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Abstract 

The future of the automotive industry continues to head towards the development of autonomous 

vehicles. Without a human driver behind the wheel, the self-driving vehicle must be able to 

navigate itself within the road network. This research project investigates the application of 

aerial drones, also known as unmanned aerial vehicles (UAVs), as an alternative data collection 

method to create HD datasets for use in autonomous vehicles. Drones may be a low-cost 

alternative method to the current leading data collection method of sensor-equipped mapping-

vehicles. A Phantom 4 drone was used in two case studies to create orthomosaics of parking lots. 

The drone-generated orthomosaics were processed by methods of manual delineation and tool-

based extraction to evaluate different methods of processing high-resolution data. In addition, 

current HD data standards were acquired from various sources to evaluate the results of the 

research project and to compare data collection methods. The results show that drone-based data 

collection with GPS correction techniques can be an accurate and low-cost alternative method. 

Both manual delineation and tool-based extraction techniques proved successful in extracting 

desired feature classes from the high-resolution imagery.  
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 Chapter 1  Introduction  

The future of the automotive industry heads towards self-driving, fully autonomous, vehicles. 

Many variables must be taken into consideration for autonomous vehicles to become a reality, 

such as the production of high-definition (HD) maps. To navigate autonomously within a road 

network, current maps within a vehicles’ navigation system do not have the precision and 

accuracy needed to replace the driver’s eyes on the road (Automotive World 2018). For example, 

most navigation systems symbolize the road driven as a single line segment, even if the line 

segment is a six-lane highway. 

 Semi-autonomous cars already exist and are bristling with sensors that help navigate the 

vehicle within a lane, however, these sensors only assist the driver and cannot replace the human 

behind the wheel (Hyatt 2018). To support these autonomous vehicles, high definition (HD) 

maps are built specifically for autonomous and semi-autonomous vehicles with high precision 

and detail and, ideally, centimeter level accuracy to ensure the vehicle stays within the lane 

(Vardhan 2017). Companies such as Here Inc., Lyft, and TomTom, among others, presently 

provide HD mapping services to the automotive industry by the use of sensor-equipped mapping 

vehicles (Kent 2015). These mapping vehicles may be the industry’s leading mapping method; 

however, the services and sensors are expensive, and a driver is needed for every step of the way.  

1.1. Research Question and Objectives  

The main research question to be answered is: Can aerial drones be used as an alternative 

data collection method to provide drone generated imagery that can be used for the development 

of HD datasets for autonomous vehicles? The subsidiary research question to be answered is: 

What processing method of the drone-generated imagery renders the best results? To answer 

these questions, the objectives of this research study are to: (1) evaluate the accuracy and overall 
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 quality of drone-generated orthomosaics from two case studies; (2) evaluate and compare manual 

and tool-based processing methods of drone-generated orthomosaics in the production of HD 

datasets; and, (3) compare the resulting datasets from the two case studies to current HD data 

standards in terms of the time required for data collection, the resulting data structure, and the 

quality and efficiency of data collection by means of aerial drones vs. traditional methods.  

1.2. Motivation 

Self-driving vehicles would not only allow the individual to lean back and relax while the 

auto-pilot chauffeurs, but it may lead to safer roads and a decline in automotive fatalities as well. 

According to the Insurance Institute for Highway Safety, 37,133 people died in motor vehicle 

crashes in the U.S in 2017 with a total of 34,247 crashes involving 52,645 vehicles (IIHS 2018). 

Globally, vehicle crashes account for 1.25 million deaths and 20 to 50 million injuries every year 

(CDC 2017). Handing the control over to the vehicle may reduce the amount of vehicle-related 

deaths as the computer in the autonomous vehicle does not experience human traits such as 

drowsiness or impairments due to drugs or alcohol. In 2016, 10,497 people died due to alcohol-

impaired driving crashes, accounting for 28% of all traffic-related deaths in the Unites States 

(CDC 2019).  

In addition to vehicle crashes due to impaired driving, a large percent of vehicle crashes 

are due to distracted driving habits. The distractions in the vehicles continuously grow as new 

technologies are introduced to the vehicles and as individuals use commuting time for additional 

activities such as eating food, watching movies, playing games, or texting on the cellphone. 

According to the U.S Department of Transportation, nine percent of U.S fatal crashes in 2016 

were distraction-affected crashes, accounting for 3,450 deaths in motor vehicle crashes by 

distracted drivers (NHTSA 2018). Autonomous vehicles would make commuting time safer and 
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 also more efficient as it would allow the individual to pay attention to other activities, all while 

the vehicle safely transports the individual to the destination.  

 Implementing a fleet of drones to create high definition maps for autonomous vehicles 

may also be beneficial to the environment. The mapping-vehicles used to create HD maps are 

required to drive each stretch of road multiple times to create high-quality data, burning fossil 

fuels in the process. Considering that the goal is to create an HD map network for all roads, the 

amount of fossil fuel burned to create such an HD road network comes with a cost to the 

environment. Instead of expanding our carbon footprint, drones with rechargeable lithium-

powered batteries would be able to map without burning fossil fuel.  

The production of an HD map network is also expensive. According to the artificial 

intelligence and industry review magazine Synced, the US rising star in HD mapping, DeepMap, 

charges $5,000 per kilometer for its services in the US (Synced 2018). Creating a large HD map 

at such cost would require large investments by companies, most likely only attracting large 

companies that could afford it. Another option for smaller companies may be to create mapping-

vehicles themselves, instead of paying for the services of other companies. As mapping-vehicles 

are bristling of sensors, structures to mount the sensors, and require high-processing powered 

computers and software, ultimately the cost of creating an HD map is still very high. Utilizing 

drones as an alternative HD mapping technique may save some money. A good quality drone 

such as the DJI Phantom 4 pro costs about $1,500 brand new, according to the DJI sales website. 

In Germany, a vehicle often used for mapping purposes is the Volkswagen Passat (Dolgov and 

Thrun 2009). According to the VW sales website, a Passat costs about $25,000 brand new. Even 

if all sensors would cost the same for the drone and the vehicle, the drone is still the more cost-

efficient option.  
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 1.3. Study Sites  

The first steps taken in the autonomous vehicle network will occur within parking lots 

and highways, as these environments are less complex than city intersections and other fast-

moving environments (Dokic et al. 2015). The introduction of autonomous vehicles will start 

slowly, with vehicles parking themselves in parking lots and vehicles driving down highways in 

auto-pilot. The two study sites chosen for this study are therefore two parking lots.  

1.3.1. The Bertrandt Parking Lot  

As the European automotive industry has great interest in HD map research, the 

engineering services company named Bertrandt supports this research study. To incorporate a 

parking structure in Germany, the first selected study site is the main parking lot of the Bertrandt 

company campus in Tappenbeck, Germany. Although the parking lot does not have lane 

separations, other components such as road (drivable surface), parking area, and parking spots 

(non-drivable surfaces) are included at this site. The Bertrandt parking lot is approximately 

0.0183 km2 (4.53 acres) and is located between fields and by residential houses (see Figure 1). 

Three ground control points were established from previously recorded benchmarks in the 

parking area. Due to Germany’s very strict UAV guidelines and regulations, a drone flight was 

approved for a one-week window, January 7th-January 11th, 2019. The Bertrandt parking lot was 

utilized as one of two case studies to create a drone-generated map.  
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Figure 1. The Bertrandt parking lot; first study site. Source: satellites.pro 

1.3.2. The German International School Parking Lot  

The second case study was the parking lot of the German International School of Portland 

(GISP), located in Beaverton, Oregon (see Figure 2). The choice of location of the case studies 

was rather arbitrary, as long as the chosen study sites were parking lots and accessible to drone 

flights, they were suitable. Thus, the GISP parking lot was chosen due to the fact that the school 

is privately-owned, and the headmaster granted permission for drone flights of the property. The 

GISP parking lot was flown in May 2019 and is approximately 0.0106 km2 (2.6 acres). To 

acquire the best absolute accuracy, four ground control points were set within the parking lot.  
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Figure 2. The German International School parking lot; second study site. Source: 
maps.google.com 

1.4. Thesis Organization 

This thesis includes four additional chapters. The next chapter provides a literature 

review to understand current advancements in the automotive industry and to give a background 

on high definition maps, their structure, and all they encompass. The next chapter also provides 

information on current UAV use as a remote sensing technique. Chapter 3 describes in detail the 

methods used to complete this research study, including the drone-generated data produced and 

used for orthomosaic generation, the feature extraction methods applied to the orthomosaics, and 

evaluation of the resulting datasets. Chapter 4 provides the results of the study. Chapter 5 
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 discusses the conclusions drawn from the results, potential future research of this study, and also 

discusses any limitations faced.  
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 Chapter 2 Related Work  

As the automotive industry in Europe, China, and the US is particularly eager for the emergence 

of autonomous vehicles, abundant research has been done to explore the production of HD maps 

and autonomous vehicles. The current research, however, focuses heavily on HD map production 

by ground vehicles only. Other remote sensing methods, such as drones with imaging devices, 

can be used for map production as well and there is abundant research on their use within certain 

scientific fields, such as in agriculture and environmental sciences. This research study aims to 

bridge the gap between the production of HD maps for autonomous vehicles and the use of 

drones in certain scientific fields. 

2.1. Advancement Towards Autonomous Vehicles  

  European automotive manufacturers and their suppliers have successfully introduced new 

smart components and systems, such as advanced driver assistance systems (ADAS), to the 

European high technology industry. ADAS are systems that help the driver in the driving process 

and include technological components such as collision avoidance, adaptive cruise control, and 

lane departure warning systems. These driver-assistant components have been technological 

breakthroughs within the automotive industry as they enabled road and passenger safety, energy 

efficiency, and emission reduction (Dokic et al. 2015).  

According to the European Technology Platform on Smart Systems Integration (EPoSS), 

the introduction of autonomous vehicles is a feasible goal for the near future with milestones set 

at 2020, 2025, and 2030. By the first milestone of 2020, parking lot and traffic jam situations 

should be manageable by automated vehicles driving at low velocities. By 2025, highway 

autopilots should be introduced and by 2030 highly automated driving within cities with 

complex traffic structures will be possible (Dokic et al. 2015).  
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 Besides the timeframe, different automation levels exist and range from level 0 (human 

driver has full control) to level 5 (fully autonomous vehicle) (Van Brummelen et al. 2018). As 

parking lot and traffic jam navigation are milestone 2020 goals, the automation level requirement 

is level 3 (conditional automation) in which the car is aware of its surroundings and can handle 

independently for a certain amount of time. This automation level can be found in the Tesla 

model X and S (Dokic et al. 2015; Van Brummelen et al. 2018). As the focus for the near future 

is on parking lots and traffic jams, the HD map generation of those parking lots will allow faster 

advancements of higher automation levels for navigation within parking structures.  

Challenges facing the introduction of autonomous vehicles are many, as the higher-

automation level requires more and better sensors on the vehicle, larger data storage space, and 

the maps must be upgraded frequently to provide sufficient information. A fully autonomous 

vehicle requires sensors such as sonar devices, stereo camera, lasers, radars, and highly accurate 

GPS to compare to the five human senses (Seif and Hu 2016). A LiDAR sensor would be an 

important sensor as it senses objects in the near-environment of the car with a high accuracy up 

to a range of 100 m and a rotational ability of 360 degrees. At a cost of $4,000 per sensor, the 

LiDAR sensors are some of the most expensive sensors on the vehicle (Randall 2019). LiDAR 

sensors used by mapping-vehicles, such as the Velodyen top-end HDL-64E, retail at about 

$100,000.  

Besides the financial aspect of such expensive equipment, another challenge is the data 

collection from the sensors as one hour of drive time produces one terabyte of data and takes two 

days to process by high computing power (Synced 2018; Seif and Hu 2016). One solution to the 

current challenges of data collection, processing, and storage, is to consider all autonomous 

vehicles as part of the infrastructure of a future traffic system. This future traffic system would 
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 consist of the autonomous vehicles, roadside units, HD maps, and high-performance computing 

and storage for cloud services (Seif and Hu 2016).   

2.2. Autonomous Vehicles in Parking Structures  

 Current research in the field of autonomous driving focuses mostly on highly structured 

environments, such as highways or cities, or on unstructured environments, such as off-road 

driving. In highly structured environments, it is assumed that a topological graph, or lane-

network graph, exists over the environment to which the vehicle is constrained to drive on with 

little to no deviations (Dolgov and Thrun 2009). For unstructured environments, the vehicle is 

not constrained to a topological graph and can freely choose a path, considering safety and other 

constraints. Parking structures fall in to the semi-structured category where a topological graph 

structure exists, but maneuvers off the graph are valid (Dolgov and Thrun 2009). Current 

research focuses on the use of topological graphs within these semi-structured environments to 

see if they benefit the vehicle in path planning or not. Results show that predetermined lane-

networks (topological graphs) do, indeed, benefit the vehicle in path planning through a parking 

structure opposed to free-space path planning (Dolgov and Thrun 2009). For largescale multi-

level structures such as parking garages, the approach of a predetermined path has also shown to 

be beneficial. In one study, based on surface maps of the corresponding environment and a 

calculated path through the parking garage, an autonomous vehicle was able to completely park 

itself within the parking garage (Kummerle et al. 2009).  

2.3. Characteristics of High Definition Maps  

 Traditional maps used for navigation mainly serve visualization purposes and do not 

have the requirements needed for autonomous vehicles as they lack the accurate lane geometries 

(Massow et al. 2009). Maps particularly built for self-driving purposes are commonly referred to 
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 as high definition maps or HD maps. These HD maps are extremely precise and contain a lot of 

information as the robots need precise instructions on how to maneuver within the 3D space 

(Vardhan 2017). To meet the need of higher quality maps, new HD map formats are emerging 

from mapping services companies such as TomTom and Here, Inc.. Some standardized map 

formats for specific companies already exist, such as the HD live map from Here and the highly 

automated driving (HAD) map from TomTom (Kent 2015; TomTom 2015; Massow et al. 2009). 

Although HD map developers such as TomTom, Here, and Lyft, among others, are 

working towards a standardized format for all HD datasets, the exact format is currently still a 

fluid concept. The TomTom HD map consists of layers including lane models, traffic signs, road 

furniture, and lane geometry (TomTom 2018). Lyft, an on-demand transportation company, 

organized their HD map into five layers including the real-time layer, map priors layer, semantic 

map layer, geometric map layer, and the base map layer (Chellapilla 2018). The map priors layer 

shows locations where the behavior of objects (e.g. timing and sequence of traffic lights), people 

(e.g. bicyclists in the driving lane) and other vehicles (e.g. places where left turns are common) 

impact simple navigation decisions. The HD live map specifications from Here, Inc. structure the 

HD map into two major models known as the lane model (group 1) and road centerline model 

(group 2). These models are further split into a lane topology and geometry model (group 1), 

lane attribute model (group 1), link topology-geometry model (group 2), and road attributes 

model (group 2). The lane model from Here, Inc. is based on the topology of individual lanes, 

lane groups, and lane group connectors. It includes lane boundaries and lane paths as well as 

their lane-level attributes (Here 2018). The road centerline model is based on links and nodes, 

2D geometry of polylines and shape points, and the attributes (Here 2018). With such differing 
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 data structures and map specifications, an exact standard of the components an HD dataset must 

include has not yet been established.  

Although the exact format specifications between HD datasets from different companies 

may still vary, all consider an HD dataset to comprise of multiple layers that place the vehicle 

precisely in a lane with information on road signs and markings in the vehicle’s immediate 

surroundings. With varying data structures between different mapping and automotive 

companies, defining the data structure for an HD dataset is difficult.  

To find common ground, a standard structure for the data would be ideal. As described in 

Massow et al. (2016), the infrastructure of an HD map can be generalized to contain three major 

layers consisting of 1) dynamic data, 2) road furniture data, and 3) road geometry data. The 

dynamic data includes up-to-date information on current incidents, hazards, and events such as 

construction areas or accidents (Massow et al. 2016). For example, the HD live map from Here, 

Inc. includes such a dynamic layer to receive up-to-date information in the vehicle by vehicle-to-

vehicle communication. The idea of this communication technique is that all vehicles driving on 

the road are connected and inform each other of changes on the road (Bonetti 2016). The road 

furniture layer comprises of features that may influence the driver’s behavior, such as road signs 

or traffic lights. Lastly, the road geometry layer contains detailed information about the absolute 

position of the road in general, as well as lane positioning and direction (Massow et al. 2016). 

With a dynamic map layer, the road geometry and road furniture layer do not have to undergo 

constant reconstruction, as general roadway structures do not change very often. This allows 

mapping companies to map a road for autonomous-vehicle-permitting purposes without constant 

re-mapping to record changes on the road.   
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 2.4. Navigation Data Standard (NDS) 

To standardize more than only the general structure of HD datasets, a navigation data 

standard (NDS) was developed by mapping companies, automobile manufacturers and their 

suppliers. The NDS format is a physical storage format of automotive-grade navigation data. The 

NDS consortium developed this standard with the aim to standardize navigation data for 

effortless exchange between different systems around the world (NDS association 2019). With a 

global data standard, the sharing of information and data would be instant and vehicles from 

various manufacturers would have the ability to be in constant connection. To make a global 

vehicle-to-vehicle connection and data standard a reality, automotive companies, suppliers, and 

mapping companies have joined the NDS Association. Members include Volkswagen, BMW, 

Daimler, Nissan, Hyundai, Mitsubishi electric, Bertrandt, Here technologies, TomTom, Garmin, 

Bosch, Panasonic, etc. (NDS Association 2019).  

Described in detail in Chapter 27 of Winner et al. (2009), the uniqueness of the NDS 

format is the organization of data into so-called building blocks. The navigation database is first 

divided into update region databases. For example, Germany would be its own database. The 

update regions are further split in to components. The component databases are the building 

blocks. For example, the Germany database would include multiple unique databases such as the 

routing database and Basic Map Display (BMD) database. The USA database would include its 

own databases such as the routing and BMD database. The individual building blocks hold 

specific information of one kind, such as names, digital terrain models, or points of interests. 

Figure 3 provides an overview of the fourteen building blocks and their names. The data within 

the individual building blocks are in some form or another connected to the data within other 
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 building blocks, where the most fundamental characteristic of the data is their coordinates and 

name (Winner et al. 2009).  

 

 

Figure 3. Overview of the NDS building blocks. An enlarged version of this Figure is included in 
Appendix A. Source: archive.is/WadYB (TomTom archives). 

With extensive information on the data structure from the NDS format described in 

Winner et al. (2009), and the basic HD dataset structure described in Massow et al. (2016), the 

study described here focused on the Basic Map Display (BMD) database. Similar to the road 

geometry component described in Massow et al. (2016), the BMD building block includes areas, 

lines, and polygons of the absolute road position, parking lots, parking areas, and other basic 

components seen in a map. In other words, the BMD serves as a fundamental building block to 

which names, points of interests, and other building blocks are connected (Winner et al. 2009). 
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2.5. UAV Application in Remote Sensing  

In recent years, drones have been used as an alternative remote sensing platform to 

satellites or aircraft in fields such as coastal and environmental science (Klemas 2015) as well as 

in agricultural sciences (Xiang 2011). UAVs have the ability to capture high resolution imagery 

suitable for ground measurements in both 2D and 3D flights (O’Neil-Dunne 2015), once the 

imagery is freed of distortions by software such as Pix4D.  A recent study compared data 

collected from different DJI drones at different elevations, and the results show that data 

collected from DJI drones can be used for linear measurements, with an average margin of error 

of 1.1% for all flights. The results also show that flying at low altitudes of 66 feet (20 meters) 

improved measurement accuracy by 0.35%, with an average measurement error of only 0.26 feet 

(0.08 meters) for a phantom 4 pro DJI drone (Putch 2017). Although applied in multiple fields, 

the use of drones has yet to be applied to the production of HD maps for autonomous vehicles.  

The benefits of UAVs for various applications include the ability to deploy a UAV 

relatively quickly and repeatedly at low altitude. With the miniaturization of sensors and the 

abundant availability of UAVs, they have become a versatile remote sensing platform (Laliberte 

2016). As UAV applications have increased considerably in recent years, clearly, their 

application may extend to the automotive industry as an additional or alternative way to capture 

HD maps. This research explored that possibility. 
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 Chapter 3 Methods 

The objective of this research study was to evaluate the potential use of UAVs in HD mapping 

efforts to aid the implementation of autonomous vehicles in the near future. To investigate if 

UAVs are a viable alternative mapping method, several steps were taken before the study sites 

could be evaluated. The following workflow depicts all major steps taken to complete this 

research study (Figure 4). Dependencies within the workflow are shown by arrows, where each 

arrow starts from the dependent step and ends at the succeeding step.  

 

Figure 4. Thesis project workflow 

In overview, the workflow proceeded as follows. As both the United States and Germany 

have specific regulations on the use and operation of drones, the selected study sites had to first 

be approved for flight. Flight approval took several months for the Bertrandt company campus in 

Tappenbeck, Germany, as image capture is prohibited on the property. On the other hand, 



 

17 
 

 approval to fly over the German International School was readily obtained since it is private 

property and the school’s owners were supportive of this research effort. 

 After flight approval, GCPs were established within the study sites to improve 

geolocation accuracy of the resulting orthomosaic. Pix4D capture was used to create flight plans 

for the study sites as this app allows route planning, locks in a specified altitude, and makes for 

easy transition to Pix4D mapper. Pix4Dmapper is a professional photogrammetry and drone-

mapping software capable of orthomosaic generation based on orthorectification. According to 

the Pix4D support and training website, the drone images are not simply stitched together, 

instead the software computes keypoints in the images to find matches. After the initial matches 

are made, the software runs an automatic aerial triangulation (AAT) and bundle block adjustment 

(BBA). The orthomosaic is then created based on orthorectification which removes the 

perspective distortions from the imagery. 

The drone imagery and GCPs were imported and processed through the initial processing 

step to compute keypoints and evaluate relative and geolocational accuracy errors. After initial 

processing, the third processing step was run to generate the orthomosaics. The orthomosaics 

were then exported for further use in ArcGIS Pro and ArcGIS Desktop. As described on the Esri 

website, both ArcGIS Pro and ArcGIS Desktop are mapping and analytics platforms to perform 

varying tasks on geospatial data. ArcGIS Desktop comprises of applications such as ArcMap, 

ArcCatalog, and ArcToolbox. ArcGIS Pro is the latest professional desktop GIS software that 

includes all applications in one, though since it is still evolving, it does not currently contain the 

entire set of functionalities built into the older ArcMap. 

The exported orthomosaics underwent two independent processing methods in ArcGIS 

Desktop and ArcGIS Pro. These methods include manual delineation and tool-based extraction 
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 of the orthomosaics, respectfully. After ArcGIS processing, the drone-generated HD datasets 

were exported to individual geopackages and compared to known HD data standards to evaluate 

the application of UAVs in HD mapping practices.  

The following sections describe the work completed in detail.  

3.1. Determination of Prototype HD Data Standards and Structure  

The definition of an HD dataset is still fluid. However, the drone-generated datasets in 

this study needed to be compared to some sort of standard to validate the application of UAVs in 

HD mapping practices. Prototype HD data standards and data structure were thus compiled for 

this study by examining the research of related works, information on data specifications of HD 

datasets from the NDS consortium, and outreach to Here, Inc.  

For logistical information on the production of HD datasets by mapping-vehicles, 

contacts from the US HAD Team at the HERE technologies mapping company agreed to answer 

several questions regarding the use of mapping-vehicles for the development of HD datasets. The 

answers from Here, Inc. provided this research study with a standard on the logistical aspects of 

the current leading method of HD map production: mapping vehicles. Based on these answers, 

Table 1 summarizes the prototype HD data standards used in this study as determined from the 

interview, including the questions that were asked, the answers, and answers found in related 

literature. The answers from Here, Inc. found in Table 1 have been summarized and are not the 

exact words from the contacts at Here, Inc. For the full unaltered answer, see Appendix B.  
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 Table 1. Prototype HD data standards based on communication with Here, Inc. 

Question to Here Answer from Here Information obtained by 
literature review 

Prototype HD data 
standards 

What is the 
geolocational 
accuracy of an HD 
map? 

Absolute accuracy is below 
1.0 m and for some features 
below 50 cm. The absolute 
accuracy is always higher 
than the relative accuracy 
and both are equally 
important. 

Absolute accuracy of 1.0 
m or below, in terms of x, 
y, z coordinates (Massow 
et al. 2009). 
 
Relative accuracy of 15 
cm in terms of 
neighboring reference 
locations within the map 
and their relative position 
to each other (TomTom 
2017). 

Absolute accuracy 
must be below 1.0 m 
in term of x, y, z. 
 
Relative accuracy 
must be below the 
absolute accuracy. 

How many times 
must the mapping 
vehicle drive a 
stretch of road to 
have sufficient data 
to create an HD 
map? 

HERE True vehicles drive a 
map link only once. Re-
drives occur if there is an 
indicator for change, such as 
construction. 

A stretch is driven 5-10 
times with a 64-channel 
LiDAR system (Synched 
2019). 

A stretch is driven 
1-5 times to create 
an HD dataset. 
Drive frequency 
varies by company 
and their mapping 
vehicles. 

What is the data 
volume obtained 
from driving a 
stretch of 1km? 

Quite a lot, HERE True 
vehicles collect 60-80 
Mbyte/second of raw data 
from lidar plus 80Mpixel 
imagery collected at 20 Hz. 
OEM vehicles collect 80-
100 kbyte/km, OEM sensor 
data are segmented and 
highly compressed. 

One hour of drive time 
corresponds to 1 terabyte 
(TB) of data (Seif and Hu 
2016). 

The data volume 
obtained is high, 
from 3-5 GB per 
minute to multiple 
TB per hour. 

During data 
collection, how fast 
can the mapping 
vehicle go? 

The speed is fairly low with 
a maximum speed of 80 
km/h (49.7 mph). The faster 
the vehicle moves, the more 
sparse the lidar point cloud 
gets. 

No related work found. The maximum speed 
for a mapping 
vehicle is 80 km/h 
(49.7 mph). 
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 Question to Here Answer from Here Information obtained by 
literature review 

Prototype HD data 
standards 

How much time, 
including processing 
time, is needed from 
data collection to the 
finished HD map 
that can be used by 
an autonomous 
vehicle? 

Initial road mapping with 
HERE True raw sensor data 
takes several days, even 
weeks. Once initial mapping 
is done, meaning they 
consume already aggregated 
segmented content, the HAD 
team targets a 24hr-
turnaround-cycle. 

For a 20 km radius of a 
Beijing park, a fleet of 
mapping vehicles spent 5 
days on fixed GPS and 
one day driving the 
stretch 5-10 times 
(Synched 2018). 
 
Processing 1 TB of 
collected data by means 
of high computing power 
requires two days to 
create usable navigation 
data (Seif and Hu 2016). 

Initial processing 
time, from collection 
to completed HD 
dataset, takes several 
days to weeks. 

Does an HD map of 
a parking lot exist? 
If so, what is the 
general data 
structure of the 
map? 

The HAD team is focused 
on Limited Access Road 
network coverage, where 
physical dividers exists 
between roads. The area of 
“Parking” is not directly 
covered by HAD for now. 

No related work found. Currently, no 
publicly available 
HD map of a 
parking lot exists. 

How much does the 
service of Here cost? 

Here, Inc. cannot be hired as 
an individual contractor and 
thus cannot answer this 
question. 

A mapping company 
named DeepMap charges 
$5,000 per kilometer for 
its services in the US 
(Synced 2018). 

Mapping companies 
for hire can charge 
sums of $5,000 per 
kilometer for their 
services. 

 

With the goal to obtain a uniform data structure, the NDS consortium requires all HD 

datasets to follow the same data structure. As described in Chapter 2, the NDS data structure 

constitutes multiple databases and multiple layers of geo-informational data. The focus of this 

research study was on the Basic Map Display (BMD) and the required NDS data structure of the 

BMD database. Based on the data structure used by Bertrandt, Inc. for conversion to NDS, Table 

2 outlines the HD data structure used in this study for the drone-generated HD datasets. The 

digitized feature classes had to be drawn counter-clockwise as the NDS format can only display 

feature classes where the line-vertices are as such. Every feature class had to be exported to its 

own geopackage. A list with all feature class names used in the NDS format was provided by 

Bertrandt, from which the feature classes that occurred within the individual study sites were 



 

21 
 

 selected. From there, the exported geopackages were converted to the NDS format by the 

engineering services company Bertrandt. Validation of the output of the workflow in this study is 

achieved if the data can be converted and displayed in the NDS format, such that the data can be 

displayed for use in autonomous vehicles.  

Table 2. Prototype HD data structure for conversion to NDS. 

Layer Name Included 
features 

Mandatory 
Attributes Geometry 

AREA_GREEN_URBAN vegetation fid, markCount, 
areaFeatureClass 

Single part 
line 

AREA_TRAFFIC_PARKING the entire 
parking lot 

fid, markCount, 
areaFeatureClass 

Single part 
line 

AREA_TRAFFIC_PARKING
_ LOT 

parking spaces 
within the 
parking lot 

fid, markCount, 
areaFeatureClass 

Single part 
line 

AREA_TRAFFIC_ROAD road within the 
parking lot 

fid, markCount, 
areaFeatureClass 

Single part 
line 

AREA_ROCK landscaping 
made of rock 

fid, markCount, 
areaFeatureClass 

Single part 
line 

BMD_LINES 
borders, 

boundaries, 
fences, walls 

fid, markCount, 
lineFeatureClass 

Single part 
line 

 

3.2. Collection and Preparation of Drone Imagery 

As a remote sensing research project, data requirements for this study include drone-

generated aerial imagery and a standard for comparison. The gathered data consisted of aerial 

imagery collected from a DJI Phantom 4 drone with one 12.4-megapixel camera that captured 

true color camera imaging at visible wavelengths. For both study sites, an orthomosaic was 

created and exported in a TIFF file format.  
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 3.2.1. Bertrandt Parking Lot Data  

A total of 413 images were collected at nadir and captured at an altitude of 15 meters (49 

feet). This altitude was originally selected as it allowed for vehicle and tree canopy clearance at 

the study site while being low enough for detailed and clear imagery capture. The spatial 

resolution of the Bertrandt Parking lot was 0.57 cm per pixel. The images were collected during 

a period of continuous cloud cover to avoid glare and shadows in the images. As the battery life 

of a Phantom 4 drone allows a flight duration of approximately 30 minutes, several flights were 

flown to cover the entire study site. All images, including repeated flights, were imported and 

processed together as one project for each study site. Processing all imagery together allowed 

imagery from separate flights to be tied together and geolocated to one another. 

Once all images were imported, GCPs were added to the project and marked manually 

within each image where they were visible. For the Bertrandt parking lot, previously measured 

benchmarks with an accuracy of 4 cm were available within the selected study site extent, made 

available by the cadastral office in Gifhorn, Germany. These benchmarks were used as GCPs and 

were marked on the ground with a large, high-contrast, target.  A total of three GCPs were used 

for this study site. They are represented by blue crosses in the Pix4D mapper output shown in 

Figure 5. Here, all images used for the study site are represented as red dots, whereas the green 

lines illustrate the flight path of the drone while capturing the images.  
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Figure 5. Pix4D mapper output showing the flight path (green lines), locations of captured 
images (red dots), and ground control points (blue crosses) for the first study site. The width of 

the mapped area shown is 120 meters. 

After initial processing in Pix4D mapper, manual tie points (MTPs) were added as they 

can improve the reconstruction accuracy. Similar to GCPs, the MTPs can be marked in each 

image in which the selected tie point is visible. As the number of GCPs was relatively low for 

the size of this study site, a total of nine MTPs were added. After all desired points were marked, 

the project was reoptimized and reprocessed by rerunning the initial processing and orthomosaic 

generation steps in Pix4D mapper.  
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 3.2.2. German School Parking Lot Data  

A total of 454 images were captured with the Phantom 4 drone for the German School 

parking lot. The images were collected at nadir during light continuous cloud cover and at an 

altitude of 15 meters (49 feet). The spatial resolution of the German School parking lot was 0.62 

cm per pixel. A total of 4 GCPs were evenly distributed throughout the study site, as shown in 

Figure 6.   

 

Figure 6. Pix4D mapper output showing the flight path (green lines), locations of captured 
images (red dots), and ground control points (blue crosses) for the second study site. The width 

of the mapped area shown is 100 meters. 

As no previously measured benchmark data was available, the GCPs in study site 2 were 

established using a Trimble GeoExplorer XH 6000 series GPS unit, made available by the 

Spatial Science Institute at USC. As described by Trimble, the GeoXH handheld GPS unit uses 
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 two multipath rejection technologies to provide decimeter, 10 cm, accuracy either real-time or 

after postprocessing (Trimble 2011). As shown in Table 3, submeter real-time horizontal 

accuracy and approximately one-meter vertical accuracy was achieved for all GCPs.  

Table 3. Horizontal and vertical accuracy of ground control points. 

 Horizontal 
Accuracy 

Vertical 
Accuracy 

GCP 1 0.69 m 0.87 m 
GCP 2 0.77 m 0.93 m 
GCP 3 0.74 m 0.99 m 
GCP 4 0.64 m 0.86 m 

 

The images for the German school parking lot were collected in May 2019, whereas the 

images for the Bertrandt parking lot were collected in January 2019. As a result, the orthomosaic 

generated for the German school parking lot encountered tree canopy obstruction above several 

parking spaces, due to the seasonal change to spring. To remove the overhanging vegetation, the 

generated orthomosaic was edited within the orthomosaic editor in Pix4D mapper. Within the 

editor, areas of the orthomosaic can be selected and subsequently all available images for that 

particular location are displayed. Multiple images shot from different angles or days can be 

selected to replace the image used with the obstructed view. Figure 7 shows the results of this 

removal of vegetation in the study site through the orthomosaic editor in Pix4D mapper. Once all 

edits were complete, the orthomosaic was saved and exported as the final orthomosaic for study 

site 2.  
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Figure 7. Before (left) and after (right) snapshots of vegetation removal. 

3.3. Manual Delineation of Required Features on Orthomosaics  

According to Bertrandt’s efforts in converting data structures to NDS, current 

commercial efforts of HD dataset generation still depend heavily on the manual delineation of 

desired features. Thus, one of the two processing methods of the orthomosaics was done in 

ArcGIS Desktop and was comprised of the heads-up digitization of the study sites. The 

orthomosaics of both study sites were digitized following the required HD data structure.  

In ArcCatalog, a geodatabase (.gdb) was established for each study site. Feature classes 

were created within the geodatabase for each feature class represented in the orthomosaic. For 

example, study site 1 had small landscaping areas of rock, thus an AREA_ROCK feature class 

was created in the geodatabase for study site 1. All areas, such as parking spaces or roads, were 
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 initially set up as polygon feature classes. Borders, such as the end of the parking lot, were set up 

as a polyline feature class and labeled BMD_LINES, as shown in Table 3 above.  

All feature classes within the geodatabase received the mandatory attributes of 

“markCount” and “line-” or “areaFeatureClass”. As Esri ArcGIS products assign every feature 

within a feature class a unique identifier known as OBJECTID, no additional “fid” attribute had 

to be entered as the OBJECTID was used as “fid.” The purpose of the markCount attribute was 

to show how many vertices a digitized feature has. All area features were required to contain a 

minimum of three vertices. The markCount attribute type was numeric and was calculated by the 

field calculator with the following python formula:  

!shape!.pointcount 

The line or areaFeatureClass was a text field and contained the name of the feature class, 

such as AREA_ROCK.  Once the feature class data structure was established in ArcCatalog, the 

orthomosaic was digitized manually in ArcMap.  

 Since the NDS database can only read area feature boundaries where the line direction is 

counter-clockwise, all area feature classes were digitized counter-clockwise, tracing polygons 

over the orthomosaic from right to left. All tracing efforts were done within an editor session and 

saved periodically. For use in autonomous vehicles, individual parking space polygons cannot 

share a border with one another as the outer boundaries of each parking space must be unique. 

Curbs and other physical obstructions count as non-drivable surfaces and were therefore 

excluded in the tracing efforts, as shown in Figure 8. By excluding curbs, parking space lines, 

and other barriers, all polygons were given a unique boundary.  
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Figure 8. Illustration of boundary exclusion in manual delineation. 

To convert the geopackages to the NDS format, all feature classes had to have a single 

part line geometry. Thus, once all tracing efforts were completed, the polygon feature classes 

were changed to polyline feature classes by use of the tool “Polygon to Line.” The tool converted 

the polygon boundaries to polylines. The new polylines were then used as inputs for the tool 

“Multipart to Singlepart,” a data management tool that separated the multipart polylines to single 

part lines. Figure 9 illustrates the change in geometry applied by use of the Multipart to 

Singlepart tool. With a single line geometry, the feature classes were in the correct format and 
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 were exported as individual geopackages. Lastly, the geopackages were sent to Bertrandt, Inc., to 

test if the data was NDS transferable.  

 

Figure 9. Illustration of the Multipart to Singlepart tool. Source: Esri 2019  

3.4. Tool-based Extraction 

The second processing method of the orthomosaic was done in ArcGIS Pro. The goal of 

this method was to create a tool-based model workflow that would automatically extract the 

desired features from the orthomosaic with little manual input by the user. To achieve this goal, 

object-based image classification and segmentation methods were applied based on Esri’s object-

oriented feature extraction workflow, Esri’s post-classification processing workflow, and the 

Vector machine classification approach described in Tzotsos and Argialas (2008). The Vector 

machine classification approach used was a supervised classification method that has gained 

much attention due to its high classification accuracy and small needed training sets, according 

to Tzotsos and Argialas. 

As shown in Figures 1 and 2, the raster inputs (orthomosaics) from the two selected study 

sites had very different spectral and spatial characteristics. The Bertrandt study site was made of 

cobble stone and parking spots were mostly occupied by vehicles of all colors and sizes. The 

German school study site had no vehicles within the orthomosaic and the dominant surface type 

was asphalt.  
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 To accommodate the differences between the selected study sites, three ArcGIS models 

were developed. The main ArcGIS model included the processes applied to both study sites to 

extract the desired polygon feature classes from the raster input. Two extension models, labeled 

as the Bertrandt extension model and German school extension model, were created as the 

following processing tools varied due to the spectral and spatial differences between the study 

sites. The main ArcGIS model, combined with the extension model for the specified study site, 

rendered the final output of line feature class roads, parking spots, parking areas, and green 

areas. Table 4 shows a list of all the tools utilized in the three models and gives a brief 

description of each. Each of these models is explained in detail in the sections following.  

Table 4. Name and description of all geoprocessing tools applied. 

Tool Name Tool Description Tool Type 
Extract by mask Extracts raster cells which lay within the area defined 

by a mask. 
Raster 

Convolution smooth 
(5x5) 

Smooths the raster with a 5-cell x 5-cell moving 
window by calculating the pixel value based on the 
weighs of its neighbors. 

Raster 

Segment mean shift Groups together adjacent pixels that have similar 
spectral and spatial characteristics. 

Raster 

Train support vector 
machine classifier 

A supervised classification method well suited for 
segmented images. The tool is a classification 
training tool and generates an Esri classifier 
definition file (.ecd). 

Raster 

Classify Classifies a raster dataset based on a Esri classifier 
definition file and the raster inputs. 

Raster 

Reclassify Reclassifies the values in a raster. Can be used to 
separate or join ranges of values. 

Raster 

Boundary clean Smooths the boundaries between zones by changes 
regions of less than 3 cells. 

Raster 

Region group Groups cells in a raster into regions where a unique 
number is assigned to each region. Individual regions 
are created for small pixel groups of the same value. 

Raster 

Select by attribute Selects features by their specified attributes. A 
Clause is used to select certain attributes. 

Raster/ 
Vector 



 

31 
 

 Tool Name Tool Description Tool Type 
Set null Sets identified cell values to NoData. Setting a false 

null value is often used to change all values that meet 
specified conditions to NoData, or to create a mask. 

Raster 

Nibble Replaces the cells in a raster, according to a mask, 
with the values of the nearest neighbors. 

Raster 

Raster to polygon Converts a raster dataset to a polygon feature. Raster 
Eliminate Removes small sliver polygons by merging them 

with the largest neighboring polygon. 
Vector 

Copy features Copies specified features to a new feature class. Vector 
Buffer Creates a buffer around a point, line, or polygon. Vector 
Erase Creates a feature class that only has the portions of 

the input feature class that lie outside of the erase 
feature. In other words, it allows the area of one 
feature to be cut out of another feature. 

Vector 

Delete rows Deletes all selected rows from the input. Vector 
Polygon to line Convert a polygon feature to a line feature. Vector 

Multipart to singlepart Separates multipart features into single part features. Vector 

Source: pro.arcgis.com 
 

For some tools, optional parameters were entered to refine the output or to search for 

certain attributes. The “select by attribute” tool was used four separate times and was thus given 

a number for each tool use. Although mostly the same, a few parameters varied between study 

sites. Table 5 describes in more detail the tools’ parameters selected for the two study sites.  

 
Table 5. Tool input parameters. 

Tool Input parameter study site 1 Input parameter study site 2 
Segment mean shift spectral detail: 20 

spatial detail: 5 
segment size: 30 

spectral detail: 20 
spatial detail: 5 

segment size: 30 
Reclassify 0 1 

1 2 
2 3 
3 4 
4 1 
5 1 
6 3 

 

0 1 
1 2 
2 3 
3 4 
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 Tool Input parameter study site 1 Input parameter study site 2 
Select by attribute 1 count < 10 000 count < 10 000 

AND link ≠ 2 
OR link = 2 

AND count < 500 
Select by attribute 2 shape area < 3 shape area < 3 

AND gridcode ≠ 2 
Select by attribute 3 (run 4x) 

gridcode = 1 
gridcode = 2 
gridcode = 3 
gridcode = 4 

(run 3x) 
gridcode = 1 
gridcode = 2 
gridcode = 3 

Select by attribute 4 Not applicable shape area < 5 
OR shape length > 75 

Buffer 0.3 m Not applicable 
 

3.4.1. Main Model  

The main ArcGIS model, shown in Figure 10, depicts all geoprocessing tools used to 

extract polygon feature classes, along with their inputs and outputs. Dependencies within the 

model are shown by arrows, where each arrow starts from the dependent step and ends at the 

succeeding step. The model tools were color-coded where tools that require manual input are 

shown in blue. 



 

33 
 

 

 

Figure 10. Main ArcGIS model: Orthomosaic to polygon feature classes 

The initial model inputs were the orthomosaics exported from Pix4D mapper and a mask 

extent to reduce the size of the raster to the exact region of interest. The mask extent was created 

in an editor session. Once the extent was reduced and smoothed, the orthomosaic was segmented 

and then classified using training sample polygons created in the train sample manager, found in 



 

34 
 

 the image classification pane. The training samples allowed for a supervised classification where 

samples are picked from the segmented image to represent a class value. For the Bertrandt 

parking lot, training samples were taken for the road, parking area, vehicles, and green areas. For 

the German school parking lot, training samples were taken of the white-painted parking lines, 

road, sidewalks, and green areas. Although the sidewalk in the German school parking lot was 

not used in the final classification, training samples were created to ensure that sidewalks were 

not categorized with roads or other class values of significance.  

After the raster was classified, new values were selected by the reclassify tool to group 

class values together as needed. The reclassify tool was important as the model may be run with 

different inputs and different training sample classes. After the reclassify tool, however, all class 

values are known, and similar classes are grouped together as one. In a high-resolution raster, 

small pixel regions can be classified incorrectly. To further process and regroup small pixel 

regions to the majority pixel class in its neighborhood, the remaining tools in the main model 

were based on the post-classification processing workflow from Esri. Boundaries between 

regions were cleaned and small pixel groups were removed from the classified raster by use of 

the tools Region Group and Nibble. Next, the raster was converted to a polygon feature class and 

small insignificant polygons were removed with the Eliminate tool. Lastly, the polygon feature 

class was exported to multiple polygon feature classes based on the class value attribute (Copy 

Features tool). With individual polygon classes produced for each desired feature, the work of 

the main ArcGIS model was complete and the separate extension models were applied to each 

study site for final processing.  
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 3.4.2. Extension Models 

The extension models include additional steps taken to extract line feature classes from 

each polygon feature class created by application of the main ArcGIS model. The class values, 

gridcode X, were subjected to various geoprocessing tools to render the final outputs.  

 
Due to the vehicles present in the Bertrandt parking lot, a separate feature class was 

created for all vehicles within the parking lot and given the class value four. Parking spots were 

not marked with white lines, instead, individual cobble stones formed a striped pattern with 

slightly different spectral signatures to the surrounding cobble stones. To extract parking spaces, 

the vehicles within the parking spots were used to represent areas used for parking, instead of 

using the parking stripes. The vehicle feature class received a small buffer of 30 cm as vehicles 

are smaller than the allotted parking area.  

Shown in Figure 11, the Bertrandt extension model received four inputs from the main 

ArcGIS model. After the vehicle feature class received a buffer, all polygon inputs were 

converted to polylines, followed by the conversion to single part lines. The final outputs of the 

extension model were again exported as geopackages and sent to Bertrandt, Inc., to test if the 

data was NDS transferable.  
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Figure 11. Bertrandt extension model: Polygon to line feature class 

The German school extension model varied significantly from the Bertrandt extension 

model. Only three input features were rendered from the main ArcGIS model and additional 

geoprocessing tools were used on the three inputs, as shown in Figure 12. No vehicles were 

present in the German school parking lot during data collection, thus no feature class was created 

for the vehicles. As the parking lot was empty and parking lines were clearly marked, the parking 

line grid painted on top of the asphalt road was the focus point to create parking spaces.  
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Figure 12. German school extension model: Polygon to line feature class 

The German school parking lot required some manual input to create the rectangular 

parking spots. The parking line polygons, gridcode two, were used to create the parking spaces 

by use of the “Auto-Complete polygon” tool, available in an edit session when creating 

additional polygon features in a polygon layer. The autocomplete polygon created a new polygon 

by using the existing polygon’s geometry and the edit sketch to define the edges of the new 

polygon, as described on the Esri tool support website. In other words, the autocomplete polygon 

tool was used to quickly snap individual parking spaces on to the existing parking line grid. 

Figure 13 demonstrates the use of the autocomplete tool to create individual parking spaces.                                   
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Figure 13. “Auto-Complete Polygon” tool demonstration. In step a) the user draws a line across 
the desired area where new polygons should be created. In step b) the polygons are created by 

double-clicking the mouse. Step c) shows one of the newly created polygon features outlined in 
blue. 

Once all parking spaces were complete, the parking space polygons were used in 

conjunction with the road feature class to erase the road within the extent of the parking spaces. 

Due to an empty asphalt lot, the road polygon included all parking spaces, except for the white 

painted parking lines, as road. If exported as is, the parking spaces would have been categorized 

as drivable road. Thus, the erase tool was used to eliminate road within the extent of the parking 

area.  As described in Section 3.3, all parking spaces required a unique boundary, so no two 
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 parking spaces could share a line. The “delete rows” tool was therefore used on the parking area 

polygons to eliminate the white parking lines between the individual parking spaces. Lastly, all 

polygon feature classes were converted to single part polylines and exported as individual 

geopackages.   

3.5. Validation Methods 

The results of this research study include the drone-generated orthomosaics, the two HD 

datasets generated by manual delineation, and the two HD datasets generated by the application 

of various geoprocessing tools. The orthomosaics were evaluated based on accuracy, overall 

quality, and time. The quality of the orthomosaics and the collection process of drone imagery 

were the key components to answer the question if drones are a viable alternative mapping 

method. The accuracy was distinguished into absolute and relative accuracy.  The absolute 

accuracy was defined by the x (east-west), y (north-south), and z (elevation) difference between 

the location of features on the orthomosaic and their true positions on the planet. The absolute 

accuracy of the drone-generated orthomosaic depended on the GCPs’ accuracy, distribution, and 

number. The relative accuracy is the positional accuracy of individual features on the map 

compared to the location of other features on the same map.  

The four HD datasets generated by manual delineation and tool-based extraction methods 

were evaluated based on time of the processing method and data structure. The drone-generated 

HD datasets and the prototype HD data standards were compared to analyze if the drone-

generated HD datasets matched the prototype HD standards. Lastly, HD datasets were sent to 

contacts at Bertrandt, Inc. to see if the data structure and quality was good enough to convert the 

HD datasets in to the NDS file format and could be displayed in the NDS database inspector. 
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 Chapter 4 Results  

This chapter presents the key findings of this research study. The UAV-based remote sensing 

technique applied in this study showed that high quality orthomosaics can be generated from low 

cost recreational drones with utilization of ground control points (GCPs). The orthomosaic 

processing method of manual delineation tested in this study shows successful conversion and 

display of the digitized objects in the NDS format. The tool-based extraction method, which 

included object-based image classification and post-processing methods, was successful in 

segmenting and classifying the orthomosaic and extracting the desired features. The tool-based 

extraction method was successfully converted to the NDS format but was not able to be 

displayed in the NDS database. The manual delineation processing method was therefore 

deemed the best practice for HD dataset development in this research study.  

4.1. Assessment of Drone-generated Images and Orthomosaics  

The imagery of the Bertrandt study site and German school study site were collected by a 

Phantom 4 drone with a 12.4-megapixel camera. The time invested in data collection consisted 

of flight planning, data collection, and processing in Pix4D mapper. Table 6 shows in detail the 

time taken for each step to generate the final orthomosaics. Once permission for drone flight was 

approved, the total time for data collection was approximately 11 hours for the Bertrandt study 

site and approximately 7 hours for the German school study site. The Bertrandt study site 

required multiple flights as the battery life of a Phnatom 4 drone is 30 minutes. The Bertrandt 

study site included two separate flights where each flight heavily overlapped imagery from the 

previous flight. The German school study site was flown twice where each flight was 11 minutes 

and 10 seconds. 
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 Table 6. Time required for orthomosaic generation by Phantom 4 drone. 

 Bertrandt Study Site 1 German School Study Site 2 
Allotted time for data 

collection 6 days 14 days 

Time for flight planning 8 hrs 5 hrs 
Total flight time 58 min 46s (2 flights) 22 min 20s (2 flights) 

Time for initial image 
processing 1 hr 06 min 11s 45 min 02s 

Time for Orthomosaic 
generation 32 min 31s 29 min 56s 

 
 
 All drone-collected images were processed in Pix4D mapper which produces extensive 

quality reports after initial processing. All quality results presented in this chapter were drawn 

from these reports. The complete quality reports summarized in this chapter can be found in 

Appendix C for study site 1 results and Appendix D for study site 2 results. 

  A summary of the processing results is shown in Table 7. Here, the ground sampling 

distance (GSD) is measured as the distance between two adjacent pixel-centers. The smaller the 

GSD, the greater the spatial resolution of the image. For both study sites, a sub-centimeter 

ground sampling distance was achieved.  

Table 7. Summary of Pix4D processing results. 

 Bertrandt Study Site 1 German School Study Site 2 
Ground sampling distance 

(GSD) 0.56 cm (0.22 inches) 0.62 cm (0.24 inches) 

Orthomosaic Resolution 0.57 cm/pixel 0.626 cm/pixel 
Median matches per 

calibrated image 12795.6 3520.87 

Area Covered 0.0184 km2 (0.0071 sq. miles) 0.0091 km2 (0.0035 sq. miles) 
Ground control points (GCPs) 3 4 

Manual tie points (MTPs) 9 0 
Image Overlap High (5+) High (5+) 
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 The number of image overlap ranges from 1 (low) to 5 (high), where low image overlap 

may give poor results. The number of overlapping images is computed for each pixel in the 

orthomosaic. Good results were generated for both study sites as most of the orthomosaics had 

high overlap with sufficient number of keypoint matches. Figure 14 shows the image overlap 

throughout the orthomosaics in both study sites. Low overlap can be seen along the edges of the 

orthomosaic, in particular for study site 1 where the flight extent was very restricted.  

 

Figure 14. Image overlap results. Study site 1 (left), study site 2 (right). Red through yellow 
indicate poor overlap, green indicates high overlap from which good results were generated. 

Source: Pix4D quality reports. 

 To evaluate the accuracy and overall quality of the drone-generated orthomosaics, the 

differences between the initial and computed image positions were calculated, as shown in    
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 Table 8. The difference between the initial and computed positions is the error. Large error 

values indicate that much stretching and skewing had to occur for the data to match. With high 

overlap and sub-centimeter ground sampling distances of 0.56 cm for study site 1 and 0.62 cm 

for study site 2, small error ranges were achieved between the initial and computed image 

positions for the study sites.  

Table 8. Error assessment calculated as the difference between initial and computed positions. 

 Bertrandt Study Site 1 German School Study Site 2 
Mean absolute geolocation 

error (m) 
 

X Y Z 
-0.22 0.51 -0.07 

 

X Y Z 
-0.05 0.01 -0.10 

 

Mean absolute camera 
position and orientation 

uncertainty (m) 

X Y Z 
0.046 0.042 0.113 

 

X Y Z 
0.547 0.322 0.640 

 

Mean relative camera 
position and orientation 

uncertainty (m) 

X Y Z 
0.020 0.025 0.071 

 

X Y Z 
0.010 0.012 0.017 

 

Relative geolocation error 
(cm) 

 

X Y Z 
±1.12 ±0.56 ±0.56 

 

X Y Z 
±0.62 ±0.62 ±0.62 

 

Mean ground control point 
error (m) 

 

X Y Z 
.000002 .000003 .000001 

 

X Y Z 
0.0037 0.0013 -0.004 

 

Mean root mean square 
(RMS) error 0.002 m 0.028 m 

Mean projection error 
(pixels) 0.165 pixels 0.210 pixels 

 

 The mean absolute geolocation error for the Bertrandt study site was found to be -22 cm 

in the X direction, 51 cm in the Y direction, and -7 cm in the Z direction. The mean ground 

control point error was virtually zero. With such low error values and a GCP accuracy of 4 cm, 

the Bertrandt study site has achieved high quality results with centimeter (below one meter) level 

relative and absolute accuracy. The mean RMS error of 0.2 cm for study site 1 is very small, 
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 indicating a good and consistent transformation accuracy. The orthomosaic generated for study 

site 1 is shown in Figure 15.  

 

Figure 15. Bertrandt parking lot orthomosaic; study site 1. 
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  The mean absolute geolocation error for the German school study site was found to be -5 

cm in X, 1 cm in Y, and -10 cm in Z. The mean ground control point error was 0.37 cm in X, 

0.13 cm in Y, and -0.4 cm in Z. As described in Section 3.1.2, the GCPs in the German school 

study site were collected with a handheld GPS unit and achieved an average accuracy of 71 cm 

in XY direction and 91.5 cm in the Z direction. With low error values and sub-meter accurate 

GCPs, the German school study site 2 has achieved good quality results with centimeter level 

relative accuracy and absolute accuracy at or just below one meter. The mean RMS error of 2.8 

cm for study site 2 is large, indicating issues and/or inconsistent transformation accuracy. Figure 

16 shows the orthomosaic generated for study site 2. Inconsistencies and transformation issues 

can be seen along the edges of the orthomosaic.  
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Figure 16. German school parking lot orthomosaic; study site 2 
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 4.2. Manual Delineation Results  

The Bertrandt study site and German School study site were successfully digitized by 

manual efforts. The required data structure for conversion to the NDS data format was followed. 

As the total area covered for both study sites was relatively small, the required time for manual 

digitizing was a few hours. As shown in Table 9, the total time for digitizing includes all feature 

classes such as roads, parking spots, parking areas, and green surfaces. The time to set up the 

data structure includes the editing of the attributes, running the tools to convert polygons to lines, 

and multipart to single part lines, running the tool to create the SQLite database, and exporting 

the feature classes as geopackages. Due to the large (1.07 GB) size of the Bertrandt study site 

orthomosaic, some of the digitizing time of the Bertrandt study site went to patiently waiting as 

the orthomosaic loaded.  

Table 9. Time required for manual delineation. 

 Bertrandt Study Site 1 German School Study Site 2 
Total time for digitizing 4 hrs 43 min 1 hr 46 min 

Time to set up data structure 25 min 20 min 
 

Both study sites were successfully exported to geopackages as single line feature classes 

and sent to Andreas Pehlke at Bertrandt, Inc. to test NDS conversion. Figure 17 and 18 show the 

final data representations of study site 1 and 2 that were exported as line feature classes from 

ArcGIS Desktop. The BMD_LINES feature class marks the entry and exit border of the parking 

lot.  
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Figure 17. Manual delineation; final representation of study site 1. 
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Figure 18. Manual delineation; final representation of study site 2. 
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 4.3. Tool-based Extraction Results  

The vector machine classification approach, in conjunction with Esri’s object-oriented 

feature extraction workflow and post-classification processing workflow, proved successful in 

extracting the specified features from the orthomosaic with little noise in the polygon feature 

classes created. For both study sites, the training samples entered in the Train Sample Manager 

wizard and used for supervised classification correctly grouped the specified objects into classes. 

From the orthomosaic to NDS-ready line feature classes, the total time for the Bertrandt study 

site was 9 hours and 33 minutes and for the German School study site 3 hours and 42 minutes. 

Compared to the manual delineation method, the manual input in the tool-based extraction was 

significantly less, with 10 minutes of manual input for the Bertrandt study site and 34 minutes 

for the German School study site. Table 10 shows in more detail the runtime for the tools and 

model components. The tools in Table 10 are grouped into components based on their processing 

purpose.  

Table 10. Tool and model component runtime for tool-based extraction method.  

Tool and Model component 
Runtime Bertrandt Study Site 1 German School Study Site 2 

Segment mean shift runtime 4 hrs 19 min 47 min 
Vector support classification 

tools runtime 
(train support vector machine 

classifier, classify raster, 
reclassify) 

3 hrs 11 min 1 hr 41 min 

Post-processing tools runtime 
(boundary clean, region group, 

nibble, eliminate) 
1 hr 49 min 35 min 

Extension model runtime    
(tool run only time) 4 min 6 min 

Autocomplete polygons 
(manual input) N/A 24 min 

Train sample manager   
(manual input) 10 min 10 min 

Total time 9 hrs 33 min 3 hrs 42 min 
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 The extraction process of features from the Bertrandt study site was successful and 

included vehicle, vegetation, parking area, and road extraction. The cobble stone pattern of the 

road was initially an issue as the road was divided into hundreds of small rectangle polygons. By 

use of the post-processing tools that removed insignificant pixel groups and polygons, the cobble 

stone pattern was, however, removed and the road was rendered correctly. The results of the 

main model run, orthomosaic to polygon feature class extraction, for the Bertrandt study site are 

shown in Figure 19. The results of the Bertrandt parking lot extension model run are shown in 

Figure 20. The result shown in Figure 20 is the final representation of the Bertrandt study site by 

tool-based extraction methods. Compared to the final representation by manual delineation 

(Figure 17), the results of tool-based extraction are more chaotic. The main reason for large 

differences between the processing methods for the Bertrandt study site is the fact that the 

vehicles were included in the tool-based extraction method but were ignored during manual 

delineation.  
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Figure 19. Main model result for the Bertrandt study site 1. 

 



 

53 
 

 

 

Figure 20. Bertrandt extension model result; final representation of study site 1. 
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  The extraction processes of features from the German School study site were also 

successful and included parking spots, road, and vegetation. Figure 21 depicts the results of the 

main model run, orthomosaic to polygon feature classes, for the German school study site. The 

results of the German School extension model are shown in Figure 22. The extension model 

included the manual input to the “Autocomplete Polygons” tool to complete parking polygons 

out of the parking lines. With a manual input of 24 minutes, significantly less time was spent 

digitizing than by methods of manual delineation. Due to the lack of vehicles in the German 

school parking lot and the visibility of parking lines, the final representation shown in Figure 22 

is significantly less chaotic than tool-based extraction results seen in study site 1.  
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Figure 21. Main model result for the German School study site 2. 
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Figure 22. German School extension model result; final representation of study site 2. 
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 4.4. NDS Conversion 

The manual delineation results of the Bertrandt study site and German School study site 

were successfully converted to the NDS data format and the resulting datasets were successfully 

displayed in the NDS database Inspector. The tool-based extraction results of the study sites 

were successfully converted to the NDS data format but did not display in the NDS database 

Inspector.  

In an e-mail thread with the author from June 23rd to July 16th, 2019, Bertrandt employee 

Andreas Pehlke explained that no objects were rendered for the tool-based extraction method in 

the NDS-database Inspector which is most likely due to the lack of order and direction in the 

vertices of the objects. Objects in the NDS format are only displayed if the vertices of the lines 

are in the correct order. The geometry type and attribute information were according to NDS 

format specifications and therefore ran through the conversion successfully. For the manual 

delineation method, the results were converted successfully but a few vertices had to be changed 

by relocating the vertex for correct display in the NDS-database Inspector.  

 The final NDS-formatted datasets from the output produced by the manual delineation 

method are shown in Figures 23 and 24 for study site 1 and study site 2, respectfully. The NDS 

formatted datasets are displayed in the NDS-database Inspector in Figures 23 and 24. In Figure 

23, some discontinuity can be seen in the road feature class where vertices did not have the 

correct order or direction. The breaks in continuity can also be due to uncertainty in the specified 

coordinates of the vertices. With some manual adjustment in the NDS database, the coordinates 

of these vertices can be shifted.  
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Figure 23. Bertrandt parking lot in NDS format. Parking spots and road are white, vegetation is 
green, exit and entry borders are purple, and rock area is black. Source: Andreas Pehlke, 

Bertrandt, Inc. 
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Figure 24. German School parking lot in NDS format. Parking spots and road are white, 
vegetation is green, exit and entry borders are purple, and the parking area boundary is black. 

Source: Andreas Pehlke, Bertrandt, Inc. 
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 Chapter 5 Discussion and Conclusion 

Although aerial drones have been used as a remote sensing method in fields such as agriculture 

and environmental studies, the drone-based remote sensing method and processing methods 

evaluated in this research study offer an initial investigation of an alternative approach to HD 

dataset development for use in autonomous vehicle navigation.  

5.1. Current HD Data Standards and the Drone-generated HD Datasets  

Described in Section 3.3, the HD data standards uncovered from communications with 

Here Inc., related literature research, and communication with Bertrandt Inc., specify that an HD 

dataset has an absolute accuracy at or below one meter and a relative accuracy below the 

absolute accuracy. The drone-generated orthomosaics showed that the accuracy for aerial 

imagery relies heavily on the accuracy of the ground control points (GCPs) and the ground 

sampling distance (GSD). According to the Pix4D website, relative accuracy is expected within 

one to three times the GSD, absolute accuracy is one to two times the GSD horizontally, and one 

to three times the GSD vertically, assuming the projects were reconstructed correctly. The 

Bertrandt study site had centimeter level absolute and relative accuracy errors with a GSD of 

0.56 cm and a GCP accuracy of 4 cm. Assuming the Bertrandt study site was reconstructed 

correctly, the absolute and relative accuracy requirements were achieved at values far below one 

meter. The German School study site had absolute and relative accuracy errors in the 0-10 cm 

range with a GSD of 0.62 cm. The GCPs of the German School study site had an overall 

accuracy just below one meter. Assuming the German School study site was reconstructed 

correctly, the absolute and relative accuracy requirements were achieved with absolute accuracy 

values at approximately one meter.  

 



 

61 
 

 The logistics of data collection by mapping-vehicles were compared to the data collection 

by the Phantom 4 drone, as shown in Table 11. Overall, this study showed that data collection by 

aerial drones can be a faster and more cost-efficient alternative method for data collection 

compared to mapping-vehicles.  

Table 11. Data collection by mapping-vehicles vs. by aerial drone. 

Data collection by mapping-vehicle Data collection by aerial drone 
A stretch is driven 1-5 times for data 

collection. 
The study sites were flown 2-3 times 

for data collection. 
Data volume is high from 3-5 GB per 

minute to multiple TB per hour. 
Data volume was low at 1.5 GB to 2.5 

GB per study site. 
Processing time, from data collection to 

HD dataset, is several days to weeks. 
Total 

processing 
time 

Study 
site 1 

Study 
site 2 

With manual 
delineation 

15.5 hrs 8.2 hrs 

With tool-
based 

extraction 

20 hrs 10 hrs 

 

Mapping companies for hire can charge 
sums of $5,000 per kilometer for their 

services. 

The only additional cost in this study 
was purchase of a Pix4D license. 

 

 The data volume obtained, time for data collection, and processing time by mapping-

vehicles is significantly higher than the aerial imagery obtained and processed in this study. 

Important to remember, however, is that mapping-vehicles collect data with more than just one 

camera.  A mapping-vehicle used in a study by Dolgov and Thrun 2009, depicts the use of a 

LiDAR sensor in addition to four different laser range finders (Dolgov and Thrun 2009). 

Combining the data output from all sensors and cameras during mapping results in high data 

volumes. The high data volumes, in turn, increase the processing time.  
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  In this research study, a single-camera aerial drone was used to create high quality data. 

If drones can be used, it begs the question if high volume LiDAR sensing, in addition to the other 

sensors, is truly necessary to create a highly accurate map for use in autonomous vehicles. The 

company Waymo, which was formerly Google’s self-driving car project, currently develops fully 

autonomous vehicles for shuttle and commercial services. These autonomous vehicles are 

equipped with three sensors; a 360-degree LiDAR sensor, a long-range sensor in the front, and a 

short-range sensor to monitor the car’s perimeter (Randall 2019). If autonomous vehicles will be 

equipped with centimeter level sensors to navigate merely on their own, a high-quality map 

developed by means of aerial imagery may suffice.  

5.2.  Limitations and Challenges in Drone-based Data Collection   

 The allotted time for drone-based data collection at the Bertrandt study site in Germany 

was less than one week in January 2019. Within the week, weather challenges of rain and stormy 

winds limited data collection to three days. With flexible work hours at Bertrandt, Inc., the time 

of data collection was limited as well due to heavy people-traffic in the study site in the morning, 

at noon, and after 3:30 pm. With the limited possible flight time and weather uncertainty in 

January, the Bertrandt study site was flown in two parts during work hours. Unfortunately, 

parking at the Bertrandt company was limited and vehicles were present in the study site during 

data collection.  

 The orthomosaic generated for the Bertrandt study site experienced some challenges as 

well, as certain areas of the orthomosaic were distorted. Figure 25 illustrates the distortion of the 

northwest corner in the Bertrandt study site. The quality report generated for the Bertrandt 

parking lot shows that two blocks were generated for the calibrated images. This northwest 

region of the parking lot was separated into its own dataset block and thus extreme discontinuity 
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 can be seen between the two blocks. The small northwest corner section was not tied well 

enough to the rest of the model. As a result, the northwest corner of the Bertrandt study site was 

not included in the processing.  

 

Figure 25. Distortion in the northwest corner of the Bertrandt parking lot orthomosaic. 

 For the German School study site, no previously-surveyed benchmark points were 

available for use as GCPs, thus GCPs were measured with a GPS unit. Although a survey-grade 
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 GPS unit would have been ideal for precise GCP marking, the accuracy of the GCPs in the 

German school study site were limited to the GPS unit available.  

5.3. Proprietary Information  

 In addition to limitations and challenges faced during data collection, the lack of publicly 

available information on the subject surrounding autonomous driving posed another challenge. 

Literature and related work on subjects regarding the development of autonomous vehicles, high 

definition maps, HD map data structure, and current standards in the industry were very difficult 

to obtain or, for certain details, unobtainable. In particular, information regarding the data 

structure of HD maps and requirements for such maps was not publicly available. Fortunately, 

personal communication with members of participating companies provided some insight on the 

subject of HD maps and their structure. Yet even here, some information could not be shared due 

to the proprietary nature of the information.  

 Many automotive companies, their providers, and mapping companies are working 

towards self-driving cars and maps to support them. If HD maps are a key ingredient to make 

autonomous vehicles a reality, proprietary information on how to structure and create an HD 

map would not be publicly available as competing companies could use that information to their 

advantage. Even with a navigation data standard such as that being developed by the NDS 

consortium, the participating companies do not share their technological advancements with one 

another. Rather, the NDS format allows sharing of the end-products over various platforms.  

5.4. The Feature Extraction Processes  

 The processing methods used in this research study included hands-on digitizing and 

object extraction by the use of various tools. The requirements of the final data structure were 

clear, and the processing methods were constructed accordingly. Manual delineation efforts 
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 included the tracing of desired features in the orthomosaic and were a time-consuming process, 

however, the outputs were therefore very controlled. Feature extraction by use of various tools 

allows for significantly less manual input by the user. Successful combinations of tools can also 

result in an automated model run or script development to extract the desired features. The model 

workflows used in this research project were successful in extracting the desired features, 

however, tool parameters were tested by trial and error as no guidelines or related research could 

be found on tool-based extraction methods of parking lot features. In addition, the tools used did 

not allow directional input of the lines or polygons created. Line and vertex direction could not 

be predetermined for the tools, resulting in random line and vertex direction. As all data structure 

requirements were fulfilled in the tool-based extraction method, the line feature classes were 

converted to the NDS format. With random and non-readable vertex order, the resulting line 

feature classes could not be displayed in the NDS format.  

 The extraction of vehicles in the Bertrandt parking lot was difficult. Some vehicles were 

not parked correctly within the parking lines, other vehicles parked entirely on the road, and 

again other vehicles were parked so far in the parking space that the front of the vehicles 

overlapped into the vegetation extent (see Figure 26). In theory, extracting the vehicle as a 

polygon with a small buffer could render the approximate area of a parking spot, however, 

vehicles would have to be parked perfectly within the parking spot.  
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Figure 26. Illustration of parking spot challenge from vehicle extraction. Orange lines are the 
buffered parking spot lines. 

 
 The extraction of parking lines in the German School study site worked very well. The 

extracted parking lines rendered small polygons that matched the pattern of the parking spots. 

With some manual input, the parking spaces were created from the parking lines. Overall, the 

tool-based extraction results show that clearly marked parking spaces and empty parking lots are 

beneficial for tool-based feature extraction.  
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 5.5. Future Research  

The advantages of drone-based data collection are several, including the possibility of 

operating a number of drones at the same time. A large area, such as a company campus, could 

be flown by a number of drones within just minutes. Other advantages of drone-based data 

collection compared to traditional HD data collection methods include low-cost financial 

investment, small data volumes, and no fossil fuel combustion. 

To further investigate the use of aerial drones as a means of data collection to develop 

HD maps, next steps may include the use of additional sensors or an upgraded aerial drone. As 

drone-based surveying methods are growing, miniature LiDAR sensors are available for 

installation on recreational drones. To gather point-cloud data similar to mapping-vehicles, 

LiDAR sensors could be added to the aerial drone. Upgrades could also include the use of a more 

accurate drone, such as a real-time kinematic (RTK) drone system. As implied by the name, 

RTK is a GPS correction technology technique in which location data is corrected in real-time 

while the survey drone captures the images (Rabkin 2018).  Other advantages of new correction 

technologies, such as RTK or post-processing kinematic (PPK) techniques, includes the removal 

for need of ground control points (Rabkin 2018). The recreational Phantom 4 drone utilized in 

this research study could be replaced by its technologically advanced successor, the DJI Phantom 

4 RTK. According to an accuracy study carried out by DroneDeploy, the Phantom 4 RTK 

delivers a relative horizontal accuracy of 1.2 cm and a linear measurement accuracy of 3.65 cm, 

without the use of GCPs (Willoughby 2019). Eliminating the need of GCPs would significantly 

decrease data collection time while maintaining high accuracy standards. At a price of $6,500, 

the Phantom 4 RTK drone would continue to be a cost-efficient alternative to sensor-equipped 

mapping-vehicles. 
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 Future development may also include 3D aerial drone flights instead of, or in addition to, 

2D flights. As described in Section 3.1, tree canopy clearance can be difficult when capturing 2D 

imagery. Flight routes must be planned to be flown at an altitude that allows for tree canopy 

clearance to avoid collisions. Unfortunately, the tree canopy often covers roads and other objects 

that are important for extraction. Mapping on a 3D instead of 2D plane would allow the drone to 

fly below the tree canopy line. In cases where roads are bordered by rows of trees that cover the 

road from above, flying the drone on a 3D plane would allow the road to be followed and 

mapped below the trees. Adding 3D flights would also allow the mapping of important features 

such as bridges or powerlines that do not appear well in a 2D space. Knowing the existence of 

bridges and powerlines and what heights they are would be extremely important for vehicles 

above average heights, such as semi-trailer trucks. Another advantage of 3D flight includes the 

generation of dense point clouds, similar to points clouds created by LiDAR sensors. From the 

point clouds, additional information could be calculated such as traffic-light heights or bridge 

heights.  

Other future research could include the development of a tool or application that could 

specify the direction of vertices in automatically extracted vector feature classes. Once the order 

and direction of vertices in the lines can be determined, tool-based extracted objects from aerial 

images could be displayed in the NDS format. As the method of manual delineation has clearly 

defined and known values, this research study could be expanded to include a confusion matrix 

that compares the results from the different methods. The confusion matrix would evaluate the 

performance of the classification models. For example, the manual delineation method and tool-

based extraction method could be compared by dropping 1000 points on top of each dataset and 

then comparing the extracted land uses found.  
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 5.6. Final Conclusions 

The use of drone-based remote sensing techniques to develop high quality datasets has 

proven effective and accurate. With use of ground control points or other GPS correction 

techniques, a low-cost drone could serve as an alternative mapping-method to current leading 

mapping-techniques for the development of HD maps for autonomous vehicles. 

Manual delineation was successful in extracting the desired features from the drone-

generated orthomosaics. Although manual delineation is a time-consuming process, the direction 

of lines and vertices drawn can be controlled and is thus still the best-suited option for dataset 

conversion to the NDS format. The tool-based extraction method applied a supervised 

classification process by use of training samples, in addition to post-processing methods, and 

proved effective in extracting objects from high resolution orthomosaics. The required data 

structure for conversion to the NDS format was followed successfully and all datasets were 

converted. Unfortunately, vertex direction could not be controlled in the tool-based extraction 

technique and thus the resulting datasets could not be displayed in the NDS database inspector. 

As the use of aerial drones and the data volume of imagery increases, the need for an automated 

tool method to derive certain land covers increases. With further modifications to the tool-based 

extraction method, it would show superior results to manual delineation. 

Overall, this research shows that aerial drones are capable of producing high quality 

imagery that can be used for HD map development, all in a time-efficient, cost-efficient, and 

environmentally friendly manner. 
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