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ABSTRACT 

Archaeological investigations are an integral part of the permitting process for land development 

in Hawai‘i.  The State recognizes that conservation of its historic and cultural heritage is 

important and that its cultural resources are nonrenewable.  A recent archaeological survey for 

prehistoric and historic agricultural features in the Hōkūli‘a luxury development on Hawai‘i 

Island afforded an opportunity to test maximum entropy theory as a method for predicting the 

presence of archaeological features.  The Maxent computer program uses a machine learning 

algorithm that utilizes presence point data and environmental variable rasters to produce a 

probability distribution of the species of interest.  The "species" of interest for this research were 

agricultural clearing features, associated with sweetpotato (Ipomea batatas) cultivation, 

identified in a portion of Hōkūli‘a which lies within the Kona Field System.  Previous 

agricultural habitat suitability models for Hawai‘i were used to determine the environmental 

variables used in this research; the variables included annual rainfall, summer rainfall, elevation, 

and slope.  Maxent produced a probability distribution that matched the expectations of the 

conceptual model.  The model was validated using diagnostic tools included in the Maxent 

program (1) area under the receiver operator characteristic curve analysis, (2) jack-knife testing, 

and (3) environmental variable response curve analysis, as well as three research hypotheses.  

The model does not account for human behavior and may overestimate feature presence in 

uncultivated, spiritually important areas that are suitable for farming.  The results of this research 

show that Maxent can be used to successfully model certain types archaeological features. 
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CHAPTER 1: INTRODUCTION 

Archaeological inventory surveys are the primary method used to identify historic and 

prehistoric resources throughout the State of Hawai‘i on lands that are slated for development.  

This research focuses on an archaeological investigation conducted within Hōkūli‘a, a luxury 

subdivision that spans 10 ahupua‘a (traditional land divisions) located along the western shore of 

Hawai‘i Island in the North Kona and South Kona Districts within an area known as the Kona 

Field System, an area of  intense prehistoric agricultural production (Allen 2001a; Allen 2004).  

Archaeological investigations have been conducted within Hōkūli‘a beginning in 1930 and 

resuming in 1988 through the present (Tomonari-Tuggle and Tuggle 2008).  An archaeological 

survey of prehistoric agricultural features undertaken in 2014-15, requested by the Hawai‘i State 

Historic Preservation Division (SHPD) of the Department of Land and Natural Resources 

(DLNR), in the Hōkūli‘a subdivision, provided an opportunity to test the use of the maximum 

entropy model as a means for creating a probability distribution of archaeological features in 

areas where it is not possible to conduct a comprehensive survey.   

The area of interest (AOI) is an approximate 312-acre portion of the Hōkūli‘a 

Subdivision.  Figure 1 shows the AOI and its location within the larger extent of the Kona Field 

System.  The archaeological survey crew was unable to record agricultural features in portions of 

the AOI covered by dense, impenetrable vegetation and areas altered by heavy machinery.  

Stands of dense guinea grass (Megathyrsus maximus) are located throughout the property 

obscuring the ground surface and impeding pedestrian survey.  Much of the area has also been 

mechanically altered by heavy equipment and prehistoric agricultural features have been 

removed from the landscape.  The objective of this research is to use Maxent to model a 

probability distribution of agricultural clearing features.  
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1.1 Motivation 

The need to provide statistical support for conclusions derived from the data collected 

during the ongoing fieldwork motivated this research.  Maxent has been used successfully in 

species distribution modeling (Merow, Smith, and Silander 2013) and is able to create reliable 

models with a limited number of presence-only samples (Phillips, Anderson, and Schapire 2005; 

Elith et al. 2011; Merow, Smith, and Silander 2013).  The Maxent modeling program was used to 

produce a probability distribution of prehistoric agricultural features in mechanically disturbed 

and densely vegetated areas within the AOI based on the observed presence data and 

environmental variables.  Habitat suitability modeling and maximum entropy theory were used 

to model the probability distribution of the agricultural features. 

Habitat suitability modeling considers the relationship between environmental variables 

and the probability that a given species will occur (Hirzel and Le Lay 2008).  Maximum entropy 

uses only observed occurrences of a species to create a probability distribution (Roxburgh and 

Mokany 2010).  The Maxent program developed by Phillips, Dudík, and Schapire (2004) creates 

a probability distribution using presence-only data and environmental variables.  The “species” 

of interest for this study were the agricultural clearing features, rock mounds and modified 

outcrops, most commonly found within the kula and kaluulu zones of the Kona Field System. 

Figure 2 shows examples of the clearing features typically found within the AOI. 

The Kona Field System is characterized by four distinct planting zones defined by 

elevation (Newman 1971; Kelly 1983): kula (coast— 500 ft), kaluulu (500—1,000 ft), ‘āpa‘a 

(1,000—2,500 ft), and ‘ama‘u (2,000—3,000 ft).  The habitat for the agricultural features was 

defined by the environmental variables discussed in previous archaeological reports and 

historical accounts: elevation, slope, and rainfall (Newman 1971; Kelly 1983; Allen 2001b).   
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Figure 1. Research Area of Interest. An estimated extent of the Kona Field System is shown in 
brown in the inset map. 

 

Figure 2. Examples of clearing features typically found in the kula and kaluulu zones of the 
Kona Field System.  A modified outcrop is shown on the left, a rock mound on the right. 
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The general conceptual model for this research is that the density of the rock mounds and 

modified outcrops will be relatively sparse along the coastal area and feature density will 

increase with the rise in elevation up to the ‘āpa‘a zone where the Kona Field System is a more 

formal collection of walled fields (Allen 2001b). 

The validity of this model was determined through statistical tests that are included as 

part of the Maxent program and ground truthing.  These tests include binomial tests of omission 

and the area under the receiver operator curve value (AUC) analysis, which were used to 

determine the goodness of fit for the Maxent outputs.  Jack-knife testing, which assesses the 

contribution of each environmental variable to the model, and response curves, which show how 

the model responds to the environmental variables, are also available within Maxent.  These tests 

and three research hypotheses were used to evaluate the model produced by Maxent. 

1.2 Research Hypotheses 

Three research hypotheses were developed to evaluate the Maxent output model.  The 

first hypothesis states that clearing feature (rock mounds and modified outcrops) density 

increases as one ascends from the shoreline to the upper elevations of the kula zone and the 

lower elevation of the kaluulu zone.  Clearing feature density should decrease starting in the mid-

elevations of the kaluulu zone. 

This hypothesis is based on the results of an archaeological inventory survey (AIS) 

conducted approximately three kilometers to the north of the current AOI by Haun and Henry 

(2010).  Their findings indicated that the feature density was greatest between the elevations of 

360 ft and 680 ft which corresponds to the upper elevations of the kula zone and the lower 

elevations of the kaluulu zone.  Clearing feature density began to decrease at elevations higher 
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than 680 ft and dropped even more at the upper elevations of the kaluulu zone as agricultural 

features and methods become more formalized in the āpa‘a zone. 

The second hypothesis states that as precipitation levels approach acceptable levels for 

dryland taro farming, there is a decrease in the density of informal clearing features that are used 

in sweetpotato1 cultivation. 

Sweetpotato requires much less water than taro (Colocasia esculenta) which is why the 

sweetpotato was cultivated so intensely in the dry lowlands of the Kona Field System (Handy, 

Handy, and Pukui 1991).  There should be a decrease in the informal agricultural features as 

precipitation increases to levels where formal, rain-fed, dryland agriculture is sustainable.  

Ladefoged et al. (2009) stated that the annual precipitation required for optimal sweetpotato 

cultivation was 750—1000 mm. 

The third hypothesis states that agricultural practices were limited to slopes less than 35 

percent; most agriculture took place on slopes less than 20 percent. 

Newman (1971) conducted an analysis of the environmental characteristics of the 

agricultural areas on Hawai‘i Island that were observed by Reverend William Ellis during his 

tour of the island in 1823.  Newman created a number of generalizations of the environmental 

variables which included annual mean rainfall, elevation, slope, drainage, soil parent material, 

and soil type.  Newman generalized that the agricultural zones for Hawai‘i Island incorporated 

areas that had a slope less than 35 percent with the majority having a slope less than 20 percent. 

The following chapters describe the work and findings of this research.  Chapter 2 

provides background on habitat suitability modeling, the Maxent modeling program, and 

ecological models used in an archaeological context.  Chapter 3 discusses the preparation of the 

presence data and environmental variable rasters, and the parameters used in Maxent.  Chapter 4 
                                                 
1 Valenzuela, Fukuda and Arakaki (2000) explicitly state, "Sweetpotato is, in fact, one word..." 
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discusses the model, its response to the environmental variables, and the methods used to 

evaluate the model.  Chapter 5 discusses the conclusions drawn from the results, improvements 

that could be made to the model, and future uses of Maxent in the Kona Field System.  
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

Ecological models have been applied to Hawai‘i in efforts to identify areas suitable for 

agricultural production.  This chapter discusses the Kona Field System, habitat suitability 

modeling, the Maxent program, and the implications of using environmental variables to model 

archaeological resources which are the result of human behavior which is not determined by 

environmental variables. 

2.1 The Kona Field System 

The Kona Field System is a rain-fed agricultural system located in the Kona District on 

the leeward, west, side of Hawai‘i Island (Allen 2001a; Allen 2004; Cordy 2000; Kelly 1983; 

Lincoln and Ladefoged 2014).  The Kona Field System was described by early visitors to 

Hawai‘i Island (Ellis 1917; Ledyard 1963; Menzies 1920) and Māhele land claim testimonies 

(Kelly 1983; Lincoln and Ladefoged 2014; Cordy 2000).  The main crops cultivated within the 

Kona Field System included wauke (paper mulberry [Broussonetia papyrifera]), ‘uala 

(sweetpotato [Ipomea batatas]), ‘ulu (breadfruit [Autocarpus altilis]), kalo (taro [Colocasia 

esculenta]), kō (sugar cane [Saccharum officinarum]), kī (ti [Cordyline terminalis]), mai‘a 

(banana [Musa spp.]), and ‘ama‘u (endemic tree ferns [Sadleria spp.]) (Allen 2001a; Kelly 1983; 

Lincoln and Ladefoged 2014; Cordy 2000). 

The Kona Field System was divided into four different zones which were determined by 

elevation and rainfall (Handy, Handy, and Pukui 1991; Kelly 1983).  Kelly defines these zones 

as kula (0—500 ft), kaluulu (500—1,000 ft), ‘āpa‘a (1,000—2,500 ft), and ‘ama‘u (2,000—

3,000 ft).  Figure 3 shows that the AOI for this research lies within the lower three elevation 

zones with the majority of the area in the kula and kaluulu zones.  ‘Uala (sweetpotato) was the 
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main crop of the kula zone, ‘ulu (breadfruit) was the main crop within the kaluulu zone 

(Newman 1971; Kelly 1983; Lincoln and Ladefoged 2014).   

 

Figure 3.  Research AOI shown within the elevation zones of the Kona Field System 

2.2 Habitat Suitability Modeling 

Habitat suitability modeling considers the relationship between environmental variables 

and the probability that a given species will occur (Hirzel and Le Lay 2008).  Habitat suitability 

modeling provides a method of predicting the species occurrence where there is little 

observational data available on the species of interest (Pearson et al. 2007).  Pearson et al. (2007) 

do caution that modeling species occurrence with limited presence data identifies regions that 

have characteristics similar to those where the species occur and not the limits of that species' 

habitat range. 

Phillips, Dudík, and Schapire (2004) propose the use of maximum entropy to model 

species geographic distributions.  The maximum entropy method for modeling species 

distribution involves using a collection of known species localities as sample data along with 

relevant environmental factors to model the distribution of that species within a known 
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geographic extent (Phillips, Dudík, and Schapire 2004).  Phillips, Anderson, and Schapire (2005) 

describe the use and testing of the Maxent program, a widely used maximum entropy modeling 

toolbox, to model species geographic distributions using habitat suitability, and presence-only 

data.  They assess their resulting models' validity using binomial tests of omission and receiver 

operator characteristics (ROC) analysis.  Elith, et al. (2011) describes how to use the Maxent 

modeling program and makes suggestions for which parameters should be used. 

Anderson, Lew, and Peterson (2003) deal with evaluating the validity of predictive 

models of species' distributions.  While they use the Genetic Algorithm for Rule-Set Prediction 

(GARP), their article is pertinent because their study applies to stochastic models that use 

presence-only data.  They propose a method for determining an optimal 

underestimation/overestimation of presence (omission/commission) relationship to select models 

that reasonably predict the distribution of a species. 

Haegeman and Loreau (2008) caution against the blind use of maximum entropy theory 

in ecology.  They show that the restrictive constraints may dictate the outputs of maximum 

entropy modeling and cause the models to over-fit the probability distributions to the presence-

only data.  In order for maximum entropy to be effective in ecological modeling, the 

environmental variables must be understood and carefully chosen (Haegeman and Loreau 2008). 

2.3 Ecological Models and Archaeology 

The Kona Field System has previously been spatially modeled as either general models 

of agriculture in Hawai‘i (Ladefoged et al. 2009) or concentrated on the extent of the kaluulu 

zone (Lincoln and Ladefoged 2014).  Ladefoged et al (2009) created a model of the two main 

different types of agricultural systems throughout the state of Hawai‘i: irrigated pondfields and 

rain-fed dryland systems.  They used three variables important in sweetpotato cultivation, 
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rainfall, elevation, and soil fertility, to model the rain-fed dryland agriculture systems.  This 

model of rain-fed dryland agricultural systems successfully predicted the leeward Kohala field 

system on Hawai‘i Island and the Kalaupapa field system on Moloka‘i.  It also under-predicted 

the presence of the Kona Field System.  Discrepancies between the model and observed 

agricultural development were explained by the presence of variables that were difficult to 

quantify and could not be accounted for in an ecological model (Ladefoged et al. 2009). 

Lincoln and Ladefoged (2014) modeled the extent and potential yield of the kaluulu zone 

using historic descriptions and archaeological survey.  Rainfall and elevation rasters were used to 

determine the environmental boundaries of the kaluulu zone in their model.  Lincoln and 

Ladefoged’s model increased the previously estimated extent and size of the kaluulu zone.   

Such previous studies on Hawai‘i Island have modeled the extent and yield of the Kona 

Field System, but they have not looked at the potential distribution of features within the field 

system.  They have utilized habitat suitability modeling, but not maximum entropy.  Two more 

examples of ecological models in archaeology that have used presence-only data with 

environmental variables are described below.  The first was a project in Southern Italy modeling 

probability distributions of Bronze Age sites and the second was a project using Maxent in 

Cyprus to predict the presence of ancient and modern terraces.  

Arnese (2008) used ecological niche factor analysis (ENFA) to create a probability 

distribution of Bronze Age sites in Kaulonia located in Calabria, Southern Italy.  ENFA utilizes 

presence data and "eco-geographical" variables to model animal distributions (Arnese 2008).  

The eco-geographical variables used in Arnese's model were elevation, distance from the sea, 

slope, aspect, and distance from rivers.  The ENFA model ranked elevation as the most important 

variable followed by distance from the sea.  Arnese was able to ground truth the model with 



 
 

11 
 

success.  Areas with a high Habitat Suitability value contained Bronze Age sites and areas with a 

low Habitat Suitability value did not contain any Bronze Age Sites. 

Galletti et al. (2013) used Maxent successfully to model predictive distributions for 

ancient and modern terraces in the Troodos foothills on the island of Cyprus.  They used 10 

environmental variables in their terrace probability distribution modeling.  These variables 

included, elevation, spring vegetation, fall vegetation, distance to nearest calcareous sediments, 

distance to nearest major stream, slope, albedo, radiation, distance to nearest pillow lava, and 

temperature.  The AUC analysis, model gain, performance gain, and the Kvamme gain statistic 

were used to evaluate the performance of their Maxent outputs.  Galletti et al. were able to show 

that the distributions of the ancient and modern terraces were determined differently by the 

environmental variables.   

2.4 Maxent for Modeling Archaeological Site Probability 

The Maxent program2 uses maximum entropy theory to create a probability distribution 

of a given species related to a series of environmental variables (Phillips, Dudík, and Schapire 

2004; Phillips, Anderson, and Schapire 2005; Phillips and Dudík 2008).  Maximum entropy 

theory uses partial information, presence-only data, to create a probability distribution that best 

conforms to a set of constraints, environmental variables, without considering any other 

constraints (Jaynes 1957; Phillips, Dudík, and Schapire 2004).  

The Maxent program developed by Phillips, Dudík, and Schapire (2004) is a machine 

learning process that uses multiple iterations to train the model into creating an acceptable 

model.  Due to the stochastic nature of this process, multiple replicates of the model must be run 

in order to bring the average of the outputs to a suitable result (Kemp 2012). 

                                                 
2 Available for download at http://www.cs.princeton.edu/~schapire/maxent/ 
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Maxent requires a point dataset that contains the observed species occurrence, presence-

only, data and environmental raster datasets.  In the case of the model described here, the 

observed species data contains the coordinate information for each agricultural feature recorded 

during the archaeological agriculture feature survey.  The environmental variables for this study 

were determined by previous studies that modeled rain-fed agricultural systems on Hawai‘i 

Island  (Newman 1971; Ladefoged et al. 2009; Lincoln and Ladefoged 2014).  Newman (1971), 

Ladefoged et al. (2009) and Lincoln and Ladefoged (2014) identify the environmental variables 

used to determine the extent of rain-fed agriculture in the Kona Field System.  These variables 

include rainfall, elevation, slope, and soil fertility.   

Within the Kona Field System, precipitation increases with elevation.  The conceptual 

model for this research proposes that agricultural clearing feature density increases with 

increases in elevation and rainfall until taro cultivation is viable. At that point, farming methods 

were more formalized in well defined fields and the less structured agricultural clearing feature 

density declines.  The conceptual model is shown in Figure 4 illustrating the increase and 

decrease in rainfall and agricultural clearing feature density. 

However, it is important to remember that agriculture is a human activity, and that human 

behavior may not  be dictated completely by the environment (Freilich 1967).  Ecological 

models can be used to identify the potential probability of archaeological feature presence based 

on environmental variables but the models must be evaluated with empirical observations 

(Ladefoged et al. 2009).  The variables that define a spiritually important place cannot always be 

quantified in a tangible manner (King 2003).  An ecological model's inability to account for 

intangible variables may cause the model to overestimate agricultural feature presence.  
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Figure 4 Conceptual Model 

The next chapter discusses the preparation of the data and the Maxent model and the tests 

used to evaluate the model. 
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CHAPTER 3: METHODOLOGY  

Maxent creates a probability distribution model by using presence point data and environmental 

variable raster grids.  This chapter discusses the geographic extent of the model and the AOI, the 

preparation of the agricultural presence data and environmental variable rasters, the Maxent 

model setup, and finally the diagnostic tools built within the Maxent program that were used to 

evaluate the final model.  

3.1 Study Area 

As previously described in Chapter 1, the AOI is an approximately 312-acre portion of 

the Hōkūli‘a luxury development as shown in Figure 1.  The AOI is approximately 3,235 m long, 

and 1,430 m at its widest. Unfortunately, heavy machinery has altered portions of the AOI to an 

extent where agricultural features were either completely removed from the landscape or altered 

to such an extent that the features were not identifiable; thus, it was observed that agricultural 

features were recorded with less frequency in mechanically altered areas.  Dense stands of 

guinea grass also prevented the crew from being able to survey portions of the AOI.  Therefore, 

predicting the distribution of agricultural features in these incompletely surveyed areas is the 

main objective of this research.  Figure 5 shows the AOI as well as the mechanically altered 

portions and the densely vegetated areas. 

The study area is situated on a recent pahoehoe flow, thus only one soil type covers the 

majority of the AOI as shown in Figure 6.  This led to the exclusion of soil attributes in this 

model, as discussed below in Section 3.3 Environmental Variable Data. 
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Figure 5 Densely vegetated and mechanically altered areas in and around the AOI 

 

Figure 6 AOI and Soil Types 
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3.2 Agricultural Feature Presence Data 

Prehistoric and historic agricultural feature spatial and attribute data were collected 

between the months of August 2014 and March 2015 (Kailihiwa 2015).  The agricultural feature 

data points are shown in Figure 7.  The agricultural feature types included clearing features (rock 

mounds and modified outcrops), agricultural terraces, grow pits, linear rock mounds, agricultural 

enclosures, retaining walls, and swales; these are summarized in Table 1.  Linear rock mounds, 

agricultural enclosures, retaining walls, and swales were not used in this test of Maxent because 

of the small number of observed occurrences for each feature.  The clearing features, grow pits, 

and agricultural terraces were each modeled separately.  Linear mounds, even though they were 

the second most numerous feature recorded, were not used to create a model because they are 

line features and Maxent requires the presence data to be point features. 

 

Figure 7 Archaeological Feature Map 
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Table 1 List of Agricultural feature types, and the number of each type observed  
within the AOI (Kailihiwa 2015) 

Type Count 

Clearing Feature 3743 
Linear Mounds 139 
Grow Pit 104 
Terrace 89 
Enclosure 42 
Swale 2 

Retaining Wall 1 
 

The data was collected by a crew of archaeologists systematically surveying and 

recording agricultural features within the AOI.  The crew members were spaced five to ten 

meters apart (spacing was dependent upon ground visibility) during the survey; spatial data was 

recorded with handheld Global Positioning System (GPS) devices that provided an accuracy of 

five to ten meters.  

The central area of the AOI contained the densest concentration of agricultural feature 

observed presences.  This portion of the AOI was the least vegetated and the least impacted by 

heavy machinery and provided the most accurate picture of agricultural feature distribution in the 

entire AOI.  The presence samples were not reduced in the area for modeling purposes, even 

though they undoubtedly influenced the output probability distribution, because this region did 

represent an unaltered view of agricultural feature intensity in the Kona Field System. 

3.2.1 Preparation of Prehistoric Agricultural Presence Data for Maxent 

Maxent requires that the presence data is in a comma delimited value text file that 

contains three fields, at a minimum, that identify the "species," the X-coordinates and Y-

coordinates.  The X and Y-coordinate values for each datum point were added to the attribute 
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table of the original presence point dataset.  The values for each environmental variable were 

also added to the attribute table for each sample point.  The addition of the environmental 

variable values ensured that Maxent would run more efficiently because it would not have to go 

through each environmental raster to determine the values for each sample presence point 

(Phillips n.d.).  Once the pertinent data was added to the attribute table, it was converted to a 

comma delimited text file. 

3.3 Environmental Variable Data 

Maxent requires that each of the environmental variables is stored in ASCII grid format 

with all rasters sharing the same exact cell size and the same exact geographic extent.  The 

presence-only data must be in a comma delimited value table with a minimum of three fields 

which denote species, X-coordinates and Y-coordinates.  It is possible to set up Maxent once the 

presence-only data and the environmental variable rasters are in the proper format. 

As discussed in Chapter 2, Ladefoged et al. (2009), Lincoln and Ladefoged (2014), and 

Newman (1971) identify the environmental variables that help to define the extent of the rain-fed 

agriculture of the Kona Field System.  These variables, which include rainfall, elevation, slope, 

and soil fertility, are summarized in Table 2.  The archaeological survey that generated the 

presence-only data was conducted on a single soil type, pahoehoe bedrock (see Figure 6).  Test 

runs with soil fertility variables in Maxent showed that the model over-fit the probability 

distribution to the soil polygon.  Haun and Henry (2010) demonstrated that the soil in the region 

is rocky enough that agricultural clearing features do occur on soil types other than pahoehoe 

flows.  Therefore, soil data were not used in the final model so that the probability distribution 

created by Maxent would extend beyond the immediate boundaries of the archaeological survey 
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area.  This section discusses each of the environmental datasets and their preparation for use in 

Maxent. 

Table 2 Summary of Environmental Variables. These variabels were identified in previous 
models of prehistoric agriculture in Hawai‘i and were used during test model runs. 

Environmental 
Variable  Content Format Comments 

Elevation Elevation data Raster in ASCII grid 
format 

Two foot elevation contour dataset 
converted to a raster grid with a cell size of 
10 m.  Source: Belt Collins, 2002, aerial 
survey 

Slope Slope data derived 
from elevation data 

Raster in ASCII grid 
format 

Slope in percent rise with a cell size of 10 m. 
Derived from the elevation raster 

Aspect 
Aspect raster 
derived from 
elevation data 

Raster in ASCII grid 
format Derived from the elevation raster 

Rainfall Data: 
Annual Average 
Summer Average 
Average totals for 
June, July, August, 
and September 

Average yearly 
rainfall totals and 
average totals for 
summer months 

Raster in ASCII grid 
format 

30 year average rain totals. Original Cell 
size is 250 m.  Raster grids Resampled to 10 
m cell size to match the elevation and slope 
data. Projected from WGS84 to NAD83 
UTM zone 5N; Source: Giambelluca et al. 
2013 

3.3.1 Rainfall data 

The timing of the rainfall and the rainfall totals are important factors in sweetpotato 

cultivation.  Handy, Handy, and Pukui (1991) state that the best time to plant sweet potato in 

Kona is during the summer months.  Valenzuela, Fukuda, and Arakaki (2000) define the 

tolerable rainfall range for sweetpotato during its growth cycle to be 500 to 1300 mm.  While 

rainfall datasets that cover the period of occupation for the Kona Field System are not readily 

available, long-term modern rainfall data was available from Giambelluca et al. (2013). 

The rainfall data3 available from Giambelluca et al. (2013) covers seven of the eight 

principal Hawaiian Islands, Ni‘ihau is excluded from this dataset.  The datasets are rasters with a 

cell size of approximately 250 m x 250 m in the World Geodetic System 1984 (WGS1984) 

geographic coordinate system.  Giambelluca et al. (2013) used raingage data and expert 

                                                 
3 Available for download from http://rainfall.geography.hawaii.edu/downloads.html 
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knowledge supplemented by five predictors to create this data set.  The five predictors included 

updated raingage data with values averaged over 30 years from 1978--2007, Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) data for the years 1971—2000, National 

Weather Service mean radar rainfall estimates, mean rainfall estimates created by experimental 

model forecasts, and vegetation distribution (Giambelluca et al. 2013).  Thirteen grids are 

included in the dataset, an annual grid and a grid for each month. 

The rainfall data from Giambelluca et al. (2013) that were selected for use in this model 

included annual, June, July, August, and September totals averaged over a 30 year time period 

from 1978—2007.  This data is not contemporaneous with the Kona Field System occupation, 

but it does show the expected pattern of rainfall increasing with elevation as well as rainfall 

totals during the summer months in Kona, which, as mentioned above, were important for the 

cultivation of sweetpotato in the region. 

3.3.1.1 Rainfall Data Preparation 

The rainfall datasets were downloaded from the Rainfall Atlas of Hawai‘i site in the Esri 

grid format.  The original data had a cell size of 250 m in the World Geodetic System 1984 

(WGS1984) geographic coordinate system.  The dataset was projected into the North American 

Datum 1983 (NAD83) Universal Transverse Mercator (UTM) zone 5 North (5N) projected 

coordinate system.  As can be seen in Figure 8 top, these large cells produce a blocky appearance 

at the scale of the study area.  Since rainfall is a continuous phenomenon, it was decided that it 

was appropriate to smooth this data as they were projected and resized to the model's 

computational scale of 10 m.  The rainfall grids were smoothed using bilinear interpolation 

which averages the four nearest input cells weighted by their distance to the center of the input 

raster cell (Esri 2009).  This resulted in a surface with gradually increasing rainfall amounts over 
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smaller-sized cells rather than the sudden jumps in values with the coarser dataset (see Figure 8 

bottom).  Once the rainfall data was projected and resized it was clipped and converted to an 

ASCII grid, ready for use in Maxent. 

3.3.2 Elevation Data 

Since a fine resolution elevation grid was not available, an AutoCAD Drawing Exchange 

Format (.dxf) file containing 2 ft contour lines of the Hōkūli‘a property provided the elevation 

data.  This data was derived from an aerial photogrammetry survey flown in 2002 and has an 

expected vertical accuracy of two meters.  The vertical accuracy was affected by the height of 

the guinea grass covering the ground in the survey area.  After converting the lines into a 

shapefile containing a line feature class, non-elevation lines were removed and elevation values 

were assigned to each contour line.  The .dxf file was in the Old Hawaiian State Plane Hawaii 1 

projected coordinate system and was reprojected to the NAD83 UTM zone 5N projected 

coordinate system.  Once the file was reprojected it was then georeferenced to the World 

Imagery basemap available in ArcGIS 10.2.2, which has an horizontal accuracy of 10 m.  With 

the conversion from CAD to GIS data complete, it was possible to create the elevation raster. 

3.3.2.1 Elevation and Elevation Derived Rasters 

The elevation contours were interpolated into a raster using the assigned values, in feet, 

of each line to determine the value of each cell.  The cell size was set to 10 m by 10 m.  A mask 

that followed the outline of the elevation contour shapefile was used to clip the elevation raster to 

limit the model's calculation to the area in which the elevation was known.  This same mask was 

used to clip all of the environmental variables to a common spatial extent.  Figure 9 shows the 

elevation raster clipped to the model's spatial extent. 
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Figure 8 Comparison of Raw Rainfall Data (top) and Smoothed Rainfall Data (bottom) 

 

Figure 9 Clipped Elevation Raster 
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The elevation raster was used to create a slope raster.  The cell size and extent of the 

slope raster were set to the same values as the elevation raster.  The output measurement for the 

slope raster was set to percent rise due to the slope variables (percentage) discussed in Newman 

(1971). 

An aspect raster was also created from the elevation raster to determine whether or not 

the amount of sun exposure for sweetpotato contributed significantly to the model.  Cell size and 

extent were matched to the elevation raster.  Figure 10 shows the aspect raster derived from the 

elevation raster.  Once the rasters were clipped to the proper extent they were converted to 

ASCII grid format and ready to use in Maxent. 

 

 

Figure 10 Aspect Raster 

3.4 Maxent Parameters 

The Maxent program has four different areas in which model parameters can be selected.  

The first area to setup the modeling parameters are in the main graphical user interface (GUI).  

The main GUI is where the presence data and the environmental variables are selected.  The 

output model format, file type, and output directory are determined on the main GUI.  The main 

GUI is also where the computational features and the jack-knife testing and response curves are 
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selected.  The 'Settings' button is also on the main GUI and contains three tabs of parameters that 

can be set for each model run.  This section first discusses the parameters set on the main GUI 

and then discusses the tabs in Settings. 

3.4.1 Computational Features 

Phillips, Dudík, and Schapire (2011), Merow, Smith and Silander (2013), and Elith et al. 

(2011) provide descriptions of the computational feature types (Table 3) and explain the 

appropriate use for each feature type.  The computational features are used to constrain the 

Maxent output based on the environmental variable values (Phillips, Dudík, and Schapire 2011).  

Linear features constrain the output model to the same values for each continuous environmental 

variable as the observed locations for that species.  Quadratic features constrain the output model 

to the same environmental variable variance as the presence-only data.  Product features 

constrain the covariance of one variable with other environmental variables by multiplying two 

of the environmental variables.  Threshold features create a probability grid where the 

environmental variable value is greater than a threshold value.  Hinge features also create a 

probability grid for values above a threshold, but use a linear function to create a smoother 

model.  Discrete features are automatically created for each variable that is categorical rather 

than continuous. 

Maxent allows users to choose which type of calculation features to use based on how the 

model should respond to the environmental variables.  The number of presence samples 

determines which features are used by default.  Linear features are automatically chosen when 

the sample number is below 10, Maxent automatically adds quadratic features when there are 

more than 10 samples, hinge features are added when there are more than 15 samples, and 

threshold and product features are added when there are more than 80 samples. Elith et al. (2011) 
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recommend simplifying Maxent models by using only hinge features to create an easily 

interpreted model.  It is hard to determine the nature of environmental variable interaction with a 

small number of presence samples (Elith et al. 2011).  Hinge features, like linear features are 

based on a single environmental variable, but their values are a constant below a threshold value.  

Hinge features are a special case of linear and threshold features and using them in the model 

makes using linear and threshold features redundant (Elith et al. 2011; Merow, Smith, and 

Silander 2013).  Therefore, hinge, quadratic, and product features were utilized in the final model 

of this project in order to create a distribution that showed the probability of where agricultural 

clearing features may be present dependent upon the relationship and interaction of the 

environmental variables. 

Table 3 Summary of Maxent Calculation Features and a description of the constraints they 
impose upon the output model. 

Feature Type Description 

Linear 
Matches the output value of the environmental 
variables to the same values as the presence-only 
data. 

Quadratic Constrains the environmental variable variance to 
match the presence-only data. 

Product 
Constrains the covariance between two 
environmental variables.  Useful for modeling 
complex relationships between variables. 

Threshold 
Creates a binary probability grid using a step 
function for variable values above a certain threshold 
value 

Hinge 
Creates a binary probability grid using a linear 
function for variable values above a certain threshold 
value. 
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3.4.2 Environmental Variable Assessment in Maxent 

The main Maxent GUI provides two options for assessing the importance of the 

environmental variables to the model: (1) response curves and (2) jack-knife testing.  Response 

curves demonstrate the influence each environmental variable has on the Maxent model 

(Phillips, Dudík, and Schapire 2011).  Jack-knife testing creates models first omitting each 

variable and then using only one variable to determine the importance of an environmental 

variable to the predictive distribution of a species (Phillips, Dudík, and Schapire 2011).  Both of 

these options were selected to determine the importance of the environmental variables and to 

observe whether or not the predictive distribution responded to each variable as expected. 

3.4.3 Maxent Output Format 

Maxent has three different output formats (1) raw, (2) logistic (default), and (3) 

cumulative.  The raw output shows a relative occurrence rate (ROR) of the target species 

(Merow, Smith, and Silander 2013).  The logistic output is a post processing of the raw output 

and is used to show an approximate probability that the species will occur within a specific grid 

cell (Phillips, Dudík, and Schapire 2011; Merow, Smith, and Silander 2013).  The cumulative 

output shows the suitability of conditions at a given location (Phillips, Dudík, and Schapire 

2011).  The logistic output format was chosen for this project because of its ease of interpretation 

for species' probability of presence. 

3.4.4 Maxent Settings 

The Maxent settings GUI contains three different tabs, (1) Basic, (2) Advanced, and (3) 

Experimental, where parameters are set before running Maxent.  There are a total of 46 

parameters among the three tabs.  The parameters which can be set in Maxent are summarized in 

Table 4. 
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Table 4 Modeling Parameters.  These parameters affect the final output model produced by 
Maxent. 

Parameter Tab Description 
Random seed Basic Random sets of sample points are used during each model run for 

testing and training the model 
Random test 
percentage 

Basic Percentage of presence samples set aside as test points used in 
evaluating the model 

Regularization 
multiplier 

Basic Multiply the regularization parameters by this number.  The lower 
the number the tighter the distribution is to the presence-only data 
occurrences.  A higher number creates a more diffuse distribution 

Max number of 
background points 

Basic The number of cells chosen at random for background points if 
the number of grid cells is larger than specified number 

Replicates Basic Number of times to run the model. 

Replicated run type Basic Testing and training method to use when running more than one 
replicate.  Three types Cross Validation (divides samples into 
groups and each group takes a turn being used as test samples), 
Bootstrap (test samples chosen randomly by sampling with 
replacement), and Subsampling (test samples chosen randomly by 
sampling without replacement). 

Maximum 
iterations 

Advanced The maximum number of iterations to run before model learning 
is terminated. 

Adjust sample 
radius 

Advanced Adjust the size of the sample dots on the pictures of predictions 
by adding the specified number of pixels.  Negative values reduce 
the size of the radius 

Default prevalence Advanced Probability that an individual is observed at a suitable location 
Threads Experiment-

al 
Number of processor threads in a computer's central processing 
unit (CPU) to use.   

Test runs were conducted using different parameter settings, environmental variables, and 

presence point data in order to determine the parameter settings, environmental variables, and 

agricultural feature types that would be used in the final model.  More than 30 different test runs 

were conducted and evaluated based on their goodness-of-fit, stability, environmental variable 

performance, and whether or not the final model met expectations.  Models for agricultural 

clearing features, grow pits, and terraces were created.  The paucity of presence data and 

environmental variables for the grow pits and terraces created unreliable models.  The abundance 

of clearing feature presences (n=3743) appeared to compensate for the small number of 
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environmental variables and appeared to create reliable probability distributions which are 

discussed in the next chapter.  The parameters used in the final model are summarized in 

Table 5.   

Table 5 Final Model Parameters.  These are the values, and the justification for those values, 
that the model parameters were set to during the final model run. 

Parameter Value Justification 
Random seed True Random seeds are used to keep the bootstrapping runs from using 

replicate test and training samples. 

Random test 
percentage 

25 Each model replicate used 25 percent of the samples for testing, 
training and statistics calculation 

Regularization 
multiplier 

8 Model runs indicated that this number was sufficiently large enough 
to create smooth response curves and spread-out the probability 
distribution from the presence-only data while maintaining a stable 
model. 

Max number of 
background points 

10000 Background points are used as pseudo-absences for model training. 
Presence probability is assumed to be unknown for each 
background point.  The higher the number, the better the fit of the 
model.  This number balanced speed and accuracy for modeling.   

Replicates 100 Number of replicates sufficient enough to converge the average and 
median values of the Maxent output. 

Replicated run type Bootstrap Bootstrapping created the models with the best goodness of fit and 
stability.  Each of the 100 replicates run was able to use 25 percent 
of the sample points selected at random.   

Maximum 
iterations 

1000 The higher the number the more training that Maxent can do per 
replicate run resulting in a more stable model. 

Adjust sample 
radius 

0 Not pertinent to the final output of this model. 

Default prevalence 0.8 Probability that an individual is observed at a suitable location 

Threads 8 CPU used for the model runs was an Intel Core i7 I7-4770 3.4 GHz 
Quad-Core Processor.  It has eight threads. 
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3.4.5 Model Validation 

Maxent contains statistical tools to help in the validation of the output predictive 

distributions.  The main tool used to assess the goodness of fit for a Maxent model is the area 

under the curve (AUC) which is determined by the receiver operating curve (ROC).  The ROC, 

in the case of Maxent, is a measure of the relative occurrence rate (ROR) because the model is 

created using presence-only data (Merow, Smith, and Silander 2013).  The response curves and 

results from the jack-knife testing are additional tools created by Maxent to assess its outputs.  

The final method of model validation, to be conducted in the future, will be ground truthing the 

areas of dense vegetation.   

  



 
 

30 
 

CHAPTER 4: RESULTS 

A prehistoric agricultural clearing feature probability distribution was produced using presence 

point data and environmental variable raster data in the Maxent program.  The output distribution 

was produced as an ASCII grid.  Maxent provides diagnostic tools that were used to assess the 

reliability of the model.  These tools include jack-knife testing to determine environmental 

variable importance, response curves to demonstrate how the model responded to the 

environmental variables, and area under the receiver operator curve (AUC) to assess the 

goodness-of-fit of the model. 

This chapter begins with a discussion of the output model generated by Maxent followed 

by a discussion of model validity using the diagnostic tools available in Maxent. 

4.1 Maxent Probability Distribution 

The Maxent program uses a machine learning algorithm that trains itself by contrasting a 

specified number of the available presence samples to a specified number of background sample 

points.  The background sample points are used as "pseudo absences" and the values are 

contrasted with the values of the presence data.  The final probability distribution here is a 

product of 100 bootstrap replicate runs.  Each run used 75 percent of the presence samples (n = 

2808) and 10,000 background samples to train each model and 25 percent of the presence 

samples (n = 935) to test each replicate model.   

A smoothing filter was used in ArcMap 10.2.2 on the final output to smooth out the 

values and create a more realistic model.  The smoothing filter is a 9 cell (3x3) window that 

passes over each cell in the raster dataset and assigns the average values of the 9 cells to the 

center cell, reducing anomalies in the model.  The higher values of the raster were reduced 

slightly (95 to 92), but not enough to affect the overall predicted distribution of the agricultural 
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clearing features.  Table 6 summarizes the change between the smoothed and unsmoothed raster.  

The only value that changed is the max value.  

Table 6 Minimum, maximum, and mean values of the unaltered output model and the 
smoothed output model. 

Model Output Minimum Value Maximum Value Mean Value 
Unaltered Model 0 95 51 
Smoothed Model 0 92 51 

Figure 11 shows the final, smoothed average of the probability distributions of the 100 

replicate runs, and the standard deviation of those runs.  The values for the distribution are the 

probability that the agricultural clearing features are present in each grid cell using breaks of 10 

percent.  The standard deviation is depicted using one percent breaks in order to better show the 

variation in the standard deviation which ranges from close to zero to approximately 10.3 percent 

and has the greatest values near the westernmost and at the easternmost extent of the model.   

The modeled area extends the probability distribution of agricultural clearing features 

beyond the boundaries of the AOI.  Soil data variables were too homogenous and constrained the 

model too tightly to the soil polygons, as a result, the soil data were not used in this model. 

Elevation-derived data and rainfall datasets were used to create a more generalized model that 

extends beyond the boundary of the AOI.  The next section of this chapter discusses the 

environmental variables and their performance in the model. 

4.2 Environmental Variable Performance 

Maxent creates a hypertext markup language (html) file that summarizes the model 

results.  It creates a file for each replicate model run and one file for the summary of all the 

replicates.  The results for the different diagnostic tests conducted by Maxent are included in 

each of the html files.  The environmental variable performance is evaluated using response 

curves, contribution and permutation importance, and jack-knife testing.   
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Figure 11 Final Maxent output  
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4.2.1 Response Curves 

Maxent creates two sets of response curves for the environmental variables.  The first set 

of curves are called marginal curves and they demonstrate how the model prediction changes as 

the values of each environmental variable changes slightly while the rest of the variables remain 

at their average values.  Phillips, Dudík, and Schapire (2011) warn that the marginal curves may 

be difficult to interpret if the environmental variables are correlated.  The annual precipitation 

(rf_ann) and summer precipitation (rf_summer) are highly correlated with the monthly rain 

datasets; the values for annual and summer precipitation cannot be changed without changing the 

values of the monthly precipitation datasets.  As a result, The marginal response curves for this 

model are not appropriate for determining how the Maxent output is affected by each 

environmental variable. 

The second set of response curves shows that the Maxent prediction reaches a peak and 

then decreases as the values go up for each environmental variable.  Figure 12 shows the 

response curves created to represent a Maxent prediction that uses only that environmental 

variable.  The Y-axis for each of the response curves is the probability of agricultural feature 

presence.  The X-axis for the elevation response curve (elev) is elevation in feet, and the X-axis 

for the rainfall response curves is rainfall in millimeters.  The standard deviation for the 100 

replicate runs, depicted in blue, increases as the number of presence samples represented for 

those values of the environmental variables decrease.   

Figure 12 shows the result of the "Identify" tool used in ArcMap 10.2.2.  This tool has 

been configured to show the cell values for each of the visible layers.  The two results displayed 

in Figure 10 show the values of the Maxent model, Agricultural Clearing Feature Average, along 

with the values of the eight environmental variables that intersect with that Maxent model pixel. 
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Figure 12 Maxent output response curves. 

 

Figure 13 Sample 'Identify' results for a Maxent model pixel with a low probability value 
(left) and a high probability value (right). Note that the variable values in the high probability 

pixel are near to the peak values for each variable, while the reverse is true for the low 
probability pixel. 
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4.2.2  Environmental Variable Contribution and Importance to the Maxent Model 

Maxent uses two different methods to estimate variable importance.  The first method 

implemented by Maxent creates a table using data gathered during the training of the model that 

summarizes the environmental variable contribution to the model and the permutation 

importance, or stability, of the variable.  Variable contribution is determined by the amount of 

increase or decrease of the model fit, called gain, caused by an environmental variable for each 

iteration of the Maxent algorithm.  The permutation importance is calculated by randomly 

changing the value of an environmental variable among the model training points.  The lower 

this value is the more stable the variable's contribution to the model.  The value of the decrease 

in the training AUC is normalized so that the data can be represented as percentages for both the 

percent contribution and the permutation importance (Phillips n.d.).  Table 7 lists the 

environmental variables used in this model and ranks them according to their contribution to the 

model. 

Table 7  Summary of Environmental Variables and Their Importance.  The variables are 
ranked according to their percent contribution with September Rainfall having the most 

contribution and July Rainfall the least contribution. 

Variable Percent 
contribution 

Permutation 
importance 

September Rainfall 48.8 19.9 
Elevation 22.5 17.9 
Summer Rainfall 19.4 17.8 
August Rainfall 5 24.6 
June Rainfall 1.5 13.7 
Slope 1.1 0.7 
Annual Rainfall 1.1 0.8 
July Rainfall 0.6 4.6 
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Another method that Maxent uses to determine variable importance is the jack-knife test.  

The jack-knife test trains the model removing each environmental variable to calculate which 

variable causes the largest decrease in the model's gain.  This variable contains the most 

information not found in the other environmental variables.  The second part of the jack-knife 

test is training the model using each environmental variable by itself.  The environmental 

variable with the highest gain is considered to have the most useful information by itself.  The 

summer rainfall variable (rf_summer) caused the largest decrease in the gain averaged over the 

100 replicate runs of this model.  The September rainfall variable (rf_sep) had the highest gain 

when used alone for training.  The Maxent output, however, warns that caution must be used 

when interpreting the results of jack-knife testing when the environmental variables are highly 

correlated, as the rainfall variables are in this case. 

4.3 Model Performance 

The area under the receiver operator curve (AUC) is the most commonly used diagnostic 

to evaluate a Maxent model (Merow, Smith, and Silander 2013).  The AUC is a comparison of 

the true positive rate and the false positive rate, or how well the model is able to predict presence 

and absence.  Maxent uses presence-only data.  The AUC created for Maxent models shows how 

well the model is able to distinguish presence from random (Phillips, Anderson, and Schapire 

2005).  The value for the AUC ranges from 0 to 1, the closer the value of the AUC is to 1 the 

better the fit of the model.  An AUC value of 0.5 equals random prediction (Phillips, Anderson, 

and Schapire 2005).  The average AUC for the 100 replicates of this model was 0.819 with a 

standard deviation of 0.009. 

According to the diagnostic tools provided by Maxent, the model produced for this 

project performs well.  The next chapter discusses the results of the model with respect to the 
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expectations presented by the conceptual model in Chapter 2.  Chapter 5 also discusses the 

applicability of Maxent in archaeology, future work, and improvements that can be made to the 

current model. 
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

The purpose of this thesis was to assess the usefulness of Maxent for predicting the presence of 

archaeological features.  A recent archaeological survey of agricultural features within a portion 

of the Hōkūli‘a luxury development on Hawai‘i Island provided the opportunity to test Maxent 

(See Figure 1 in Chapter 1).  This chapter discusses the results of the Maxent model, how they 

compare to the conceptual model and expectations of agricultural feature distribution in the Kona 

Field System, how human behavior may affect the interpretation of the results, limitations of this 

model, and the usefulness and applicability of using Maxent in an archaeological context. 

5.1 Model Evaluation 

The diagnostic tools included as part of the Maxent package indicated that the model 

produced for this project is a strong, reliable model.  Three research hypotheses listed in Chapter 

1 were also used to evaluate the model.  The first hypothesis states that agricultural clearing 

feature density increases with elevation from the shoreline to the upper elevations of the kula 

zone and the lower elevations of the kaluulu zone (approximately 0—680 ft elevation), and that 

the feature density should start to decrease starting in the middle elevations of the kaluulu zone 

(approximately 680 ft elevation).  This distribution pattern was noted during an archaeological 

inventory survey conducted three kilometers to the north of the current AOI by Haun and Henry 

(2010).   

The model shows that the region within the AOI that has the highest probability of 

agricultural clearing features ranges in elevation from approximately 175 ft to 600 ft.  Figure 14 

shows the modeled probability distribution overlaid with elevation contours to illustrate this.  

Cells within the elevation range of 175 ft—600 ft have an 80 percent or better probability of 

containing an agricultural clearing feature.  Figure 15 shows the response curve for an elevation-
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only model created within Maxent.  The response curve shows that there is a 70 percent or better 

probability of agricultural clearing features present in the 50 ft—680 ft elevation range. 

The results for the distribution of agricultural features with respect to elevation do not 

exactly match the observations made by Haun and Henry (2010), but that does not invalidate the 

model.  The model does show a general trend of increasing presence with elevation before 

peaking and presence probability starts to decline above 350 ft in elevation.  This apparent lack 

of correspondence may be due to the fact that elevation is not the only variable involved in this 

model. 

The second hypothesis states that as precipitation levels approach acceptable levels for 

dryland taro farming, there is a decrease in the density of informal clearing features that are used 

in sweetpotato cultivation.  As noted in Chapter 2, Valenzuela, Fukuda, and Arakaki (2000)  

 

Figure 14 Agricultural Clearing Feature Probability Distribution With Elevation Overlay 
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Figure 15 Elevation Response Curve Showing the Average Values and Standard Deviation  
from the 100 Maxent Replicate Models 

identify the rainfall tolerance for sweetpotato to be 500—1300 mm per growth cycle and the 

optimal rainfall to be 900—1300 mm.  Ladefoged et al (2009) used 750—1000 mm as their 

optimal range for sweetpotato cultivation.  Handy, Handy, and Pukui (1991) identified the 

rainfall during the summer months as the most important for sweetpotato cultivation in the Kona 

Field System. 

Figure 16 shows the output model with an overlay of the summer months' rainfall as well 

as the output model with annual rainfall.  The figure shows that there is a good probability for 

agricultural clearing feature presence between 340 mm—460 mm of summer rain, which 

correlates to approximately 810 mm—1,050 mm of annual rainfall (See Figure 16).  The highest 

probability of feature presence (greater than 80 percent) does occur within the annual rainfall 

range of 850 mm—990 mm.  This is relatively close to the range used by Ladefoged et al (2009).  

The rainfall data used in this model is modern and attention should not be focused on the actual 
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values of rainfall data.  These data were used to show the general pattern that rainfall totals 

increase with elevation (Kirch et al. 2012). 

 

Figure 16 Agricultural Clearing Feature Probability Distribution with Summer Rain 
Overlay (top) and Annual Rainfall Overlay (bottom) 

The third hypothesis is based on Newman's (1971) analysis of agricultural practices in 

Hawai‘i.  The hypothesis is that agricultural practices were limited to slopes less than 35 percent, 

and that most agricultural activities took place on slopes less than 20 percent.  Figure 17 shows 
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the response curve for the average of 100 models using only the slope variable within Maxent.  

The X-axis values for the graph are percent slope.  The response curve shows that the probability 

of presence for agricultural clearing features peaks at approximately 30 percent slope and 

decreases as the percent slope value rises above 30 percent.  This number does not quite match 

Newman's (1971) observation but it does show that agricultural activity declines above a certain 

slope. 

The Maxent probability distribution model shows that the greatest concentration of 

agricultural clearing features occurs within the kula zone and lower kaluulu zone.  This is an 

ecological model that uses environmental variables to determine the probability that a cell within 

the model surface will contain an individual of the species of interest, agricultural clearing 

features in this case.  Importantly, however, the model does not take into account human 

behavior and cultural factors so it is important to consider the human role on the distribution of 

agricultural practices.   

 

Figure 17 Elevation Response Curve of Clearing Feature Probability to Slope Variable 
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The environmental variables determine, to an extent, how and where crops can be 

cultivated.  People are capable of altering the landscape to increase the cultivability of an area 

and to grow crops in relatively marginal areas (Kirch et al. 2004; Vitousek et al. 2004).  Vitousek 

et al. (2004) did observe areas in Hawai‘i suitable for dryland agriculture that were not cultivated 

demonstrating that even though an area was suitable for farming, there is the possibility that it 

was not cultivated.  Historical and cultural factors help in understanding human behavior and 

cultural development (Freilich 1967).  Human behavior must be kept in mind when interpreting 

this model. 

The areas modeled as low probability of agricultural clearing feature presence may be an 

underestimation of the features that may be present.  Native Hawaiians developed farming 

techniques to address the challenges posed by different regions (Handy, Handy, and Pukui 1991).  

Kirch et al. (2004) noted that Native Hawaiians, at times, were forced to farm in marginal areas 

to feed growing populations.  The actual presence of agricultural clearing features could be 

greater than predicted by the ecological model due to this behavior.   

On the other hand, areas that are suitable for agricultural cultivation may be important for 

spiritual or cultural reasons that are not obvious.  Spiritual and cultural importance may be 

intangible and cannot be measured or evaluated empirically (King 2003).  This may cause 

agriculturally suitable areas to remain uncultivated, in which case the model may overestimate 

the probability of agricultural clearing feature presence.  For example, Pu‘u Ohau, a culturally 

significant cinder cone, is located in the southwest corner of the model and may be an area where 

the probability of agricultural clearing feature presence may be overestimated.  The model 

calculates that the eastern slope of the pu‘u has a high probability of agricultural clearing feature 

presence.  However, Pu‘u Ohau contains a number of burial and ceremonial sites (Kaschko 1984; 
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Hammatt et al. 1997; Belt Collins Hawaii 2007) and this Maxent model cannot not account for 

these sites and the spiritual and cultural importance of Pu‘u Ohau. 

5.1.1 Archaeological Monitoring and Future Model Evaluation 

In the future, model performance will be evaluated in the field as a by-product of 

archaeological monitoring of ground disturbing activities to be conducted within the AOI.  The 

archaeological monitor will be required to record any features that are encountered during these 

activities (Tomonari-Tuggle and Tuggle 1999) and the data collected will be used to evaluate the 

Maxent model.  Of course, it will not be possible to evaluate through ground truthing the model 

performance for the areas that have been completely altered by heavy machinery (e.g. the golf 

course) as there is no evidence left of the cultural resources that were present within those areas. 

5.2 Conclusions 

The probability distribution of agricultural clearing features modeled by the Maxent 

program appears to be a reliable and stable model based on the diagnostic tests conducted within 

Maxent.  The mean AUC for the 100 replicates is 0.819 with a standard deviation of 0.009 which 

is an indicator that the model performs well, the closer the AUC is to 1.0 the better the model 

performance (Phillips n.d.).  The environmental variable response curves show the model 

responding to individual variables as predicted by the conceptual model. 

This model could be improved with a better elevation dataset.  The elevation data used in 

this model included recent alterations to the landscape such as house lot grades, the golf course, 

manmade ponds, and roads.  These landscape alterations may have affected the influence of the 

slope variable on the probability distribution.   

Maxent's usefulness in regards to modeling archaeological feature distribution is 

conditional and is dependent upon the number of presence samples that are used to create the 
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model.  Test models were produced while the archaeological agricultural feature survey, which 

provided the presence data for this project, was in progress.  Variable contributions and 

importance changed with the number as well as the distribution of the presence samples.  

Probability distributions for agricultural terraces and grow pits were also created using Maxent, 

but the models produced for these feature types were unreliable and the results were not useful 

due to the small number of presence samples used by the model. 

As a result of this research, it is concluded that Maxent can be used to model prehistoric 

agricultural systems by using environmental variables that can define the proper growing 

conditions for the crops cultivated within that system.  Maxent cannot model human behavior 

and may overestimate feature presence in spiritually important areas that are suitable for crop 

cultivation where farming does not occur.  The variables that define the spiritual importance of a 

place are often intangible and cannot be empirically recorded (King 2003).  As a result, these 

spiritual variables cannot be used in Maxent. 

Despite this inability to model human behavior, this research suggests that there is further 

use for Maxent in the Kona Field System.  The program and technique offer a way to synthesize 

the commercial archaeology data of the region to create a more complete picture of the Kona 

Field System than the piecemeal study areas do on their own.  Soil attribute data could also be 

added back into the model over the larger geographic region as there is more than one soil type 

present within the larger Kona Field System.  The Maxent program should be able to reliably 

model the distribution of agricultural features in kula and kaluulu zones as the majority of the 

agricultural features present within those zones can be represented as points.  However, the linear 

mounds and long, cross-slope terraces observed in the formal areas of the Kona Field System, 

the ‘āpa‘a zone, present a challenge for Maxent since they are linear features rather than points.  
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This could be resolved by using coarser environmental data at a smaller scale and placing points 

in the center of the agricultural fields for the presence data as done by Kemp (2012).  Using 

Maxent to model the Kona Field System may expand its extent beyond the currently accepted 

boundaries. 

While Maxent is incapable of reliably modeling human habitation sties, burials, and 

ceremonial sites it can model regions of human activities that are partially dependent upon 

environmental variables.  Modeling the distribution of these activities, e.g. farming, can be used 

as a proxy in trying to determine areas that may be of cultural importance.  Haun and Henry 

(2010) showed that there were large habitation complexes and substantial ceremonial sites 

located within areas that were densely covered by agricultural features.  The Maxent model can 

be used to determine which areas warrant further archaeological investigation and provide an 

idea of the level of effort that an area may require to be properly documented.  
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