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ABSTRACT

This project sought a method to map Sudden Oak Death distribution in the Santa Cruz

Mountains of California, a coastal mountain range and one of the locations where this disease

was first observed. The project researched a method to identify forest affected by SOD using 30

m multi-spectral Landsat satellite imagery to classify tree mortality at the canopy-level

throughout the study area, and applied that method to a time series of data to show pattern of

spread. A successful methodology would be of interest to scientists trying to identify areas which

escaped disease contagion, environmentalists attempting to quantify damage, and land managers

evaluating the health of their forests. The more we can learn about the disease, the more chance

we have to prevent further spread and damage to existing wild lands.

The primary data source for this research was springtime Landsat Climate Data Record

surface reflectance data. Non-forest areas were masked out using data produced by the National

Land Cover Database and supplemental land cover classification from the Landsat 2011 Climate

Data Record image. Areas with other known causes of tree death, as identified by Fire and

Resource Assessment Program fire perimeter polygons, and US Department of Agriculture

Forest Health Monitoring Program Aerial Detection Survey polygons, were also masked out.

Within the remaining forested study area, manually-created points were classified based on the

land cover contained by the corresponding Landsat 2011 pixel. These were used to extract value

ranges from the Landsat bands and calculated vegetation indices. The range and index which

best differentiated healthy from dead trees, SWIR/NIR, was applied to each Landsat scene in the

time series to map tree mortality. Results Validation Points, classified using Google Earth high-

resolution aerial imagery, were created to evaluate the accuracy of the mapping methodology for

the 2011 data.
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Results indicated three areas which had largely escaped Sudden Oak Death infestation

and one area with high tree mortality that was not previously identified as Sudden Oak Death.

However, the methodology identified widespread tree death throughout the study area, including

in 1994, when little tree death should have been found. This indicated that healthy tree canopy

was able to produce a spectral signature matching that of pixels containing some dead trees. In

addition, the number of pixels classified as containing tree death varied widely from year to year,

suggesting that seasonal variation plays a much larger role in the spectral signature than

anticipated. Finally, an analysis of the Results Validation Points showed a high rate of false

positives, with only 24 percent mapping accuracy for tree death. This demonstrated conclusively

that the methodology and mapping results were unreliable.

The project demonstrates that Landsat data did not work for this study due to spectral

confusion and seasonal variation. Results might have been improved if a custom index was

devised to remove some of the false positives, if the definition of serious tree death was limited

to pixels containing a greater percentage of dead tree canopy, and/or if seasonal differences in

rainfall and temperature had been considered when choosing Landsat scenes to represent each

year.
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CHAPTER ONE: INTRODUCTION

In the 1990s, oak trees suddenly began dying in the San Francisco Bay area of California.

Twenty years later, much is understood about the disease and cause, but no effective means of

control exists. This project sought to increase knowledge of Sudden Oak Death (SOD) by finding

a method to map tree morality over the 20-year period that the disease has been active in

California. Methods for mapping the disease and its pattern of spread could be adapted to other

areas to evaluate forest health, quantify the scale of the disease, and evaluate success at disease

management. The more we learn about the disease, the more tools we have to prevent further

spread and damage to existing wild lands.

1.1 Sudden Oak Death

The first observed occurrences of SOD were in 1994, in Mill Valley and Santa Cruz, California

(Garbelotto, Svihra and Rizzo 2001, Mascheretti et al. 2008). In 2000 the aerially-dispersed

oomycete, water mold, Phytophthora ramorum (PR) was identified as the causal agent (Rizzo,

Garbelotto and Hansen 2005). PR is believed to have been introduced to California via infected

rhododendron (Rhododendron spp.) and viburnum (Viburnum spp.) ornamental plants. The

fungus was transmitted via wind and rain to nearby wild lands, where it became established in

additional susceptible hosts.

On the central California coast, SOD primarily kills California black oak (Quercus

kelloggii), coast live oak (Quercus agrifolia) and tanoak (Lithocarpus densiflorus) (Barrett et al.

2006), but is transmitted by many other trees and shrubs, as well as by human activity. New SOD

outbreaks like those shown in Figure 1 are discovered each year. In the US, nurseries are closely

monitored for infected plants, and stream baiting techniques are used to determine where PR
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might spread next. No cure exists for SOD, but preventive applications of anti-fungal agent have

successfully been applied to individual uninfected susceptible trees after nearby infected trees

were removed. The wide variety of carrier vegetation, low natural resistance to the disease, and

the natural means of contagion make it a difficult infection to fight.

Figure 1 Sudden Oak Death at Mescal Ridge, Carmel, Big Sur, Monterey County 2012
Photograph by Tom Coleman, US Forest Service

The total acreage affected by SOD in California has not been estimated. As of 2013, SOD

affects areas from southern Oregon to the San Luis Obispo area of California. Figure 2 shows

vulnerable habitat in northern California, and Meentemeyer et al. (2004) calculated that 10,305

km2 (2.5 percent of California’s land area) are at high or very high risk for SOD infection.

Additional at-risk environments include the Sierra Nevada and the Appalachian mountain ranges

in the US, as well as parts of Europe and Asia. As of October 2013, efforts to contain PR
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infection in the UK are responsible for the felling of over 16,000 ha (39,536 acres) of Japanese

larch (Forestry Commission UK 2014), an economically important timber tree. The large-scale

loss of California oak trees, which play a vital role in the coastal forest ecosystem, will have

serious consequences for wildlife and the landscape. Today’s forests will be unrecognizable to

future generations. More knowledge about the infection, including locations and patterns of

spread, may aid in attempts to minimize contagion.

Figure 2 Predicted spread risk for P. ramorum in northern California
Source: Meentemeyer et al. (2004)
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1.2 Role of Remote Sensing in SOD Studies

Remote sensing has been used to increase SOD knowledge through modeling risk, identifying

infected trees, and mapping current disease locations. Modeling risk areas is valuable to manage

and prevent the spread of the disease, but mapping infected locations is necessary to evaluate

success at disease management.

The California central coast is widely accepted as the proper host environment for SOD,

but models based on remotely-sensed data have identified other susceptible regions. These

studies used variables such as vegetation, slope, aspect, precipitation, temperature and humidity

to map areas with a hospitable environment and vegetation likely to be infected. These risk

models covered large areas, from parts of California to the entire world. One worldwide study

(Kluza et al. 2007) predicted wide distribution of SOD from San Diego to Vancouver Island,

throughout the Sierra Nevada mountains, and in the southeastern US, with additional risk areas

in South America, southern Africa, southern Europe, the UK, and Asia, especially South Korea

and Japan. Risk maps are valuable to identify areas where land managers need to watch out for

SOD, but they highlight the fact that the disease has the potential to infect very large areas which

are not easily monitored from the ground.

Remotely-sensed imagery has been used to identify SOD infections in small areas using

canopy-level tree health as an indicator of disease presence. In the Big Sur area of central

California, south of this project’s study area, Meentemeyer et al. (2008) manually digitized dead

trees from 0.33 m resolution aerial imagery to calculate 20 percent mortality in infected areas. A

similar study (Liu, Kelly and Gong 2006) used 1 m Airborne Data Registration (ADAR) images

to classify land cover and map SOD in China Camp State Park, north of this project’s study area.
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Both of these studies used high-resolution aerial imagery, the data storage needs and cost of

which often prevent application over a large area.

The only program which attempts to map SOD infection on a large scale is the United

States Department of Agriculture (USDA) Forest Health Monitoring Program Aerial Detection

Survey (ADS) (Heath et al. 2012) which uses aerial monitoring to map forest health hazards over

large areas. The USDA studies produce generalized maps of threats, focus on different hazards

and regions from year to year, and rely heavily on observation of changes from a moving

aircraft.

SOD has the potential to quickly infect large areas. The scale of the infestation and

inaccessible and remote locations prevent individual tree observation, so remote sensing is a

promising tool for disease monitoring. Many land management agencies have limited budgets, so

an effective monitoring method needs to use low-cost data in order to be applicable by others.

Moderate resolution data, such as Landsat, offers the opportunity to monitor large areas

repetitively with minimal data cost and minimal data storage requirements.

1.3 Research Questions

The biology of SOD has been extensively studied, and maps have been created showing

individual confirmed infections, but no methods exist to map SOD on a large scale. The goals of

this project were to find the best index to map SOD in the selected study area using Landsat data,

and apply that method to a series of annual images to analyze the rate and pattern of spread from

1994 to the present. A simple method to map SOD locations over a large area will give us an

estimate of the scope of the disease, and may attract more attention to the disease and funding for

research. The same method, applied to multiple years of imagery, would produce a view of the
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disease over time, including the rate and pattern of spread. This could identify previously

unnoticed contaminated areas, identify areas which escaped damage, and lead to a better overall

understanding of the disease.

This is a pilot project which analyzed the accuracy of different vegetation indices at

differentiating tree mortality from healthy forest in the Santa Cruz Mountains on the central

California coast. The hope was that a successful method could be adapted and applied in other

areas where SOD threatens, to form a picture of the scope of SOD infestation throughout the

state. SOD spreads quickly, and many of its prime habitats are difficult to access. Remote

sensing provides the only practical monitoring approach in these areas. Landsat moderate-

resolution (30 m) satellite data, available from the US Geological Survey (USGS) is high-

quality, free and readily available for most of the world, which makes it the ideal tool for

organizations with limited budgets which cannot purchase higher resolution data. Landsat data is

re-collected every 16 days so the likelihood of finding suitable cloud-free data is high, and the

pixel size strikes a balance which requires some adjustments for mixed pixels, but minimizes

storage space and processing time.

Canopy-level tree health provides a glimpse of changes that are occurring at multiple

levels of the forest. A disease like SOD affects old and young trees, and when the tallest and

most well-established trees die, the devastation in the understory has already taken place.

Mapping SOD using canopy-level tree health as an indicator of disease extent has been

performed with high resolution imagery on a local scale, but high-resolution imagery prevents

large-scale analysis because of data costs and storage needs. This study attempted to map disease

extent using moderate-resolution data over a large area. Although all tree mortality in the study

area is not due to SOD, this study masked out areas where other circumstances were known to
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have affected large numbers of trees. This study used canopy-level tree mortality as a proxy to

indicate areas where SOD has had the strongest impact on the environment.

The goals of this project were to find a method to identify SOD-affected forest in the

study area using Landsat data, and use a time series data set to identify the rate and pattern of

spread. Questions that needed to be addressed include:

1. Can canopy-level tree death indicating SOD infestation be accurately identified

and mapped using Landsat remotely-sensed imagery?

2. Are vegetation indices alone sufficient to differentiate tree health and tree

mortality from other types of land cover?

3. Will existing supplemental land cover data sets improve or simplify the

classification process?

The resulting methodology to evaluate SOD contagion in California would be of interest to

scientists, environmentalists and land managers who might adapt this methodology to map SOD

damage in other areas.

1.4 Thesis Outline

The next chapter provides background on SOD, a synopsis of studies analyzing tree health after

insect infestation, and a summary of the ways that remote sensing data has been used to further

our knowledge of SOD. An understanding of the origin, spread and control of SOD is necessary

to understand the need for additional information about the disease. Satellite data alone has never

been used to map SOD, but the tree health studies demonstrate successful techniques that were

used to map changes in tree health, which could be adapted to this study of SOD. In addition,
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chapter two includes a discussion of the ways that remote sensing techniques or data have been

used to study SOD, and how this project will add to our knowledge.

Chapter 3 describes the data sources and methodology used in this study, which relied on

aerial imagery to classify land cover points, land classification raster and several vector layers to

refine the study area, in addition to Landsat scenes, which were the primary data source. This

chapter describes how the study area was built, as well as how the most effective index was

chosen to differentiate healthy trees from tree death. This chapter also describes the method used

to evaluate the accuracy of the final classification results.

Chapter 4 presents maps of the results, including an analysis of new areas of tree

mortality, and a comparison to other SOD map data. This chapter concludes with an analysis and

discussion of the accuracy of the mapping results.

Chapter 5 discusses the implications of the project results, offers suggestions for further

work, and reflects on success at responding to the project’s research questions.
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CHAPTER TWO: RELATED WORK

When SOD was first discovered, scientists focused on identifying the origin and spread methods

of the disease in an effort to learn how to control it. Twenty years after the first reported sighting,

mapping the current extent of this still uncontrolled pathogen is our next feasible step in

understanding the disease. The hope is that effective techniques which used satellite imagery to

map declining tree health in other forest landscapes can be adapted to fill this gap in our

knowledge of SOD.

2.1 Biology of SOD

SOD spreads naturally and rapidly, and there is no effective means of control. Understanding the

biology of SOD helps explain the long-term effect on our forests, and why controlling it is so

difficult.

SOD earned its name because infected trees can change appearance from healthy to dead

in as little as three months, but SOD is not the only result of PR infection. PR may infect

susceptible plants in three possible ways (Hansen, Parke and Sutton 2005, Rizzo, Garbelotto and

Hansen 2005). Sudden Oak Death, shown in Figure 3, the most serious infection, causes bleeding

ulcers on the trunk and limbs which weaken the tree and lead to death (Parke et al. 2007, Collins

et al. 2009). In California, only three types of trees develop SOD: California black oak (Quercus

kelloggii), coast live oak (Quercus agrifolia) and tanoak (Lithocarpus densiflorus). Trees

infected with SOD do not produce spores or spread the disease (Mascheretti et al. 2008). PR

spores are produced by vegetation infected with the non-lethal Ramorum Blight, evidenced by

leaf discoloration (Mascheretti et al. 2008), as shown in Figure 4. California bay laurel

(Umbellularia californica) is the primary sporulator for PR in California (Davidson et al. 2005),
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but as of 2012 more than 40 species, listed in Appendix A, are known to host the disease. Tanoak

trees (Lithocarpus densiflorus) are unusual because they have been observed with both types of

infection: they develop SOD in California and Ramorum Blight in Oregon (Grünwald et al.

2012).

PR spores are spread naturally and by human action. Wet, warm spring seasons provide

optimal conditions for PR spore creation (Davidson et al. 2005), and the spores are dispersed by

rain splash and wind-driven rain. Infected soil transported via nursery plants (Cushman and

Meentemeyer 2008) and via tires and shoes of recreational forest users (Davidson et al. 2005)

cause long-distance dispersal of PR. Although stream monitoring has detected PR up to 20 km

downstream of a known infection site (Davidson et al. 2005, Sutton et al. 2009), research does

not indicate that infection patterns follow streams.

Figure 3 Coast live oak showing the bleeding ulcers typical of Sudden Oak Death
Photo: Steve Tjosvold, UC Cooperative Extension
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Figure 4 California bay laurel (Umbellularia californica) infected with Ramorum blight
Photo: John Bienapfl, University of California Davis

Attempted methods for controlling PR include burning of host trees, chemical sprays,

antimicrobial applications, and creation of a disease-break area that contains no possible hosts

(Filipe et al. 2012, McGinnis 2008). There is no effective means to cure an infected tree, and

preventive methods need to be applied to individual trees in order to be most effective. Fire as

disease suppression is only effective if all PR-infected California bay laurel trees are completely

destroyed (Beh et al. 2012). No current control methods can avert large-scale infection.

Ramage, O’Hara and Forrestel (2011) believe that PR will remain permanently in

California forests because numerous species host the disease without succumbing to it. Tanoak

(Lithocarpus densiflorus), whose acorns are an important animal food source, may become

extinct because it has no genetic resistance and it can both transmit the disease and die from it

(Ramage, O’Hara and Forrestel 2011, Maloney et al. 2005, Ramage and O’Hara 2010).



12

PR poses a danger to the long-term existence of all SOD-susceptible trees. We cannot

predict what California forests will look like 50 years from now: although the first SOD-infected

trees died more than a decade ago, new vegetation has been slow to take over. Mapping disease

locations could expose a disease-resistant strain of trees, or demonstrate environmental variables

which impede SOD spread, and might lead scientists to discover new means of control.

2.2 Remote Sensing of Tree Health

Remote sensing data describes data collected at a long distance from the object or location being

viewed. For the purposes of this study, remote sensing data refers to aerial- or satellite–collected

data, including images. Collecting data from a distance makes it possible to quickly collect

information which encompasses a large land area while sacrificing some detail.

Remotely sensed images can be collected aerially or via satellite. High resolution aerial

photography provides fine detail for land change analysis, but it is expensive to collect, each

image covers a relatively small area, and it is difficult to obtain historical data meeting

specifications. Satellites’ high altitude means the imagery is generally of lower resolution than

aerial photography, but their orbit around the Earth allows consistent repeated collection over

multiple years, so it is a good choice for historical land change analysis.

Satellite data sources can be compared based on spatial, spectral or temporal resolution.

Spatial resolution describes the land area covered by a single pixel. The smaller the land area

covered by each pixel, the finer the spatial resolution. Spectral resolution expresses the number

of bands collected for each scene. Collecting more bands requires more instruments and data

storage on the satellite. Temporal resolution describes the time lapse between repeated

collections in the same area, and is a function of the land area covered by each image. No
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existing satellites have high resolution in all three areas, so choosing a satellite data source

requires compromise.

The Landsat satellite missions, a joint program between the USGS and National

Aeronautics and Space Administration (NASA) have collected data covering all non-polar

regions of the world since 1972. This project primarily uses Landsat 5 TM data, which has a 30

m spatial resolution, 16-day repeat cycle, and seven bands of data. Landsat Climate Data Record

(CDR) reflectance images, corrected to remove atmospheric distortion, were used to facilitate

comparison between data sets collected under different weather conditions and at different times

of day. Each Landsat scene covers approximately 100 square miles and the data is available for

free download from the USGS. The frequent collection over the same areas makes it likely that a

researcher can obtain cloud-free images of a study area, and the low cost of data makes it

inexpensive for agencies to adapt this methodology to their needs.

Multi-spectral image analysis applies algorithms which highlight information contained

in separate spectral bands. Vegetation analysis relies primarily on the green, red, near infrared

and shortwave infrared bands to classify vegetation and measure vegetation health. Landsat’s

seven bands are: (1) blue; (2) green; (3) red; (4) near infrared; (5) shortwave infrared; (6)

thermal; and (7) a second shortwave infrared band. The most common indices used to categorize

vegetation are shown in Table 1.

There are no recent studies of SOD contagion using satellite imagery, but a Mahon et al.

(2002) study attempted to map potential SOD infection on the California central coast in 2000.

By comparing image changes from 1996 to 2000 using the Tasseled Cap transformation applied

to Landsat imagery, with supplements of aerial imagery, field study, and other remotely sensed

and land classification data, they were able to identify large potential SOD concentrations in
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Table 1 Multi-spectral indices used to detect vegetation health

Index Landsat Formula Notes

Short Wave Infrared/Near Infrared
(SWIR/NIR)

Band5 / Band4 Detects moisture content, an
indication of health, water stress or
drought.

Normalized Burn Ratio (NBR) (Band4-Band7) /
Band4 + Band7)

Identifies burned areas and quantifies
severity. Occasionally used to assess
vegetation health.

Normalized Difference Moisture
Index (NDMI) (also known as
Normalized Difference Infrared
Index (NDII)

(Band4-Band5) /
Band4+Band5)

Detects water content, a measure of
vegetation health.

Normalized Difference Vegetation
Index (NDVI)

(Band4-Band3) /
Band4+Band3)

Detects green plant canopies
indicating vegetation health and
density. Used to quantify
photosynthetic capacity.

Red Green Index (RGI) Band3 / Band2 As tree health declines, the red value
increases, causing this index to
increase. Useful for detecting dead or
dying trees.

Tasseled Cap brightness (TC Bright)
(also known as Kauth-Thomas
transformation)

0.2043*Band1 +
0.4158*Band2 +
0.5524*Band3 +
0.5741*Band4 +
0.3124*Band5 +
0.2303*Band7

Measures image brightness. Used to
differentiate dark and light soils.

Tasseled cap greenness (TC Green)
(also known as Kauth-Thomas
transformation)

-0.1603*Band1 –
0.2819*Band2 –
0.4934*Band3 +
0.7940*Band4 –
0.0002*Band5 –
0.1446*Band7

Detects greenness, a measure of
vegetation density and
photosynthetically-active vegetation.

Tasseled cap wetness (TC Wet)
(also known as Kauth-Thomas
transformation)

0.0315*Band1 +
0.2021*Band2 +
0.3102*Band3 +
0.1594*Band4 –
0.6806*Band5 –
0.6109*Band7

Detects wetness, indicating surface
moisture, vegetation density and dried
vegetation.
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three coastal counties and small concentrations in three other counties, confirmed with aerial

data. At the time of publication, field verification was incomplete but preliminary results

indicated that the change detected was potential SOD. The researchers admitted that pixel-level

analysis likely overestimated mortality, but an aggregation would result in missed positives.

They concluded that change detection methods were able to successfully identify subtle changes

in canopy cover.

Many studies similar to this project have used Landsat scenes to assess insect infestation.

Studies of beetle-caused mortality used a variety of vegetation indices, including Tasseled Cap,

NDMI, SWIR/NIR and NBR to identify areas of infestation and evaluate severity. Their methods

give us clues to effective ways to map SOD.

One project in the Santa Fe National Forest (Vogelmann, Tolk and Zhu 2009), for

example, evaluated conifer tree health over an 18-year period using eight Landsat scenes, and

found an original way to validate results using the ADS data. Using the SWIR/NIR index, more

sensitive to conifer health than NDVI, researchers evaluated increases and decreases in the

SWIR/NIR index indicating forest health changes. When researchers compared their results to

the ADS insect defoliation maps, they found annual variability in the quality of the ADS data.

However, by combining multiple years of ADS data, disregarding areas which had only been

identified as damaged in a single year, areas which their study identified as experiencing

consistently decreasing tree health correlated with areas reported as damaged by the USDA over

multiple years. Their study concluded that this Landsat time series effectively captured decline in

forest health and that Landsat data is particularly well-suited to studies over large areas.

Another study in Colorado compared the accuracy of different vegetation indices and

band combinations applied to single- and multiple-date Landsat data to map bark-beetle caused
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tree mortality (Meddens et al. 2013). Seven vegetation indices were calculated: RGI, NDVI,

NDMI, SWIR/NIR and the three Tasseled cap indices (see Table 1 for additional details). Land

cover classifications created from a 30 cm aerial image were aggregated to the Landsat pixel size

to classify the portions of each land cover within an equivalent Landsat pixel. This study

obtained 91 percent overall accuracy using single-date image classification with the Tasseled

Cap indices to map red-stage (dying) trees, and 89 percent accuracy with multi-date image

analysis and the SWIR/NIR index. Although the single-date method was more accurate with high

mortality, the researchers concluded that both methods resulted in high classification accuracy

using Landsat data.

Several other studies used a variety of indices with Landsat data to evaluate insect impact

on forest health. In an unusual choice, the NBR, primarily used by fire sciences, was used to

evaluate beetle infestation impact on ground fuels which might affect the severity of forest fires

(Meigs, Kennedy and Cohen 2011) in Oregon. They found a correlation between the presence of

coarse woody detritus and Landsat spectral change, consistent with Landsat’s sensitivity to

vegetation cover. This study successfully used NBR to map both short- and long-term spectral

change, and concluded that methods which only focus on short-term changes miss many of the

signs of insect infestation.

Similarly, a Canadian forest study (Goodwin et al. 2008) successfully used the NDMI

with multiple years of imagery to identify forest stands declining due to beetle infestation, with

71 to 86 percent accuracy. These researchers believed that analyzing imagery from more than

two years might be more accurate. These researchers found significant variation in NDMI values

for healthy forest, approximately 50 percent variation around the mean. As the infestation

worsened, the mean and the extremes decreased and mapping accuracy increased. The
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researchers concluded that NDMI showed greater changes in beetle-infested areas than in the

healthy forest, but spectral confusion was a problem in areas with low levels of infestation.

These studies indicate that Landsat imagery can successfully detect changes in tree

health. Spectral confusion is a concern, and accuracy increases as tree mortality increases, but

both single- and multi-date imagery produce successful results under a variety of circumstances.

These beetle-damage studies are different from SOD studies in several important ways. The trees

in these examples were all conifers, but the three species killed by SOD are broadleaf, so the

same vegetation indices may not be the most effective. Another important difference is the way

the foliage changes. Beetle-induced death takes several years, and dying trees can be recognized

by red foliage indicating tree stress. Trees infected with SOD display bleeding lesions for several

years, but at the final stage the foliage changes from green to yellow to brown within a few

weeks (Alexander and Swain 2010), which may be difficult to capture on imagery.

Like these studies, the SOD study will be evaluating health of sub-pixel-sized features.

Several studies above observed that results were more accurate in areas with greater mortality, so

this study differentiates between pixels containing lower and higher levels of mortality. This

project also minimizes the mixed-pixel dilemma by masking out non-forested areas, decreasing

the incidence of pixels containing non-forest land cover types with conflicting spectral

responses. Several of these researchers were measuring tree health change over time, including

both decline and improvement. Trees infected with SOD have no chance of recovery, so this

study evaluates index values in a binary approach: pixels containing only healthy trees or

containing some dead trees. The index values chosen will determine how sensitive the formula is

at detecting areas with small occurrences of tree death relative to overall canopy.
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These studies indicate that there are multiple effective methods and indices to effectively

measure tree health using Landsat imagery and additional data. Whether a study used a single

year or multiple years of remotely sensed imagery, they were all able to successfully identify

decreasing tree health. This study will draw on several techniques used in the studies above,

particularly an evaluation of the accuracy of different vegetation indices, and a comparison of

results to ADS data.

Remotely sensed data has been used to study SOD by providing inputs for disease risk

models, aerial imagery has been used to identify infected trees in localized areas, and aerial

monitoring has been used to identify generalized disease locations.

Remotely sensed data, such as temperature, slope, aspect, weather or vegetation is often

an input in the creation of risk maps. Risk maps can be useful for land managers to learn which

areas to monitor for signs of the disease, but inexact models can cause certain areas to be

unmonitored, or give a false sense of security to residents, who fail to take simple precautions to

prevent introduction of the disease. Many different remotely sensed variables can be weighted,

resulting in dramatically different models. Unfortunately, the accuracy of risk models can usually

only be determined many years after their creation.

A 2007 SOD risk model used remotely sensed data, including topographic, climatic data,

and raster data to create a worldwide view of disease potential. Kluza et al. (2007) predicted

wide distribution of SOD on the west coast of North America, from San Diego to Vancouver

Island and throughout the Sierra Nevada mountains, as shown in Figure 5. In addition, this model

showed large risk in the southeastern US, with additional risk areas in South America, southern

Africa, southern Europe, the UK, and Asia, including South Korea and Japan. This model puts
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risk in many areas where PR infection has not yet been detected, but the accuracy of this model

cannot be evaluated at this time.

Two early SOD risk models for California used land cover data created from remotely

sensed raster data, which may have caused inaccuracies in their final result. A 2004 model

Figure 5 Risk for SOD distribution on the west coast. The value indicates the number of models
used to predicted risk in that area. The inset shows confirmed infections as of 2007.

Source: Kluza et al. (2007)
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(Meentemeyer et al. 2004), which used Classification and Assessment with Landsat of Visible

Ecological Groupings (CALVEG) and California Gap Analysis Project (GAP) data, was found to

have underestimated the risk for many areas due to inexact vegetation mapping used as an input

to the model. A 2005 study (Guo, Kelly and Graham 2005) also used the GAP dataset as one of

their inputs, so may have similar problems.

High-resolution remotely sensed imagery can be useful for detailed land cover analysis. It

can minimize mixed pixels and increase detail, but its cost can prevent use by organizations with

small budgets, and the relatively small area covered by a single image makes it difficult to use

for analyzing disease extant over a large scale. Two SOD studies were conducted using high-

resolution aerial imagery to determine the severity of the SOD outbreak in localized areas. In the

Big Sur area, Meentemeyer et al. (2008) manually digitized dead trees from 0.33 m resolution

aerial imagery and calculated 20 percent mortality in infected areas. After field study, the

researchers determined that counting dead trees at the canopy level underestimated overall

mortality due to dead trees below the canopy and trees that had fallen over. In China Camp State

Park in Marin County, Liu, Kelly and Gong (2006) used 1 m resolution Airborne Data

Registration (ADAR) images to build a land cover classification model which would accurately

identify dead trees due to SOD, but they discovered that bare areas and dead trees displayed

similar spectral signatures, and that newly-leafed oaks have a low NIR value which can make

them appear dead. Although high-resolution imagery minimizes the problem of mixed pixels, the

researchers chose to smooth the results to minimize noise in the output. The moderate-resolution

Landsat data used in this study have larger scene areas than aerial images, to better facilitate

landscape analysis over an extended area, and a low cost for its use by cash-strapped

organizations, but requires adjustment for mixed pixels with sub-pixel-sized features.
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Remote sensing aerial monitoring is used to map current disease locations through the

ADS. These surveys are collected by technicians in a moving aircraft who visually identify areas

of decreasing forest health and mark them on a hand-held device. The quality of the results

varies from year to year due to different operators collecting the data, and not all areas are

updated annually. In addition, the data is only collected for regions where forest health changes

are anticipated, so these surveys are unlikely to detect SOD outbreaks in new areas. However,

these are a useful input to a study like this for results comparison.

2.3 Mapping of SOD

Very few maps exist online which show the extent of SOD. Those that do exist are small-scale

and quickly outdated. One notable dynamic map which must be mentioned is the SODMAP by

OakMapper, a sample of which is shown in Figure 6 (Kelly and Tuxen 2001, Kelly and Tuxen

2003, Kelly, Tuxen and Kearns 2004). This Google-Earth-based map displays locations of

confirmed SOD infections maintained by the California Oak Mortality Task Force (COMTF).

Data is updated annually and covers all of California. Unfortunately, the scale of the SOD

epidemic is many times greater than the SODMAP shows. Since SODMAP relies on human

observation and laboratory analysis, the majority of infections it shows are near roads or other

easily-accessible areas. The results of a successful project like this could be used to build an

online map showing the spread of SOD disease extent in the study area over the past 20 years,

and the methodology could be adapted to create a map of SOD infection for the entire state.

Although the locations would not be confirmed SOD infections, they would more realistically

depict the extent of the epidemic.
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Figure 6 A sample image from SODMAP by Oakmapper, displaying PR-infected trees in the
Santa Cruz Mountains

Source: Kelly and Tuxen (2003)

Remote sensing data and techniques have been used to build models of SOD disease risk,

identify individual dead trees and conduct aerial surveys, but satellite data has not been used to

map disease extent recently or identify progress over an extended period of time. This presents a

unique opportunity to expand our knowledge of SOD using techniques like those described

above. This study endeavored to find a methodology effective at identifying dead trees at the

canopy level using remotely sensed data. A successful methodology, adapted to other areas, will

make it possible to evaluate forest health on a large scale, quantify damage, discover SOD in

areas where it was not previously noticed, identify risk areas that remain untouched, and lead to

new discoveries.
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CHAPTER THREE: DATA AND METHODOLOGY

This project’s primary goal was to identify an index and range that successfully differentiated

Landsat pixels containing healthy trees at the canopy level from those containing tree death, as a

proxy for mapping trees killed by SOD, and to use that to map SOD spread since its discovery.

This chapter describes the study area, the data and the methodology used for this research.

Satellite scenes are the primary data source, supplemented by aerial images and additional raster

and vector data which define the study area. The data section of this chapter discusses each of

these sources in detail, as well as the limitations of the data, an understanding of which is

necessary to avoid drawing unreasonable inferences from the results. The methodology followed

is then described in detail, including data preparation, refining the study area, and choosing the

most effective index for mapping SOD. A thorough understanding of the data and methodology

will assist other researchers in interpreting these results, understanding their limitations, and

adapting this process to map SOD in other regions.

3.1 Description of Study Area

This project’s study area is the Santa Cruz Mountains in Central California (37° 08’ N, 122° 8’

W), a coastal mountain range on the San Francisco Peninsula, shown in Figure 7, with the dense

urban areas of San Francisco and San Jose to the north, east and south. The climate is

Mediterranean, with dry summers and wet winters, but fog often occurs on the west side of the

range in summer. Elevation ranges from sea level to 3,786 feet (1,154 m), with many moderately

steep valleys. Hilltops often are covered with grass and drought-resistant bushes, while valleys

and lower elevations include conifers and broadleaf forests. Half of the area is state and county

parkland and open space preserves, which enjoy heavy recreational use. The remainder is
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privately owned, with scattered residences and isolated agricultural areas. The area of interest is

1,834 km2, of which approximately 706 km2 is forested. Many areas are steep and densely

vegetated, with few roads or trails.

Figure 7 The area of interest in the Santa Cruz Mountains of central California
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3.2 Data

This study utilizes raster and vector data, as shown in Table 2, to map the locations and spread of

SOD from 1994 to 2011. The primary data source is Landsat CDR, supplemented by other

sources which help refine the study area. NLCD raster data classifies land cover into forested and

non-forested areas. FRAP polygons identify locations of recent wildfires, and ADS polygons

map locations of tree damage due to multiple causes. These three data sets were used to create

the study area, limiting it to forested areas without other known causes of change. In addition, for

the purposes of sampling Landsat raster values, Land Cover Points and Results Validation Points

were created and categorized based on May 2011 Google Earth Historical Imagery. All data was

referenced to the North American Datum 1983 HARN California Teale Albers projected

coordinate system (m), except for data displayed in Google Earth, which used the World

Geographic System 1984. This section describes each data set used in this project and errors that

the data may contain.

Table 2 Data used for this analysis

Description Type Data sets used Creator
Landsat CDR Reflectance images Raster 1992-2011 USGS

National Land Cover Database (NLCD) polygons Raster 1992, 2011 USGS

Fire and Resource Assessment (FRAP) polygons Vector 1985-2012 CalFire

Aerial Detection Survey (ADS) polygons Vector 2005-2013 USDA

Google Earth Historical Imagery Raster May 1, 2011 Google

Land Cover Points Vector May 1, 2011 Trinka Gillis

Results Validation Points Vector May 1, 2011 Trinka Gillis
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3.2.1 Landsat Satellite Data

Landsat CDR images were the primary data source for this project. Landsat 5 Thematic Mapper

(TM) satellite images collect seven bands of data, detailed in Table 3, covering non-polar Earth

with repeat collection every 16 days (DOI-USGS 1989-2011). Bands 1-5 and 7 were used for

this study. CDR images are created from Landsat Level 1 images, which are systematically

Table 3 Landsat 5 TM bands

Band Wavelength (µm) Resolution (m) Common Uses
Band 1 - Blue 0.45-0.52 30 Measures visible blue light.

Useful for mapping sediment,
coastal habitats, water depth, and
distinguishing
soil/rock/vegetation.

Band 2 – Green 0.52-0.60 30 Measures visible green light.
Useful for identifying vegetation
and measuring plant health

Band 3 – Red 0.63-0.69 30 Measures visible red light.
Vegetation absorbs red light, so it
produces low values in this band.
Useful to distinguish vegetation,
soil, and vegetation health.

Band 4 – Near
Infrared

0.77-0.90 30 Water absorbs most light in this
wavelength, producing low
values, while soil and vegetation
produce high values. Useful for
distinguishing water, vegetation
varieties, soil/crop/water contrasts

Band 5 - Short-
wave Infrared

1.55-1.75 30 Sensitive to moisture. Useful to
measure soil and vegetation
moisture content, clouds and
snow.

Band 6 – Thermal
Infrared

10.40-12.50 120 Measures surface temperature.
Useful for geology, measures
plant heat stress, locates clouds.

Band 7 – Short-
wave Infrared

2.09-2.35 30 Similar to band 5, measures
moisture. Distinguishes
water/soil/rock.

Source: Quinn (2001), DOI-USGS (1989-2011), Geospatial Innovation Facility UC Berkeley and
Center for Biodiversity and Conservation (2003)
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corrected for geometric and radiometric accuracy using ground control points, with a DEM used

for topographic accuracy (DOI-USGS 2014). CDR images are further corrected to surface

reflectance values using Moderate Resolution Imaging Spectroradiometer (MODIS) formulas to

remove atmospheric distortion caused by water vapor, ozone, geopotential height, aerosol optical

thickness and elevation (DOI-USGS 2013). The CDR images used in this project are all

classified as LIT, indicating standard terrain correction. Reflectance images facilitate comparison

between data sets collected at different times of day and under different weather conditions. This

study used WRS2 path 44 row 34 images, which contain the entire study area, and favored April

and May images to avoid spectral confusion caused by early-senescing California buckeye and

newly-leafed oaks, both of which can be spectrally confused with dead trees. Images from 1992-

2011 were used, as shown in Table 4. The number of ground control points used for the

geometric correction, and the resulting Root Mean Square Error (RMSE) are also summarized in

Table 4. All images had maximum 10 percent cloud cover.

Unfortunately, 2011 was the last year that acceptable springtime Landsat 5 images are

available for this area. If this methodology were to be applied to later data, Landsat 7 and

Landsat 8 scenes would need to be used. Landsat 7 data is available from 1999 to the present in

CDR format, but scenes collected after May 2003 have a striping issue due to a failed Scan Line

Corrector (SLC). Landsat 8 was launched in 2013, but is not yet available in CDR format. This

project therefore relied exclusively on Landsat 5 data.

The 2011 Landsat image was used as the basis for all this project’s calculations. To

facilitate comparison and analysis, eight indices were calculated using ArcMap Raster

Calculator. Values for five of the indices – NDVI, SWIR/NIR, NDMI, RGI and NBR – were
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Table 4 Landsat 5 TM scenes used in project (path 44 row 34)

Imagery Date Ground Control Points Geometric RMSE (m)
April 6, 1992 143 4.387
June 12, 1993 218 3.525
March 11, 1994 153 4.583
March 30, 1995 154 3.798
May 3, 1996 183 3.687
April 4, 1997 194 3.446
June 26, 1998 221 3.151
June 29, 1999 242 2.793
April 28, 2000 184 3.575
May 1, 2001 203 3.501
June 5, 2002 223 3.235
April 5, 2003 N/A N/A
April 23, 2004 197 3.511
April 10, 2005 169 3.919
June 16, 2006 216 3.443
April 16, 2007 190 3.776
June 5, 2008 215 3.193
May 7, 2009 182 3.825
April 24, 2010 155 3.766
April 27, 2011 151 3.766

multiplied by 1,000 to preserve data precision. Values for Tasseled Cap indices were calculated

and used in their original form.

The 2011 Landsat image was used as the basis for all this project’s calculations. To

facilitate comparison and analysis, eight indices were calculated using ArcMap Raster

Calculator. Values for five of the indices – NDVI, SWIR/NIR, NDMI, RGI and NBR – were

multiplied by 1,000 to preserve data precision. Values for Tasseled Cap indices were calculated

and used in their original form.

Although Landsat CDR images are geometrically and radiometrically corrected, pixels

from different years do not align and pixel values vary for the same location over different years.

Measures of geometric distortion for each image are indicated by the RMSE values in Table 4.

Pixels could have been aligned, and values could have been normalized for this project, but to do
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so would introduce additional error. To facilitate location comparison of pixels, all were

converted to centroid points and were evaluated using proximity functions. Other common errors

with Landsat data include missing pixels and saturated bands.

3.2.2 National Land Cover Database Classified Raster Data

This project used 1992 and 2011 National Land Cover Database (NLCD) classified raster data to

construct a study area. The NLCD is produced by the USGS to characterize land cover and

monitor changes throughout the US, and is now updated every five years. Using Landsat data as

its primary source, the NLCD categorizes land cover into 16 classes listed in Table 5, using a

decision tree model with training points, and an algorithm which merges cover types to preserve

land cover logic.

Table 5 NLCD land cover classes

Land Cover Classification
Open Water
Perennial Ice/Snow
Developed, Open Space
Developed, Low Intensity
Developed, Medium Intensity
Developed, High Intensity
Barren Land (Rock/Sand/Clay)
Deciduous Forest
Evergreen Forest
Mixed Forest
Shrub/Scrub
Grassland/Herbaceous
Pasture/Hay
Cultivated Crops
Woody Wetlands
Emergent Herbaceous Wetlands
Note: Four additional classes were used in Alaska only
Source: Jin et al. (2013)
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There are several sources of inaccuracy in the NLCD. Although the classification is

conducted at the pixel level, classification of mixed pixels is a problem, and smoothing the result

to create more consistent land cover decreases accuracy. Errors can be observed by laying the

NLCD data over a high resolution aerial photo. The creators have allowed for ambiguity,

however, in the category descriptions. For example, forest categories are described as containing

a minimum of 20 percent total vegetation of trees greater than 5 m tall, with more than 75

percent of species matching the category description. This allows up to 80 percent of land cover

to be small trees and up to 25 percent to be types not described by the category. Because of the

generalized categorization and observed inaccuracies, this data set was not sufficient to define

the study area without supplemental resources.

3.2.3 Fire and Resource Assessment Program Vector Data

This project also used the Fire and Resource Assessment Program (FRAP) polygons to identify

areas burned in wildfires and prescribed fires in 1985 or later, and remove them from the study

area. This step was included to prevent the changed spectral response of dead trees in burned

areas from incorrectly being mapped as SOD. The California Department of Forestry and Fire

Protection (CalFire) maintains a comprehensive FRAP database, last updated in 2012, which

includes fire data gathered by CalFire, the USDA Forest Service Region 5, the Bureau of Land

Management (BLM), the National Park Service (NPS), certain counties, and other agencies.

Although the FRAP database attempts to track all wildfires and prescribed fires 10 acres

or larger on all public and private lands in California, inaccuracies occur due to the differing

standards of the reporting agencies. The year that an agency began collecting data, the minimum
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size of fire that they report, the data creation method and accuracy of the polygons vary.

Observed errors include perimeters which truncate at administrative boundaries and duplicate

fires reported by multiple agencies.

3.2.4 USDA Aerial Detection Survey Vector Data

The ADS polygons indicating tree damage due to causes other than SOD were used to refine the

study area. ADS polygons are created by the USDA through summer aerial surveys which detect

and map tree mortality and damage. Surveyors in an aircraft flying 1,000 feet above ground level

mark areas of tree damage and cause on a hand-held device. The resulting polygons are used to

report on status of known threats, and to estimate acreage and number of trees affected (USDA-

FS Forest Health Monitoring Program 1978-2013, Heath et al. 2012, USDA-FS Pacific

Southwest Region 2014). The USFS decides annually which regions or diseases to focus on, but

SOD is often a main concern. ADS data is available for 1978-2013, but collection was erratic

and polygons were highly generalized prior to 2005, so this project only uses data from 2005

onwards.

The ADS polygons and attributes associated with them are fuzzy, subject to the

experience, training and subjective opinion of the surveyor, as well as the sun angle and viewing

window. Polygons from different years often overlap. Researchers mapping tree health in New

Mexico (Vogelmann, Tolk and Zhu 2009) found that areas mapped as damaged by the ADS for

multiple years correlated to damage severity, but areas mapped by the ADS as damaged in only a

single year were unreliable, possibly due to the use of inexperienced mapping technicians.
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3.2.5 Google Earth Historical Aerial Imagery

This project also used a Google Historical Imagery dataset from May 1, 2011, with sub-meter

natural color imagery, to verify the land cover type and tree health in spring 2011. Google

maintains a database of historical imagery within Google Earth, displayed with a terrain model.

The type of imagery, the quality, and the area covered varies. Images with no source identified in

Google Earth are Google copyright and are often high quality. Images cannot be exported, but

ArcMap shape files can be converted to the WGS84 projection and displayed within Google

Earth. The capture date of this Google high-quality aerial imagery is ideal for visualizing the

canopy land cover at the time of the April 27, 2011 Landsat scene used as the base data set for

this project.

Misalignments of up to 2 m have been observed when comparing Google imagery from

different dates, but these displacements are not large enough to affect classification for this

project.

Although National Agricultural Imagery Program (NAIP) aerial images created by the

USDA Farm Service Agency could have been used, preliminary work revealed that those images

were often overexposed or captured with a low sun angle, both of which caused color distortion

that caused healthy trees to appear dead.

3.2.6 Land Cover Points

To identify spectral ranges for each land cover type in the study area, Land Cover Points were

created, randomly and manually, at least 45 m apart. The points were projected to WGS84 to

display in Google Earth with May 2011 imagery. The Google Earth imagery was used to

categorize each point into one of the classes shown in Table 6, with the location of the 2011
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Landsat pixel relative to the point taken into consideration when assigning a classification.

Locations with mixed pixels other than those examples mentioned below were discarded. The

distinction between minor and serious tree death (SD) was necessary to obtain values which

clearly distinguished healthy areas from dead trees in later processing. Although no pixels

contained more than 40 percent dead trees, pixels which contained less than 10 percent dead

trees produced a spectral signature similar enough to healthy forest that including them in a

single land cover type with a larger canopy area of dead trees blurred the distinction between the

classes. This project’s goal was to identify and map only the serious tree death.

Although care was taken to consistently and correctly classify the land cover types, the

classification process was, inevitably, subject to some operator error.

3.2.7 Results Validation Points

To evaluate the efficacy of the Landsat image classification, 300 results validation points were

randomly generated throughout the refined study area. These points were displayed over the May

Table 6 Land Cover Points classification categories

Code Description Points
10 Agricultural land 4
20 Barren land 31
30 Herbaceous 44
40 Healthy forest 68*
51 Minor death (forest with <10% dead trees as percentage of pixel area) 26
52 Serious death (forest with >10% dead trees as percentage of pixel area) 33
60 Shrubbery 66
70 Buildings (mixed pixels included) 24
80 Road (mixed pixels included) 20
90 Water 16
Total 301
* A random subset of 33 points was used to compare to an equal number of points classified as
serious tree death.
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2011 Google Earth image, as described above, and assigned a land cover code shown in Table 7,

taking into account the relative location of the 2011 Landsat pixel. Approximately 10 percent of

the randomly generated points were classified as SD and 68 percent were classified as healthy

tree land cover (HLH).

Although care was taken to correctly classify the land cover types, the classification

process was subject to operator judgment on the approximate location of the pixel and the

percent of pixel covered by dead trees.

Table 7 Results Validation Points within study area

Class Code Number of Points
Healthy trees 0 204
Minor death (< 10% of pixel area) 1 37
Serious death (>10% of pixel area) 2 31
Mixed land cover classes 9 28
Total 300

3.3 Methodology

In addition to data sourcing and preparation, work on this project consisted of refining the study

area to remove non-forested areas from consideration, identifying the index most effective at

distinguishing dead tree areas from healthy forest, validating results, and extrapolating the

chosen index and range to the entire study area. An outline of the workflow that was deployed is

shown in Figure 8. To refine the study area, a mask was created from three types of data –

recently burnt areas, areas identified as having tree diseases other than SOD, land cover

identified as non-forest – and supplemented by raster data identifying non-forest land cover. An

analysis of Landsat band ratios was used to determine the most effective index for identifying
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Figure 8 The methodology for data extraction and analysis that was created and used for this
project

dead trees, and this result was applied to multiple years of imagery to map the spread of SOD

over time.

3.3.1 Refining the Study Area

This project’s Area of Interest was the Santa Cruz Mountains. Preliminary results demonstrated

that shrub land cover shared spectral ranges with areas of dead trees. To minimize false

identification of dead trees, this project needed to develop an accurate land cover mask that

would limit the study area to only forested land.

The basis for the mask was the 1992 and 2011 NLCD classified raster data, from which

the non-forest categories were converted to polygons. The combination of early and late NLCD

data sets was used to more effectively mask out land use changes that occurred during the period

of the study. These layers failed to remove all non-forested areas from the study area.
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Large-area land cover classifications, such as NLCD, seek to classify all land cover in the

US into a small number of classes, and seek to minimize noise. Because of this, small areas of

one type of land cover, pixels on the edge of other land covers, and mixed pixels are often

merged with other classes, all of which created problems for this study. Observations of the

NLCD data overlaid over an aerial image, a sample of which is shown in Figure 9, reveals that

many non-forested areas were incorrectly classified as forest. Edges of land cover types are

generalized and often contain vegetation which could cause inaccurate results. As a result, a

mask created from NLCD non-forest categories does not remove all non-forested areas from the

study area. This project used the NLCD as the primary land cover classification, but it needed to

be supplemented by other data to remove shrub from the study area and increase confidence in

the final results. This was accomplished using Landsat raster data.

To remove as much shrubbery from the study area as possible, it was necessary to

identify the index applied to Landsat data which best differentiated healthy trees and shrubs in

this environment. Using the Land Cover Points described above, the Extract Values to Points and

Zonal Statistics as Table tools were used to extract raster values for each index based on the

Landsat 2011 scene. The mean and standard deviation values of each land cover class produced

significant overlap. Instead, the histograms representing healthy trees and shrub land cover types

were visually compared, as in Figures 10 and 11, to determine which ranges captured the most

values. Histograms for NBR, SWIR/NIR and TC Wet, displayed in Figures 10-15, showed the

best separation between the two classes. An analysis of possible differentiation ranges, shown in

Table 8, showed that NBR with values greater than 640 was the most effective range to separate

healthy forest from shrub. When applied to the Land Cover Points set, this value removed 92

percent of the shrub points and only 4 percent of the healthy tree points.
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Figure 9 The NLCD classification did not adequately remove non-forested areas from the study
area. Areas outlined in white were identified as non-forest classes using the NLCD 1992 and

2011 layers. This sample shows many non-forested areas were not correctly classified.
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Figure 10 The NBR Land Cover Points histogram for shrubs

Figure 11 The NBR Land Cover Points histogram for healthy trees
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Figure 12 The SWIR/NIR Land Cover Points histogram for shrubs

Figure 13 The SWIR/NIR Land Cover Points histogram for healthy trees
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Figure 14 The NBR Land Cover Points histogram for shrubs

Figure 15 The NBR Land Cover Points histogram for healthy trees
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Table 8 Indices and value ranges tested to determine which one best masked shrub without
masking healthy trees. The ranges indicate the values used to map healthy trees.

NBR =>640 SWIR/NIR
=<510

SWIR/NIR
=<460

TC WET =>-450 TC WET =>-560

Shrub masked 92% 85% 94% 97% 82%
HLH masked 4% 1% 7% 12% 3%

Using the ranges identified, the 1992 and 1993 CDR Landsat images, which had already

been converted to NBR, were reclassified to identify all pixels with values lower than 640, and

this area was converted to new polygons to be added to the mask. An example of this is shown in

Figure 16. Although land cover categories representing dead trees fall between the ranges

indicating healthy trees and shrub, and may be partially masked out by this method, these values

were applied to Landsat images representing years before SOD is believed to have taken hold. If

SOD was present in the forest before its discovery in 1994, it was in insignificant amounts. The

layers created from this process were added to the mask to remove shrubbery and refine the

study area.

Fire data and areas of other tree damage were also part of the mask. To remove recently

burned areas from the study area, likely to contain dead trees which are not due to SOD, FRAP

polygons were used. Two files were created: one containing all wild fires in the area which

occurred in 1985 or later, and one containing all prescribed fires in the area, none of which

occurred prior to 1985. To remove other causes of tree death from the study area, ADS 2005 to

2013 polygons with tree threat attributed to causes other than SOD were added.

The final study area was defined as the AOI less the areas masked out: non-forest NLCD

data, the 1992 and 1993 Landsat shrub layers, FRAP fire polygons, and ADS disease polygons.

By carefully shaping the study area, it was hoped that the final results would be more accurate.
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Figure 16 The NLCD non-forest layers, shown in solid white, were not sufficient to limit the
mask to only forested areas. Landsat 1992 and 1993 data, used to supplement the mask, removed
all white-outlined areas from the study area. Figure 9 shows the NLCD non-forest layers without

the supplemental mask.
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3.3.2 Identifying the Most Effective Index and Mapping 2011 Affected Areas

The premise of this project was that one could differentiate healthy tree canopy from areas of SD

using Landsat data with an appropriate analysis index. Once the final study area was determined,

it was necessary to select the formula and index to map tree death. The final step was to apply

the chosen formula to the study area to map SOD infection.

The process of choosing an index to differentiate SD from HLH was similar to that used

for shrubs. The mean and standard deviations showed too much overlap, so histograms were

created to determine the index and ranges which captured the most points from each class while

minimizing points from other classes. This project sought a formula that would accurately

identify at least 60 percent of points in each class. Test value ranges were based on a comparison

of histograms, shown in Appendix B, graphing spectral signatures of the full set of 33 SD points

with a randomly-chosen subset of 33 HLH points. The SWIR/NIR, (Figures B1 and B2), NBR

(Figures B3 and B4), NDMI (Figures B5 and B6), NDVI (Figures B7 and B8) and TC Wet

(Figures B15 and B16) indices showed the best possibilities for differentiating these two classes

with a minimum of overlap. Test ranges were compared to index raster values to identify the

index and range which captured the maximum number of SD points and a minimum number of

healthy points. Over 50 ranges, indices and combinations were tested and the three best results

are shown in Table 9. Composite formulas which used two or more indices based on the OR

function (if either index marks this point as SD, mark it as SD) increased false positives when

compared to formulas using a single index, and composite formulas based on AND (mark this

point as SD only if all other indices mark it as SD) increased false negatives. Formulas based on

narrower ranges, even when combined with other formulas, created more false negatives because
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the narrow ranges missed the same outliers. The best formulas were found by looking closely at

the histograms and testing many ranges and indices against the index values.

Indices SWIR/NIR, NBR and a composite of the two had test ranges with errors less than

20 percent (Table 9), but the NBR index and range showed the most accurate SD classification

with a low level of false positives, correctly categorizing 88% of points in both classes. These

three indices and ranges were then compared to the Results Validation Points to measure

accuracy and confirm that the same range was still the best choice when applied to the entire

2011 data set.

Table 9 Three indices and value ranges compared to determine which one best differentiated SD
from HLH

SWIR/NIR 400-570 NBR 575-725 OR Combination
% SD Correct 85% 88% 91%
% HLH Correct 85% 88% 85%
SD Omission 15% 12% 9%
HLH Omission 15% 12% 15%
SD Map Accuracy 74% 78% 79%
HLH Map Accuracy 74% 78% 78%

3.3.3 Accuracy Assessment

The mapping results were assessed for accuracy by applying the formula to the Results

Validation Points, and the most accurate index and range was applied to the time series to map

SD change over time.

The Results Validation Points, described above, were used to extract the value of the

containing pixel from the 2011 Landsat image with each index calculated. Tables 10, 11 and 12

show the error matrices for these three formulas upon application to the Results Validation

Points. Although the NBR formula looked slightly more accurate when applied to the Land
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Cover Points, it shows more false negatives and false positives when compared to the SWIR/NIR

formula. The combination formula has more false positives than either of the other formulas. The

SWIR/NIR formula is the best of the three, with 69% tree health mapping accuracy and 24% SD

mapping accuracy. Based on these matrices, this project used the SWIR/NIR index with a range

of 400-570 to map SD in the study area.

The SWIR/NIR index and range described above was used to classify the study area

using the Landsat 2011 image. To facilitate comparison of non-aligned raster pixels, all pixels in

the range were converted to centroid points, and all points that fell outside of the mask were

considered to represent SD. The resulting 2011 SD layer, shown later in Figure 17 (as part of

Chapter 4), is the map of SOD extent in 2011 produced using the methodology that was created

and deployed for this project. The SWIR/NIR index was calculated for the 1994-2010 Landsat

Table 10 Error matrix for SWIR/NIR index applied to Results Validation Points with range of
400-570 classified as SD

Observed Data
Classification Tree Health Serious Tree

Death
Row Total User

Accuracy
Commission

Error
Tree Health 148 10 158 94% 6%
Serious Tree
Death 56 21 77 27% 73%
Column Total 204 31 235
Producer’s
Accuracy 73% 68%
Omission
Error 27% 32%
Map Accuracy – Tree Health 69%
Map Accuracy – Serious Tree Death 24%
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Table 11 Error matrix for NBR index applied to Results Validation Points with range of 575-725
classified as SD

Observed Data
Classification Tree Health Serious Tree

Death
Row Total User

Accuracy
Commission

Error
Tree Health 143 12 155 92% 8%
Serious Tree
Death 61 19 80 24% 76%
Column Total 204 31 235
Producer’s
Accuracy 70% 61%
Omission
Error 30% 39%
Map Accuracy – Tree Health 66%
Map Accuracy – Serious Tree Death 21%

Table 12 Error matrix for OR Combination of NBR 575-725 and SWIR/NIR 400-570 indices
applied to Results Validation Points

Observed Data
Classification Tree Health Serious Tree

Death
Row Total User

Accuracy
Commission

Error
Tree Health 135 7 142 95% 5%
Serious Tree
Death 69 24 93 26% 74%
Column Total 204 31 235
Producer’s
Accuracy 66% 77%
Omission
Error 34% 23%
Map Accuracy – Tree Health 64%
Map Accuracy – Serious Tree Death 24%

CDR scenes, and the same 400-570 value range was applied to map the extent of SOD for each

year. The final result was 18 maps, shown in Appendix C, one for each year 1994-2011.
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3.4 Summary

This chapter presented the data and methodology used in this study, so other researchers can

understand the preparation, processes followed, and methods of obtaining results. Crucial to the

explanation of data sources was the discussion of sources of data error. No GIS data set is

without errors, and understanding the limitations of each data set is important for interpretation

of results. Construction of an accurate study area was complex, but was critical to clarifying the

accuracy of the results and the accompanying interpretation of their significance for the problem

at hand.

The next chapter will present the results of this process, including maps, an analysis of

accuracy, and a discussion of trends and patterns.
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CHAPTER FOUR: RESULTS

Chapter three described the methodology followed in this project, which created maps of

canopy-level serious tree death for the Santa Cruz Mountains from 1994-2011. The project

produced 18 maps, one for each year of the study, showing areas identified as canopy level tree

death based on the SWIR/NIR index created from Landsat CDR scenes. The complete sequence

of maps is provided in Appendix C. This chapter discusses the mapping highlights and evaluates

accuracy of the final product.

4.1 Mapping Results

This project created maps for the first 18 years that SOD was known in the study area (Appendix

C). These maps were used to identify areas of tree death as a means to discover areas infected

with SOD, approximate the extent of contagion, and to compare areas of infection identified by

the project results with known locations of SOD infection.

4.1.1 Map of Serious Tree Death in 2011

The 2011 map of serious tree death, in Figure 17, shows tree death is present throughout most of

the study area, and especially dense on the more populated east side of the study area. Three

areas – Areas A, B and C – contain notably fewer dead trees than other areas. These areas will be

discussed in more detail below.
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Figure 17 The 2011 SD extent in the study area. Areas with lower rates of tree death – Areas A,
B and C – are marked in green.
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This methodology classified 27 percent of pixels in the study area as containing dead

trees in 2011, with the highest density on the east side of the study area. These slopes are

generally east-facing, which may influence moisture or vegetation which makes the ecosystem

more susceptible to SOD. These areas are also more densely populated than other parts of the

study area. Consequently, they may be at increased risk of SOD due to more accessible, therefore

heavier, recreational use, and proximity to homes in the interface zone which introduced the

infection via nursery plants. A 27 percent infection rate is much higher than expected and may be

a sign of inaccurate results.

Three areas stand out in this map for their relative lack of dead trees detected by this

methodology. Area A, shown in Figure 17, straddles the ridge between Redwood City and the

Pacific coast. This west-facing slope is parkland and preserved land, and this east-facing slope

abutting Crystal Springs Reservoir is owned by the San Francisco Public Utilities Commission

and closed to the public. Area B is on the coastal side of the mountain range, and is also

parkland. Area C is Nisene Marks State Park, a park that is difficult to access except by a few

trails which allow bicycles. With the exception of Highway 35 along the ridge in Area A, these

areas are steep, largely inaccessible, and are among the most densely vegetated areas on the

peninsula. Neither SODMAP nor ADS show any known SOD infestations in these three areas.

These areas may have escaped SOD infestation due to forest monitoring and rapid removal of

infected trees, because inaccessibility has prevented human transmission, or because the steep

canyons have provided an inhospitable environment for the disease. It is also possible that these

areas contain taller older-growth trees which obscure the view of dead trees lower in the canopy.
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If this map is accurate, then tree death is widespread through the study area, and only a

few areas have managed to escape. This would indicate that SOD’s effects on the forest were

extensive and rapid, with devastating consequences within twenty years of first detection.

4.1.2 Serious Tree Death Change From Previous Years

Although the 2011 map of serious tree death shows tree mortality throughout the study area, the

result is not significantly different from 2010 or even 1994 (Appendix C). In every year, this

methodology shows infestation throughout the study area, with no areas appearing to show more

rapid spread of the disease than others. Overall, the number of pixels classified as SD varies from

11 percent in 1999 to 51 percent of the study area in 2009, detailed in Table 13.

The methodology classified 165,000 pixels as SD in 2010, and 208,000 pixels in 2011, a

26 percent increase. To facilitate comparison of multiple years of SD classification data, pixels

were converted to centroid points. A comparison of new SD from 2010 to 2011, shown in Figure

18, shows 82,000 SD points in 2011 that were at least 31 m away from the nearest 2010 SD

point. An inspection of these changes shows 2011 damage in the same areas as the 2010 damage,

but covering a slightly greater areal extent.

A point density map of the new SD points, reproduced in Figure 19, shows the strongest

increase in the southern portions of the study area. Figure 20 provides detail on one particular

area which showed a significant number of pixels classified as new SD. Due to edge effects from

the complex study area, larger continuous areas may show disproportionally strong results with

the point density function.
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Figure 18 2010 SD and new 2011 SD points (at least 31 meters away from a 2011 point).
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Figure 19 A point density map showing the areas with the most new SD in 2011 compared to
2010. Detail can be seen in Figure 20.
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Figure 20 Detail of new SD points in 2011
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Table 13 Number of pixels within study area identified as containing serious levels of tree
mortality

Year Day SD
Pixels

Percent of
Total Area*

Increase from
Previous Year

New SOD Pixels
Since Previous Year

Percent of
Total Area

1994 070 176,057 23%
1995 089 265,448 34% 51% 75,552 10%
1996 124 120,302 15% -55% 18,961 2%
1997 094 143,181 18% 19% 54,572 7%
1998 177 120,702 15% -16% 41,773 5%
1999 180 89,280 11% -26% 23,322 3%
2000 119 175,114 22% 96% 96,287 12%
2001 121 130,225 17% -26% 36,047 5%
2002 156 194,596 25% 49% 69,067 9%
2003 095 230,463 29% 18% 89,315 11%
2004 114 204,170 26% -11% 75,741 10%
2005 100 235,000 30% 15% 47,920 6%
2006 167 142,706 18% -39% 21,616 3%
2007 106 200,631 26% 41% 69,928 9%
2008 157 159,868 20% -20% 31,210 4%
2009 127 396,994 51% 148% 192,582 25%
2010 114 165,210 21% -58% 7,537 1%
2011 117 208,452 27% 26% 82,067 11%

* Based on average of total pixels within study area for 1994, 1995, 2010 and 2011.

This project expected the 1994 SD map to show little tree death but, as can be seen in

Appendix C Figure C1, it instead shows large areas of dead trees throughout the study area.

Although SOD was not discovered until 1994, it may have been present in the forest before then,

limited to a few small areas. In that case, the widespread tree mortality depicted would be due to

causes other than SOD, but this is unlikely because anything causing tree death on this scale

would have been noticed. More likely, it is an indication of unreliable results.

The widespread tree death shown in the map of each year’s results was unexpected and

brings the accuracy of the results into doubt. This issue is explored with some tabular data

covering the period 1994-2011 in the next section.
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4.1.3 Area of SOD infestation

One method to evaluate the change in SOD infestation over time is to look at the number of

pixels classified as SD for each year. This value would be expected to be near 0 in 1994 and

increase gradually, with some fluctuation for seasonality. Data captured early or later in the

spring could show different total calculations due to different seasonal spectral responses. Values

could also decrease if dead trees fall over and cease to be mapped.

Unfortunately, the pixel count shown in Table 13 does not conform to the logical

expectation for a spreading infection. Initial pixel counts are much higher than expected, and

show large annual variation. It may be notable that the lowest pixel count, 89,280, was for the

image captured latest in the season, on day 180 of 1999, and the second highest pixel count,

265,448, was for an image captured early in the season.

This unexpected fluctuation in pixels classified as SD may be an indication that seasonal

variation plays a much stronger role in the spectral signature than was anticipated in this project,

and annual differences in rainfall and temperature may further confound the interpretation of the

results. The results summarized in Table 13 are therefore a strong indicator that the results

produced by this methodology are not reliable.

4.1.4 2011 Comparison to ADS and SODMAP

ADS and SODMAP are the most thorough SOD datasets publicly available. This study

found SD throughout the study area, but current ADS and SODMAP data show SOD infection

primarily in the central-east portion of the study area. If the methodology described in this

project were reliable, then a comparison of this project’s results with these datasets could

highlight new areas of dead trees which might be SOD infection.



57

Figure 21 shows 2011 SD overlaid with the ADS polygons classified as SOD, and Figure

22 shows 2011 SD overlaid with the SODMAP confirmed SOD-positive infections. Both of

these datasets show SOD primarily near the ridgeline in the central part of the study area.

SODMAP collects data by field study, so most of their samples are near roads. ADS identifies

areas of tree death by flying over them. Without field study, ADS is forced to identify a cause of

tree death using other known information. If ADS is relying on SODMAP to tell them where

SOD is present, then SOD tree death in other areas may be mistakenly assigned to other causes

or may be undetected. A successful methodology to detect dead trees using satellite imagery

could identify areas of concern that are not easily accessible by SODMAP field testers or that

ADS hasn’t prioritized for fly over.

The 2011 map of serious tree death produced by this project reveals one region that

should be looked at more closely. In the southeast portion of the study area, between Los Gatos

and Morgan Hill, is a large area of east-facing private land which was mapped by this

methodology as containing large amounts of tree death, but has not been identified by either

ADS or SODMAP as a known area of SOD infection. SODMAP collected eight samples in this

area in 2013, in two locations, and all tested negative for SOD. The ADS flew this area in both

2012 and 2013 and found tree damage which they attributed to insects. Although analysis of this

project’s results shows that mapping results may be inaccurate, it appears that this area is already

on the radar as a possible area for SOD, and will probably be watched closely for new infections.

An analysis of the maps produced by this project indicated that densely forested, steep,

inaccessible areas are less susceptible to SOD, and identified an area in the southeast portion of

the study area that should be looked at more closely as possibly infected by SOD. However,



58

Figure 21 The 2011 SD pixels compared to ADS-identified SOD areas
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Figure 22 The 2011 SD pixels compared to SODMAP confirmed SOD infections
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several factors indicate that these results may be unreliable, including the unexpectedly large

numbers of pixels classified as dead trees, and the unforeseen seasonal variation. The reliability

and accuracy of the results is taken up in the next section.

4.2 Accuracy Evaluation

From an analysis of the maps and tables showing this project’s results, and the error matrices in

the previous chapter, we have already seen indications that bring into doubt the reliability of the

output – too many pixels are being classified as SD. The error matrix which evaluated the

accuracy for the SWIR/NIR index and range 400-570 applied to the Results Validation Points

measured that 68 percent of SD points were classified correctly and 73 percent of healthy trees

were classified correctly. However, large numbers of pixels that appeared to contain only healthy

trees were classified as SD, and the relatively larger number of healthy tree points within the

sample strongly affected the overall mapping accuracy. Tree health was accurately mapped 69

percent of the time, but SD was only mapped correctly in 24 percent of the cases, as shown in the

error matrix in Table 10 (Chapter 3). This means that approximately three quarters of pixels

mapped as tree death are actually healthy trees. Unfortunately, this mapping method and results

should therefore be considered unreliable.

A visual comparison of points marked falsely positive does not reveal any obvious reason

for the misclassification. They do not contain small amounts of tree death, and they do not

contain a particular type of tree. This indicates that the misclassification is due to spectral

variation. Similar types of vegetation were observed producing values over a wide range, which

caused an overlap in the index values produced by each land cover type. This is further

confirmed by areas where SD-classified pixels appear and disappear over different years.
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Although fluctuation over different years is partially due to seasonal changes, the variation in

pixel values for the same land cover type created more variability than could be captured or

excluded with a specific value range.

To rule out misclassification, both sets of points were verified to confirm accuracy. Both

Land Cover Points and Results Validation Points SD points conform to the minimum standard of

10% canopy dead trees, but the non-random Land Cover points have an average of 21% dead

tree cover, and the random Results Validation points have an average of 12%. This means that

the index and range based on the Land Cover points is not optimized to pick up the low levels of

SOD displayed in the Results Validation points.

A histogram analysis was applied to the Results Validation Points to determine which

index and range would have mapped these points more accurately, and ranges were tested. To

facilitate comparison, a randomly-chosen subset of the HLH points was used to equalize the

numbers of HLH and SD points. The histograms of these points, shown in Appendix D, did not

show differentiation as clearly as the Land Cover Points. There was only slight offset between

the peaks of SD and HLH with the SWIR/NIR (Figures D1 and D2), NBR (Figures D3 and D4),

NDMI (Figures D5 and D6) and the NDVI (Figures D7 and D8), and no offset for the other

indices. No indices or ranges were found which produced better results than the SWIR/NIR

formula used in this project.

To determine if an index and range could be more effective at identifying Results

Validation Points with greater than 20% canopy SD, the four Results Validation Points meeting

that threshold were tested, but no indices or ranges were found which could encompass all four

SD points while excluding all HLH points. The best formula, when applied to the entire Results
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Validation dataset, only picked up 20% (6 points) of the entire Results Validation SD point

dataset. Even a classification based on 20% SD would still have captured HLH points.

Initial analysis of these project results seemed to indicate three areas which escaped SOD

infestation, and one new area which should be looked at more closely. However, the number of

pixels mapped as SD each year is not consistent with a spreading disease, and the analysis of the

Results Classification Points found the mapping of SD to be only 24 percent accurate. Because

of these reasons, these project results must be considered unreliable.

The next chapter discusses the broader implications of this interpretation, makes

suggestions for further work, and draws conclusions about the project as a whole.
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CHAPTER FIVE: DISCUSSION AND CONCLUSIONS

This project attempted to classify dead trees at the canopy level using 30 m raster imagery, as a

proxy for mapping the spread of Sudden Oak Death since its discovery in 1994, and concluded

that there is too much spectral variation to accomplish this reliably. The project sought a simple

method to map SOD over a large area that could be adapted to other areas to form a complete

picture of the state of SOD infestation on the west coast of North America. The motivation for

this project was that these data could have been useful to quantify the disease impact, to evaluate

success at disease management, and could have been adapted to map SOD in other susceptible

areas. Unfortunately, the methodology described in this project identified too many false

positives to be considered a dependable means to map SOD.

This study expected to find tree death spreading outwards from existing infected areas,

with occasional instances of SOD popping up in new places. The possibility for a successful

result seemed likely based on the promising Land Cover Points results. Unfortunately, the

Results Validation points showed that many areas with healthy trees were misidentified as

containing dead trees. Although the methodology was effective at mapping serious tree death at

the canopy level, it is picking up too many false positives to produce reliable results to describe

the phenomena at hand. The failure to accurately map tree death is due to a variety of spectral

signatures produced by similar vegetation which led to overlap in each land cover type’s value

range. Unfortunately, within the confines of this project’s goals – to find a simple method to map

SOD over a large area – a more refined analysis was not possible. The remainder of this chapter

discusses the implications of the project results, and makes suggestions for further research that

might overcome some of the problems that this project experienced.
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Preliminary analysis of results implied that dense forest was less susceptible to SOD, and

that the southeast portion of the study area contained high levels of tree death not previously

noted, but the poor results from the Results Validation Points showed that we could not

substantiate these conclusions were accurate. Although this project failed to find a method to

map SOD infestation, we can determine what caused the failure and what, if anything, could

have been done to improve results.

The project identified pixels containing dead trees with a 24 percent accuracy rate. This

low accuracy rate was due to large numbers of pixels containing healthy trees being falsely

identified by the methodology as containing dead trees. This is due to a large variation in spectral

signatures for the same land cover type. Even within small areas of healthy forest, SWIR/NIR

index values ranged by up to 25 percent. While non-forest land cover areas were removed from

the study area, there was still sufficient spectral signature variation within classes to cause

confusion between pixels containing only healthy trees and those containing some dead trees.

Although this project expected to address issues caused by sub-pixel sized features, and so

approached this analysis by analyzing land cover at the canopy layer instead of at the tree-level,

this wide range of pixel index values made it difficult to identify a value range which would

exclude other land cover types. This project did not find a reliable method to map the locations

of SOD based on 30 m raster data.

Similar projects analyzing tree health using Landsat imagery claim success, but they

measured success differently than this project. Vogelmann, Tolk and Zhu (2009) used correlation

with the ADS data as an indicator of success. Meddens et al. (2013) evaluated success based on

correct classification of selected homogenous pixels. Meigs, Kennedy and Cohen (2011) and

Mahon et al. (2002) performed field testing to evaluate results. It is likely that a pixel-based
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validation such as that used by this project would have shown a comparable poor performance.

This method of evaluation is objective, but is much more stringent than that applied to other

studies of sub-pixel sized features. Despite the measured inaccuracies, the methodology

described in this project may be useful at identifying hotspots of new infestation, but the large

number of false positives makes it difficult to interpret the specific outcomes.

This project’s methodology could have been improved with certain techniques.

Specifically, a means could be found to address both the seasonal variability in pixel values

across years, and the false positives. To remove or minimize annual variability, seasonal rainfall

and temperature data would need to be incorporated into the analysis. This could be used to limit

the analysis to data which represented land cover in roughly similar phenological conditions.

This would necessarily require using fewer images to conduct the time series analysis because

there would not be sufficient cloud-free images during the desired collection period. To remove

false positives, two different methods could have been employed. Currently, the methodology

identifies serious tree death as greater than 10 percent of pixel area containing dead trees. A

higher percentage would have produced a more focused index value range and likely have

decreased spectral overlap with pixels containing healthy trees. Another possibility would be to

devise a custom index or identify an additional band which differentiated false positive tree death

from actual tree death. Both of these were experimented with in this project without

improvement to results, but a more intense focus on these two changes might reveal a solution.

Although the aforeementioned methods might decrease the error rate found by this project, if the

new methods proved complicated, it might make the methodology too difficult to be adapted and

used by other users.
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Some other methods which might have produced successful results include higher

resolution images, additional Land Cover Points, a smaller study area or multi-date analysis.

These options were considered but were discarded for reasons described below. Higher

resolution data, used in place of or in conjunction with Landsat, would have improved feature

resolution and project results. This was not considered because one project goal was to develop a

method to map tree death over a large area, that could be adapted to other areas. Although many

studies use data fusion methods to improve the feature differentiation of low-resolution satellite

data, a methodology which required higher resolution data might make this methodology

inadaptable to areas where such data was unavailable, or too costly to acquire, process, store

and/or interpret. Another solution considered was to create additional Land Cover Points to more

precisely identify each land cover type index value range. This was not pursued because a simple

method which could be adapted by others could not rely on such a careful creation of sample

points. The initial evaluation of the classification method showed satisfactory results using the

Land Cover Points, so it was reasonable to proceed. Refining a SD mapping method using a

smaller, more homogenous study area was considered. Decreased vegetation variation that would

be typical of many smaller study areas might have made this methodology successful, even with

low-resolution data. However, this project sought to develop methodology that could be adapted

to map SOD throughout California, and only a large study area would capture the topographic

variation necessary. A method which mapped SOD accurately in a homogenous area would

likely fail if applied to large areas with more varied topography. Several successful studies of

tree health used multi-date analysis to map subtle changes over multiple years. Based on the

minor offsets visible in the Results Validation Points histograms shown in Appendix D, a

method which detected slight changes in spectral signature might have been more effective.
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However, this comparison would need to be performed between three or more sets of data, to

eliminate outlier values, because of the pixel value variation observed. These methods discussed

could have improved this project’s results, but complex methodologies run the risk of

discouraging others from adapting it. Although certain changes might lead to successful mapping

of SOD on a small or large scale, in a way that this project did not, the root problem is large

spectral variation for a single land cover type and overlap between land cover classes.

This project concludes that Landsat data was not able to accurately map tree death in this

densely vegetated study area. In addition to unexpected seasonal variation, there was wide

variation in pixel values for similar land cover types, which created overlap between classes

which could not be contained or excluded with a specific value range.

This project had three original research questions:

1. Can canopy-level tree death indicating SOD infestation be accurately identified

and mapped using Landsat remotely-sensed imagery?

2. Are vegetation indices alone sufficient to differentiate tree health and tree

mortality from other types of land cover?

3. Will existing supplemental land cover data sets improve or simplify the

classification process?

Although pixels containing dead trees could be identified using Landsat imagery, there was too

much spectral signature overlap with other land cover types to produce an accurate result.

Spectral signature overlap between dead trees and scrub meant that vegetation indices alone were

not sufficient. Supplemental land cover data sets used to mask out non-forest and areas with

other known causes of death were essential to ensure that the methodology was only applied to

the target land cover type.
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Although the research questions have been addressed, a successful methodology has not

been found. A method is still needed to quantify SOD damage and assess forest health on a large

scale. Until then, the ADS surveys are the best data available to assess SOD infestation.

Ironically, the current drought in California which is killing trees from lack of water is likely to

be the most effective treatment so far to slow the spread of SOD.
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APPENDIX A: HOSTS REGULATED FOR PHYTOPHTHORA RAMORUM

Table A1: Proven host plants regulated for Phytophthora Ramorum

Scientific Name Common Name(s)

Acer macrophyllum Bigleaf maple

Acer pseudoplatanus Planetree maple

Adiantum aleuticum Western maidenhair fern

Adiantum jordanii California maidenhair fern

Aesculus californica California buckeye

Aesculus hippocastanum Horse chestnut

Arbutus menziesii Madrone

Arctostaphylos manzanita Manzanita

Calluna vulgaris Scotch heather

Camellia spp. Camellia - all species, hybrids and cultivars
Castanea sativa Sweet chestnut

Cinnamomum camphora Camphor tree
Fagus sylvatica European beech

Frangula californica (Rhamnus californica) California coffeeberry
Frangula purshiana (Rhamnus purshiana) Cascara
Fraxinus excelsior European ash

Griselinia littoralis Griselinia

Hamamelis virginiana Witch hazel

Heteromeles arbutifolia Toyon

Kalmia spp. Mountain laurel - all species, hybrids and
cultivars

Lithocarpus densiflorus Tanoak

Lonicera hispidula California honeysuckle

Laurus nobilis Bay laurel

Magnolia doltsopa (Michelia doltsopa) Michelia
Maianthemum racemosum (Smilacina
racemosa)

False Solomon’s seal

Parrotia persica Persian ironwood

Photinia fraseri Red tip photinia

Pieris spp. Andromeda, Pieris - all species, hybrids and
cultivars

Pseudotsuga menziesii var. menziesii Douglas fir
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Table A1 (continued)

Scientific Name Common Name(s)

Quercus agrifolia Coast live oak
Quercus cerris European turkey oak
Quercus chrysolepis Canyon live oak
Quercus falcata Southern red oak
Quercus ilex Holm oak
Quercus kelloggii California black oak
Quercus parvula var. shrevei Shreve’s oak
Rhododendron spp. Rhododendron (including

azalea) – all species, hybrids and cultivars

Rosa gymnocarpa Wood rose
Salix caprea Goat willow
Sequoia sempervirens Coast redwood
Syringa vulgaris Lilac
Taxus baccata European yew
Trientalis latifolia Western starflower
Umbellularia californica California bay laurel, pepperwood, Oregon

myrtle
Vaccinium ovatum Evergreen huckleberry
Viburnum spp. Viburnum – all species, hybrids and cultivars

Source: USDA Animal and Plant Health Inspection Service (2012)
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APPENDIX B: INDEX ANALYSIS HISTOGRAMS FOR LAND COVER POINTS

Figure B1 The SWIR/NIR Land Cover Points histogram for serious tree death.

Figure B2 The SWIR/NIR Land Cover Points histogram for healthy trees. This index is a good option because the peaks of the two
histograms are separated and don’t overlap with large quantities in the other graph. This index was one of three considered to

differentiate healthy from SD points, and the range of 400-570 was ultimately used.
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Figure B3 The NBR Land Cover Points histogram for serious tree death.

Figure B4 The NBR Land Cover Points histogram for healthy trees. This index was not chosen because the left HLH peak overlaps
with three of the SD points.
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Figure B5 The NDMI Land Cover Points histogram for serious tree death.

Figure B6 The NDMI Land Cover Points histogram for healthy trees. This index was considered for use to differentiate the healthy
and SD points. Although many of the points are in overlapping ranges, the peaks of the histograms are separated and do not overlap

with points in the other class.
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Figure B7 The NDVI Land Cover Points histogram for serious tree death.

Figure B8 The NDVI Land Cover Points histogram for healthy trees. This index is not ideal because the main curve of each histogram
is so close to the other, and most of the points are in overlapping ranges.



80

Figure B9 The RGI Land Cover Points histogram for serious tree death.

Figure B10 The RGI Land Cover Points histogram for healthy trees. This index was not used because here is too much overlap
between the ranges and the peaks.
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Figure B11 The Tasseled Cap Bright Land Cover Points histogram for serious tree death.

Figure B12 The Tasseled Cap Bright Land Cover Points histogram for healthy trees. This index was not used because there was no
large a range of values in each chart, no clear histogram peak, and too much overlap.
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Figure B13 The Tasseled Cap Green Land Cover Points histogram for serious tree death.

Figure B14 The Tasseled Cap Green Land Cover Points histogram for healthy trees. This index was not used because the values are
spread over too great a range with too much overlap between the two classes.
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Figure B15 The Tasseled Cap Wet Land Cover Points histogram for serious tree death.

Figure B16 The Tasseled Cap Wet Land Cover Points histogram for healthy trees. This index was considered for use to differentiate
the healthy and SD points. Although there is undesireable overlap between the ranges, the histogram peaks are separated and there are

few overlapping points at the peak ranges.
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APPENDIX C: PREDICTED MAPS OF SUDDEN OAK DEATH

Figure C1 The extent of serious tree death in 1994. Each pixel classified as SD is displayed as a
single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C2 The extent of serious tree death in 1995. Each pixel classified as SD is displayed as a
single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C3 The extent of serious tree death in 1996. Each pixel classified as SD is displayed as a
single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C4 The extent of serious tree death in 1997. Each pixel classified as SD is displayed as a
single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C5 The extent of serious tree death in 1998. Each pixel classified as SD is displayed as a
single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C6 The extent of serious tree death in 1999. This year’s data showed the fewest pixels
classified as SD. Each pixel classified as SD is displayed as a single yellow point. Non-forested

areas, masked out, are shown in brown.
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Figure C7 The extent of serious tree death in 2000. Each pixel classified as SD is displayed as a
single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C8 The extent of serious tree death in 2001. Each pixel classified as SD is displayed as a
single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C9 The extent of serious tree death in 2002. Each pixel classified as SD is displayed as a
single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C10 The extent of serious tree death in 2003. Each pixel classified as SD is displayed as
a single yellow point. Non-forested areas, masked out, are shown in brown.



94

Figure C11 The extent of serious tree death in 2004. Each pixel classified as SD is displayed as
a single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C12 The extent of serious tree death in 2005. Each pixel classified as SD is displayed as
a single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C13 The extent of serious tree death in 2006. Each pixel classified as SD is displayed as
a single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C14 The extent of serious tree death in 2007. Each pixel classified as SD is displayed as
a single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C15 The extent of serious tree death in 2008. Each pixel classified as SD is displayed as
a single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C16 The extent of serious tree death in 2009. This year’s data showed the most pixels
classified as SD. Each pixel classified as SD is displayed as a single yellow point. Non-forested

areas, masked out, are shown in brown.
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Figure C17 The extent of serious tree death in 2010. Each pixel classified as SD is displayed as
a single yellow point. Non-forested areas, masked out, are shown in brown.
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Figure C18 The extent of serious tree death in 2011. Each pixel classified as SD is displayed as
a single yellow point. Non-forested areas, masked out, are shown in brown.
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APPENDIX D: HISTOGRAMS FOR RESULTS VALIDATION POINTS

Figure D1 The SWIR/NIR Results Validation Points histogram for serious tree death.

Figure D2 The SWIR/NIR Results Validation Points histogram for healthy trees. The main range for the SD points in Figure D1 is
shifted slightly to the right in comparison to the HLH points.
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Figure D3 The NBR Results Validation Points histogram for serious tree death.

Figure D4 The NBR Results Validation Points histogram for healthy trees. The main curve for SD points, in Figure D3, is shifted
slightly to the left in comparison to the HLH points.
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Figure D5 The NDMI Results Validation Points histogram for serious tree death.

Figure D6 The NDMI Results Validation Points histogram for healthy trees. The main range of the SD points in Figure D5 is shifted
slightly to the left in comparison to the HLH graph.
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Figure D7 The NDVI Results Validation Points histogram for serious tree death.

Figure D8 The NDVI Results Validation Points histogram for healthy trees. The main body of SD points in Figure D7 is shifted
slightly to the right in comparison to HLH.
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Figure D9 The RGI Results Validation Points histogram for serious tree death.

Figure D10 The RGI Results Validation Points histogram for healthy trees. There is correlation between the main sets of points in
these ranges so this index is not useful for differentiating the classes.
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Figure D11 The Tasseled Cap Bright Results Validation Points histogram for serious tree death.

Figure D12 The Tasseled Cap Bright Results Validation Points histogram for healthy trees. The values are spread over too wide a
range to be able to use this index to identify a change in spectral signature.
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Figure D13 The Tasseled Cap Green Results Validation Points histogram for serious tree death.

Figure D14 The Tasseled Cap Green Results Validation Points histogram for healthy trees. The values are spread over too wide a
range to be able to use this index to identify a change in spectral signature.
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Figure D15 The Tasseled Cap Wet Results Validation Points histogram for serious tree death.

Figure D16 The Tasseled Cap Wet Results Validation Points histogram for healthy trees. The values are spread over too wide a range
to be able to use this index to identify a change in spectral signature.


