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Abstract 

With the recent abundance and democratization of high-quality, low-cost satellite imagery comes 

the distinct need for a way to analyze and derive insight from this ever-growing torrent of data. 

Machine learning technologies and methods are now frequently applied to large datasets to 

accomplish such varied tasks as language translation, fraud detection, disease diagnosis, and 

automated driving. This project proposes a means to apply these same technologies to 

automatically detect and digitize features within satellite imagery. An end-to-end machine 

learning and web application framework was developed to detect, extract, and digitize arbitrary 

classes of geospatial features. This system is composed of a web user interface which allows 

users to source true-color satellite imagery and existent digitized feature data and subsequently 

use these data to train a machine learning model that will “learn” to automatically identify 

features within new imagery. This involved the development of both a web application user 

interface and a specific type of machine learning algorithm termed a neural network that has 

been shown to excel in image recognition tasks. Following the identification of these features 

from satellite imagery, features may be exported to a geospatial database for storage and further 

analysis. This system and provides the foundation for a significant retooling and augmentation of 

manual geospatial feature digitization workflows and creates new opportunities for geospatial 

analysis by deriving features from aerial images rapidly en masse.  
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Chapter 1 Introduction 

Once purely the domain of militaries and international scientific bodies, high-quality satellite 

imagery is now readily available to a wide range of consumers. With democratization of this data 

into the private and public sectors, the ability to process and derive value from this data has 

become increasingly important. For many applications, the volume of imagery renders manual 

human identification and digitization of objects extremely onerous or entirely infeasible. 

To sift through this torrent, many have turned to using a suite of technologies and 

techniques termed “machine learning,” wherein complex algorithms are “taught” to detect 

patterns and derive insight from enormous datasets. One specific subset of machine learning 

technologies, artificial neural networks or simply neural networks, have been shown to produce 

state-of-the art results for a host of image processing tasks. From reading handwriting to 

identifying species of plants and animals to driving cars and creating art, neural networks are 

found at the heart of many of the latest advances in machine learning and image processing 

(Gatys, Ecker and Bethge 2015). 

As with many of the latest technological advances, the learning curve to utilizing neural 

networks can be quite high for all but the most technical of users. Large amounts of “training” 

data are required to teach neural networks how to perform a particular image processing task. 

The network itself often requires fine tuning and the results may require extensive post-

processing. To lower the barriers of entry for utilizing this powerful technology, a web 

application featuring an end-to-end machine learning solution was developed. The application, 

named U-Map after the U-Net neural network architecture that was used within the system, 

provided users with a holistic data sourcing, neural network training, and post-processing 

pipeline. Using this application, users were able to train a neural network model to detect and 
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automatically digitize geospatial features from satellite imagery. Through this, users with 

geospatial domain knowledge were empowered to use the latest machine learning technologies 

through a simple web application interface. 

A plethora of technologies and methods are grouped under the moniker of machine 

learning, with applications varying from fraud detection to targeted marketing to help desk 

chatbots and autonomous vehicles. While these are very disparate applications, they share the 

same underlying principles. The key idea behind machine learning is that computer programs can 

be made to “act without being explicitly programmed” (Ng 2013). Within this thesis, a specific 

class of machine learning algorithms was used – “supervised learning” algorithms. Within 

supervised learning, a set of data and corresponding “labels” are both provided to an algorithm 

so that the algorithm can determine which attributes likely corresponded to a given label. An 

often-cited example of supervised learning is that of spam filtering, wherein algorithms are given 

“training” email data with a binary spam/not spam label for each email. The algorithm is then 

able to determine what commonalities exist between each class of email – suppose spam emails 

have numerous occurrences of the word “free” or frequent spelling errors (Géron 2017). 

This same general principle was used within this thesis, with the system allowing users to 

select preexisting geospatial feature data from the open source OpenStreetMap (OSM) GIS 

dataset via a web application to serve as labels. This feature data was then combined with the 

Mapbox satellite imagery dataset to create a wholistic label and data training set. These two 

datasets were then passed to a machine learning algorithm that used this training data to “learn” 

to detect a specific class of geospatial features within satellite imagery. After this model was 

“trained,” users were able to utilize the web application user interface to pass new satellite 

imagery to the machine learning model, which subsequently detected and digitized similar 
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features within the imagery. Following digitization, users could commit this data to a geospatial 

database for future retrieval and analysis. 

1.1. Motivation 

There is a confluence of advancements in machine learning technologies, satellite 

imagery, and geographic information systems (GIS) that have made this project feasible and 

served as motivation. These topics are discussed in the below sections.  

1.1.1. The Burgeoning Field of Machine Learning 

Machine learning is a broad term that encompasses many technologies within the field of 

computer science. Broadly speaking, most machine learning methodologies apply complex 

algorithms to problems that would be too time-consuming or simply impossible to solve with 

hand-written computer code or manual analysis and human workflows. To address this problem, 

many machine learning technologies center around the development of complex statistical 

models (Ng 2013). 

Most machine learning technologies hold to the axiom that “the best way to predict the 

future is the examine the past.” Large volumes of existent data are processed to produce 

extremely complex models – often with thousands of parameters. As such, these machine 

learning algorithms can be used to derive correlations between large numbers of data points. 

These models are used across all swathes of the public, private, and academic sectors. Machine 

learning is used to clear spam from inboxes, recommend movies, determine credit worthiness, 

drive cars, and diagnose disease. 
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1.1.2. A New Abundance of Low Cost Satellite Imagery 

This project applied machine learning principles to the field of geographic information 

science. With the recent availability of high-quality, low-cost satellite imagery and commodity 

high performance computing (HPC) assets, this field has seen an explosion of interest. 

Governmental bodies, major corporations, and the open source community are all working 

towards a common objective – to make sense of and derive value from enormous amounts of 

satellite data. 

In many applications, human processing and analysis is simply too expensive and time 

consuming to be feasible given such a bulk of information. DigitalGlobe, a private satellite 

imagery company, possesses over 90 petabytes (90,000 terabytes) of satellite imagery data alone 

(Hamilton n.d.). Planet, another private imagery company, operates a constellation of over 150 

small, lower resolution imagery satellites providing high-frequency imagery updates. Provided 

weather and atmospheric conditions allow, the company claims to be able to provide daily 

imagery refreshes for the whole of the globe (Draper 2018) (Vance 2017). Without reliable 

automated means to sift through this imagery, valuable insights may be lost. 

1.1.3. Combining Machine Learning and GIS 

Throughout the academic body of knowledge, there is a long history of using remote 

sensing to detect and digitize features for analysis. Many have utilized the properties of 

multispectral imagery to identify buildings, water, vegetation, and other types of objects and 

landcover. There is a large suite of complex specialized algorithms, such as the Normalized 

Difference Vegetation Index (NDVI), that can be applied to derive meaning from this 

multispectral imagery. However, these algorithms are often required to be highly specific and 

excel at detecting only a small gamut of objects or phenomena within imagery. 
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With recent advances in machine learning technologies and an abundance of high-

resolution, high-refresh rate satellite imagery, there are new opportunities for analyzing imagery. 

Many researchers and private organizations doing this work have pivoted to the analysis of true-

color imagery due to the increased flexibility of being able to both apply more generic 

algorithms to detect numerous types of objects or phenomena, and to differentiate between 

objects or phenomena that have similar or identical multispectral signatures. For instance, using 

traditional techniques it would be challenging to automatically discern a baseball field from a 

lawn or field within multispectral imagery – both may be covered mostly with grass. Both 

classes of objects would share a common multispectral signature. However, using true-color 

imagery and new powerful machine learning algorithms, these objects can be easily separated 

and identified. The Terrapattern project uses these principles to allow the public to search seven 

major metropolitan areas using an aerial imagery tile as the query input. The software then 

returns any locations within that city that their machine learning model has determined to “look 

like” the input imagery – allowing users to locate intersections, pools, helipads, and many other 

classes of objects within the area (Levin, et al. 2016). 

In a more complex implementation, the company Orbital Insights uses their machine 

learning algorithms to derive economic, human security, and social indicators. Using high-

refresh rate imagery from Planet Labs, Orbital Insights has developed analytics on consumer 

spending using parking lot occupancy, construction growth by identifying laid foundations, and 

energy stockpiles by analyzing the size of shadows cast on the floating roofs of petroleum 

storage tanks (Orbital Insight 2017). None of these applications would be possible with 

multispectral imagery or traditional means of analysis, nor scalable if relying upon manual 

human intervention. 
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1.2. General Overview of the System 

The system functions as an integrated end-to-end machine learning platform, allowing 

users to (1) source feature and imagery data, (2) train a neural network using these data, (3) use a 

trained neural network model to detect instances of objects within new satellite imagery, and (4) 

validate the output of the model through a defined workflow. The intended users of this system 

are, generally, those that require spatial feature data for a given area of interest for which there is 

limited existent feature data (Figure 1). The users are understood to serve in a geospatial data 

management role within their organization and have a sound understanding of geospatial data. 

The users are not presumed to have an in-depth understanding of machine learning nor neural 

networks. The only machine learning domain knowledge required of users is the foundational 

concept of training data. Selection of training data within the system was extremely intuitive, 

requiring a user to simply identify a class of geospatial feature to be used as training data and to 

select a geographic area from which to source these features. Default values were given for all 

other machine learning model parameters, providing the user with acceptable predefined values 

as well as an indication of appropriate ranges for these values. 

  

Figure 1 Existent OSM lake features in red over satellite imagery demonstrating the lack of 

existent OSM feature data, near Utqiaġvik (formerly Barrow), Alaska  
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1.2.1. System Functionality 

A multipart solution was chosen to meet to goals of the application. First, a web 

application user interface (UI) was required for users to select training feature data within an area 

of interest (AOI) and allow users to review satellite imagery for this AOI. The web application 

UI was the main component of the “data pipeline” that was used to select training data that are 

passed to the backend machine learning framework. After the user passes the training feature 

data to the machine learning framework, the system automatically downloads high-resolution 

satellite imagery corresponding to the spatial locations of the training feature data. It is 

impractical and resource intensive to display high-resolution imagery directly within the web UI, 

so the users were merely shown imagery tiles from a web map tile service (WMTS), leaving the 

backend machine learning code to source this data. With the training feature data and high-

resolution satellite imagery secured, the machine learning code, implemented in Python, iterates 

through the entire training dataset to develop a machine learning model that detects lakes within 

satellite imagery. After model development is completed on the backend, the system returns 

example model performance to the user via the web UI.  

The user then is able to select a new AOI, presumably an AOI with limited existent 

feature data, and pass this AOI to the backend machine learning code. The code again sources 

high-resolution imagery for this AOI and iterates through all selected imagery and digitizes 

objects that have a high probability of being the same class of geospatial feature that was used to 

train the model. These objects are then returned to the user via the web UI, wherein the user may 

choose to commit these features to a geodatabase. 
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1.2.2. System Architecture 

Scalability, ease of use, and user experience are three of the most important overarching 

non-functional requirements of this system. As such, it is exceedingly important that the system 

be as intuitive as possible. To this end, all of the infrastructure for this system is deployed on the 

web – the UI, the data sourcing pipeline, data pre- and post-processing, and output verification 

are deployed within the cloud. Many existent systems, such as Skynet and DeepOSM (see 

Chapter 2 Related Work), rely heavily on locally installed assets and manual retrieval of satellite 

imagery data. 

In contrast, this system performs all processing remotely. The system is deployed wholly 

on Microsoft’s Azure cloud computing platform and utilize data hosted by a number of vendors. 

The system is comprised of: (1) web application servers running on the .NET and Node.js 

frameworks within Azure, (2) WMTS provided by a number of vendors, (3) a Flask Python 

server for machine learning processing and execution of all Python code deployed on Azure, and 

(5) a Microsoft SQL Server database also hosted on Azure. 

1.3. Structure of the Thesis Document 

In the pages that follow, this thesis is divided into four primary sections. The Related 

Work chapter includes a review of existent literature on the subjects of remote sensing, machine 

learning, and a number of efforts combining these two disciplines. Chapter 3 - Application 

Requirements, details the objective of the project, system requirements, and design rationale. 

Chapter 4 - Components of the Final Application, details the process of developing the system. 

Within Chapter 5 - Results, selected UI screens from the system are given, along with the 

physical system architecture, data flows, pseudo code, and testing results. In Chapter 6 – 



9 

 

Conclusions, a summative discussion of the project is given along with challenges, any 

limitations, and future opportunities for improvement. 
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Chapter 2 Related Work 

The following provides a review of existent academic literature as well as commercial and open 

source software systems that have influenced this project. Within the Literature Review section, 

the topics of remote sensing, machine learning, computer vision, and works regarding machine 

learning principles in the specific context of GIS will be discussed. The Existent Applications 

section features a review of select open source and proprietary systems using machine learning to 

derive geospatial data and insights from satellite imagery.  

2.1. Literature Review 

As this system spans the domains of GIS, remote sensing, computer vision, and machine 

learning, this review of related work is broad while also highly focused on select topics such as 

machine learning architecture and algorithm design. The Remote Sensing and Object Detection 

section discusses previous works attempting to detect objects or phenomena from aerial imagery. 

The Machine Learning and Computer vision section discussed the broader field of computer 

vision and several applications of this technology outside the domain of GIS. The Machine 

Learning and GIS section details a number of projects that attempted to utilize machine learning 

and computer vision technologies within the field of GIS. 

2.1.1. Remote Sensing and Object Detection 

There have been numerous previous attempts to automatically derive object information 

from remotely sensed satellite imagery. These efforts have varied in complexity, some using 

rather simple manual interventions, and others utilizing complex data processing techniques in 

attempts to identify natural and manmade features. An overwhelming majority of these earlier 

projects leveraged the unique properties of multispectral and hyperspectral imagery within their 
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analyses as opposed to using true-color images. Many researchers opt to use multispectral and 

hyperspectral imagery as the spectral signature of many types of landcover and objects differ 

greatly. They use these differences as an input to their classification processes (GISGeography 

2017) (Emerson, Lam and Quattrochi 2005). 

Jiang et al. (2014) used this technique in their attempts to create an “automated method 

for extracting rivers and lakes,” which aimed to automatically extract water features from 

multispectral Landsat imagery. The authors created several permutations of a “water index” 

using several spectral bands to identify water features. Similarly, Lu et al. (2012) utilized the 

NDVI in their analysis to identify the conversion of Brazil’s cerrado (landcover similar to a 

savanna) to agricultural and pastoral usage. Some researchers have taken this methodology one 

step further, integrating multispectral imagery with other visible characteristics of features when 

attempting to perform object detection. Emerson et al. (2005) used the Image Characterization 

and Modelling System (ICAMS) software package to create indices of pixel color variance, 

topographical object complexity, and spatial autocorrelation. These indices were then used 

within complex algorithms in an attempt to classify suburban landcover. 

Geospatial object detection algorithms are not, however, strictly limited to the used of 

aerial imagery as some researchers have shown. In their paper “A General Approach for 

Extracting Road Vector Data from Raster Maps” (2013), Chiang and Knoblock used object 

detection and extraction algorithms to generate road data from existent raster maps. Due to the 

high color fidelity and range of many raster maps, particularly of those scanned from physical 

maps, the authors first binned similar colors found within the map into a significantly 

constrained color space. Following this, a user was prompted to select known road features 

within the map, as to identify different colors associated with road features. With this 



12 

 

information, the authors were able to extract all features within the raster matching the user 

defined road coloration scheme. Further automated post-processing was then performed to 

remove features that were found to be morphologically dissimilar to roads yet happened to share 

similar coloration within the raster. The authors then produced centerlines from the cleaned roads 

layer and performed subsequent post-processing to correct road intersections distorted during the 

generation of centerlines. 

Unlike these researchers, true-color imagery aerial was used exclusively within this 

application as this architecture is inherently more extensible as objects with similar multispectral 

signatures may be differentiated and low-cost true-color imagery is more readily available on the 

marketplace. Further, by training a model with true-color imagery few adjustments to the core 

machine learning model would be required for the model to recognize other objects – the 

operator would merely have to train an additional model with examples of other object classes. 

The Terrapattern project follows this philosophy, having built an online platform and service for 

identifying hundreds of discreet categories of objects all using the same algorithm (Figure 2) 

(Levin, et al. 2016). However, these previous works, especially that of Emerson et al., do provide 

some insight into the logic of a “black box” machine learning algorithm (Emerson, Lam and 

Quattrochi 2005). It is highly likely that feature attributes such as color variance, geometry, and 

spatial relationships to other objects will be included in the hundreds or thousands of parameters 

that a trained model will utilize. 
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Figure 2 Searching for soccer pitches in Berlin using Terrapattern (Levin, et al. 2016) 

2.1.2. Computer Vision and Machine Learning 

Moving in tandem with progress in the broader field of machine learning, computer 

vision is also seeing a dramatic increase in both interest and capability. Today, computer vision 

is being used to drive cars, power surveillance systems, identify tumors, and unlock your 

cellphone. Driving these advances in computer vision is a specific type of machine learning 

architecture termed artificial neural networks (ANNs). While an in-depth discussion of ANNs is 

outside the scope of this paper, they operate by using large numbers of artificial neurons 

(essentially discreet algorithms) that each specialize in a specific task (e.g. identifying color or 

shape). When these neurons work together, they make an excellent tool for detecting complex 

relationships within data (Hijazi, Kumar and Rowen 2015) (Schmidhuber 2015). 

Lee (2015) found neural networks to greatly outperform traditional image processing 

algorithms when used for robotic vision applications. The author began by developing a 

traditional object extraction algorithm which functioned by segmenting imagery based on the 
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perceived shape, coloration, texture, and similar attributes of objects within a scene. This 

algorithm was then used to allow an autonomous robot to locate objects within a room. Lee then 

performed the same experiment, this time utilizing a convolutional neural network (CNN) – a 

specialized ANN architecture which has been shown in research to excel at image processing. 

When the robot performed the same task using the CNN architecture, object detection 

performance increased by 33-50%. 

Song and Yan (2017) also found CNNs to have distinct advantages over traditional image 

processing techniques. The authors compared traditional algorithms and CNNs when applied to 

image segmentation tasks; that is, separating distinct objects within imagery. Among the 

traditional image processing techniques discussed by the authors were threshold segmentation 

and edge detection segmentation algorithms. Threshold segmentation algorithms are by far the 

least complex and computationally intensive, operating by simply dividing an image into a 

number of classes based on the color value of every pixel within the image. The edge detection 

algorithms given by the authors segmented an image by identifying areas of local variance where 

attributes such color, brightness, texture, or shape abruptly change identifying that horizon as the 

edge of an object. Following the evaluation of these and other similar algorithms, the authors 

evaluated Google’s DeepLab CNN architecture. Much as Lee, Song and Yan found that the CNN 

provided better results than the traditional computer vision approaches. Interestingly, the authors 

achieved the best results by first utilizing DeepLab and then post-processing the output using a 

traditional segmentation algorithm. 

 While these researchers used machine learning to address the “where” of objects within 

imagery, these algorithms did not address the “what.” That is, they were identifying discreet 

objects within imagery, yet not identifying what the objects were. A subset of the image 
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processing field, termed semantic segmentation, addresses this issue. Within semantic 

segmentation, objects within imagery or video are identified and assigned a class identifier such 

a “tumor,” “nerve,” “road,” and the like. Through this, data is derived from the purely visual 

objects within the imagery or video – opening up many more opportunities for further processing 

or decision making (Shuai, Ting and Gang 2016). 

One of the more popular of these semantic segmentation tools is the SegNet scene 

segmentation library, also utilizing a CNN architecture (Figure 3). SegNet was initially 

developed for the purpose of classifying objects within “road” scenes into semantic classes (e.g. 

roads, sidewalks, vehicle, pedestrians) in real time for use by self-driving cars (Badrinarayanan, 

Kendall and Cipolla 2017). Several GIS-related object detection projects, notably Skynet and 

DeepOSM, have used portions of SegNet within their code to perform segmentation tasks 

(Development Seed 2017) (Johnson 2017).  

 

Figure 3 SegNet input and classified output (University of Cambridge n.d.) 
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2.1.3. Machine Learning and GIS  

There is a growing interest in the integration of machine learning and GIS, with 

contributors in this field ranging from global corporations and the world’s leading universities to 

talented hobbyist in the open source community. Facebook, for example, has used machine 

learning to detect, digitize, and commit updates to the OSM road dataset (Patel 2017). 

Facebook’s algorithms are proprietary as are those utilized by most other companies in the 

private sector such as Descartes Labs, SpaceKnow, and Orbital Insight. Fortunately, there are 

many researchers within the academic and open source communities willing offer their methods 

and code to the public. 

Similar to much previous work using aerial imagery, a number of researchers have 

applied machine learning methods to the analysis of panchromatic, multispectral, hyperspectral, 

and other advanced imagery formats. In their paper “Road Segmentation in SAR Satellite Images 

with Deep Fully-Convolutional Neural Networks” (2018), Henry, Majid and Merkle used CNNs 

to extract road networks from synthetic-aperture radar (SAR) data. The authors note challenges 

traditional methods face when distinguishing roads from railways, rivers, and other features that 

share similar visual and topographic profiles. To segment road features, the FCN8 CNN 

architecture was utilized, with manually annotated images (using data sourced from Google 

Maps) as training data. The authors flattened the SAR data, providing the neural network with 

grayscale two-dimensional images. While this inherently reduced the amount of information 

available to the model, the authors noted the main advantage of using SAR data for object 

detection to be the ability of SAR sensors to collect data regardless of prevailing weather 

conditions, unlike optical imagery which can be occluded by cloud cover. 

Unlike these researchers, Iglovikov, Mushinskiy and Osin (2017) elected to provide all 

available data to their model when developing a segmentation algorithm for landcover. The 
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authors utilized 57 km2 (57 imagery tiles each covering 1 km2) of multispectral imagery gathered 

from the WorldView-3 satellite to develop their solution; the coastal/aerosol, blue, green, yellow, 

near-infrared, and short-wavelength infrared bands were available within the dataset. They 

further augmented this data by creating a reflectance index channel and a flattened RGB image. 

These data were then provided to a U-Net CNN which had been modified to learn from the 

additional depth of data, as the original U-Net was developed for grayscale imagery 

(Ronneberger, Fischer and Brox 2015). The authors were able to produce relatively accurate 

segmentation results, given the small training dataset of 57 images. 

These examples notwithstanding, there is distinct bias within the open source community 

towards the use of true-color imagery over panchromatic, multispectral, hyperspectral, and other 

more advanced classes of imagery. This is likely due to two primary factors: true-color imagery 

is more freely available from common sources such as Google Maps and Mapbox, and existent 

machine learning algorithms can be more readily applied to true-color aerial imagery without 

extensive modification. One of the most prominent and often cited papers on true-color aerial 

imagery segmentation is Mnih’s doctoral dissertation, "Machine Learning for Aerial Image 

Labeling" (2013). This paper has become a lodestar for many projects in the open source 

community. While Mnih has since patented his code and specific methods, this paper is still an 

extremely relevant discussion of general architecture, image pre- and post-processing, and model 

validation. 

2.2. Existent Applications 

There is a growing interest both within the commercial sector and the open source 

communities regarding the use of machine learning technologies to mine and derive insights 

from satellite imagery. These projects vary from single contributor open source applications to 
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initiatives lead by multinational non-governmental organizations (NGOs) and private 

corporations. 

2.2.1. DeepOSM and Skynet 

DeepOSM is an open source project that uses OSM data to train a model to detect and 

digitize road data using a neural network. The current work on DeepOSM is relatively limited in 

scope, focusing solely on roads and using the United States Department of Agriculture’s 

National Agriculture Imagery Program (NAIP) aerial imagery as the only imagery data source. 

Further, following object prediction, predictions are used to overlay the source satellite imagery 

and rasterized as JPEG files limiting any future processing or analysis (Johnson 2017). 

The Skynet project builds off the work of DeepOSM. Skynet is also trained towards road 

detection and digitization, but, unlike DeepOSM, Skynet is much more feature rich and is 

supported by the mapping and data visualization company Development Seed (Figure 4). In 

addition to a more complicated machine learning model, Skynet features simple tools for 

viewing the output of the model along with quality assurance and correction tools for post-

processing (Development Seed 2017). Together, Skynet and DeepOSM had the greatest 

influence on the technical implementation of the project. The neural network design and data 

input/output pipelines within U-Map diverged significantly from this previous work, as the 

object detection functionality within U-Map was less limited in scope and neither DeepOSM nor 

Skynet output data directly into a data store, but the high-level designs have commonalities. 
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Figure 4 Skynet input, OSM data, and predictions near Goma, Democratic Republic of the 

Congo (Development Seed 2017) 

2.2.2. Terrapattern 

The open source Terrapattern project operates in a fundamentally different manner than 

the DeepOSM or Skynet systems. Terrapattern alternatively functions as a “image search” 

platform for satellite imagery. Instead of digitizing features, this application allows users to find 

visually similar satellite imagery tiles within several metropolitan areas. This application 

functions through the use of an image classification algorithm that assigns a class label to the 

entirety of any image, as opposed to DeepOSM and Skynet which assign road classification 

labels to individual pixels within a given image. 

However, Terrapattern did illuminate several interesting use cases as this application 

featured hundreds of different classes within the system, in contrast to DeepOSM and Skynet 

which only functioned on a singular type of geospatial object. The Terrapattern system is still in 

the initial testing phases, but the creators referenced several “inspiration” use cases pioneered by 

other researchers that lead the design of the system. Among these was the ability to track 

deforestation within the Amazon and to monitor conflict in South Sudan by detecting instances 
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of burned structures (Terrapattern 2016) (Monitoring of the Adean Amazon Project 2018) (Al 

Achkar, et al. n.d.).  

2.2.3. Orbital Insights 

Orbital Insights is perhaps the most “talked about” start-up in the satellite imagery and 

machine learning space. Orbital Insights partners with DigitalGlobe and Planet to source high 

refresh rate imagery and derives advanced analytics from this imagery. These analytics and data 

are applied across a wide swathe of sectors ranging from defense, agriculture, energy, and 

finance (Scoles 2017). 

For instance, the company has used their imagery and analytics platform to develop 

leading indicators for retail sales by automatically detecting the number of vehicles within 

department store parking lots day-to-day during busy shopping seasons – giving investors and 

analysts an early edge on the market (Figure 5). In another widely reported example, Orbital 

Insights used object detection algorithms to locate all of the floating roof oil storage tanks – 

massive tanks used to store tens of thousands of barrels of oil – in China. Having identified all of 

these objects, the satellite imagery was further processed to provide analysts with much more 

accurate intelligence regarding the oil storage capacity of one of the world’s largest economies 

(Vance 2017). 
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Figure 5 Parking lot vehicle counts derived from aerial imagery (Orbital Insight 2017) 

The company releases little information regarding the detailed architecture of their 

system, and the little that can be inferred from press releases and the company’s official blog are 

of little technical use; they merely state that they are using deep learning, neural networks, and 

computer vision to drive their analytics. However, the interest in this company and their early 

measurable success did serve as inspiration for this system, as well as pointed to some potential 

future use cases. 
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Chapter 3 Application Requirements 

This chapter presents the core objectives and requirements of the application along with the high-

level design considerations that went into the development of the application and underlying 

infrastructure. The Application Goals and User Requirements sections give an overview of the 

general purpose of the application and its functionality and workflow. The Functional 

Requirements section details the specific operations the application performs and how a user 

interacts with the application to generate a desire output. The Design Principles and Choices 

section presents the crucial technical infrastructure of the application and explains the decision-

making processes that lead to the final architecture of the application. 

3.1. Application Goals 

The goal of the application was to provide a means for the rapid training and utilization 

of a machine learning model which detects and digitizes objects from satellite imagery. To 

realize this goal, the system provided a user-friendly web UI to allow users to select geospatial 

features to be used for training a machine learning model. The system then fully automated the 

preprocessing of training data to transform a user’s selected geospatial features into an input 

format suitable for model training. The system then trained a machine learning model to detect 

the same type of geospatial features as provided by the user. Users were able to review the 

performance of the model and adjust any parameters necessary to increase the model’s detection 

accuracy. 

Following the satisfactory training of a machine learning model for a given type of 

geospatial feature, users could then pass new satellite imagery to the trained model which would 

predict instances of a given type of geospatial feature within the imagery. Users could then 

review the predicted instances of features against ground truth imagery and commit detection 
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predictions to a database for future processing or retrieval. Through this system, users could, in 

effect, automate a significant portion of their geospatial feature digitization workflow. Figure 6 

provides a high-level conceptual workflow of the system, from training data selection to 

prediction validation. 

 

Figure 6 Conceptual workflow of the application 
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3.2. User Requirements 

The intended audience of the solution were technical GIS users such as GIS data 

managers and analysts. The userbase was understood to have a fundamental understanding of 

geospatial data, data management, general database concepts, and related topics. As the user 

would be empowered to generate and commit spatial data to a database, it was assumed that the 

user was competent and comfortable in this role. Further, the intended audience was presumed to 

have a need for the bulk, automated digitization of geospatial features. 

From an end user perspective, the selection of training data and training imagery was 

required to be as fluid as possible, with minimal manual intervention or sourcing of data and 

imagery. Configuration of the machine learning model should likewise require little intervention 

and be performed wholly through a web user interface – as opposed to a command line or the 

direct editing of code. Similarly, when utilizing a trained model, passing novel imagery to the 

model must be performed exclusively from a web user interface, with no manual preprocessing 

of satellite imagery. The user should receive the model prediction results via a user-friendly web 

interface and have the ability to select high-probability object detection instances and commit 

these results to a database. 

3.3. Functional Requirements 

The below requirements represent the high-level functionality that the system must 

perform. These requirements span from general navigation and usability of the system to core 

workflow functionality such as selecting training data, generating a machine learning model, and 

validating model prediction output. 
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3.3.1. Map Interaction and Navigation 

The user must be able to pan and zoom throughout the map within the web UI. To speed 

the user’s workflow identifying AOIs, the map should include the ability to perform geocode 

searches for specific locations. Further, to aid in the selection of training data the user should be 

able to select from a number of general reference basemaps including satellite imagery, streets, 

and topographic basemaps. 

3.3.2. Select Training Data 

The user must be able to enter OSM query parameters using the Overpass API 

(application programming interface) query language. The user may enter the type of data, the 

key, and the value in the pattern of: datatype["key" = "value"]. The user must then be able to 

select one or more rectangular AOIs. The system will then load all OSM features that match the 

provided query parameters within each AOI. The system will then load all Mapbox satellite 

imagery tiles within each AOI. 

3.3.3. Model Training 

The user must be able to enter model training parameters following the selection of 

training data. The system will generate masks of any features matching the user’s query 

parameters within the selected AOIs. The system will consume the AOI bounds and feature 

masks and download high-resolution satellite imagery for the AOIs. These data will then be 

preprocessed to create a holistic set of training data to be used to train a machine learning model.  

Given the potential bulk of training data and the time required to train a machine learning 

model, training data preprocessing and model training tasks will be performed by the system 

asynchronously on the backend servers as opposed to within the web UI. The user must be able 

to monitor the status and progress of these processes. 
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3.3.4. Review and Adjust Machine Learning Performance 

After the model has been trained, the model will be automatically validated against the 

dataset. The user will be returned the model performance within the web UI. If model 

performance is not sufficient, the user should be able to retrain the model with adjusted 

parameters (e.g. increased training iterations) or an increased number of training examples. 

3.3.5. Predict Features 

After a model has been trained and optionally adjusted, the user should be able to select 

the machine learning model to be used and one or more AOIs for the machine learning model to 

detect and digitize features within. The user should be able to select one or more rectangular 

AOIs and pass the AOIs to the system. The system will consume the AOI bounds and download 

high-resolution satellite imagery for the AOIs. The system will iterate through the imagery and 

detect likely instances of the type of object to be detected. The system will then convert these 

predictions into geospatial objects. These digitized objects will be returned to the user for review 

via the web UI. 

3.3.6. Commit Feature to Database 

As there may be variability in model prediction performance, it is required that users 

perform a final validation step within the system workflow to validate object predictions returned 

by the machine learning model. Following prediction of objects from new imagery, the user must 

be able to review and select features to be committed to a geodatabase. 

3.4. Design Principles and Choices 

The system architecture of the solution can be broken down into the following core 

components. The technologies chosen for the respective component and the rationale for this 
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choice are given below. A detailed description of the implementation of the below components 

may be found in section 4.1. 

3.4.1. Platform – Web Application 

To provide the rich user experience, scalable architecture, and rapid development this 

project required, a web application was the appropriate platform. Thick client applications are 

inherently operating system dependent, rely on the user’s own hardware, and require much more 

extensive debugging and configuration to ensure a consistent end user experience. This 

application was required to be deployed via the web and, as this is a technical application, no 

efforts were made to accommodate mobile browsers. Similarly, no efforts were made to support 

older or niche browsers – only the most recent releases of Chrome, Firefox, and Microsoft Edge 

browsers were supported. 

3.4.2. System Infrastructure – Microsoft Azure 

Cloud hosting was the most logical choice for this system as it allowed for the simple and 

rapid creation and configuration of all required backend components including: a web 

application server, web application framework, Python web server, and a database server. 

Servers can be created and managed via a simple, intuitive web portal with very little overhead. 

Microsoft Azure was chosen over Amazon Web Services as Azure is more tightly integrated 

with the primary programing framework of the system, Microsoft .NET. 

3.4.3. Web Application Framework – Microsoft .NET C#, Node.js 

Microsoft .NET was chosen as the primary framework for serving the web application. 

.NET is a robust application framework with all of the features required for enterprise-class 

application development. The Visual Studio integrated development environment (IDE) required 
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to develop in .NET includes tightly integrated source control and cloud hosting within the Azure 

cloud environment.  

 Node.js was used exclusively to run open source geospatial packages that are only 

available for the Node.js framework. Node.js is an extremely popular open source application 

framework with a large installed user base. 

3.4.4. Web User Interface – JavaScript, Leaflet 

JavaScript is the de facto standard for developing interactive web user interfaces. Leaflet 

is a robust and extensible JavaScript web mapping library with a bulk of the functionality 

required prebuilt. For additional functionality, there is a large community of developers that 

create plugins and any additional functionality can be added through custom code. 

3.4.5. Imagery – Mapbox 

The online mapping platform Mapbox was used to source imagery used to train the 

machine learning model. Mapbox collates imagery datasets from a number of providers and 

makes these data available through a web API. For the lowest resolution imagery (zoom levels 0-

8), de-clouded imagery from the NASA MODIS satellite program are provided. For intermediate 

zoom levels (9-12), Landsat 5 and Landsat 7 imagery are used. For the highest resolution 

imagery (zoom levels 13 and greater), various sources are used dependent upon area (e.g. Digital 

Globe, NAIP, open source). All imagery provided by Mapbox through the API is color-

corrected, “optimized,” and compiled into a single source (Mapbox n.d.). 

The imagery provided through the API was of a generally high quality for most areas. Per 

the Mapbox terms of service, tracing geospatial vector objects from imagery provided by the 

service is permissible for non-commercial purposes (Mapbox 2018). As this system was, in 
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effect, tracing the imagery through an automated means, Mapbox was determined to be the most 

suitable source of satellite imagery. 

3.4.6. Machine Learning Framework – Python 

Python and R are the two standard-bearers in the machine learning space. Judging from 

the existent literature, industry trends, and the open source community, Python is the more 

popular language for machine learning applications. On the popular code sharing website 

GitHub, Python was the second most popular language of 2017 accounting for approximately 

17% of all code contributions to the site. R accounted for less than .2% (GitHut n.d.). Further, 

some of the most popular machine learning libraries such as TensorFlow, PyTorch, scikit-learn, 

and Keras utilize Python making it the rational choice. 

3.4.7. Machine Learning Architecture – U-Net 

Selection of an appropriate machine learning architecture was perhaps the most crucial 

decision point in the development of the application. The first step was to determine the 

appropriate algorithm for satisfying the application requirements. Several different classes of 

image processing algorithms were reviewed including: image recognition, object detection and 

localization, object segmentation, and sematic segmentation. 

Image recognition algorithms function by classifying imagery into semantic categories 

based on the content of the image. As can be seen in Figure 7, the example images are 

categorized into the most likely correct class as determined by the model (TensorFlow 2018). 

While this type of algorithm has many applications, with Google Images search and Terrapattern 

as prime examples, these types of algorithms were not appropriate for this system.  
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Figure 7 Image recognition output from the AlexNet model implemented in TensorFlow 

(TensorFlow 2018) 

Object detection and localization algorithms were found frequently within other 

geospatial machine learning products, namely the Orbital Insight platform. This class of 

algorithm identifies and typically marks instances of classes of objects within imagery (dos 

Santos 2017). Having the ability to detect instance of objects and their location makes these 

algorithms applicable in a wider range of scenarios than pure image classification algorithms and 

allow for much more additional processing such as counting the number of objects and 

degerming the spatial relationships between objects. These algorithms have many practical 

applications ranging from face detection for digital cameras, video surveillance, and image 

search (Rey 2017). However, as can be seen in Figure 8, a bounding box surrounding an instance 

of an object is not sufficient for object digitization – only detection. 
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Figure 8 Orbital Insight demonstration of object detection and localization of airliners (Orbital 

Insight 2017) 

For object digitization, another class of algorithms termed segmentation algorithms, were 

found to be the most suitable. Broadly, segmentation algorithms attempt to deconstruct an image 

into its component parts – e.g. separating the background from the foreground, text from a page, 

individual objects within a photo (Figure 9) (Shi and Malik 2000). A significantly more complex 

offshoot of these algorithms, semantic segmentation algorithms, go one step further and attempt 

to assign semantic classification to segmented objects (Figure 10) (Cremers 2012). Given this, a 

semantic segmentation algorithm was chosen for this system. 

There are a number of semantic segmentation algorithms, varying by architecture, 

performance, and popularity. The Fully Convolutional Networks (FCN), DeepLab, SegNet, and 

U-Net architectures appeared to be the prominent in the existent literature as well as within the 

machine learning community, as judged by the number of blog posts and repositories on the code 

sharing website GitHub. Each of these architectures was evaluated on several key criteria 

including existent documentation, active open source projects on GitHub (Table 1), and the open 

source community consensus regarding computational intensity, performance, and suitability for 
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small training datasets. An indication of the community consensus regarding these architectures 

was gathered, in part, from information on the data science competition website Kaggle. Four 

separate competitions and their respective submissions were reviewed. The objective of these 

competitions ranged from segmenting vehicles from a background scene, segmenting nerves 

from ultrasound imagery, segmenting cell nuclei, and segmenting multispectral satellite imagery. 

Within each of these competitions, a substantial amount of submissions utilized the U-Net 

architecture (Kaggle 2018).  

Table 1 Number of Python projects on GitHub by architecture (April 2018) 

Architecture Number of Python Projects on GitHub 

U-Net 662 

FCN 500 

SegNet 91 

DeepLab 84 

 

As such, the U-Net neural network architecture was chosen as the best semantic 

segmentation solution for this system. As U-Net was originally developed to address biomedical 

use cases having limited training data (such as electron microscope images of human nerve 

cells), the architecture was optimized to perform well with a small number of training examples. 

In one example given by the authors, U-Net achieved satisfactory segmentation performance 

using only 30 training images (Ronneberger, Fischer and Brox 2015). 
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Figure 9 Image segmentation input (left) and output (right) from OpenCV (OpenCV n.d.) 

 

Figure 10 Semantic segmentation input (left) and classified output (right) (Cremers 2012) 

3.4.8. Python Web Framework – Flask 

Flask is the de facto standard Python web framework for small to medium sized projects. 

Flask allows Python code to be deployed within a web environment and allows for the rapid 

creation of APIs for passing data to and receiving data from Python scripts running on a server. 
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3.4.9. Geodatabase – Microsoft SQL Server 

For the scope of this system, geospatial database functions were not explicitly required. 

All geospatial processing occurred either within web UI, the .NET and Node.js web applications, 

or Python code. As such, it was sufficient to store geospatial objects in a standard Structured 

Query Language (SQL) database in the open source GeoJSON format. GeoJSON is represented 

as a specially formed textual string and can be stored in a database within a standard character 

field of a table. 

Standard relational SQL databases as well as object-oriented and NoSQL databases were 

considered for use within this system. Given that all data stored within the system is inherently 

textual in nature, a standard SQL database was deemed to be sufficient for the purposes of this 

system. Due to tight integration with .NET, Visual Studio, and Azure, the Microsoft SQL Server 

2017 relational database management system (RDBMS) was used as the database for this 

system.  
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Chapter 4 Components of the Final Application 

Following requirements definition and the selection of core architectural components, the 

development of the application commenced. The system was designed as a wholly online user 

experience, with no software installation or configuration required by the end user. All system 

infrastructure, including servers and databases, was deployed on the Microsoft Azure cloud 

platform. All JavaScript, .NET, and Node.js development for the system was done within 

Microsoft’s Visual Studio 2017 IDE on Windows 10. Due to certain Python package operating 

system dependencies, all Python code was developed within Microsoft’s Visual Studio Code 

IDE on the Ubuntu 16.04 Linux distribution. All source control was managed via Git on Visual 

Studio Team Services. 

4.1. System Infrastructure and Design 

The system was composed of five primary components: a .NET web application, a 

Node.js API, a machine learning model with data pre- and post-processing pipelines 

implemented in Python, a Flask Python API, and a SQL Server database instance. All of these 

services were deployed on virtual servers within the Azure cloud environment. The following 

describe the high-level functionality and implementation of these components. Detailed 

processing flows and the technical development of each respective component may be found in 

sections 4.3-4.8. 

4.1.1. .NET Web Application 

The .NET web application provided the user interface and interactivity of the system. 

Further, all requests to other web services were initiated from the web application. Within Visual 

Studio, the ASP.NET MVC framework template was chosen due to this specific framework’s 
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suitability for handling both client-side and server-side processing. That is, ASP.NET MVC 

excels at both serving up both rich JavaScript-enabled web pages as well as performing more 

intensive processing on the server itself. 

All client-side web pages were designed using the Bootstrap front-end framework with a 

large number of JavaScript libraries used to provide interactivity within UI. Bootstrap is a 

popular framework of HTML elements, Cascading Style Sheets (CSS), and JavaScript which 

gives developers the ability to rapidly create attractive user-friendly web pages using prebuilt 

styled layouts and elements such as modal windows, form components, and the like. The most 

recent release of Bootstrap, Bootstrap 4, was used during development. To provide additional 

visual styling, the Material Design for Bootstrap front-end framework was included along with 

the standard Bootstrap 4 assets. 

For mapping and geospatial functionality within the UI, the Leaflet JavaScript library 

was used along with a large number of auxiliary plugins. Leaflet is an open source mapping 

framework with an active online community of users, which proved invaluable when tailoring 

the product to this project’s specific needs. In addition to the base Leaflet library, in excess of ten 

Leaflet plugins were used to provide additional functionality within the UI. The functionality of 

these plugins included the addition of geocoding services, polygon tools for working with AOIs, 

and extensible buttons, among others. 

The web application was deployed within Microsoft Azure as an App Service within the 

Microsoft Azure Portal. Through the use of an App Service, all of the underlying infrastructure 

required to serve the web page was provided by the Azure platform. There was no need to create 

a web server for hosting the application, no need to register a URL domain, nor any of the other 

server setup and configuration tasks. The Azure platform allowed for the web application to be 
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published to the App Service wholly through the development IDE, Microsoft Visual Studio 

2017. 

4.1.2. Node.js API 

For manipulating tile data for export, the open source tilebelt Node.js package was 

required. Tilebelt is provided by the web mapping company Mapbox as a set of tools for working 

with WMTS tiles. This library allows a developer to convert tile bounds to GeoJSON, to request 

WMTS tiles within a given bounding box, to request a tile for a given point, and a number of 

other useful features. Tilebelt is only offered on the Node.js framework, and no similar tools 

written in JavaScript or C# could be located. 

To utilize the functionality of tilebelt, a Node.js web service was created as a separate 

project within Visual Studio. The Node.js service acts as a simple API to accept requests from 

the web UI to perform a small range of tile functions. Requests were passed to the API and 

returned in the form of JavaScript Object Notation (JSON) objects. The Node.js API was 

published as an App Service within Microsoft Azure just as the .NET web application. 

4.1.3. Python Machine Learning Model, Data Preprocessing, and Post-processing 

The U-Net semantic segmentation machine learning model, with requisite pre- and post-

processing pipelines, was implemented in Python to provide the core training and prediction 

workflows of the application. Data pre- and post-processing functionality required the use of a 

large number of auxiliary Python libraries for transforming and manipulating data into a format 

and structure suitable for consumption for the U-Net model. As with all semantic segmentation 

models, U-Net requires two primary inputs – training labels and training data, both in the form of 

image files. The Rasterio, Geospatial Data Abstraction Library (GDAL), and Python Imaging 

Library (PIL) Python libraries were used to transform geospatial OSM features selected by the 
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user into rasterized image files. Python’s native urllib URL library was used to download 

satellite imagery corresponding to the training labels to be used as training data for the model. 

For the data post-processing and exporting pipeline, Rasterio, GDAL, and PIL were used to 

essentially invert the data preprocessing functions – transforming rasterized image files output by 

the machine learning model into geospatial features. 

An open source PyTorch implementation of U-Net developed by a GitHub contributor 

named Tuatini Godard was used as the foundation of the machine learning model itself (Godard 

2017). The model was originally developed for use in a semantic segmentation challenge on 

Kaggle, which tasked contributors with segmenting images of vehicles from a photo studio 

background (Figure 11). This PyTorch implementation was chosen over other implementations 

in Keras, Tensorflow, and other machine learning libraries due to its relative speed in training the 

model as well as the number of helper functions (such the ability to visualize model training and 

performance, image manipulation and augmentation functions, and generic data loading and 

export functions). These factors greatly decreased development time, removing the need to code 

these features and the implementation of U-Net. However, a nontrivial amount of development 

was required to reengineer and tune the architecture to accommodate this application’s vastly 

different use case. 

The one significant drawback to implementing any neural network architecture in 

PyTorch was the lack of support for Nvidia’s CUDA graphical processing unit (GPU) platform 

on Microsoft Windows. The CUDA platform allows frameworks such as PyTorch to use the 

power of GPUs to train neural networks. While performance differences between training on a 

central processing unit (CPU) versus a GPU vary based on the application, benchmarking has 

shown GPUs to perform upwards of twenty times faster when training object detection and 
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localization neural networks as compared to CPUs (Lawrence, et al. 2017). As such, to achieve 

acceptable performance when training the model all development and testing of the U-Net model 

was performed on a Linux Ubuntu 16.04 personal computer equipped with an Nvidia GeForce 

GTX 970 GPU with 4GB of GDDR5 graphics memory.  

   

Figure 11 Input image (left) and segmented output (right) of Godard's original model (Godard 

2017) 

4.1.4. Flask API 

To allow data to be passed from the web UI to the backend Python code, a Flask API was 

created as an Azure App Service. The creation of the Flask API was relatively trivial when 

compared to the development of the machine learning model itself. The Python functions created 

for data pre- and post-processing and the machine learning model where developed to accept a 

number of parameters within their function signatures, allowing for a simple migration to a Flask 

deployed API. The parameters for a given function simply had to be mapped to the appropriate 

routing configuration within Flask to allow for REST requests sent to the Flask API from the 

web UI to be passed to the appropriate Python function. 
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4.1.5. SQL Server Database 

A SQL Server database instance was used to store data generated by the system. Machine 

learning model parameters were stored within the Model table, using the model’s name as a 

unique identifier. Similarly, the Prediction table was used to store prediction requests submitted 

by the user. GeoJSON objects generated within the Node.js API and Python code were stored 

within a GeoJSON table along with the type of the data, be it training data, model validation 

output, or model predictions. Records within the GeoJSON tables were related via foreign key 

relationships to the Model and Prediction tables. Further, the status of data pre and post-

processing, model training, and predictions tasks were stored within the Model and Prediction 

tables respectively allowing the user to monitor these processes as they progressed within the 

Python code. 

4.2. External APIs 

Several open source and commercial APIs were used within the system. These were used 

to display web maps within the UI, perform geocode lookups for the convenience of the user, 

and to source vector data and satellite imagery required for training machine learning models. 

4.2.1. OSM Tiles 

The OSM basemap was used for general reference and identification of features within 

the web UI (Figure 12). The API was freely available from an OSM tile server, offered with an 

open source license. JavaScript and Leaflet were used to incorporate the WMTS into the UI. 

While the integrity of information captured within the dataset is generally considered to 

be high-quality, there was a large reporting bias apparent within the OSM feature data that was 

used to render the basemap. As all OSM data are volunteer geographic information (VGI), 

features surrounding population centers, transportation networks, and recreational areas within 
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the Western world were better represented within the data than areas that are presumably of less 

interest to those creating the data, such as large swathes of the developing world and wilderness 

areas that see little human activity. 

 

Figure 12 OSM tiles, Anchorage, Alaska 

4.2.2. Esri World Topographic Tiles 

The Esri topographical basemap was used for general reference and identification of 

features within the web UI (Figure 13). The API was freely available from an Esri tile server, 

offered with a proprietary license limiting the use of the data. Downloading of the data and 

offline storage for processing and analysis was not permitted. JavaScript and Leaflet were used 

to incorporate the WMTS into the UI. 
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Figure 13 Esri World Topographic tiles, Anchorage, Alaska 

4.2.3. Esri World Imagery Tiles 

The Esri imagery basemap was used for general reference and identification of features 

within the web UI (Figure 14). The API was freely available from an Esri tile server, offered 

with a proprietary license limiting the use of the data. Downloading of the data and offline 

storage for processing and analysis was not permitted. JavaScript and Leaflet were used to 

incorporate the WMTS into the UI. 

The imagery was of a very high quality throughout the entirety of the zoom range. The 

imagery was a mosaic, compiled from different sources. Dependent upon location, imagery was 

available at zoom levels 0-19 (corresponding to scales of 1:500 million to 1:1,000, respectively). 
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Figure 14 Esri World Imagery tiles, Anchorage, Alaska 

4.2.4. Mapbox Satellite Tiles 

The Mapbox satellite imagery basemap was used to display imagery for user selected 

AOI within web UI (Figure 15). The API was available from a Mapbox server offered with a 

proprietary license limiting the use of the data. However, for non-commercial purpose caching 

and tracing the data was permissible under the Mapbox terms of service (Mapbox 2018). A 

Mapbox subscription was required to access data through the API. Subscriptions are offered at 

different pricing tiers, dependent upon the number of required requests. The free pricing tier, 

allowing for 50,000 map views per month, was sufficient for the scope of this system. JavaScript 

and Leaflet were used to incorporate the WMTS into the UI. 

The imagery was of a very high quality throughout the entirety of the zoom range. The 

imagery was a mosaic, compiled from different sources. Dependent upon location, imagery was 

available at zoom levels 0-19 (corresponding to scales of 1:500 million to 1:1,000, respectively). 
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Figure 15 Mapbox Satellite tiles, Anchorage, Alaska 

4.2.5. OSM Features 

The OSM features may be selected by the user within the web UI (Figure 16). Features 

were further used to train machine learning models. The API was freely available from an OSM 

server, offered with an open source license. Data was provided in the non-standard OSM XML 

format via the JavaScript OSM Overpass API. The open source osmtogeojson JavaScript module 

was used to convert OSM XML data to standard GeoJSON within the code of the web user 

interface and the Node.js web service. 

OSM feature data attributes were defined using key-value pairs. Key-value pairs can be 

created and assigned arbitrarily by the contributor submitting the data, but contributors do tend to 

hold to certain standard conventions. The primary attributes of interest for this project were the 

“primary feature” tags which describe the object that is being represented. Examples of primary 

feature key-value pairs are: “building: commercial,” “shop: electronics,” “natural: glacier,” and 

“natural: water.” Additional metadata key-value pairs, such as the source imagery from which 

the feature was digitized and when the data were created was often included for reference. 
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While the integrity of information captured within the dataset is generally considered to 

be of high-quality, there was a large reporting bias apparent within the OSM feature data. As all 

OSM data is VGI, data surrounding population centers, transportation networks, and recreational 

areas within the Western world were better represented within the data than areas that are 

presumably of less interest to those creating the data, such as large swathes of the developing 

world and wilderness areas that see little human activity. 

When compared to proprietary datasets (such as Google Maps or Bing Maps) OSM 

contained significantly fewer recorded features in many areas (Figure 17). However, OSM’s data 

was freely available for download, offline analysis, and use in derivative works – which 

proprietary feature datasets were not. 

 

Figure 16 OSM features, North Slope, Alaska 
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Figure 17 OSM feature data (left) compared against Google Maps feature data (top right) 

(GEOFABRIK 2017) 

4.2.6. Bing Locations API 

The Bing Locations geocoding API was used within the web UI to allow users to quickly 

search for and have the map centered on a queried location. The API was available from a 

Microsoft server using a free API key. There was a limited, but sufficient number of requests 

permitted from a single free API key. The open source JavaScript leaflet-control-geocoder 

package was used to integrate the Bing Locations API into the web UI. 

4.3. High-Level Processing Flow 

The usage of the application can be split into two primary use cases – training and 

validation, and object prediction. High level descriptions of these use cases are provided within 

this section. A more granular description of system processes and data inputs and outputs are 

detailed in sections 4.5-4.8 

As shown in Figure 18, the training and validation use cases encompasses all processing 

flows required to generate a fully trained model. The workflow begins with the selection of 

training data by the user and the entry of select model training parameters. Following the 

submission of these data and parameters to the system, a large amount of data preprocessing is 

performed by the system prior to model training. The machine learning model is then trained 
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using this processed data and a select number of geospatial feature predictions are returned to the 

user for evaluation within the web UI. If the user finds the performance of the model to be 

satisfactory, the user could then predict instances of similar features within new imagery. If 

performance is not adequate, the user could select larger amounts of training data, different 

training data, or adjust the model parameters. 
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Figure 18 High Level Training and Validation Process Flow 
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Once one or models have been trained via the training and validation process, the user is 

able to predict objects within new satellite imagery through the prediction workflow (Figure 19). 

Within this workflow, a user would begin by selecting an AOI bounding box of new imagery 

from within which the user wishes to detect instances of a given class of geospatial feature. The 

user would then select an appropriate model that had been trained on the same class of feature. 

Following the submission of these parameters to the system, imagery from within the AOI is 

downloaded and the trained model is used to predict occurrences of the type of feature on which 

the model was trained. These predictions are then returned to the user to be validated against 

ground truth imagery or other basemaps within the web UI. 

 

Figure 19 High Level Prediction Process Flow 



50 

 

4.4. Data Model 

The data model for the system consisted of three primary tables: Model, GeoJSON, and 

Prediction (Figure 20). The Model table contained the basic data describing the model along with 

the most recent status of model processing and a timestamp of the most recent status. GeoJSON 

objects related to models were stored within the GeoJSON table via a model’s unique name 

identifier. GeoJSON objects were stored as a text string within a character field in the table. The 

Type field described the type of the GeoJSON record within the system. There were four distinct 

type identifiers: 

1. Training Mask 

2. Validation Prediction 

3. User Prediction 

4. Committed User Prediction 

The Training Mask type was used to denote GeoJSON mask records that were generated 

when a user selects training data within the web UI. The Validation Prediction type was used to 

denote object predictions automatically generated following model training. The User Prediction 

type was used to denote object predictions generated by the user from a trained model. The 

Committed User Prediction type was used to denote object predictions that the user has reviewed 

against ground truth imagery and wished to mark as “validated” within the system. 

The Prediction table was used to store user prediction requests. A prediction was related 

to the model used for the prediction via the model’s unique name identifier. The prediction 

threshold supplied by the user, the most recent status of prediction processing and a timestamp of 

the most recent status were also included. A prediction is related all GeoJSON objects created 
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during a user requested prediction via a foreign key relationship with the GeoJSON table using a 

prediction’s unique ID field. 

 

Figure 20 Data model 

4.5. Training Data Sourcing and Preprocessing 

The two primary inputs for the training the system were (1) OSM feature data 

representing geographical features and (2) true-color raster satellite imagery from Mapbox 

corresponding to the vector data. For sourcing both of these data, the user was provided with an 

easy to use web UI. However, extensive processing was required to source and further transform 

these data into a format that was consumable by the machine learning model. 
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4.5.1. Sourcing of OSM Feature Data 

As discussed previously, OSM feature data were source from the Overpass API through 

the web UI. As opposed to the standard OSM API, the Overpass API is optimized for querying 

and viewing data rather than editing and contributing features. For the purposes of this system, 

the Overpass API required a specially formatted query providing both the types of features to be 

returned and an AOI in the form of a bounding box within which the API would search for 

features. The Overpass API was exposed as a representational state transfer (REST) web service. 

Query parameters are appended to the Uniform Resource Locator (URL) in the below format. 

overpass-api.de/api/interpreter?data=[out:json][timeout:15];(data ["key" = 

"value"](bounding box coordinates);(further query parameters);); out body;>;out skel qt; 

To source feature data, datatype-key-value tuples and a bounding box supplied by the 

user were used to query the Overpass API through JavaScript in the web UI. Data were returned 

in Overpass XML syntax. The open source osmtogeojson JavaScript package was then used to 

transform these data into standard GeoJSON to be displayed using Leaflet within the web UI. 

When the user had selected their desired amount of training data, they then entered 

various machine learning model parameters and submitted these parameters to the system. Upon 

submission, the system saved the model and model parameters to a SQL database for future 

retrieval using C# code. The system then looped through all WMTS tiles within the user’s 

supplied bounding box that contained any part of a returned geospatial feature using JavaScript 

and Leaflet, creating an array of unique WMTS x, y, z tile identifiers. 

Following this, the system looped through this array of tile identifiers and passed the 

previously supplied query parameters and each tile identifier to a system internal Node.js API. 

The Node.js code then created a geospatial polygon object representation of the tile using tilebelt 

and queried the Overpass API using the tile’s bounding box and the query parameters to find all 
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matching objects within that tile. A difference operation was used to create a mask of the 

features within the tile (Figure 21). For line data, an arbitrary 25-foot buffer operation was 

applied to allow these features to be unmasked within the resultant output (Figure 22). The 

GeoJSON mask was then simultaneously returned to the web UI to be displayed to the user and 

saved to a SQL database along with a relation to the model that the mask would be used to train. 

These data within the SQL database are later processed within Python code to create a binary 

mask image from the GeoJSON. 

 

Figure 21 GeoJSON masks of lakes on Alaska's North Slope 

 

Figure 22 GeoJSON mask of streets near Memphis, TN 
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4.5.2. Creation of Binary Masks and Sourcing of Mapbox Satellite Imagery 

When the user wished to proceed with training a model, the model name identifier was 

passed from the web UI to a system internal Flask Python API for additional processing and the 

eventual training of a machine learning model. At each step, the status of the processing 

operation was logged to the SQL database to allow a user to follow the processing progress 

through the web UI.  

Within the Python code, the model name was used to query the SQL database GeoJSON 

table to return all GeoJSON tile masks relating to the model. Each row of GeoJSON data 

returned from the database was then processed. The GeoPandas Python library was used to parse 

and convert the GeoJSON string into a geospatial GeoSeries object. This object was then 

converted to a NumPy array and saved to server storage as a binary mask GIF file using the 

popular Matplotlib charting library and PIL image processing library. Following this, Mapbox 

satellite imagery was downloaded for each tile using the Mapbox REST API and saved to server 

storage. 

   

Figure 23 OSM feature data converted to binary mask and corresponding Mapbox satellite 

imagery (OpenStreetMap 2018) (Mapbox 2018) 
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4.6. Machine Learning Model 

The machine learning components of the system were divided into two distinct 

processing flows. Firstly, the model training workflow served to generate new predictive models 

from input OSM feature data and corresponding satellite data. This functioned by feeding this 

dataset, along with other parameters, into a “classifier” function that would train the neural 

network to predict instances of similar objects within new imagery. The second processing flow, 

the object prediction workflow, used a previously trained model to perform the prediction 

function on new imagery. 

4.6.1. Model Training 

Following all data sourcing and preprocessing, the U-Net neural network could be trained 

on the user’s selected data. The main model training Python function was designed to take the 

unique name of a model as a function parameter. The supplied model name was then used to 

query the SQL database to retrieve the full set of model parameters provided by the user through 

the web UI. The model name, sample size, and validation size parameters were used to create an 

array containing the filenames and locations of the training images and masks to be used to train 

the model. Training image and masks were stored in a standardized structure, allowing the code 

to select data based on the model name parameter. Once images were loaded, manipulations 

were performed on the images to augment training dataset. The manipulations applied random 

degrees of rotation, flipped images horizontally, and applied scaling transformations. The 

purpose of this was twofold – this both expanded the dataset by creating additional training data 

from a limited set of training data and introduced an additional degree of visual variability into 

the dataset.  
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Following this a number of callback functions were utilized which were used to log the 

status of training, visualize model training performance, and the like. Custom functions were 

created to log high-level processing steps to the SQL database for retrieval through the web UI. 

The TensorBoard library was used create verbose logs of model training and to visualize model 

training performance on the development Ubuntu workstation (Figure 24). TensorBoard was 

extremely useful when reengineering and retuning the original model and while developing the 

data preprocessing pipeline as a means to quickly diagnose coding errors and potential 

optimizations. However due to architectural constraints, this information was not exposed to 

application end users. 

 

Figure 24 TensorBoard visualization of prediction performance. Top image shows expected 

prediction from binary masks, bottom image shows actual prediction after 47 training epochs. 
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Several performance variables were then defined within the code as the final input into 

the neural network. The Python code detected the number of CPU cores available on the host 

machine, if an Nvidia CUDA compatible GPU was available, and then a hardcoded “batch size” 

variable was assigned within the code. The batch size indicates to the neural network the number 

of images to process within memory concurrently; the higher the batch size, the faster model 

training will complete all other variables being equal. On the development machine with 4GB of 

graphics memory, three 512x512 pixel images could be batched without failure. This batch size 

could be increased if a higher end GPU was utilized. 

Following assignment of these variables, a new instance of the U-Net neural network was 

created within the code. The neural network developed by Godard closely follows that of the 

original U-Net paper. While an in-depth discussion of the U-Net architecture is outside of the 

scope of this work, it is important to note several features of the network. Firstly, U-Net was 

designed as a convolutional neural network, a subclass of neural networks that have been shown 

to excel at image recognition and classification tasks (Hijazi, Kumar and Rowen 2015). Further, 

the eponymous u-shaped architecture serves to upsample the output to a high-resolution 

segmentation map (a binary mask of the features that were predicted), visualized on the right-

hand side of Figure 25. Another interesting feature of the architecture are the “copy and crop” 

functions denoted by grey arrows within Figure 25. This function allows the network to use the 

contextual information from the corresponding higher resolution feature maps on the left-hand 

“contracting” path of the network (Ronneberger, Fischer and Brox 2015). 



58 

 

 

Figure 25 Excerpt from the original U-Net paper describing the architecture of the neural 

network (Ronneberger, Fischer and Brox 2015) 

Following instantiation of the neural network, the optimization algorithm for use within 

the network was defined. Broadly, the type of optimization algorithm used serves to help 

minimize the prediction error within the network (Walia 2017). PyTorch has a large number of 

optimization algorithms defined within the torch.optim package, many of the gradient descent 

family. As the original U-Net authors cited the use of a gradient descent optimizer (implemented 

in the Caffe framework), several of these optimizers were tested (Ronneberger, Fischer and Brox 

2015). Both the SGD and RMSprop PyTorch optimizers were tested extensively, with RMSprop 

providing the most satisfactory performance. 
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The training imagery, masks, callbacks, system performance variables, neural network, 

and user supplied epochs value were then passed to a “classifier” function which used these 

inputs to train a machine learning model. Broadly, the classifier functioned by passing the 

training imagery and masks to the neural network and training the model over a number of 

epochs. In each epoch, the satellite imagery and corresponding binary masks were fed into the 

network providing both the input data (images) and pixel-level labels (binary masks). The 

behavior and performance of the model was updated with each successive epoch and 

performance metrics and sample predictions were logged for display within TensorBoard (Figure 

24). 

     

Figure 26 Mapbox satellite imagery (left), binary mask generated from OSM data (middle), and 

masked satellite imagery (right) (Mapbox 2018) (OpenStreetMap 2018) 

Following the training of the model through all of the given epochs, validation imagery 

was then passed to the model to demonstrate model performance. The validation imagery was a 

subset of the provided training data that was not used within model training, meaning that the 

model had no opportunity to “learn” the validation imagery as it was never provided with that 

imagery nor the corresponding binary mask. As such, the validation imagery was the least biased 

set of data on which to gauge the performance of the model (Brownlee 2017). To generate the 

validation predictions, validation imagery was input into the object prediction workflow. 
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4.6.2. Object Prediction 

To generate object predictions from validation imagery or an AOI supplied by the user 

the process was very much the same. The only material difference being that validation imagery 

was taken as a subset of user selected training data where predictions from a new AOI required 

the downloading of the imagery tiles from Mapbox. For predictions from a new AOI, the Flask 

API was passed an array containing: the name of the trained model to be used, the prediction 

threshold, the unique WMTS tile identifiers of the top left and bottom right tiles in the AOI, and 

the zoom level of the imagery the user had selected. These values were used to download all 

imagery tiles within this AOI bounding box for the given zoom level. 

From here both validation imagery and new satellite imagery were passed to a custom 

“predictor” function. This function would first load the correct trained model from server storage 

using the model name parameter. The predictor would then generate an array containing the 

filenames and locations of imagery to be processed. This array was then passed to the trained 

model to predict new instances of a given type of object within the new imagery. The model 

produced a 512x512 probability mask for each input image as a NumPy array, with values 

ranging from 0 to 1 for the model’s percentage confidence in the correct prediction of a given 

pixel within the mask (Figure 27). A thresholding function was then used to filter out pixels 

below the user’s supplied threshold value. All remaining pixels within the mask that were not 

filtered out were then converted to a value of 1. 
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Figure 27 Example class activation map, visualizing the function of a probability mask. In this 

example, red values would be prediction confidences closer to 1 and blue values closer to 0.  

(Zhou, et al. 2016) 

Following the thresholding function, the binary mask arrays were then converted to the 

run-length encoding (RLE) format and stored in a comma separated values (CSV) file for storage 

and further processing. Within the RLE format scheme, images were compressed down into a 

single string of numbers making the storage of arbitrarily large dataset much more convenient 

and manageable. After conversion, prediction RLE data was then passed to the data post-

processing pipeline for georeferencing of predictions and eventual display to the user.  

4.7. Date Post-processing 

Following the generation of predictions from the machine learning model, the non-

georeferenced prediction data was transformed into georeferenced spatial objects. As stated, the 

model output predictions into a compact RLE CSV file with one row of RLE data representing a 

single tile. Each row within the CSV file contained two columns – one column storing the tile’s 

WMTS x, y, z identifier, the other storing an RLE string of the encoded prediction.  To convert 

these RLE strings into spatial objects, the RLE CSV file was first opened and parsed into a 
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NumPy array, with each array element corresponding to a line in the RLE CSV file. Each line of 

the NumPy array was then processed using PIL to generate a binary image from the RLE data. 

Each binary image was saved to the server’s local storage, using the tile’s WMTS identifier as 

the file name. 

The GDAL package was then used to create a georeferenced GeoTIFF file from each 

binary image. The pygeotile package was first used to create a geospatial object representation of 

the tile, taking the tile’s WMTS identifier as parameters. From this, the tile’s bounds were passed 

to the GDAL Translate method to produce a spatially referenced black and white GeoTIFF 

image of the tile. The Rasterio package was then used to create a binary “NoData” mask layer 

from the GeoTIFF image. This NoData mask included only predictions from the tile, those 

portions of the GeoTIFF that appear white within the image. Using the NoData mask, the GDAL 

Polygonize method was used to create a GeoJSON MultiPolygon object representation of the 

tile.  

As the machine learning model operated as a pixel-level classifier, the GeoJSON objects 

created by GDAL Polygonize could be extremely complex, especially around the borders of 

objects. At the edges of object predictions, the classifier appeared to struggle with appropriately 

predicting and classifying pixels in this transitionary zone. As can be seen in Figure 28, the 

GeoTIFF images appeared “fuzzy” around the edges of object predictions (white), with non-

classified (black) pixels interspersed throughout. When these pixels were polygonised, this was 

reflected within the GeoJSON objects. While this was the true reflection of the machine learning 

model’s output, this greatly increased the file size and complexity of the GeoJSON objects – 

frequently increasing storage greater than tenfold. 
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To mitigate this issue, a number of approaches were tried. Primarily, edge detection 

algorithms within the OpenCV computer vision library were used in an attempt to simplify the 

edges of the binary masks before conversion to GeoTIFF. It proved exceedingly challenging 

within these algorithms to achieve shape simplification while maintaining the desired edge 

fidelity. Further, there was a desire to convey to the user the model’s classification uncertainty 

along these object edges; over simplification or smoothing of these boundaries would withhold 

this information from the user. In the end, a “brute force” approach was used wherein all patches 

of classified (white) pixels less than an arbitrary size of five pixels by five pixels were removed 

from the GeoJSON objects. Through this technique, storage size was greatly reduced while 

maintaining edge fidelity and discernable model uncertainty. 

   

Figure 28 Example GeoJSON complexity (left) and errant pixel classification (right) 

Subsequent to post-processing, all GeoJSON objects were saved to the database for 

display to the user within the web UI. The GeoJSON objects were related to the generating 

model through a model name identifier foreign key. 
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4.8. Prediction Validation and Storage 

Following a user’s prediction request through the web UI, data preprocessing, object 

detection, and data post-processing, the user was able to view object predictions within the web 

UI. Prediction data was displayed much in the same way as OSM feature data within the web UI 

as semi-opaque polygons overlaying a basemap. However, these data were sourced from the 

system’s SQL database via a query of all GeoJSON data relating the selected prediction instance. 

Custom code was added to extend the Leaflet JavaScript package allowing users to click on 

features within the web UI to flag these features as “validated” (Figure 29). When a feature has 

been validated, the Type field of the GeoJSON record within the SQL database was updated to 

reflect the user’s validation of that feature. 

 

Figure 29 Predictions (blue) and validated predictions (red)
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Chapter 5 Results 

This chapter demonstrates the results of the project including a number of the web application UI 

screens, the machine learning model output, model performance, and the resultant digitized 

geospatial features. The reader will progress through a typical application workflow, using the 

web application to select training data, model creation and validation, and passing novel satellite 

imagery to the model to generate digitized feature output. 

5.1. Application Organization and Workflow 

The application was composed of four interactive webpages – Train, Admin, Review, and 

Detect. The Train page allowed the user to source model training data and enter model training 

parameters. The Detect page allowed users to select novel satellite imagery to pass to trained 

models to receive object detection predictions. The Admin page allowed the user to view the 

processing status of models that were generated by the system, adjust model training parameters 

to retrain a model, and to access the Review page wherein the user could view training data used 

to train models, model prediction performance, and predictions generated from models. The 

Review page also allowed the user to validate object detection instances from predictions against 

ground truth imagery and flag these validated instances within the database. The user workflow, 

delineated by webpage, is given in Figure 30. Detailed descriptions of the workflow processes 

are provided in sections 5.2-5.4.  
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Figure 30 User workflow of the application by webpage 
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5.2. Selection of Training Data and Model Parameters 

The Train page served as the main landing page of the application and allowed the user to 

query OSM data, view satellite imagery overlain with OSM data, select appropriate OSM data 

for model training, provide model parameters, and initiate data preprocessing and model training.  

The below describes the UI, user workflow, and data processing flows of the Train page. 

5.2.1. General Navigation 

The Train page focuses around a full window web map and the user is given a number of 

interactive navigation and visualization options (Figure 31). Users may pan and zoom, select a 

number of overlay layers for display, change the opacity of overlay layers, and perform a 

geocode search to locate a point of interest on the map (Figure 32). 

 

 

Figure 31 The Train landing page 
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Figure 32 Performing a geocode search with an imagery overlay layer visible 

5.2.2. Query Parameter Entry 

Users may enter any number of OSM Overpass API query parameters and use these 

parameters to search for features within an AOI on the map. Users must enter query parameters 

in the format of datatype["key" = "value"] and may enter multiple parameters by entering each 

datatype-key-value tuple on a new line within the Query Parameters modal input form. Users 

may reset the query parameters to the default value using the Reset button. A link to the official 

OSM Overpass API language guide is provided for convenience (Figure 33). 

 

Figure 33 The Query Parameters modal form which allowed users to enter Overpass API queries 

for types of geospatial features 
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5.2.3. Selecting Features by Area of Interest 

Using a rectangular selection tool, users may select one or more AOIs within the map. 

Features matching the users’ given query parameters within the AOI will be returned to the user 

within the web UI. Users can inspect the features’ OSM tags by clicking on the feature within the 

map. Mapbox satellite imagery tiles corresponding to the selected AOI will be loaded to provide 

the user with a ground truth with which to compare features returned from the OSM database 

(Figure 34). The user would wish to select an AOI or AOIs with a number of existent features 

adequate for model training. 

 

 

Figure 34 The Train page with an AOI selected and features and satellite imagery loaded 
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5.2.4. Model Parameters 

When a user is satisfied with the selected feature data, they will then proceed to enter 

several parameters for the new model they wish to generate (Figure 35). The user will be 

prompted to enter 

1. A name for the model that will be used to identify it in the future 

2. A verbose description of the model 

3. The number of epochs, or number of times the machine learning model will 

be shown the training data 

4. The sample size that gives the percentage of the dataset, less the validation 

size, that should be used to train the model 

5. The validation size that gives the percentage of the data that should be used 

validating the performance of the model 

6. The validation prediction threshold, which limits the returned prediction data 

for the model validation to only pixels that model has assigned a confidence 

value greater than the threshold (e.g. .5 returns pixels that the model has 

determined to have at least a 50% chance of being the desired object) 
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Figure 35 The Model Parameters modal form which allowed users to enter parameters to be used 

during model training 

5.2.5. Creation of GeoJSON Masks 

Following the user’s confirmation of the model parameters, the system will generate 

GeoJSON representations of binary masks for all tiles within the AOI that contain OSM features 

matching the user’s query parameters (Figure 36). Upon creation of all GeoJSON masks, the 

user’s provided model name is passed to the Flask API and Python code for further processing 

and model training. 
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Figure 36 GeoJSON binary masks in the web UI 

5.3. Model Training and Evaluation 

The Python code exposed via the Flask API performed all of the substantive backend 

processing for this system. This includes data preprocessing, model training, model validation, 

object prediction from trained models, and data post-processing for display within the web UI. 

Due to the computational intensity of these processes, all processing occurs within the Python 

code asynchronously from the user’s browser and interaction. The user may monitor the progress 

of these processes and evaluate model performance through the Admin page. The below 

describes the user workflow and data processing flows during data preprocessing and training of 

the U-Net model. 

5.3.1. Model Training 

Following the selection of training data, the user may view the progress of data 

preprocessing from the Admin page. Within the Admin page, the user is presented with the 

Models grid displaying the parameters of all models stored within the system (Figure 37). Within 

this, the user can view 

1. The model’s name 

2. The latest status 
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3. The timestamp of the latest status 

4. The number of epochs 

5. The sample size 

6. The validation size 

7. The zoom level 

8. The description 

9. The OSM query parameters 

 

Figure 37 The Models grid displaying all models within the system 

By clicking on the row of the model in the Models grid, the user can view further 

information about the model’s status, as well as view the model’s training masks and predictions. 

The user is presented with a workflow visualization detailing the progress of the model through 

the asynchronous preprocessing and model training phases (Figure 38). As the data 

preprocessing and model training phases progress, different options will be made available to the 
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user. Dependent upon progress, the View Training Masks and View Predictions buttons will be 

activated within the modal window (Figure 39). 

 

Figure 38 The Model Status modal displaying a model that is currently being trained 
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Figure 39 The Model Status modal displaying a trained model 

When the user clicks the View Training Masks button within the modal window, they 

will be navigated to a map displaying all of the GeoJSON masks that were used as an input to 

train the machine learning model. When the user clicks the View Predictions button, the 

Predictions window will open with a grid displaying the test predictions generated following 

model training (Figure 40). By clicking on the row in the grid, they will be navigated to a map 

displaying all of the training object predictions. In the following screen the user may review 

model training output against existent OSM geospatial data as well as satellite imagery ground 

truth (Figure 41). If the user is satisfied with the performance of the model, they will proceed to 
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the Detect page to pass novel imagery to the model for object prediction. If not, they will retrain 

the model with different parameters and/or greater amounts of training data. 

 

Figure 40 The Predictions window displaying a training prediction generated from a model 

 

Figure 41 Existent OSM data (red) and validation predictions (blue) overlaying Mapbox satellite 

imagery (Mapbox 2018) 
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5.4. Predicting Objects from Imagery 

The Detect page served as the users’ portal for selecting novel imagery from which to 

predict instance of a given object. Within this page, users could select AOIs for novel imagery, 

select the trained model they wished to use (the type of object they wished to detect), and enter 

the prediction sensitivity threshold for the returned predictions. The below describes the UI, user 

workflow, and data processing flows of the Detect page. 

5.4.1.  AOI Selection 

The Detect page was built off of the Train page and features all of the same UI/UX 

elements. However, the user utilizes these tools in a much different way. When using the 

rectangular selection tool, the user is selecting an AOI from which to generate predictions of 

object occurrences. As such, the user may wish to select an AOI that contains little existent 

geospatial vector data. As can be seen in Figure 42, the selected AOI shows a large number of 

lakes in the satellite ground truth imagery but very few are represented in the OSM dataset. 

Performing this analysis may be done in two different ways: (1) the user may enter the correct 

OSM query parameters for the type of object they wish to predict and select an AOI to view 

existent OSM feature data within that AOI or (2) display an imagery layer on the map and reduce 

the imagery layer opacity to compare features within the OSM features basemap with the 

satellite imagery layer. 
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Figure 42 Detect page with an AOI selected and imagery layer opacity reduced to show little 

existent feature data within the AOI 

5.4.2. Model Selection 

Following the selection of an AOI, the user may then select the model that is to be used 

to predict object occurrences within the given AOI. The user is first presented with a dropdown 

list of available models (Figure 43). Following selection of the desired model, fields within the 

form are populated with the parameters that were used to train the model. The imagery zoom 

level used to train the model is provided, as the model will perform best when provided with 

imagery of the same zoon level from which it was trained. The user is then prompted to enter the 

prediction threshold for detection. The prediction threshold will limit the returned data to only 

instances in which the model has a classification confidence that meets or exceeds the user’s 

given input (e.g. a prediction threshold of .5 will only return pixels that model has determined to 

have a 50% or greater likelihood of being the given object). 
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When the user has selected their desired AOI and entered the prediction threshold value, 

they may then proceed by clicking the Detect button within the Model Selection form. This will 

then pass the given AOI, model, and prediction threshold parameter to the Flask API to generate 

predictions asynchronously. 

 

Figure 43 The Model Selection modal form 

5.4.3. Viewing Predictions 

While Python code is processing the novel imagery within the AOI the user has selected, 

the user may view the progress of this processing from the Admin page. Much in the same way 
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as the user views the processing status during the model generation phase, the user selects the 

desired model within the Models grid, opening the Model Status window on the right side of the 

screen. The user would then click the View Predictions button to open another model window 

containing a grid of all predictions generated by the given model. The user will be presented with 

the training predictions generated immediately following model training as well as any user 

generated predictions (Figure 44). If the prediction has not yet completed processing, the user 

will be shown the current processing step within the grid. If processing has completed, the user 

may click on the row of the prediction within the grid to view the output of the prediction. 

 

Figure 44 The Predictions window displaying all predictions generated from a model 

The user is then navigated to the Review page to evaluate the output of the model for the 

given prediction AOI. The user may wish to compare this prediction output against satellite 

imagery ground truth layers and any existent OSM data within the AOI (Figure 45). 
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Figure 45 Object predictions (blue) over Mapbox satellite imagery layer 

5.4.4. Validating Object Predictions 

When a user has validated object predictions against ground truth imagery, they click on 

the given object within the web UI to mark the prediction as “validated” within the system. The 

object then becomes highlighted in red within the UI (Figure 46). When objects are clicked 

within the UI, the GeoJSON object is immediately validated within the system, with no need to 

manually commit the validation selections. To view these validated predictions following 

review, the user would return to the Admin page, open the Predictions grid for a given model and 

click the View Validated Features button to view all validated features from all predictions for 

the given model (Figure 44). 
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Figure 46 Validating object predictions (red) within the web UI 

5.5. Testing and Evaluation 

The application was tested using a unit testing strategy, with each application component 

tested independently before the system was tested as an integrated whole. For each component, 

the inputs and outputs were validated against expected outcomes, the inter-system and inter-

module interfaces were tested, error handling was implemented, and efforts were made to 

maximize performance. The below details the testing and evaluation of the system’s primary 

components. 

5.5.1. Web UI 

Testing of the web UI was mostly performed by navigating through the application, 

performing various user workflows, performing out of workflow operations to ensure system 

stability, and the like. The testing of the actual UI components was straight forward, given the 

immediate visual feedback provided by the UI. The Google Chrome browser’s built-in 

Developer Tools were used for testing and debugging of UI HTML and JavaScript components.  
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The only major point of failure within the web UI was within the interfaces to other 

services, namely the Node.js API. These interfaces had to be extensively tested to ensure that 

endpoints on both sides of the system were receiving the expected data and that the data received 

through the interfaces was processed properly and any errors were handled gracefully within the 

system. As the system performed very little actual processing within the UI, performance rarely a 

concern. 

5.5.2. Node.js API 

The Node.js API performed a large amount of the geospatial processing for the data 

preprocessing pipeline. Complicating matters, it was challenging to visualize the geospatial 

operations that were being executed within the API code. Frequently the only solution for 

thorough testing was to insert breakpoints within the code and inspect the generated GeoJSON 

objects within third-party tools, such as the geojson.io web GeoJSON viewer. 

Further, it appears as though the tilebelt Node package that was used within the 

application was not optimized to handle large volume geospatial operations. Performing 

difference operations on GeoJSON objects was often time consuming, with complex objects 

processing at a rate of only 1-2 difference operations per second. Further, the tilebelt methods 

did not handle unexpected types of geometry (such as lines or points) gracefully leading to this 

logic having to be coded in manually. 

5.5.3. Python Preprocessing, Machine Learning Model, and Post-processing 

The Python code required by far the greatest amount of testing and validation within the 

system. Within the data preprocessing flow, multiple Python libraries were required to convert 

GeoJSON objects into suitable mask images, often without clear intermediary datatypes between 

the packages defined. One package which was used to generate the binary masks, Matplotlib, 
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produced different output depending on defined dots per inch of the host machine’s display 

settings – all of this leading to very controlled and defined testing procedure. 

When configuring and testing the machine learning workflow itself, great care was taken 

to ensure system variables were comparable between the development and deployment 

machines. The performance variables defined within the model training process tended to raise 

unhandled exceptions in the code if system hardware was not sufficiently powerful to handle a 

given operation. Debugging aside, tuning was the most time-consuming testing task for the 

machine learning model. For a large area of training data (approximately 1000 km2 and 1000 

training images), training for 50 epochs took approximately 1.5 hours on a workstation with an 

Nvidia GeForce GTX 970 GPU with 4GB of GDDR5 graphics memory (Table 2). Several days 

of effort were spent tuning the input data and model hyperparameters to achieve satisfactory 

model performance. 

Table 2 Testing system configuration 

CPU Intel Core i5-4690K 3.5GHz 

Hard Drive Samsung 850 EVO SATA III SSD 

RAM Kingston HyperX FURY 1866MHz DDR3 16GB (2x 8GB)  

GPU Gigabyte Nvidia GeForce GTX 970 G1 GDDR5 4GB 

 

To validate model performance, the model training workflow was performed on 

approximately ten different geographical areas, using several different classes of geospatial 

features. Table 3 provides six training scenarios generated during the testing of the neural 

network and classifier. Two distinct areas and geospatial features were chosen for this testing: 

lakes in Alaska’s North Slope region and roads in Juba, South Sudan. The testing scenarios were 

structured by first sourcing training data from an AOI and training a model for 50 epochs, the 

default value within the system. This generated both validation predictions as well as descriptive 
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statistics of model performance which could be viewed within the TensorBoard visualization tool 

(Figure 47).  

 

Figure 47 TensorBoard visualizing descriptive statistics of model performance during training 

The Dice similarity coefficient (DSC) and a cross-entropy loss function were then used to 

measure the pixel-level classification accuracy of the trained model.  Zou et al. (2004) described 

the DSC as a measure of the “spatial overlap between two sets of segmentations.” The DSC is 

defined as a value between 1 and 0, with 1 representing total overlap and 0 indicating no overlap 

at all. In short, the higher the DSC, the better model predictions align with known geospatial 

features. The cross-entropy loss function compares the predicated probability of a pixel being a 

given class against the actual label of that pixel (Berman, Triki and Blaschko 2016). For 

example, if a model were to predict that a pixel had 16% probability of being of a geospatial 
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feature and training data showed that pixel to be within a geospatial feature (100% probability), 

the resultant cross-entropy value would be high. 

These values were recorded along with the amount of training data and the length of time 

required to train the model. Two subsequent training scenarios were then performed – one 

increasing the number of epochs, another providing more training data by increasing the size of 

the AOI while leaving the number of epochs unchanged. Table 3 shows that increasing the 

number of training epochs provided relatively small improvements in both the DSC and cross-

entropy measures, with only an approximately 1-2% increase in performance of both measures 

for a 54-77% increase in training time. However, increasing the amount of training data available 

to the model provided much greater improvement in performance. By increase the amount of 

training data provided to the North Slope Lakes model by 123%, a 10% improvement in the DSC 

and a 25% improvement in the cross-entropy loss were seen. Improvements were also seen 

within the Juba Streets model when increasing the amount of training data, however model 

performance continued to lag behind that of the North Slope Lakes model, particularly regarding 

the cross-entropy measure. This was likely due to the model struggling to differentiate the 

primarily dirt streets from other dirt areas sharing a similar appearance (Figure 48). 
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Table 3 Select model training statistics 

Training 

Images 

Versus 

Baseline 
Epochs 

Training 

Time 

(min.) 

Versus 

Baseline 
DSC 

Versus 

Baseline 

Cross-

Entropy 

Versus 

Baseline 

North Slope Lakes 

898 -- 50 89 -- 0.7901 -- 0.5129 -- 

898 -- 75 137 54% 0.8036 2% 0.4998 -3% 

1,999 123% 50 125 40% 0.8658 10% 0.3862 -25% 

Juba Streets 

1,256 -- 50 111 -- 0.7222 -- 0.7821 -- 

1,256 -- 75 196 77% 0.7389 2% 0.7644 -2% 

1,976 57% 50 144 30% 0.7775 8% 0.7029 -10% 

 

 

Figure 48 OSM features over Mapbox satellite imagery of Juba, South Sudan demonstrating the 

visual similarity of streets and other non-street landcover (OpenStreetMap 2018) (Mapbox 2018) 

The data output by the neural network classifier was not inherently spatially referenced, 

nor of a suitable vector format to be displayed within the web UI. Similar to the preprocessing 

pipeline, data post-processing functions required the use of numerous Python libraries with 
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intermediate interfaces connecting the functions. The GDAL library proved particularly difficult 

to test given the lack of verbose error messaging within the library. Further, the output from the 

GDAL.polygonize function required nontrivial manipulations following initial performance 

testing. Due to the aforementioned GeoJSON complexity, extensive amounts of data cleaning 

was required to achieve satisfactory performance and processing times. 

5.5.4. Full System 

The integrated application was tested as a whole by stepping through the documented 

user workflow numerous times and fixing coding errors and tuning performance as needed. 

During final acceptance testing, the application no longer raised any errors to the end user and 

performance was satisfactory given GPU processing constraints. The application was designed to 

perform asynchronous processing and, given this, the recorded times for data preprocessing, 

model training, and post-processing were found to be acceptable. It should be noted that the 

model training phase of the user’s workflow was by far the most time-consuming aspect of 

utilizing the application.  

Following the training of a model, which varied in time depending on the amount of input 

data and epochs provided by the user, predicting imagery from the model was found to be 

exceedingly performant. Prediction times were found to average approximately .3 seconds per 

imagery tile input, meaning that a 1000 km2 area (at zoom level 12) could be predicted in a five-

minute timespan. 
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Chapter 6 Conclusions 

This chapter summarizes the development of the U-Map application, challenges within the 

development process, and any limitation within the current implementation of the application. 

Further, a discussion of additional applications of U-Map and potential opportunities for future 

work are given. 

6.1. Summary 

The U-Map application provides an intuitive means for users to source data for any 

arbitrary type of geospatial features from the open source OSM geospatial dataset and combine 

these data with satellite imagery from Mapbox to train machine learning models for object 

prediction. The application allows users to monitor the asynchronous training of machine 

learning models and to evaluate performance of models all from within a web user interface. 

Users are then able to use trained machine learning models to predict occurrences of geospatial 

features within novel satellite imagery and validate the predictions through a simple workflow. 

Given the ever-increasing volume of imagery produced by Earth observation satellites, it 

crucial that tools and methods for deriving information from the torrent of data continue to be 

developed. Machine learning technologies have been shown, within U-Map and other research, 

to be suited to this task. Though the field is still in its infancy, great progress has already been 

shown – with researchers using machine learning to slow deforestation, plan better cities, and 

combat crime (White 2018) (Raad 2017) (Rudin 2013). With further refinement of the 

underlying algorithms and the development of end-user tools, a much larger number of capable 

subject matter experts will be empowered to harness the full power of machine learning 

technologies to help solve some of the world’s biggest problems. 
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6.2. Challenges in Development 

The major challenges in development centered mainly around the scope of the application 

and the number of technical components required to realize the whole system. A web UI, two 

custom developed APIs, and a SQL database ultimately required the development of upwards of 

twenty unique interfaces between the components, leading to extensive testing and validation of 

inputs and outputs from these interfaces. One major discovery during the testing of these 

interfaces was the inability of the Flask API to handle large amounts of GeoJSON data within a 

REST request. This lead to a rearchitecture of the data preprocessing pipeline, wherein 

GeoJSON masks were stored within the SQL database as opposed to being directly sent to the 

API via a web request. 

While the interfaces between system components were relatively well defined, the 

functioning and even selection of an appropriate machine learning model was much less so. 

Significant amounts of research were frontloaded into the project to ensure that the correct neural 

network architecture was chosen to meet the requirements of the application. Once the U-Net 

architecture was selected and an open source base implementation was identified, tuning and 

reengineering the U-Net neural network and associated programming presented a large learning 

curve, as well. Further, the computational intensity of model training created a painstaking 

debugging and tuning process. 

6.3. Limitations 

The U-Map application was designed and developed on a workstation with a consumer 

grade GPU, without access to a high-end installed GPU or high-performance cloud GPU 

resources. As such, the model training workflow takes upwards of an hour to process a moderate 

number of tiles over a small number of epochs. Deploying the application with access to more 
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powerful GPU compute resources would greatly increase the performance of the application. 

Further, as model training will always be an asynchronous task give current technology, it could 

be useful to expose TensorBoard visualizations to the end users through the application to 

provide them with greater insight into the model’s performance, provided they were 

knowledgeable enough in the domain to interpret the information appropriately.  

Regarding the functionality of the system, geospatial output from U-Map is currently 

limited to MultiPolygon datatypes with no functionality in place to generate line or point data 

from predictions. Polygons are the only logical output from the neural network, as it functions as 

a pixel-level classifier, but post-processing functions could likely be integrated to transform 

polygon data into line or point data, dependent on the desires of the user. 

6.4. Future Work 

There are a number of future enhancements that could expand on the utility and usability 

of the U-Map application. Firstly, integrating additional data sources into the application could 

greatly increase the value of system. Conceivably by integrating other sources of geospatial 

feature data, the quality and quantity of training data would vastly increase. OSM data, being 

VGI, is not subject to the same quality control and data refresh processes seen within many 

organizations’ own geospatial or data management functions. With better spatial ground truth 

data, model prediction accuracy would likely improve. Further, the ability to integrate more 

timely satellite imagery would expand the use cases of the application. In instances where the 

situation on the ground is rapidly evolving, such as natural disasters or in security and defense 

applications, the ability to rapidly detect and digitize features on the ground could prove a huge 

boon to an organization’s effectiveness.  
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If perpetually updated imagery was integrated into the system, it is conceivable that there 

could be value in redesigning the system to largely remove the human element from the 

prediction workflow. In instances where “good enough” predictions are sufficient, such as access 

control or persistent monitoring of an area, an automated workflow could be designed wherein 

the system performs automatic object detection within a given AOI upon every imagery refresh. 

This could provide users with data-driven alerts when visible change is detected on the earth’s 

surface (e.g. new encampments detected within a contested region, deforestation within a 

conservation area).  

In addition to additional data, internal machine learning processes could be further 

enhanced as well. Training data could be augmented through additional data transformation 

procedures. Within the original U-Net paper, the authors applied elastic deformations to input 

training images and masks to both increase the amount of training data by creating new training 

images and masks from the transformed data and to increase model predictive performance by 

exposing the model to more possible object appearances (Figure 49) (Ronneberger, Fischer and 

Brox 2015). This strategy would likely translate well from biomedical imagery to satellite 

imagery considering the near infinite shapes and configurations of roads, lakes, rivers, and the 

like. 
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Figure 49 Elastic deformation of biomedical imagery (Ronneberger, Fischer and Brox 2015) 

Rearchitecting the system to allow for models to be training on multiple classes of 

geospatial features is another large opportunity for future improvement. Currently the system is 

architected to allow for a model to be trained to detect a single type of geospatial feature. If this 

was reengineered to allow for multiclass training, a whole host of new use cases could be 

presented. With multiclass object detection, the efficiency of individual workflows could be 

greatly increased, allowing the user to select an AOI and any number of classes of objects to 

detect within the imagery or to perform land use classification. 
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