors, commuting), home operation (e.g., 

ventilation), and presence of any significant indoor sources of PM2.5 such as cooking or smoking 

during either day of the 48-hr sampling period. Variables were summarized as the maximum or 

largest response across both days for all questions. Exposure to secondhand smoke was 

determined based on a response of “a little”, “most” or “all of the time” to the following 

question: “How much of the time were you close to cigarette, cigar, hookah or pipe smoke from 

people smoking nearby”. Spending time outdoor near traffic was determined based on a response 
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of “sidewalk along the road” or “parking lot” to the following question: “Where were you when 

you were outdoors in general”. 

2.2.2. Data Analysis 

Data analysis is laid out in this sub-section, starting by creating residential neighborhood 

exposures, followed by activity space-based exposures, and GPS-derived time-activity patterns. 

2.2.2.1. Residential neighborhood environmental exposures 

Residential neighborhoods were defined as areas including the residential location and its 

surroundings in several ways since the exact spatial extent of influence in not well known in the 

literature. These included the residence as a point location, the residential census tract (RN_ct), 

and three circular buffers of 100m, 250m, and 500m around the residence (RN_100m, 

RN_250m, and RN_500m).  

First, daily ambient and traffic-related air pollution and meteorology were estimated at 

the residential point location (Bastain et al., 2019). Local traffic-related nitrogen oxides (NOx) 

exposure was estimated using the CALINE4 line source dispersion model (Benson, 1992). 

Nitrogen dioxide (NO2), PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 

2.5 µm and 10 µm, respectively), and ozone (O3) concentrations were estimated using inverse-

distance squared spatial interpolation of regulatory monitoring data from the USEPA Air Quality 

System (AQS). Meteorology (temperature, precipitation, specific humidity, relative humidity, 

downward shortwave radiance, and wind speed) was assigned based on a 4 km x 4 km gridded 

reanalysis model from Abatzoglou (2013). To correspond to the two sampling days, 48-hr 

integrated averages were calculated from these daily measurements.  

In addition, several built-environment characteristics were assessed within the census 

tract and circular buffer defined residential neighborhoods during the 48-hr monitoring period, 
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including walkability index score, Normalized Difference Vegetation Index (NDVI, the most 

commonly-used metric to quantify greenness), access to parks and open spaces, traffic volume 

on primary roads, and road lengths (primary roads, secondary roads, and local neighborhood 

roads and city streets). These geospatial data sources used for Los Angeles County are shown in 

Table 2.1. Road network data were categorized as primary roads (S1100, Interstate highways, 

and all other highways with limited access), secondary roads (S1200, main arteries and highways 

with at-grade intersections), local neighborhood roads and city streets (S1400, paved non-arterial 

street, road, or byway, abbreviated as minor streets) 

(https://www2.census.gov/geo/pdfs/reference/mtfccs2018.pdf) (Figure S2.1 shows a map of 

these three road classes in Los Angeles, CA). 

2.2.2.2. Activity space-based environmental exposures 

Activity spaces were constructed using the GPS 10-sec resolution data to examine how 

participants’ mobility within 48-hrs affected their personal PM2.5 exposures (Browning and 

Soller 2014; Crawford et al. 2014; Perchoux et al. 2016; Sherman et al., 2005; Tamura et al., 

2017). GPS tracks were first processed to remove outliers or erroneous records and retain those 

with highest positional accuracy, especially when latitude and longitude were available from 

both GPS and network sources. Distance-based outliers were defined based on a maximum 

reasonable distance (100 mile/hour) traveled per time elapsed (using a threshold of 45 m/sec 

multiplied by time elapsed) and were replaced by the median location (latitude and longitude) 

within a moving, centered time window corresponding to approximately one minute (seven 

intervals).  

Similarly, since the exact spatial extent of influence on personal PM2.5 exposures is not 

known, three measures of activity spaces were constructed to examine which might correlate the 



 

17 
 

most as follows: 1) Minimum Convex Hull (MCH) or the smallest area covering all the GPS 

points, 2) Daily Path Area (DPA) which focuses on the area along individuals’ routes by 

buffering all GPS points to 500 m, and 3) Kernel Density Estimation (KDE) which focuses on 

the intensity of GPS points in space. KDE therefore implicitly accounts for duration of time 

spent at a certain location, since GPS points will be denser or more intense where participants 

spent most time with this equally spaced 10-sec GPS data resolution (Jankowska et al., 2015; 

Kwan 1999; Newsome et al., 1998; Sherman et al. 2005; Zenk et al. 2011). KDE was applied 

with multiple bins (i.e., 10, 25, 50 m) and neighborhood sizes (i.e., 100, 250, 500 m) to examine 

the suitable parameters in terms of its Impact on personal PM2.5 exposures (referred to as 

K10/100m; K10/250m; K25/250m; K25/500m; K50/500m). The top 20th percentile area of 

intensity in each KDE activity space was also used to calculate exposures as a test of whether 

this might be adequately correlated with personal exposure and computationally simpler 

compared to using the entire KDE surface (i.e., K10/100m20p; K10/250m20p; K25/250m20p; 

K25/500m20p; K50/500m20p).  

The same built-environment characteristics (Table 2.1) and ambient PM2.5 and 

temperature were also assessed within the activity spaces. Forty-eight-hour average ambient 

PM2.5 concentration and temperature were estimated for 2016-2020 using Empirical Bayesian 

Kriging spatial smoothing to complement the inverse distance squared method described earlier. 

Figure 2.1 illustrates how different activity space and residential neighborhood methods 

are used to calculate exposure along a theoretical GPS trajectory. The blue boundary shows an 

example MCH activity space, and the dark green boundary shows the DPA activity space. The 

light to dark green (10m bin, 100m neighborhood), blue (25m bin, 250m neighborhood), and         
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orange (50m bin, 500m neighborhood) weights correspond to lowest to highest intensity within 

multiple KDE areas based on locations an individual spent the most time in. The top 20th 

percentile area of each KDE activity space is illustrated as weight 5 in Figure 2.1. Dark gray 

circles (buffers) and polygon (census tract) show the four residential neighborhood definitions 

surrounding the residential point location. Residential neighborhood and activity space-based 

exposures were derived in ArcGIS Pro 2.5 (Esri, Redland, CA). 

 

Figure 2.1. Illustration of multiple activity spaces and residential neighborhood 

2.2.2.3. GPS-derived time-activity patterns 

Time spent indoors or in-transit was derived from the processed GPS data using a 

previously published method that depends on time and distance thresholds (Cich et al. 2016; Li 

et al. 2008; Pérez-Torres et al., 2016; van Dijk 2018; Xiao et al. 2014). It identifies whether a 

participant was stationary or moving, as well as the duration of each activity or trip. The 

minimum time interval for a stay was defined as 30 mins. If the distance moved within 30 min 

was less than 500 m, the participant was identified as staying in one place. Once the stay points 
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were identified, they were classified as home or non-home places by comparing them with the 

participants' known residential location with a 75 m buffer threshold to account for potential 

noise in geolocation. Twenty-eight participants did not stay overnight at their own residences 

during the 48-hr monitoring period, so the place where they stayed from midnight to early 

morning was determined to be their "home" place for the sake of deriving time-activity patterns. 

Time spent at home was assumed to be indoors and calculated in minutes and in percent (%) 

time. Categories of % time indoors were then created based on the data distribution (≤75%, 75 % 

to ≤90%, 90% to ≤95%, 95% to ≤98%, >98%) for use in the analysis. 

2.2.3. Bivariate Analyses 

Bivariate analysis were conducted to screen and select variables for the final regression 

model. The Kruskal-Wallis test was used to examine correlations of categorical variables with 

personal PM2.5, including time-activity patterns, home characteristics, and indoor air pollution 

sources. Some variables were dichotomized or recoded to ensure more balanced and physically 

interpretable categories as follows: house vs. apartment, house built before vs. after 1980s, none 

or little of time vs. most or all of time for window open, none vs. a little, most, all of time of air 

conditioner used at home, less than vs. more than 75% of 48-hr period staying indoors, none or a 

little vs. most or all the time spent outdoors, less than vs. more than 30 mins gas stove use on 

daily basis, none vs. a little, most, all of time close to smoke from people smoking nearby, none 

vs. a little, most, all of time close to smoke from candles or incense burning nearby, and 0-30 

mins vs. 30 mins to 1 hr vs. 1-2 hrs vs. more than 2 hrs in terms of commuting time. Sixteen 

variables with unbalanced values (≥85% of the records have one value) or too many missing 

values (>80%) were dropped from further analysis.  
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Spearman correlations were used to screen continuous variables such as residential 

neighborhood and activity space-based exposures for inclusion in the final PM2.5 model and to 

evaluate them for collinearity with each other. Variables with absolute correlation > 0.05 or p-

value < 0.25 in the bivariate analyses were retained for subsequent multivariate analysis. In 

addition, variables previously reported in the literature as important determinants of personal 

PM2.5 exposure were also retained, including wind speed, relative humidity, year home was 

originally built, gas stove usage, secondhand smoking, and park area within activity space. 

2.2.4. Multivariate Model 

Generalized linear models were fit to explain the variability in personal PM2.5 mass 

exposure in relation to multiple variables. These included time-activity patterns (Time-Activity), 

demographics (Demographic), home characteristics (Home), indoor sources (Indoorsources), 

environmental exposures within residential neighborhoods (EnvExpRN), and environmental 

exposures within activity spaces (EnvExpActSp). The model structure was as follows: 

𝑌ெଶ.ହ =  𝛽 + 𝛽 ∗   𝑇𝑖𝑚𝑒 − 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦

்



+ 𝛽 ∗  𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐
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+  𝛽ௗ ∗  𝐼𝑛𝑑𝑜𝑜𝑟௦௨௦

ூ

ௗ

 + 𝛽
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ாோ



+  𝜀 
Eq. (2.1) 

 
where β0, β (a to f), and ε represent the intercept, coefficients, and error terms, respectively. 

Variables selected in bivariate analyses were added to the model one at a time and 

retained if they were still significant at p<0.1 level. Variables that were highly correlated (or 

collinear) with each other, such as several measures of primary road length in activity spaces, 

were treated as alternative factors and substituted into the multivariate model to select the most 
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significant. After the final list of variables was selected using this manual process, forward 

stepwise regression with the Sawa Bayesian Information Criterion (BIC) selection criteria was 

adopted for building the final model. Parameter estimates for all continuous variables were 

scaled to a one SD increase for comparison. BIC criteria was used since it penalizes the addition 

of more terms to the model to avoid overfitting. The adjusted R2 and Root Mean Square Error 

(RMSE) were used to examine the fit of the model and p-value (Type III) was used to examine 

significance of included variables. All statistical analyses were conducted in SAS 9.4 (SAS 

Institute Inc., Raleigh, NC), and plots were generated using JMP Pro 16.1 (SAS Institute Inc., 

Raleigh, NC). 

2.3. Results 

2.3.1. Descriptive Statistics  

Most of the participants (>98%) resided in central and east Los Angeles, CA. The 

majority were Hispanic (79%), employed during the 3rd trimester (41%), and with up to grade 12 

education (54%). The mean age was 28 years at consent (range 18-45 years), and mean birth 

order of index child at the time of pregnancy (i.e., parity) was 2 (range 1-6). The majority of 

participants reported annual household incomes less than $30,000 (67%, N=135) (Table 2.2). In 

terms of personal monitoring device wearing compliance during 48-hr sampling period, 192 

participants (91%) reported wearing it most of the time while awake, 183 (86%) reported putting 

it nearby as instructed while sleeping, and 200 (94%) reported putting it nearby as instructed 

when not wearing it during the day time (Table S2.2). 

Table 2.3 presents distributions of home characteristics, indoor PM sources, and 

durations of selected activities for the participants. Based on the exit survey referring to the 48-hr 

sampling period, 60% of participants opened windows more than half of the time, 63% spent  
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Table 2.2. Descriptive statistics of participant demographics (N=213). 
 

Variable 
Mean (SD) or 

n (%) 
Variable 

Mean (SD) or 
n (%) 

Maternal Age (years) 28.3 (6.0) Employment  

Birth order of index child at time of 
pregnancy 

2 (1.2） Homemaker 58 (27.2%) 

Race  Student 21 (9.9%) 

White, non-Hispanic 12 (5.6%) Employed 87 (40.8%) 

Asian, non-Hispanic 2 (0.9%) Temporary Medical Leave 9 (4.2%) 

African American, non-Hispanic 24 (11.3%) Unemployed 35 (16.4%) 

Hispanic 169 (79.3%) Missing 3 (1.4%) 

Other 4 (1.9%) Household income in the last year 

Missing 2 (0.9%) Less than $15,000 44 (20.7%) 

Education   $15,000 to $29,999 47 (22.1%) 

< 12th grade 51 (23.9%) $30,000 to $49,999 29 (13.6%) 

Completed high school 65 (30.5%) $50,000 to $99,999 7 (3.3%) 

Some college 63 (29.6%) $100,000 or more 8 (3.8%) 

Completed college 25 (11.7%) Don't know 76 (35.7%) 

Some Graduate school 7 (3.3%) Missing 2 (0.9%) 

Missing 2 (0.9%)     
 

little or no time outdoors, 61% spent some time near traffic, and 34% spent more than 2 hrs 

commuting. In terms of indoor PM sources, 83 (39%) were exposed to smokers, and 52 (24%) 

were close to burning candles or incense. Based on the 3rd trimester questionnaire, 57% of 

participants lived in an apartment, 45% had a household size > 3 persons, and 43% lived in a 

home built after the 1980s. In addition, 139 (65%) used stoves > 30 mins/day at home during the 

3rd trimester. 

Summary statistics of 48-hr integrated personal PM2.5 exposure and modeled outdoor 

PM2.5 at residential location and within some activity spaces are shown in Table S2.3. Overall, 

48-hr personal PM2.5 exposures (mean = 23.3 μg/m3, SD = 18.9) were much higher and more 

variable than corresponding outdoor residential levels (mean = 11.8 μg/m3, SD = 5.5). 

Approximately 25% had personal exposures two to four times higher than outdoor residential 

PM2.5. Outdoor PM2.5 within multiple activity spaces was very similar to residential PM2.5, which 
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was also much lower compared to personal PM2.5. Figure 2.2 shows the relationship between 

personal and outdoor PM2.5 at residential location. 

Table 2.3. Home characteristics, indoor sources, and durations of selected activities  
derived from questionnaires and exit survey (N=213). 

 
Home Characteristics n (%) Indoor Air Pollution Source n (%) 

*Which best describes the home in which 
you currently live most of the time? 

** How much of the time were you close to smoke from 
candles or incense burning nearby? 

House  75 (35.2%) None of the time 160 (75.1%) 
Apartment 122 (57.3%) A little, most, or all of the time 52 (24.4%) 

Missing 16 (7.5%) Missing 1 (0.5%) 
*How many people counting yourself live in 

your household?  
*About how long is the gas stove, range or oven used on 

an average day while you are at home? 
1 and 2 people 26 (12.2%) Less than 30 minutes 40 (18.8%) 

3 people 30 (14.1%) More than 30 minutes 139 (65.2%) 

4 people 40 (18.8%) Missing 34 (16.0%) 

5 people 20 (9.4%) 
**How much of the time were you close to cigarette, 

cigar, hookah or pipe smoke from people smoking nearby? 

More than 5 people 35 (16.4%) None of the time 128 (60.1%) 

Missing 62 (29.1%) A little, most, or all of the time 83 (39.0%) 
*About when was this home building 

originally built?  
Missing 2 (0.9%) 

Built after 1980s 91 (42.7%) Time-Activities   

Built before 1980s 69 (32.4%) 
**How much of the time did you spend outdoors (not 

commuting in a car, bus or train)? 
Missing 53 (24.9%) None or a little of the time 135 (63.4%) 

*Is there carpeting in your home? Most or all of the time 77 (36.2%) 

No  106 (49.8%) Missing 1 (0.5%) 

Yes 92 (43.2%) **When outdoor, whether were you near traffic? 

Missing 15 (7.0%) No 82 (38.5%) 

Home Ventilation   Yes 130 (61.0%) 

** How long the window open in your 
home? 

Missing 1 (0.5%) 

None or little of the time 85 (39.9%) **How many hours did you spend on commute? 

Most or all of the time  127 (59.6%) 0 to 30 min 56 (26.3%) 

Missing 1 (0.5%) 30 min to 1 hr 47 (22.1%) 
**How much of the time was the air 

conditioner used in your home, when you were 
there with the sampler? 

1 to 2 hrs 39 (18.3%) 

None of the time 157 (73.7%) > 2 hrs 41 (19.2%) 

A little, most, or all of the time 55 (25.8%) Missing 30 (14.1%) 

Missing 1 (0.5%)     

* From the 3rd trimester questionnaire; ** Reported or derived from exit survey referring to 48-hour 
monitoring period. 
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Figure 2.2. Regression plot between 48-hour integrated personal PM2.5 exposures  
and outdoor PM2.5 at the point of residence 

2.3.2. Bivariate Analyses 

Starting with questionnaire/exit variables, the bivariate results with personal PM2.5 are 

shown in Table S2.4. The top five variables significantly associated with personal PM2.5 

exposure included the following (sorted by p-value): (a) home type; (b) home carpeting; (c) time 

spent close to smoke from candles or incense burning; (d) education level; and (e) number of 

people living in a household, parity and time spent outdoors. Living in an apartment (compared 

to a house), proximity to smoke from burning candles or incense, and spending more time 

outdoors was associated with higher personal exposures. Participants with 5+ people or more 

children in their household had higher personal exposures compared to less occupants or less 

children at home.  

The descriptive statistics and correlation coefficient for environmental exposures within 

residential neighborhoods and activity spaces and time-activity patterns with personal PM2.5 

exposure are shown in Table 2.4. The top 3 variables positively associated with personal PM2.5  
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Table 2.4: Bivariate results of personal PM2.5 exposures with GPS-derived time activities and 
environmental variables. 

 

Variables N Mean (SD) 
Spearman Correlation 

(p-value) 

Time-Activity    

***Time spent indoors 199 2,569.5 (523.4) -0.18 (0.009) 

Residential Neighborhood Exposure    

Air pollutants    

PM2.5 (µg/m3) 209 11.8 (5.5) 0.09 (0.206) 

O3 (ppb) 209 24.8 (8.3) -0.14 (0.037) 

NO2 (ppb) 209 17.3 (8.6) 0.15 (0.031) 

Freeway and highway traffic-related NOx (ppb) 204 1.8 (1.8) 0.04 (0.530) 

Meteorology    

Downward shortwave radiance (w/m2) 209 224.6 (83.0) -0.17 (0.014) 

Relative humidity (%) 209 60.2 (12.4) -0.10 (0.167) 

Wind speed (m/s) 209 2.4 (0.7) -0.05 (0.439) 

Greenness (NDVI) and Parks    

Mean NDVI within RN_100 m 213 -0.02 (0.04) -0.05 (0.429) 

Total park area within RN_250m 213 2957.6 (8166.1) 0.10 (0.147) 

Road lengths and traffic volume    

Primary roads within RN_250 m 213 39.4 (115.1) 0.10 (0.140) 

Secondary road within RN_ct 213 75.3 (281.9) -0.06 (0.396) 

Minor streets within RN_500 m 213 339.0 (102.7) -0.19 (0.006) 

Mean traffic volume within RN_250 m  213 9535.2 (45898.4) 0.04 (0.589) 

Built environment exposures    

Mean WIS within RN_250 m 213 14.4 (2.0) -0.12 (0.087) 

Activity Space Exposure    

Air pollutants    

Mean outdoor PM2.5 within KDE area (K10/100m) 199 11.4 (5.5) 0.04 (0.530) 

Meteorology    

Mean daily temperature within KDE area (K50/500m20p) 199 18.3 (4.3) -0.15 (0.030) 

Greenness (NDVI) and Parks    

Mean NDVI within KDE area (K25/250m) 199 -0.1 (0.1) -0.15 (0.037) 

Mean park area within DPA 199 28,390.4 (59,052.1) -0.06 (0.388) 

Road lengths and traffic volume    

Primary road within KDE area (K50/500m) 199 425.7 (865.9) 0.12 (0.094) 

Secondary road within DPA  199 453.6 (613.5) 0.04 (0.571) 

Minor streets within KDE area (K10/100m) 199 126.7 (38.3) 0.10 (0.161) 

Mean traffic volume within DPA 199 
181,777.6 

(108,620.1) 
0.14 (0.044) 

Built environment exposures    

Mean WIS within KDE area (K10m/100n) 199 15.3 (2.1) -0.16 (0.027) 

       Nitrogen dioxide (NO2), ozone (O3), particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5),  
       daily path area (DPA), kernel density estimation (KDE), residential neighborhood (RN). 
      *** From 48-hour GPS tracks. Values presented in bold font shows significant p-values at p<0.05 level. 
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(sorted by descending r value) were: (a) NO2 at residential location, (b) mean traffic volume 

within DPA, and (c) primary road lengths within KDE area. The top 3 most negatively correlated 

variables with personal PM2.5 were: (a) minor street lengths within RN_500m; (b) time spent 

indoors, and (c) downward shortwave radiance. PM2.5 at residential neighborhood was more 

strongly associated with personal PM2.5 compared to PM2.5 within KDE area. 

To illustrate how different residential neighborhood versus activity space methods could 

result in variable correlations with each other and with personal PM2.5 exposure, primary roads 

were used as an example. Table S2.5 presents primary road lengths encountered by participants 

in their activity spaces or residential neighborhoods, along with the bivariate relationships with 

personal PM2.5. Primary road lengths within KDE (K10/250m, K25/250m, K25/500m, 

K50/500m) activity spaces and within residential circular buffers (RN_250m, RN_500m) were 

most significantly associated with personal PM2.5 (Spearman r 0.05 to 0.13). Table S2.6 shows 

the Spearman correlations between various activity space measures of primary road lengths 

ranging from low (blue) to high (red). The primary roads exposure variables which were most 

significantly associated with personal PM2.5 were also highly correlated with each other (r > .5), 

so only one was selected to include in the final model (based on lowest p-value as explained 

earlier). Tables S2.7 and S2.8 (NDVI), and S2.9 (park area) show similar results for the 

remaining activity space and residential measures. The final list of variables selected for 

multivariate modeling is shown in Table 2.5. 
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Table 2.5. List of all potential variables considered for inclusion in the multivariate model.  
 

Time-activity patterns Environmental exposures at residential neighborhoods 

**Time spent outdoors O3 (ppb)  

**Time outdoor and near traffic NO2 (ppb) 

***Time spent indoors PM2.5 (µg/m3) 

**Average commuting time Relative humidity (%) 

Demographics Downward shortwave radiance (w/m2) 

*Education level Wind speed (m/s) 

*Birth order of index child at time of pregnancy Mean length of minor streets within RN_500 m 

Home characteristics Average WIS within RN_250 m 

*Home type Environmental exposures within activity spaces 

**Window open time Average NDVI value within KDE area (K25/250m) 

*Household crowding Mean length of major road within DPA  

*Home built year Sum length of freeway within KDE area (K50/500m) 

*Home carpeting Mean traffic volume within DPA 

**Air conditioner used at home Mean park area within DPA 

Indoor sources Average daily PM2.5 within KDE area (K10/100m) 

**Time close to smoke from candles burning Average daily temperature within KDE area (K50/500m20p) 

*Average stove use time at home  

**Having someone smoking nearby   
Nitrogen dioxide (NO2), ozone (O3), particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5), daily path area 
(DPA), kernel density estimation (KDE), residential neighborhood (RN). 
* From the 3rd trimester questionnaire; ** From exit survey referring to 48-hour monitoring period;  
*** From 48-hour GPS tracks. 

2.3.3. Multivariate Model 

Table 2.6 summarizes the results of the final personal PM2.5 model obtained with 

stepwise linear regression. Variables referring to parity, home ventilation, environmental 

exposures within selected activity spaces and residential neighborhoods, indoor sources, outdoor 

environment, and time-activities were included in the final model. Among them, longer window 

opening time, more greenness (higher NDVI) exposure within KDE area, longer duration of 

staying indoors, greater park area experienced within DPA, and higher exposure to minor streets 

within RN_500m were associated with lower personal PM2.5 exposures. Whereas, parity, primary 

road exposure within the KDE area, outdoor PM2.5 at residence, secondary road exposure within 

DPA, and candles or incense burning indoors increased personal PM2.5 exposures. Commuting 



 

29 
 

time was also included in the final model but seemed to have a non-linear relationship with 

personal PM2.5. The final model (adjusted R2 = 0.34 and intercept = 25.57) suggests that less than 

half of the variability in personal PM2.5 mass was explained by all these factors. Figure 2.3 shows 

the plot of measured versus predicted personal PM2.5 exposure based on the final model. 

Table 2.6. Results of final generalized linear model of personal PM2.5 mass exposure.  
 

  
Incremental model 
performance once 

variable added 

Variable Parameter Estimate* Pr > |t| Pr > F BIC Adj. R2   

Intercept 25.57  1.000 1120.07 0.00 

Parity 5.81  <.0001 1101.19 0.10 

Window open time (on average in 3rd trimester)   0.002 1092.79 0.14 

Less than half of the time ref     

Half to all the time -5.48 0.027    
Length of primary road within KDE area 
(K50/500m) 2.82  0.005 1086.71 0.17 
Average NDVI value within KDE area 
(K25/250m) -3.09  0.018 1082.89 0.19 

Average time of commute (in 48 hours)   0.013 1077.58 0.23 

None ref     
<= 1 hr -0.65 0.893    
1-2 hrs 7.29 0.139    
2-3 hrs -3.24 0.526    

More than 3 hrs -7.62 0.154    
Missing -1.36 0.803    

Duration of staying indoors (in 48 hours)   0.021 1074.14 0.27 
≤75%  ref     

75% to ≤90%  -15.03 0.002    
90% to ≤95%  -20.09 <.0001    
95% to ≤98%  -9.99 0.029    

> 98%  -10.45 0.023    
Outdoor PM2.5 concentration at residence 2.05  0.016 1070.72 0.29 

Mean length of secondary road within DPA 5.57  0.043 1069.00 0.30 

Mean park area within DPA -3.62  0.023 1066.42 0.32 

Candles or incense burning (in 48 hours) 
 

 0.047 1065.05 0.33 

No ref     
Yes 5.69 0.036    

Mean length of minor streets within RN_500m -2.53  0.040 1063.55 0.34 
Particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5), daily path area (DPA), kernel density estimation (KDE), 
residential neighborhood (RN). 
*Parameter estimates of all continuous variables are scaled to one SD increase as summarized in Table S2.10. 
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Figure 2.3. Measured versus predicted personal PM2.5 concentrations and linear regression fit 

2.4. Discussion 

In this study, 48-hr integrated personal PM2.5 measurements and concurrently recorded 

continuous GPS data were leveraged to assess environmental exposures in activity spaces, derive 

time-activity patterns, and investigate determinants of personal exposure among 213 pregnant 

women in the 3rd trimester in Los Angeles, CA. Given the higher burden of collecting personal 

monitoring data especially during pregnancy, this study provided a unique opportunity to 

understand the multiple complex factors that contribute to personal PM2.5 exposure in this 

environmental health disparities population. The novel approach revealed that the exposures 

encountered within activity spaces, particularly greenness (NDVI), park area, and road lengths, 

were the significant contributors to PM2.5 exposures. In addition, indoor environment, time-

activities, and outdoor PM2.5 at residential locations also affected the variation of exposures. 

This study found that experiencing more park area and more greenness within 

individuals’ activity spaces was associated with significant reductions in personal PM2.5 

exposure. To our knowledge, this is probably the first study to document this direct relationship 
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between these natural and built environment features and personal PM2.5 exposure during 

pregnancy. Most previous studies examining the impact of parks, green space or greenness on 

exposure and health used relatively coarse approaches or data (Chen et al., 2019; Crouse et al., 

2019; Riggs et al., 2021; Son et al., 2021; Yitshak-Sade et al., 2019). For example, they used 

PM2.5 values from monitoring sites or modeling estimates to approximate personal PM2.5 

exposures, calculated park area or average NDVI value within a fixed distance of residences, 

then established connections at the population level. Among the few personal monitoring studies, 

Dadvand et al. (2012b) examined the associations between personal PM2.5 samples of pregnant 

women and surrounding greenness, represented by average NDVI within 100m/250m/500m 

residential buffers. They also found higher residential greenness was associated with lower 

personal PM2.5 exposures, with strongest relationship seen for 100m buffer. In this study, NDVI 

exposure within multiple GPS-derived activity spaces were directly assessed that correspond to 

where participants actually went and spent time. The results revealed that KDE activity space 

greenness measures (with larger neighborhood sizes) were more strongly associated with lower 

personal PM2.5 exposures compared to other activity spaces or residential neighborhood 

measures. This is probably because KDE measures are most representative of exposures 

experienced in space and time (of all the ones investigated). Others have also reported positive 

associations between greener residential neighborhood and birth weight (Dadvand et al., 2012a; 

Donovan et al., 2011). Taken together, the findings might suggest that increasing greenness in 

places where pregnant women visit and stay could result in beneficial reductions to personal 

exposure, which in turn might also improve physical health and well-being of both mother and 

her baby. 
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Furthermore, the results also revealed a significant effect of spending time near roads on 

personal PM2.5 exposures, where primary and secondary roads within activity spaces were 

selected into the final model capturing potentially different aspects of road impacts on personal 

exposures. Primary road lengths within KDE (K50/500m) – which is a space- and time- 

integrated measure of being on or close to roads – was significantly associated with higher 

personal PM2.5 exposure. In addition, mean length of secondary roads within DPA – a measure 

which strongly correlates with any encounter of secondary roads (which have a very specific 

geographic distribution in Los Angeles, CA, as shown in Figure S2.1) during participants’ 

movement or mobility – was also significantly associated with higher personal PM2.5 exposure. 

These results show how different activity space measures with potentially variable spatial extents 

could capture different aspects or contributions of the built environment to exposure.  

This study found that the indoor environment has a large impact on personal exposure, 

and probably one of the largest in relative magnitude, both in terms of indoor sources such as 

combustion (e.g., candles or incense burning) and the number of children in the home 

(approximated by birth order or parity). These results are in line with other exposure studies 

showing indoor PM2.5 had significant contribution to personal exposures (Brown et al., 2009; 

Kim et al., 2005; Koistinen et al., 2004; Lai et al., 2004; Zamora et al., 2018), or there was strong 

correlation between personal and indoor PM2.5 (Adgate et al., 2002; Crist et al., 2008). The 

results showed that indoor combustion source contributed twice as much as outdoor PM2.5 

estimates to personal PM2.5 (on a per SD change basis in outdoor PM2.5). Given MADRES 

participants spent around 94% of their time indoors (Table S2.11), the indoor environment 

presumably dominated their personal exposures. Therefore, reducing indoor PM2.5 sources could 

greatly reduce personal PM2.5. Comparing to other studies which investigated indoor combustion 
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sources mainly from smoking or cooking (Brown et al., 2009; Kim et al., 2005; Meng et al. 

2009; Wheeler et al., 2011; Zamora et al., 2018), the results only identified candles or incense 

burning contribution to personal exposure. This could be because the survey measures did not 

fully capture the presence of secondhand smoking (no primary smoking in these participants) or 

cooking, or because the 48-hr sampling period did not always capture these if they occurred. 

Future planned chemical analysis of these personal sampler filters will help us resolve PM2.5 

sources and improve our understanding.  

The results revealed that parity was more significantly associated with personal PM2.5 

than household size although these two variables are significantly correlated (Spearman r=0.24). 

The impact of multiple occupants in the home on personal exposure is less reported in the 

literature. These findings could reflect the fact that children (compared to adults) tend to be more 

active and stay in closer interaction with their mothers, or that mothers with more children 

cooked or cleaned more frequently for example. In addition, as reported in the literature an effect 

of window opening on reducing personal exposures was also found (Brown et al. 2009; Sarnat et 

al., 2006). Window opening increases ventilation in the home and could dilute PM 

concentrations emitted from indoor sources. It is also possible that window opening introduces 

PM of outdoor origin indoors when outdoor air quality is poor; however, the personal 

measurements were well spread over the sampling period which increases confidence in the 

representativeness of this finding across seasons (Table S2.1). 

Individual’s time-activities such as commuting and spending time near roads and traffic 

(regardless of activity) also affected personal PM2.5 exposure. Previous studies also reported 

commuting impact on personal PM2.5, with magnitude of influence highly dependent on 

commute modes and ventilation settings (Ham et al., 2017; Huang et al., 2012; Kaur et al., 2007; 
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Qiu and Cao, 2020). The non-linear or non-monotonous relationship between commuting time 

and personal PM2.5 exposures in this study could be due to the fact of insufficient data on in-

transit ventilation, commuting mode, or other factors known to modify exposure to PM2.5 in 

transit. This study also found significant outdoor PM2.5 contributions to personal exposure, and 

this is to be expected and highlights the rationale behind many studies of outdoor air pollution 

health effects that are using outdoor residential estimates as proxies of personal exposure to 

PM2.5 of outdoor origin.  

Finally, despite the sophisticated data collected in the research, the model did not explain 

a large portion of the variability in personal PM2.5 exposure (Adj.R2 = 0.34). This could be due to 

several reasons. One important reason could be that organic carbon (OC) contributes a large 

fraction of indoor and personal PM2.5 mass, and there are major sources of OC indoors (Habre et 

al., 2014a, 2014b; Turpin et al., 2017). Turpin et al. (2007) found organic particulate matter was 

the major constituent of PM2.5 generated indoors, which contributed 48% of PM2.5 mass inside 

individual homes in Los Angeles. Habre et al. (2014a) attributed 46% of indoor PM2.5 mass to 

indoor sources related to OC in New York. Other studies also confirmed large contributions of 

OC or organic matter to indoor or personal PM2.5 (Hasheminassab et al., 2014; Habre et al., 

2014b; Schachter et al., 2016; Shang et al., 2019). This study was not able to measure OC in this 

study using Teflon filters; therefore, a large portion of the PM mass could be missed this way 

(and especially OC1, the most volatile thermal fraction of OC). Other reasons could relate to the 

complexity of personal exposure and the multiple factors that contribute to it, where despite the 

sophisticated data collection and modeling, other important determinants of exposure might not 

have been captured. For example, there was not information on cleaning, vacuuming or dusting 

which resuspend particles and dust and could have contributed to personal exposures (Habre et 
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al., 2014a; Hasheminassab et al., 2014; He et al., 2004; Koistinen et al., 2004; Long et al., 2000; 

Molnár et al., 2014). Some home characteristics, e.g., type of residence, carpeting or AC usage, 

were associated with personal PM2.5 in bivariate models (p < .15) but ended up dropping out in 

multivariate model. Factors such as secondhand smoking and cooking in this study, which are 

well-recognized as important contributors to indoor and person exposures (He et al., 2004; Hu et 

al., 2012; Long et al., 2000), did not meet the bivariate screening criteria for multivariate 

analysis, and this could depend on the form of questions used or other biases. Data on these 

factors were collected in the questionnaires; nonetheless, if the question did not have enough 

resolution or the data did not have enough variability to capture the real complexity of these 

factors, the ability to model their full contribution to personal PM2.5 might be limited.  

The strengths of this research include a study population selected from a highly 

characterized prospective pregnancy cohort in a health disparities population, the 48-hr 

integrated personal PM2.5 monitoring and concurrent GPS data, and the sophisticated activity 

space modeling to incorporate mobility and capture environmental impacts on personal 

exposures. This rich dataset provided the ability to examine complex factors to understand 

personal exposure. Some limitations include small sample size which is characteristic of personal 

exposure studies that are more burdensome to conduct, no organic carbon measurements, and 

perhaps reduced generalizability of the findings to other areas that do not resemble Los Angeles, 

CA. However, the results may generalize to other environmental health disparities contexts and 

studies. The 48-hour monitoring period in the 3rd trimester might also not be representative of the 

full pregnancy or entire 3rd trimester exposure; however, the samples were somewhat evenly 

spread out across seasons and years of the study. 
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2.5. Conclusion 

The findings show that environmental exposures encountered within activity spaces, 

along with indoor environment, time-activities, and outdoor PM2.5, significantly contribute to 

personal PM2.5 exposure during pregnancy. Characterizing the impact of environmental 

exposures and sources encountered in activity spaces and across microenvironments can shed 

light on solutions and interventions to reduce personal exposures. Especially the finding of a 

direct association between greater greenness exposure in the activity space and lower personal 

exposure in the 3rd trimester of pregnancy need to be noted which could have direct relevance to 

built-environment design and planning to promote health and well-being.  
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Chapter 3 Sources of Personal PM2.5 Exposure in the MADRES Pregnancy 
Cohort  

In this chapter, the main sources are first identified and their mass contributions to personal 

PM2.5 exposure of MADRES participants in their 3rd trimester of pregnancy are quantified. The 

factors such as time-activity patterns, environmental exposures encountered within activity 

spaces, home characteristics, and outdoor environment at the residence that were correlated with 

these sources were examined next to further confirm their identities and understand their origin 

(i.e., personal activity related, indoor origin, outdoor origin). The chapter starts by introducing 

the research background, followed by the data and method used in this study, along with results, 

discussion and conclusion. 

3.1. Introduction 

Epidemiological studies have shown that prenatal exposure to PM2.5 is associated with 

adverse maternal and fetal health outcomes (Dadvand et al., 2013; Hu et al., 2015; Jedrychowski 

et al., 2012). Exposure in the 3rd trimester of pregnancy specifically has been associated with low 

birth weight and other impaired growth outcomes given this is the time when most fetal weight 

gain occurs (Guo et al., 2018; Percy et al., 2019; Sun et al., 2016). The toxicity of PM2.5 and its 

subsequent impact on health is driven by its chemical composition and main sources contributing 

to it (Berger et al., 2018; Hasheminassab et al., 2014a; Masiol et al., 2017; Rohr & Wyzga, 2012; 

Saffari et al., 2013; Stanek et al., 2011; Stieb et al., 2012; Sun et al., 2016; Zhai et al., 2017; 

Zhang et al., 2008). Personal exposure to PM2.5 is impacted by indoor, outdoor, and personal 

activity related sources in the various microenvironments individuals typically encounter. For 

example, behaviors, time-activity patterns, and household, neighborhood or activity space 

characteristics can impact the types and quantities of sources individuals are exposed to (Chen et 
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al., 2020; Larson et al., 2004; Shang et al., 2019). As such, identifying and quantifying the main 

sources of personal PM2.5 can shed light on particular mixtures that might pose a greater risk and 

would otherwise be missed by investigating exposure to total PM2.5 mass concentration as a 

whole. This is particularly important in environmental health disparities contexts and for specific 

vulnerable populations such as pregnant women for whom meaningful recommendations to 

reduce exposures and health risks are needed (Brown et al., 2007; Han et al., 2017; 

Hasheminassab et al., 2014a).  

Earlier studies have resolved and quantified main sources of PM exposure using source- 

and receptor-oriented modeling approaches. Source-oriented approaches start at the source and 

model the emissions, transport, dilution, and transformation of pollutants and estimate 

concentrations at receptor sites for one or more specific sources (Kim et al., 2005; Lippmann, 

2009; Reff et al., 2009). Based on the fundamental mass balance principle (Watson et al., 2008), 

the receptor-oriented approach utilizes speciated measurements at receptor sites or points of 

interest to identify the major sources (or source groups) impacting that receptor and quantify 

their respective contributions to the observed concentrations (Hasheminassab et al., 2014a, 

2014b; Hopke, 2003). Two of the most commonly used receptor-oriented models are the 

Chemical Mass Balance (CMB) model which assumes that the major sources impacting a 

receptor site are known along with their profiles or chemical signatures (Fujita et al., 2003; 

Harley et al., 1992; Hasheminassab et al., 2013; Schauer et al., 2002; Zhai et al., 2017) and the 

PMF model which solves for and does not explicitly assume known sources and profiles (Berger 

et al., 2018; Brown et al., 2007; Hadley, 2017; Han et al., 2017; Hasheminassab et al., 2014a, 

2014b; Heo et al., 2009; Hopke, 2016; Masiol et al., 2017; Paatero & Tapper, 1994; Pekney et 

al., 2006; Rohr et al., 2014; Song et al., 2001; Wang & Hopke, 2013). 
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And while several studies have derived outdoor air pollution sources (Arhami et al., 

2009; Cheung et al., 2011a, 2011b; Daher et al., 2013; Hasheminassab et al., 2013, 2014c; Heo et 

al., 2013; Schauer et al., 1996; Sowlat et al., 2016) and investigated their health impacts (Bell et 

al., 2010; Dadvand et al., 2014; Ng et al., 2017; Pereira et al., 2014; Rohr et al., 2014; Schachter 

et al., 2016), very few studies have been able to accomplish this for personal exposure. For 

example, Hasheminassab et al. (2013) and Hasheminassab et al. (2014a) resolved several sources 

of outdoor PM (particle size range 0.25-10 µm) including vehicular emissions, wood smoke, 

natural gas combustion, ship emissions, secondary aerosols, fresh and aged sea salt, and soil/road 

dust. Through conducting concurrent indoor and outdoor PM sampling at three retirement 

homes, Hasheminassab et al. (2014c) found that mobile sources were the major contributor to 

both indoor (39±21%) and outdoor (46±17%) PM2.5 mass in Los Angeles, CA. However, sources 

that contribute to personal exposures can be more complex or difficult to discern since 

individuals get exposed to PM2.5 in multiple microenvironments and locations, while being 

mobile or stationary, sometimes in close proximity to indoor or personal activity related sources 

and while being impacted by outdoor or infiltrated air pollution (Jenkins et al., 1992; MacIntosh 

et al., 2000; Ott et al., 2006; Wallace, 1996). A few studies have examined sources of indoor and 

outdoor PM air pollution in residential settings, for example, in homes of children with asthma 

(Habre et al., 2014a, 2014b). They found that risk of asthma symptoms in children varied by 

PM2.5 source (Habre et al., 2014b).  

However, even fewer studies conducted source apportionment analyses on personal 

monitoring samples, and most have ranged from 12 to 48 hours in duration (Brinkman et al., 

2009; Chen et al., 2020; Kim et al., 2005; Koistinen et al., 2004; Larson et al., 2004; Molnár et 

al., 2014; Ryan et al., 2015; Shang et al., 2019). Personal monitoring is considered to be the gold 
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standard external exposure assessment method to accurately understand what individuals are 

exposed to in their breathing zones (MacIntosh et al., 2000; Ott et al., 2006). Nevertheless, due to 

the high cost and burden of collecting high quality personal exposure data, very few studies have 

been able to conduct this type of monitoring especially in pregnant women (Choi et al., 2006, 

2012; Jedrychowski et al., 2004, 2009; Rundle et al., 2012; Tonne et al., 2004), and even fewer 

conducted source apportionment analyses on personal PM2.5 samples (Minguillón et al., 2012). 

Özkaynak et al. (1996) found that personal exposure to PM10 in 178 nonsmoking residents in 

Riverside, CA, was much higher than outdoor and indoor concentrations, and that these only 

explained 16% and 50% of the variation in personal exposures, respectively. In addition, they 

reported that cooking and smoking were important sources of personal exposure and that indoor 

and outdoor measurements alone were not sufficient to fully capture variation in personal 

exposure. Minguillón et al. (2012) found cosmetics and train/subway sources among others 

contributed to personal PM2.5 exposures of 54 pregnant women with wide variation in 

contributions across participants. They report that questionnaire data helped identify the 

train/subway source, but limitations (e.g., recall error, accuracy of time and location of travel and 

activities) could introduce noise when resolving the sources. 

To the best of our knowledge, no studies to date have investigated sources of personal 

PM2.5 exposure in an environmental health disparities population during pregnancy. This study 

aimed to understand the main sources and determinants of exposure for this specific vulnerable 

population using data from a personal monitoring sub-study of the MADRES cohort in Los 

Angeles, CA. MADRES aims to address critical gaps in understanding the impacts of air 

pollution, environmental exposures, and social stressors on the maternal and child health in a 

low-income, predominantly Hispanic women in urban Los Angeles (Bastain et al., 2019). To 
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accomplish this goal, the personal PM2.5 samples were analyzed first for chemical composition. 

Source apportionment analysis was next conducted using the USEPA PMF model (Norris et al., 

2014) and the relationships between predicted source contributions and a suite of questionnaire-

collected and GPS-derived activity space and residential characteristics, personal behaviors, and 

time-activity patterns were investigated to confirm source identities and understand what 

contributes to their variation. 

3.2. Method 

In this section, the personal and environmental data used in this research are described 

along with the USEPA-developed PMF model and the statistical analysis used to achieve the 

research goals. 

3.2.1. Data Collection 

The study design for MADRES is briefly described first. Then the personal exposure data 

of MADRES participants including personal PM2.5 measurements, concurrent GPS tracks, 

questionnaires, and environmental exposures at residential locations and within GPS-derived 

activity spaces, along with EPA speciated data, are described. 

3.2.1.1. Study design 

A total of 212 women in their 3rd trimester who were enrolled in the larger MADRES 

cohort study were recruited into this personal monitoring sub-study between October 2016 and 

March 2020. MADRES is an ongoing prospective pregnancy cohort focused on predominantly 

low-income, Hispanic women and their babies residing in Los Angeles, CA. The details of 

eligibility, enrollment, and follow-up of MADRES participants are described elsewhere (Bastain 

et al., 2019). Briefly, eligible participants for this study were in the 3rd trimester at the time of 
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recruitment, ≥18 years of age, and could speak either English or Spanish fluently. In the initial 

design, people living in a smoking household were excluded to reduce the impact from smoking 

on personal PM2.5 exposures. However, the non-smoking household criterion was not applied 

consistently throughout the study and was eliminated. Informed consent was obtained for each 

participant. The University of Southern California’s Institutional Review Board (IRB) approved 

the study protocol. 

3.2.1.2. Personal PM2.5 measurements 

Personal, 48-hr integrated PM2.5 measurements were collected using a Gilian Plus 

Datalogging Pump (Sensidyne, Inc.) operating on a 50% cycle at 1.8 lpm flow rate and 

connected to a PM2.5 Harvard PEM size-selective impactor with a 37 mm Teflon filter (2 µm 

pore size; Pall, Inc.). Participants were asked to wear the sampling device for the entire data 

collection period with a few exceptions. These included when it is unsafe to do so (e.g., driving), 

showering, or sleeping, in which case they were instructed to place the device near them in an 

unobstructed location.  

Filters were analyzed gravimetrically to determine post-sampling PM2.5 mass using a 

MT5 microbalance (Mettler Toledo, Columbus, OH, USA) in a dedicated chamber at the USC 

Exposure Analytics Laboratory. Filters were then sent to Research Triangle Institute 

International (RTI Inc., Research Triangle Park, NC) to determine elemental composition of 33 

species using X-Ray Fluorescence (XRF). The chemical components included barium (Ba), 

calcium (Ca), chlorine (Cl), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese 

(Mn), sodium (Na), nickel (Ni), sulfur (S), silicon (Si), titanium (Ti), zinc (Zn), aluminum (Al), 

bromine (Br), cobalt (Co), phosphorus (P), lead (Pb), selenium (Se), strontium (Sr), vanadium 

(V), cesium (Cs), zirconium (Zr), chromium (Cr), rubidium (Rb), arsenic (As), indium (In), 
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silver (Ag), antimony (Sb), tin (Sn), cerium (Ce), and cadmium (Cd). Filters were also analyzed 

for concentrations of black carbon (BC), brown carbon (BrC), and environmental tobacco smoke 

(ETS) using a four-wavelength optical reflectance method (Lawless et al., 2004; Yan et al., 

2011). 

3.2.1.3. Questionnaires 

MADRES participants filled out interviewer-administered questionnaires in trimester-

specific visits and an exit survey after completing the 48-hr monitoring period. Data that might 

directly or indirectly relate to PM2.5 sources and personal exposures were collected, including 

demographics (e.g., age, race, education, employment, income), pre-pregnancy body mass index 

(BMI), housing characteristics (e.g., type of dwelling, building age), time-activity patterns (e.g., 

time spent indoors and outdoors, commuting), home ventilation (e.g., window open, air 

conditioner use), current tobacco smoke exposure (primary and secondhand), and presence of 

any significant indoor sources of PM2.5 such as cooking or candle burning (Bastain et al., 2019). 

Participants' residential locations at the 3rd trimester study timepoint were geocoded for 

residential exposure assessment. 

3.2.1.4. Residential Environmental Exposure Assessment 

Daily ambient concentrations of NO2, PM2.5, PM10, and O3 obtained from the USEPA 

AQS were interpolated at the residence using inverse distance squared weighted interpolation 

(Bastain et al., 2019). Daily local traffic-related NOx concentrations at the residence were 

estimated using the CALINE4 line source dispersion model by roadway class (Benson, 1992). 

Daily meteorology (temperature, precipitation, specific humidity, relative humidity, downward 

shortwave radiance, wind direction and wind speed) was assigned at the residence based on a 4 

km x 4 km gridded model developed by Abatzoglou (2013). Forty-eight-hour integrated averages 
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were calculated from all daily measurements to correspond to the personal monitoring period. 

Specifically, wind direction was the average direction of degree in 48-hr period, where a 

direction of 0 degrees is due North on a compass and a wind coming from the south has a wind 

direction of 180 degrees. For analytical purposes, we categorized wind direction into four 

categories as follows: 0-90 degrees as wind blowing from NE, 91-180 degrees as SE, 181-270 

degrees as SW, and 271-360 degrees as NW.  

3.2.1.5. GPS-Derived Time-Activity Patterns and Environmental Exposures within Activity 
Spaces 

Participants’ 48-hr GPS records were collected using smartphones with the madresGPS 

app pre-installed and programmed to log geolocation (GPS and metadata) and motion sensor 

data continuously at 10-sec intervals. Time-activity patterns were derived from analyzing GPS 

records. Using the method described in Cich et al. (2016), Li et al. (2008), Pérez-Torres et al. 

(2016), van Dijk (2018), and Xiao et al. (2014), durations of staying at home or other places 

were extracted, as well as time on the road. All stays were assumed indoors and time spent 

indoors in the 48-hr period were calculated in minutes then converted it to a percentage out of 

the total 48 hours for use in the analysis. 

KDE activity spaces were also constructed for each participant based on GPS trajectories 

to examine how exposures encountered within correlated with sources, where KDE implicitly 

integrates time and space to account for durations of time spent at certain locations (Jankowska 

et al., 2015, 2017; Kwan, 1999; Newsome et al, 1998; Sherman et al., 2005; Zenk et al., 2011). 

KDE was applied with pre-defined bin (i.e., 25 m) and neighborhood sizes (i.e., 250 m) to 

examine the impact on personal PM2.5 exposures (i.e., K25/500m). 

Built-environment characteristics including NDVI (greenness), parks and open spaces, 

traffic volume on primary roads, walkability index scores, road lengths by categories (i.e., 
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primary and secondary roads, and minor streets), ambient daily PM2.5 and temperature were 

assigned for the KDE activity spaces (data sources described in more detail in Table 2.1). 

Geospatial analyses for creating activity spaces, residential neighborhoods, and environmental 

exposure data were conducted in ArcGIS Pro 2.5 (Esri, Redlands, CA). 

3.2.1.6. EPA PM2.5 Speciation Data for Los Angeles, CA 

Ambient PM2.5 speciated data was downloaded from the USEPA monitoring site located 

in downtown Los Angeles. The concentration of these PM2.5 components are 24-hr averaged 

values, which are collected every three days from the Chemical Speciation Network (CSN) 

(Solomon et al., 2014). The data includes the measurement of the major chemical components of 

PM2.5 using the Met One SASS/SuperSASS Teflon - Energy Dispersive XRF method, including 

carbonaceous material, and a series of trace elements. 

3.2.2. Data Analysis 

The analytical methods are laid out in this sub-section, starting with descriptive statistics 

and followed by performing of the PMF analysis to identify main sources, as well as bivariate 

analysis to further understand factors that influence the distribution of each source and help 

confirm its identity or origin. 

3.2.2.1. Descriptive Statistics 

The descriptive statistics were calculated in SAS 9.4 (SAS Institute Inc 2013) to check 

the distributions of population demographics, housing characteristics, home ventilation, indoor 

sources of PM2.5, time-activities, personal PM2.5 mass and the measured chemical components 

and optical carbon fractions.  
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3.2.2.2. Positive Matrix Factorization Analysis 

The USEPA PMF 5.0 model was used to resolve and identify major sources of PM2.5 and 

quantify their mass contributions using the measured chemical species concentrations and 

sample-specific uncertainties as inputs. Briefly, the PMF model uses factor analysis to identify 

source contributions and profiles for a given number of sources through solving the following 

equation (Norris et al., 2014; Paatero & Tapper, 1994; Paatero, 1997): 

𝑋 =   𝑔𝑓 + 𝑒



ୀଵ

 Eq. (3.1) 

 
where Xij represents the concentration of chemical species j in sample i, gik represents the mass 

contribution of each factor k in sample i, fkj represents the loading of chemical species j on factor 

k, and eij is the residual error for sample i and species j. 

The PMF model solves Eq. (3.1) by minimizing the sum of squares object function Q for 

a given number of factors k (Brown et al., 2015; Paatero & Tapper, 1994; Paatero, 1997): 

𝑄 =   [



ୀଵ

𝑒

𝑢
]ଶ



ୀଵ

 Eq. (3.2) 

 
where uij is the uncertainty of species j in sample i. The model decomposes the concentrations 

matrix into a contributions g matrix and profiles f matrix and constrains results to be positive (or 

not significantly negative) (Brown et al., 2007; Paatero & Tapper, 1994). Each observation is 

individually weighted by its uncertainty in Eq. (3.2); therefore, samples with higher analytical 

uncertainties will have less influence on the solution. 

Based on the PMF-calculated signal-to-noise ratio (S/N), which indicates the degree of 

noise in each species’ measurements (Norris et al., 2014), we categorized species with S/N ≤0.2 

as “Bad”, species with 0.2 < S/N <1 as “Weak”, and species with S/N > 1 as “Strong”. “Bad” 

species were excluded from the subsequent analysis. “Weak” species were retained and used in 
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the analysis; however, their uncertainty values were increased by a factor of 3 to reduce their 

impact on the solution. Although Pb and V had S/N < 0.2, they were included in the analysis as 

potentially important tracers of traffic and fuel oil, respectively, and set to “Weak”.   

Of the 36 species measured, the following 16 were finally included in the PMF analysis 

as “Strong”: BC, BrC, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, Ni, S, Si, Ti, and Zn. We also 

included 9 “Weak” species as follows: Al, Br, Co, ETS, P, Pb, Se, Sr, and V. PM2.5 mass was 

designated as the total variable which automatically defaults to “Weak” to reduce its impact on 

the solution. An extra 10% modeling uncertainty was added in the model to account for sampling 

or modeling errors not captured in the sample-specific analytical uncertainties (Norris et al., 

2014). In order to maintain sample size, missing values were replaced by the species’ median 

value. Out of all available samples, 2.3% (5 out of 217) were excluded as outliers from the 

analysis based on species’ concentrations. 

The solutions with five to seven factors and 20 model runs were scanned first to decide 

upon a reasonable factor number. The Q values for no undue influence from outliers and no local 

minimum solution were checked next. Based on loading chemicals in profiles and prior 

knowledge, the optimal sources from PMF that provided the most physically interpretable 

solution were identified (Brown et al., 2007). Once the optimal factor number was decided, 100 

model runs were executed and the convergent solution with the lowest Qrobust value, where Qrobust 

is the calculated goodness-of-fit parameter excluding points with uncertainty-scaled residuals 

greater than 4, was selected (Norris et al., 2014). Residuals were checked for normality, along 

with R2 values in terms of whether species were well modeled.  

Diagnostics analysis of Displacement (DISP), Bootstrap (BS) (100 bootstraps, 0.6 

minimum correlation), and Bootstrap-Displacement (BS-DISP) were performed to estimate the 
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variability in the PMF solution under different scenarios. DISP focuses on effects of rotational 

ambiguity in the profiles or loadings; BS identifies whether there are a small set of observations 

that can disproportionately influence the solution; and BS-DISP include effects of random errors 

and rotational ambiguity (Norris et al., 2014). Fpeak rotations, where positive F peak values 

sharpen the F matrix and negative values sharpen the G matrix were performed next. The 

optimal Fpeak value for solution rotation was chosen based on the smallest change in Q (or dQ) 

(Norris et al., 2014).  

3.2.2.3. Bivariate analysis 

To further confirm the identities and expected trends in the PMF-predicted source 

contributions, the relationships with several variables described earlier including demographics, 

time-activity patterns, home characteristics, indoor air pollutant sources, residential ambient air 

pollutant concentrations and meteorological conditions, and environmental exposures within 

activity spaces, were examined. 

The descriptive statistics were calculated first and used to check the distribution of the 

final, PMF-predicted and rotated source contributions for normality and outliers. The Spearman 

correlations between the predicted source contributions (in mass concentration units) and 

between the sources and variables hypothesized to relate to personal PM2.5 exposure from that 

source were calculated next. The Kruskal-Wallis test was then used to test whether source 

contributions were significantly different (rank test) across levels of categorical independent 

variables. Categorical variables with unbalanced values (≥85% of the records have one value) or 

with too many missing values (≥80% of the records have missing values) were excluded from 

the bivariate evaluation and dropped from further analysis. 
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3.3. Results 

3.3.1. Descriptive Statistics 

Most of the participants (>98%) resided in central and east Los Angeles, CA. The 

majority were Hispanic (78%), working (48%) during the 3rd trimester, and with up to grade 12 

education (55%). The mean age was 28 yr at consent (range 18-45 yr), and mean parity was 2 

(range 1-6). The majority of participants reported annual household incomes less than $30,000 

(67%, N=135) and in terms of pre-pregnancy BMI, 63 participants (30%) were overweight and 

82 (39%) were obese (Table 3.1). 

Table 3.1. Descriptive statistics of participants demographics (N=212). 
 

Variable Mean (SD) or n (%) Variable Mean (SD) or n (%) 

Maternal Age (years) 28.3 (6.0) Maternal Ethnicity and Origin  

Parity 2（1.2） Non‐Hispanic 41 (19.3%) 

Race  US‐Born Hispanic 75 (35.4%) 

White, non-Hispanic 12 (5.7%) Foreign‐Born Hispanic 87 (41.0%) 

Asian, non-Hispanic 2 (0.9%) Missing 9 (4.2%) 

African American, non-Hispanic 23 (10.8%) Employment  

Hispanic 166 (78.3%) Homemaker 57 (26.9%) 

Other 4 (1.9%) Student 21 (9.9%) 

Missing 5 (2.4%) Employed 84 (39.6%) 

Education   Temporary Medical 
Leave 

9 (4.2%) 

< 12th grade 50 (23.6%) Unemployed 35 (16.5%) 

Completed high school 66 (31.1%) Missing 6 (2.8%) 

Some college 59 (27.8%) Working Status  

Completed college 25 (11.8%) No 106 (50.0%) 

Some graduate training after college 7 (3.3%) Yes 101 (47.6%) 

Missing 5 (2.4%) Missing 5 (2.4%) 
Pre-Pregnancy Obesity Categories based on Body Mass 
Index  

Household income in the last year 

Underweight 6 (2.8%) Less than $15,000 44 (20.7%) 

Normal 57 (26.9%) $15,000 to $29,999 47 (22.1%) 

Overweight 63 (29.7%) $30,000 to $49,999 29 (13.6%) 

Class 1 Obese 51 (24.1%) $50,000 to $99,999 7 (3.3%) 

Class 2 Obese 18 (8.5%) $100,000 or more 8 (3.8%) 

Class 3 Obese 13 (6.1%) Don't know 76 (35.7%) 

Missing 4 (1.9%) Missing 2 (0.9%) 
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Chemical component concentrations are provided in Table 3.2. The mean and SD 

personal PM2.5 mass concentrations during the 48-hr sampling period were 22.3 and 16.6 μg/m3, 

respectively. The optical carbon fractions BC, BrC, and ETS combined constituted on average 

17% (3.7 μg/m3) of the total PM2.5 mass. Among the elemental components measured, S, Na, Si 

were presented at the highest concentrations. 

Table 3.2. Chemical component concentrations (all in units of ng/m3 unless otherwise noted). 
 

  N Mean SD 

PM2.5 mass (μg/m3) 209 22.33 16.61 

Optical Carbon Fractions    

BC (μg/m3) 209 1.05 1.71 

BrC (μg/m3) 206 1.08 0.82 

ETS (μg/m3) 210 1.58 6.11 

Elements    

Al 212 1.76 6.68 

Ba 212 2.01 1.92 

Br 212 0.42 0.44 

Ca 212 12.13 20.00 

Cl 212 17.91 35.86 

Co 212 0.07 0.11 

Cu 212 2.65 1.73 

Fe 212 17.31 15.69 

K 212 14.96 20.11 

Mg 212 5.53 8.86 

Mn 212 0.36 0.41 

Na 212 43.34 42.69 

Ni 212 0.33 0.39 

P 212 0.77 2.52 

Pb 212 0.20 0.37 

S 212 56.88 41.54 

Se 212 0.22 0.26 

Si 212 23.47 28.79 

Sr 212 0.25 0.95 

Ti 212 1.44 1.80 

V 212 0.09 0.16 

Zn 212 1.86 2.47 

 
The distributions of home characteristics, indoor PM sources, and selected time-activities 

as reported in questionnaires or derived from GPS data are presented in Table S3.1 (Appendix 
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B). Based on the exit survey, 60% spent some time near traffic when outdoors, and 34% spent 

more than 2 hrs per day commuting during the monitoring period. When with the sampler, 60% 

of participants opened windows more than half of the time, 26% used air conditioning and 37% 

used fans at home. In terms of indoor PM sources, 80 (38%) were close to cooking smoke and 51 

(24%) close to burning candles or incense, and 83 (39%) were exposed to smokers. Based on the 

3rd trimester questionnaire, 56% of participants lived in an apartment, 44% were part of a 

household with > 3 persons, and 43% lived in a home built after the 1980s. In addition, 

participants’ GPS-estimated duration of staying indoors at home was 78.5% (SD=19.6) and 

staying in non-home locations was 15.2% (15.7). 

3.3.2. Positive Matrix Factorization Analysis  

We replaced missing values of 14 observations with species’ median values including 

PM2.5 mass (3 observations), BC (3), BrC (6), and ETS (2). A five-factor solution combined the 

two sources later identified as fuel oil and secondhand smoking, while seven factors resulted in a 

non-interpretable factor with a single high loading of Zn, resulting in a six-factor solution as the 

optimal, physically interpretable solution (Qrobust =5845.3 and Qtrue=6143.1). An Fpeak rotation 

of -0.1 was then applied with 100 bootstraps which resulted in no unmapped factors (compared 

to one factor with two unmapped bootstrap runs in the base model (Table S3.2)). These six 

factors together explained 48% of the variability in PM2.5. The species BC, Cl, K, S, Ca, and Zn 

had non-normal residuals (Table S3.3). The PMF results are presented below for each predicted 

source along with any bivariate analyses that supported its identification or explained some of 

the variation in its mass contributions.  

Traffic. The first source identified was traffic with high loadings of BC, Zn, and Ba 

(Figure 3.1). It contributed on average 2.4% of the personal PM2.5 mass (Table 3.3). Traffic was  
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moderately positively correlated with crustal (described on page 58) and inversely correlated 

with fresh sea salt and fuel oil sources (Table 3.4). This source was positively correlated with 

outdoor NO2 and PM2.5 and negatively correlated with O3 in the residential environment. It was 

also positively correlated with total traffic-related NOx concentrations from local roadways 

around the residence, as modeled by the CALINE4 dispersion model. In addition, length of 

primary roads within KDE area was positively correlated with this source (Table 3.5). 

Table 3.3. Source mass contributions. 
 

Sources 
Average mass contribution 

(μg/m3) (SD) 
Percent contribution to total 

PM2.5 mass (%)  
Traffic 0.4 (0.5) 2.4 

Secondhand Smoking 11.7 (9.3) 64.2 

Aged Sea Salt 0.9 (0.9) 4.8 

Fresh Sea Salt 0.8 (2.0) 4.5 

Fuel Oil 2.1 (1.6) 11.4 

Crustal 2.3 (4.1) 12.6 

 
 

Table 3.4. Spearman correlations among PMF-predicted source contributions,  
colored from low (blue) to high (red). 

 

  
Traffic 

Secondhand 
Smoking 

Aged 
Sea Salt 

Fresh 
Sea Salt 

Fuel Oil Crustal 

Traffic       
Secondhand Smoking -0.09     

 
Aged Sea Salt -0.01 -0.29    

 
Fresh Sea Salt -0.20 -0.24 0.07   

 
Fuel Oil -0.20 -0.03 -0.07 -0.01  

 
Crustal 0.32 -0.03 -0.08 -0.08 0.14   

            Values in bold font represent significant p-values at p<0.05 level. 

 
Secondhand Smoking. The second source we identified had a high loading of BrC and 

ETS (Figure 3.1). With an average mass contribution of 11.7 μg/m3, it contributed the majority 

of personal PM2.5 mass (64.2% on average) (Table 3.3). Participants living in apartments seemed 

to have slightly higher exposure to this source compared to those living in house (12.8 vs. 10.2 
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Table 3.5. Spearman correlations between PMF-predicted source contributions and variables 
related to personal activities, time-activity patterns, indoor and outdoor environment.  

 
Source Predictor Correlation 

Traffic Outdoor (48-hour) air pollution at residence  

 O3  -0.35 
 NO2  0.61 
 PM2.5  0.43 
 Total NOx from local traffic on Citilab road classes 1-5 0.14 
 Length of primary roads within KDE activity space 0.15 

Secondhand Smoking 
Ambient air pollutant concentrations (overlapping 24 hours) 
at Downtown Los Angeles central site 

 

 Potassium Ion  0.12 
 Potassium -0.05 
 Element Carbon 0.03 
 Organic Carbon 0.09 

Aged Sea Salt 
Outdoor (48-hour) air pollution and meteorology at 
residence 

 

 O3 0.53 
 Wind speed -0.22 
 Temperature 0.55 

Fresh Sea Salt Outdoor (48-hour) meteorology at residence  

 Wind speed 0.27 
 Relative humidity 0.16 

 
Ambient air pollutant concentrations (overlapping 24 hours) 
at Downtown Los Angeles central site 

 

 Ambient Chloride Ion 0.25 
 Ambient Chlorine 0.20 

Fuel Oil Outdoor (48-hour) air pollution at residence  

 O3  -0.17 
 NO2 0.16 

Crustal 
Outdoor (48-hour) air pollution and meteorology at 
residence 

 

 PM10 0.24 
 Relative humidity -0.47 
 Precipitation -0.16 

              Values in bold font represent significant p-values at p<0.05 level. 

 
μg/m3, respectively, not significant, Figure 3.2). The secondhand smoking source was also 

negatively correlated with greater window opening time (11.7 vs.12.3 μg/m3, not significant). 

Regarding the question of “if greater than none, how many people were smoking nearby” 

included in the exit survey, 70 participants (out of 212) provided positive answers and those 
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experienced with more than one people smoking nearby had higher contributions from this 

source than those with only one person smoking nearby (13.1 vs. 10.9 μg/m3, not significant). To 

eliminate the possibility that this could be an outdoor biomass burning signal, we checked its 

correlation with outdoor K, K+, elemental and organic carbon measures at the downtown 

speciation site (n=148), all of which showed insignificant weak correlations (Table 3.5). 

 

Figure 3.2. Relationship between secondhand smoking mass contributions and home type  

Aged Sea Salt. The third source we identified had high loadings of Na, Mg, and S (Figure 

3.1). It contributed on average 4.8% of the personal PM2.5 mass (Table 3.3). Aged sea salt was 

negatively correlated with the secondhand smoking source (Table 3.4). It was strongly positively 

correlated with outdoor O3 concentration and temperature and negatively correlated with wind 

speed (Table 3.5). Aged sea salt was also significantly positively correlated with window 

opening time, with an increasing trend in its average mass contributions from windows open 

none of the time (0.3 μg/m3) to a little of the time (0.6 μg/m3), most of the time (1 μg/m3), and all 

of the time (1.2 μg/m3) (Figure 3.3). 
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Figure 3.3. Relationship between aged sea salt and window opening time in the 48-hr monitoring 
period 

Fresh Sea Salt. The fourth source we identified had high loadings of Cl, Na, and Mg 

(Figure 3.1). It contributed on average 4.5% of the personal PM2.5 mass (Table 3.3). Fresh sea 

salt was negatively correlated with traffic and secondhand smoking sources (Table 3.4). The 

mass contributions of this source were highest on days when average wind direction originated 

from the west (NW followed by SW, significant, Figure 3.4). Fresh sea salt was also positively 

correlated with wind speed and relative humidity at residence. To eliminate the possibility of this 

being an indoor source correlated with aerosolized minerals from domestic water use or salt used 

in cooking (Özkaynak et al., 1996; Schachter et al., 2020; Wallace 1996), we checked its 

relationships with humidifier usage and time close to smoke from cooking, respectively. Even 

though the sample size was unbalanced (30 out of 212 reported using a humidifier), average 

mass contributions were lower (not significant) when people used a humidifier compared to not 

(0.9 vs. 0.5 μg/m3, respectively). Similarly, mass contributions were lower when participants 

reported spending more time close to smoke from cooking in the 48 hours (and not significant). 
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In addition, fresh sea salt was moderately positively correlated with ambient Cl and Cl- as 

measured at the Downtown Los Angeles central site (Table 3.5). 

 

Figure 3.4. Relationship between fresh sea salt mass contributions and average wind direction in 
the 48-hr monitoring period 

Fuel Oil. The fifth identified source had high loadings of Cu, Ni, and V (Figure 3.1). 

With an average mass contribution of 2.1 μg/m3, it contributed 11.4% of personal PM2.5 mass on 

average (Table 3.3). Fuel oil was positively correlated with crustal and negatively correlated with 

the traffic source (Table 3.4). The participants living in homes originally built before 1980 had 

higher exposures to this source than those living in newer homes (2.4 vs. 1.9 μg/m3, not 

significant). In addition, it was positively correlated with outdoor NO2 and negatively correlated 

with O3 (Table 3.5). 

Crustal. The last source we identified had high loadings of Ca, Si, Ti, and Al (Figure 

3.1). It contributed the second largest share of personal PM2.5 mass (12.6% on average), with an 

average mass contribution of 2.3 μg/m3 (Table 3.3). Crustal was moderately positively correlated 

with traffic and fuel oil sources (Table 3.4). Households with more than three occupants were 
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associated with greater contributions of this source than households with three or fewer 

occupants (1.3 vs. 2.8 μg/m3, significant, Figure 3.5). It was also positively correlated with 

outdoor NO2 and PM10 at the residence and negatively correlated with outdoor relative humidity 

and precipitation.  

 

Figure 3.5. Relationship between crustal mass contributions and household occupants 

3.4. Discussion 

In this study, six main sources were identified along with their contributions to personal 

PM2.5 mass concentrations collected from 212 low-income, predominantly Hispanic pregnant 

women living in Los Angeles, CA, during the third trimester of pregnancy. Of the six sources 

identified, secondhand smoking and crustal appeared to be of indoor origin, while traffic, aged 

and fresh sea salt, and fuel oil were of outdoor origin. Secondhand smoke was the single largest 

contributor to total personal PM2.5 mass concentrations. The combined indoor source 

contributions (77%) were more than triple those of outdoor sources (23%), highlighting the 

importance of the indoor environment in contributing to personal exposures. 
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In order to avoid overloading the samplers with particles from primary tobacco smoke 

which would also overshadow any chemical fingerprints from other sources if present, by design, 

we excluded participants who reported smoking themselves (this did not occur in this 

population) or those with an active smoker permanently residing in their household (despite this 

latter criterion not being consistently applied throughout the study). Despite this, secondhand 

smoking was still identified as the source with the largest contribution to personal PM2.5 

exposures. The mass contributions of this source did not show any clear trends over time as the 

study progressed, suggesting that recruitment decisions did not significantly influence the 

findings. This source had high loadings of BrC and ETS, and some loadings of Br and K which 

were related to tobacco smoke in previous studies (Benner et al., 1989; Lawless et al., 2004; 

Müller et al., 2011). Secondhand smoke is a well-known contributor to indoor air pollution 

(Mueller et al., 2011; Nazaroff & Singer, 2004). The results showed that participants living in 

apartments tended to have marginally higher exposure to secondhand smoking than those living 

in detached houses. This could suggest greater potential of secondhand smoke infiltration from 

adjacent units in an apartment building or from visitors smoking (Fabian et al., 2016; Price et al., 

2006; Wilson et al., 2011). Nevertheless, as both BrC and K are also strongly related to biomass 

burning (e.g., Hasheminassab et al., 2014a, 2014b; Meng et al., 2007; Palm et al., 2020; Runa et 

al., 2021), the correlations between secondhand smoking source and outdoor potassium were 

checked to eliminate the possible source of biomass burning.  

The results showed both fresh sea salt and aged sea salt as outdoor sources, with high 

loading of Cl, Mg, Na, and Mg, Na, S, respectively. Previous work identified sea salt sources 

with similar loading profiles (e.g., Cheung et al., 2011a; Corral et al., 2020; Habre et al., 2021; 

Hasheminassab et al., 2014a, 2014b). Despite only having average wind direction over the 48-hr 
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monitoring period (not most frequent wind direction), fresh sea salt mass contributions were 

higher with westerly winds and higher wind speeds, which provided greater potential for 

aerosolization and airborne transport of sea salt particles from the Pacific Ocean. Habre et al. 

(2021) found sea salt mass contributions to PM2.5 mass in southern California to be highest in 

coastal communities. As fresh sea salt ages and undergoes photochemical reactions that also lead 

to secondary O3 formation with warmer temperatures and more stagnant wind conditions (lower 

wind speed), chlorine is lost and sulfates are formed (Gard et al., 1998; Habre et al., 2021). Thus, 

aged sea salt resembles fresh sea salt in its loading profiles, except with S instead of Cl. Lower 

wind speed provides more chemical reaction time between the sea salt particles and contributes 

to the loss of chlorine and an increase in the formation of O3 (Crawford et al., 2019; Knipping & 

Dabdub, 2003).    

The high loadings of Al, Ca, Si is expected in natural crustal materials, and the lack of or 

less abundant loadings of Ba, Zn and Cu indicated that this was not resuspended road dust which 

could have tire and brake wear impacts (Cheung et al., 2011a; Lough et al., 2005).  Crustal 

elements originate outdoors and can enter the indoor environment as windblown dust or as dust 

tracked indoors on residents’ shoes. Once indoors, crustal materials will typically settle and get 

resuspended as indoor sources (or emissions of indoor origin) when disturbed by human 

movement or other activities (i.e. vacuuming). Therefore, the presence of more occupants in a 

household provides greater opportunities for re-suspension of crustal dust which mirrors the 

results reported here (Habre et al., 2014a). As such, crustal was labelled as an indoor origin 

source despite the possibility of our participants getting exposed to crustal dust outside of their 

homes as well.  
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The results indicate that fuel oil and traffic sources contributed to personal PM2.5 

exposures as well. Similar to previous studies, the fuel oil source had high loadings of Ni and V 

which are known tracers of heavy residual fuel oil combustion in large industrial applications 

and in marine engine emissions (Corbin et al., 2018; Corral et al., 2020; Larson et al., 2004; 

Maykut et al., 2003; Meng et al., 2007; Minguillón et al., 2012). BC serves as a marker for the 

traffic related source (Habre et al., 2014a; Hasheminassab et al., 2014b), while species such as 

Zn, Ba, and Fe come from motor vehicle exhaust emission, brake and diesel additives (Ålander 

et al., 2005; Corral et al., 2020; Meng et al., 2007; Onat et al., 2013). This source was correlated 

with residential estimates of CALINE NOx and outdoor pollutants related to traffic, which can 

be related to the finding that participants spent the majority of their time at home. The correlation 

between their traffic mass contributions and activity space based primary road exposures also 

revealed that these women visited many places, which were aligned with the time-activities 

derived from their GPS tracks.  

The strengths of this study include the 48-hr personal PM2.5 measurements and detailed 

chemical composition analysis that allowed us to apportion the major sources that contributed to 

personal exposures.  By integrating concurrently collected questionnaire data and geospatially 

modeled environmental exposures in activity spaces (from GPS) and in the residential 

neighborhood, the results further corroborate these sources, their origin (primarily indoor vs 

outdoor), and exposure effects. With approximately three-fourths of personal exposures 

contributed by indoor sources, our findings highlight the importance of the indoor environment 

contributions to total PM2.5 exposures during pregnancy and the potentially incomplete 

understanding of this population’s exposures by solely relying on outdoor air pollution measures. 

The PMF model also only explained a portion of the variability in personal PM2.5 mass 
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concentrations (R2 = 0.48). One possible reason could be that we did not measure organic carbon 

(OC) species in this study which are known to contribute a large fraction of indoor PM2.5 mass 

concentrations (Habre et al., 2014a, 2014b; Turpin et al., 2017), and the possible volatilization of 

lightweight organic carbon fractions from the Teflon filters used in the sampling design. The 

sample size of the study, while considered large in personal monitoring settings, and the short 

monitoring period may limit the generalizability and representativeness of personal PM2.5 

exposures beyond this study area and across the full pregnancy and postpartum periods. 

However, this is one of the few studies to conduct a thorough characterization of sources 

impacting personal PM2.5 exposures of predominantly Hispanic and low-income women during 

pregnancy in an environmental health disparities context.  

3.5. Conclusion 

PM2.5 is a mixture of organic and inorganic elements, and its composition and thus 

toxicity can vary based on its sources. Given the complexity of PM2.5 itself and multiple factors 

affecting personal exposures, it is critical to disentangle and understand the relative importance 

of different sources contributing to personal PM2.5 exposures. Our findings also provide new 

insights of how multiple sources from indoor and outdoor environments contributed to the 

personal PM2.5 exposures of low-income, predominantly Hispanic/Latina pregnant women in Los 

Angeles. The results may facilitate investigating the health effects related to each source, as well 

as recommending source-specific interventions to an environmental health disparities population 

during pregnancy. 
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Chapter 4 Modeling Personal PM2.5 Exposures within Multiple 
Microenvironments 

This chapter examined whether or not the APEX model developed by the USEPA could estimate 

the range of personal PM2.5 exposures for MADRES participants, as well as how APEX 

parameters could be adjusted to capture more of the complexity in personal PM2.5 exposures 

contributed by indoor sources and the interaction of the indoor and outdoor environments. The 

chapter starts by introducing the research background, followed by the data and methods used in 

this study, and then finishes up with results, discussion, and conclusions.  

4.1. Introduction 

Exposure to PM2.5 is associated with several adverse health outcomes including 

respiratory and cardiovascular morbidity (Brandt et al., 2014; Gan et al., 2011; Kim et al., 2004). 

PM2.5 exposure during pregnancy has also been shown to affect maternal (Dadvand et al., 2014; 

Ghosh et al., 2014) and fetal health (Dadvand et al., 2011; Fleischer et al., 2014; Hsu et al., 2015; 

Pereira et al., 2014; Rich et al., 2015; Ritz et al., 2007; Rosa et al., 2020). To accurately estimate 

its health risks, it is crucial to have accurate measures/estimates of total personal PM2.5 exposure 

in health studies since this will reduce exposure measurement error and increase statistical power 

to observe associations (Baxter et al., 2013; Hu et al., 2017). In addition, given PM2.5 itself is a 

mixture with several complex factors contributing to total personal exposure (i.e. time-activity 

patterns, indoor sources, behaviors, etc.), there is a need to understand where and when highest 

exposures occur, which sources contribute the most across various microenvironments people 

spend time in, and how to intervene to reduce risk. This is especially important for 

environmental health disparities research since disadvantaged populations often experience 
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disproportionately higher exposures to certain sources and can be more susceptible to their 

adverse health effects (Bae et al., 2007; Houston et al., 2004; Tian et al., 2013).  

Personal monitoring is considered the “gold standard” for assessing external exposure, in 

which participants carry or wear portable devices to sample air pollutants in their breathing zones 

as they go about their daily activities (Choi et al., 2006, 2008, 2012; Jedrychowski et al., 2004, 

2009; Minguillón et al., 2012; Rundle et al., 2012). Nevertheless, due to the high cost and burden 

for participants and researchers, it is difficult to conduct high quality personal monitoring in 

large populations and over long periods of time. Therefore, models that can accurately predict 

total personal exposure for large populations and account for the various sources and factors that 

contribute to it would be highly desirable. 

Since individuals are mobile, their personal PM2.5 exposure is driven by their daily time-

activities, by outdoor PM2.5, and by PM2.5 concentrations in microenvironments they spend time 

in (Duan 1982; Wallace, 1996; Wallace and Williams 2005). Accordingly, microenvironmental 

models have been developed to estimate personal exposure by integrating information on time 

spent within key microenvironments and PM2.5 concentrations within them, assuming well-

mixed conditions (Lai et al., 2004; Liu et al., 2003; Rabinovitch et al., 2016; Steinle et al., 2015). 

Several microenvironmental models have been developed to support population level 

applications (Berrocal et al., 2011; Breen et al., 2014; Hänninen et al., 2003; Hsu et al., 2020; 

Lim et al., 2012). Among them, the APEX inhalation exposure model developed by the USEPA 

has been widely used in air pollution exposure and risk assessment, as well as health studies 

(Dionisio et al., 2017; Johnson et al., 2018; Rosenbaum et al., 2008; Sarnat S. et al., 2013; 

USEPA, 2019a, 2020). 
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For example, Sarnat S.E. et al. (2013) found that APEX estimated personal exposures to 

carbon monoxide (CO) and NOx from outdoor origin produced better risk estimates of 

emergency department visits for asthma and wheeze than ambient concentrations in Atlanta, GA. 

However, Johnson et al. (2018) compared APEX-simulated microenvironmental PM2.5 with 

corresponding measurements in three study areas within central Los Angeles, CA, and identified 

various sources of uncertainties in APEX inputs and predictions, namely lack of spatial 

resolution for ambient PM2.5 and the non-representativeness of some of the APEX parameter 

(e.g., air exchange rate, decay rate) distributions. 

APEX uses a stochastic, microenvironmental approach to estimate personal exposures to 

several air pollutants such as PM2.5 for individuals randomly drawn based on age, race, and 

gender distributions within census tracts in specified geographic areas (USEPA, 2020). Activity 

patterns of simulated individuals are simulated by random draws from the USEPA’s 

Consolidated Human Activity Database (CHAD) diaries, and their daily trajectories are assigned 

to user-selected microenvironments (McCurdy et al., 2000; USEPA, 2020).  

Microenvironments and how they are operated can be customized for various settings or 

populations. For example, studies have shown that incorporating information on use of windows 

for ventilation and indoor source emissions may improve estimates of indoor concentrations 

(Johnson et al., 2018; Sarnat S.E. et al., 2013; Weisel et al., 2005). However, customization can 

also make it challenging to compare exposure estimates across models and studies. Previous 

studies have used fixed-site measured pollutant concentrations or exposures estimated from other 

methods to check the accuracy of APEX outputs (Johnson et al. 2018; Sarnat S.E. et al. 2013). 

Compared to the fixed-site monitoring data, Johnson et al. (2018) found APEX underestimated 

PM2.5 concentrations in all of the microenvironments identified in this study. 
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In this study, personal PM2.5 exposure measurements collected in the 3rd trimester of 

pregnancy in a sub-study of the MADRES pregnancy cohort were leveraged. MADRES aims to 

understand the effects of air pollution, environmental exposures, and social stressors on maternal 

and child health in a predominantly Hispanic, low-income population in Los Angeles, CA. Data 

from this personal monitoring sub-study provides a unique opportunity to compare to the 

distribution of APEX-predicted personal PM2.5 exposures in a synthetic population simulated to 

resemble the larger environmental health disparities community the MADRES population (and 

eventually this sub-study) draws from. By learning from questionnaire information on key 

parameters (i.e., home ventilation, indoor sources, time-activity patterns, etc.) in MADRES, this 

study could also evaluate the extent to which the inputs need to be refined or resolved to get 

closer to reproducing the range of the personal measurement data for this particular 

environmental health disparities population.  

Nevertheless, this comparison will not be perfect because: (a) APEX simulates 

hypothetical people and cannot be used to predict exposure for the same individuals and time 

periods in MADRES (USEPA, 2019a, 2019b, 2020); and (b) several assumptions are embedded 

in this comparison. For example, simulated individuals in APEX comprise a random sample 

drawn from the defined population universe in Los Angeles, while MADRES participants in the 

larger cohort from which the personal monitoring subset was selected were recruited from 

several prenatal care providers mainly serving medically underserved populations (Bastain et al., 

2019). As such, the MADRES cohort was not designed to be a representative sample of 

environmental health disparities populations in Los Angeles, CA, but closely reflects a specific 

population’s characteristics within the larger and more diverse Los Angeles, CA populations 

noted here. Therefore, for the purpose of this analysis, we assume that participants with personal 



 

67 
 

monitoring data constitute an imperfect sample of MADRES, which is also a convenience 

sample of women of childbearing age living in Los Angeles neighborhoods experiencing 

environmental health disparities.  

Therefore, the overall aim in this work was to examine whether APEX can estimate and 

explain personal PM2.5 exposures seen in MADRES at scale, and if not, how much refinement or 

resolution of APEX inputs is needed to adequately reproduce the distribution and range of 

personal measurements. As such, the analysis spanned four stages: (1) running APEX with as 

close to default settings as possible to estimate personal PM2.5 exposures for a simulated 

population with similar demographic characteristics as the MADRES participants; (2) 

incrementally adding and customizing parameters in APEX to capture more refined ventilation 

impacts and indoor source emissions in four scenarios; (3) comparing APEX estimates with 

personal measurements to select an optimal scenario; and (4) describing predicted exposures 

patterns and trends in the larger health disparities simulated population from the optimal, 

selected scenario. 

4.2. Method 

In this section, the personal exposure measurement data of the MADRES participants, the 

APEX model inputs, and the main methods applied in this research are described. 

4.2.1. Data Collection 

Given MADRES personal exposure measurement data being used in this study, the 

MADRES study and the sampling sub-study are introduced and the input data for APEX are 

described. 
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4.2.1.1. MADRES cohort and personal monitoring sub-study 

MADRES is an ongoing prospective pregnancy cohort with the goal of understanding 

environmental and social stressors that might affect childhood and pregnancy-related obesity 

among predominantly low-income, Hispanic women and their babies in Los Angeles, CA 

(Bastain et al., 2019). Women at less than 30 weeks gestation, ≥18 years of age, and able to 

speak either English or Spanish fluently were recruited into MADRES from four prenatal care 

providers in Los Angeles (Bastain et al., 2019). Informed consent was obtained from each 

participant, and the USC’s IRB approved the study protocol.  

The personal monitoring sub-study recruited 213 women in their 3rd trimester of 

pregnancy from MADRES between October 2016 and March 2020. Their personal PM2.5 

exposures and geolocation were monitored using 48-hr integrated personal sampling and 

continuous GPS tracking at 10-sec intervals, respectively. In addition, an exit survey was 

conducted at the end of the 48-hr monitoring period to ask about home operation (e.g., 

ventilation) and presence of any significant indoor sources of PM2.5 such as cooking or smoking 

during the 48-hr sampling period. Trimester specific questionnaires on demographics (e.g., age, 

race), indoor sources such as presence and use of gas stoves, home operation (e.g., windows 

open or not, AC usage), and current tobacco smoke exposure (primary and secondhand) were 

also used to define the study population, adjust the microenvironment settings, and add indoor 

emission sources to the APEX model, as described below. 

4.2.1.2. APEX model input data 

The APEX model provides flexibility in terms of setting microenvironment parameters 

and adding multiple emission sources to predict personal exposures to air pollutants for large 

populations. Therefore, five scenarios were set up by varying the parameters and emission 
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sources, aiming to find the optimal settings for predicting personal PM2.5 exposures for a large 

health disparities population. The model (Version 5.2, October 2019) was downloaded from the 

USEPA website (https://www.epa.gov/fera/human-exposure-modeling-air-pollutants-exposure-

model). The 2010 census tract-based population counts (by gender, race and age), along with the 

activity diaries (questionnaires, events, and statistics) from the Consolidated Human Activities 

Database (CHAD) (McCurday et al. 2000) were downloaded from the same website. As the 

CHAD dataset covers the whole nation, the updated CHAD-California dataset was acquired from 

the USEPA support team.  

In addition, the ambient regulatory PM2.5 monitoring data (concentrations and district 

boundaries) for the modeling period of 2016-2020, as well as hourly temperature measurements 

and meteorology zones for the EPA monitoring sites located in our study domain were 

downloaded (https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw). 

4.2.2. Data Analysis 

This section describes the descriptive statistics gathered from MADRES personal 

measurements and by extracting time-activities from the GPS data, and then lays out the 

operational steps for the APEX model. Next, the model estimates and MADRES measurements 

are compared, and the APEX outputs are examined at the microenvironment level. The section 

closes with a description of the sensitivity analyses that were performed. 

4.2.2.1. MADRES personal PM2.5 exposure and geolocation monitoring data  

Descriptive statistics were calculated on the personal PM2.5 measurements to check their 

overall distributions. The personal measurements were also stratified by ethnicity to examine 

exposure variations between Hispanic and non-Hispanic women. Their 48-hr GPS tracks were 

used to extract the time spent indoors for comparison as well, using a previously published 
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method (Cich et al., 2016; Li et al., 2008; Pérez-Torres et al., 2016; van Dijk, 2018; Xiao et al., 

2014) with time (30 min) and distance (e.g., 500 m) thresholds to estimate the time spent 

indoors. The stay locations to the 3rd trimester residence were examined to confirm whether they 

stayed at home or not. There was not sufficient information to differentiate the 

microenvironments such as Outdoor, Near-Road and Vehicle and these were assigned to the “on-

road” category. 

4.2.2.2. APEX model runs 

Microenvironment setting 

The five microenvironments pre-defined by APEX were adopted, along with the methods 

(i.e., MASSBAL and FACTORS) for calculating PM2.5 concentrations in each microenvironment 

(USEPA, 2019a, 2019b). The mass balance method (MASSBAL) was used to calculate 

concentrations for the Indoor-Residence and Indoor-Other microenvironments. MASSBAL 

assumes that an enclosed microenvironment (e.g., residence) is a single, well-mixed volume with 

the air concentration approximately spatially uniform, and the amount of outside air flowing into 

the microenvironment equals that flowing out of the microenvironment (USEPA, 2019b). 

Therefore, the PM2.5 concentrations in microenvironments such as Indoor-Residence are affected 

by the inflow of air, outflow of air, removal of PM2.5 due to deposition, filtration, and chemical 

degradation, and emissions from PM2.5 sources inside Indoor-Residence. FACTORS was used to 

calculate PM2.5 concentrations for the Outdoor, Near-Road and Vehicle microenvironments, in 

which it applies linear functions to relate microenvironment PM2.5 concentrations to the current 

ambient concentration. 
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Defining the modeling domain 

The framework for using APEX to estimate personal exposures is summarized in Figure 

4.1. A circular study area with a 30 km radius that covered most of the MADRES participants’ 

activity spaces was defined at the outset (Appendix C, Figure S4.1). The modeling period was set 

as October 1, 2016 to March 11, 2020, matching the data collection period of personal samples 

for the MADRES participants. 

 

Figure 4.1. APEX model workflow 

Defining the study population 

The census tracts with centroids within the study area were used to establish the study 

domain for the simulated population. A total of 500 women aged 18 to 46 years living in Los 

Angeles County were randomly selected and each was assigned to a home sector and work 

sector, if employed. Their age and racial characteristics mirrored those in the 2010 census tract-

level population count within the study area. 
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Generating activity diaries 

APEX used the matching demographic characteristics (e.g., sex, race, employment status) 

for a simulated person and daily temperatures (e.g., MaxTemp, AvgTemp) for a simulated day to 

select an activity profile from the CHAD-California database. Then the model used the records 

matched on these characteristics to generate activity diaries and link them to microenvironments. 

Calculating microenvironment PM2.5 concentrations in five scenarios 

APEX used the outdoor PM2.5 concentrations to calculate hourly PM2.5 concentrations in 

every microenvironment by linking the microenvironments people are in and the parameters such 

as air exchange rates (AER) and decay rate governing concentrations in those 

microenvironments. Given that multiple factors (e.g., keeping windows open or closed, emission 

sources) can affect microenvironment parameters such as AER (Abt et al., 2000; Cao & Frey, 

2011; Habre et al., 2014a, 2014b; Howard-Reed et al., 2002; Jiao et al., 2012; Wallace et al., 

2002; Yamamoto et al., 2010) and further affect microenvironment PM2.5 concentrations, five 

scenarios were defined (labelled as S1, S2, etc., summarized in Table 4.1) for the model runs. 

The goal was to understand how the parameter setting changes for the Indoor-Residence 

microenvironment (e.g., probabilities of window opening depending on temperature, or emission 

rates of various indoor sources) might affect personal PM2.5 estimates.  

In S1, we used generic APEX-provided settings to calculate AER for Indoor-Residence 

(e.g., average temperature, the probability of using an air conditioner at home) and ambient 

PM2.5 concentrations collected from EPA monitoring sites as the pollutant input. The parameters 

describing the distributions for microenvironmental concentrations estimates were taken from 

Johnson et al. (2018). Given the positive connections between windows open, air exchange rates  

 



 

73 
 

Table 4.1. Five APEX scenarios modeled in this simulation with associated conditional variables 
for the Indoor Residence microenvironment in each. 

 
Scenarios Conditional Variables PM2.5 Source Being Modeled 

S1 
Temperature ranges (categories) in Fahrenheit, Home AC 
probabilities (Yes/No) 

Ambient 

S2 
Temperature ranges (categories) in Fahrenheit, Home AC 
probabilities (Yes/No), Home windows open (Yes/No) 

Ambient 

S3 
Temperature ranges (categories) in Fahrenheit, Home AC 
probabilities (Yes/No), Home windows open (Yes/No), 
Home gas stove probability (Yes/No) 

Ambient and indoor (gas stove 
use for cooking) 

S4 
Temperature ranges (categories) in Fahrenheit, Home AC 
probabilities (Yes/No), Home windows open (Yes/No), 
Home candle burning probability (Yes/No) 

Ambient and indoor (candle 
burning) 

S5 

Temperature ranges (categories) in Fahrenheit, Home AC 
probabilities (Yes/No), Home windows open (Yes/No), 
Home gas stove probability (Yes/No), Home candle burning 
probability (Yes/No) 

Ambient and indoor (gas stove 
use for cooking and candle 

burning) 

 
and indoor pollutant concentrations shown in the literature (He et al., 2004; Howard-Reed et al., 

2002; Sarnat J.A. et al., 2013; Schembari et al., 2013; Wallace et al., 2002; Yamamoto et al., 

2010), window openings were added to the parameters specified in S1 for calculating Indoor-

Residence AER in S2. Based on previous studies, we assumed the window openings doubled 

AER (Howard-Reed et al., 2002; Wallace et al., 2002). Both S1 and S2 model the contribution of 

PM2.5 of outdoor origin to total exposures. In S3, PM2.5 emissions from gas stove use for cooking 

were added as an indoor source of PM2.5, in addition to the parameters specified in S2. The 

probability of using gas stoves (Yes=0.92) was extracted from the MADRES questionnaire, and 

the use levels were taken from Hu et al. (2012). In S4 indoor PM2.5 emissions from candle or 

incense burning were added to the parameters specified in S2. The probability was again 

extracted from the MADRES exit survey (Yes=0.25), and the associated parameter distributions 

were also taken from Hu et al. (2012). Finally, in S5 the concentrations from both indoor sources 
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used in S3 and S4 were combined (cooking by gas stoves and candles/incense burning). The 

complete list of microenvironment parameters used for the five model runs along with their 

distributions is shown in Table S4.1 (Appendix C). To facilitate comparisons, we used the same 

seed number for all five scenarios. 

Estimating personal PM2.5 exposures 

Based on the microenvironment concentrations, APEX then calculated the PM2.5 

exposure for each simulated person within every microenvironment. Time-averaged daily 

personal PM2.5 exposures were also estimated for the simulated individuals. 

4.2.2.3. Comparison of APEX estimates with MADRES measurements 

The distribution of APEX predicted personal PM2.5 exposures in S1 were initially 

compared to the personal measurements using descriptive statistics, on a yearly basis and for the 

whole modeling period. Minimum and maximum values were used to check whether the range of 

APEX estimates were within personal measurements. Mean values were used to compare the 

overall performance for each scenario, while standard deviation values were used to check inter-

personal variations in APEX predictions. The normality of personal PM2.5 measurements and 

APEX estimates was checked and the Wilcoxon Sign Rank test was used to examine whether 

predicted vs. measured median PM2.5 exposures were statistically significantly different. The 

same evaluations were conducted for S2 through S5 to check the impact of parameters (e.g., 

window conditions, indoor PM2.5 sources) on estimated personal exposures and how well they 

reproduced the range of personal measurements.  

The sum of minutes in each microenvironment were converted to the percentage duration 

from the overall modeling period or 48-hr sampling period for the aforementioned comparisons. 

We examined whether there were significant differences in terms of duration of time spent in In-
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Residence and In-Other microenvironments as estimated by APEX or with GPS data from 

MADRES using Wilcoxon Sign Rank non-parametric tests. Given the personal exposures for 

MADRES participants were integrated values the estimated and measured PM2.5 concentrations 

at the microenvironment level could not be compared. Therefore, the distributions of 

microenvironment exposures among APEX results estimated by the five scenarios were 

compared to highlight the impact of different parameters on microenvironment exposures. In 

addition, the hourly ambient PM2.5 concentrations with predicted total personal and 

microenvironmental PM2.5 exposures were compared.  

Once the optimal scenario based on the closest reproducibility of the range of personal 

PM2.5 measurements was selected, the predictions could be described in more detail. The 

durations (in percent) and exposures (µg/m3) by microenvironment level are presented for the 

whole modeling period to gain a better understanding of time-activity patterns and associated 

exposures for APEX individuals. The microenvironment exposures were next compared on an 

hourly basis along with the personal exposures and ambient PM2.5 and Spearman correlations 

among personal exposures, microenvironment exposures and ambient PM2.5 were also conducted 

to check their relationships. 

4.2.2.4. Sensitivity analyses 

Since MADRES participants are low-income predominantly Hispanic pregnant women, 

and the APEX study area covers high income neighborhoods such as Beverly Hills, one of the 

concerns is that the simulated population might have very different socioeconomic 

characteristics and PM2.5 exposures from the larger environmental health disparities population 

represented by MADRES participants. Therefore, sensitivity analyses were conducted to test 

whether including only MADRES census tracts in the simulation resulted in predicted exposures 
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that more closely resembled the personal PM2.5 measurements gathered in MADRES. To 

conduct this analysis, the overall modeling outputs into two groups – one group only including 

the estimated exposures for simulated individuals living in MADRES census tracts, and the other 

group only including the estimated exposures for those living in non-MADRES census tracts. 

The between-group differences was then calculated along with comparisons with personal 

measurements. Given MADRES participants are predominantly Hispanic women, tests were also 

conducted to see whether the limiting the simulation results to only Hispanic women resulted in 

more similar PM2.5 estimates as well. 

4.3. Results 

Table 4.2 summarizes the demographic characteristics of the 500 individuals simulated 

with APEX and the MADRES participants. Since we used the same seed to initialize the model 

but different parameters and added indoor PM2.5 sources in several scenarios, we observed slight 

differences in terms of population composition. MADRES participants were four years younger 

on average; and 79% of them were Hispanic, compared to just 52% in the model simulations. 

Table 4.2. Demographic characteristics of simulated APEX and actual MADRES participants. 
 

  MADRES S1  S2 S3 S4 S5 
 (N=213)  (N=500)  (N=500) (N=500) (N=500) (N=500) 

Age (years) - Mean (SD)  28.3 (6.00) 32.3 (8.26) 32.3 (8.26) 32.4 (8.25) 32.4 (8.25) 32 (8.42) 

Race - n (%)       

White, non-Hispanic 12 (5.6%) 89 (17.8%) 89 (17.8%) 115 (23.0%) 115 (23.0%) 127 (25.4%) 

Asian, non-Hispanic 2 (0.9%) 87 (17.4%) 87 (17.4%) 62 (12.4%) 62 (12.4%) 73 (14.6%) 
African American, non-

Hispanic 
24 (11.3%) 51 (10.2%) 51 (10.2%) 45 (9.0%) 45 (9.0%) 39 (7.8%) 

Hispanic 169 (79.3%) 257 (51.4%) 257 (51.4%) 266 (53.2%) 266 (53.2%) 247 (49.4%) 

Other 6 (2.8%) 16 (3.2%) 16 (3.2%) 12 (2.4%) 12 (2.4%) 14 (2.8%) 

 
Estimated times spent in various microenvironments were similar across APEX scenarios 

(Table S4.2). Figure 4.2a shows that individuals spent the majority of their time indoors in S3.  
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APEX simulated individuals spent 7% (SD=8) less time at home compared to MADRES 

participants (79%) (SD=20) and more time at other indoor locations (18% vs. 15%). Actual time-

activity patterns were also more variable than APEX simulated ones. 

APEX estimated PM2.5 concentrations in Near Road, Outdoor, and Vehicle 

microenvironments were much higher than in the two indoor microenvironments across all five 

APEX scenarios (Table S4.3). In-Residence PM2.5 concentrations increased between S1 

(mean=8.8 µg/m3, SD=1.6), S2 (9.8 µg/m3, 1.5), and S3 (10.5 µg/m3, 1.7) due to the impact of 

window opening and the combined impact of window openings and indoor cooking, 

respectively. S4 (9.9 µg/m3, 1.6) integrated indoor candle or incense burning, while S5 (10.4 

µg/m3, 1.7) combined both indoor sources of cooking and indoor candle or incense burning. 

Through comparing how well these scenarios reproduced personal measurements, S3 was the 

optimal one given it had the best approximation to personal measurements (with the highest 

mean value among scenarios), followed by S5 with similar estimates. Using S3 results as an 

example, the time spent in both indoor microenvironments was higher than the others (Figure 

4.2a); both indoor microenvironmental PM2.5 concentrations were lower than the others (Figure 

4.2b), while time-weighted exposures in both indoor microenvironments were higher than 

exposures from Outdoor, Near-Road, and Vehicle microenvironments (Figure 4.2c). In-

Residence microenvironment contributed most of the personal exposures (67-71% in different 

scenarios), followed by the exposures in In-Other (16-19%), Vehicle (7-8%), Outdoor (5-6%) 

and Near-Road (0.3-0.4%) on an hourly basis (Table S4.4). 

Figure 4.3 shows hourly personal PM2.5 exposures contributed by the various 

microenvironments throughout the day. In-residence exposures dominated the evening hours and 

contributed substantially during the daytime hours as well. In-Other microenvironmental 
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exposures also had sizeable contributions between 10 a.m. and 5 p.m., during which simulated 

individuals were probably in work locations or other indoor environments. Vehicle and outdoor 

exposures had observable shares between 9 a.m. and 8 p.m., while the contributions from Near-

Road were negligible all of the time. 

 

Figure 4.3. Contributions of various microenvironments  
to hourly personal PM2.5 exposures in S3 (*power scale of 1.5 used for Y-axis values) 

Table 4.3 presents Spearman correlations among simulated, hourly microenvironment 

exposures, ambient PM2.5 concentrations, and personal exposures from S3. Hourly personal 

exposure estimates were strongly correlated with ambient PM2.5 concentrations (r=0.83). 

Personal exposures had the strongest correlation with In-Residence exposures (r=0.54). In-

Residence exposures were negatively correlated with Outdoor exposures (r=-0.24), but positively 

correlated with ambient PM2.5 (r=0.46). Tables S4.5 and S4.6 show similar correlations in S1 and 

S2. 
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Table 4.3. Spearman correlations among simulated hourly total personal PM2.5 exposures, 
microenvironmental PM2.5 exposures, and ambient PM2.5 concentrations in S3. 

 

 Total Personal 
PM2.5 Exposure 

In-Residence 
PM2.5 

In-Other 
PM2.5 

Outdoor 
PM2.5 

Near-Road 
PM2.5 

Vehicle 
PM2.5 

Ambient 
PM2.5 

APEX Estimates        

In-Residence PM2.5   0.54 
      

In-Other PM2.5 0.02 -0.65      

Outdoor PM2.5 0.09 -0.24 0.10     

Near-Road PM2.5 0.02 -0.07 -0.002 0.04    

Vehicle PM2.5 0.11 -0.29 0.28 0.32 0.07   

Ambient PM2.5 0.83 0.46 0.05 0.004 -0.003 0.02   

Values in bold font represent significant p-values at p<0.05 level. 

 
Overall mean MADRES personal PM2.5 measurements were almost twice as high as 

mean ambient concentrations at monitoring stations and two or more times higher than the 

APEX personal exposure estimates (Table 4.4). In addition, 48-hr integrated MADRES 

measured exposures were more variable than daily APEX estimates. 

Table 4.4. PM2.5 comparisons among MADRES personal measurements,  
APEX estimates, and USEPA monitoring station concentrations (µg/m3). 

 
  PM2.5 Concentrations (µg/m3) 

 
Personal 

measurements 
  

APEX 
estimates  

  
Ambient 

concentrations 
  S1 S2 S3 S4 S5  

Minimum 1.8 0.1 0.1 0.2 0.1 0.3 0 

Maximum 140.2 111.1 114.1 112.8 123.5 117.5 121.0 

Mean (SD) 23.3 (19) 9.5 (5) 10.2 (6) 10.7 (6) 10.2 (6) 10.6 (5) 11.7 (7) 

 
Sensitivity analyses were also conducted to test the impact of including non-MADRES 

residential tracts on estimated personal PM2.5 exposures. Compared to the simulated individuals 

living in the non-MADRES census tracts, the individuals within the MADRES census tracts had 

slightly higher exposures (0.3-2.4% higher in different scenarios). Most of simulated Hispanic 

women (i.e., 247-266 out of 500 simulated individuals) had significantly lower exposures 

compared to MADRES Hispanic participants (i.e.,169 out of 213 individuals included in this 

comparison).  
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4.4. Discussion 

In this study, personal PM2.5 exposures were simulated for 500 individuals randomly 

selected to represent the larger population of women of child-bearing age living in Los Angeles, 

CA, from October 1, 2016 to March 11, 2020. The simulated exposures were compared with the 

personal measurements in a sub-study of 213 women enrolled in the MADRES study. Although 

MADRES participants represent an imperfect sample of the simulated population, this study 

provided a unique opportunity to examine whether the APEX model could estimate the range of 

personal exposures for a larger environmental health disparities population from which the 

MADRES cohort is drawn. Furthermore, by comparing model estimates within 

microenvironments to personal measurements, the evaluation can be made to see whether more 

nuanced inputs can generate estimated exposures closer to the distribution of the real exposures 

and capture the complexity in total personal exposure. 

The results show that the estimated personal PM2.5 exposures were significantly lower 

than MADRES personal measurements, indicating that the model underestimated personal 

exposures. Personal exposures are modelled as time-weighted averages of microenvironmental 

PM2.5 concentrations which integrate both time-activities of individuals and pollutant 

concentrations in each microenvironment (Duan 1982; Johnson et al., 2018; Sarnat S.E. et al., 

2013). This study gathered and used the microenvironmental parameters from Johnson et al. 

(2018) to calculate microenvironmental PM2.5 concentrations and encountered the same issues 

documented by Johnson et al. (2018). The lack of knowledge about one or more critical 

parameters (e.g., AER, decay rates, emission rates) determining indoor concentrations may result 

in the underestimation of microenvironment concentrations.  
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The results also show strong correlations between APEX personal exposure estimates and 

ambient PM2.5 (Spearman r=0.83), while the parallel correlation between personal measurements 

and outdoor PM2.5 concentrations at residence (r=0.09) was fairly low among MADRES 

participants. This large difference indicates that APEX estimates are perhaps mostly driven by 

PM2.5 sources of outdoor origin. APEX estimates might not be fully capturing the complexity of 

personal exposures including indoor PM2.5 sources, the role of personal behaviors, individual 

activities, and home characteristics. Nonetheless, this also points to ways to refine the model 

inputs and improve personal exposure estimates. Given that indoor cooking and window opening 

behaviors were common among MADRES participants, the parameters that reflected these 

behaviors were added to the scenarios, and this improved the ability of the model outputs 

approximate to personal measurements. This result suggested ways to fine-tune the APEX 

parameters so the model can better describe the exposures of populations of special interest like 

in this dissertation. 

Compared to the small subset of MADRES participants, APEX underestimated durations 

of staying at home for simulated individuals. Previous studies have shown that the durations of 

staying in microenvironments, particularly indoor at residence, is an important factor affecting 

total personal exposure occurring indoors (Adgate et al., 2004b; Jenkins et al., 1992; Kim et al., 

2005; Turpin et al., 2007). In this study, the CHAD California data was used to generate activity 

diaries for simulated individuals. The majority of the CHAD data specifically describing 

activities for Californians was collected between 1987 and 1992 (McCurdy et al., 2000). Even 

though several activity studies were incorporated into the original CHAD in November 2016, the 

most recent study was conducted from 2003 through 2011 (Graham et al., 2019). In addition, 

among 23 studies incorporated in CHAD, only two studies were conducted in the Los Angeles 
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area with real-time diaries collected from students aged 10 to 17 years (Graham et al., 2019). 

Given the CHAD data might be outdated, the activity diaries used by APEX might not represent 

current day time-activities for individuals. The differences of spatial range for study areas, age 

range of respondents, and the type of survey designs used in the CHAD and MADRES studies, 

along with the specific time-activity patterns for pregnant women, might also contribute to the 

time duration spent in microenvironments differences between APEX individuals and MADRES 

participants. Therefore, the inclusion of more recent and representative diary data for the 

specified study area, age and socioeconomic range, even for a special population group such as 

pregnant women in CHAD datasets may produce estimates that better approximate personal 

measurements in a similar future study.   

While APEX provides some flexibility in terms of capturing the characteristics of the 

population at hand, there are still some areas that would benefit from further customization. For 

example, the default microenvironment setting does not provide the option to set up different 

home characteristics (e.g., living in an apartment or a house) for In-Residence among simulated 

individuals; however, around 60% of MADRES participants live in an apartment while 40% live 

in a house. Some studies have shown that air exchange rates (AER) can be twice as high for 

apartments compared to single-family homes in certain contexts (Price et al., 2006). This means 

that there may be important differences in In-Residence exposures for apartments and for houses, 

and that we might define multiple In-Residence settings accordingly. In terms of multiple PM2.5 

sources that could influence personal exposures, such as secondhand smoking which happens 

across several microenvironments (Fabian et al., 2016; Zamora et al., 2018), the current model 

setting does not seem to allow specifying such conditions very well. 
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The strength of this research included applying APEX to model personal exposures for 

the population with pre-defined microenvironments and multiple emission sources. The outputs 

improve our understanding of personal exposures at the microenvironment level. Furthermore, 

the results reveal the need for the refinement of the model inputs to reproduce the distribution of 

personal measurements. One limitation is that the MADRES sub-study participants with personal 

monitoring are an imperfect subset of the larger MADRES cohort, which in itself is an imperfect 

(in statistical terms) of the sample drawn from the larger environmental health disparities 

population we aimed to simulate with APEX. In addition, the lack of sufficient knowledge 

regarding the distributions of model parameters, as well as indoor emission sources within 

microenvironments in our own data, affected our ability to model personal PM2.5 exposures. 

4.5. Conclusion 

The research findings show that the APEX model does a great job at modeling personal 

exposure to PM2.5 of outdoor origin. It demonstrates a much greater improvement compared to 

just relying on outdoor data, since it incorporates ventilation conditions and allows changes in 

ventilation (e.g., open windows and air conditioner usage) based on actual temperature. 

However, it seems more involved or complex to try to recreate all the different sources that 

contribute to total personal exposure than is currently possible using APEX. The results may lead 

to a better understanding of how the APEX model can be used to estimate personal PM2.5 

exposures, along with potential improvements in input specifications to better approximate 

personal exposures.  
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Chapter 5 Conclusions 

Exposure to air pollution and PM2.5 more specifically is an important environmental risk 

factor that has been associated with various adverse health outcomes. Pregnancy in particular is 

considered a sensitive exposure window with potential for long term impacts on maternal and 

child health. Systemic inequities over time lead to persistent environmental health disparities, 

which result in disadvantaged groups such as the low-income Hispanic population in Los 

Angeles being disproportionally exposed to air pollution and more susceptible to its health risks. 

Personal exposure to PM2.5 is complex, as PM2.5 itself is a mixture of various sources with 

varying physicochemical properties and toxicity that could contribute to varying health 

outcomes. Human mobility, time-activity patterns, and behaviors may also contribute to 

variations of personal exposure.  

Most health studies rely on outdoor PM2.5 estimates to investigate the associated health 

outcomes, assuming they are the best surrogate of personal PM2.5 exposure of outdoor origin. 

However, ignoring the impacts of factors such as activity spaces and time-activities on personal 

exposure might result in exposure measurement error. In addition to the health risks of outdoor 

PM2.5, understanding the effects of total personal PM2.5 exposures and indoor exposure 

specifically is increasingly important given their high contribution to personal exposures and 

their potential impacts on health. To date, knowledge around understanding personal PM2.5 

exposures of low-income Hispanic pregnant women has been limited due to the complexity of 

the sources contributing to their personal exposures, the multitude of co-occurring risk factors in 

this sensitive window of time, and the greater systemic disadvantages they experience. 

In this dissertation, personal PM2.5 measurements and concurrent geolocation records for 

a population of low-income, predominantly Hispanic pregnant women provided a unique 



 

86 
 

opportunity to fill this gap. Three aspects of their personal exposures were examined in three 

separate studies. Study 1 was focused on investigating the main determinants, e.g., 

environmental exposures within GPS-derived activity spaces, time-activity patterns, indoor 

sources, etc. and their impacts on personal exposures. Study 2 was focused on investigating the 

main sources and their contributions to personal PM2.5 mass distinguished based on their 

chemical fingerprints. Study 3 examined the contribution of microenvironments to personal 

exposures and whether total personal exposure could be estimated for larger populations using a 

well-known and population stochastic inhalation exposure model. 

The results from Study 1 revealed a direct association between greater green cover and 

parks and open space exposure in activity spaces and lower personal PM2.5 exposure which has 

not been reported in previous studies. In addition, compared to the impact of outdoor residential 

PM2.5, indoor PM2.5 sources and indoor activities had a greater contribution to personal exposure 

(on a standard deviation scaled basis). Study 2 identified six main sources based on their 

chemical fingerprints that contributed to total personal PM2.5 mass concentration, with combined 

indoor source contributions greater than three times those of outdoor sources. The APEX 

inhalation model results from Study 3 captured the contribution of outdoor PM2.5 to personal 

exposure, since predicted total personal exposure was highly correlated with outdoor PM2.5, 

contrary to the weak correlation observed when using personal measurements. However, the 

Indoor-Residence microenvironment contributed the majority of estimated personal exposures. 

Overall, the model seemed to underestimate total personal exposures when compared to personal 

measurement data despite the addition of different combinations of indoor source emission terms 

selected based on the most commonly reported or observed sources in earlier studies. Refinement 

of inputs such as more accurate indoor source terms and current time-activity budgets that 
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represent environmental health disparities populations would likely yield improved personal 

exposure estimates.  

Taken together, the findings of the three studies characterize personal PM2.5 exposures of 

the low-income, predominantly Hispanic pregnant women. The results point to the significant 

impact of GPS-derived activity spaces on the variation of personal exposures. Compared to 

residential neighborhoods, environmental exposures within activity spaces, particularly KDE 

area, are more correlated with where and how individuals interacted with their environments. 

Therefore, using activity spaces may detect the associations between built-environment and 

personal PM2.5 exposures in more accurate ways (e.g., greenness within KDE). This also reveals 

the possible exposure measurement error when outdoor PM2.5 estimates at the residence are used 

to approximate personal exposures of outdoor origin in health studies. This quantification of 

environmental impacts could, in turn, facilitate the design of potential interventions, e.g., 

promoting “greener” urban spaces from the policy and practice perspective.  

Similarly, the results for indoor candle or incense burning, duration of staying indoors, 

indoor activities and home ventilation (Study 1), sources of secondhand smoking and crustal 

(Study 2), and major contribution of Indoor-Residence exposure (Study 3), show the significant 

contributions to total personal exposures across all three investigations. The identified sources 

and factors reveal the importance of indoor environment when assessing personal PM2.5 

exposures, which also improve our understanding of the disproportional exposures that this low-

income Hispanic population burdened. In addition to regulating outdoor PM2.5 concentrations, 

interventions or standards that target the indoor environment, e.g., reducing indoor PM2.5 

emissions or requiring building designers and operators to increase removal of indoor PM2.5, 

need to be developed in a scientific, evidence-based manner to provide adequate health 
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protection. This finding also raises the awareness to examine the health effects of the source-

specific PM2.5 exposures, given the varied species and toxicity related to each source and the fact 

that individuals are exposed to these mixtures and not a single pollutant or chemical at a time.  

Lastly, the results demonstrate the possibility of using modeling approaches to estimate 

personal exposures, particularly the personal exposures of outdoor origin. However, with the 

significant contributions of indoor sources on personal measurements, more work needs to be 

accomplished to model indoor microenvironment exposures from non-outdoor sources (e.g., 

emission from indoor PM2.5 sources or human activities), which may improve personal exposure 

predictions accordingly. To facilitate modeling PM2.5 concentrations of the indoor 

microenvironments, a database of indoor source emission distributions, as well as a library of 

home ventilation effects on AER distributions, under wide ranging conditions that represent a 

diverse population would make a significant contribution to this field. In addition, more recent 

and representative travel and activity diary data covering a wide range of geographies, age and 

socioeconomic status (SES) are recommended to be included in the CHAD or similar national 

time-activity and travel behavior datasets, which may result in the improved estimates of time 

spent in each microenvironment. Integrating SES information into population data for modeling 

will make it possible to refine simulations, which may further improve exposure predictions for 

individuals that are part of environmental health disparities populations. These tangible 

recommendations, combined with modeling exposure of outdoor origin, may provide an 

actionable way for improved personal exposure prediction in large populations and over longer 

periods of time, which might greatly reduce the cost and burden of understanding personal 

exposures. Collecting personal exposure measurements in tailored and targeted assessments; 
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however, can provide important validation data to continuously improve models and achieve a 

greater understanding of personal exposures of different populations at scale.   

My research demonstrates the complexity of how this pregnant environmental health 

disparities population get exposure to PM2.5, and my findings provide foundation to refine 

source-specific estimates of personal exposure to PM2.5 of outdoor origin and total personal 

PM2.5. By doing so may reduce exposure measurement error, which these more accurate 

exposure estimates can help epidemiological health studies. The greenness finding reveal the 

direct link between urban design, city planning, and greener activity spaces on reducing personal 

exposures, which may improve public health. In addition, my results also reveal the need for 

smarter, more contextually aware interventions targeting main sources and determinants, 

particularly indoor environment due to its significant contribution on total exposures. The 

research also demonstrate the importance of interdisciplinary approach, or collaboration of 

multiple disciplines, e.g., geography, exposure sciences, urban planning, public health, and 

demography, to understand the complexity of personal PM2.5 exposure for this particular 

population. 

As the strength of my research, to my knowledge, this is one of the very few studies that 

conducted a thorough investigation on personal PM2.5 exposures of predominantly Hispanic and 

low-income women during pregnancy in an environmental health disparities context. The 

personal PM2.5 monitoring and concurrent GPS data constitute a rich dataset which enabled this 

investigation. In terms of the generalizability of my research, some of my findings, e.g., 

greenness and traffic impact, indoor sources, and outdoor PM can be generalizable to other urban 

areas and other population; and the ways of approaching it may be transferable to other 

environmental health disparities contexts and studies. As for the limitations, the sample size of 
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200 might be considered low, however for personal monitoring studies that are quite expensive 

and burdensome to conduct to provide the highest quality data, this is considered fairly decent. 

Of course, if it weren’t for the pandemic we would have expected a slightly larger sample size. 

Overall, the dissertation findings help to dissect the complexity of personal PM2.5 

exposures of this susceptible low-income predominantly Hispanic population during the critical 

window of pregnancy. These findings can be further applied to advance environmental health 

research and recommend appropriate interventions with the aim to control or minimize personal 

PM2.5 exposures, which may further reduce health disparities. 
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Figure S2.1. Los Angeles, CA, primary, secondary, and local neighborhood roads and city streets 
used in the analysis  
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Table S2.2. Personal sampler wearing compliance (N=213). 
 

  N (%) 

Wear compliance while awake during the daytime  

Missing 1 (0.5%) 

none 10 (4.7%) 

medium 10 (4.7%) 

high 192 (90.1%) 

Wear compliance while sleeping during the nighttime  

Missing 1 (0.5%) 

none 16 (7.5%) 

medium 13 (6.1%) 

high 183 (85.9%) 

Place nearby when not worn it during the daytime  

Missing 1 (0.5%) 

none 7 (3.3%) 

medium 5 (2.3%) 

high 200 (93.9%) 

 
 

Table 2.3. The distribution of personal and outdoor (residential and  
selected activity spaces) PM2.5 mass concentrations (µg/m3). 

 

  N Mean (SD) Min Median Max 

Personal PM2.5  213 23.3 (18.9) 1.8 18.4 140.2 

Outdoor PM2.5      

At residential location 209 11.8 (5.5) 2.9 10.9 35.1 

Within MCH area  199 11.3 (5.5) 0.5 10.7 33.8 

Within DPA 199 11.3 (5.5) 0.5 10.7 33.6 

Within KDE area (K10/100m)  199 11.4 (5.5) 0.5 10.6 33.7 

Within (K25/250m)  199 11.4 (5.5) 0.5 10.7 33.7 

Within KDE area (K50/500m)  199 11.4 (5.5) 0.5 10.7 33.6 

              *MCH: minimum convex hull, DPA: daily path area, KDE: kernel density estimation 
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Table S2.5. Bivariate association between primary road lengths within activity spaces and 

residential neighborhoods with personal PM2.5 exposure (N=213). 
 

Length of Primary Roads (m) by Method Mean (SD)  
Spearman 

Correlation 
p-value 

Activity Space      

Daily Path Area (DPA) 80,163.8 (121,844.5) 0.02 0.817 

Minimum Convex Hull (MCH) 108,645.0 (239,961.7) -0.04 0.605 

Kernel Density Estimation (KDE) measures (bin size, neighborhood size)   

10 m, 100 m  6.2 (17.5) 0.02 0.802 

10 m, 100 m, top 20th percentile 12,736.9 (29,165.6) -0.01 0.885 

10 m, 250 m 12.7 (36.0) 0.12 0.085 

10 m, 250 m, 20th percentile 18,026.6 (40,688.9) 0.01 0.836 

25 m, 250 m 79.7 (226.5) 0.13 0.073 

25 m, 250 m, 20th percentile 17,993.2 (40,590.0) 0.02 0.775 

25 m, 500 m 106.4 (216.7) 0.11 0.112 

25 m, 500 m, 20th percentile 20,884.9 (44,589.5) 0.08 0.291 

50 m, 500 m 425.7 (865.9) 0.12 0.094 

50 m, 500 m, 20th percentile 20,847.9 (44,508.5) 0.07 0.331 

Residential Neighborhood    

Residential census tract (RN_ct) 1,309.6 (2,508.8) -0.04 0.516 

100 m buffer around residence (RN_100 m) 4.5 (47.9) 0.05 0.477 

250 m buffer around residence (RN_250 m) 208.3 (644.2) 0.10 0.140 

500 m buffer around residence (RN_500 m) 1,266.3 (2,168.4) 0.07 0.340 
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Table S2.7. Associations between personal PM2.5 and NDVI within activity spaces and 
residential neighborhood. 

 
  Variables Spearman Correlation p-value 

Residential Neighborhood Residence, 100 m buffer  -0.05 0.429 

  Residence, 250 m buffer  0.01 0.911 

  Residence, 500 m buffer  0.04 0.605 

  Residence, census tract 0.01 0.914 

Activity Space -DPA Daily Path Area -0.1 0.172 

Activity Space -MCH Minimum Convex Hull  -0.03 0.710 

Activity Space - KDE (20p) KDE, 10m, 100m, 20p -0.12 0.084 

  KDE, 10m, 250m, 20p -0.12 0.104 

  KDE, 25m, 250m, 20p -0.11 0.112 

  KDE, 25m, 500m, 20p -0.08 0.250 

  KDE, 50m, 500m, 20p -0.05 0.464 

Activity Space - KDE KDE, 10m, 100m -0.03 0.644 

  KDE, 10m, 250m -0.01 0.924 

  KDE, 25m, 250m -0.15 0.037 

  KDE, 25m, 500m -0.04 0.550 

  KDE, 50m, 500m -0.02 0.802 

Values presented in bold font show significant p-values at p<0.05 level 
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Table S2.9. Associations between personal PM2.5 and park area (mean and sum) within activity 
spaces and residential neighborhoods. 

 

Variables (mean area) 
Spearman 

Correlation 
 p-value Variables (sum area) 

Spearman 
Correlation 

p-value 

Residence, 100 m buffer  0.03 0.71 Residence, 100 m buffer  0.03 0.71 

Residence, 250 m buffer  0.1 0.16 Residence, 250 m buffer  0.1 0.15 

Residence, 500 m buffer  0.08 0.22 Residence, 500 m buffer  0.08 0.26 

Residence, census tract 0.01 0.93 Residence, census tract 0.01 0.94 

Daily Path Area -0.06 0.39 Daily Path Area -0.06 0.42 

Minimum Convex Hull  -0.06 0.39 Minimum Convex Hull  -0.05 0.47 

KDE, 10m, 100m, 20p 0.1 0.17 KDE, 10m, 100m, 20p 0.03 0.70 

KDE, 10m, 250m, 20p 0.07 0.36 KDE, 10m, 250m, 20p 0.004 0.95 

KDE, 25m, 250m, 20p 0.07 0.36 KDE, 25m, 250m, 20p 0.002 0.98 

KDE, 25m, 500m, 20p 0.0003 1.00 KDE, 25m, 500m, 20p -0.03 0.66 

KDE, 50m, 500m, 20p 0.002 0.98 KDE, 50m, 500m, 20p -0.03 0.66 

KDE, 10m, 100m 0.08 0.28 KDE, 10m, 100m 0.05 0.50 

KDE, 10m, 250m 0.1 0.18 KDE, 10m, 250m 0.08 0.25 

KDE, 25m, 250m 0.09 0.19 KDE, 25m, 250m 0.08 0.25 

KDE, 25m, 500m 0.06 0.41 KDE, 25m, 500m 0.08 0.28 

KDE, 50m, 500m 0.06 0.41 KDE, 50m, 500m 0.08 0.28 

 
 
 

Table S2.10. Summary of scaled parameter estimates for continuous variables in the final model. 
 

Effect 
Scaled 

Estimate 
p-value 

Model 
Estimate 

Std Scale 

Birth order of index child at time of pregnancy 5.81 <.0001 4.689 1.24 

Length of primary road within KDE area (K50/500m) 2.82 0.018 0.003 865.86 

Average NDVI value within KDE area (K25/250m) -3.09 0.01 -0.239 12.92 

Outdoor PM2.5 concentration at residence 2.05 0.092 0.372 5.50 

Mean length of secondary road within DPA 5.57 0.001 0.009 613.54 

Mean park area within DPA -3.62 0.009 -0.0001 59,052.13 

Mean length of minor streets within RN_500 m -2.53 0.04 -0.025 102.65 

 
 

Table S2.11. Duration of time spent in each microenvironment (%) (N=199). 
 

 Min Max Median Mean Std 
Indoor 0 100 96.3 94.2 8.5 

At home  0 100 81.0 78.9 18.8 
Not at home 0 77.2 11.2 15.2 15.6 

Outdoor 0 28.4 3.7 5.3 5.1 
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Appendix B 

Table S3.1. Home characteristics, indoor source, and time-activities derived  
from questionnaires and exit survey (N=212). 

 
Variables n (%) Variables n (%) 

Home Characteristics   **How open were your windows or doors in general? 

*Which best describes the home in which you 
currently live most of the time? 

A little to half way 86 (40.6%) 

House  75 (35.4%) Most to all the way 92 (43.4%) 

Apartment 118 (55.7%) Missing 34 (16.0%) 

Missing 19 (9.0%) 
**How much of the time was a portable or ceiling fan 

used in your home, when you were there with the sampler? 
*How many people counting yourself live in your 

household?  
None of the time 129 (60.8%) 

1 and 2 people 26 (12.3%) A little, most, or all of the time 78 (36.8%) 

3 people 29 (13.7%) Missing 5 (2.4%) 

4 people 40 (18.9%) Indoor Air Pollution Source  

5 people 20 (9.4%) 
**How much of the time were you close to smoke from 

candles or incense burning nearby? 
More than 5 people 34 (15.9%) None of the time 158 (74.5%) 

Missing 63 (29.7%) A little, most, or all of the time 51 (24.1%) 
*About when was this home building originally 

built?  
Missing 3 (1.4%) 

Built after 1980s 90 (42.5%) 
**How much of the time were you close to smoke or 

fume from cooking? 
Built before 1980s 68 (32.1%) None of the time 129 (60.8%) 

Missing 54 (25.5%) A little, most, or all of the time 80 (37.7%) 

*Is there carpeting in your home?  Missing 3 (1.4%) 

No  103 (48.6%) 
**How much of the time were you close to cigarette, 

cigar, hookah or pipe smoke from people smoking nearby? 
Yes 91 (42.9%) None of the time 125 (59.0%) 

Missing 18 (8.5%) A little, most, or all of the time 83 (39.2%) 

*Do you have pets at home?  Missing 4 (1.9%) 

No  134 (63.2%) Time-Activities  

Yes 74 (34.9%) 
**How much of the time did you spend outdoors (not 

commuting in a car, bus or train)? 
Missing 4 (1.9%) None or a little of the time 133 (62.7%) 

*Does your home have heating?  Most or all of the time 76 (35.8%) 

No 73 (34.4%) Missing 3 (1.4%) 

Yes  120 (56.6%) **When outdoor, whether were you near traffic? 

Missing 19 (9.0%) No 81 (38.2%) 

Home Ventilation  Yes 128 (60.4%) 
** How long the window open in your home, when 

you were there with sampler? 
Missing 3 (1.4%) 

None or little of the time 82 (38.7%) **How many hours did you spend on commute? 

Most or all of the time  127 (59.9%) 0 to 30 min 17 (8.0%) 

Missing 3 (1.4%) 30 min to 1 hr 44 (20.8%) 
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**How much of the time was the air conditioner 
used in your home, when you were there with the 
sampler? 

1 to 2 hrs 47 (22.2%) 

None of the time 154 (72.6%) > 2 hrs 72 (34.0%) 

A little, most, or all of the time 55 (25.9%) Missing 32 (15.1%) 

Missing 3 (1.4%)     

       * question from 3rd trimester questionnaire; ** question from exit survey 

 
 

Table S3.2. Bootstrapping Results for base solution, final rotated Fpeak solution and model 
variability/error diagnostics. 

 
Legend  

Factor 1 Traffic 

Factor 2 Secondhand smoking 

Factor 3 Aged sea salt 

Factor 4 Fresh sea salt 

Factor 5 Fuel oil 

Factor 6 Crustal 
 

Mapping of bootstrap factors to base factors (BS mapping, 100 bootstraps, 0.6 minimum correlation) 

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unmapped 

 98 0 2 0 0 0 0 

 7 69 15 6 0 1 2 

 0 0 98 2 0 0 0 

 0 0 0 100 0 0 0 

 1 0 1 0 98 0 0 

 0 0 0 0 0 100 0 

Mapping of Fpeak (rotated) bootstrap factors to base factors  

 
Base 

Factor 1 
Base 

Factor 2 
Base 

Factor 3 
Base 

Factor 4 
Base 

Factor 5 
Base 

Factor 6 Unmapped 
Boot Factor 1 100 0 0 0 0 0 0 
Boot Factor 2 3 94 3 0 0 0 0 
Boot Factor 3 0 0 100 0 0 0 0 
Boot Factor 4 0 0 0 100 0 0 0 
Boot Factor 5 0 0 0 0 100 0 0 
Boot Factor 6 0 0 0 0 0 100 0 

DISP Diagnostics 

Error Code: 0       

Largest Decrease in Q: 0       

%dQ: 0       

Swaps by Factor: 0 0 0 0 0 0 0 

BS-DISP Diagnostics        
BS-DISP Displaced Species: BrC       

# of Cases Accepted: 98       
% of Cases Accepted: 98%       
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Largest Decrease in Q: -9.13       
%dQ: -0.16       

# of Decreases in Q: 0       
# of Swaps in Best Fit: 1       
# of Swaps in DISP: 1       

Swaps by Factor: 1 0 0 1 0 0   

 
 

Table S3.3: PMF model results showing R2 and normality of residuals for each species. 
 

Species R2 Normal residuals? 

PM mass 0.48 Yes 
Carbon Species  

BC 0.16 No 

BrC 0.53 Yes 

ETS 0.12 No 
Elements   

Al 0.5 No 

Ba 0.41 Yes 

Br 0.24 Yes 

Ca 0.53 No 

Cl 0.85 No 

Co 0.33 No 

Cu 0.77 Yes 

Fe 0.78 Yes 

K 0.13 No 

Mg 0.84 Yes 

Mn 0.54 Yes 

Na 0.86 Yes 

Ni 0.35 Yes 

P 0.0001 No 

Pb 0.13 No 

S 0.83 No 

Se 0.09 Yes 

Si 0.62 Yes 

Sr 0.04 No 

Ti 0.7 Yes 

V 0.04 No 

Zn 0.3 No 
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Appendix C 

 

 

Figure S4.1. MADRES study area used for APEX model runs 
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Table S4.1. APEX microenvironment parameters. 
 

Microenvironment  Parameters Conditions Distributions  

Indoor-Residence AER Temp < 68; AC; room, window-open LogN (1.344, 1.863, 0.1, 10) 
  Temp 68-76; AC; room, window-open LogN (3.348, 2.223, 0.1, 10) 
  Temp > 76; AC; room, window-open LogN (1.898, 1.644, 0.1, 10) 
  Temp < 50; AC; none, window-open LogN (1.086, 3.087, 0.1, 10) 
  Temp 50-67; AC; none, window-open LogN (1.494, 2.085, 0.1, 10) 
  Temp 68-76; AC; none, window-open LogN (2.744, 2.283, 0.1, 10) 
  Temp > 76; AC; none, window-open LogN (1.976, 1.967, 0.1, 10) 
  Temp < 68; AC; room, window-close LogN (0.672, 1.863, 0.1, 10) 
  Temp 68-76; AC; room, window-close LogN (1.674, 2.223, 0.1, 10) 
  Temp > 76; AC; room, window-close LogN (0.949, 1.644, 0.1, 10) 
  Temp < 50; AC; none, window-close LogN (0.543, 3.087, 0.1, 10) 
  Temp 50-67; AC; none, window-close LogN (0.747, 2.085, 0.1, 10) 
  Temp 68-76; AC; none, window-close LogN (1.372, 2.283, 0.1, 10) 
  Temp > 76; AC; none, window-close LogN (0.988, 1.967, 0.1, 10) 

Indoor-Other AER All LogN (1.109, 3.015, 0.07, 13.8) 

Indoor-Residence ES gas stove LogN (1700, 10, 100, 2000) 

Indoor-Residence ES gas stove (duration) Uniform (0.5, 1) 

Indoor-Residence Vol  Normal (120, 30, 50, 300) 

Indoor-Residence ES candle burning Normal (110, 60, 10, 200) 

Indoor-Residence ES candle burning (duration) Uniform (0.6, 1) 

Indoors-All Decay rate All Uniform (0.1, 1.1) 

All MEs Penetration  1 

All MEs Proximity All Normal (1.0, 0.07, 0.9, 1.1) 

 
 

Table S4.2. Duration of time spent in each microenvironment (as a percentage per day). 
 

Microenvironment Mean (SD)  
 MADRES (N=213) S1 (N=500) S2 (N=500) S3 (N=500) S4 (N=500) S5 (N=500) 

In-Residence 78.46 (19.59) 72.06 (7.90) 72.06 (7.90) 72.50 (8.33) 72.50 (8.33) 71.79 (8.21) 

In-Other 15.22 (15.66) 18.24 (7.39) 18.24 (7.39) 17.97 (7.58) 17.97 (7.58) 18.73 (7.51) 

Outdoor  3.86 (3.63) 3.86 (3.63) 3.68 (3.38) 3.68 (3.38) 3.61 (3.68) 

Near-Road  0.24 (0.49) 0.24 (0.49) 0.25 (0.57) 0.25 (0.57) 0.25 (0.52) 

Vehicle   5.56 (1.03) 5.56 (1.03) 5.57 (1.09) 5.57 (1.09) 5.58 (1.04) 
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Table S4.3. Estimated mean microenvironment PM2.5 concentrations (µg/m3). 
 

Microenvironments PM2.5 Concentrations (µg/m3), Mean (SD)  
 S1 S2 S3 S4 S5 

In-Residence 8.8 (1.6) 9.8 (1.5) 10.5 (1.7) 9.9 (1.6) 10.4 (1.7) 

In-Other 9.7 (1.7) 9.7 (1.7) 9.5 (1.6) 9.4 (1.5) 9.5 (1.7) 

Outdoor 14.2 (0.6) 14.2 (0.6) 14.2 (0.7) 14.2 (0.7) 14.3 (0.7) 

Near-Road 14.1 (2.2) 14.1 (2.2) 14.1 (2.4) 14.1 (2.4) 14.1 (2.3) 

Vehicle 14.2 (0.4) 14.2 (0.4) 14.2 (0.4) 14.2 (0.4) 14.2 (0.4) 

 
 

Table S4.4. Estimated total personal and microenvironment PM2.5 exposures  
extracted from hourly outputs (µg/m3). 

 
Microenvironments PM2.5 Exposures, Mean (SD)  

 S1 S2 S3 S4 S5 

Estimated Personal Exposure 9.5 (7.26) 10.2 (7.63) 10.65 (7.73) 10.19 (7.69) 10.6 (7.69) 

In-Residence 6.34 (6.73) 7.05 (7.39) 7.58 (7.63) 7.14 (7.46) 7.47 (7.59) 

In-Other 1.77 (4.7) 1.77 (4.7) 1.72 (4.61) 1.69 (4.55) 1.79 (4.72) 

Outdoor 0.55 (2.86) 0.55 (2.86) 0.52 (2.86) 0.52 (2.85) 0.51 (2.78) 

Near-Road 0.03 (0.75) 0.03 (0.75) 0.03 (0.72) 0.03 (0.72) 0.04 (0.74) 

Vehicle 0.79 (2.9) 0.79 (2.9) 0.79 (2.96) 0.79 (2.96) 0.79 (2.97) 

 
 

Table S4.5. Spearman correlations among estimated hourly personal PM2.5 exposures, 
microenvironment exposures, and ambient PM2.5 concentrations in S1. 

 
In-Residence              

In-Other -0.65      

Outdoor -0.24 0.09     

Near-Road -0.07 -0.0001 0.03    

Vehicle -0.28 0.28 0.31 0.07   

Ambient PM2.5 0.44 0.05 0.00 -0.001 0.02  

Personal 
Exposures 

0.44 0.12 0.13 0.03 0.15 0.81 

  In-Residence  In-Other Outdoor Near-Road Vehicle Ambient PM2.5 

            Values in bold font represent significant p-values at p<0.05 level. 
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Table S4.6. Spearman correlations among estimated hourly personal PM2.5 exposures, 
microenvironment exposures, and ambient PM2.5 concentrations in S2. 

 
In-Residence              

In-Other -0.65      

Outdoor -0.24 0.09     

Near-Road -0.07 -0.0001 0.03    

Vehicle -0.29 0.28 0.31 0.07   

Ambient PM2.5 0.46 0.05 0.003 -0.001 0.02  

Personal 
Exposures 

0.49 0.06 0.10 0.03 0.12 0.84 

  In-Residence  In-Other Outdoor Near-Road Vehicle Ambient PM2.5 

         Values in bold font represent significant p-values at p<0.05 level. 
 
 
 
 


