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Abstract 

Mountain search and rescue (SAR) incidents are high risk events that consume time and money, 

often placing the lives of rescuers and subjects alike in precarious situations. The increasing 

accessibility of satellite communication (sat-comm) devices for outdoor recreation may change 

when and where mountain rescue teams are tasked, and California’s SAR agencies need to 

understand the implications of emerging sat-comm device usage on SAR requirements to 

mitigate future risks caused by resource and training shortfalls. To date, no academic studies 

have conducted a holistic assessment of SAR incidents in the Sierra Nevada mountains or 

considered the impacts of sat-comm device usage on the SAR caseload. Such a knowledge gap 

impairs the ability of federal, state, and local agencies to anticipate costs and adequately train 

rescue teams to respond to mountain SAR incidents. This research explores the spatial and 

temporal patterns of historical mountain SAR incidents in the Sierra Nevada wilderness areas to 

understand how sat-comm devices impact SAR services in one of the most visited mountain 

regions in the continental United States. The results of this study suggest sat-comm devices are 

replacing traditional methods of notification that alert authorities to an emergency. Incidents 

where the subject communicates using a sat-comm device occur at sites of historical SAR 

activity where traditional methods of communication are dominant, as well as at new – and more 

isolated – locations. A lack of confidence in data quality, however, means this study primarily 

serves to demonstrate spatial and spatiotemporal analysis methods that SAR agencies may adopt 

to explore historical mountain SAR incidents at a regional scale. 
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Chapter 1 Introduction 

Nature cares little for the boundaries built by humans to define dominion and stewardship. 

People who venture into the wild and encounter emergency situations likewise request aid 

irrespective of jurisdictional lines. Administrative boundaries continue to blur thanks to 

technological advances in portable satellite communication (sat-comm) devices. Sat-comm 

devices have near-global coverage areas, and they enable users to call for help anytime, 

anywhere. More traditional methods of calling for help have limited capabilities compared to sat-

comm devices: cellular network antennas do not provide universal coverage; and word-of-mouth 

relay of an accident is limited by human mobility. In theory, increased accessibility to rescue 

services could mean an increased level of demand without a matching increase in supply. 

Furthermore, should sat-comm devices enable connectivity to communications infrastructure in 

areas that previously lacked access to human or cellular services, then the spatial distribution of 

emergencies might broaden in addition to increasing numbers of requests for rescue services. 

Activating a sat-comm device sets in motion search and rescue (SAR) efforts that are 

ultimately executed by the emergency response agency with jurisdiction over the activation site. 

Private and public organizations who monitor sat-comm device activations and coordinate the 

response often maintain separate SAR incident datasets that adhere to different reporting 

requirements. Similarly, the local SAR agencies who execute the response to all SAR incidents 

within their jurisdiction, regardless of the method of notification, frequently keep records that are 

not held to a state or national standard. This isolation of SAR incident records contributes to a 

general lack of awareness of how trends play out across a geographic region. Emergency 

response agencies would benefit from an analysis of cross-jurisdictional datasets in order to 

improve their SAR response and determine to what extent new technologies like sat-comm 
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devices alter the SAR landscape. The optimal datasets for research therefore lie with state-, 

regional-, national-, or international-scale agencies responsible for collecting and standardizing 

records. 

The intent of this research is to take two, cross-jurisdictional datasets and examine how 

the spatial and temporal patterns of mountain SAR incidents originating with a sat-comm device 

activation compare with the traditional means of distress notification (e.g., in-person notification, 

cell phone, etc.) over time. The study area encompasses the wilderness areas of California’s 

Sierra Nevada mountain range due to their extreme topography, relative inaccessibility, multiple 

SAR controlling agencies, and high visitor numbers – factors which increase the risk in the SAR 

process and complicate post-SAR analysis. To date, there are no academic studies that have 

analyzed mountain SAR patterns at this scale in California nor considered the influence of sat-

comm devices on when and where rescue teams might be tasked. The goal of this research is 

therefore to remedy this gap and determine the impact of sat-comm devices on the spatial and 

temporal distribution of mountain SAR incidents. To meet this goal, this study presents 

methodology that may be adapted by SAR agencies to continuously evaluate their local SAR 

landscape. In this way, SAR agencies responsible for coordinating rescue teams might be better 

prepared to respond to future mountain SAR incidents. 

This chapter begins with a definition of the terms used throughout this study. This is 

followed by an overview of sat-comm device types and services. The chapter then goes over the 

study area and describes what SAR datasets are available for the study area. The chapter 

concludes with a statement on the motivation behind the development of this project and a 

review of the methods employed to advance the research objectives.  
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1.1 Search and Rescue 

Search and rescue efforts involve locating people in potential or actual distress and 

delivering them to safety. The goal of SAR agencies is to shorten the time from distress 

notification to resolution without compromising safety or mission success. The framework for 

operational success is laid out in regulatory publications and ultimately achieved by the real-time 

execution and sound judgment of rescue coordinators and rescue teams. International SAR 

organizations that fall under the United Nations, like the International Search and Rescue 

Advisory Group (INSARAG), International Maritime Organization (IMO), and International 

Civil Aviation Organization (ICAO), publish manuals that standardize procedures and articulate 

rescue responsibilities on a global scale. National- and state-level guidance builds off these 

documents to fit the needs of SAR operations in their respective coverage areas. This section 

describes the domestic SAR structure including the chain of responsibility for SAR response and 

the management of historical SAR data. 

1.1.1 Governing Publications 

The federal SAR agencies in the United States lean most heavily on the International 

Aeronautical and Maritime Search and Rescue (IAMSAR) Manual – which is the joint work of 

the IMO and the ICAO – to refine domestic procedures and offer structure to the civil SAR 

process. The National Search and Rescue Committee (NSARC) is the federal organization 

responsible for coordinating procedures for interagency standardization, and they publish the 

National Search and Rescue Supplement (NSS) to the IAMSAR Manual (NSARC 2016) and the 

Land SAR Addendum to the NSS (NSARC 2011). These two documents set out the terminology 

and organizational relationships used in this research. 
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1.1.2 Mountain SAR Incident Definition 

Unlike most classifications of SAR operations, a mountain SAR incident is not explicitly 

defined in the Land SAR Addendum, though it is alluded to as a subset of land SAR, which is a 

subset of civil SAR. Figure 1 offers a visual breakdown of how mountain SAR is categorized 

within SAR terminology. Civil SAR efforts are defined as those that occur in a non-hostile 

environment, and they range from aeronautical and maritime emergencies to catastrophic 

disasters. Land SAR refers to SAR incidents that occur on land, outside of urban areas, and are 

generally not associated with natural disasters. The definition of mountain SAR used for the 

purpose of this research refers to a land SAR event which occurs in mountainous terrain away 

from the built environment, where the subject is participating in outdoor recreation, and which 

requires the assistance of specialty-trained SAR assets. Assets include technical ropes teams, 

swiftwater rescue crews, off-highway vehicle (OHV) SAR teams, and helicopter crews, all of 

which maintain specific qualifications and training.  

 
Figure 1. The placement of mountain SAR within the SAR typological structure 

 
A SAR incident refers to a request for SAR assistance, but responders are uncertain as to 

whether a person is in actual distress. Geographic information science also has a term for 

incident data: an incident refers to a site corresponding to a single set of coordinates (Esri n.d.). 

Since the mountain SAR events in this research contain varying degrees of distress, from false 
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alarm to death, and because they correspond to a single coordinate pair, all mountain SAR events 

considered for analysis in this research are referred to as mountain SAR incidents. 

1.1.3 Five Stages of SAR 

SAR consists of five stages: awareness, initial action, planning, operations, and 

conclusion (NSARC 2011). Figure 2 depicts these stages derived from the model found in the 

Land SAR Addendum. Each stage provides an opportunity for after-action lessons and process 

improvement. In particular, the Planning and Operations stage are a continuous feedback 

process, and advanced preparation (e.g., through research on historical incidents) can increase 

the efficiency of the Operations stage for a faster time to SAR Conclusion. The spatial and 

temporal analysis of historical SAR incidents identifies where and when incidents traditionally 

occur so SAR operations centers and rescue teams can develop appropriate training and response 

plans. For example, a consistent cluster of SAR incidents may be identified around climbing 

routes that straddle a jurisdictional boundary, but only one of the jurisdictions has a technical 

mountain rescue team on immediate recall that can respond to injured climbers. Questions asked 

during the Initial Action and Planning stages could be tailored based on an analysis of historical 

SAR incidents for optimized rescue asset preparation and utilization. 

 
Figure 2. The five stages of SAR, as adapted from the Land SAR Addendum 

 



 6 

1.2 Satellite Communication Devices 

Owing to technological advances in sat-comm devices, calling for help is increasingly 

accessible to the general population from anywhere on the planet that can connect to the 

applicable satellite infrastructure. Sat-comm devices therefore have the potential to accelerate the 

SAR process from locations that previously would have had a delay in incident notification if 

subjects had to rely traditional notification methods or overdue procedures (i.e., when a person 

misses a check-in, often relayed to SAR agencies by friends and family). Many of these sat-

comm devices have an “SOS” feature, the activation of which sends an emergency signal with 

location information via satellite to a rescue coordination center (RCC). The RCC then takes 

responsibility to inform the appropriate local rescue agency. Figure 3 presents a diagram of the 

sat-comm device emergency notification process and incident record keeping. It is worth noting 

that sat-comm device records are often saved in duplicate or triplicate: one record of an incident 

lies with the RCC, one with the local agency accepting the tasking (e.g. county), and one with 

the state agency (if they require the local agency to forward their reports). Along with coordinate 

data, some models of sat-comm devices can also send and receive text messages. Because 

modern sat-comm devices provide reasonably precise location data, they not only expedite the 

Awareness stage of a mountain SAR incident, but the Initial Action and Planning Stages as well. 
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Figure 3. The relay of information from sat-comm device activation to rescue team launch 

 
Because sat-comm devices make it easier to initiate a SAR response from remote 

locations, they conceivably increase the demand for SAR services, with implications for SAR 

asset management and support requirements. SAR agencies have a responsibility to investigate 

all requests for aid until an incident is resolved. Variations in mountain SAR incident spatial and 

temporal patterns, perhaps due to an increase in sat-comm device SOS activations, might 

therefore impact how agencies manage emergency resources. Resources include time, money, 

and lives: the time and money devoted to training; the time spent verifying the authenticity of an 

emergency incident; and the cost of ground and aviation SAR assets to search for, locate, and 

transport the subject in question. Agencies responsible for efficiently and safely planning and 

coordinating SAR efforts, and the rescue assets tasked to assist, therefore benefit from knowing 

not only when and where mountain SAR incidents traditionally occur, but how sat-comm devices 

might alter the patterns and trends of these incidents with implications for future caseloads. 
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1.2.1 Personal Locator Beacons 

Personal locator beacons (PLBs) are portable devices that, once activated, act as both a 

radio beacon and a sat-comm device. The radio beacon function allows external assets with 

direction-finding capability to locate the PLB signal, while the sat-comm component increases 

communications coverage. PLBs send signals over the 406 MHz internationally recognized 

emergency frequency to initiate a SAR response once the signals are picked up by SAR sensors 

onboard international, publicly managed satellites. In addition to the 406 MHz frequency, PLBs 

also emit radio frequencies over designated emergency channels which rescue units can home in 

on. The modern, portable PLB has comparable functions to emergency position-indicating radio 

beacons (EPIRBs) traditionally carried by maritime craft, and to the emergency locator 

transmitters (ELTs) onboard aircraft. What differentiates PLBs from EPIRBs and ELTs is 

registration: instead of being registered to a transport system, PLBs are registered to an 

individual. PLBs were approved for civilian use in 2003 (US Air Force n.d.) and have since 

grown in global popularity as technological advances have improved their functionality and 

accuracy, with most models advertising satellite positional data accurate to within 100 m (US Air 

Force n.d.).  

 PLB activation signals are detected by the international COSPAS-SARSAT satellite 

constellation, passed to a ground station, and routed to the appropriate RCC (LandSAR n.d.). In 

the continental United States, the Air Force Rescue Coordination Center (AFRCC), located at 

Tyndall Air Force Base, Florida, is currently responsible for notifying the appropriate local 

agencies of device activation within their jurisdiction based on AFRCC and State coordination 

procedures (US Air Force n.d.). PLBs no longer have market dominance in portable, satellite-

capable, emergency assistance devices, however, and consumers can currently choose from a 
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range of products linked to commercial satellite systems like Zoleo, SPOT, and Garmin’s 

InReach. These are discussed further in the section below. 

1.2.1 Satellite Emergency Notification Devices 

The commercial sat-comm products that have emerged over the past couple of decades 

are referred to as satellite emergency notification devices (SENDs). Depending on the device and 

the associated satellite system, SENDs can provide SAR responders with coordinate data 

accurate within 5-15 m under most operating conditions (Garmin n.d.; SPOT n.d.). Unlike PLBs, 

SENDs do not emit homing frequencies and instead rely solely on signal relay through the 

partnered satellite infrastructure. For example, Garmin and Zoleo products use the Iridium 

satellite network (Garmin n.d.; Zoleo n.d.), while SPOT uses Globalstar satellites and ground 

stations (SPOT n.d.). SEND activation results in coordination through a partnered RCC, with 

most devices going through the International Emergency Response Coordination Centre 

(IERCC) (IERCC n.d.). 

Tracking data from SEND activations might provide a wealth of information, offering 

insights into patterns in SAR incidents and implications for future trends. For instance, as of 

October 2022, Garmin announced 10,000 SOS activations from its InReach products after just 

over a decade on the market, with over a third of activation originating from backpacking and 

hiking users and over half due to medical or injury needs (Garmin 2022). Emergency 

notifications reliant on satellite infrastructure will only increase as more devices connect to 

satellite networks. In 2022, Apple announced their iPhone 14 smartphone models will be capable 

of emergency notifications via satellite systems, and the company has invested in improving the 

Globalstar satellite infrastructure (Apple 2022). With the future looking like every person who 

goes into the wilderness will be able to call for help with the press of a button, SAR coordinators 
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and responders would do well to be armed with as much advanced information as possible on the 

spatial and temporal trends associated with satellite-initiated mountain SAR incidents in an age 

of omnipresent connectivity. 

1.3 Study Area 

California’s Sierra Nevada mountain range is of particular interest to mountain SAR 

operations due to high visitor numbers, diverse terrain features, and opportunities for recreation 

in backcountry areas. These characteristics also make the range interesting for spatial 

exploration, as spatial phenomena influence how visitors interact with the landscape. For 

example, trail networks tend to invite higher numbers of visitors than off-trail locations (Doherty 

et al. 2011), and some viewpoints might draw particularly large crowds of people looking to 

enhance their social media profile (Lu et al. 2021). The study area for this research falls within 

the portion of the range commonly referred to as the High Sierras, as this section includes world 

famous – and heavily traveled – trail systems weaving amongst some of the highest peaks in the 

continental United States (James and Eardley 2021).  

Several websites that keep track of visitor permits provide an indication of the high traffic 

volumes. The National Park System (NPS) reports Yosemite National Park hosts more than four 

million visitors per year, and that permits for the John Muir Trail (JMT) – which runs from 

Yosemite to Mt. Whitney – doubled from 2011 to 2015, leading to a cap of 45 permits per day 

(NPS n.d.). The non-profit Pacific Crest Trail Association reports a similar jump in permit 

numbers, from 1,879 issued in 2013, to 7,888 issued in 2019 (PCTS n.d.). More visitors might 

equate to more opportunities for sat-comm device activation, intentionally or accidentally, and 

potentially an increased demand for mountain SAR support. 
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The Sierra Nevada mountains include several wilderness areas governed by three public 

agencies: the Bureau of Land Management (BLM), the Forest Service (FS), and the NPS. 

Wilderness areas are lands protected by federal law to provide opportunities for solitude and to 

limit access to man-made infrastructure and technology (Wilderness Connect n.d.). Due to the 

lack of infrastructure, wilderness areas effectively exclude non-mountain SAR events (e.g., car 

accidents), and the study area is based on the boundaries of these wilderness areas (Figure 4).  

 
Figure 4. A map of the study area, detailing land divisions by jurisdiction 

 
Sixteen of California’s 58 counties include some portion of the High Sierras, and the 

study area crosses into thirteen of these. In California, the counties are responsible for 
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developing procedures to respond to all Land SAR incidents not covered by federal agencies, 

i.e., excluding aviation emergencies, maritime emergencies in the navigable waters within the 

United States, and within the NPS lands (California Public Law n.d.; NSARC 2011). If the 

counties require additional assistance, they can coordinate with state and federal agencies for 

external assets. The NPS is a federal organization under the Department of the Interior, and it 

maintains its own SAR response for the lands it administers. While the NPS does not act in the 

capacity of a RCC, it maintains incident coordination functions, and NPS SAR assets may assist 

neighboring jurisdictions in the SAR process, if required (NSARC 2011). Since neither the BLM 

or FS are assigned federal SAR responsibilities, the county is responsible for SAR incidents 

within BLM and FS wilderness areas. Incidents originating with a sat-comm device enter the 

SAR process as depicted in Figure 3 above. 

Regardless of who administers the land, the High Sierras encompass challenging 

environments for visitors and rescue teams alike. Mountain peaks reach upwards of fourteen 

thousand feet in some areas, and the higher elevations pose a risk to unacclimatized visitors, as 

well as to helicopters that have reduced performance at higher elevations. Hazardous conditions 

become more pronounced at night when rescue teams lose the benefits of daylight, and teams 

with infrared (IR) and/or night vision device (NVD) capabilities are often required. Exploring 

historical mountain SAR incidents and the influence of sat-comm devices on spatial and 

temporal distributions thus helps SAR organizations prepare for future SAR operations occurring 

in this challenging geographic region. 

1.4 Search and Rescue Data 

The quality of spatial and temporal analysis output depends on the quality of the input 

data. Incomplete datasets might suggest spatial patterns which are inaccurate, and temporal 
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trends might also be conservative or exaggerated. Datasets which are limited to one 

administrative unit can fail to capture spatial relationships near their borders, as data from 

neighboring units would not be considered. One way to mitigate concerns over data 

completeness is to have one SAR agency set the standards for data collection and serve as a data 

repository.  

There is precedent for SAR data standardization in the United States: maritime SAR 

operations are coordinated through the US Coast Guard (USCG), the agency which also manages 

the historical maritime SAR database. This database spans all USCG coverage areas – from 

inland lakes to the waters off Hawaii and Alaska – and adheres to detailed standards, making it 

ideal for studies exploring the spatial and temporal relationships of emergency events and 

looking for ways to improve the SAR process (Hornberger, Cox, and Lunday 2022; Malik et al. 

2014). The USCG also employs a spatial analysis and predictive program, the SAR Optimal 

Planning System (SAROPS), to integrate real-time environmental conditions and geographic 

information for improved SAR asset response (USCG n.d.).  

Unlike the maritime environment, mountain SAR – excepting NPS data – has neither an 

equivalent, comprehensive, national-scale dataset, nor SAROPS-type software available to first 

responders, although efforts are being made in this direction. The International SAR Incident 

Database (ISID), created with a grant from the US Department of Agriculture, intends to serve as 

a data repository for multiple nations – the United States included – to better understand lost 

person behavior in varying overland environments. However, the ISID currently does not 

represent data from all fifty states, and California is not yet a contributor (dbs Productions n.d.). 

SEND activation data through either the companies that support the devices or the IERCC could 

provide another source of national-scale data, but SEND data are not available from any private 



 14 

companies due to privacy concerns. Instead, public agencies currently offer the best available 

options to academic researchers. The US Air Force, as the responsible authority for PLB 

activations in the United States, is one data source that can offer nation-scale insights on a slice 

of mountain SAR incidents. Another source that can provide state-wide data on emergency 

incidents is the California Office of Emergency Services (CALOES). 

1.4.1 Air Force Rescue Coordination Center PLB Dataset 

The AFRCC offers a limited option for spatial and temporal analysis of mountain SAR 

incidents spanning administrative boundaries. The AFRCC is the primary inland SAR 

coordinator at the federal level within the continental United States (NSARC 2011). They are 

responsible for managing all distress calls originating from PLBs and ELTs. Since the latter are 

associated with aircraft, and the intent of this research is to examine patterns in mountain 

recreation, only PLB data are considered an appropriate representation of mountain SAR 

incidents per the definition used in this paper. While the AFRCC dataset is limited to PLBs and 

does not capture private sat-comm device activations, it could represent how people use sat-

comm device technology in remote mountain areas to initiate the SAR process. Access to the 

AFRCC data requires a Freedom of Information Act (FOIA) request, and the request is restricted 

to no more than seven years’ worth of records. While there are not enough PLB activations in the 

Sierra Nevadas to support meaningful spatial statistical analysis, the PLB data from the AFRCC 

complements the more numerous CALOES SAR incident dataset, serving to reinforce findings 

on the role of sat-comm devices in the mountain SAR process. 

1.4.2 California Office of Emergency Services Dataset 

The main option to assess mountain SAR incidents and sat-comm activations at the scale 

of the study area is to pull from the state-level dataset originating with the CALOES. In 
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California, all mountain SAR incidents except those within a National Park are managed at the 

county level, unless a county requests additional assets, at which point they reach out to state 

assets via CALOES and federal assets coordinated through AFRCC. One of the results of the 

division of SAR responsibilities is the lack of a historical data repository managed by one entity 

for the state. That changed in 2018 when CALOES started collecting SAR incidents from the 

array of jurisdictional entities. While the robustness of the CALOES dataset relies on the 

reporting quality of the counties and NPS, it offers unparalleled access to large numbers of SAR 

incidents with attributes on location, date, and time. Unlike the AFRCC dataset, the CALOES 

dataset includes all mountain SAR incidents regardless of means of distress notification, be it by 

cell phone, sat-comm device, overdue procedures, or other method of relay. Because AFRCC 

passes PLB distress notifications to the appropriate local rescue agency, it would be assumed 

both the AFRCC and CALOES datasets overlap, except for accidental PLB activations if 

AFRCC were able to verify the false alarm without involving additional assets. Together, these 

two datasets, the one from AFRCC which contains only PLB data and the one from CALOES 

which contains all land emergency incidents, are used for exploration and analysis of sat-comm 

devices in mountain SAR incidents. 

1.5 Motivation 

Knowing when, where, and what mechanisms are influencing mountain SAR incidents 

provides SAR agencies and rescue teams with actionable information to design effective training 

plans and maintain the appropriate equipment for safe rescue operations. Despite the benefits 

associated with understanding how sat-comm devices are impacting the mountain SAR 

landscape, no academic research has either applied spatiotemporal analyses to mountain SAR 

incidents or explored the impact of sat-comm devices in the SAR process. For California’s High 
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Sierra mountain region specifically, filling this gap in the scholarly literature has the potential to 

improve the SAR process for multiple emergency response jurisdictions, as well as assist the 

additional state and federal assets the counties and NPS might call upon for assistance. 

Statistically supported results identifying locations where mountain SAR incidents are not only 

occurring year after year, but also where incidents are exhibiting a positive or negative trend, 

could support policy requests for new resource or funding allocations. SAR ground teams and 

helicopter crews could use the results from this study to train new members and better prepare 

them for conditions they can expect to encounter. One popular albeit unofficial SAR motto 

states, “the first rule of SAR is don’t make more SAR.” Having a thorough understanding of 

when and where mountain SAR incidents historically occur across an entire geographic area 

would bolster local experience, increase safety margins through adaptations to policy and 

training, and decrease the odds that the rescue team could become, in turn, a SAR case.  

1.6 Thesis Overview 

 Chapter 1 has reviewed the background and motivation for this research, as well as 

provided a description of the terms and topics used in this study. Chapter 2 delves into where 

SAR features in the academic literature, supplemented by research on the spatiotemporal 

analysis of non-SAR emergency incident data to support the methods used in this study. Chapter 

3 covers the methods employed in this research to identify and compare the spatial and temporal 

patterns of sat-comm device-initiated mountain SAR incidents against other means of SAR 

notification. Chapter 4 presents the results of this study. Chapter 5 offers a discussion of the 

results, a review of the study’s limitations, and recommendations for future research and SAR 

policy makers. 
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1.7 Methodological Overview 

The goal of this study is to explore the impact of sat-comm devices on mountain SAR in 

the High Sierras. The methods developed to accomplish this goal involve spatial statistics, a 

trend statistic, and visual analysis. Due to data constraints, only the CALOES dataset is 

examined using spatial and trend statistics, while the AFRCC dataset supplements the statistical 

results through comparison and visual analysis. 

Individual mountain SAR incidents from the CALOES dataset are first explored using 

point pattern analysis techniques to detect the distances at which spatial associations appear.  

Global and local spatial statistics are then used to detect significant spatial patterns of aggregated 

mountain SAR incidents across the study area and within local neighborhoods respectively. 

Conducting trend analysis in conjunction with local spatial pattern analysis identifies emerging 

patterns within the mountain SAR neighborhoods, facilitating the interpretation of the mountain 

SAR incident spatial distribution over time. 

Using visual analysis and distance measurements, mountain SAR incidents from the 

AFRCC dataset are evaluated in the context of the CALOES spatial statistical results to assess 

possible relationships. Spatial and temporal attributes from both datasets are explored and 

compared using descriptive statistics. The accidental activations of sat-comm devices from both 

datasets are then evaluated for their potential to increase the workload of mountain SAR 

organizations. 
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Chapter 2 Related Work 

The intent of this research is to explore spatial trends in mountain search and rescue (SAR) 

incidents across a geographic region in order to assess how satellite communication (sat-comm) 

devices might affect the SAR landscape over time. To meet the research objectives, datasets 

containing mountain SAR incidents from California’s Sierra Nevada mountain range are brought 

into a geographic information system (GIS) – a type of software that facilitates visual and 

statistical analysis of geographic data. The datasets are cross-jurisdictional to capture the spatial 

and temporal scope of incidents that, like the mountains they occur in, do not pay heed to 

administrative boundaries. Mountain SAR incidents originating with a sat-comm device are 

compared against incidents that do not rely on these devices using visual and statistical methods 

developed in Esri’s ArcGIS Pro 2.9 software suite (Esri 2021). ArcGIS Pro offers a user-friendly 

interface to explore and assess historical incident data through spatial and temporal analysis. This 

study expands upon prior academic research to demonstrate how SAR professionals can 

incorporate GIS tools to examine SAR incidents over space and time and explore the influence 

of sat-comm device activations. 

There are, however, relatively few research papers and books that consider both the 

spatial and temporal components of SAR incidents. Much of the academic literature to date 

examines maritime SAR incidents, and of these, a growing number leverage the benefits of a 

GIS to conduct spatial analysis of geographic data as computational processing capabilities 

improve (Goerlandt and Siljander 2015; Guoxiang and Maofeng 2010; Stoddard and Pelot 2020). 

While several maritime SAR studies examine the temporal attributes of SAR incidents (Malik et 

al. 2014; Sonninen and Goerlandt 2015; Stoddard and Pelot 2020), none assess the emerging 

trends of incidents tied to a specific location, possibly because the maritime domain is fluid and 
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rarely constrained by stationary topographic features. There is a dearth of published research that 

reviews the spatial components of mountain SAR incidents, particularly at scales that span 

multiple jurisdictions. To supplement the thin body of work that deals explicitly with mountain 

SAR incidents, one needs to explore emergency incidents from other genres that occur at similar 

spatial and temporal scales. To this end, there is a burgeoning number of studies that examine the 

spatiotemporal patterns of wildfires (Aftergood and Flannigan 2022; Reddy et al. 2019; Visner, 

Shirowzhan, and Pettit 2021). Wildfires are similar to mountain SAR incidents in that they can 

occur across expansive environments and are often seasonal, making studies on wildfire patterns 

a suitable genre to reference. This chapter reviews the related literature covering these three 

categories of emergency incidents – maritime SAR, mountain SAR, and wildfires – and 

discusses how techniques and lessons from past research can inform the methodological design 

of this paper. 

2.1 Spatial and Temporal Analysis of SAR Incidents  

As of 2023, there are far more academic works advancing the maritime SAR process than 

land SAR missions. In respect to spatial analysis, the scope of maritime SAR differs from 

mountain SAR. Maritime SAR is largely two-dimensional: maritime SAR incidents are rarely 

associated with a topographic feature (exceptions would be narrow waterways and littoral 

hazards) and instead are vulnerable to the drift of currents and winds. By contrast, mountain 

SAR incidents occur in a three-dimensional space and tend to be stationary. Despite these 

differences, the spatial and temporal findings from maritime SAR studies offer implications on 

hazard identification and resource allocation that are similar to mountain SAR. 

 Though sparse, prior research on mountain SAR incidents covers a spectrum of topics, 

including demographics, injury patterns, lost person behavior, and the digitization of historical 
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datasets. The scale of analysis conducted in prior research is, however, constrained, and often 

limited to a single SAR jurisdiction (e.g., a national park). Very few mountain SAR studies 

conduct analyses across a region that encompasses several administrative boundaries. Another 

limitation with the mountain SAR literature concerns the breadth of analyses employed: most 

research articles to date that examine historical mountain SAR incidents rely on aspatial 

analytical methods, which can reveal temporal patterns but lacks the spatial considerations 

available with a GIS. The few studies that do employ a GIS make use of datasets spanning 

several years but elect to conduct purely spatial rather than spatiotemporal pattern analysis. A 

review of past research on mountain SAR incidents highlights the gaps in analysis, but also 

reveals why a thorough understanding of mountain SAR is critical to mitigating the risks posed 

to rescue teams and subjects in distress. 

2.1.1 Analysis of Maritime SAR Incidents 

The maritime environment is the main domain for scholarly research on SAR incidents. 

This bias is possibly due to a drive to protect businesses and promote safety. Fishing, 

recreational boating, and commercial shipping operations all occur in potentially hazardous 

environments, and if there is a low chance of a successful rescue, poor SAR support could hurt 

public and private sector interests (Marven, Canessa, and Keller 2007). The bias might also be 

due to the relatively high profile of maritime emergencies compared to mountain ones: not only 

do ships and boats contain more lives than the average hiking party, but there are also 

environmental concerns associated with oil spills and contaminants entering the water (Goerlandt 

et al. 2017). The higher percentage of maritime SAR research studies might also be due to 

dataset availability. Comprehensive datasets for maritime SAR incidents are maintained by a 

nation’s Coast Guard, and these datasets generally suffer less from the fragmentation or varying 
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standards seen with mountain SAR datasets at scale, though there are still data quality concerns 

associated with missing data (Malik et al. 2014; Stoddard and Pelot 2020). While spatial analysis 

methods are not always necessary to examine maritime SAR data, they are common in maritime 

SAR studies to account for the spatial nature of incident data. 

2.1.1.1 Spatial analysis of maritime SAR incidents 

A common theme in the academic research on maritime SAR incidents is the 

identification of incident hot spots and clusters, often to determine whether current rescue asset 

locations offer sufficient coverage. Azofra et al. (2007) conducted a type of point pattern analysis 

– weighted density analysis – to develop an objective, apolitical method to determine the best 

placement of maritime rescue assets. They designed two distribution models that categorized the 

suitability of a rescue boat’s or rescue helicopter’s base station represented by changes in a 

coefficient. Azofra et al. found their zonal distribution model, which involved constructing zones 

based on SAR asset capabilities, preferable to their individual distribution model, which 

considered a single asset to every incident. This is because a zone smooths out the effects of 

outliers. Within each zone, a single set of coordinates representing a “superaccident” site was 

identified and used as input in the model. The superaccident coordinates were based on the 

arithmetic mean of the incidents occurring within the zone and were weighted by the total 

severity of incidents. Severity was based on a four-point scale, and it encompassed medical 

concerns, sea surface temperatures, and hazards in the area. While Azofra et al.’s model offers an 

objective approach to guide decisions on resource allocation amongst local and regional entities, 

the authors recognize their model –since it is built from historical incident data – assumes future 

incidents will follow similar spatial patterns. They therefore recommended continually updating 

the model’s inputs to identify the most efficient distribution of resources for SAR success. 
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While the identification of SAR incident clusters based on historical incident analysis 

may inform asset placement strategies, it may also provide insights as to whether existing 

administrative boundaries should be redrawn to facilitate more efficient SAR tasking. Marven, 

Canessa, and Keller (2007), in their book chapter on exploratory spatial data analysis (ESDA) 

and maritime SAR, reviewed how point pattern analysis and spatial statistics can support 

effective decision making and evaluate jurisdictional boundaries. The authors demonstrated their 

methods using the GIS tools of the day and the Canadian Coast Guard’s (CCG) incident data 

from the Pacific Region, 1993-1999. After cleaning the CCG data to remove inaccurate or 

incomplete incidents, the authors were left with 11,457 maritime SAR incidents spanning 

approximately 157,000 km2. Visualizing the point patterns of incidents revealed obvious spatial 

heterogeneity. Aggregating the incidents by jurisdiction would preclude a realistic assessment of 

spatial patterns, since jurisdictions encompass a large amount of open water, but maritime 

incidents are mostly distributed across the small area of sheltered waters. In contrast, point 

pattern analysis methods, like visual analysis and kernel density estimates (KDE), do not suffer 

from aggregation pitfalls like unnatural jurisdictional lines or the modifiable areal unit problem, 

but point pattern analysis does lack the significance metrics provided by spatial statistics. 

In order to have a statistical foundation for spatial pattern analysis, Marven, Canessa, and 

Keller turned to CrimeStat version 3 (Levine 2004), a statistical software package that can 

analyze geographic incident data. The authors applied two point pattern analysis methods to the 

CCG dataset to find statistically significant spatial clustering: the Spatial and Temporal Analysis 

of Crime (STAC) and nearest neighbor hierarchical (NNH) clustering. Both methods require an 

element of subjectivity. With STAC, the analyst needs to specify a grid cell size and the 

minimum number of points in a cluster for comparing densities. With NNH clustering, the 
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analyst needs to similarly define the number of points that constitute a cluster as well as the 

threshold distance between points to consider them neighbors. The authors found NNH useful for 

comparing incident clusters over time, though they felt KDE was the best for a visual 

comparison of datasets. While Marven, Canessa, and Keller provide an expert review of how to 

maximize the benefits of spatial analysis to advance maritime SAR efforts, the authors did not 

discuss the efficacy of using a GIS at a regional scale, nor did they provide guidance on how 

analysts should set parameters to achieve results that most closely represent the underlying 

spatial associations.  

 Spatial analysis tools available in a GIS can produce intuitive and visually accessible 

results, although the spatial conclusions are based on an imperfect representation of reality 

largely due to computational processing limitations. Goerlandt, Venäläinen, and Siljander (2015) 

constructed a risk-based model to review rescue boat capabilities in the Gulf of Finland from 

2007 to 2012, in which they used a GIS to identify high-density accident sites. Their study area 

stretched along the southern coast of Finland and covered about 11,500 km2. The authors used 

descriptive statistics and charts to evaluate several risk indicators that were not associated with 

specific coordinates (e.g., the temporal distribution of incidents and mission attributes). They 

used GIS tools to evaluate the spatial distribution of incidents and run a cost-distance analysis of 

rescue boats to high-density accident site. Using ArcMap software, the authors created a density 

surface of the study area for a visual analysis of incident hot spots and to measure rescue boat 

response times to the high-density sites under a variety of wind and wave simulations. Goerlandt, 

Venäläinen, and Siljander found the ArcMap tools offered a higher level of fidelity than aspatial 

methods when developing their spatial risk indicators. However, the authors noted their methods 

were time consuming, owing to the 10 m resolution cost surface required to accurately represent 
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the coastal topographic features (e.g. islands and waterways). The authors discussed the 

limitations of resolution further, as well as specific ArcGIS software model limitations when 

modeling the maritime environment, in another paper published the same year (Siljander et al. 

2015). While GIS-based analysis facilitates the exploration of geographic data, models and 

methods reliant on GIS products must balance the study area size and scale of analysis with 

computational demands for effective research. 

2.1.1.2 Temporal analysis of maritime SAR incidents 

 Although maritime and mountain SAR incidents occur in different operating 

environments, the emphasis by maritime SAR researchers to identify SAR incident clusters and 

improve maritime SAR policy is equally applicable across domains. Similarly, maritime SAR 

studies that explore temporal patterns of SAR incidents offer relevant methodological techniques 

to mountain SAR research due to the emphasis on resource distribution and hazard mitigation. In 

the academic research to date on maritime SAR, temporal analysis is generally aspatial, often 

taking the form of a graphical representation or a trend statistic.  

 Whether it is a GIS-derived map, a chart, or a matrix, a visual representation of spatial 

and temporal data often increases the accessibility of research products to a broad audience base 

and prompts new questions about what drives the patterns under observation. To assist the 

USCG Ninth District, whose area of responsibility covers the Great Lakes, Malik et al. (2014) 

created an interactive visual analytics system for exploring spatial and temporal patterns of 

historical incidents in the region. Their system is based on a custom GIS supported by Microsoft 

Windows software, and it incorporates OpenStreetMap base layers through several programming 

languages. SAR incidents may be viewed as unique values or as density-based heatmaps, and 

they may be selected by attributes and color-coded. Users can interact with the data through 
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linked windows that present graphical representations of attributes over space and time. Graphics 

include line and bar graphs, as well as calendar and clock graphs. This visual analytics system 

successfully incorporates a large quantity of data and creates temporal visualizations of SAR 

incidents that support the USCG decision making process; for example, Mondays and Tuesdays 

look particularly busy, so the USCG might want to rethink making some stations operate only on 

the weekends. The authors do, however, recommend future work integrates temporal prediction 

algorithms rather than relying purely on graphical representations.  

 Exploring SAR incidents over time does not necessarily require the manufacture of a new 

analytics system, and there have been commercial products to date other than a GIS that can help 

policy makers explore the temporal attributes of their data. Stoddard and Pelot (2020) reviewed 

how an open-source JavaScript library, Data-Driven Document(D3), can increase the 

accessibility of the CCG’s SAR Program Information Management System (SISAR) dataset. The 

authors focused on SISAR data from 2005 to 2013, with 2007 omitted as it was unavailable. D3 

takes an underlying spatial and temporal dataset like SISAR and creates web visualizations that a 

user can manipulate as a web dashboard. The authors organized the maritime SAR incidents by 

hour, day, month, and year to support temporal analysis via graphical representations (i.e., 

graphs, pie charts, and incident heat maps). The authors found the dashboard-style visual 

analysis techniques to be effective decision-making tools, highlighting when and where the CCG 

should concentrate their resources. While Stoddard and Pelot acknowledged there were concerns 

associated with under-reporting of incidents, they concluded a visual analysis of maritime SAR 

incidents over time and space supports effective decision making. However, neither Stoddard 

and Pelot nor Malik et al. (2014) discussed how merging temporal and spatial analysis could 
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provide their target audience with enhanced information on how incidents may change in space 

over time, which could possibly reveal underlying processes of interest to the CCG and USCG. 

 Graphing incident attributes that are specific to when an incident occurs is another 

temporal analysis technique. Environmental and meteorological conditions vary throughout the 

days, months, and seasons. While such ambient conditions may be a contributing factor to a SAR 

incident, they also influence the types of hazards a SAR rescue team may encounter when 

responding to a distress notification. Using maritime SAR incident data from 2007 to 2012 in the 

Gulf of Finland on boating accidents, Sonninen and Goerlandt (2015) were able to match 

historical environmental and meteorological conditions to when an incident occurred. They could 

then analyze the incidents aggregated by day, weekend, holidays, week, month, and year. Their 

goal was to determine whether incidents occurred more frequently under certain conditions, and 

to identify which graphical representations were optimal for revealing temporal patterns and 

outliers. The authors pulled meteorological conditions from several temporal scales: for instance, 

most weather stations collected data every 10 minutes, while precipitation was recorded by the 

hour. Wave data came from a single buoy, so while it was representative of the study area, 

results could not be considered accurate for each accident site. The authors examined the 

attributes through graphical products created in the GeoViz Toolkit, a software that supports 

geographic data. They found a parallel coordinate plot was the most effective presentation for 

detecting attribute patterns over time, as it allows multiple variables to be displayed at once and 

clearly reveals outliers. The multiform bivariate matrix was the best option for a comparison of 

two variables. While the authors demonstrated methods to graph SAR incident attributes over 

time, their work lacks a combined spatiotemporal element. Furthermore, Sonninen and 

Goerlandt’s graphical representations were difficult to interpret if too much data were visualized 
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in a single plot, whereas a density surface on a map would hold up better, particularly for non-

scientific viewers – a useful insight for future research if attempting to visualize temporal 

patterns and detect trends. 

2.1.2 Analysis of Mountain SAR Incidents 

As the work above demonstrates, understanding when and where maritime accidents tend 

to occur can support an effective distribution of rescue resources and provide insights into the 

risks associated with the highest densities of SAR incidents. A spatial and temporal analysis of 

mountain SAR incidents similarly impacts resource management decisions to increase the safety 

margins for rescue assets and persons in distress alike. However, there are few studies to date 

that explore the spatial components of mountain SAR incidents. 

2.1.2.1 Aspatial statistical analysis of mountain SAR incidents 

 A review of the professional literature on mountain SAR makes it clear that aspatial 

statistical analysis is the most common method to evaluate historical SAR incidents. The 

dominant software used in studies from the past couple of decades is SPSS, a statistical software 

suite developed by IBM that offers statistical results and graphics (IBM n.d.). The benefits to 

aspatial statistical analysis methods include fast processing times and easy integration with user-

friendly, graphical products. Then downside is the results cannot be connected to a specific 

geographic location, making it difficult to detect changes in SAR incident accessibility over 

time, or to explore spatial attributes that could contribute to an incident or alter the tasking for 

rescue teams. 

Traditional statistical analysis can incorporate temporal attributes. Kaufmann, Moser, and 

Lederer (2006) looked at changes in the frequency and types of incidents involving helicopter-

based emergency medical services (HEMS) in Tyrol, Austria, from 1998 to 2003. Their working 
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hypothesis was that the types of emergency requests were changing in favor of less critical 

injuries, which would reduce the demand for air-ambulance transport but not necessarily for 

helicopter-based intervention. The authors created a severity score for incidents based on the 

National Advisory Committee of Aeronautics, and binned incidents into categories of minor, 

serious, severe, and critical. Separate scores for head injuries were based on the Glasgow Coma 

Scale. They then broke the dataset into two temporal bins, 1998-2000 and 2001-2003, to identify 

patterns and detect changes using SPSS version 11. The authors found 5% of all incidents were 

false alarms, and leisure-related requests for HEMS support increased in frequency by almost 

40% each year. Based on the injury patterns and changes in injury severity over time, the authors 

surmised that the relative accessibility of HEMS services, increased use of mobile phones, and 

popularity of technical equipment without matching experience levels might contribute to greater 

risk exposure with the assumption a HEMS could always get a subject out of a bad situation. The 

authors also found a seasonal influence on injury patterns, likely due to the exposure of ground 

hazards. Kaufmann, Moser, and Lederer acknowledged their study is limited by a reliance on 

incident figures from a single HEMS agency when several operate in the same area, potentially 

creating a bias. However, they believe their results offer useful information to HEMS agencies 

on how they can best support their helicopter rescue teams. For example, the very small number 

of incidents requiring technical gear for recovery from canyons, crevasses, and ledges could 

justify removing those capabilities, since cliff-side rescues require a lot of training for 

proficiency and the cost may not be justified. While not spatial in nature, the authors demonstrate 

how statistical analysis can reveal temporal patterns in incident attributes that can inform SAR 

management services. 
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 High resolutions of temporal and spatial data may be desirable for accurate interpretation 

of spatial incidents: the weather conditions, slope, and elevation at the site of a SAR incident 

would mean more to stakeholders than the average conditions for a geographic area. However, 

analysis that intends to assess jurisdictional characteristics and funding requirements would not 

necessarily require data at the individual level. Heggie and Amundson (2009) noted there were 

no national-scale studies assessing land SAR incidents, and so they designed their research to 

compare SAR incidents in national parks across the United States using SPSS version 15. The 

authors pulled data from National Park Service (NPS) reports spanning 1992 to 2007, and 

aggregated incidents by national park unit and by year. The authors decided to only look at the 

total number of incidents, the number of subjects, rescue outcomes, and costs, since other 

attributes suffered from a lack of standardization. Additionally, the authors examined 2005 data 

at the same spatial scale but a finer temporal scale, considering the date, time, operating 

environment, demographics, activity, and the SAR process. The authors were able to compare 

the number of SAR incidents against the total costs per NPS region by year, how those costs 

were broken up, and discuss what the results meant for NPS fiscal planning. For example, they 

found there was an average of 11.2 SAR missions in the US national parks every day, costing 

about $895 each. Using the 2005 data, the authors demonstrated how they could assess incident 

attributes, finding about a quarter of SAR incidents were in mountainous terrain between 1,524-

4,572 m, followed by canyon areas, and that hiking was the most common activity driving a 

SAR call, followed by boating and suicides. Heggie and Amundson demonstrated how a national 

incident dataset could reveal patterns not captured by individual NPS units. However, an analysis 

of incident patterns at the same scale would provide a higher fidelity analysis on where within 
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each national park incidents were historically occurring, which could possibly support mitigation 

measures that could save costs over time. 

 To understand how to mitigate the number of SAR incidents requiring a rescue response 

and better prepare rescue teams, SAR agencies require details on what factors contribute to the 

severity of an incident. While an analyst can gather some attributes after-the-fact, like weather or 

topography, behavioral attributes require input from the subject of a SAR case. Boore and Bock 

(2013) wanted to ascertain the causal factors in backcountry SAR cases in National Parks in 

order to recommend prevention measures, since they found research on SAR in the NPS tended 

to focus on patterns of incident outcomes (i.e., medical injuries). The authors defined 

backcountry SAR as incidents unreachable by ground ambulance. The authors pulled data from 

Yosemite National Park Patient Care Reports from 2000 to 2009, since prior to 2000 SAR cases 

were inconsistently reported. The authors also sent out surveys to the subjects of the most recent 

cases (i.e., from 2007 to 2009, to mitigate recall bias) where there was a valid mailing address on 

file. The authors asked for the subject’s experience levels, the time of day when they found 

themselves in distress, the stage of activity, environmental conditions, and what the subject 

thought would have helped them avoid the incident (e.g., better equipment). Incidents were 

aggregated by subdistrict within Yosemite National Park. Statistical analysis was run in SPSS, to 

include Pearson’s chi-squared test to check for significant correlation between demographics 

against type of activity, injury against type of activity, and incident attributes against subdistrict.  

Boore and Bock found most backcountry SAR incidents occurred during the day, in clear 

weather, and during the second half of the subject’s activity. Of interest to this research, 6% of 

the survey respondents reported having a GPS device and considered themselves experts, and no 

respondent believed the GPS device would have prevented their incident. Respondents who only 
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had a cell phone self-reported as beginners. The authors acknowledged their results likely suffer 

from low survey response rates, researcher bias and subjectivity, and the omission of incidents 

whose outcome was self-rescue. While their study provides context to backcountry SAR cases, 

they recommend future NPS efforts incorporate more details at the time a Patient Care Report is 

written to offer more details for future analysis and support mitigation measures. 

2.1.2.2 GIS and mountain SAR 

 In contrast to the mountain SAR studies that rely on aspatial software, a GIS incorporates 

the spatial attributes of an incident to provide location-specific pattern and trend analysis. A 

review of the SAR literature shows there are only a handful studies incorporating GIS tools to 

explore the mountain SAR process, and these studies either employ a GIS for real-time SAR 

tasking or for post-task analysis. No academic research on historical mountain SAR incidents to 

date has taken a spatiotemporal approach. 

GIS tools and products can assist real-time decision making. When GIS tools started to 

become mainstream for emergency management, Ferguson (2008) presented a paper at an Esri 

Federal User Conference to showcase how a GIS could support a wilderness SAR mission, using 

a case study of the search for a missing child with autism in West Virginia. Ferguson had 

observed a reluctance by land SAR organizations to use a GIS due to a lack of familiarity with 

the tools available to conduct spatial assessments of SAR incidents in a multidimensional 

environment. Ferguson demonstrates how different spatial layers, like satellite imagery or trail 

networks, can increase an analyst’s situational awareness of the environment for improved 

planning operations. He also discussed how some GIS tools can operate in three-dimensions, 

potentially identifying locations where two-way line-of-sight communications might not be 

possible, and how software extensions available at the time could support the real-time tracking 
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of rescue teams within the GIS representation of reality. While Ferguson does not consider the 

after-action analysis of historical SAR incidents, his paper reveals how the adoption of GIS 

software by land SAR agencies is a relatively new development. 

 Maximizing the benefits of a GIS, however, requires some degree of training. Durkee and 

Glynn-Linaris (2012) aim to provide SAR teams with some basic training on how to incorporate 

a GIS into the SAR process. The authors use the term “wildland SAR” to refer to incidents which 

happen in open spaces like parks, wilderness areas, and mountainous terrain. Durkee and Glynn-

Linaris describe how, with proper training, a GIS can help planners and first responders shorten 

the time from receiving a distress call to mission resolution in a repeatable and professional 

manner. They detail how field operations, data management, planning, and analysis all benefit 

from the integration of SAR data in a GIS and the resulting increase in an analyst’s situational 

awareness. The ebook is an Esri product that focuses on how to use the MapSAR template in 

ArcGIS software, starting with the basics of how to choose coordinate systems, and reviewing 

the different types of data a GIS can handle. MapSAR provides integrated layers compatible with 

mobile and desktop dashboards for quick visual and statistical analysis, and the template 

originates from the National Alliance for Public Safety GIS (NAPSG) Foundation’s WiSAR 

project (NAPSG n.d.). Even with the training offered in their ebook, Durkee and Glynn-Linaris 

advocate for a GIS specialist to be activated whenever a SAR case opens, and the overall focus 

of the ebook is on improving the SAR process through managing and presenting information 

real-time, whether you are in an office or the field, rather than on the spatial and temporal 

analysis of historical incidents.  

The studies to date that have incorporated a GIS to explore historical mountain SAR 

incidents are limited by data availability and data quality. In order to use historical incident data 
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as point data in a GIS, the incidents need to be tied to coordinates. This can become complicated 

if the source records rely on descriptive locations of where the incident occurred, or if rescue 

teams record incidents under different coordinate systems. Doherty et al. (2011) considered a 

couple of techniques to georeference historic SAR incidents from 2005 to 2010 in Yosemite 

National Park to input the data into a GIS to visualize and assess for spatial patterns and possible 

spatial dependence. Their study explored the challenges of conducting spatial statistical analysis 

on data that was collected without an anticipation of digitization and the analytical capabilities to 

processes large amounts of spatial data. 

Doherty et al. (2011, 776) claim they are the “first spatially-explicit study of SAR 

incidents.” Using a blend of commercial GIS software and web-mapping applications, the 

authors georeference data from Yosemite SAR incident reports using either a ‘point-radius’ or a 

‘shape’ method. The former creates a radius of uncertainty around a location based on the 

description found in the SAR incident report, which was faster to develop than the latter, and 

required careful exclusion of areas that did not fit the description in the incident report. The 

authors used the point-radius method for further analysis on 1,356 incidents. Since 95% of the 

uncertainty radii were just over 2,000 m, the authors created a two-kilometer grid cell fishnet to 

aggregate the data for spatial analysis. Smaller cells, though perhaps more appropriate to 

accommodate topographic variation, may not have included the actual coordinates of the incident 

within the area of uncertainty. The fishnet came to 1,560 grid cells, or over 6,000 km2, with cells 

containing an incident count of 0-226 SAR incidents. The authors found statistically significant 

clustering amongst the incidents after running the Global Moran’s I statistic, as well as 10 cells 

to be statistically significant hot spots based on Getis-Ord Gi* statistic. A visual analysis of the 

hot spots in relation to the terrain suggested a correlation between incidents and the Yosemite 
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Valley trails, as well as one backcountry location by a camp. Based on this study, Yosemite SAR 

teams will be required to carry GPS devices for accurate location data and integration with the 

park’s new digital records management system. The authors recommended future studies 

consider temporal as well as spatial uncertainty of historical SAR incident datasets. 

 The application of a GIS to SAR incidents should match the end users’ needs and 

capabilities, particularly since GIS training can be time consuming or require the hiring of a GIS 

specialist. Using spatial analysis, Pfau and Blanford (2018) found the Alpine Rescue Team 

(ART) were able to complete 75-95% of searches within 6-12 hours, and they recommended 

ART personnel leverage the benefits of a GIS for post-mission analysis rather than real-time 

application since the ART’s search time is within safe margins. ART is a non-profit group 

accredited by the Mountain Rescue Association (MRA), which is a standardizing and 

educational agency (MRA n.d.). ART responds to SAR incidents in three counties in Colorado, 

an area of approximately 1,309 mi2 (about 3,400 km2). Pfau and Blanford pulled incident data 

from 2008 to 2011 from the International Search and Rescue Incident Database (ISRID) to 

demonstrate how ART can use a GIS to explore lost person behavior based on historical cases 

and improve their SAR process. After cleaning the data, the researchers were left with 133 

missions for spatial analysis. Pfau and Blanford used descriptive statistics to explore incident 

attributes on subject’s activity and time of year. Incidents that involved a missing person were 

further analyzed in a GIS to determine distance, direction, time, and elevation attributes between 

lost and found locations. Found locations were further run through KDE to assess the terrain 

most common to high density areas. Pfau and Blanford found lost persons traveled on average 

4.41 km (SE +/- 1.1) and had an elevation change between lost and found locations of 259 m (+/- 

80.1). There was little variation between the type of activity and lost person behavior. The 
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authors described how locating SAR incident hot spots would be useful for training new ART 

members and developing relevant training scenarios. Pfau and Blanford recommend their 

methods to encourage familiarity with typical mission patterns and, assuming future incidents 

follow historic patterns, increase the efficiency and safety margins of non-profit SAR groups 

responding to distress calls within their jurisdiction. 

 The studies reviewed in this section demonstrate the interest in understanding patterns in 

historical SAR incidents to increase the safety and efficiency of future SAR response. They also 

highlight the growing awareness of what spatial analysis can provide to the SAR planners and 

rescue assets tasked with a distress call. What is lacking in the literature to date, however, is an 

exploration of mountain SAR incidents over space and time and a consideration of how changes 

in spatial and temporal patterns could reveal the influence of sat-comm device activations on 

mountain SAR.  

2.2 Spatial and Spatiotemporal Analysis 

A spatial analysis of mountain SAR incidents provides a means to measure the influence 

of sat-comm technology over space. This research relied on three types of spatial analysis 

methods: point pattern analysis, where each incident is examined independently; spatial 

statistical analysis, where incidents are assessed in aggregate; and visual analysis, where 

incidents are inspected for spatial relationships on maps. Spatial analysis methods reveal first and 

second order spatial effects that are useful for organizing and interpreting the data and statistical 

results. First-order effects describe the influence of topography and environmental conditions on 

spatial patterns, while second-order effects represent the patterns formed through incident 

interactions (O’Sullivan and Unwin 2010, 163). Mountain SAR incidents are highly unlikely to 

contribute to another incident nearby – with the rare exception of when rescue personnel become 
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a SAR incident themselves during the course of a mission – and this study focuses on the 

influence of first-order spatial variation in mountain SAR incidents.  

Analytical techniques that rely on both spatial and temporal attributes are considered 

spatiotemporal. The application of a temporal trend test in conjunction with a spatial statistic 

facilitates a spatiotemporal exploration of how sat-comm device activations affect the 

distribution of mountain SAR incidents over both time and space. However, spatiotemporal 

analysis requires unique structuring of the incident data to run properly in a GIS. 

This section of the study gives an overview of the spatial and spatiotemporal analysis 

techniques used in the literature to date that contribute to the methodological design of this study. 

Several papers that review historical SAR incidents demonstrate how point pattern analysis and 

spatial statistical analysis methods may apply to mountain SAR incidents. Since there are no 

academic studies to date that have explored the spatiotemporal patterns of mountain SAR 

incidents, this paper reviews research on the spatiotemporal distribution of wildfires, as wildfires 

– like mountain SAR incidents – are seasonal and often occur in remote environments.  

2.2.1 Point Pattern Analysis 

Point pattern analyses explore potential second order spatial variation, while also 

providing insight into the first order effects on incidents’ spatial distribution. One common point 

pattern analysis method to assess whether incidents demonstrate statistically significant 

clustering is to compare the actual mean distance between incidents against the expected mean 

for the study area. The expected mean between incidents is based on the null hypothesis of 

complete spatial randomness. The nearest neighbor (mean) distance may be represented by a 

ratio of the actual mean to the expected mean, and it is calculated by: 
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where d is the distance between incidents, n is the number of incidents, and 𝜌 is the incident 

density for the area considered a possible location for incidents (Clark and Evans 1954). If the 

ratio equals one, then there is complete spatial randomness; if the ratio equal zero, there is 

complete clustering. The p-values and z-scores associate with this statistic could be used to 

compare incidents from different layers within the same area of analysis. However, average 

nearest neighbor analysis only describes whether incidents have spatial clustering, not where 

those clusters are located.  

 Another point pattern analysis method that can help identify sites of incident clusters is 

kernel density estimation (KDE). KDE uses a kernel function to produce estimates of incident 

density for locations throughout a study area. Locations may be based on a grid overlay, and the 

density value for each grid depends on a kernel function to weight incidents based on their 

proximity to the center of the kernel (O’Sullivan and Unwin 2010, 69). The kernel density 

estimator is given by:  
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where n is the number of incidents within the kernel, r is the kernel bandwidth, K is the kernel 

function, x is the grid cell where the function is being estimated, and Xi are the locations of each 

observation i (Silverman 1986). The distance selected for r is subjective and depends on the 

incidents under examination, though the mean nearest neighbor results can provide a starting 

point. Like Azofra et al.’s (2007) zonal distribution model, the kernel function can smooth the 

effects of outliers to draw attention to possible cluster locations at selected bandwidths and 
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encourage effective visual analysis. The KDE output is a raster surface of density values that 

lends itself to an inspection of incident hot spot locations.  

 Both nearest neighbor and KDE point pattern analyses feature in the research on the 

spatial distribution of wildfire incidents. Wing and Long (2015), in their study on wildfires in 

Oregon and Washington from 1984 to 2008, used point pattern analysis techniques to explore 

wildfire hot spot locations and global spatial statistics to explore clustering amongst attribute 

values. They calculated the centroid for over one thousand wildfires to use as input for average 

nearest neighbor calculations, KDE, and quadrat analysis (which compares incident frequencies 

across quadrat cells). The resulting nearest neighbor ratio of 0.66 at p < 0.01 suggested 

statistically significant spatial clustering of wildfires across the two states, results which were 

validated by the quadrat analysis. For KDE, the authors used a quartic kernel function to create a 

smoothed density surface, which they used for visual analysis and were able to identify several 

wildfire hot spot locations. Wing and Long also found significant clustering of temporal and 

climatic wildfire attributes using the Moran’s I and Getis-Ord G global spatial statistics. The 

authors conclude that point pattern and spatial statistical analyses can detect changing trends in 

historical wildfire spatial patterns, but that future research should incorporate more recent fire 

data for comparison. 

 Aftergood and Flannigan (2022) also used average nearest neighbor analysis to identify 

and measure wildfire clusters in their study on 97,921 lighting-ignited wildfires in six provinces 

of Western Canada from 1981 to 2018. Only fires from the beginning of April through the end of 

September were included for analysis, as these are the official fire season months in the study 

area. Instead of evaluating the nearest neighbor distances for all years, as Wing and Long (2015) 

did, Aftergood and Flannigan ran nearest neighbor calculations for each wildfire year separately 
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using R Core Team software. The results for all years suggested positive spatial clustering. The 

mean values for all years were: a mean nearest neighbor statistic of 154 km, a mean nearest 

neighbor ratio for all the years of 0.474, a median z-score of -48.12, and a median p-value of 

.0001. The range of average nearest neighbor values was 104 km (1994) to 272 km (2011), 

which the authors hypothesize could be related to thunderstorm spread size at 170 km2. The 

average nearest neighbor results contributed to the conceptualization of wildfire spatial 

distribution. 

While point pattern analyses are generally considered exploratory, they can be one of the 

more viable means to assess spatial patterns if dealing with imprecise data. Koutsias, 

Kalabokidis, and Allgöwer (2004) applied KDE for an exploration of wildfire incidents in the 

Halkidiki peninsula in Greece, using wildfire ignition data from 1985 to 1995 that had up to 700 

m and 925 m inaccuracies in the x- and y-axis respectively. Their intent was to review three 

methods of point pattern analysis – quadrat analysis, moving window analysis, and KDE – to 

determine which method best accommodated positional inaccuracies in historical wildfire 

ignition coordinates. The authors started with a KDE bandwidth equal to the mean distance 

between randomly distributed incidents. For a 3,257.63 km2 study area with 218 wildfire 

incidents, the mean random distance is 1,933 m. The authors therefore selected 2,000 m as their 

intended bandwidth for exploration, although they also conducted KDE at 1,000, 4,000, and 

6,000 m, all using a 250 m grid. KDE was conducted using CrimeStat version 1.1. software. 

KDE using the same bandwidths was also conducted on a simulated dispersion of wildfire 

ignition points with the same positional inaccuracies as the historical dataset, and the actual and 

simulated results were compared. They found the 2,000 m bandwidth to be the best balance of a 

large enough distance to capture positional inaccuracies but small enough to prevent over-
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generalization that would mask the spatial influences on ignition locations. The authors also 

found KDE performed the best of the three point pattern analysis methods, as KDE evaluates the 

relative position of incidents to each other over space thereby accounting for positional 

inaccuracies when set with the proper bandwidth parameter. 

2.2.2 Global Spatial Statistics 

To conduct spatial statistics that measure attributes over space, incidents need to be 

aggregated to create a metric – incident frequency – whereby the spatial relationships may be 

evaluated. The aggregation scheme may be based off an irregular polygon pattern, like 

enumeration units, or off a repeating grid of squares or hexagons. Incident frequency may then 

be compared amongst neighboring units using a neighborhood scheme defined by the analyst. 

Global spatial statistics evaluate incidents within the context of the entire study area and 

are a useful tool for assessing spatial trends. The Global Moran’s I statistic is used to measure 

how observations correlate over space, a concept termed spatial autocorrelation. The Global 

Moran’s I statistic is calculated with:  
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where x is the attribute value at a given location, 𝑋D is the mean attribute value across the study 

area, wij is the weight of the distance between a location i and its neighbor j, and n is the number 

of features within a specified distance band from location i (O’Sullivan and Unwin 2010). 

Should the incident frequency at location i and at its neighbor j both be higher or lower than the 

mean incident frequency for all features in the study area, then the index is positive, indicating 

positive spatial autocorrelation. If xi and xj fall on different sides of the mean, then the index is 
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negative. The degree of spatial autocorrelation is impacted by wij, since it accounts for spatial 

proximity. The range of possibilities for I is from -1 to +1, i.e., from complete dispersion to 

complete clustering. Should I = 0, there is no spatial autocorrelation, and the distribution of 

incidents is considered random.  The variance and expected values assume complete spatial 

randomness, and the output is the index value, a p-value, and a z-score.  

 Like average nearest neighbor calculations, the Global Moran’s I statistic indicates 

whether incidents exhibit clustering or dispersion across the entire study area without defining 

which areas have clusters and which are dispersed. Unlike a nearest neighbor distance, the 

distances at which clustering or dispersion is most apparent can be affected by weights assigned 

to incidents within a defined neighborhood. Spatial weights represent the impact of incident 

interactions. Doherty et al. (2011) in their study of historical Yosemite SAR incidents used an 

inverse distance squared approach based on the assumption that the incident frequency at sites 

near each other should be more similar than those further away. Based on their 2 km grid of SAR 

incident frequency, the Global Moran’s I results indicated statistically significant spatial 

clustering, with I = 0.310, a z-score of 24.5, and a p-value < .001. Doherty et al. then ran the data 

through the Getis-Ord Gi* local spatial statistic to identify where the grids comprising the 

clusters were located since the global version does not describe where the clusters lie, only 

whether statistically significant clusters are present in the study area. 

2.2.3 Local Spatial Statistics 

In contrast to a global spatial statistic, local spatial statistics account for the spatial 

heterogeneity of incidents. Two dominant local spatial statistics in the field of geographic 

information science are the Getis-Ord Gi* statistic, which helps define incident hot spots, and the 

Anselin Local Moran’s I statistic, which can identify outliers in addition to clusters. The GIS 
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tools that use local spatial statistics create layers where each areal unit is assigned to a cluster or 

outlier category depending on the z-score and p-value at each location. In this way, the locations 

of hot spots, clusters, and outliers may be identified on a map and compared across layers. 

The Getis-Ord Gi* statistic helps identify sites with high or low values that lie amongst 

neighbors of high or low values, termed hot spots and cold spots respectively. The Gi* statistic is 

given as:  

 
 

 
and S is the variance (Getis and Ord 1992; Ord and Getis 1995). This version of the Gi* statistic 

accounts for the variance and expected values and its output is the z-score. The p-values are 

calculated based on a rejection of the null hypothesis that incident frequencies have a random 

distribution. In the Gi* statistic, j may equal i, as i can be its own neighbor. The Gi* statistic 

does not, however, identify neighborhoods containing spatial outliers since it only gives 

significance to locations surrounded by similar incident values.  

The Anselin Local Moran’s I statistic enables the categorization of incident sites based on 

how their values compare to the values of other sites within the neighborhood. It is given by:  
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and the summation of distance weights and the incident-frequency attribute are for only the 

neighbors of i – i.e., j – and i cannot be considered its own neighbor (Anselin 1995; Ord and 

Getis 1995). Like the Global Moran’s I statistic of (3, the local version adapted by Luc Anselin 

(1995) measures how the incident frequency at one site correlates with its neighbors, but it does 

so at a localized scale. If xi and xj fall on the same side of the mean, either smaller or larger, then 

the index is positive. If they are different, as would be seen when a location has a high incident 

frequency, but its neighbors do not, then the index is negative. The sign of the index and the 

magnitude of the z-score marks two types of clusters and two types of outliers: a high-high or 

low-low cluster refers to a location surrounded by similarly high or low values; a location that is 

identified as having a high value surrounded by low values is considered an outlier, as is a 

location with a low value in a high-value neighborhood. The p-value reflects the likelihood the 

spatial pattern is random. 

 Local spatial statistics can prove useful for detecting fine scale spatial incidents across 

broad study areas. Potter et al. (2016) compared the hot spot outputs from the Getis-Ord Gi* 

statistic to present their concept of the spatial association of scalable hexagons (SASH), a 

technique they found useful for analysts and policy makers alike to communicate the impacts of 

an ecological phenomena. The SASH method involved creating scalable hexagons and 

identifying statistically significant clusters to track macro-scale patterns. Using this method, the 

authors considered three ecological phenomena across broad portions of the United States 

collected by three different methods. Data on invasive plants in the south eastern United States 

had been collected through ground observations of US Department of Agriculture (USDA) forest 
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plots, and each hexagon cell represented two metrics: native plant species richness and the 

percent cover of invasive species. Data on the spread of the mountain pine beetle in forests in the 

central and western United States was captured by USDA low-altitude aerial surveys, where 

hexagon cell values represented the percent of surveyed forest area that had beetle damage. Data 

on wildfires in the central and western United States came from satellite sensing where each 

hexagon aggregated the number of fires per 100 km2. Data processing and spatial statistics were 

conducted in Esri’s ArcMap 10.1.  

In order to restrict the study area to environments where the phenomena could occur, 

Potter et al. only evaluated forested areas based on ArcMap’s forest cover layer. The size of the 

aggregating hexagon unit was determined through phenomena-appropriate methods: invasive 

species hexagons were near the average size of US southern counties (1,452 km2) to align with 

USDA program goals; a mountain pine beetle generally moves within three kilometers, so the 

hexagon size was 54 km2 with about 3.8 km from the center to the edge; the authors used 

semivariograms to test the spatial autocorrelation of wildfires aggregated to 54 km2 hexagons, 

settling on a hexagon size that was as wide as the spatial autocorrelation range, at 635 km2. The 

local neighborhood considered by the Gi* statistic encompassed the 18 first and second order 

neighbors around each hexagon. Potter et al. found their SASH method produced meaningful 

patterns that could be applicable to policy decisions and organizational tracking of ecological 

threats. The authors mention that, while Local Moran’s I statistic can reveal outliers while the 

Gi* statistic cannot, they felt the Local Moran’s I statistic’s inability to capture the impact of 

spatial autocorrelation at values near the mean to be a disadvantage and thus did not test for 

outliers in their SASH demonstration.  
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2.2.4 Spatiotemporal Analysis 

While spatial analysis can help agencies assess the distribution of incidents, 

spatiotemporal analysis allows agencies to tailor policy to reflect recent trends. One method to 

evaluate an incident’s spatial relationship over time is through the construct of a space-time cube 

(STC). An STC incorporates time as a third dimension, allowing incidents to not only be binned 

by location, but also by time, creating an array of values suitable for analysis with temporal and 

spatial neighborhoods.  

STCs have supported spatiotemporal research in fields as diverse as human behavior after 

an earthquake (Gismondi and Huisman 2012), crime patterns (Nakaya and Yano 2010), public 

health (Nielsen et al. 2019), cetacean strandings (Betty et al. 2020), and tornados (Allen et al. 

2021). The field of wildfire management has benefited from the STC construct since accessible 

STC-building tools became available with ArcMap 10.3 in December 2014 and ArcGIS Pro 1.0 

in January 2015 (Esri n.d.). To date, there are several studies that have explored historical 

wildfire incidents using spatiotemporal analysis methods facilitated by the STC design. 

One spatiotemporal analysis tool commonly employed in the research on wildfire 

incident patterns is Emerging Hot Spot Analysis (Esri n.d.). The Emerging Hot Spot Analysis 

tool compares incident hot spots over time using the Getis-Ord Gi* local spatial statistic and a 

trend test. The tool uses the Mann-Kendall trend test to evaluate hot spot bins against their 

temporal neighbors to determine how past incident patterns relate to more recent incident 

distributions. The Mann-Kendall trend test is given by the statistic: 
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and where xi and xj are ranked in the time series. The values of newer and older bin pairs are 

summed to represent a trend (Mann 1945; Hamed 2009). An S  > 0 would indicate a positive 

trend while the opposite would indicate a downward trend. If S = 0, then the trend is neither 

constantly increasing nor decreasing and the null hypothesis is met. Depending on the trends 

detected at an STC location over time, the Emerging Hot Spot Analysis tool assigns one of eight 

trend types: new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating, and 

historical (Esri n.d.). These categories provide analysts with a means to ascribe the relative 

importance of incident patterns within a study area. 

Similar to the near-precise location information sat-comm devices provide to SAR 

agencies, satellite-based sensors used to detect fires offer accurate fire location data to 

researchers interested in fire patterns. Reddy et al. (2019) took fire detection data collected by 

moderate resolution imaging spectrometer (MODIS) sensors on board NASA satellites to 

examine emerging hot spots of forest fires in South Asia from 2003 to 2017. The authors 

restricted the one square kilometer MODIS fire raster to only those areas with forest cover, 

resulting in 522,348 fire incidents considered in the study. Only the months that had a greater 

than 2% contribution to a nation’s annual fire count were used for descriptive statistical analysis. 

Using ArcGIS software, the authors aggregated the incidents by five-kilometer grid cells and 

grouped by year to create the dimensions of an STC. The authors also selected five kilometers as 

the neighborhood distance to detect emerging hot spots and capture local trends. Within the 

study area, they found over 30% of fires from the 15-year time span were sporadic hot spots, 

making it the dominant category, and just under 8% of fires were considered new hot spots at the 
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low end. The authors acknowledged that a change in neighborhood size could dramatically alter 

the results, but as their intent was to identify areas for forest conservation, they decided five 

kilometers was optimal. However, the impact of neighborhood size on spatial and spatiotemporal 

statistical analysis highlights the highly subjective nature of these methods. 

Spatiotemporal analysis can advance studies seeking to assess why historical wildfires 

occur in some locations and not others. In their exploration of how bushfires in New South 

Wales, Australia might evolve in response to controlled burns, Visner, Shirowzhan, and Pettit 

(2021) looked at data spanning 100 years of fire history using a mix of regression analysis, 

correlation analysis, and spatiotemporal analysis. The authors ran a general linear regression 

model and bivariate Pearson correlation statistical analysis in R statistical software, which can 

handle geographic data, to identify relationships between older controlled burn areas and newer 

bushfires. They then created an STC in ArcGIS Pro and used the Getis-Ord Gi* statistic and 

Mann-Kendall trend test via the Emerging Hot Spot Analysis tool to identify emerging hot spots 

for visual data mining. Fire polygon centroids were converted to points, and then aggregated by 

municipality. The authors selected this unit of aggregation since municipalities are responsible 

for fire mitigation efforts. Visner, Shirowzhan, and Pettit visually inspected the emerging hot 

spots for all years, as well as for each individual year between 2010 through 2020. They 

concluded most municipalities had sporadic bushfire incidents, although the authors were able to 

identify four new municipality fire hot spots from the 2019 to 2020 fire season. While the 

authors did not find a correlation between controlled burns and bushfires, they did find a positive 

trend in the total number of bushfires occurring in New South Wales. To make their findings 

accessible to the public, the authors published their findings as an Esri dashboard.  
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While fires are often characterized by burn area, fire point incident data could be useful 

when pulling from a large historical dataset where location information originates from a variety 

of sources. Aftergood and Flannigan (2022) used spatial and spatiotemproal pattern analysis to 

explore 97,921 wildfires incidents representing the central ignition location of a lightning strike 

in six provinces of Western Canada from 1981 to 2018. Only incidents occurring from the 

beginning of April through the end of September were included for analysis, as these were the 

official fire season months in the study area. Within ArcGIS 10.7, incidents from the fire season 

and each summer month were aggregated by a grid of 30 km-wide hexagons, as this size 

hexagon produced the most robust results during ESDA. The authors selected a yearly time unit 

when creating the STC of the incidents, which mitigated the effects of seasonality for trend 

analysis. Aftergood and Flannigan found the Mann-Kendall trend statistic revealed an overall 

non-significant negative trend for the total number of incidents for all layers, though there were 

areas with significant increasing and decreasing trends within the provinces. These patterns 

varied in location across the summer months. The authors considered how data quality issues 

related to working with a historical dataset composed of different sources of incident locations 

could contribute to inaccurate results, explicitly mentioning how data from recent years might be 

biased due to technological improvements that are able to capture incidents that were previously 

overlooked. However, the authors felt they were able to successfully demonstrate how trend 

analysis of spatial data using an STC enables an intuitive visualization of regional trends and 

consolidates the variation of incidents over time into accessible map imagery. 

2.3 Summary 

This research aims to identify the influence of a sat-comm device usage on the spatial 

distribution of mountain SAR incidents. However, when reviewing the related literature that 
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incorporates an analysis of historical SAR incident data, it was found that very few studies use 

spatial statistics to explore the patterns of mountain SAR incidents. There is also a gap in the 

SAR research examining location-specific temporal trends. Maritime SAR is the dominant genre 

advancing the literature on the analysis of historical SAR incidents. While several studies 

consider the temporal attributes of maritime SAR incidents through graphics and visual analytics 

software, no maritime nor mountain SAR studies to date incorporate spatiotemporal analysis 

enabled through the STC construct, possibly due to tradeoffs between the relatively large study 

area sizes, fine scale spatial phenomena, and computational processing times.  

As addressed by Ferguson (2008), Durkee and Glynn-Linaris (2012), and Pfau and 

Blanford (2018), the low number of wilderness SAR studies incorporating a GIS, which 

facilitates spatiotemporal analysis, is likely due to SAR agencies’ lack of familiarity with the 

GIS toolsets and application. Since this paper aims to demonstrate how a combination of spatial 

and temporal analyses can inform SAR organizations for safer and more efficient operations, 

studies on the spatiotemporal patterns of wildfires were reviewed for their capabilities and 

limitations. Several studies on wildfires successfully applied the STC construct and ran spatial 

trend analysis at relatively large scales using a variety of spatial and temporal aggregation 

schemes selected by the authors. This study takes the lessons offered in these wildfire studies and 

applies them to mountain SAR incident analysis in order to explore the impact of sat-comm 

devices activations on mountain SAR operations. 

  



 50 

 
Chapter 3 Methods 

The intent of this research is to explore the impact of satellite communication (sat-comm) 

devices as a notification method on the spatial and temporal patterns of mountain search and 

rescue (SAR) incidents in California’s Sierra Nevada mountains in order to help SAR agencies 

and rescue teams prepare for future incidents. SAR organizations can use the methodology 

presented in this research to assess the influence of sat-comm device activations within the 

context of their sphere of influence, adjusting the allocation of resources and tailoring training 

plans, as required.  

The methods in this research involved three main components: data preparation, spatial 

and spatiotemporal statistical analysis of incidents, and an evaluation of incident attributes. 

Figure 5 presents the flow of this study and the data associated with each step. The first steps in 

the methodology involved data preparation so only incidents that met the definition of mountain 

SAR and occurred within the study area boundary would be considered for analysis. This study 

then evaluated the CALOES mountain SAR incidents for first-order effects in ArcGIS Pro 2.9 

(Esri 2021), the results of which informed the creation of neighborhood parameters. This study 

used GIS tools relying on local spatial statistics and the newly defined spatial neighborhood to 

reveal the presence of incident hot spots, clusters, and outliers. Developing a space-time cube 

(STC) of the CALOES incidents provided the structure for spatiotemporal analysis. Lastly, the 

AFRCC PLB activations were evaluated against the CALOES results through visual analysis and 

descriptive statistics, as were all accidental sat-comm device activations. The comparison of 

statistical results alongside an evaluation of incident attributes over time and space enabled a 
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holistic review of how sat-comm device-initiated mountain SAR incidents impact the traditional 

SAR process. 

 
Figure 5. An overview of the study's methodology 

  

3.1 Data 

This research drew from two datasets to adequately encompass the size of the study area: 

one is a subset of a national-level record of personal locator beacon (PLB) activations from the 

Air Force Rescue Coordination Center (AFRCC), and the other comes from the California Office 

of Emergency Services (CALOES) and covers all SAR incidents originating with multiple 

notification methods within the state of California. This research only ran spatial statistics on the 

CALOES mountain SAR incident dataset, as it provided enough incidents to perform meaningful 

analysis, whereas the AFRCC dataset was too sparse; to have statistical significance, the 

distribution of incidents needs to reject the null hypothesis that incidents arise due to random 

chance, which requires enough incidents associated with the physical landscape to not appear 

random. Likewise, the CALOES dataset was the only input for spatiotemporal analysis. The 

AFRCC’s PLB activation records supplemented the conclusions drawn from the CALOES 

statistical results, and both datasets were compared through visual analysis and descriptive 

statistics of incident attributes. In this way, a state- and national-level dataset complemented each 

other in an exploration of sat-comm device activations across a geographic region. 
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The study area’s boundary was based off wilderness area shapefiles accessed through 

Wilderness Connect (n.d.), from which the High Sierra wilderness areas were isolated and 

projected into the projected coordinate system used in this study. The state and county lines that 

were included in this study’s maps to orient the target audience came from a national boundary 

shapefile from the USGS national map downloader (USGS n.d.). The state and county lines also 

required projection. 

Spatial and temporal attributes were added to the datasets to explore the environments in 

which SAR incidents occur. Elevation data came from a 30 m digital elevation model (DEM) 

from Esri’s World Elevation services (Esri n.d.), which sources US elevation data from the US 

Geologic Survey (USGS n.d.). Elevation impacts rescue team performance capabilities: SAR 

helicopter engines have degraded performance as elevation increases, and higher elevations 

increase the risk of ground teams and subjects experiencing the effects of hypoxia and exposure. 

This research determined incident notification time of day based on incident location and 

apparent sunrise and sunset times through the National Oceanic and Atmospheric 

Administration’s online solar calculator (NOAA n.d.). Four categories represented the 

notification time of day: within an hour prior to sunrise, day, within an hour prior to night, and 

night. The time of day when SAR agencies receive incident notification impacts rescue team 

preparation. If notification is received within an hour to sunrise, there is a good chance contact or 

rescue will occur during daylight hours. If notification is within an hour of sunset, then the SAR 

process will most likely unfold during periods of darkness when specialized gear like night 

vision goggles (NVGs) or infrared (IR) systems are required. This additional data on elevation 

and time of day enabled another avenue to explore the impact of sat-comm devices on SAR 

incident operating conditions through descriptive statistics. 
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3.1.1 Dataset Acquisition 

The AFRCC dataset structure arrived based off the specifications made in a Freedom of 

Information Act (FOIA) request to the US Air Force. Specifications included a spreadsheet 

format of PLB activations in California’s Sierra Nevada mountain range from 2015 through the 

date of request (i.e., September 24, 2022), as the request could not exceed seven years of records. 

The FOIA request was also for the following incident attributes: coordinates, date, time, 

responding assets, accidental or intentional PLB activation, and mission outcome. The FOIA 

process took about two months, mainly due to the time required to search through individual 

reports of PLB activations and verify incidents fell within the study area dimensions placed in 

the FOIA request, since the PLB activation records are not stored in an easily searchable 

database. Upon receipt, the AFRCC dataset appeared as in Figure 6, and it included 148 PLB 

activations spread out across much of California. The dates of the PLB activations ran from 

March 24, 2015, through September 11, 2022. 
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Figure 6. A map of the AFRCC dataset records 

 
Acquiring the CALOES dataset involved a Public Records Act request, the processing of 

which took about a month from the date of request on September 16, 2022. The request was 

made for the same information as the AFRCC FOIA request except for dates: CALOES started 

collecting state-wide SAR incident data from the counties in 2018, so January 1, 2018, was the 

beginning date of the requested data range. CALOES provided a dataset output from ArcGIS 

Survey123, a software product that integrates mobile device applications, desktop programs, and 

online tools to create “surveys” that SAR teams may use to fill out an incident report (Esri n.d.). 

The dropdowns for the different requirements of the report specify which information to include. 
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For the temporal information on “Incident Start Date and Time,” the guidance is, “Choose an 

approximate time when the mission was initiated (Earliest action recorded, e.g., 911 phone call, 

team callout, etc.).” An incident’s coordinates come from either the recording party inputting the 

coordinates directly, providing a place name attached to coordinates and searching for the 

location in the software, or moving a pin on a map that identifies the initial planning point for a 

search, the site of injury, or the location of rescue or contact. Accidental sat-comm device 

activations were annotated as such. The dataset sent from the CALOES is depicted in Figure 7. It 

contained 1,679 incidents spanning the entire state, from January 1, 2018, to July 24, 2022. 

 
Figure 7. A map of the CALOES dataset records 
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3.2 Dataset Preparation 

Both the AFRCC and CALOES SAR datasets required review and refinement to make 

sure the data met the definition of a mountain SAR incident and fell within the study area. 

Datasets were brought into Microsoft Excel (2022) to standardize attribute categories and to 

remove incidents with inaccurate or incomplete spatial and temporal attributes. The datasets 

were then brought into ArcGIS Pro, projected, clipped within the study area boundaries, and 

inspected for inaccuracies and redundancies. This research then split the dataset into categories 

depending on if they were an actual mountain SAR incident, an actual mountain SAR incident 

beginning with intentional sat-comm device activation, or an accidental activation of a sat-comm 

device in order to facilitate the evaluation of analytical results.  

3.2.1 Dataset Preparation in Excel 

 Bringing the datasets into Excel enabled an expeditious review of both datasets for 

completeness as well as attribute standardization. Incidents that occurred in counties outside of 

the study area or lacked coordinate or temporal information were removed. Attributes were 

standardized across both datasets, with several fields added for temporal analysis. Additional 

attribute fields resulted from isolating the day of the week, month, and year from the date-time-

group. For the AFRCC dataset, the dates and times needed to be converted to California’s local 

time to match the CALOES dataset, as they arrived in Zulu time (i.e., the time based off the 

prime meridian).  

 This research needed to refine the CALOES dataset to only include incidents that met the 

definition of mountain SAR; the AFRCC PLB activations did not require any adjustment in this 

respect. This study defines a mountain SAR incident as a land SAR event which occurs in 

mountainous terrain away from the built environment, where the subject is participating in 
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outdoor recreation, and which requires the assistance of specialized SAR assets that must 

maintain specific qualifications and training. Incidents that involved natural disasters, law 

enforcement, body recoveries, searches, and suicides were removed. While the argument could 

be made that body recoveries could reveal a pattern of hazardous areas, the comments for the 

recovery cases revealed a variety of missions that did not necessarily meet the mountain SAR 

criteria. For example, some recovery cases had a distress call go out, but rescue teams arrived to 

find the subject dead-on-arrival, but others involved the discovery of skeletal remains – not 

necessarily human. Since the comments were too incomplete to appropriately categorize body 

recoveries as a mountain SAR incident or not, they were all excluded from analysis.  

 In the CALOES dataset, incidents that originated with a sat-comm device activation 

could be labeled in the ArcGIS Survey 123 report as “PLB activated” or “SEND activated.” 

However, several incidents’ comments indicated the appropriate labeling was not always used, 

with incidents originating with a SEND product (e.g., the comments state the subject used a 

Garmin InReach) getting labeled as PLB-activated. Thus, a new field was made to mark an 

incident as either originating from a sat-comm device or not, rather than relying on potentially 

inaccurate PLB and SEND labels. Incidents that did not originate with a sat-comm device 

activation stemmed from an ‘other means of notification,’ a description used henceforth in this 

paper to account for overdue procedures, verbal, and cellular methods of notification. 

 After cleaning, this research divided the datasets into separate layers based on their 

method of notification and whether sat-comm device activation was intentional or accidental. 

The breakdown of dataset preparation and incident categorization is depicted in Figure 8. For the 

CALOES dataset, this resulted in four layers, while for the AFRCC dataset on PLB incidents, 

this resulted in two layers. In this way, accidental sat-comm device activations could have their 
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locations and attributes assessed, and actual SAR missions could be compared between sat-

comm device usage and other means of communication. 

 
Figure 8. Initial dataset preparation and organization in Microsoft Excel 

 

3.2.2 Dataset Preparation in a GIS 

To be used as input for spatial analysis, the mountain SAR incidents from both datasets 

needed to represent locations on a planar surface for distance measurements. The original 

coordinates in the CALOES and AFRCC datasets were in the WGS 1984 geographic coordinate 

system and required projection in ArcGIS Pro. The WGS 1984 coordinate system can support 

meaning visual analysis since it is a realistic representation of spatial relationships. However, 

since geographic coordinate systems are based on a three-dimensional representation of the 

earth, a projected coordinate system that presents a planar version of reality is required to 

measure the distance between points or features during spatial statistics. This research selected 

the California (Teale) Albers in NAD 1983 (meters) projected coordinate system based on 

guidance set by the CDFW. The CDFW recommends using this modified Albers Conical Equal 
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Area projection for statewide datasets that require accurate distance and area measurements 

(CDFW 2022). The origin of the quadrants defining the two-dimensional landscape is roughly 

centered in the middle of the High Sierras, and measurements made throughout the study area 

can be considered relatively accurate representations of reality since distortions increase with 

distance from the origin.  

 Since mountain SAR incidents cannot occur in the parts of the study area devoted to 

roads, housing, towns, and industry, this research needed to define a study area that would only 

include land where a mountain SAR incident could occur. To this end, a shapefile representing 

the wilderness areas within the High Sierras (Wilderness Connect n.d.) was brought into ArcGIS 

Pro to effectively eliminate non-mountain SAR incidents and provide a landscape with the 

potential for mountain SAR incident distribution.  A five kilometer buffer was made around the 

wilderness areas’ boundaries in order to capture incidents that bled beyond the boundaries and to 

account for edge effects during subsequent spatial analysis. This buffer distance was based on 

the finding by Pfau and Blanford (2018) that lost people in the mountains travel on average 4.41 

km. While the present study does not take into consideration searches and lost person behavior, 

Pfau and Blandford’s research offers insight into how far subjects might wander before finding 

themselves in distress and initiating a call for help.  

 The mountain SAR incidents from the CALOES and AFRCC datasets were clipped to 

within the boundaries of the five kilometer wilderness area buffer and assessed for overlap 

within and between the two datasets. All incidents sharing the same date and time were visually 

inspected for spatial proximity, and if enough information was available in the comments to 

verify they recorded the same incident, then one was removed. Figure 9 depicts the selection 

process amongst CALOES incidents. In this example, all the incidents originated with a means 
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of notification other than a sat-comm device. If incidents had the same date and time, but not 

enough detail was available in the comments to determine if they were unique or separate (e.g., 

through demographic information), then both incidents were retained for analysis. Of note, one 

of the comments for the records sharing dates and time in Figure 9 did have demographic 

information, but it is not included in the figure to protect the subject’s privacy. Since the other 

incident sharing date and time did not have demographic information that could confirm or refute 

the match, both were retained per this example. 

 
Figure 9. Depiction of incidents that were removed or retained 

 
This research likewise identified and reviewed all incidents that shared geographic 

coordinates within and between the two datasets to eliminate redundancies which would impact 

analyses based on distance measurements. It is also almost impossible for incidents to occur in 

the exact same location, since coordinates were accurate to at least 0.1 meter. If one of the 

incidents could be determined by its attributes to be an accurate representation of a mountain 
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SAR incident, it would be retained while its duplicate or triplicate was removed. Otherwise, this 

research removed all incidents in that location. For example, if two incidents appeared in the 

middle of a lake under the same coordinates, but had different dates, times, and non-water sport 

activities per the comments, then were both removed. Not a single AFRCC mountain SAR 

incident shared the same coordinates nor same date and time as a CALOES incident. In theory, 

all the AFRCC records from January 2018 through July 2022 should match a CALOES record, 

since the AFRCC passes the notification of a SAR incident to the appropriate local SAR agency 

(e.g., county or NPS), who in turn should record the incident and provide that information to 

CALOES (reference Figure 3 in Chapter 1 above). Several CALOES sat-comm device 

activations (which are a mix of PLB and SEND activations) and AFRCC PLB activations lay 

near each other in time and space (see Figure 10), but due to insufficient information, all were 

retained. Note in the example in Figure 10 the similarities between the CALOES local time and 

AFRCC Zulu time. This was a reoccurring observation in this study, possibly pointing to a 

miscommunication of date and time formats between agencies. 
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Figure 10. Example of similar incidents that were retained 

 
This research also removed incidents from the five kilometer buffer area if ArcGIS Pro’s 

satellite imagery basemap revealed they were near the built environment, such as paved roads, 

parking lots (a common trail head feature), or lodging. Since wilderness areas are largely devoid 

of man-made infrastructure per federal regulations, a visual inspection was not required. The 

exception to the built environment restriction were incidents that occurred in winter months 

when there was a high chance of snow (November through March), since several paved 

mountain roads close through the winter but are available for other forms of recreation, legal or 

not. This research also retained OHV incidents, as they would likely require the assistance of a 

specialty-trained SAR team and would not be accessible to standard vehicles or ambulances. 

This research considered the entirety of the wilderness areas a potential distress location, since 

even though humans tend to follow trails (Doherty et al. 2011), they are a wily species that tend 

to venture from the beaten path – or fall off it. 
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 Once the feature layers only contained mountain SAR incidents within the study area, 

additional spatial attributes were added using the ArcGIS Pro Summarize Elevation tool. This 

tool assigns elevation, slope, and aspect to each incident based on a DEM selected by the analyst. 

This research selected the 30 m DEM for reference, as it is the size that most closely resembles 

the area of uncertainty associated with coordinates coming from sat-comm devices: some PLBs 

set satellite position accuracy at 100 ft, which corresponds to 30.48 m (US Air Force n.d.). This 

research elected to retain only the elevation output for further exploration, as slope and aspect 

can vary dramatically within short distances and a single value measured at the incident-level 

could be an inaccurate representation of surrounding topographic challenges. In contrast, a single 

measurement can adequately represent the effects of elevation on rescue team capabilities. Table 

1 presents the attributes available for analysis in each feature layer now that temporal attributes 

had been added in Excel, and spatial attributes had been added in ArcGIS Pro. The only 

attributes that did not overlap across datasets were the Zulu dates and times in the AFRCC data. 

Table 1. The attributes associated with each dataset available for subsequent analysis 

Dataset Attributes 

CALOES and AFRCC 

Date, Time, Time of Day, Year, Month, Day 
of the Week, Mission Type, Notification 

Method, Accidental Activation, Elevation, 
Comments, Latitude, Longitude 

AFRCC Only Zulu Date, Zulu Time 
 

3.3 Spatial Analysis of the CALOES Dataset 

The spatial analysis of mountain SAR incidents involved two main steps: point pattern 

analysis and spatial statistical analysis. Due to the sparse distribution of AFRCC mountain SAR 

incidents, this research only conducted statistical spatial analysis on the CALOES-derived 

incidents. Figure 11 provides an overview of the analytical techniques used in this research and 
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the ArcGIS Pro tools applied to execute them. The point pattern analysis methods of nearest 

neighbor measurements and kernel density estimates (KDE) provided a means to measure 

incident spatial interactions. Point pattern analysis results, backed by expert opinion, aided in the 

development of a neighborhood structure. Neighborhoods were structured off hexagonal grids, 

and incidents were aggregated by grid cell, creating a metric for comparison: incident frequency. 

Once this research had a neighborhood structure defined, local neighborhoods were compared to 

the study area as a whole and tested against random simulations to determine the significance of 

first-order spatial interactions that could reveal hot spots, clusters, and outliers. 

 
Figure 11. Overview of the methods and corresponding ArcGIS tools used for analysis 
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3.3.1 Point Pattern Analysis 

This research evaluated all mountain SAR incidents by a single set of coordinates without 

considering the area of positional uncertainty inherent to satellite devices caused by signal 

obstructions in the environment. While positional uncertainty could have been represented using 

the point-radius technique described by Doherty et al. (2011), this study maintained a single 

coordinate pair rather than an area to represent sat-comm device activations for three reasons: 

satellite positional uncertainty is not uniform and depends on the topography; positional error 

varies by device and make-and-model attributes were unknown; and if areas of uncertainty were 

created, polygon centroids would still form the basis for point pattern analysis and incident 

aggregation due to their computational efficiency. 

Evaluating the distances between mountain SAR incidents can offer insights into how 

incidents interact with each other over space. While such second-order effects were not expected 

amongst mountain SAR incidents, exploring the distance relationships between incidents gave a 

sense of their spatial distribution and helped define the dimensions of repeat sites for rescue 

teams. This research conducted average nearest neighbor analysis for an initial assessment of 

spatial clustering. Since the layer with all the actual mountain SAR incidents would have the 

largest minimum bounding rectangle to run the nearest neighbor statistic, the area of this 

rectangle was also applied to the layers representing only sat-comm devices or only other means 

of notification. Additionally, the distances between an incident and n nearest neighbors – where 

n in this case represents the number of neighbors when the minimum distance exceeds a 

reasonable definition of a single topographic area – were calculated for the CALOES layer 

representing actual mountain SAR incidents, since it was the layer containing the most incidents. 
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Comparing the minimum, average, and maximum distance values provided initial insights into 

how incident clusters and outliers might be spaced. 

This research next examined incidents for first-order effects using KDE. The kernel size 

which made the most sense based on the underlying topography became a reference for spatial 

neighborhood analysis. The KDE output is a raster surface, where each raster cell value 

represents the density of incidents per the search distance set by the analyst. The quartic kernel 

function that defines the shape of the kernel smooths the transition between cell values for a 

visually appealing output that facilitates the visual analysis of point incidents across a broad area. 

Cells near the edges of the study area might exhibit lower values than interior cells since fewer 

incidents might lie within the kernel search distance. This research mitigated this edge effect by 

the 5 km buffer around the wilderness areas that accounted for incident bleed beyond the study 

area boundaries. This research explored several kernel search distances to assess which distance 

resulted in clusters that corresponded to the topographic environment. Since KDE is less 

computationally demanding than other forms of spatial statistical analysis, the KDE output 

refined the range of distance parameters to explore in future computations. 

3.3.2 Incident Aggregation and Neighborhood Structure 

This research next aggregated the mountain SAR incidents so spatial statistical analysis 

could be used to assess the statistical significance of the incidents’ distributions. The aggregating 

unit needed to represent a site that rescue teams would associate with similar operating 

conditions and consider a repeat location. For example, reoccurring SAR calls for a steep trail 

section is an identifiable location to which rescue teams could develop realistic training 

scenarios. Multiple incidents at that site will have different coordinates, but the site would 

present similar hazards to a rescue team, like the steepness of the slope, the type of ground cover, 
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or the elevation. Hexagons were chosen as the aggregating unit because they reflect human 

movement patterns more realistically than a rectangular grid and because hexagonal edges 

conform better with terrain than right angles (Birch, Oom, and Beecham 2007). Expert opinion 

supplemented the point pattern analysis results when settling on hexagon size by considering 

how the size related to the ground and airborne rescue teams who must contend with reaching or 

moving subjects in distress. The hexagon size needed to be small enough to capture topographic 

variation (e.g., a climbing route, a switchback on a trail, an alpine meadow, etc.), large enough to 

mitigate computational demands, and reasonable enough to represent rescue team capabilities. 

Mountain SAR incidents were aggregated by grid cell, resulting in a single layer containing three 

fields of incident frequencies: all actual mountain SAR incidents; actual SAR incidents that 

began with a sat-comm device activation; and actual SAR incidents that originated from a 

notification source other than a sat-comm device. 

While the size of the hexagon reflects a single operating site for rescue teams, the size of 

a SAR incident neighborhood represents a broader area of concern for SAR agencies that could 

correspond to a recreational destination or pathway. Mountain SAR incidents, which have spatial 

attributes related to the terrain, are not expected to occur randomly across wilderness areas. An 

OHV area would presumably contain mostly OHV-related accidents, while a rock-climbing area 

would have mainly technical SAR incidents. Busy areas could have a high number of cases due 

to a mix of recreational experience levels. SAR incidents near each other in space will likely 

have more similar attributes than those farther away. This correlation of attributes over space is 

termed spatial autocorrelation. Tests for spatial autocorrelation help identify the typical 

neighborhood size of mountain SAR incident locations.  
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This research used the Global Moran’s I statistic to measure the spatial autocorrelation of 

mountain SAR sites based on their incident frequency across the Sierra Nevada wilderness areas. 

Running the statistic for multiple distance provided a series of z-scores. A fixed distance band 

was selected to conceptualize spatial relationships so as to explore multiple distances to detect 

trends, since mountain SAR incidents are not known to cluster within a specific distance range. 

The distance band where the index has the largest peak z-score represented the mountain SAR 

incident neighborhood size where SAR incident frequency deviates the most from the mean. This 

research used this distance to define subsequent neighborhood relationships. 

3.3.3 Hot Spot, Cluster, and Outlier Analysis 

Mountain SAR incidents play out across a diverse topographic environment, and a single, 

global trend cannot capture local spatial relationships within the dataset. Two local spatial 

statistics were used in this research to investigate where mountain SAR incidents occur and in 

what local context: the Getis-Ord Gi* statistic and Anselin Local Moran’s I.  

This research applied the Gi* statistic to identify concentrations of mountain SAR 

incident hot spots that significantly differ from the rest of the study area. Hot spots are a useful 

tool for visual analysis, as they reveal statistically significant areas that should concern SAR 

organizations and policy makers. Hot spots are also easier to conceptualize and locate than 

individual incident points on a map, and they are more compelling than a simple density analysis 

since their significance can be measured. The Getis-Ord Gi* results lent themselves to a 

comparison of how sat-comm device activation hot spots compare to those based on incidents 

originating from other means of notification.  

This research evaluated mountain SAR incident spatial clusters and outliers for 

significance using the Anselin Local Moran’s I statistic. The neighborhood distance parameter 
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was the same as that set for the Gi* statistic to support evaluation between the results. The 

probability a mountain SAR incident site is an outlier or belongs to a cluster is given by the p-

value after running a set number of permutations of the Monte Carlo test to reject the null 

hypothesis that the attributes are randomly distributed. If the Anselin Local Moran’s I values for 

the Monte Carlo permutations suggest less spatial clustering than the Anselin Local Moran’s I 

values of actual mountain SAR incident distributions, then the actual distributions are registered 

as significant clusters. More permutations increase the precision of the pseudo p-value from the 

Monte Carlo permutations, but also require more processing time (Esri n.d.). Due to 

computational constraints, this research only ran 499 permutations, limiting the pseudo p-value 

threshold to p = .002. Because outliers may develop into a hot spot over time should more 

incidents occur in that area, they are worth investigating using the Anselin Local Moran’s I 

statistic so SAR agencies may monitor for the evolution of future patterns. 

3.4 Spatiotemporal Analysis of the CALOES Dataset 

This research conducted spatiotemporal analysis on the CALOES mountain SAR 

incidents using the Emerging Hot Spot Analysis tool in ArcGIS Pro (Esri n.d.). This tool 

combines the Getis-Ord Gi* statistic with the Mann-Kendall trend test for a spatiotemporal 

consideration of mountain SAR incidents. Considering how the distribution of incidents changes 

over time allows SAR agencies to distinguish between older and more recent patterns which 

could reflect changes is outdoor recreation driven by sat-comm device usage. 

For the Emerging Hot Spot Analysis tool to work, SAR incidents need to be structured by 

space and time. A space-time cube (STC) provides the format, with two dimensions measuring 

space and a third dimension measuring time. Figure 12 offers a visualization of the STC 

construct, adapted from Esri (n.d.). The area of analysis forms the base of the array, and layers 
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representing a time series stack over the spatial base. Each slice of the time series represents one 

month of aggregated incidents due to the data’s irregular start and end dates. While aggregating 

incidents by year would have been preferable to mitigate seasonal bias (see Aftergood and 

Flannigan 2022; Reddy et al. 2019; and Visner, Shirowzhan, and Pettit 2021), the Create Space 

Time Cube by Aggregating Points tool requires a minimum of ten time slices to run trend tests 

even though only four time slices are required to detect a trend. Time slices are defined by the 

last day of the month of the most recent month with complete SAR data. Hexagonal prisms 

match those used with the local statistics, although they are depicted as cubes in Figure 12 for 

ease of visualization. 

 
Figure 12. A graphical representation of a Space-Time Cube; adapted from Esri (n.d.) 

 
The Emerging Hot Spot Analysis tool considers a location in the context of its spatial and 

temporal neighborhood. The global attribute mean describing SAR incident frequency (i.e., the 𝑋D 
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in (4) was adjusted to only consider attributes within the same temporal neighborhood, which is 

set at 12 months. To keep the Emerging Hot Spot results comparable to the purely spatial Gi* 

results, the spatial neighborhood fixed distance band is the same, despite potential biases 

associated with fewer incidents assessed per neighborhood per temporal period when running 

Emerging Hot Spot Analysis.  

The Emerging Hot Spot Analysis tool’s output is a time series of hot spots and cold spots 

based on the p-values and z-scores of the locations containing SAR incidents. The Emerging Hot 

Spot Analysis tool applies the Mann-Kendall trend test to the hot spot and cold spot time series 

to ascertain whether there is a positive or negative trend. The Mann-Kendall test is a non-

parametric rank correlation test, meaning it does not need data to be normally distributed and is 

suitable for the right-skewed mountain SAR incident frequencies. Because the test looks for 

consistently increasing or decreasing trends over time, seasonal data would need to be considered 

by year, which is why the temporal neighborhoods are a twelve-month aggregate. The tool can 

assign one of eight trends: new, consecutive, intensifying, persistent, diminishing, sporadic, 

oscillating, and historical (Esri n.d.). In this manner, an analyst can identify areas that could be a 

consistent or growing concern to rescue teams, particularly owing to the use of sat-comm devices 

by outdoor recreationists. 

3.5 Comparing the AFRCC and CALOES Datasets 

The AFRCC PLB dataset augmented the CALOES SAR dataset in that it contains older 

recorded incidents–and additional, contemporary data points–that support or question the spatial 

patterns discovered amongst the CALOES SAR incidents. This research first examined the 

spatial and temporal similarities and differences between actual SAR missions from the two 

datasets through visual analysis and descriptive statistics to provide an overview of the spatial 
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and temporal attributes of each dataset. This research then inspected the PLB activations from 

the AFRCC dataset in the context of the statistically significant spatial patterns of the CALOES 

dataset. Additionally, the subset of mountain SAR incidents from both datasets that were 

recorded as an accidental activation of a sat-comm device were reviewed and compared against 

actual SAR missions. Supplementing the spatial statistics with the visual analysis and descriptive 

statistics lent context to the results so rescue teams and organizations can demonstrate not just 

where mountain SAR incidents occur and how those locations might differ with sat-comm 

device usage, but they could begin to explore the impact of incident distributions on rescue 

operations. 

3.5.1 Comparing Spatial Relationships and Attributes 

This research applies visual analysis and descriptive statistics to mountain SAR data in 

order to evaluate how incident attributes could inform training and preparation plans for SAR 

teams as they adapt to the impacts of sat-comm device activations. Both methods are considered 

exploratory data analysis techniques as they do not test for significance but instead rely on 

interaction between the analyst and the data for interpretation. Visual analysis involves the visual 

inspection of representations like maps and GIS layers to draw conclusions (O’Sullivan and 

Unwin 2010). The visual analysis techniques used in this research include an inspection of 

incident locations, spatial relationships, and attributes by comparing SAR incidents against 

satellite imagery in a GIS. This research visually inspected AFRCC PLB activations to identify 

any that match a CALOES incident. This research used the Near tool to figure out where the 

AFRCC incidents lay in relation to the CALOES incident neighborhoods and to assess whether 

including the AFRCC data in future spatial statistical analysis could contribute to new – or 

reinforce current – mountain SAR hot spot, cluster, and outlier locations.  
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This research used descriptive statistics to compare incident counts and attributes over 

time for both the AFRCC and CALOES datasets. The results are presented in tabular or chart 

formats. This research examined incident elevation and temporal attributes at the incident-level. 

Considering the spatial and temporal attributes of incidents that derive from a sat-comm device 

activation against those originating with other means of notification gave insight into how sat-

comm devices might be changing SAR dynamics. 

3.5.2 Assessing Accidental Activations 

The activation of a sat-comm device generates a SAR response until the activation can be 

confirmed as accidental or the incident is resolved. Accidental activations therefore pose a 

potential drain on resources if they occur in mountainous terrain and require the time and 

expenses associated with the deployment of specialist rescue teams. This research examined 

mountain SAR incidents determined to originate with an accidental device activation using the 

visual analysis and descriptive statistics described above, and then reviewed the results for how 

they might impact SAR organization planning and expectations. 

3.6 Summary 

This research leverages the benefits of GIS tools to explore how sat-comm device usage 

impacts the SAR environment. This research ran two point pattern analysis methods on actual 

mountain SAR incidents from the larger CALOES dataset, the results of which informed 

subsequent methods of spatial analysis. Creating an incident neighborhood structure supported 

local spatial statistical analysis to identify hot spots, clusters, and outliers. Additionally, incidents 

were organized by space as well as time in an STC and assessed for emerging hot spots. This 

research then evaluated the hot spots, clusters, outliers, and emerging hot spots attributed to 

incidents originating with a sat-comm device for similarities and differences against the sites 
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associated with incidents originating from other means of SAR notification. The smaller AFRCC 

dataset was evaluated against the CALOES dataset for redundancies. This research then 

measured and visually assessed actual mountain SAR incidents unique to the AFRCC dataset in 

the context of the CALOES spatial analysis results to determine possible implications. Lastly, 

this research reviewed incident attributes and accidental sat-comm device activations using 

descriptive statistics to determine what sat-comm usage might mean for SAR team preparation. 
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Chapter 4 Results 

The intent of this study is twofold: to explore the impact of satellite communication (sat-comm) 

devices on the search and rescue (SAR) landscape in California’s High Sierras; and to present a 

methodology that could guide the efficient use of SAR resources and increase the safety margins 

for SAR rescue teams. In order to isolate mountain SAR incidents that met the definition of 

mountain SAR used in this study, the study area was restricted to within a five kilometer buffer 

of the High Sierra’s wilderness areas, with a total area of 21,749.53 km2. After data preparation 

and cleaning, 53 mountain SAR incidents represented the Air Force Rescue Coordination Center 

(AFRCC) dataset on PLB activations (eight of which were attributed to accidental activations), 

running from July 25, 2015, to July 17, 2022. The California Office of Emergency Services 

(CALOES) dataset was distilled to a total of 416 mountain SAR incidents (27 of which were due 

to the accidental activation of a sat-comm device) dated January 1, 2018, to July 27, 2022. After 

removing the accidental activations, roughly one-third of actual SAR incidents in the CALOES 

dataset were initiated with a sat-comm device, at 132 incidents. The remaining two-thirds started 

the SAR process through a different means of notification, at 257 incidents.  

It is clear from a simple visual inspection of mountain SAR incident distributions that 

incidents do not have a random distribution across the Sierra Nevadas. Figure 13 presents maps 

of actual mountain SAR incidents and accidental activations from the AFRCC and CALOES 

datasets from 2018-2022 (AFRCC incidents pre-2018 were omitted from this figure so as to 

visually compare incidents across datasets from the same period). In Figure 13a and c, incidents 

appear concentrated along the eastern spine of the High Sierras, perhaps due to trail networks, 

the scenery, or the challenge of extreme recreation that can attract outdoor enthusiasts. The sat-

comm device activations from both the AFRCC and CALOES incident datasets suggest positive 
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spatial clustering as well as a higher proportion of spatial outliers (see Figure 13b), while 

mountain SAR incidents that begin with other means of notification have relatively fewer spatial 

outliers (see Figure 13a). Furthermore, sat-comm device activations appear distributed across a 

greater swath of the study area than incidents initiated by other means of notification, suggesting 

sat-comm devices could impact recreational behavior and rescue team requirements. These 

inferences, which were gathered from a simple assessment of points on maps, are supported by 

the results of spatial statistical analysis of the CALOES dataset. This research additionally 

explored how the spatial and temporal patterns could impact rescue team preparation through 

visual analysis and descriptive statistics of the AFRCC and CALOES data attributes and an 

evaluation of accidental sat-comm device activations. 

 
Figure 13. Distribution of SAR incidents by means of origination: (a) other means of 

notification, (b) intentional sat-comm activation, and (c) accidental sat-comm activation 

4.1 Spatial Analysis of the CALOES Dataset 

During data preparation, this research separated the CALOES mountain SAR incidents 

into three layers for spatial pattern analysis: all actual mountain SAR incidents; actual mountain 
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SAR incidents that originated with the activation of a sat-comm device; and actual mountain 

SAR incidents that are triggered by an ‘other means of notification’ (e.g., in-person notification, 

cell phone, etc.). This research did not consider accidental sat-comm device activations for 

statistical spatial analysis, as accidental activations are not necessarily driven by the same spatial 

relationships as actual SAR incidents and because the number of accidental activations reviewed 

in this study were too sparse. This research assessed mountain SAR incidents as both singular 

events and as aggregations within a neighborhood structure. Point pattern analysis consisted of 

average nearest neighbor calculations, a review of distances between neighboring points, and an 

exploration of kernel density distances. The resulting distances were judged by expert opinion to 

select a distance parameter that was small enough to reflect how SAR incidents interact over 

space but large enough to support reasonable computational processing times. This research then 

aggregated the mountain SAR incidents by a hexagonal grid whose cell-width matched the 

selected distance parameter and evaluated the aggregations to develop a neighborhood structure. 

The incidents within the neighborhood structure were assessed to determine how sat-comm 

devices impact the locations of incident hot spots, clusters, and outliers. Due to the sparse 

number of recorded PLB incidents from the AFRCC dataset within the study area, this study 

only ran spatial statistics on the CALOES dataset. 

4.1.1 Point Pattern Analysis  

The point pattern analysis results provided an initial insight into the spatial patterns of 

mountain SAR incidents. The nearest neighbor and kernel density estimates (KDE) point pattern 

analysis methods are a simple type of spatial analysis that do not consider topographic variability 

like sharp elevation changes or obstructions. While almost one-half of actual mountain SAR 

incidents occurred on the same date as another incident, only about one-eighth of these occurred 
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within 250 m of another incident. These figures suggest it is unlikely a SAR incident impacted 

another occurring in the same location.  

 This research ran average nearest neighbor calculations on all three CALOES incident 

layers. The layer representing the totality of incidents regardless of notification method had a 

minimum bounding rectangle with an area of 30,669.64 km2. To make the nearest neighbor ratio 

comparable across the notification methods, this area was set for the bounding rectangle of the 

other two layers. The average nearest neighbor results, presented in  

Table 2, indicated significant spatial clustering for all three layers. The average nearest neighbor 

observed mean distance for the mountain SAR incidents originating from a sat-comm device 

activation is larger than that for the other means of notification incidents, suggesting the presence 

of outliers. Because the sat-comm layer also has a larger expected mean distance since it 

contained fewer incidents for the same bounding area, the nearest neighbor ratios for all three 

layers are relatively similar. The ratios range from 0.42 to 0.58, falling roughly equally between 

complete spatial randomness (i.e., a ratio of one) and complete spatial clustering (i.e., a ratio of 

zero). The layer of sat-comm device activations had the larger ratio of 0.58, while the layer of 

other means of notification had the smaller ratio of 0.42, suggesting the former has less 

clustering than the latter. The sat-comm device layer also resulted in a z-score closer to zero than 

the other two layers, suggesting less variation from the mean and hence less extreme clustering 

distances than the other two layers. The extremely low p-values indicate more significant 

clustering than could be expected due to random chance. 
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Table 2. Average nearest neighbor results 

 Nearest 
Neighbor 

Ratio 

Observed 
Mean 

Distance (m) 

Expected 
Mean 

Distance (m) 

z-score p-value 

All CALOES 
Actual SAR 

Incidents 

0.50 2,227.63 4,439.66 -18.80 .000000 

Sat-Comm 
Device 

Activations 

0.58 4,446.48 7,621.45 -9.16 .000000 

Other Means 
of 

Notification 

0.42 2,277.72 5,462.08 -17.88 .000000 

 
This research only calculated the minimum, average, and maximum distances between 

incidents for the layer representing all actual mountain SAR incidents so as to have the 

maximum number of inputs. The measurements between different numbers of neighbors are 

presented in Table 3. At 10 neighbors, the minimum distance began to exceed the 500 m used in 

subsequent analysis to represent a single location, so distance values beyond 10 neighbors are 

not included for inspection in the table. The average distance for all actual mountain SAR 

incidents to have at least one neighbor is 2,227.6 m, with the minimum distance between 

incidents at less than one meter and the maximum distance at almost 26 kilometers. At least one 

location within the dataset has 10 neighbors within a 600 m radius. However, the minimum 

distance from eight to nine nearest neighbors jumps about 300 m from just over 100 m to just 

over 400 m, suggesting most incidents that could be considered to share a location occur within 

roughly 100 m of each other. Furthermore, while some sites may have multiple incidents near 

each other, the average number of incidents do not, with the average number of incidents having 

only three neighbors within a five kilometer radius. Table 3 suggests there are limited, if any, 

interactions between incidents that impact subsequent incidents as well as the presence of several 
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spatial outliers, as the average distances between incidents are relatively large. Instead, incidents 

occurring in proximity are likely location-specific rather than influenced by an incident nearby, 

with some sites containing more hazards or experiencing higher traffic than others. 

Table 3. Distance relationships between actual SAR incidents in the CALOES dataset 

Distance 
(meters) 

Number of Neighbors 

1 2 3 4 5 6 7 8 9 10 
Minimum 0.088 38.88 47.67 60.94 67.79 94.66 95.35 106.38 403.90 573.74 

Average 2227.63 3909.32 4727.88 5645.68 6354.99 7064.39 7696.88 8405.80 8951.71 9547.76 

Maximum 25,926.46 37,246.16 37,556.37 45,874.96 48,106.98 67,244.65 68,099.67 79,925.45 84,268.22 89,541.62 
 
This research next assessed actual mountain SAR incidents using KDE to determine the 

kernel size where incident densities best matched the study area’s topography, which contains 

mountains, alpine lakes, meadows, and glacial valleys. This research evaluated the KDE values 

at 250 m, 500 m, and 1,000 m cell sizes using search distances of 1,000 m, 2,500 m, 5,000 m, 

and 10,000 m. The raster surface output of incident density estimates with the 500 m cell size 

provided the best resolution to represent incident density. The 2,500 m search distance offered 

the best depictions of incident clusters that followed topographic characteristics based on a visual 

assessment. The tool was run again using these settings for the features representing only 

intentional sat-comm device activations and incidents originating with other means of 

notification and were examined to check if the settings appropriately represented the smaller 

datasets. Figure 14 shows how the resulting density surface raster layers compare across the 

entire study area. The magnified area is just west of Whitney Portal on the Tulare-Inyo county 

border and represents a roughly three kilometer zone around the tallest peak within the 

continental United States. The density surface – and the smoothing effect of the kernel’s quartic 

function – effectively conveys which areas have a high concentration of incidents and should be 
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the focus of SAR agencies, which areas with a low incident density should be monitored for 

future trends or examined further for potentially hazardous conditions, and how the datasets 

representing methods of notification compare. It is worth noting in the magnified zone in Figure 

14 that the incident clusters appear elongated, possibly pointing to the impact of visitor traffic 

along a trail network. The KDE results informed subsequent analyses involving incident 

aggregation schemes. 

 
Figure 14. KDE results using a 500 m grid cell and a 2,500 m search radius 
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4.1.2 Incident Aggregation and Neighborhood Structure 

This research aggregated mountain SAR incidents to support spatial statistics where the 

unit of analysis would represent the mountain SAR incident frequency per hexagon. After testing 

sizes for 250 m and 1,000 m, a hexagon with a width of 500 m was selected for a repeating grid. 

Five hundred meters effectively captured mountain SAR incidents within a single topographic 

location but was large enough to support reasonable computational processing times for the area 

of analysis. The grid of hexagons supported a neighborhood structure with near equal access to 

all neighbors due to hexagonal geometry. From a rescue team’s perspective, 500 m is a fair 

distance to measure a single SAR site: should a helicopter be able to land or hover only in the 

middle of a hexagon, having rescue personnel move a person in a litter 250 m in any direction 

could be considered a maximum – albeit arduous – distance for most rescue teams of two or 

more people before driving a new landing or hover location. Figure 15 provides a snapshot of the 

relationship between the hexagons and mountain SAR incidents. Note how incidents within 

roughly 100 m of each other are generally within the same hexagonal cell, and those farther 

away may be in neighboring cells. It is also worth mentioning that these distances are based off a 

planar surface, and some incidents might have a greater slant range distance if separated by 

extreme changes in elevation. While a grid overlay is imperfect, since incidents are arbitrarily 

separated or grouped, the 500 m hexagonal grid effectively captures the local densities of 

incidents per cell to facilitate a comparison with neighboring cells. 
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Figure 15. Mountain SAR incident distribution within the 500 m hexagonal grid; location is west 

of Whitney Portal on the border of Tulare and Inyo counties 
 
This research aggregated each of the three CALOES layers of actual mountain SAR 

incidents by the hexagonal areal unit and tested each aggregated layer using the Global Moran’s 

I statistic to explore which distances demonstrated statistically significant spatial autocorrelation. 

This research used the results to develop a neighborhood distance parameter for subsequent 

analysis. Ten distance bands were evaluated at 500 m, 1,000 m, and 2,000 m increments 

resulting in an exploration of spatial autocorrelation out to 18.5 km. All three layers had a 

significant z-score peak at 3,500 m, at which distance the mean hexagonal cell incident 

frequency deviated the most from the mean for the study area and suggests positive spatial 

autocorrelation. Looking at Figure 16, which depicts the results for increments of 1,000 m, other 

z-score peaks are also present in all three layers. This research disregarded the two peaks at 

7,500 meters, as that would constitute a neighborhood structure that would be less useful for 

rescue agencies aiming to assess site-specific hazards and was not supported by the KDE results, 

which suggested 2,500 m was optimal for visualizing incident clusters.  
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Figure 16. Global Moran’s I distances for maximum spatial autocorrelation 

 
In Figure 16, a notable peak is present at 1,500 m in the layer representing sat-comm 

device activations. At 1,500 m, the z-score is 12.98, compared to a z-score of 13.19 at 3,500 m. 

However, when running the global spatial statistic at increments of 500 m, which produces z-

scores out to 5 km, only one z-score peak was present at 1,000 m with a z-score of 13.67. This 

research disregarded these z-score peaks at 1,000 m and 1,500 m for use as neighborhood sizes 

in subsequent analysis so as to facilitate comparison across all three CALOES layers. That said, 

a smaller spatial neighborhood might be a more accurate representation for the sparser sat-comm 

device activations layer, as larger neighborhood sizes might exaggerate the influence of a single 

sat-comm device activation on a location compared to the global mean. 

Based on the Global Moran’s I output and KDE results, this research set a neighborhood 

distance of 3,500 m for further spatial and spatiotemporal analysis. This distance makes sense 

from a topographic and SAR perspective: distances greater than 3.5 km might fail to capture the 

nuances of alpine meadows, cliff faces, and lakes and suggest false spatial associations; and half 
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this distance is 1,750 m, which is roughly the distance a helicopter requires to set a safe, 

established approach to a landing or hover location, and incidents occurring within the final 

approach path typically pose similar challenges (e.g. vertical obstructions and vegetation) to a 

helicopter rescue team. The 3,500 m neighborhood fixed distance band allowed incident 

frequencies to be compared within a spatial neighborhood where they demonstrated significant 

spatial autocorrelation across the study area. 

4.1.3 Hot Spot Analysis 

With the actual mountain SAR incidents aggregated and a distance selected for defining 

the incident neighborhood, this research applied local spatial statistics to aid in the identification 

of incident hot spots, clusters, and outliers. Hot spots were identified using the Getis-Ord Gi* 

statistic. A hot spot is a neighborhood where the SAR incident frequency is significantly higher 

than that of the study area. However, hot spots do not necessarily equate to locations containing 

the highest number of incidents, but instead reveal the locations that significantly differ from the 

global mean. Incident outliers may appear as a hot spot location if a dataset is so sparse that even 

one incident can raise the neighborhood mean such that it is significantly greater than the global 

mean, as is the case with several locations originating with a sat-comm device activation. The 

global mean for all three CALOES layers has a low value, as over 99% of hexagons in the study 

area in all three layers contain no incidents.  

The Hot Spot Analysis tool’s results show hot spots of incidents that stem from a sat-

comm device activation are in different locations than incidents that begin with other means of 

SAR notification, though there is a substantial area of overlap between the two layers. The 

portion of the study area considered a hot spot with a p-value of .01 or less stands at 5.10% for 

all actual mountain SAR incidents, 4.62% for incidents originating with a sat-comm device, and 
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5.21% for incidents originating with other means of notification. A comparison of the hot spots 

between the different methods of SAR response activation is depicted in Figure 17. Most of the 

sat-comm device hot spots and other means of notification hot spots exhibit unique distributions, 

suggesting intentional sat-comm device activations increase the demand for SAR services across 

a greater portion of the study area. However, as can be seen by the yellow areas in Figure 17, 

13.21% of the hot spot locations with 99% confidence levels from the different methods of SAR 

notification overlap. This overlap between the different types of SAR notification is largely due 

to sat-comm device usage appearing in the same locations as other means of notification, rather 

than occurring nearby and expanding the size of significant neighborhoods. Thus, in addition to 

widening the distribution of SAR incident hot spots across the study area, these results suggest 

sat-comm device usage contributes to several hot spots alongside other means of notification 

where cell service or word-of-mouth relay are also possible. 
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Figure 17. Mountain SAR incident hot spot distribution and overlap  

 

4.1.4 Cluster and Outlier Analysis 

While the Hot Spot Analysis tool, and the Getis-Ord Gi* static underpinning it, is useful 

for drawing attention to areas with multiple SAR incidents, the tool’s results lack the level of 

detail to home-in on specific locations (i.e., the level of the 500 m hexagon) and to identify 

outliers. The Cluster and Outlier Analysis tool based off the Anselin Local Moran’s I statistic 
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categorizes locations as clusters and outliers at a finer resolution than the Gi* statistic, since each 

areal unit is assigned to a High-High cluster, Low-Low cluster, High-Low outlier, Low-High 

outlier or no significance category. Category labels describe the areal unit and neighborhood 

incident values respectively. The categorization makes Anselin Local Moran’s I results easier to 

assess for site-specific spatial relationships that could set environmental expectations for rescue 

teams. The four categories of cluster and outlier relationships also helps SAR agencies anticipate 

the demand for SAR in a given neighborhood. 

The graphical outputs of the two spatial statistics accessed through two GIS tools reveal 

their advantages and disadvantages. Figure 18 compares the spatial distribution of results based 

on the two types of local spatial statistics compared to point incidents. The distribution of 

significant neighborhoods appears similar in Figure 18b and c, since the 3,500 m neighborhood 

fixed distance band produces a similar spread of significance values. However, the Anselin Local 

Moran’s I results (Figure 18c) are more nuanced and provide greater context to the 

neighborhoods. The Hot Spot Analysis tool based on the Getis-Ord Gi* statistic produces layers 

of hot spots that are easy to identify but appear equally relevant to SAR agencies, while the hot 

spots actually contain a range of incident counts, from two to upwards of seven. The Cluster and 

Outlier Analysis tool classified most of the hexagons within a neighborhood as Low-High 

outliers based on their Anselin Local Moran’s index values, meaning they have lower incident 

frequency values than the mean but are in neighborhoods with a higher incident frequency than 

the mean. Because of the relative sparseness of the sat-comm device activations, even one 

incident raises the mean value for a neighborhood. The values at the center of the neighborhoods, 

which are generally marked as a High-High cluster or High-Low outlier site, allow SAR 

agencies to differentiate between areas that could be of greater concern than others.  



 89 

 
Figure 18. Results of local spatial statistics, including: (a) intentional sat-comm device 

activations as unique incidents, (b) hot spots identified using the Getis-Ord Gi* statistic, and (c) 
clusters and outliers defined using the Anselin Local Moran’s I statistic 

 
It is worth noting in Figure 18c that several hexagons in the center of a significant 

neighborhood are not considered significant, even though those are the only hexagons in the 

neighborhood containing incidents (reference Figure 18a). When values are too close to the 

mean, they may be considered insignificant using the Anselin Local Moran’s I statistic, an issue 

Potter et al (2016) noted in their study on ecological phenomena when they elected to only run 

the Getis-Ord Gi* local spatial statistic. For this reason, SAR agencies who wish to examine 

cluster and outlier locations should consider the results carefully if they wish to weigh areas 

more seriously depending on if clusters or outliers are present, since they might misdiagnose 

SAR neighborhoods of interest to them. 
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A visual comparison of High-High cluster locations and High-Low outlier locations 

between the different types of notification method reveals the contrasting spatial distributions of 

the cluster and outlier categories. Figure 19a and b present the results for a visual comparison, 

with the map on the left showing the distribution of High-High clusters and High-Low outliers of 

sat-comm device activations, and the map on the right depicting the distribution based on other 

means of notification. No Low-Low clusters were present in any of the results. Since all Low-

High outliers had an incident count of zero and served mostly to highlight neighborhoods 

containing significant values, they were excluded from a comparison of results. Looking at 

Figure 19a, it is apparent the layer of sat-comm device activations contains mostly High-Low 

outliers, at about 70% of all cluster and High-Low outlier sites. These results likely reflect the 

adoption of sat-comm devices as they increase in popularity compared to more established 

methods of communication, which could influence recreational behavior and decision making in 

remote areas lacking cell service or access to rescue service hubs. By contrast, Figure 19b has the 

opposite dynamic, with far more High-High clusters in the layer of other means of notification 

due to more incidents appearing within proximity to prior incidents and only about 20% of 

clusters and High-Low outliers designated as outliers. While the prior visual inspection of 

incidents and nearest neighbor distance measurements both suggested spatial outliers might play 

a larger role in the layer of sat-comm device activations than other means of notification, the 

Cluster and Outlier Analysis results provide measurable statistical significance of outlier versus 

cluster predominance, demonstrating the challenges to anticipating where future intentional sat-

comm device activations may occur.  
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Figure 19. Anselin Local Moran’s I results for (a) sat-comm device activations and (b) other 

means of notification  
 

4.2 Spatiotemporal Analysis of the CALOES Dataset 

In order to conduct statistical spatiotemporal analysis and detect emerging hot spots, this 

research aggregated CALOES mountain SAR incidents by time and space in a space-time cube 
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(STC) structure. Incidents were organized spatially by the same 500 m wide hexagonal grid as 

used with the local spatial statistics, but they were also binned by one-month intervals. In Arc-

GIS Pro, the Mann-Kendall trend test is run concurrently with STC creation (Esri n.d.); however, 

because the data are seasonal and the Mann-Kendall test does not consider periodicity, this 

research disregarded the STC trend results based off the one-month intervals produced by the 

Create Space Time Cube By Aggregating Points tool. The resulting STC had a total of 593,125 

hexagon grid locations and 55 time-step intervals that could be grouped into spatial and temporal 

neighborhoods for analysis. 

Prior to conducting spatiotemporal analysis on the STC, this research visualized the data 

over time without consideration given to spatial relationships. The results are presented as a line 

graph in Figure 20, where the number of sat-comm device activations are compared with other 

means of notification by month. The seasonal nature of the data is immediately apparent, with 

the summer months seeing far more SAR activity than winter months. The graph also indicates 

sat-comm device usage is supplementing and replacing other methods of communication since 

2020, though there appears to be minimal sat-comm device usage recorded for 2022 at the time 

the CALOES dataset was requested. The results from the local spatial statistical analysis suggest 

the shift in method of SAR notification towards sat-comm devices is spatial as well as temporal, 

since sat-comm device activations occur in the same areas where other methods of notification 

are available. Conducting spatiotemporal analysis on incidents bounded within an STC allows 

SAR agencies to discern how these shifts occur over both time and space and further explore the 

role of sat-comm device activations on mountain SAR incident distribution. 
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Figure 20. Incidents by notification method over time, CALOES dataset 

 
Each of the three CALOES layers were the input for one STC, and this research tested all 

three STCs for emerging hot spot trends based on 3,500 m spatial neighborhoods and twelve-

month temporal neighborhoods (to account for seasonal bias). The Getis-Ord Gi* statistic 

categorized locations within the spatiotemporal neighborhood as hot spots if they had high 

incident frequencies in a high incident-frequency neighborhood that significantly differed from 

what could be expected due to random chance. The Mann-Kendall test detected trends by 

comparing the Gi* z-score of a bin against previous bins to identify a constant increase or 

decrease in values over time. While more time intervals can provide trends with higher fidelity, a 

minimum of four intervals are required to detect a trend (which the four and a half years of 

CALOES incident data provided). Running the Emerging Hot Spot Analysis tool results in a 

two-dimensional layer where each areal unit is assigned a trend type. 

Eight emerging hot spot trends are possible: new, consecutive, intensifying, persistent, 

diminishing, sporadic, oscillating, and historical (Esri n.d.). Two trends did not appear in any of 

the results: oscillating hot spots, which require a location to be considered a cold spot as well as 

a hot spot over time; and historical hot spots, where a location has been a hot spot for every time 

interval except the most recent one. Of the trend types, two mark emerging hot spots as relatively 

recent phenomena: new hot spots, which describe a location that is considered a hot spot for the 
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first time during the most recent time interval (i.e., year), and consistent hot spots, which 

represent locations that have been a hot spot only for the last two years. The intensifying trend 

type is perhaps the most concerning to SAR agencies looking to put mitigation measures in 

place, as an intensifying hot spot marks where a location’s neighborhood has been a hot spot for 

90% of the time intervals and the Gi* z-score values have been increasing over time (i.e., the 

neighborhood’s mean incident frequency is increasingly larger than the study area mean). The 

other trend types provide useful descriptions of hot spot patterns over time: a persistent hot spot 

is like an intensifying hot spot, but the Gi* z-scores are not increasing; a diminishing hot spot is 

a persistent hot spot with a significant decrease in Gi* z-score values over time; and sporadic hot 

spots represent locations that are a hot spot for the final year as well as during an earlier year. 

Visualizing the Emerging Hot Spot Analysis results on a map gives context to the distribution of 

hot spot trend types.  

Like the purely spatial Hot Spot Analysis results, the significant neighborhoods from sat-

comm device activations identified from the Emerging Hot Spot Analysis tool show some 

overlap with significant neighborhoods from other means of notification. The spatial overlap of 

several emerging hot spots suggests sat-comm device activations have shared neighborhoods 

with other means of notification for multiple years. However, the notification methods exhibit 

different spatial patterns of emerging hot spots when viewed in isolation. The emerging hot spots 

due to sat-comm device activations are smaller and sparser than the other means of notification 

emerging hot spots, reflecting the more recent usage of sat-comm devices and the smaller 

number of sat-comm device incidents aggregated per temporal neighborhood in an STC.  

Figure 21 depicts the patterns of emerging hot spots for a section of the Sierras known at 

the Ritter Range west of Mammoth, CA, along the border of Madera, Fresno, and Inyo counties. 
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In Figure 21a, which presents the emerging hot spots of all actual mountain SAR incidents, both 

the emerging hot spot shapes and the trend types reflect the influences of the different methods 

of SAR notification. Figure 21b depicts the emerging hot spots resulting from the other means of 

notification STC. It shows how the other means of notification incidents exert the strongest 

influence on the shapes of the emerging hot spots in Figure 21a, since there are more incidents 

originating from other means of notification in the same neighborhoods over time than seen with 

sat-comm device activations. Figure 21b also contains all the persistent, intensifying, and 

diminishing trend types for the other means of notification emerging hot spots. Figure 21c shows 

the emerging hot spots from sat-comm device activations. The emerging hot spots are smaller, 

and the dominant trend type is consecutive, reflecting the more recent usage of sat-comm devices 

as a method of SAR notification. Sat-comm device activations influence the trend types in Figure 

21a, since exploring sat-comm device activations and other means of notification in conjunction 

decreases the Gi* z-values for a spatial neighborhood by raising the study area mean for recent 

temporal neighborhoods. Comparing maps of emerging hot spots by notification method allows 

SAR agencies to consider the extent sat-comm device activations influence the spatial and 

temporal patterns of mountain SAR incidents, enabling a deeper examination of the underlying 

spatial and temporal relationships. 
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Figure 21. Emerging Hot Spot results on Ritter Range from (a) all actual mountain SAR 

incidents, (b) other means of notification, and (c) sat-comm device activations 
 
Intensifying hot spots are concerning to SAR agencies, as those locations not only 

suggest the historical presence of SAR incident hot spots, but also that the numbers of incidents 

occurring in those neighborhoods are significantly increasing over time compared to the study 

area. Figure 22 presents the emerging hot spots identified around Mount Whitney, the tallest 

mountain within the continental United States. This area straddles the border between Tulare and 

Inyo counties, with ramifications for which county may be tasked with rescue responsibilities. 

Figure 22a depicts the entirety of intensifying hot spot locations for all actual mountain SAR 

incidents in the study area, representing 3.30% of hot spot trend types. Neither the other means 

of notification SAR incidents nor the sat-comm device activations (Figure 22b and c 

respectively) could capture this intensification trend when considered in isolation. The 

dominance of consecutive hot spots amongst sat-comm device activations added to the sporadic 

hot spots of the other means of notification incidents, serving to significantly increase the Gi* z-
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score values in the Whitney Portal area in more recent years. Creating an STC and running tests 

to detect emerging hot spots produces results that allow SAR agencies to identify areas of 

perpetual and increasing concern. Results similar to those depicted in Figure 22 can support 

decisions on how to manage resources and determine where mitigation measures should perhaps 

be concentrated. 

 
Figure 22. Emerging Hot Spot results near Mt. Whitney from (a) all actual mountain SAR 

incidents, (b) other means of notification, and (c) sat-comm device activations 
 
Consecutive and sporadic trend types are the dominant categories across all CALOES 

mountain SAR incident layers. Table 4 gives a breakdown of the proportion of hot spot trend 

types per layer. Consecutive hot spots are the dominant trend type for sat-comm device 

activations. Sporadic hot spots are the dominant trend type for other means of notification. 

Consecutive and sporadic hot spots account for roughly 90% of mountain SAR incident 

locations. However, about 70% of sat-comm device activation hot spots are consecutive while 

about 20% are sporadic, while the reverse is true for other means of notification hot spots. Along 
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with the prevalence of consecutive hot spots, sat-comm device locations have the highest 

percentage of new hot spots, at 8.45%. These results suggest sat-comm device usage is a recent 

phenomenon and that all mountain SAR incidents occur mainly in neighborhoods that have been 

a hot spot of at least two years of the four and a half years considered. 

Table 4. Distribution of actual mountain SAR incidents per hot spot trend type 

Hot Spot Trend Type All Mountain SAR 
Incidents 

Sat-Comm Device 
Activation 

Other Means of 
Notification 

New 2.62% 8.45% 3.93% 

Intensifying 3.30% - 0.034% 

Diminishing 0.23% - 0.068% 

Consecutive 46.09% 70.16% 25.67% 

Persistent 0.75% - 0.68% 

Sporadic 47.02% 21.39% 69.62% 
 

4.3 Comparing the AFRCC and CALOES Datasets 

This research compared the 45 intentional PLB activations from the AFRCC dataset 

against the 389 actual mountain SAR incidents from the CALOES dataset to check for 

redundancies. Only six of the recorded PLB activations possibly correspond to an incident in the 

CALOES dataset, all occurring within one day and one kilometer of each other. Two of the six 

were not categorized as either a PLB or SEND activation in the CALOES dataset, suggesting 

they were mislabeled in the CALOES dataset or possible represent separate incidents that took 

place in questionable spatial and temporal proximity to another one. Neither the time nor 

location of the 6 potential overlapping records are exact matches, but they are similar enough to 

raise questions. The time of day varies by an average of 7 hours and 50 minutes when comparing 

the CALOES local time to the AFRCC local time. However, the AFRCC stores PLB SAR 

incidents in Zulu time and date format, and the average difference between the AFRCC Zulu 
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time and the CALOES local time is only 40 minutes, suggesting a possible miscommunication or 

misinterpretation of time format between the agencies. The average distance apart between the 

possibly redundant incidents is 358.07 m, and the average difference in elevation is 65.07 m. 

Since more information would be required to confirm the six PLB activations are duplicates 

across the datasets, they were not removed from the AFRCC dataset for subsequent analysis. 

 The PLB activations from the AFRCC dataset were next measured by their proximity to 

CALOES incidents in order to explore how the historical SAR incident datasets relate over 

space. This research evaluated distances between incidents based on the CALOES neighborhood 

structure used for spatial analysis, since the PLB activations represent contemporary and older 

incidents that could impact the results of future research should the two datasets be merged. Of 

the PLB activations representing actual SAR incidents, seven fell within 500 m of a CALOES-

recorded sat-comm device activation. A further 27 PLB activations lay within the same 

neighborhood as a CALOES sat-comm device activation, of which 10 occurred before January 

2018, 11 were in the same neighborhood as a sat-comm device activation cluster, and 16 were in 

the same neighborhood as a sat-comm device activation outlier. The average distance between a 

PLB activation and a CALOES sat-comm device activation is 3,735.88 m, and the median 

distance is 2,653.42 m. Two more PLB activations fell within 500 m of another means of 

notification incident from the CALOES dataset, and three PLB activations were within the same 

neighborhood as another means of notification incident. The average distance between a PLB 

activation and a CALOES other means of notification incident is 10,471.20 m, and the median 

distance is 6,465.72 m.  

These proximity measurements imply the PLB activations since 2015 occur largely in the 

same neighborhoods as other sat-comm device activations recorded in the CALOES dataset, 
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while they have a lesser degree of spatial overlap with incidents originating from other means of 

notification. If combined with the CALOES dataset, the PLB additions would likely increase the 

number of significant clusters of sat-comm device activations and increase the intensity of hot 

spots, while reducing the relative number of sat-comm device outliers. Additionally, because the 

AFRCC dataset includes data from three years prior to the CALOES dataset, comparing the 

datasets suggest sat-comm devices have potentially been used to initiate a SAR response in 

locations different than other methods of SAR notification for a longer period than the CALOES 

dataset can capture. 

4.3.1 Attribute Comparison 

The temporal and spatial attributes of the AFRCC and CALOES actual mountain SAR 

incidents were explored in order to provide context to SAR agencies and rescue teams. The 

temporal attributes examined were the month, the day of the week, and the time of day the SAR 

process started. For both datasets and all methods of SAR incident notification, the majority of 

SAR incidents occur from late spring through early autumn, starting in May and running through 

September. Figure 23 visualizes the results as data clocks. The data clock format reveals that the 

busiest month for SAR rescue teams varies by year, though is typically July or August. October 

through the end of January are historically the quietest months, with fewer than three actual 

mountain SAR incidents occurring per month during any year in either dataset. In the CALOES 

dataset, the proportion of incidents that occurred during the peak season and originated with a 

sat-comm device is 90.15%, while the proportion of peak-season incidents from other means of 

notification is 78.99%. Similar to the sat-comm device ratio in the CALOES dataset, the 

proportion of incidents that occur during the peak season from the AFRCC dataset stands at 

91.11%. The higher percentage for sat-comm devices during the summer vice winter months 
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could be attributed to a change in activity during the winter months, where the user might not 

expect to be either outside of cellular range or isolated from other people. Users also might not 

associate winter activities as risky and are instead caught off guard while conducting an activity 

they consider routine: a review of the available comments from CALOES incidents in the winter 

months suggest most SAR calls are the result of having a vehicle stuck in the snow or getting 

snowed in a building.  

   
Figure 23. Data clocks of the AFRCC (left) and CALOES (right) datasets, 2018-2022 

 
While the data clocks in Figure 23 provide a useful visual for capturing peak-season 

trends over time, an aggregation of mountain SAR incident solely by month and not broken up 

by year emphasizes the size of the demand during the summer season. Figure 24 presents the 

CALOES mountain SAR incidents by month and notification method as a bar graph. It must be 

noted in Figure 24 the ratios of peak months to off-season months do not include the second half 

of 2022 and therefore cannot capture the full seasonal impact of the 2022 case load. Even with 

those missing incidents, the spike in demand for SAR missions via the different notification 

methods is striking. 
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Figure 24. Incidents by month and method of notification, CALOES dataset 

 
Like the monthly data, there is not an even spread of actual mountain SAR incidents 

throughout the course of the week. Most SAR incidents occur during the long-weekend days – 

i.e., Friday through Monday – while fewer tend to occur Tuesday through Thursday. The 

AFRCC incidents by day of the week are depicted as a graph in Figure 25. While almost 70% of 

incidents occur during long weekends, Wednesdays historically have the second highest number 

of incidents, at 15.56%, after Sunday, at 31.11%. Since the total number of PLB activations in 

the AFRCC dataset is relatively low, a few incidents can bias the conclusions drawn from a bar 

graph and more data would be required to accurately interpret incident spread by day of the 

week.  

 
Figure 25. Incidents originating with a PLB activation per day of the week, AFRCC dataset 

 
The CALOES incidents by day of the week and method of notification are also depicted 

as a bar graph in Figure 26. The percentage of incidents that occur during a long weekend for 
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sat-comm device activations and other means of notification are 71.21% and 65.76% 

respectively. Saturdays and Sundays historically have the highest number of incidents that 

originate with another means of notification, while Sundays and Mondays have the highest 

number of incidents that begin with a sat-comm device activation. The relatively high percentage 

for all datasets and methods of notification favoring the long weekend days could likely be 

attributed to increased visitor traffic during those days. 

 
Figure 26. Incidents by day of the week and method of notification, CALOES dataset 

 
This research reviewed actual mountain SAR incidents for when the notification occurred 

to consider implications for rescue team proficiency in day or night operations. Historically, the 

majority of PLB activations supporting an actual mountain SAR event occurred during the day, 

at 75.56%. Only one incident occurred within an hour to sunset, and the rest – at 22.22% – 

occurred at night. In contrast, most of the incidents recorded in the CALOES dataset took place 

at night. The predominance of night-time missions in the CALOES dataset applies to both sat-

comm device activations and other means of notification, as can be seen from the bar graph in 

Figure 27. After including the mountain SAR incidents where the earliest recorded time of 

notification is within an hour of sunset, a total of 62.88% of rescues stemming from a sat-comm 

device activation and 71.60% of rescues originating from other means of notification likely 

required a rescue team to effect the rescue during hours of darkness. A minority of SAR 

incidents began during the hour prior to sunrise, possibly due to a lack of early morning 
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recreational activity, or perhaps because of the renewed hope that inevitably rises with the dawn 

mitigates the desire by a subject to request a SAR response. 

 
Figure 27. Incidents by time of day and method of notification, CALOES dataset 

 
This research next assessed actual mountain SAR incidents by their elevation. 

Proportionally, incidents originating with a sat-comm device activation occur at higher 

elevations than other means of notification. The elevations of the intentional PLB activations 

from the AFRCC dataset are presented in Figure 28. Incidents were binned by 500 m intervals 

for ease of visualization. Mountain SAR incidents which occur above 6,000 ft (just under 2,000 

m), can impact the ability of different helicopter models to perform a rescue, particularly in the 

summer months when 6,000 ft can “feel” like 10,000 ft to a helicopter’s engines (see Fisher 2021 

for a greater discussion on helicopter operations in California’s mountains south of the High 

Sierras). In the AFRCC dataset, 88.89% of PLB activations supporting an actual mountain SAR 

incident occur above 2,000 m. Over half occur above 3,000 m (just under 10,000 ft). These 

results suggest the demand for SAR services increases with elevation.  
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Figure 28. Incident elevations by PLB activation; AFRCC dataset 

 
The elevations of the actual SAR incidents from the CALOES dataset are presented in 

Figure 29. The results reflect similar findings by Heggie and Amundson (2009), who determined 

in their study of US national parks that about a quarter of all SAR incidents in national parks 

were in mountainous terrain between 1,524-4,572 m. The relatively high elevation of all 

mountain SAR incidents reflects the underlying mountainous terrain, although the substantial 

number of incidents that occur at extreme elevations suggest SAR incidents are less likely in 

low-lying areas like foothills and the bottoms of canyons. Of the sat-comm device incidents, 

89.39% occur above 2,000 m, while 91.05% of the incidents stemming from other means of 

notification occur above 2,000 m. After 2,000 m, however, incidents originating with other 

means of notification start to decrease, while sat-comm device usage starts to increase. This 

juxtaposition of increasing and decreasing notification methods over elevation could be due to 

the increased reliance by users on sat-comm devices to improve the perception of safety, even 

when experience levels do not match. This pattern could also be explained by experienced users 

carrying sat-comm devices (reference Boore and Bock 2013) and tackling challenges at higher 

elevation, at which point an accident occurs. Without more information on user behavior, rescue 
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teams can only conclude from this research that sat-comm devices are playing an increasing role 

at higher elevations but cannot explain why. 

 
Figure 29. Incident elevations by method of notification, CALOES dataset 

 

4.3.2 Accidental Activations 

The accidental activation of a sat-com device could deplete mountain SAR resources and 

contribute to asset fatigue if the activation requires a rescue team to respond. Should the sat-

comm device not have two-way messaging capabilities, or if the device’s owner fails to catch the 

accidental activation and not actively monitor their device, then rescue teams will treat the 

activation as an actual incident until proven otherwise. There were a total of eight accidental 

activations of a PLB between January 2015 through July 2022 recorded in the AFRCC dataset 

for the study area. Five of these accidental activations occurred during the same time period as 

the CALOES dataset. The CALOES dataset contained a total of 27 accidental activations of a 

sat-comm device between January 2018 through July of 2022 in the study area. A comparison of 

the two datasets suggests only one accidental activation from each dataset could reference the 

same incident; however, as seen during the comparison of intentional activations described 
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above, neither the earliest recorded time of notification nor geographic location were the same, 

leaving the dubious possibility that two separate incidents occurred within 400 m, one foot of 

elevation, and 14 hours of each other.  

 The temporal attributes of the accidental activations suggest the accidental activation of a 

sat-comm device could occur during any day of the week under day or night lighting conditions, 

and they occur most often during the summer months. Just under 90% of the accidental 

activations recorded in the CALOES dataset and 50% of those in the AFRCC dataset occurred 

during June through August, while 37.5% of the accidental activations in the AFRCC dataset 

occurred in the autumn months. Unlike actual mountain SAR incidents, which see fewer mid-

week incidents, the CALOES dataset suggests accidental activations of sat-comm devices do not 

favor long weekends. Figure 30 presents a bar graph of incidents by day of the week. The results 

suggest a lower number of accidental activations historically occur on Saturday and Sunday. This 

is surprising, since outdoor recreation is typically higher during the weekends, and the increased 

number of visitors to wilderness areas during those dates would presumably increase the 

probability of an accidental activation. In contrast, all but one of the accidental PLB activations 

recorded in the AFRCC dataset occurred Friday through Sunday at two to three per day, with one 

incident occurring on a Tuesday. In the CALOES dataset, 59.26% of the accidental activations 

placed the earliest time of notification either within an hour of sunset or after sunset, while 

62.5% of the accidental activations in the AFRCC dataset began during the day. These results 

suggest the accidental activation of sat-comm devices may place a burden on SAR resources, as 

the occur during the busy summer season, on all days of the week, day or night. 
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Figure 30. Accidental activations of a sat-comm device by day of the week, CALOES dataset 

 
Like actual mountain SAR incidents originating from a sat-comm device, accidental sat-

comm device activations occur in relatively inaccessible locations for rescue teams. Regarding 

elevation, all of the accidental PLB activations were above 2,000 m, while 85.18% of the 

accidental sat-comm device activations in the CALOES dataset occurred about 2,000 m. Using 

the distance between an incident and the area of analysis boundary as an accessibility metric, 

accidental activations and actual mountain SAR incidents can be compared to explore the 

challenges they may pose to rescue teams due a lack of infrastructure and challenging 

topography within wilderness areas. The results of the minimum, mean, and maximum distances 

of incidents to the study area boundary are presented in Table 5. On average, the accidental 

activations of sat-comm devices occur as far from the built environment as intentional distress 

calls. This result likely corresponds to the higher proportion of outliers found during the spatial 

statistical analysis of sat-comm device activations, indicating sat-comm device owners are 

venturing into remote areas removed from traditional SAR hot spot locations where they then 

intentionally call for rescue or accidentally activate their sat-comm device. SAR agencies should 

therefore expect to budget for the extra costs associated with accidental sat-comm device 

activations that may require extensive time or expense to verify a false alarm. 
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Table 5. Distances of sat-comm device activations from the area of analysis boundary 

Distance 
(meters) 

Sat-Comm Activations 

Accidental  
(AFRCC) 

Intentional 
(AFRCC) 

Accidental 
(CALOES) 

Intentional 
(CALOES) 

Minimum 39.45 1,712.65 3,542.76 252.14 

Mean 13,873.53 15,179.06 11,835.38 11,177.72 

Maximum 26,810.77 30,135.48 27,627.11 33,114.79 
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Chapter 5 Discussion and Conclusions 

This research conducted an exploratory spatial and temporal analysis of historical mountain 

search and rescue (SAR) incidents in order to examine how satellite communication (sat-comm) 

devices might impact traditional mountain SAR patterns. This study’s methodology leveraged 

the capabilities of a geographic information system (GIS) to identify statistically significant 

spatial patterns over time. While aspatial statistical programs support most of the research on 

mountain SAR incidents to date (Boore and Bock 2013; Heggie and Amundson 2009; 

Kaufmann, Moser, and Lederer 2006), the tools available in a GIS can describe the distribution 

of incidents through simple visualizations as well as more complex statistical metrics, the 

products of which can help SAR organizations understand the operating environment and 

demands for their rescue teams. The methodology presented in this research could be tailored by 

overland SAR organizations to maintain an informed approach to their SAR resource and 

training plans. However, the output of this methodology is limited by the quality and quantity of 

historical incident records, and the results are only as good as the input used to generate them.  

 This chapter reviews the study’s results, considers the limitations associated with the 

datasets and research methodology, and addresses possible research avenues that future works on 

mountain SAR spatial analysis could incorporate. Additionally, a section of this chapter proposes 

best practices for collecting and maintaining data by SAR agencies at large, as this research 

identified several deficiencies in the quality of mountain SAR datasets that could have lasting 

impacts on the SAR community’s ability to analyze historical incidents and prepare for future 

SAR cases. The chapter concludes with a reflection on how this study advances the field of 

mountain SAR.   
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5.1 Project Findings 

This study found sat-comm devices impact the spatial distribution of mountain SAR 

incidents in recent years, although sat-comm device activations exhibit similar temporal patterns 

to incidents originating with a traditional method of communication. An exploration of 

statistically significant hot spot, cluster, and outlier locations suggests sat-comm device 

activations exhibit a broader spatial distribution than SAR incidents stemming from other means 

of notification. Spatiotemporal analysis results emphasize the recent impact of sat-comm devices 

on the mountain SAR incident spatial patterns. An analysis of incident attributes reveals similar 

temporal patterns between sat-comm devices and other means of notification by week and 

month, although there is a clear increase in the number of mountain SAR incidents beginning 

with a sat-comm device over time. The attributes of accidental sat-comm device activations do 

not share these temporal trends, although they do suggest spatial similarity to intentional sat-

comm device activations. Despite the benefits of improved positional accuracy that sat-comm 

devices provide to rescue teams, the introduction of portable sat-comm devices to outdoor 

recreation ultimately increase the burden placed on rescue teams by presenting a wider spatial 

distribution and the possibility of accidental activations unique to modern sat-comm devices.  

5.1.1 Spatial Analysis Results 

The results from both the Hot Spot Analysis tool, based on the Getis-Ord Gi* statistic, 

and the Cluster and Outlier Analysis tool, based on the Anselin Local Moran’s I statistic, reveal 

sat-comm device activations contribute to higher incident frequencies in the same neighborhoods 

as other means of notification, as well as in new, more isolated locations spread out across the 

Sierra Nevada wilderness areas. Just over an eighth of mountain SAR incident hot spots 

attributed to sat-comm devices overlap with hot spots from other means of notification. Since 
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most hot spots do not overlap, these results suggest different types of recreational behavior by 

sat-comm device owners. The lack of overlap might also be because there are no other viable 

ways to communicate in these locations other than with a sat-comm device; instead, overdue or 

missing person procedures would take effect and the mission focus would be a search. SAR 

missions classified as a search had been removed during the data preparation stage due to lack of 

precise coordinate information, and search areas were not explored in this study to explore 

whether the spatial relationship between sat-comm device activations and historical search areas 

over time.  

The Hot Spot Analysis tool’s results offer a visual product that facilitates rapid 

identification of neighborhoods of concern across the study area. Hot spot maps clearly 

communicate statistically significant neighborhoods of high mountain SAR incident frequency, 

which could be useful for determining resource allocation and the regional distribution of assets. 

Hot spots can also provide a means for future researchers to explore cross-jurisdictional 

relationships. For example, just under a sixth of the hexagons that contribute to a hot spot 

neighborhood are within 500 m of a county line in this study, a finding which highlights the 

importance of maintaining cross-jurisdictional datasets and communicating rescue team 

availability and capabilities. The Getis-Ord Gi* statistic, however, does not account for spatial 

outliers, which can present an increased burden to rescue teams due to their inaccessibility and 

the possible lack of familiarity by rescuers with outlier site hazards.  

The Cluster and Outlier Analysis results highlighted the impact of spatial outliers on the 

sat-comm device activation distribution. A location marked as an outlier has an incident 

frequency above the global average but is surrounded by locations with low (i.e., no) incident 

counts. About 70% of locations with sat-comm device activations are considered outliers based 
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on the Anselin Local Moran’s I statistic, while just over 80% of locations with incidents from 

other means of notification belong to a cluster. These results indicate traditional methods of 

notification are more likely to be used repeatedly in a mountain SAR incident neighborhood, 

while sat-comm devices initiate the SAR process in new, remote locations, which could develop 

into clusters over time. Furthermore, these spatial patterns could suggest sat-comm devices are 

supplanting traditional methods of notification in addition to serving as the primary notification 

method in isolated areas.  

5.1.2 Spatiotemporal Analysis Results 

The Emerging Hot Spot Analysis tool based on the Getis-Ord Gi* local spatial statistic 

and Mann-Kendall trend test applied to an STC offer a novel approach for examining mountain 

SAR incidents. The tool’s results suggest sat-comm device activations are essential to revealing 

locations that are exhibiting an intensification of mountain SAR incidents over time. 

Furthermore, sat-comm device activations demonstrate emerging hot spot patterns in more recent 

years, marked by the relatively higher proportions of new and consecutive trend types. As more 

mountain SAR incident records become available over time, SAR organizations should conduct 

further spatiotemporal analysis to observe whether sat-comm device incident outliers remain as 

outliers or develop into more emerging hot spots.  

5.1.3 Attribute Analysis Results 

The results of an exploration of mountain SAR incident attributes using descriptive 

statistics indicate little variation between the methods of notification other than elevation. The 

number of sat-comm device activations in both the AFRCC and CALOES datasets increased 

with an increase in elevation, while the number of incidents originating with other means of 

notification decreased above 2,000 m. Otherwise, while an increasing number of mountain SAR 
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incidents rely on sat-comm devices to call for help through 2022, the weekly and monthly 

distribution of incidents does not show substantial variation between sat-comm device 

activations and other means of communication. Most mountain SAR incidents occur Friday 

through Monday during the summer months. PLB activations do not appear to favor long 

weekends, but the historical records from the AFRCC dataset contain relatively few incidents, 

making it difficult to capture temporal variation. Based on these findings, rescue teams should 

train for high-elevation rescues and anticipate increased demand Friday through Monday during 

the summer months. 

5.1.4 Accidental Sat-Comm Device Activations 

The results from visual analysis and descriptive statistics of accidental sat-comm device 

activations suggest they present a challenge for rescue teams. Accidental activations largely 

occur during the summer months, but they appear to occur at random throughout the week during 

day and night conditions. Like intentional sat-comm device activations, accidental activations 

mainly occur at high elevations above 2,000 m, and they occur at roughly equivalent distances 

from the study area boundary. SAR organizations should expect to budget for accidental 

activations that will likely occur at random in challenging, isolated locations. 

5.2 Limitations 

The most critical limitation in this research is data quality. The AFRCC and CALOES 

datasets suffer from omissions, redundancies, and mislabeling. The results can therefore only be 

considered representative of possible spatial and temporal patterns and cannot be treated as 

exact. The AFRCC does not store PLB activation reports in a database that can target attributes 

within the reports. This made dataset creation a laborious process of combing through seven 

years of national-scale records for location information to determine whether or not a record fell 
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within the study area. Consequently, there is a chance records were missed and not included in 

the final product used for evaluation. It was also interesting to discover only a fifth of the 

AFRCC PLB activations possibly matched an incident in the CALOES data; ideally, 100% 

would match, since tasking flows from a national-level agency like AFRCC to the state and 

sheriff jurisdictions, and records would be kept at each agency executing the tasking. Of those 

sat-comm device activations that were a possible match, there appeared to be a mismatch in 

recorded incident start time, as the CALOES local time closely resembled the AFRCC Zulu time, 

which constitutes a seven- to eight-hour difference depending on daylight savings. Such 

discrepancies indicate a possible breakdown in communication as one agency hands off SAR 

responsibility to another. While not an issue encountered in this research, Durkee and Glynn-

Linaris (2012) similarly emphasized the importance of relaying the basis of coordinate data when 

passing location information between agencies, as a mismatch of coordinate types could 

significantly alter the presumed location of a SAR incident. 

In addition to missing these PLB activations, the CALOES dataset included multiple 

redundant entries as well as attribute inaccuracies. Redundant records are likely due to SAR 

cases handled by multiple rescue agencies when mutual aid is requested, which get combined 

into the single CALOES data repository when counties input their individual data. While the data 

preparation phase of this research involved extensive evaluation and cleaning in order to 

appropriately categorize incidents and remove duplicates, incidents that did not share identical 

times or coordinates would be overlooked for removal. Incidents that appeared near each other in 

time and space and shared similar attributes were potentially the same incident, but they had to 

be treated as isolated incidents due to insufficient attribute information for verification due to a 

lack of standardization when entering comments. Furthermore, during preparation of the 
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CALOES dataset, several recorded incidents were mislabeled as originating from a PLB 

activation when the comments stated a SEND had been employed. Additionally, several 

incidents had inaccurate coordinates – for example, the comments mentioned the response was to 

a hiking trail but the coordinates were in a lake – drawing into question all incidents which did 

not include comments that could be used to corroborate attribute descriptions. The data quality in 

both datasets would benefit from increased standardization at the organizational level and adding 

a quality control component for dataset evaluation and refinement. 

Several limitations also exist with the research design and spatial analysis methods. In 

order to measure mountain SAR incident patterns over space, incidents required aggregation into 

areal units such that the areal units could have an attribute of incident frequency for use as a 

metric. Incident aggregation, however, generates several problems. The techniques an analyst 

employs to group spatially heterogenous data like SAR incidents into a grid can yield differing 

analytical results depending on the grid’s parameters, otherwise known as the modifiable areal 

unit problem. For example, a large hexagon might contain more incidents than a small hexagon 

in the same location, which in turn might result in different locations being considered as 

contributing to a hot spot or being defined as an outlier.  

Another problem associated with aggregation is computational processing demands. 

Aggregated data, particularly across a region as large as the Sierra Nevada wilderness areas, 

drive substantial processing requirements during spatial and temporal statistical analysis. One 

technique to mitigate this is to decrease the resolution of the areal unit (i.e., make the areal unit 

have a larger surface area), although resolution needs to be balanced with an accurate 

representation of the spatial data in a digital space. The 500 m hexagon grid effectively captured 

local topographic variation, preserved incident scene specificity, and supported reasonable 
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processing times. However, even the 500 m hexagon at this study’s scale of analysis exceeded 

the computational processing capabilities of the ArcGIS Pro 2.9 Local Cluster and Outlier 

Analysis tool, which would have lent a temporal consideration when identifying spatial clusters 

and outliers using the Anselin Local Moran’s I statistic and would have complemented the 

results of the Emerging Hot Spot Analysis tool that uses the Getis-Ord Gi* and Mann-Kendall 

trend test combination.  

Lastly, researcher bias could pose limitations on the research design and interpretation of 

results. The author of this study is an expert in helicopter SAR and military SAR operations, a 

perspective which creates a bias towards distances that are compatible with an airborne 

perspective. For example, the 500 m hexagon represents a single site of SAR incidents. This size 

of hexagon makes sense for a medium-sized helicopter crew that requires space for landing and 

has multiple crew members or SAR ground team passengers who could take turns carrying 

injured subjects to the helicopter. However, for a SAR hiking party or technical rescue team, an 

incident half a click away from another one might not seem like they are in comparable 

locations. Parameter selection is often subjective in the spatial sciences and guided by expert 

opinion, but these decisions must be acknowledged and tailored to answer the research questions 

at hand. 

5.3 Recommendations 

This study recommends future actions for two groups: spatial analysts and SAR agencies. 

While this research presents methods to explore the impact of sat-comm device activations on 

mountain SAR incidents, future research should continue to explore ways to advance the spatial 

analysis methodology of mountain SAR incidents, as well as consider the role of SAR asset 

accessibility and subject behavior. The onus is on SAR agencies to develop and retain quality 
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incident records to support meaningful research, and this study recommends SAR agencies focus 

resources to standardize, collect, and share mountain SAR incident records.  

5.3.1 Recommendations for Future Research 

While this study demonstrates techniques to determine locations worth the attention of 

SAR agencies and rescue teams, future studies could expand upon the accessibility of incident 

locations or hot spots. Accessibility analysis would require a deeper knowledge of the number 

and types of available rescue assets – be they different models of helicopters, off-road vehicles, 

or foot traffic – and points of entry and exit for those assets. For example, helicopters would 

require considerations for medical handover sites and refuel locations, as well as identifying 

potential landing sites or hover-only locations in wilderness areas based on ground cover, slope, 

and elevation. SAR ground vehicles, hiking teams, and climbing teams would benefit from 

mapped roads and trail networks. Accessibility analysis would allow a comparison of 

jurisdictions based on numbers of SAR incidents and available SAR assets in order to inform an 

appropriate distribution of resources and take note of any gaps in coverage. 

Another way to support SAR policy in addition to the spatial analysis of mountain SAR 

incidents would be to determine the causal factors of the observed spatial patterns through 

correlation analysis or regression techniques. Indices representing weather conditions, 

topographic complexity, and demographics could all be used to determine what might cause 

certain types of SAR incidents, and whether sat-comm devices are involved in those types of 

SAR incidents. Such analysis would, however, require a breakdown of SAR incidents by activity 

(e.g., hiking, technical, swimming, etc.), by severity of outcome (i.e., self-recovered through 

death), or another category against which potential causal factors could be assessed. Attribute 

gaps and inconsistencies in the CALOES dataset hindered such analysis herein, but correlation 
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analysis could enhance future research if the intent is to support mitigation measures so as to 

reduce SAR team operating costs. Results are more meaningful if it can be determined not only 

whether the number of incidents are increasing or decreasing in specific areas, but what types of 

activities the subjects are engaged in that are driving those patterns since they might require 

different specialty teams (e.g., technical rope training or OHV equipment). Similarly, a severity 

scale would indicate whether the types of incidents that are occurring require a greater or 

reduced rescue team footprint and medical support, which implications for operating costs. 

Future behavioral studies of sat-comm device owners would benefit from having 

additional information on demographics, as well as perhaps a comparison against comparable 

technologies like cellular devices. Behaviors and demographics that correlate with sat-comm 

device activations could provide insights to rescue teams responding to mountain SAR incidents 

as well as other types of emergency situations, from car accidents to wildfires to flooding. While 

private companies that create and support SEND products are not willing to share consumer 

information, SAR agencies could consider including demographic and subject behavioral data in 

their rescue reports. Non-satellite capable cell phones were once a new communications 

technology altering the SAR notification landscape, and making note of whether a SAR case 

began via cellular network could make an interesting comparison to the newer sat-comm 

capability. Future researchers could also incorporate cellular network coverage areas into their 

GIS analysis. Such layers are already available for comparison to SAR incident sites on 

SARTopo, an online mapping tool that facilitates merging custom layers with environmental and 

topographic layers (CalTopo 2021). Understanding user behavior would be beneficial should 

rescue centers become overwhelmed with cases as satellite connectivity grows, driving SAR 

agencies to evaluate mitigation measures to control operating costs. 
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Lastly, as SAR agencies collect more SAR incident data over time, future research should 

revisit the methods presented in this study once there are enough inputs for statistically 

significant trend analysis. Due to the main dataset used in this analysis only spanning four and a 

half years, and the supporting dataset only seven years, there were not enough years of data to 

compare layers in using the Mann-Kendall trend statistic, which requires a minimum of ten years 

to run in ArcGIS Pro 2.9. Since mountain SAR data, like wildfire data, is highly seasonal, 

incidents would need to be grouped by year for trend tests unless seasonal variation can be 

accounted for. Trend analysis is a useful measure for SAR agencies aiming to anticipate the 

trajectory of SAR cases and their attributes, and being able to present trend data could help SAR 

agencies make decisions about resource allocation at the county and state level. 

5.3.2 Recommendations for SAR Agencies 

SAR agencies have a responsibility to improve their operations and mitigate the hazards 

faced by rescue teams tasked to respond to a case. This responsibility requires an adequate 

understanding of available technologies and the willingness to set the standard for SAR 

documentation and record keeping. SAR agencies at all levels of responsibility should maintain 

secure digital records in a format that can be integrated with geographic and statistical software. 

Rescue teams or emergency response coordinators (e.g., watch-floor personnel and duty officers) 

should be provided with clear, standardized guidance on what information to collect during, and 

keep after, a SAR case that can maximize post-mission analysis. SAR agencies responsible for 

maintaining SAR incident records should incorporate a quality control component, be it a 

technical specialist or software service, that can corroborate incident report entries, catch 

redundancies, and follow-up with subdivisions for the timely incorporation of records. In this 
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way, mountain SAR agencies can build a foundation for adapting and improving the SAR 

process. 

5.4 Conclusion 

This study gives an overview of the implications of sat-comm device usage on mountain 

SAR operations and provides methodology that SAR agencies may adopt to advance their 

policies and improve SAR safety margins. Ultimately mountain SAR incidents depend on the 

number of personnel partaking in outdoor recreation: without visitors, SAR in wilderness areas 

would be a moot point. However, the Sierra Nevadas continue to draw high numbers of visitors 

who all hold the potential to require assistance. With the advent of emergency satellite 

communications capabilities on cellular phones, there is an increased likelihood people will use 

satellites to call for help from any location able to connect to the satellite infrastructure. 

Understanding how sat-comm technology is currently affecting SAR operations is therefore 

necessary for anticipating future operations and demands on SAR resources. Not every SAR case 

can be a guaranteed success. However, research like this that increases the odds to save even one 

life makes the time and energy spent on preparation and analysis worthwhile. 

In an effort to improve the accessibility of this research, its results, and its 

recommendations, a StoryMap version of this thesis may be found at: 

https://storymaps.arcgis.com/stories/7889bc805a1a4eeb87e34e5edcd7cab7. 
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