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Abstract 
 

Wildfire is a growing problem in the United States that lends itself well to spatial analysis 

for those seeking to minimize human and environmental damages.  This thesis analyzed spatio-

temporal trends of wildfire in the state of Florida between the years of 1985–2014 and analyzed 

ecological and human demographic variables in relation to wildfire ignitions.  Human population 

numbers, population growth, precipitation, and temperature affect the spatial distribution of 

wildfire.  These changes can modify fire regimes in many areas, though the direction and extent 

of this influence is not fully understood.  This research used correlation analysis to study the 

components of wildfire ignitions, separated into human and natural caused fires, visualized fire 

locations, and examined fire ignition hot spots in relation to the causes.  It is hypothesized that 

population growth and population numbers positively influence the number of human caused 

wildfire ignitions, while high temperatures and low precipitation increase lightning caused fires.  

To create spatio-temporal maps and conduct the analysis, data on wildfire points, population 

counts, precipitation, and temperature were gathered and analyzed.  Spatial analysis (e.g., Hot 

Spot Analysis (Getis-Ord Gi* statistic)) and non-spatial statistics (e.g., Pearson’s correlation) 

were used to analyze statistically significant clustering of wildfire incidence.  This thesis also 

used historical data to better recognize trends in wildfire occurrence and distribution.  Wildfire 

management groups, already dealing with large fires every year, can use this information to 

become better prepared for future changes in wildfire incidences.  The analysis revealed no 

significant correlations between the study variables and wildfire incidence.  However, the 

research did reveal that there is significant clustering of wildfire ignitions due to human activity 

and lightning strikes.             
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Chapter 1: Introduction 

Wildfire is a growing problem in the United States as climate change and land use changes affect 

fire regimes in many areas.  Every year, wildfires cause devastation and costs millions in 

damages with no reprieve in sight.  The State of Florida has many naturally fire-dependent 

ecosystems, yet increases in population and incursions by development into wildfire prone areas 

have created many population centers at high risk of devastating wildfire.  Therefore, pinpointing 

the variables that can lead to understanding wildfire ignition and spread is important to minimize 

the risk to life and property as climate and land use change.     

Correlation analyses, hot spot analyses, and an analysis of directional distribution trends of 

wildfires in Florida were the main analytical and Geographic Information System (GIS) 

components of this thesis.  They were chosen because they allow for statistical analysis as well 

as cartographic visualization of the areas where wildfire has clustered around the state. 

Additionally, analysis found correlations between biotic and abiotic variables such as 

precipitation, temperature, population counts, population growth, and human and/or naturally 

caused fires.  Analysis answered the question of whether lightning caused fires spatially and 

statistically correlated to periods of low precipitation and high temperatures; and if human 

caused fires positively correlated to absolute population numbers and population growth.  To 

fully investigate the influence of these variables, lightning caused fires were compared to 

population and population growth, and human caused fires were analyzed against precipitation 

and temperature.  Human caused wildfire ignitions were also compared spatially to nighttime 

lights data to see if hot spots cluster near population centers. To study the temporal changes in 

wildfire occurrence, an emerging hot spot analysis was also utilized across every year of the 

study.  Finally, a directional distribution trend was calculated to see if wildfire trends are 



 

2 

 

changing over time.  Together, these study methods provided a clearer picture of when and where 

wildfires are occurring over the multi-decade (1985–2014) study period.  For visualization 

purposes, the final year block (2010–2014) of human caused fires was overlaid with Visible 

Infrared Imaging Radiometer Suite (VIIRS) Nighttime Light Data from 2012.  This satellite 

imagery captures light visible from space, indicating locations of human habitation and relative 

density.  The VIIRS satellites also collect high quality radiometric data for digital analysis by 

detecting anthropogenic lightning present at the earth’s surface (Elvidge et al. 2013).  As VIIRS 

data offered many different spectral bands suitable for discrimination of different sources of light 

emissions, it is particularly suited for studying human night light activity.  Such activity data 

provided strong visual clues of where humans cluster in relation to wildfire ignition.  

Importantly, recognizing why and where fire occurs is necessary as wildfire management is 

becoming an ever-growing task for both private and public entities across Florida.   

1.1 Historical & Current Wildfire Policy 

One major reason why wildfire is a growing problem in many parts of the United States 

is because of decades of fire suppression.  For example, in the early 1900s, federal wildfire 

policy established wildfire suppression as a tool to protect natural resources from fire.  This 

policy choice failed to focus attention on proper fuel management, thereby creating a self-

defeating policy (Busenberg 2004).  Because of the lack of proper fuel management, fuels like 

dry brush and refuse gradually accumulated over many decades in many regions of the U.S., like 

California and the Southeast in general, and when ignited, created massive, high intensity fires 

that continue to cause lasting damage (Busenberg 2004).  This poor historical policy planning, 

coupled with today’s issues of climate change, land use changes, and population growth have 

created the devastating fires now seen every year.   
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 As human development continues to push into undeveloped areas, wildfire has the 

potential to become more common and costly.  Many studies show that humans cause a majority 

of wildfires across the United States and the world (Romero-Calcerrada et al. 2008; Teeter 2008; 

Reams et al. 2005). This is especially seen within national and state forests as studies have 

shown a consistent trend in poorly extinguished campfires causing wildfires (Reid & Marion 

2005; Cole & Dalle-Molle 1982; Prestemon et al. 2010).  As humans expand further into regions 

long without natural fire events, fire management budgets will continue to be stretched to the 

brink.  

 As human beings continue to cause wildfires, current policy has shifted away from 

previous thinking; fire is now seen as an integral and important component of many ecosystems.  

Within the state of Florida, wildfire managers like the Florida Forest Service (FFS) and many 

other private forestry organizations have devised strategic plans relating to prescribed burns and 

their benefits.  Efforts have been made to push lawmakers to recognize the importance of 

prescribed burning and ensure that regulations strike a balance between, for example, mitigating 

smoke and driver visibility concerns (Prescribed Fire in Florida, Strategic Plan 2013–2020) and 

ensuring enough area is control burned to prevent larger fires.  Prescribed fire is now viewed as a 

top priority for land managers, and science-based education, training, and investment in 

prescribed burn procedures are being pushed to create both professional practices and healthy 

ecosystems. 

1.2 Florida Ecosystem 

Most U.S. wildfire research studies are focused on the western half of the United States, 

where wildfire is especially common.  This focus can easily mislead a person into thinking that 

wildfire is not prevalent in the rest of the country. The southeast has the second highest ranking 
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for fire activity behind the west, though the region receives little specific academic study 

(Flannigan, Stocks, and Wotton 2000).  In particular, wildfire in Florida is a normal occurrence.  

This may seem surprising, as California garners the lion’s share of news and funding for wildfire 

management.  But Florida, a very densely forested state, often ranks right behind California in 

the number of wildfires every year, even though it is not even half as large in total area (65,755 

mi2 to California’s 163, 696 mi2).       

 Florida’s ecosystem supports a fire regime that is characterized by frequent, low severity 

fires that burn the understory, but rarely the canopy, when allowed to burn via natural means and 

not altered by human activity (Prescribed Fire in Florida, Strategic Plan 2013–2020).  The state 

is covered in predominately longleaf pine, a fire-adapted tree that, when in large numbers, 

produces an open understory that allows for the buildup of many different species of shade 

tolerant plants.  If left unattended too long, this understory can grow extensively and when 

burned, it can create devastating fires that damage the ecosystem, human life, and property 

(Prescribed Fire in Florida, Strategic Plan 2013–2020).  Figure 1 is a map of Florida with the 

various vegetation types across the state. 
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Forest areas are increasingly becoming more fragmented as humans move into and 

develop wild areas.  In addition, as population grows in Florida (now the third most populous 

state), regions called Wildland-Urban Interfaces (WUI) are becoming more common.  These 

regions are transition zones between undeveloped land and human occupied regions and are rife 

with wildfire issues.  While the scale of wildfire in the southeastern U.S. and Florida is unlikely 

to ever reach the scale of fire in the West, growing population and land use changes require the 

alteration of approaches to how, when, and where to apply prescribed burns and how to reduce 

the threat of wildfire.  

 As population continues to grow and climate changes looms ahead, it is imperative that 

Figure 1 Map of Florida Land Cover.  Source USGS.gov 
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we understand the spatio-temporal drivers of wildfire.  Because many changes are highly 

dependent upon location due to a combination of human development and the local ecological 

factors, there is a continuing need to focus research on a state level to provide the most accurate 

data for economic and environmental groups that are planning for the future.  Therefore, research 

of this kind inherently requires analysis of earth surface processes and interconnected spatial 

relationships.  Analyzing the spatial pattern of wildfires in the state could yield valuable insights 

into how fires are being ignited, if they are spatially clustered, and what steps can be taken to 

minimize damages. 

1.3 Fire Science 

Fire science focuses on many different factors that influence wildland fire, that include 

fire ecology and risk management.  Since Florida is heavily wooded, understanding the spatio-

temporal trends of fire incidence is important for natural resource management, urban planning, 

and disaster relief planning.  As population growth continues to rise and meteorological variables 

change drastically, wildfire has the potential to grow as a threat to natural ecosystems and human 

safety.   

Fire ecology is concerned with natural processes of wildfire, its ecological effects on the 

environment, interactions between biotic and abiotic variables, and the role of fire within an 

ecosystem (DellaSala & Hanson 2015).  It also covers the effects of wildfire suppression and fire 

as a management tool.  Wildfire can significantly alter the biotic and abiotic components of an 

ecosystem by reducing vegetation, which in turn can change soil chemistry and fertility.  

Changing soil chemistry and fertility can cause alterations in the plant communities within the 

area, which in turn can affect wildfire susceptibility.  The suppression of wildfire has historically 

caused unforeseen changes in ecosystems that have adversely affected plant, animal, and human 
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communities (Minnich 1983; Keeley et al. 2005; McCollough et al. 1998; Savage and Mast 

2005).  For example, because plant communities are adapted to specific fire regime conditions, 

wildfire suppression has often augmented new selective pressures that favor non-native species 

that exploit the different conditions and eventually replace native species (Keeley et al. 2005).   

Wildfire is also studied as a management tool.  Controlled burns are often used as part of 

restoration and management techniques to reverse or minimize changes caused to the 

environment by human activities (DellaSala &Hanson 2015).  While these burns are used to 

replicate natural fires, suppress invasive species, and restore native habitats (DellaSala &Hanson 

2015), much debate over the ‘level’ of restoration exists.  Managers must decide whether 

restoration means returning lands to pre-human or pre-European ecosystems, for example.      

1.4 Wildland-Urban Interface 

The Wildland-Urban Interface is an area of much research and analysis for scientists, land 

managers, and public policy makers (Bosworth 2004).  As this area is the mixing of undeveloped 

and developed land, it is often rife with wildfire issues.  The majority of the interface occurs on 

private land as well (Theobold and Romme 2007).  In addition, this interface pattern has raised 

many concerns among those who oversee natural resources and forestland, as it complicates 

management practices and threatens the sustainability of national forests (Bosworth 2004).  

Urban extent is also expected to increase, from 3.1% to 8.1%, by 2050 (Nowak and Walton 

2005).  Therefore, understanding the fire regime types that occur in the WUI is important so that 

management practices can focus on both human and ecological safety inside zones.    

 Florida’s WUI, which encompasses more than 11,000 square kilometers, is predominately 

characterized (75.1%) by ‘high’ (variable) vegetation types (Theobold and Romme 2007), which 

are very susceptible to wildfire. The historical fire regime before human intervention consisted of 
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‘low’ or ‘mixed’ severity vegetation types, which are less vulnerable to wildfires.  Treatment of 

the high variable vegetation via thinning or low intensity prescribed burns can reduce fire 

hazards and restore historical forest structures back to low or mixed vegetation types (Theobold 

and Romme 2007).      

1.5 Thesis Organization 

Chapter 1 – Introduction – This chapter provides background context, an overview of the 

methodology, and justification for the research.   

Chapter 2 – Literature Review – This chapter introduces an overview of literature related the 

analysis of different types of variables used in wildfire studies, the use of different research 

methodologies, and the use of surveys as data gathering. 

Chapter 3 – Methodology – This chapter is a description of the data sets, methods and tools used 

to perform the analysis.  The different statistical methods are introduced and the steps taken are 

provided in detail. 

Chapter 4 – Results - This chapter presents the results of the data analysis. 

Chapter 5 – Discussion - Analysis of the data provided in the results is provided in this chapter, 

as well as further discussion of limitations and future work.   
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Chapter 2: Literature Review 

There are a few trends in research approaches and methodologies in the spatial and temporal 

study of wildfire.  From analyzing causal relationships between variables to analysis of different 

statistical techniques, the methods of understanding the patterns of wildfire have a few recurring 

themes and these themes are reviewed in this section and some methods are applied further in 

this research.  

Specifically, wildfire is studied around the world using certain relevant variables and 

methods.  From the social and economic impacts, to meteorological effects, to their clustering 

patterns, wildfire variables are varied and expansive.  In addition, researchers apply an 

assortment of research designs to include cluster analysis, surveys, and correlation methods.  

This review investigates the different types of variables used in the three most common research 

designs.   

2.1 Wildfire Variables 

Three major themes seen in wildfire analysis come in the form of socioeconomic 

variables, critical meteorological factors, and pertinent point data which are used as a means of 

assessing causal relationships concerning the structure and intensity of wildfire clustering.  

While the methodologies utilized in each study are slightly different, the variables utilized in the 

following reviewed studies fall into one of the three categories above.  For example, 

socioeconomic variables like population, access to natural areas, income, age of structures, 

education, and employment are commonly examined.  In addition, meteorological variables like 

precipitation, humidity, and temperature are often analyzed in wildfire studies.  Point data 

variables focus almost exclusively on geospatial locations of wildfires.  The review of research 

studies did reveal that socioeconomic variables were more commonly analyzed than either 
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meteorological or point data variables. 

 For example, in two studies, one by Asgary, Ghaffari, and Levy (2010), and another by 

Corcoran et al. (2007), the spatial and temporal patterns of structure fires, which often share 

similar causation factors with wildfires, are investigated in Toronto, Canada, and South Wales, 

England respectively.  The researchers aim to analyze the various causes of structure fire to 

determine the extent to which these data can be used as a baseline to improve fire prevention 

activities.  By using kernel density estimation and average nearest neighbor analysis of fire 

events in different neighborhoods in Toronto, Asgary and colleagues find that structure fire is 

more common on late night weekends during the spring.  In addition, they determine fire to be 

spatially clustered in downtown areas, along major streets, and in lower income regions.  This 

result is similar to the findings of Corcoran et al. (2007), which argue that more affluent areas 

see less fire and denser regions experience more fire.  These results allow fire prevention 

officials to focus on certain times of the day and the year within specific urban areas.  Areas that 

are spatially more likely to have repeat fires can be focused on for both education and 

preventative purposes. While both papers focus on structural fires, the types of independent 

variables employed in the studies of structure fire have direct relevance to the study of human 

caused wildfire ignitions, as factors like income, employment, and others also contribute to 

wildfire ignition. 

 Socioeconomic variables can also be used to analyze wildfire along with structure fire. 

Feltman et al. (2012), use a geospatial approach to identify socioeconomic variables that 

contribute to wildfire occurrence in South Carolina.  By using a hot spot analysis, the researchers 

create buffer zones around each fire incident and convert each feature into a weighted class.  The 

results of the hot spot analysis reveal that the lower half of the state has more intense days of 
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wildfire events.  That region is found to be more agricultural than upper South Carolina. 

Additionally, high poverty rates, low education attainment, and low road densities are significant 

variables in predicting wildfire.  

Romero-Calcerrada et al. (2008) study the socioeconomic causal factors of wildfire in the 

southwest of Madrid, Spain.  By using the Bayesian statistic instead of a hot spot analysis, 

different socioeconomic variables are integrated with conditional probabilities to determine the 

relative importance of each variable on wildfire occurrence.  The researchers also investigate 

spatial association between the socioeconomic variables and wildfire occurrence and create 

evidence maps for further study.  Results from this analysis show that spatial patterns of wildfire 

are strongly associated with human access to nature.  Unlike Feltman’s (2012) team, who 

contend low road densities are a wildfire predictor, Romero-Calcerrada et al. (2008) assert that 

proximity to roads and urban areas intermixed with wild areas significantly impact wildfire 

clustering.       

These studies reveal the extreme impact of socioeconomic factors on wildfire ignition in 

comparison to meteorological or point data variables, and that causation factors can be unique to 

human settlements.  By studying many different socioeconomic variables in combination, the 

complex cauldron of ignition causation can be teased out so that first responders to both structure 

and land fires can be better equipped to minimize damages specific to their area, as different 

variables will influence wildfire ignitions in different regions. 

Meteorological and point data variables will be identified and discussed in more detail in 

the following sections that investigate the most common methods used in wildfire research.  

2.2 Cluster Analysis 

Using cluster statistics to study wildfire with the use of socioeconomic variables is 
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common.  In addition, these straightforward approaches discussed below often use 

meteorological and point data variables such as aspect, slope, or climate indicators as research 

variables.  The recurring feature of these cluster analysis studies is their reliance on spatial 

randomness assumptions. 

Wing and Long (2015) examine whether patterns exist in the spatial and temporal 

distribution of large fires in Oregon and Washington over a 25-year period.  These patterns and 

their relationship to climate variables (temperature, precipitation, etc.) are also investigated using 

GIS methods.  The researchers perform an average nearest neighbor analysis and quadrat 

analysis.  A hot spot analysis using the Getis Ord G* statistic and Moran’s I are also used to 

measure the significance of clustering.  The Getis Ord G* statistic determines how concentrated 

low or high values (cold or hot spots) are in a specific study area.  This statistic, along with 

Moran’s I, are inferential statistics and the results are analyzed within the context of a null 

hypothesis.  Moran’s I is a spatial autocorrelation measure that helps determine whether 

clustering or dispersion are due to random chance or because of spatial processes at work.  Wing 

and Long’s (2015) results indicate an increasing trend in fire frequency, extent, magnitude, and 

fire season duration over a 25-year period.  In contrast to this paper’s use of meteorological 

variables, all of the following papers compare analytical techniques to find the most accurate and 

realistic portrayal of wildfire clustering using only point data variables.   

Spatio-temporal wildfire clustering examines the assumption of constant intensity within 

each fire. Hering, Bell, and Genton (2009) reanalyzed wildfire data from the St. Johns River 

Water Management District in northeastern Florida with an inhomogeneous version of a 

homogenous K-function.  A homogenous K-function is a statistical tool for detecting aberrations 

from spatial homogeneousness.  Whereas homogenous functions examine y, the dependent 
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variable, inhomogeneous functions evaluate x, the independent variable.  Along with an 

inhomogeneous K-function, a K-cross function is also utilized to detect relationships between 

points of two different types of wildfire ignitions.  Simple models based on meteorological 

covariates, like humidity and temperature, are created from the K-cross analysis and analyzed 

with regression models.  Once the research is completed, the researchers find that homogenous 

functions performed in previous studies and the K-cross functions do not realistically represent 

clustering.  The inhomogeneous function, overall, performs better than the other functions at 

displaying clustering.  The models utilized indicate, to a limited degree, some of the 

characteristics of wildfire occurrence, but more precise models are to be expected from 

improvements in statistical computing techniques over time.                                                           

Statistical analyses of wildfire that use K-functions are used regularly.  In a study by 

Juan, Mateu, and Saez (2012), research is conducted to provide analytical probabilistic models 

that mimic the reality of wildfires to assist land managers and foresters in Catalonia, Spain.  

Several different techniques are used and compared.  First, a homogeneous Poisson process is 

used to analyze spatial clustering.  The Poisson model used within this study builds confidence 

intervals based on a corresponding K-function from several simulations under the Poisson 

assumption of complete spatial randomness.  Within the Poisson model, the second technique 

studied is an inhomogeneous Thomas model that analyzes each year and cause of ignition to 

better fit the clustering model. This model evaluates the joint effects of covariates.  The final test 

of spatial patterns is seen in the use of the Area-Interaction point process model.  This model is 

chosen because it is a more inclusive spatial model that displays inhomogeneity that considers 

covariate trends in an infinite number of interactions.  All models are then fitted with a 

Papangelou function to find conditional intensity and create risk maps.  Of all the techniques, the 
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Area-Interaction model is found to best fit the behavior of wildfire for most years and causes.   

The fuzzy C-means method is a data clustering technique in which a dataset is grouped 

into clusters with every point belonging to every cluster to a certain degree.  A study by Di 

Martino and Sessa (2011) compares the accuracy of the fuzzy C-means algorithm against the 

extended fuzzy C-means (EFCM) algorithm when analyzing wildfire data from Santa Fe, New 

Mexico.  The function begins by guessing the location of cluster centers and assigns membership 

values to each cluster.  Through an iterative process, the function eventually moves cluster 

centers to a more accurate location within the dataset.  The researchers argue that the EFCM 

algorithm is superior because of three advantages over the original FCM: robustness to noise and 

outliers, linear computational complexity, and automatic determination of the optimal number of 

hotspots (Di Martino and Sessa 2011).   

 The EFCM method is used when analyzing wildfire data and is found to be very stable 

and separated certain clusters the FCM method could not.  In addition, the EFCM method is 

found to be sensitive to subtle changes in locational clusters and appears to be better suited to 

complex and dense point pattern analysis than the FCM method.   The development of more 

robust mathematical models that utilize point data is the result of enhanced computational power 

of modern computers melded with highly accurate point information.  

 As fire is a spatially complex phenomenon, applying and comparing important statistical 

methods utilizing point data is paramount to building a deeper understanding of wildfire 

causation.  Nevertheless, these methods are but a mathematical model and may not represent the 

true complexity of the factors that influence the initial ignition and any subsequent spread; 

however, as computer models become more intricate, it is possible that wildfire could be 

modeled with greater accuracy and precision.  Such accuracy would allow for better crisis 
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mapping and response in the future.  As a caveat, it should be noted that this thesis does not 

perform modeling of the kind discussed above; correlations and hot spot analyses are conducted 

instead.    

2.3 Surveys 

Additional research also reviews the efficacy of various wildfire education programs for 

private landowners and campfire education/regulation efforts in parks and other camping 

regions.  These particular socioeconomic variables have relevance when collected using survey 

instruments that measure opinion as well as knowledge, skills, and abilities. For example, Reid 

and Marion (2005) assess the effectiveness of three different campfire policies (outright ban, 

designated campfires, and unregulated campfires) as a means to protect resources in seven 

protected areas.  The study finds that while the unregulated campfires are the worst cause of 

resource damage, similar to tree cutting and wildfire, the outright ban has produced negligible 

differences in overall damage prevention.  The researchers concluded that designated campfires, 

along with education efforts, are the most effective means in preventing resource damage.  Colle 

and Dalle-Molle (1982) find that where and when campfires are constructed is a longstanding 

issue, as well.  This study recommends that since campfires are popular features of camping, 

minimizing areas where campfires are acceptable and enforcing regulations concerning campfire 

safety are important measures (contrary to the education efforts that Reid and Marion (2005) 

evaluate) that will help minimize campfires that get out of control.   

 Reams et al. (2005) discuss the challenges associated in reducing human caused wildfire 

incidence in the WUI.  The researchers surveyed the regulatory and voluntary wildfire mitigation 

organizations in 25 different states.  The methods and obstacles of the different programs are also 

discussed.  Results indicate that education, homeowner assistance, wildfire risk 
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assessments/mapping, and regulation implementation are the most common education methods 

used by all the wildfire mitigation organizations.  While this research does not cover campfires, 

it still strengthens the notion that education efforts are important in reducing human caused 

ignitions both near the home and in the wild.  However, other socioeconomic variables such as 

resource limitations and negative attitudes of residents are ranked as the largest obstacles in 

mitigating wildfire through education efforts.  In addition, budgetary restraints and resistance of 

property owners to removal of fuel buildup are also variables that limit the success of the 

programs.  Survey research specific to the state of Florida on regulatory and voluntary wildfire 

mitigation organizations was not found. 

 Surveys allow various organizations to target their resources and plan effectively when 

interfacing with the public.  As homeowners and campers can have a diverse range of opinions 

of and knowledge concerning regulations and education efforts, surveys allow their designers to 

focus on the efforts that will provide the most cost benefit to the organization.  As it stands, the 

Florida Forest Service offers wide-ranging education options available for the state overall and 

individual counties.   Additionally, Firewise Communities are found in many communities and 

they provide robust education program and resource materials concerning wildfires (Firewise, 

2016).    

2.4 Correlation 

Correlation is another common analytical method used to study wildfire activity.  

Correlation is used to quantify the strength of association between two variables.  The correlation 

coefficient produced from analysis measures the linear association between two variables, and is 

useful when comparing wildfire variables to socioeconomic, meteorological, or other variables. 

Brenner (2001) examined total acreage burned in wildfires in Florida against indices of 
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sea surface temperatures and pressure anomalies in the Pacific Ocean during El Niño Southern 

Oscillation (ENSO) periods.  The ENSO period provides ample wildfire study options, and is 

also analyzed by Chu, Yan, and Fujiuka (2002) in a similar paper about seasonal wildfires in 

Hawaii.  Both papers conclude that there is a significant relationship between sea surface 

temperatures, pressure anomalies, and acreage burned by wildfires. Brenner (2001) found a 

relationship that indicates up to 50% of the variance in the acreage burned can be attributed to 

changes in Pacific Ocean meteorological conditions; Chu and associates found a positive 

correlation between the number of ignitions and acreage burned in the summer or spring after an 

ENSO event in Hawaii.  

Westerling et al. (2006) also study the relationship between wildfire activity and select 

meteorological variables.  By hypothesizing that wildfire activity has been increasing in U.S. 

Forests, the researchers compare large wildfire events against hydro-climatic and land surface 

data.  Correlation results reveal that large wildfire activity increased significantly in the mid-

1980s, with higher wildfire frequency, longer duration, and longer fire seasons during periods of 

drought.  In addition, areas where human land use changes have had minimal effect on fire risks 

are strongly associated with increasing spring and summer temperatures and, thus, earlier fire 

seasons. This ties into a study by Flannigan and Harrington (1988), which investigates the 

correlation between meteorological variables and acreage burned by wildfire in nine Canadian 

provinces.  However, the variables, like rainfall individually, explain only some (11–30%) of the 

variance in total area burned.  The researchers conclude that such results indicate that bad fire 

months are independent of rainfall amount, but dependent instead on rainfall frequency, 

temperature, and relative humidity, the last of which was also identified in the Westerling’s study 
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as significant.     

Unlike the studies above that use only climate variables, Mercer and Prestemon (2005) 

examine Florida’s wildland-interface relationships using socioeconomic variables.  At the county 

level, statistical methods like Pearson’s correlation coefficient show that population and poverty 

are positively correlated to wildfire acreage burned, but that unemployment is negatively 

correlated to total ignitions.  Additionally, Pew and Larsen (2001) use both climate and 

socioeconomic variables to investigate major trends in type of human caused wildfires, their 

seasonal patterns, and if the number and size of wildfire occurrences have increased over time on 

Vancouver Island in Canada. To determine if monthly patterns vary by wildfire cause, a 

Spearman rank sum test of correlation is used; results indicate that industrial practices, most 

notably logging, contribute to the largest fires overall.  Human recreation causes the most fires in 

terms of number, but the fires are significantly smaller in size.          

2.5 Conclusion 

The literature reviewed above reveals that spatial statistics provide important insights into 

the behavior and distribution of both structure fires and wildfire, especially wildfire caused by 

humans.  In the case of wildfire specifically, this body of research reviewed asserts that wildfire 

clusters around places frequented by people and machinery, and that the clustering can be 

explained by various socioeconomic variables (Prestemon et al. 2013).  In fact, it could be 

argued that socioeconomic variables play the most significant role in wildfire ignition because 

humans are the largest cause of those ignitions.  Also, the statistical models discussed have the 

potential to be useful for forest policy development and wildfire management, though their 

usefulness will not be analyzed in this thesis.  Interestingly, very few of these studies combine a 



 

19 

 

hot spot and correlation analysis together to see how they pair together as a methodology. 

These statistical models shown above provide a strong theoretical framework in wildfire 

occurrence theories and in the development of wildfire management interventions (Prestemon et 

al. 2013).  These models allow development of additional analytical tools that will benefit land 

managers as they respond to wildfire occurrences.  Statistical models also help to quantify 

uncertainties present in older physical models and allow for more precise decision making 

processes (Taylor et al. 2013).  

As the statistical modeling of wildfire is important, one major weakness of current spatial 

modeling in the United States and abroad is that there is no unified system of wildfire record 

keeping (Short 2014).  Indeed, the research for this thesis began with a search for wildfire data in 

Florida.  Readily available and valid fire data came only with point data for national forests – 

data for the entire state had to be obtained by emailing the Florida Forest Service directly.  

Additionally, the availability of polygon data is questionable and therefore this study relied 

simply on point data. Also, the method of data collection (coordinate systems, attribute data, etc.) 

varies dramatically with each fire management group.  All the research conducted in the 

literature above used different formats and kinds of wildfire data, making direct comparison 

difficult.   

Studying the spatial patterns of wildfire data also suffers from the Modifiable Areal Unit 

Problem (MAUP) (Dark and Bram 2007).  Each study partitioned their data in different ways to 

suit their research purposes and by doing so the results are influenced by the boundaries of each 

partition.  This introduces possible bias, reliability, and validity concerns into the research as the 

results can be modified to suit the aims of those doing the work.  Unfortunately, this problem has 
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no real remedy and must be taken into consideration when approaching any study of wildfire.   

Overall, the use of spatial statistics in studying wildfire is becoming more common and 

methodologies more varied.  As such, research provides for important policy recommendations 

and management techniques, continued study is necessary.  With the constant advances in 

technology and data processing power, it is expected that the spatial and temporal study of 

wildfire will continue to become more precise and valuable to those who need it.   
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Chapter 3: Methodology 

This chapter explains the boundaries of the study areas, the data sources required for this study, 

and the methodology used to test the hypotheses.  As discussed earlier, the primary research 

hypothesis posits a relationship between wildfire incidence type and four different variables.  

Analysis using Pearson’s correlation was performed to link spatial location to variables that may 

explain fire incidence.  ArcGIS Desktop and its geoprocessing tools were the main component 

used to analyze the spatial location of wildfire.  The Optimized Hot Spot Analysis, Emerging 

Hot Spot Analysis, and Directional Distribution Analysis were all used to examine potential 

clustering of wildfire incidence.  The VIIRS Nighttime Light data revealed population clusters 

and was used as a visual reference for hot spot clusters and an added level of population density 

analysis.  All of the analytical tools helped to test the hypothesis that population growth and 

population numbers positively influence the number of human caused wildfire ignitions, while 

high temperatures and low precipitation increase lightning caused fires.   

3.1 Study Area and Scale of Analysis 

The State of Florida was selected because it provides a wealth of information concerning 

wildfire incidence.  Since the 1980s, the state has logged over 163,000 wildfires.  Florida has an 

identifiable wildfire regime and an active forestry service that documents all wildfires in the 

state.  Therefore, the wildfire data available are well maintained and can be used for cluster 

analysis.  Florida is also a popular retirement destination choice and has steady population 

growth.  To allow for more localized analysis for the directional distribution analysis, the state 

was separated into four different regions used by the Florida Forest Service (FFS) as  
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management regions (Figure 2). Temporally, this research separated the data into five-year 

blocks, starting with 1985. 

 

 

Figure 2 Map of Florida and Study Regions. Source: freshfromflorida.com 
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3.2 Data and Sources 

Table 1 Summary of Required Data 

 

Dataset File Type Data 

Type 

Details Source Temporal 

Resolution of 

the Dataset 

Wildfire 

Point Data 

Shapefile  Point 

Feature 

Class 

Attributes include 

location, date 

started, date ended, 

cause, region, and 

more 

Florida Forest 

Service 

January 1981 

to December 

2015 

Population 

Data 

Excel 

.xlxs 

Polygon 

Feature 

Class 

Incorporated, 

unincorporated, and 

county level 

population estimates 

Florida Office 

of 

Demographic 

and Economic 

Research 

1975 to 2015 

Precipitation 

Data 

Excel 

.xlxs 

Point 

Feature 

Class 

Monthly 

precipitation values 

from stations around 

Florida 

National 

Oceanic and 

Atmospheric 

Administration 

(NOAA) 

January 1985-

December 2014 

Temperature 

Data 

Excel 

.xlxs 

Point 

Feature 

Class 

Monthly 

temperature 

averages from 

stations around 

Florida 

NOAA January 1985-

December 2014 

County 

Boundary 

Shapefile Polygon 

Feature 

Class 

Outlines of all 

Florida counties 

ArcGIS 

Online- 

Florida 

Department of 

Agriculture  

May 2015 

VIIRS 

Nighttime 

Lights  

GeoTIFF Image Image of night time 

lights across the 

United States 

NOAA May 2012 

 

Table 2 Summary of Required Software 

 

Software Manufacturer Function Access 

ArcGIS Desktop 

10.3.1 

Esri Hot Spot Analysis; 

Emerging Hot Spot 

Analysis, Directional 

Distribution Analysis 

USC GIST Server 

RStudio R Core Team Pearson’s Correlation 

Analysis 

Personal desktop 
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The FFS maintains a detailed geodatabase containing point data about wildfires across 

the state.  These data were available for free after an email exchange with Karen Cummins, GIS 

Analyst for the Florida Forest Service.  The county shapefile of Florida was downloaded from 

ArcGIS Online.  The Florida Department of Agriculture (under which the FFS operates) 

uploaded the information to ArcGIS Online for research analysis.  The precipitation and 

temperature values were available on National Oceanic and Atmospheric Administration’s 

(NOAA) website and contained X, Y coordinates that allow it to be georeferenced into ArcMap.  

The population data were made available by the state government of Florida and were joined to 

the county dataset within ArcMap.  Finally, the VIIRS data were available from NOAA and was 

accessed on September 23, 2016 when the May 2012 data was downloaded.  These data are 

available as a GeoTIFF and are developed into monthly cloud-free composites at a 750-meter 

resolution.  

 The wildfire incidence dataset has information dating back to 1981.  The data from the 

1980s uses the Public Land Survey System (PLSS), while the rest of the data uses a standard 

coordinate system. The use of different coordinate systems does not affect the accuracy of the 

hot spot analysis.  The wildfire point data is also the estimated center of the fire, and while 

acreage burned is included in the attribute table, direction and spread of the fire is unknown.  The 

county dataset contains simple polygon elements with no attached demographic data, though 

such data are available through the U.S. Census Bureau.   

3.3 Methodology 

Figure 3 below shows the workflow that was employed in this thesis.  Several different 

types of data were gathered and prepared for analysis via correlation and spatial analysis in 
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ArcGIS.  Once investigated, the data were compared against each other to reveal possible 

connections and correlations.    

 

Figure 3 Summary of Workflow 

3.3.1 Pearson’s Correlation Analysis 

The first step of analysis was to complete a correlation test on the dependent and 

independent variables to determine if there is a relationship.  The main purpose was to test the 

hypothesis to see if lightning caused fires incidences increase during times of lower precipitation 

and higher average temperatures, and if human caused fire incidences also increase as population 
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and population growth rate increases.  Data for each five-year block was compiled in an Excel 

CSV document so that total human and lightning caused fires were totaled by county along with 

average precipitation, average temperature, population growth, and total population.  Once 

compiled, the data were imported into RStudio and a Pearson’s Product Moment Correlation 

analysis was performed.  The year block covering 2000–2004 was also expanded into single 

years and correlation was run between fire causes and total precipitation for each year.  This was 

conducted to see if the five-year blocks were masking any correlation between variables.    

3.3.2 Optimized Hot Spot Analysis 

Before any analysis could occur, the wildfire data for Florida was projected to an 

appropriate projected coordinate system.  Projected coordinate systems are necessary for proper 

distance and/or area measurements when performing spatial analysis of the sort this research was 

attempting.  For this investigation, the Albers Conical Equal Area projected coordinate system 

was used.  In this coordinate system, all areas are proportional to the same areas on earth, and 

distance is most accurate in the middle latitudes where Florida is located.  

 After being projected to the appropriate coordinate system, the data were selected and 

separated into separate layers (and data frames) for each five-year block of analysis.  Data were 

worked on separately for each five-year block, and then brought together for analysis at the end.     

While the Optimized Hot Spot Analysis tool did the following steps automatically, they 

are covered in detail to provide an appropriate framework for the methodology.  To begin a Hot 

Spot analysis, the wildfire point data must be manipulated in a few ways before being acceptable 

for use.  The very first step the tool performed was an average nearest neighbor analysis.  This 

analysis calculated, as described by the name, the nearest neighbor based on the average distance 

from each feature to its nearest neighboring feature.  Five values were returned from this 
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analysis, with the most important being the z-score and the observed mean distance.  The z-score 

is a measure of statistical significance that indicates whether the data is clustered, random, or 

dispersed.  The observed mean distance was used in another step of the analysis that works 

towards a hot spot analysis and is discussed later.  

As the purpose of this initial study was to assess incident intensity instead of the spatial 

clustering of a specific attribute in the data, the points were simply aggregated.  This was done 

using the Integrate and Collect Events tools.  The Integrate tool maintains the integrity of shared 

feature boundaries by making features coincident if they fall within a specified X and Y 

tolerance.  Once all the datasets are integrated, the point events were collected and converted to 

weighted point data.  This was an important step, as the Hot Spot analysis required weighted 

points rather than individual incidents. 

 A Hot Spot analysis works best when certain variables can be filled in to give a more 

accurate picture of the spatial forces at play.  One of the forces was the distance band.  The 

distance band provided the scale of analysis and determined what features are considered 

neighbors.  To calculate the most appropriate distance band, several steps were taken.  First, 

Calculate Distance Band from Neighbor Count analysis was implemented.  This tool finds the 

peak distance that ensured that each feature has one neighbor.  

After finding the distance bands to ensure each feature has at least one neighbor for 

analytical purposes, the next step the Optimized Hot Spot Analysis implemented was the 

Incremental Spatial Autocorrelation analysis.  This tool measured spatial autocorrelation for a 

series of distances and created a line graph depicting those distances and corresponding z-scores.  

Z-scores reflect the intensity of spatial clustering and peaks in the graph indicated distances 

where spatial processes that promote clustering were most pronounced.  Note that the 
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incremental distance measurement used by this tool was determined from the observed nearest 

neighbor distance that was created during the average nearest neighbor analysis; the starting 

distance was the distance band discovered using Calculate Distance Band tool.  The peak 

distance and z-score returned from this analysis was the number used for the distance band in 

Hot Spot Analysis.   

After determining the peak for each dataset, the Hot Spot analysis was finally utilized.  

An important feature of a Hot Spot analysis is the Conceptualization of Spatial Relationships, 

which requires the tool to specify what kind of spatial relationship is at play.  The Optimized Hot 

Spot Analysis tool determined this relationship automatically and required no input from the 

user. 

The data was aggregated using the aggregation scheme, 

COUNT_INCIDENTS_WITHIN_FISHNET_POLYGONS, which created a fishnet polygon 

mesh.  The fishnet was positioned over each incident and points were counted within each 

polygon.  This aggregation scheme was used because it is simple and appropriate for point 

feature data.  For the human caused 2010–2014 block of wildfire, VIIRS Nighttime Light dataset 

was used to see if hot spot clusters occur near areas of light (populated areas).  The VIIRS 

Nighttime Light Data was projected to match the Albers Conical Equal Area Projection.   

3.3.3 Emerging Hot Spot Analysis 

The Emerging Hot Spot tool was used to identify trends in data.  The tool works to 

highlight new, sporadic, oscillating, intensifying, and diminishing hot and cold spots.  To do so, 

the first step was to create space-time cubes using the Create Space Time Cube tool in the Space 

Time Pattern Mining toolbox.  The discovery date of each wildfire was used as the time 

component, with the data being broken into 4 week blocks as the time step interval to replicate 
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one year. The tool then aggregated all the points into space-time bins.  These space-time bins 

were then used in the Emerging Hot Spot Analysis tool also located in the Space Time Pattern 

Mining toolbox.  A hot spot analysis was performed first by the tool so that a Z-score and p-

value was obtained.  Then, the Mann-Kendall statistic, a rank correlation analysis, was 

performed on every aggregated bin.  As the expected sum for each bin value is zero, any 

variance from zero was compared to determine if the difference was statistically significant.  The 

location was then assigned a category type as listed above (sporadic hot spot, etc.).  To better 

study emerging trends in wildfire activity, an Emerging Hot Spot Analysis was performed on 

each individual year of the study span.     

3.3.4 Directional Distribution Analysis 

As wildfire incidence has the potential to move in time and space due to factors like land 

use change affecting where wildfire can ignite, a directional distribution analysis was used to 

analyze whether wildfire was showing any directional trends across each of the study regions.  

This analytical tool also helped evaluate the primary hypothesis that population growth and 

population numbers positively influence the number of human caused wildfire ignitions by 

testing whether the fire ignitions moved closer to wildland-urban interfaces and populated areas, 

while high temperatures and low precipitation increase lightning caused fires.  The Directional 

Distribution tool in the Spatial Statistics toolbox measured directional trend by calculating the 

standard distance in the x and y directions, thus creating an ellipse that covers the distribution of 

wildfire incidence.  Standard deviational ellipses were plotted for the first five-year block (1985-

1989) and the last (2010-2014) to show movement over time. 
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Chapter 4 Results 

Chapter 4 documents the results of the Pearson’s Correlation Analysis, Hot Spot Analysis (with 

VIIRS data), Emerging Hot Spot Analysis, and Directional Distribution Analysis, each of which 

tested critical elements of the research hypotheses that population growth and population 

numbers positively influence the number of human caused wildfire ignitions and that high 

temperatures and low precipitation increase lightning caused fires.   All the exploratory variables 

were tested against the researched causes of fire to see if there were any statistically significant 

correlations.  These correlations were then assessed against cluster analysis and trend 

distributions to see if the spatial arrangement of wildfire matched the correlation test results.  

 This chapter is broken into several sections to present the results of the analysis. Section 

4.1 provides visualization of the independent variables used in the analyses.  Section 4.2 covers 

the products of the Pearson’s correlation testing by providing tables and scatter plots.  Section 

4.3 provides maps of the Hot Spot Analysis performed for each of the five-year blocks.  In 

Section 4.4, maps and documentation are displayed with the results of the Emerging Hot Spot 

Analysis.  Finally, Section 4.5 offers the results of the Directional Distribution Analysis.   

4.1 Visualization of Data 

 The data used to run correlation analysis are discussed below. Tables showing the 

population size, density, and growth by county for each five-year analysis period, average 

precipitation, average temperature, and the number of fires caused by lightning and humans are 

included in the Appendix.  However, a brief description of the data is included below.  
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 The data revealed that Miami-Dade was consistently the most highly populated county in 

the state.  This title persisted even with relatively low population growth within the county most 

years and very high population growth within other counties.  Population growth, in general, was 

relatively high until 2010–2014, which showed a significant drop in growth across the entire 

state, with several counties showing population losses.  Precipitation remained relatively 

constant across all year blocks and across the counties in general, though some counties 

displayed years of low precipitation in comparison to the rest of the state.  For example, in the 

1990–1994 block, Hillsborough County received just less than 40 inches of rain, while Martin 

County received just less than 74 inches.  Both counties are in central-south Florida, though 

Hillsborough County is on the Gulf side and Martin County is on the Atlantic; weather patterns 

influenced by the abutting water bodies might explain the large difference in precipitation 

patterns. 

4.2 Pearson’s Correlation  

The results of the Pearson’s correlation coefficient are provided below in charts and 

scatterplots to show the p-value, correlation coefficient, and visual spread of the data.  The 

correlation tables below detail the results from the six, five-year blocks.  The results show that 

that correlation between certain variables was only significant during certain five-year blocks, 

and some variables showed no statistically significant correlation across all five-year blocks.  
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Table 3 Lightning Fire Correlation Coefficients and Significance 

 

 Lightning Caused Fire Correlation with: 

 

 

Precipitation Population Population 

Growth 

Temperature 

1985-

1989 

cor: 

0.002010057 

cor:  

-0.01256241 

cor: 

0.4561457*** 

cor: 

0.1215951 

1990-

1994 

cor:  

-0.3447747** 

cor: 

0.01773975 

cor:  

0.05532496 

cor: 

0.03581129 

1995-

1999 

cor: 

0.07919431  

cor: 

0.1137356 

cor:  

-0.02015204 

cor: 

0.03835632  

2000-

2004 

cor:  

-0.2103873 

cor:  

0.182524 

cor: 

0.3398065** 

cor: 

0.08670618 

2005-

2009 

cor:  

-0.2381328* 

cor: 

0.1096185 

cor:  

-0.06213862 

cor: 

0.0324565 

2010-

2014 

cor:  

-0.1196185 

cor: 

0.09793746 

cor:  

0.06805902 

cor:  

-0.02978265 

* p<0.05; **p<0.005; ***p<0.005 

 

Table 4 Human Fire Correlation Coefficients and Significance 

Lightning Caused Fire Correlation with: 

 

 

Precipitation  Population Population- 

Growth 

Temperature                                        

1985-

1989 

cor:  

-0.230888* 

cor: 

0.05568454 

cor:  

-0.05357188 

cor: 

0.1956322 

1990-

1994 

cor: 

-0.1292159 

cor: 

0.02714093 

cor: 

0.01676806 

cor: 

0.02800138 

1995-

1999 

cor: 

0.04073071 

cor:  

0.1739748 

cor:  

-0.03839721 

cor: 

0.02448262 

2000-

2004 

cor: 

0.1834783 

cor:  

0.1370713 

cor: 

0.1609849 

cor: 

0.1213834 

2005-

2009 

cor: 

0.1102893 

cor: 

0.008414373 

cor: 

0.01731224 

cor: 

0.09276631  

2010-

2014 

cor:  

-0.145461  

cor: 

0.05208139 

cor: 

0.006041457  

cor: 

0.09453123 

*p<0.1 

As shown, the relationship between lightning caused wildfire ignition and precipitation 

was only negatively correlated in two year sets, with 1990–1994 showing a moderately 
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negatively correlation, and 2005–2009 revealing a very weak negative correlation.  Ignitions 

caused by lightning also correlated positively with population growth in 1985–1989 and 2000–

2004, with the former indicating a strong positive correlation and the latter a moderate positive 

correlation.  Human caused wildfire ignition only showed one very weak negative correlation 

when compared against precipitation in 1985–1990.  Scatter plots of statistically significant 

lightning caused wildfire ignitions and their independent variables are shown in Figures 4 and 5.  

 

Figure 4 Scatterplot of Average Precipitation and Lighting Caused Ignitions 

 

Figure 5 Scatterplot of Population Growth and Lighting Caused Ignitions 
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The five-year block 2000–2004 was expanded into individual years to see if the time 

length of the five-year blocks was hiding correlations.  The results indicated that correlation were 

not being masked by the time frame.  No statistically significant correlations existed between the 

different fire causes and precipitation in this five-year block (Table 5). 

Table 5 Relationship between Fires Types and Precipitation 

 

 

Human 

Fires and 

Precipitation 

Lightning 

Fires and 

Precipitation 

2000 cor:  

-0.08589533 

cor:  

-0.05336196 

2001 cor: 

-0.05992999 

cor:  

-0.03093068 

2002 cor:  

-0.0390082 

cor:  

-0.02671132 

2003 cor: 

0.10425353 

cor:  

-0.1278587 

2004 cor: 

0.1074821 

cor: 

0.06861574 

 

4.3 Hot Spot Analysis 

 Figure 6 displayed the results of the Hot Spot Analysis that spanned 1985–1989.  As 

evident from the data, several large hot spot clusters existed across the entire state.  There was a 

large, circular cluster in the northwestern panhandle, centered predominately in Santa Rosa 

County.  Another hot spot existed in the eastern side of the panhandle inside of Suwannee 

County.  Close to it was a large hot spot that begins in Duval, Baker, and Clay counties in the 

northeastern corner of the state and ran down through multiple counties to Hernando and Pasco 

counties in central Florida.  On the central eastern coast, another cluster was in Volusia County.  

In the middle of central Florida, a cluster was also identified in Polk County.  Finally, a large 

cluster existed along the Gulf of Mexico side of central Florida in Sarasota County. Central 
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Florida, in particular, was highly populated with large cities like Daytona Beach and Sarasota 

within Volusia and Sarasota counties respectively.  However, Pasco County, while having a 

relatively large population (~272,000), did not have a major city; Hernando County was not 

highly populated.   

 The results of the Hot Spot Analysis that spans 1990 to 1994 are shown in Figure 6 as 

well.  Like in the previous data, a hot spot cluster was localized around Santa Rosa County in the 

northwestern panhandle.  The hot spot in Suwannee County disappeared, but the long band of 

clustering from Duval County in the northeast to Polk and Hernando counties was still present 

and stretches between Jacksonville and other small cities.  The hot spot cluster in Volusia County 

had grown larger and covered a large portion of Flagler County above Volusia.  The cluster in 

Polk County remained in central Florida, and the hot spot in Sarasota along the coast expanded 

into Lee and Charlotte counties.  Miami-Dade County on the southern tip of Florida also had a 

small cluster that was not present in the previous figure. 

Figure 7 showed the results of a hot spot analyses that covers 1995 to 1999 and 2000 to 

2004.  Hot spot clustering was not as prevalent in this five-year block as previous years.  While 

the cluster in northeastern Santa Rosa remained, the large band that runs from northeast to 

central Florida had mostly disappeared, while a small cluster remained in Duval County in the 

north and Pasco in center-east.  The small cluster reappeared in Suwannee County to the west of 

Duval.  The cluster in Volusia to the east also shrank compared to years past.  The cluster in 

Sarasota and Charlotte remained mostly unchanged, as did the cluster in Miami-Dade County.    

 In 2000 to 2004, as in previous years, Santa Rosa County in the northwest was still a 

location of hot spot clustering (Figure 7).  The clustering in the northeastern panhandle grew 

larger since the last five-year block, and while the locations were similar to previous years, there 
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did seem to be some slight shifting eastward of cluster locations.  The clustering in Suwannee 

County had grown larger and spread to almost touch the clustering in Duval, Baker, and Clay 

counties.  Volusia and Flagler counties on the east coast revealed reduced clustering activity.  

The clustering near central Florida that was previously located in Hernando and Pasco counties 

shifted to the south, in Citrus and Levy counties.  Highland County, located in the middle of 

central Florida, showed evidence of clustering.  Sarasota and Charlotte to the east remained 

consistent locations of hot spot activity, though there was a slight eastern movement within the 

counties.  Miami-Dade further south remained a location of activity.  

Figure 8 showed the results of the hot spot analyses performed on wildfire data ranging 

from 2005-2009 and 2010-2014.  The cluster of hot spot activity in Santa Rosa County in the 

northwestern panhandle remained, but was notably smaller than in previous years.  The cluster 

usually present near Duval County in the northeast shifted south to Putnam County, while hot 

spot clustering remained in Citrus and Levy counties.  Volusia and Flagler counties to the east 

also showed clustering as in years past, though notably more than in the previous study period.  

While Sarasota and Charlotte remained areas of clustering, clustering also shifted east and south 

into Lee and Collier counties, respectively.  Miami-Dade again showed activity, but the cluster 

appeared to have moved slightly to the south.     

The 2010-2014 five-year block was quite different from the rest.  While not discussed in 

the previous analysis, this image contained wide swathes of cold spots worth noting.  A large 

percentage of the panhandle was covered in cold spots, and central Florida also had a large band 

stretching the entire width. This indicated in these areas a dispersion of ignitions that were 

unlikely to be the result of random chance. Hot spot activity was present in the northwestern 

panhandle and a large band stretched across the northeastern corner of the state as well.  
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Alachua, Baker, Bradford, Clay, Columbia, Duval, Flagler, Hamilton, Putnam. St. Johns, 

Suwannee, Union, and Volusia counties were all included in the band of hot spot clustering.  To 

the south, clustering moved south away from Sarasota County but had noticeably diminished in 

size.  Miami-Dade still had a small cluster in the southern portion of the county.   

Lightning caused fires showed consistent hot spot clusters overall in all year blocks 

(Figures 9–11).  In general, lightning fires clustered along the Jacksonville area on the 

northeastern, Atlantic coast of Florida and the Tampa/Sarasota area on the gulf side.  These areas 

were hot spots in every single map, though the size of each hot spot did change slightly every 

year, while the Atlantic coast cluster appeared to grow larger over time.   
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Figure 6 1985-1994 Human Hot Spot Analysis 
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Figure 7 1995-2004 Human Hot Spot Analysis 
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Figure 8 2005-2014 Human Hot Spot Analysis 
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Figure 9 1985-1994 Lightning Hot Spot Analysis 
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Figure 10 1995-2004 Lightning Hot Spot Analysis 
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Figure 11 2005-2014 Lightning Hot Spot Analysis 



 

44 

 

4.4 Emerging Hot Spot Analysis 

An Emerging Hot Spot Analysis was also performed on all the individual years of the 30-

year study range.  This level of analysis allowed for trends to be identified in the temporal aspect 

of wildfire ignition.  It is possible to see how the ignition behavior acted over a time period and 

provided a broader picture of when ignitions are more or less common. 

As every individual year was mapped out, the images were attached in the Appendix.  

Overall, the images indicated a large variety in the hot spot activity.  Some years revealed large 

swathes of land with oscillating hot spots, while others years (2000, 2001, and 2014) showed no 

activity at all.  The maps overall reveal no relationship between locations of hot spot clustering 

in the previous section and significant clusters in emerging maps.      

4.5 Directional Distribution Analysis 

The Directional Distribution analysis was performed to see if the spatial clustering of 

wildfire ignitions moved in trend or centroid over the study time period.  The analysis was split 

with two, five-five-year blocks on each map (1985-1989 and 1990-1994 on one map, and so 

forth), so three maps are present.  There were four different directional ellipses on each map to 

represent each region of study.  The analysis was performed with both lightning and human 

caused fires combined into one variable.   

 The maps shown below all revealed similar patterning in the ellipsis location, direction, 

and trend.  Minor variances were present in location each year, as seen in the Region 4 ellipses 

most predominately.  In the first map showing 1985 through 1994, the directional ellipsis showed 

a westward movement of wildfire ignition that continued in the 1995 to 2004 map.  The last map, 

though, revealed the direction and trend of wildfire ignition moving back towards the east 

slightly and away from the coast.  There were similar minor variations in each of the ellipses for 

every region.    
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Figure 12 1985-1994 Directional Distribution 

Figure 13 1995-2004 Directional Distribution 
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Figure 14 2005-2014 Directional Distribution 
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Chapter 5 Discussion 

This chapter concluded this thesis and provided a discussion about the objectives of the research.  

This research analyzed the spatial distribution of human and lightning caused wildfires across the 

state of Florida from 1985 to 2014.  An analysis of possible explanatory variables related to 

ignition was performed using correlation statistics.  A spatial analysis of clusters both current 

and emerging was also performed to see if location correlated to the variables.  Finally, a 

directional distribution analysis was conducted to see if the overall trend of ignition was moving 

in relation to human or meteorological variables.  This final chapter provided a discussion of the 

results, their limitations, and implications for future research. 

5.1 Correlation Discussion 

The results of the correlation analysis did not provide sufficiently strong correlation 

values to conclude that there is a statistically significant relationship between any of the 

dependent and independent variables.  Part of the main research design was to analyze part of the 

primary hypothesis which posited a negative correlation between lightning fires and precipitation 

levels across all the five-year blocks; only two time periods (1990-1994 and 2005-2009) 

provided weak to moderate negative correlations. Further research into correlation studies found 

that fire ignition often happens independently of rainfall amount, but instead depends primarily 

upon rainfall frequency, temperature, and relative humidity (Flannigan 1988).  Results from this 

study suggested that temperature variables be added to the list of variables studied however, 

relative humidity data was not available for the study area.  Unfortunately, lightning fires and 

temperature also provided no correlation.  Discussion of explanations why no correlation was 

found was included in section 5.5 below.   
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 Interestingly, the analysis of lightning caused fires in relation to population growth 

yielded two periods (1985-1989 and 2000-2004) of positive correlation.  While investigating 

possible explanations, it was discovered that population growth in the WUI was rapid during the 

1990s, with estimates that 60% of all homes constructed in that time being were located in a 

WUI (Stewart, Radeloff, and Hammer 2006). It could be that population growth in the 1980s did 

not coincide with intense construction of housing and amenities within the WUI, but still 

changed the environment in ways that produced suitable conditions for lightning ignitions.  As 

construction of homes, roads, and amenities in the WUI during the 1990s caused habitat 

fragmentation and destruction, it could be hypothesized that the intense construction caused 

enough habitat loss to introduce other intervening variables that outweighed the correlation 

between lightning fires and population growth, at least temporarily.  This could possibly be a 

cyclical event, as correlation reappeared again after the housing boom of the 1990s.  Further 

research would be required to see if this hypothesis has merit.  Another simple possibility is that 

the construction introduced light posts and other electrical objects that attract lightning strikes in 

and around the area.      

 Human caused fires were originally thought to be positively related to population and 

population growth however, human caused fires did not correlate to any of the explanatory 

variables.  Research into why there was no correlation indicated that although the magnitude of 

population is important, “population distribution and, by extension, housing patterns have a 

much larger impact on the fire problem” (Hammer, Stewart, and Radeloff 2009, p. 778).  This is 

because years of population decentralization resulted in suburban areas scattered amongst the 

wildland-urban interface.  In addition, investigation into these population distribution patterns 

instead of raw population numbers and population growth revealed distribution patterns are more 
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precise indicators of human presence and, thus, fire ignition (Stewart, Radeloff, and Hammer 

2006).  Population density numbers were also calculated and a correlation between those 

numbers and human caused wildfires were run to see if a relationship could be established.  No 

statistically significant relationship was found; these results are included in the Appendix.   

 As no consistent correlation was found in the large five-year blocks, there was a 

possibility that statistically significant data was to be found by looking at individual years.  The 

five-year block of 2000-2004 had marginally significant results so it was expanded into 

individual years.  Both fire ignition types (lightning and human caused) were run against 

precipitation values for each year.  Nevertheless, significant results were not produced from this 

analysis either.  Therefore, this data supports the proposition by Flannigan (1987) that rainfall 

amount is a poor explanatory variable of wildfire ignition.   

5.2 Hot Spot Analysis Discussion 

While the correlation results proved to be insignificant in explaining wildfire ignition, the 

Hot Spot Analysis still provided valuable visual information about the clustering of wildfire 

around the state of Florida, and possibly lends credence to the studies above that listed 

population distribution as a predominate factor influencing ignition patterns.  For example, many 

of the consistent hot spots areas like Sarasota County in south Florida were densely populated, 

and it is possible that the small location shifts over time reflect growing suburbanization; more 

research would need to be conducted to confirm this hypothesis.  Miami also becomes a cluster 

over time as population grew and presumably expanded.  It should be noted though, that Miami-

Dade County had a very large population throughout the entire study period and yet this county 

was not an ignition cluster area in the first-year block.  Consequently, population alone does not 

correlate to increased wildfire ignition.  However, while the correlation results do not provide 
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statistical backing to the cluster analysis, it is still possible to visualize trouble spots to allow for 

intelligent allocation of wildfire management resources.   

The VIIRS NightLight data did provide visual connection for some of the hot spot 

clusters in the last year block.  The southern end of Miami, the northwestern panhandle, and 

other areas showed clustering of human fire activity on the edge of the light data.  This could 

indicate that people are traveling outside the city to more wooded areas and causing fires, though 

some years reveal no strong relationship between major cities and wildfire. 

5.3 Emerging Hot Spot Analysis Discussion  

The Emerging Hot Spot Analysis provided a vast array of information across each 

individual year of the study.  Overall, the years were unique unto themselves and did not provide 

consistent results, though the 1980s showed some consistency with oscillating cold spots 

dominating the entire state.  This trend changed in the late 1980s and early 1990s, as the last 

months of 1989 in particular (Figure 41, page 74) exposed almost no oscillating cold spots and 

instead oscillating hot spots in some areas that were consistently ignition clusters (Escambia, 

Sarasota counties).  Oscillating hot spots made a dramatic appearance in 1991 (Figure 42, page 

75) with almost the entire state covered by them.  However, this trend quickly reverted to 

numerous areas of oscillating cold spots for the remaining years, in general.  As the data across 

all maps seem to be unrelated to any of the hot or cold spots from the Optimized Hot Spot 

results, it was not prudent to draw conclusions about the importance of these results. 

5.4 Directional Distribution Discussion 

The ellipses generated by the Directional Distribution revealed consistent patterning 

across all the time blocks.  While there was some minor variation in movement, overall the trend 

and direction of the ellipses indicated that wildfire ignitions were clustered over the same general 
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regions across the entire span of the study.  This indicated that fires are occurring in the same 

general area year after year.  Whether the fire moves slightly in relation to population location 

and movement into the wildland-urban interface would require more research, and was discussed 

in section 5.6.   

5.5 Limitations 

This thesis had a few limitations that were encountered during the research process.  

Perhaps the biggest limitation was the accuracy and abundance of meteorological data used in 

the correlation research.  While the data was freely available from NOAA, not every county had 

a weather station from which to pull data; many weather stations had to be removed entirely due 

to either having incomplete or inaccurate data.  This limited the number of stations that could be 

studied; several counties had to utilize precipitation and temperature data from another county, 

so the analysis was not necessarily representative of actual county specific data. In the future, 

perhaps instead of interpolating the weather data, a different approach could be taken. Limiting 

the analysis of fire ignitions to only those counties with complete weather data may have 

produced different results. However, as this research aimed at examining the entirety of Florida, 

eliminated counties based on this variable was not done. 

 The scale of the study area could also possibly be a limitation.  Such a large area could 

mask subtle nuances that would be apparent if the study had been conducted on a smaller scale.  

While the MUAP problem exists at every scale of aggregation, it could be that this scale caused 

disproportionate issues that hid any real correlations or statistical relationships.  Focusing on 

counties that had multiple weather stations within their borders could have provided a more 

accurate and realistic display of wildfire ignition variables than the state-level scale chosen for 

this research.   
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5.6 Future Research and Implications 

While the research results proved inconclusive, there is still much that could be done in 

the same vein of analysis.  Exchanging static population numbers for population density or 

housing numbers, for example, could provide more precise insight into the nature of wildfire 

ignition in Florida when performing correlation analysis. A quick glance at the relative 

population densities (Table 6) shows that the counties with the highest population numbers are 

not always the densest; an additional variable could be added to examine population density in 

relation to the WUI. The same could be done for annual precipitation; exchanging it for relative 

humidity could be very productive.   

Time scales could also be tweaked to provide different levels of analysis. As the 

frequency of rainfall was more important than overall total precipitation, a different project could 

look backwards and see if months with fewer rainfall events coincided to higher incidences of 

wildfire in the months that follow.  As shown by Flannigan and Harrington (1988), long periods 

of time with minimal rainfall generally precede periods of wildfire with large burned acreage in 

several regions of Canada.  While the Canadian study found that meteorological variables only 

explained 35% of the variance in total burned area each month, adding socioeconomic and point 

data variables into a new project could provide compelling insights into the complex nature of 

wildfire ignition in Florida. 

Utilizing smaller analytical scales at the county/block level could also be a good 

opportunity to provide more exact results.  While the problem of MAUP exists at any scale or 

aggregation type chosen, the larger the units for statistical analysis, the more likely it is that 

variation in data values will decrease (Dark and Bram 2007).  A more thorough and detailed 

investigation into the WUI and other areas would be possible if the scale of the project was 
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modified.  Performing a hot spot analysis on a smaller area could yield more accurate results as 

to where fires are igniting the most, and the additional study of variables, like those mentioned 

above, could provide a more refined picture of wildfires.   

By changing the variables of study, the study size, and the focus, an analysis of wildfire 

could provide a wealth of usable, real-world information.  For fires in the WUI, there are several 

programs that are designed to educate and inform.  The National Fire Protection Association 

(NFPA), a non-profit association formed to educate and eliminate death and injury due to 

wildfire, among other issues, has a program called Firewise Communities.  The program 

involves homeowners in fire prone areas and provides them with tools to minimize their risk of 

wildfire damaging their homes.  The goal is to create fire adapted communities that are built with 

fire resistant materials, surrounded by defensible spaces, and free of flammable material that can 

ignite a fire.  A study of the sort described above could pinpoint which areas are at most risk so 

that programs such as Firewise can be finely tuned and precisely applied.   

Such programs will only become more important as the WUI increases.  A recent study 

has found that climate change is expected to harm U.S. forests (Charney et al. 2016).  Recent 

studies have indicated that as climate change causes longer droughts and other environmental 

stressors, trees become more vulnerable to disease and fire outbreak (Charney et al. 2016).  As 

the WUI becomes ever more common with population growth and climate changes, making sure 

homes are safe from potentially highly stressed and weakened trees is paramount to both human 

and structural safety.   

This study did show through the hot spot analysis that wildfire clusters in the same 

relative areas year after year.  What explains these recurring fires if fuel is being burned in the 

same areas repeatedly?  First, most of the fires are caused by humans and are quite small, often 
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less than an acre.  These fires in Florida rarely have the destructive capacity compared to 

wildfires out west due to many factors like humidity, ecology, and even how the fire was ignited.  

Considering the thousands of acres (22 million) of ignitable land in Florida, both in the WUI and 

elsewhere, it is arguable that small fires can burn in the same general region every year and not 

clear out the majority of the fuel load. 

 Florida’s ecology is such that regrowth is also quick, as ample rain promotes a lush, fast 

growing environment.  Regrowth is further compounded by the current prescribed burn cycle 

used by the Florida Forest Service (FFS).  With only two million acres being burned every year, 

fire-prone landscapes are seeing an 11-year fire interval, which is much longer than natural fire 

cycles (Prescribed Fire in Florida, Strategic Plan 2013-2020).  The FFS hopes to recreate the 

natural fire cycle with more frequent prescribed burns as part of its future strategic plans.  By 

increasing personnel, providing incentives to land managers to use prescribed fire more, and by 

using creative measures to increase the capacity of private sector burn practitioners, it is the goal 

of the FFS to create a fire policy that reflects natural fire cycles and protects more people and 

property.  This research could provide a visual guideline for the FFS to see where best to place 

its resources and time in order to accomplish its strategic goals.        
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APPENDIX A: Tables and Figures 

 

Table 6 Human Fire/Population Density Correlation Coefficients 

 

 

 

Human Fires 

and Population 

Density 

1985-

1989 

cor: -0.04372439 

1990-

1994 

cor: -0.04046809 

1995-

1999 

cor: 0.07587163 

2000-

2004 

cor: -0.1026769 

2005-

2009 

cor: -0.1415845 

2010-

2014 

cor: -0.1325636 
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Figure 15 1985 & 1986 Emerging Hot Spot Analysis 
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Figure 16 1987 & 1988 Emerging Hot Spot Analysis 
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Figure 17 1989 & 1990 Emerging Hot Spot Analysis 
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Figure 18 1991 & 1992 Emerging Hot Spot Analysis 



 

64 

 

  

Figure 19 1993 & 1994 Emerging Hot Spot Analysis 
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Figure 20 1995 & 1996 Emerging Hot Spot Analysis 
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Figure 21 1997 & 1998 Emerging Hot Spot Analysis 
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Figure 22 1999 & 2000 Emerging Hot Spot Analysis 
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  Figure 23 2001 & 2002 Emerging Hot Spot Analysis 
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Figure 24 2003 & 2004 Emerging Hot Spot Analysis 
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Figure 25 2005 & 2006 Emerging Hot Spot Analysis 
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Figure 26 2007 & 2008 Emerging Hot Spot Analysis 
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Figure 27 2009 & 2010 Emerging Hot Spot Analysis 
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Figure 28 2011 & 2012 Emerging Hot Spot Analysis 
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Figure 29 2013 & 2014 Emerging Hot Spot Analysis 
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Table 7 1985-1989 Data 

County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature (F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

ALACHUA 81 41.924 892 186772 7.99 73.436 875.02 213.4488355 

BAKER 48 52.228 567 19364 11.87 70.043 585.23 33.0878458 

BAY 65 54.44 476 135708 13.56 71.195 758.46 178.9257179 

BRADFORD 29 51.446 403 24804 6 73.436 293.96 84.37882705 

BREVARD 115 52.926 628 403500 18.86 72.178 1,015.66 397.2786169 

BROWARD 8 54.02 190 1242488 10.53 74.32 1,209.79 1027.027831 

CALHOUN 33 46.132 209 11268 18.54 69.303 567.33 19.8614563 

CHARLOTTE 156 56.918 731 99214 26.43 71.415 680.28 145.8428882 

CITRUS 63 47.092 546 91469 26.55 71.656 581.7 157.244284 

CLAY 67 51.446 513 102796 20.43 70.471 604.36 170.0906744 

COLLIER 117 44.81 974 144721 25.6 74.306 1,998.32 72.42133392 

COLUMBIA 32 51.292 484 43553 10.66 68.995 797.57 54.60711912 

DESOTO 30 50.642 235 24279 12.54 71.415 637.06 38.11100995 

DIXIE 51 64.182 532 10832 17.66 72.543 705.05 15.3634494 

DUVAL 69 46.732 759 686337 11.45 70.675 762.19 900.4801952 

ESCAMBIA 6 52.792 564 285423 7.82 70.183 656.46 434.7911525 

FLAGLER 225 53.56 435 23911 9.02 74.4 485.46 49.25431549 

FRANKLIN 25 47.956 148 8678 3.23 74.75 534.73 16.22875096 

GADSDEN 3 49.184 388 45639 1.6 74.61 516.33 88.3911452 

GILCHRIST 19 47.848 201 7709 10 74.06 349.68 22.04587051 

GLADES 111 50.562 288 7765 12.19 69.49 806.01 9.63387551 

GULF 45 47.956 1206 12560 11.43 69.303 564.01 22.2691087 

HAMILTON 32 45.21 196 10372 12.48 70.693 513.79 20.18723603 

HARDEE 17 49.626 208 22695 7.33 69.503 637.78 35.58437079 

HENDRY 103 50.664 341 26138 15.13 72.441 1,152.75 22.67447408 
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County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature (F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

HERNANDO 43 47.448 425 90507 30.61 74.071 472.54 191.5329919 

HIGHLANDS 74 57.8 523 69089 17.61 68.435 1,016.62 67.9595129 

HILLSBOROUGH 62 45.884 704 840970 12.28 73.27 1,020.21 824.3106811 

HOLMES 11 64.5 267 17656 13.53 71.185 478.78 36.87706253 

INDIAN RIVER 70 42.108 313 91375 19.53 71.846 502.87 181.7070018 

JACKSON 10 64.5 372 4475 9.41 69.303 917.76 4.876002441 

JEFFERSON 13 49.184 202 12516 8.43 69.39 598.1 20.92626651 

LAFAYETTE 37 51.636 261 5404 20.12 69.176 543.41 9.944609043 

LAKE 67 51.428 865 146333 17.75 70.67 938.38 155.9421556 

LEE 134 50.562 668 324520 22.75 71.93 784.51 413.6594817 

LEON 11 49.184 317 192578 14.27 68.633 666.85 288.7875834 

LEVY 181 47.848 705 25182 12.12 71.393 1,118.21 22.51992023 

LIBERTY 19 47.946 219 4757 5.01 69.303 835.56 5.693187802 

MADISON 13 45.046 266 16500 5.61 73.206 695.95 23.70859976 

MANATEE 52 50.656 260 192691 12.97 67.826 742.93 259.3662929 

MARION 118 46.328 1162 190742 20.84 73.65167 1,584.55 120.376132 

MARTIN 93 45.53 321 96636 19.44 67.09 543.46 177.8162146 

MIAMI-DADE 5 54.618 733 1873078 6.54 68.33 1,897.72 987.0149442 

MONROE 0 55.936 100 78966 11.65 74.74 983.28 80.30876251 

NASSAU 64 52.438 384 47863 20.19 68.936 648.64 73.78977553 

OKALOOSA 18 51.756 301 157517 15.51 70.01 930.25 169.3276001 

OKEECHOBEE 45 51.018 341 29941 21.98 71.21 768.91 38.93953779 

ORANGE 130 53.054 516 653982 17.91 70.83 903.43 723.8878496 

OSCEOLA 120 51.696 617 97605 26.15 67.338 1,327.45 73.52819315 

PALM BEACH 41 49.31 702 865507 21.35 75.56 1,969.76 439.3971854 

PASCO 53 55.706 572 272422 16.78 70.051 746.89 364.741796 

PINELLAS 9 43.72 73 855427 6.94 71.603 273.8 3124.276844 
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County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature (F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

POLK 110 45.794 1783 410863 12.18 77.5 1,797.84 228.53146 

PUTNAM 127 45.516 697 62828 10.55 72.64 727.62 86.34726918 

SANTA ROSA 20 43.38 1030 69375 9.46 71.49 1,011.61 68.57880013 

SARASOTA 133 48.8 413 263937 10.89 67.181 555.87 474.8178531 

SEMINOLE 50 50.52 243 281049 22.23 70.343 309.22 908.8965785 

ST. JOHNS 174 60.384 583 84389 22.62 70.471 600.66 140.4937902 

ST. LUCIE 44 54.864 263 143214 23.21 66.58 571.93 250.4047698 

SUMTER 13 48.206 171 31260 13.96 69.19 546.93 57.15539466 

SUWANNEE 39 54.436 838 27688 9.2 71.36 688.55 40.21203979 

TAYLOR 83 64.182 546 19710 10.33 67.276 1,043.31 18.8917963 

UNION 20 49.85 134 10474 -1.98 74.06 243.56 43.0037773 

VOLUSIA 430 51.428 1211 360049 17.26 72.998 1,101.03 327.0110715 

WAKULLA 21 49.184 251 14485 10.08 68.33 606.42 23.88608555 

WALTON 44 48.226 44 28946 12.82 71.185 1,037.63 27.8962636 

WASHINGTON 27 64.5 247 16581 10.59 69.38 582.8 28.45058339 
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Table 8 1990-1994 Data 

County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

ALACHUA 45 50.254 595 193879 6.76 73.026 875.02 221.5709355 

BAKER 29 48.788 319 19700 6.57 72.28 585.23 33.66197905 

BAY 86 61.404 382 136289 7.32 71.716 758.46 179.6917438 

BRADFORD 11 47.96 205 24210 7.53 73.026 293.96 82.35814397 

BREVARD 111 53.208 531 436333 9.36 72.305 1,015.66 429.6053798 

BROWARD 20 62.824 109 1340220 6.75 74.258 1,209.79 1107.8121 

CALHOUN 31 65.442 372 11565 5.03 69.528 567.33 20.38496113 

CHARLOTTE 176 43.532 638 124883 12.53 73.128 680.28 183.5758805 

CITRUS 100 58.556 379 102846 9.98 71.431 581.7 176.8024755 

CLAY 53 54.52 398 117779 11.13 67.345 604.36 194.8821894 

COLLIER 111 53.674 824 180540 18.69 68.92 1,998.32 90.34589055 

COLUMBIA 33 51.236 323 48897 14.75 73.046 797.57 61.30747144 

DESOTO 20 51.432 122 26260 10.04 73.128 637.06 41.22060716 

DIXIE 70 61.982 351 12150 14.78 73.316 705.05 17.23282037 

DUVAL 49 54.806 448 710592 5.59 72.141 762.19 932.3029691 

ESCAMBIA 7 67.762 325 277067 5.43 75.283 656.46 422.0622734 

FLAGLER 216 47.346 382 35292 22.96 71.516 485.46 72.69805957 

FRANKLIN 30 65.142 211 9995 11.46 72.468 534.73 18.69167617 

GADSDEN 9 65.882 211 44853 9.12 73.53 516.33 86.86886294 

GILCHRIST 17 53.872 179 11526 19.23 74.14 349.68 32.96156486 

GLADES 71 60.71 218 8366 10.2 69.425 806.01 10.37952383 

GULF 64 65.442 191 13265 15.31 69.528 564.01 23.51908654 

HAMILTON 36 56.546 142 11918 9.04 68.173 513.79 23.19624749 

HARDEE 9 53.524 161 22454 15.15 70.701 637.78 35.20649754 

HENDRY 64 55.568 247 28686 11.3 73.253 1,152.75 24.8848406 



 

79 

 

County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

HERNANDO 44 45.838 365 114866 13.69 67.34 472.54 243.0820671 

HIGHLANDS 78 49.606 414 75860 10.85 74.168 1,016.62 74.61981861 

HILLSBOROUGH 72 39.532 439 879069 12.53 72.966 1,020.21 861.6549534 

HOLMES 7 60.018 191 16926 7.28 75.928 478.78 35.3523539 

INDIAN RIVER 47 54.314 209 97415 7.98 74.99 502.87 193.7180583 

JACKSON 14 60.018 250 45421 9.78 69.528 917.76 49.49115237 

JEFFERSON 15 59.288 140 13085 15.84 73.998 598.1 21.87761244 

LAFAYETTE 28 51.26 130 5826 4.45 75.923 543.41 10.72118658 

LAKE 65 52.03 6992 171168 12.53 72.438 938.38 182.4079797 

LEE 230 56.632 799 367410 9.63 69.64 784.51 468.3305503 

LEON 13 64.206 191 212107 10.19 70.525 666.85 318.0730299 

LEVY 195 45.632 633 29111 12.29 74.885 1,118.21 26.03357151 

LIBERTY 15 65.442 156 6538 17.39 69.528 835.56 7.824692422 

MADISON 26 52.116 188 17768 14.12 72.516 695.95 25.53056972 

MANATEE 31 55.796 160 228283 7.83 69.245 742.93 307.273902 

MARION 77 67.36 792 217862 11.82 73.068 1,584.55 137.4914013 

MARTIN 59 73.858 149 110227 9.24 74.161 543.46 202.8244949 

MIAMI-DADE 3 56.492 641 1990445 2.75 70.393 1,897.72 1048.861265 

MONROE 0 53.608 62 82252 5.42 71.765 983.28 83.65063868 

NASSAU 44 53.26 222 47371 7.81 68.415 648.64 73.03126542 

OKALOOSA 4 67.142 197 158318 10.11 73.183 930.25 170.188659 

OKEECHOBEE 38 58.814 247 32325 9.11 73.533 768.91 42.04003069 

ORANGE 76 60.506 316 740167 9.25 77.338 903.43 819.2853901 

OSCEOLA 68 60.014 282 131111 21.71 71.671 1,327.45 98.76906851 

PALM BEACH 28 60.726 295 937190 8.53 74.275 1,969.76 475.7889286 

PASCO 68 49.432 431 298852 6.3 74.356 746.89 400.128533 

PINELLAS 29 42.622 64 870722 2.24 73.563 273.8 3180.138787 
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County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

POLK 96 51.856 1295 437204 7.85 70.435 1,797.84 243.1829306 

PUTNAM 93 54.52 511 68980 6.01 71.858 727.62 94.80223193 

SANTA ROSA 21 71.002 907 93813 14.96 69.38 1,011.61 92.73633119 

SARASOTA 175 55.742 430 296002 6.56 74.006 555.87 532.5022038 

SEMINOLE 39 67.974 192 316555 10.09 75.145 309.22 1023.720975 

ST. JOHNS 142 44.346 433 94758 13.04 67.345 600.66 157.7564679 

ST. LUCIE 28 62.642 142 166803 11.08 67.091 571.93 291.6493277 

SUMTER 18 46.102 110 35189 11.44 71.338 546.93 64.33912932 

SUWANNEE 21 55.062 383 29299 9.41 70.873 688.55 42.55173916 

TAYLOR 88 56.414 439 17461 2.05 72.836 1,043.31 16.73615704 

UNION 5 51.236 94 15534 22.26 74.14 243.56 63.77894564 

VOLUSIA 385 47.756 976 396631 6.99 75.108 1,101.03 360.2363242 

WAKULLA 13 64.206 176 16441 15.77 70.525 606.42 27.11157284 

WALTON 39 66.616 469 31860 14.77 75.928 1,037.63 30.70458641 

WASHINGTON 15 60.108 1880 18115 7.07 75.928 582.8 31.08270419 
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Table 9 1995-1999 Data 

County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

ALACHUA 37 56.78 419 216249 9.07 70.701 875.02 247.1360655 

BAKER 47 68.291 337 21879 7.91 73.558 585.23 37.38530151 

BAY 42 60.712 468 150119 7.87 74.458 758.46 197.9260607 

BRADFORD 24 62.327 228 25500 4.78 70.701 293.96 86.74649612 

BREVARD 98 60.27 439 474803 6.69 72.558 1,015.66 467.4822283 

BROWARD 22 54.732 67 1490289 9.25 75.12 1,209.79 1231.857595 

CALHOUN 24 57.934 118 14117 17.76 76.635 567.33 24.88322493 

CHARLOTTE 184 57.86 790 136773 7.15 66.648 680.28 201.0539778 

CITRUS 83 57.524 375 114898 8.94 72.015 581.7 197.521059 

CLAY 98 68.291 401 139631 15.49 69.861 604.36 231.0394467 

COLLIER 103 53.078 760 219685 17.79 74.848 1,998.32 109.9348453 

COLUMBIA 26 56.011 445 56514 12.16 67.466 797.57 70.85773036 

DESOTO 17 44.159 151 28438 6.75 66.648 637.06 44.63943742 

DIXIE 60 62.59 275 13478 8.55 71.473 705.05 19.11637473 

DUVAL 94 52.602 415 762846 6.19 73.355 762.19 1000.860678 

ESCAMBIA 10 52.012 393 301613 6.67 72.95 656.46 459.4537367 

FLAGLER 174 56.823 332 45818 23.84 74.265 485.46 94.38058748 

FRANKLIN 17 78.07 162 10872 6.21 75.871 534.73 20.33175621 

GADSDEN 4 57.468 127 51478 15.08 75.701 516.33 99.69980439 

GILCHRIST 13 56.011 174 13406 12.77 70.206 349.68 38.33790895 

GLADES 83 52.327 242 9867 15.39 70.28 806.01 12.2417836 

GULF 61 57.934 334 14403 8.53 76.635 564.01 25.53678126 

HAMILTON 18 70.22 179 14376 15.13 75.138 513.79 27.98030324 

HARDEE 8 54.331 192 22594 -1.27 73.04 637.78 35.42600897 

HENDRY 80 58.112 342 30552 3.58 74.88 1,152.75 26.5035784 
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County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

HERNANDO 38 49.313 606 127392 8.06 71.208 472.54 269.589876 

HIGHLANDS 95 54.28 543 81143 5.01 69.945 1,016.62 79.81645059 

HILLSBOROUGH 45 49.313 282 967511 8.36 68.168 1,020.21 948.3449486 

HOLMES 6 54.68 226 18899 8.71 76.318 478.78 39.4732445 

INDIAN RIVER 44 50.97 188 109579 9.29 74.071 502.87 217.9072126 

JACKSON 16 57.162 270 49469 6.21 76.318 917.76 53.90189156 

JEFFERSON 5 65.789 106 14424 6.77 70.623 598.1 24.1163685 

LAFAYETTE 27 52.178 104 6961 6.83 72.345 543.41 12.80984892 

LAKE 54 49.83 526 203863 15.22 71.598 938.38 217.2499414 

LEE 238 52.327 747 417114 13.44 77.168 784.51 531.6872953 

LEON 2 57.162 270 237637 9.24 75.205 666.85 356.3575017 

LEVY 194 70.28 609 33408 11.95 75.26 1,118.21 29.87632019 

LIBERTY 7 57.934 108 8048 17.09 76.635 835.56 9.63186366 

MADISON 19 56.01 208 19632 7.02 72.653 695.95 28.20892305 

MANATEE 41 59.09 146 253207 8.59 74.723 742.93 340.8221501 

MARION 79 78.624 808 249433 11.05 74.443 1,584.55 157.4156701 

MARTIN 67 39.78 175 121514 8.46 72.913 543.46 223.5932727 

MIAMI-DADE 17 55.376 615 2126702 5.61 76.145 1,897.72 1120.661636 

MONROE 1 52.71 57 87030 4.35 73.655 983.28 88.50988528 

NASSAU 45 46.021 174 57381 16.8 71.558 648.64 88.46355451 

OKALOOSA 18 61.25 374 179589 10.38 74.596 930.25 193.0545552 

OKEECHOBEE 75 69.781 348 35510 8.08 74.618 768.91 46.182258 

ORANGE 131 51.377 370 846328 11.51 73.913 903.43 936.7942176 

OSCEOLA 86 54.039 286 157376 15.18 73.871 1,327.45 118.5551245 

PALM BEACH 70 71.853 248 1042196 8.25 67.47 1,969.76 529.0979612 

PASCO 81 52.118 357 326494 6.85 72.938 746.89 437.1379989 

PINELLAS 24 52.736 51 89878 2.58 74.308 273.8 328.2615047 
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County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

POLK 143 47.238 1126 474704 7.12 75.011 1,797.84 264.041294 

PUTNAM 104 81.025 481 72883 4.84 72.996 727.62 100.1662956 

SANTA ROSA 25 54.68 1046 112631 17.21 71.046 1,011.61 111.3383616 

SARASOTA 211 52.73 589 321044 6.47 73.223 555.87 577.5523054 

SEMINOLE 29 62.13 90 354148 9.26 70.856 309.22 1145.294612 

ST. JOHNS 151 53.29 372 113941 16.04 74.265 600.66 189.6930044 

ST. LUCIE 47 54.182 137 186905 9.19 75.343 571.93 326.7969856 

SUMTER 20 58.174 97 50823 39.41 68.773 546.93 92.9241402 

SUWANNEE 17 57.183 508 34386 12.62 74.485 688.55 49.93972841 

TAYLOR 44 50.33 387 19836 8.26 75.061 1,043.31 19.01256578 

UNION 22 56.011 147 13833 9.38 70.206 243.56 56.79504024 

VOLUSIA 340 66.353 899 426815 5.92 74.67 1,101.03 387.6506544 

WAKULLA 11 61.756 139 20648 21.42 75.205 606.42 34.04900894 

WALTON 37 54.72 533 40466 21.1 76.318 1,037.63 38.99848694 

WASHINGTON 11 57.162 210 22156 16.55 76.318 582.8 38.0164722 
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Table 10 2000-2004 Data 

County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

ALACHUA 63 50.615 413 236174 8.36 75.335 875.02 269.9069736 

BAKER 41 57.255 318 23963 7.66 73.983 585.23 40.94629462 

BAY 81 58.647 401 158437 6.89 74.023 758.46 208.8930201 

BRADFORD 27 54.025 178 2774 6.33 75.335 293.96 9.436658049 

BREVARD 114 55.456 343 521422 9.49 72.77 1,015.66 513.3824311 

BROWARD 60 52.482 111 1723131 6.17 68.611 1,209.79 1424.322403 

CALHOUN 26 58.647 128 13610 4.56 68.08 567.33 23.98956516 

CHARLOTTE 179 53.607 54 156985 10.84 72.023 680.28 230.7652731 

CITRUS 92 58.08 490 129110 9.34 71.965 581.7 221.9528967 

CLAY 80 57.255 352 163461 16.08 70.966 604.36 270.4695877 

COLLIER 174 56.582 532 306186 21.8 72.455 1,998.32 153.2217062 

COLUMBIA 5 69.27 480 60453 6.97 70.638 797.57 75.79648181 

DESOTO 26 58.412 151 34105 5.89 72.023 637.06 53.53498886 

DIXIE 63 52.542 284 14928 7.96 70.971 705.05 21.17296646 

DUVAL 69 59.075 287 840474 7.91 73.656 762.19 1102.709298 

ESCAMBIA 10 58.6 336 307226 4.35 70.945 656.46 468.0041434 

FLAGLER 172 53.385 313 69683 39.83 70.566 485.46 143.5401475 

FRANKLIN 19 59.75 148 10649 -3.69 70.025 534.73 19.91472332 

GADSDEN 3 60.495 155 46857 3.92 68.803 516.33 90.75010168 

GILCHRIST 20 51.217 191 15900 10.13 69.441 349.68 45.47014413 

GLADES 79 56.597 174 10733 1.48 68.528 806.01 13.31621196 

GULF 46 58.647 242 16171 21.29 68.08 564.01 28.67147746 

HAMILTON 30 66.57 262 14303 7.32 69.526 513.79 27.83822184 

HARDEE 26 50.335 201 27787 3.15 72.513 637.78 43.56831509 

HENDRY 53 46.335 301 37394 3.27 75.455 1,152.75 32.43895034 
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County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

HERNANDO 29 59.62 268 14527 11.01 77.451 472.54 30.74237102 

HIGHLANDS 14 63.433 556 92057 5.37 76.75 1,016.62 90.55202534 

HILLSBOROUGH 64 58.712 206 1108435 10.96 69.03 1,020.21 1086.477294 

HOLMES 12 63.25 222 19012 2.41 74.57 478.78 39.70926104 

INDIAN RIVER 71 51.495 182 126829 12.29 77.005 502.87 252.2103128 

JACKSON 17 69.975 360 48870 4.39 74.57 917.76 53.24921548 

JEFFERSON 5 62.567 129 14064 9.01 77.15 598.1 23.51446246 

LAFAYETTE 41 58.307 151 7535 7.3 71.386 543.41 13.86614159 

LAKE 125 59.272 471 251878 19.64 72.033 938.38 268.4179117 

LEE 199 61.273 564 521253 18.23 69.4 784.51 664.4313011 

LEON 5 62.567 132 263896 10.21 67.696 666.85 395.7351728 

LEVY 208 62.81 662 37486 8.81 68.493 1,118.21 33.52322015 

LIBERTY 5 62.567 77 7354 4.74 68.08 835.56 8.801282972 

MADISON 19 50.195 193 19498 4.08 66.191 695.95 28.01638049 

MANATEE 56 46.313 162 295242 11.83 75.671 742.93 397.4021779 

MARION 91 64.737 833 293317 13.29 71.458 1,584.55 185.1105992 

MARTIN 113 60.878 230 137637 8.61 70.263 543.46 253.2605896 

MIAMI-DADE 44 53.203 612 2379818 5.61 70.416 1,897.72 1254.040638 

MONROE 2 70.558 116 81236 2.07 69.7 983.28 82.6173623 

NASSAU 48 55.945 208 65016 12.75 75.78 648.64 100.2343365 

OKALOOSA 25 68.71 345 185778 8.96 72.433 930.25 199.7076055 

OKEECHOBEE 81 45.516 329 38004 5.83 74.496 768.91 49.42581056 

ORANGE 122 53.836 275 1013937 13.12 74.173 903.43 1122.319383 

OSCEOLA 102 57.265 265 225816 30.91 74.496 1,327.45 170.1126219 

PALM BEACH 101 64.045 292 1242270 9.82 74.605 1,969.76 630.6707416 

PASCO 79 63.102 335 389776 16.43 69.013 746.89 521.8653349 

PINELLAS 5 51.425 42 943640 2.4 75.84 273.8 3446.457268 
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County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

POLK 262 61.212 1014 528389 9.19 75.926 1,797.84 293.902127 

PUTNAM 98 55.862 491 73226 3.98 73.555 727.62 100.6376955 

SANTA ROSA 34 67.137 787 133721 13.57 69.803 1,011.61 132.1863169 

SARASOTA 207 53.29 485 358307 9.92 75.39 555.87 644.5877633 

SEMINOLE 39 59.882 93 403361 10.45 73.133 309.22 1304.446672 

ST. JOHNS 92 45.51 279 149336 21.28 70.966 600.66 248.6198515 

ST. LUCIE 49 52.423 174 226216 17.93 74.99 571.93 395.5309216 

SUMTER 40 55.575 130 66416 24.5 71.991 546.93 121.4341872 

SUWANNEE 14 51.845 438 37713 8.23 71.155 688.55 54.77162152 

TAYLOR 73 53.925 291 20941 8.75 75.973 1,043.31 20.07169489 

UNION 30 51.217 171 14620 8.76 69.441 243.56 60.02627689 

VOLUSIA 315 50.432 645 484261 9.23 72.438 1,101.03 439.8254362 

WAKULLA 9 62.567 114 25505 11.56 67.676 606.42 42.05830942 

WALTON 27 63.25 555 50543 24.49 74.576 1,037.63 48.71004115 

WASHINGTON 15 69.975 231 22434 6.97 74.576 582.8 38.49347975 
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Table 11 2005-2009 Data 

County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

ALACHUA 51 49.212 351 256232 6.42 70.701 875.02 292.8298782 

BAKER 37 47.668 126 25899 8.12 73.558 585.23 44.25439571 

BAY 76 51.134 311 136562 4.85 74.458 758.46 180.0516837 

BRADFORD 25 49.402 156 29085 3.43 70.701 293.96 98.94203293 

BREVARD 93 47.532 321 555657 4.45 71.796 1,015.66 547.0895772 

BROWARD 41 64.998 94 1744922 0.23 77.825 1,209.79 1442.33462 

CALHOUN 38 51.134 116 14601 4.7 76.635 567.33 25.73634393 

CHARLOTTE 114 42.97 382 165455 7.42 66.648 680.28 243.2160287 

CITRUS 91 59.77 367 142609 7.52 72.015 581.7 245.1590167 

CLAY 58 50.3 270 185208 9.19 69.861 604.36 306.4531074 

COLLIER 122 48.822 388 333032 4.79 72.746 1,998.32 166.655991 

COLUMBIA 34 57.512 277 66409 8.04 67.466 797.57 83.2641649 

DESOTO 24 62.696 177 34792 6.7 66.648 637.06 54.61338022 

DIXIE 68 51.136 241 16221 5.49 71.473 705.05 23.00687894 

DUVAL 49 57.536 229 900518 4.57 73.355 762.19 1181.487556 

ESCAMBIA 18 45.802 256 312980 3.08 72.95 656.46 476.7693386 

FLAGLER 151 53.718 283 94901 20.71 74.265 485.46 195.4867548 

FRANKLIN 26 63.084 100 12414 14.47 75.871 534.73 23.21545453 

GADSDEN 5 54.59 126 50046 4.89 75.701 516.33 96.92638429 

GILCHRIST 20 48.814 159 17393 7.23 70.206 349.68 49.73976207 

GLADES 54 47.308 192 11311 5.42 70.28 806.01 14.03332465 

GULF 56 51.134 242 16798 1.94 76.635 564.01 29.78315987 

HAMILTON 17 58.598 179 14783 3.27 69.945 513.79 28.77245567 

HARDEE 9 52.388 143 28333 3.66 73.04 637.78 44.42440967 

HENDRY 58 61.046 222 41320 7.67 74.88 1,152.75 35.84471915 
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County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

HERNANDO 56 55.116 242 165048 8.79 71.208 472.54 349.278368 

HIGHLANDS 74 56.208 633 99713 6.69 69.945 1,016.62 98.08286282 

HILLSBOROUGH 39 58.278 220 1196892 5.77 68.168 1,020.21 1173.181992 

HOLMES 5 53.984 122 19857 3.65 76.318 478.78 41.4741635 

INDIAN RIVER 48 52.49 141 141634 8.91 74.071 502.87 281.6513214 

JACKSON 26 53.984 318 52637 5.93 76.318 917.76 57.35377441 

JEFFERSON 11 51.046 116 14677 3.12 70.623 598.1 24.53937469 

LAFAYETTE 56 44.892 126 8183 2.65 72.345 543.41 15.05861136 

LAKE 87 47.804 350 291993 11.02 71.598 938.38 311.1671178 

LEE 122 60.802 471 615124 11.95 77.168 784.51 784.0868823 

LEON 10 51.046 75 274803 1.36 75.205 666.85 412.0911749 

LEVY 190 47.432 545 40674 7.08 75.26 1,118.21 36.3742052 

LIBERTY 11 51.134 49 8220 8.43 76.635 835.56 9.837713629 

MADISON 25 57.216 249 20333 32.3 72.653 695.95 29.21617932 

MANATEE 35 50.136 133 318404 4.61 74.923 742.93 428.5787355 

MARION 35 45.488 473 33044 9.37 74.443 1,584.55 20.85387018 

MARTIN 89 44.252 167 143856 1.98 72.913 543.46 264.7039341 

MIAMI-DADE 32 45.77 361 2472344 2.08 76.145 1,897.72 1302.797041 

MONROE 0 56.918 25 77585 -5.85 73.655 983.28 78.90427955 

NASSAU 34 55.13 194 72588 10.38 71.558 648.64 111.9079921 

OKALOOSA 5 50.482 206 196237 3.86 74.596 930.25 210.9508197 

OKEECHOBEE 86 50.108 378 39703 5.13 73.871 768.91 51.63543198 

ORANGE 103 45.1 257 1108882 6.27 73.913 903.43 1227.413303 

OSCEOLA 83 50.698 292 272788 16 73.871 1,327.45 205.4977589 

PALM BEACH 63 58.456 165 1287344 1.69 77.55 1,969.76 653.5537324 

PASCO 95 44.8 309 439786 8.08 72.938 746.89 588.822986 

PINELLAS 7 45.17 29 931113 -1.75 66.893 273.8 3400.704894 
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County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

POLK 165 52.76 856 584343 7.84 76.238 1,797.84 325.02503 

PUTNAM 113 52.742 508 74608 1.14 72.996 727.62 102.5370386 

SANTA ROSA 37 45.03 514 144508 5.91 71.046 1,011.61 142.8495171 

SARASOTA 143 42.192 355 389320 5.83 73.223 555.87 700.3795852 

SEMINOLE 45 44.058 73 423759 2.91 70.856 309.22 1370.412651 

ST. JOHNS 81 50.3 254 183572 16.72 69.861 600.66 305.6171545 

ST. LUCIE 27 46.718 88 272864 13.67 75.343 571.93 477.0933506 

SUMTER 44 47.32 122 95326 28.73 68.773 546.93 174.2928711 

SUWANNEE 12 48.694 338 40230 5.39 74.485 688.55 58.42712947 

TAYLOR 81 55.434 322 23164 8.7 75.061 1,043.31 22.20241347 

UNION 18 48.814 84 15576 3.52 70.206 243.56 63.95138775 

VOLUSIA 319 43.568 720 507105 2.52 72.763 1,101.03 460.5732814 

WAKULLA 9 51.046 1281 31791 18.33 75.205 606.42 52.42406253 

WALTON 34 53.984 350 57917 8.21 76.318 1,037.63 55.81662057 

WASHINGTON 22 53.984 163 24721 7.03 76.318 582.8 42.41763898 
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Table 12 2010-2014 Data 

County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

ALACHUA 60 68.712 317 250730 1.37 75.343 875.02 286.5420219 

BAKER 56 66.44 209 26991 -0.46 69.48 585.23 46.12032876 

BAY 50 58.578 289 170781 1.14 71.761 758.46 225.1681038 

BRADFORD 23 58.702 195 27323 -4.19 75.343 293.96 92.94802014 

BREVARD 105 47.476 292 552427 1.67 71.591 1,015.66 543.9093791 

BROWARD 36 57.68 72 1803903 3.19 70.313 1,209.79 1491.087709 

CALHOUN 18 58.578 111 14592 -0.23 73.455 567.33 25.72048014 

CHARLOTTE 111 50.106 272 164467 2.8 74.178 680.28 241.7636855 

CITRUS 48 51.254 233 140798 -0.31 73.02 581.7 242.045728 

CLAY 69 46.03 261 197403 3.43 73.19 604.36 326.6314779 

COLLIER 178 47.472 354 336783 4.75 72.43 1,998.32 168.5330678 

COLUMBIA 29 52.536 298 67826 0.44 77.981 797.57 85.04081146 

DESOTO 17 55.654 87 34426 -1.25 74.178 637.06 54.03886604 

DIXIE 55 55.256 208 16356 -0.4 73.91 705.05 23.19835473 

DUVAL 88 47.93 241 890066 2.99 72.976 762.19 1167.774439 

ESCAMBIA 12 51.924 188 303907 2.11 73.061 656.46 462.9482375 

FLAGLER 156 55.314 279 99121 3.58 71.051 485.46 204.1795411 

FRANKLIN 29 58.578 206 11794 2.12 74.835 534.73 22.05599087 

GADSDEN 8 49.388 133 48096 3.68 68.496 516.33 93.14972982 

GILCHRIST 27 54.528 105 16853 -0.51 70.161 349.68 48.19549302 

GLADES 71 61.244 193 12852 -0.24 70.431 806.01 15.9452116 

GULF 50 58.578 109 16543 4.29 73.455 564.01 29.33104023 

HAMILTON 35 68.394 230 14351 -3.03 74.685 513.79 27.93164522 

HARDEE 10 44.006 96 27712 -0.06 73.801 637.78 43.45071968 

HENDRY 34 48.914 156 37895 -3.18 73.513 1,152.75 32.87356322 
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County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

HERNANDO 13 51.254 139 174955 1.26 76.001 472.54 370.2437889 

HIGHLANDS 76 50.428 471 99818 1.04 77.168 1,016.62 98.18614625 

HILLSBOROUGH 37 46.906 167 1301887 5.91 74.288 1,020.21 1276.097078 

HOLMES 12 52.326 174 20025 0.49 76.771 478.78 41.82505535 

INDIAN RIVER 45 46.804 110 140955 2.12 71.7 502.87 280.3010718 

JACKSON 13 49.388 254 50231 0.97 76.771 917.76 54.73217399 

JEFFERSON 6 49.012 91 14597 -1.11 69.89 598.1 24.40561779 

LAFAYETTE 34 36.51 142 8696 -1.96 73.178 543.41 16.00264993 

LAKE 58 49.05 250 309736 4.26 71.743 938.38 330.075236 

LEE 131 60.376 395 653485 5.61 73.623 784.51 832.9849205 

LEON 7 49.012 77 281292 2.11 76.216 666.85 421.821999 

LEVY 187 55.256 413 40473 -0.8 72.173 1,118.21 36.19445364 

LIBERTY 15 58.578 52 8668 3.62 73.45 835.56 10.37388099 

MADISON 15 63.328 302 19303 0.41 66.453 695.95 27.73618794 

MANATEE 29 58.128 109 339545 5.18 71.256 742.93 457.0349831 

MARION 67 49.892 342 337298 1.86 74.955 1,584.55 212.8667445 

MARTIN 79 64.732 196 148545 1.55 69.056 543.46 273.331984 

MIAMI-DADE 24 49.442 328 2613692 4.69 70.403 1,897.72 1377.280105 

MONROE 2 48.45 21 74044 1.31 71.8233 983.28 75.30306729 

NASSAU 76 47.93 269 75321 2.74 76.668 648.64 116.1214233 

OKALOOSA 11 45.616 151 190666 5.44 74.241 930.25 204.962107 

OKEECHOBEE 67 48.186 278 39828 -0.42 68.005 768.91 51.79799977 

ORANGE 129 50.438 247 1227995 7.16 71.083 903.43 1359.258603 

OSCEOLA 70 48.186 183 295553 9.99 72.74 1,327.45 222.6471807 

PALM BEACH 49 54.276 123 1360238 3.04 71.73 1,969.76 690.5602713 

PASCO 25 50.79 176 479340 3.15 68.408 746.89 641.7812529 

PINELLAS 8 60.702 14 933258 1.82 73.091 273.8 3408.53908 
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County 

# of 
Lightning 

Fires 

Average 
Precipitation 

(inches) 
# of Human 

Fires Population 
Population 
Growth (%) 

Average  
Temperature 

(F) 

County 
Size (sq. 

mile) 

Population 
Density (per 

sq. mile) 

POLK 109 47.078 558 623174 3.5 75.73 1,797.84 346.6237262 

PUTNAM 157 47.96 574 72523 -2.48 70.358 727.62 99.67153184 

SANTA ROSA 27 48.94 448 159785 5.56 76.025 1,011.61 157.9511867 

SARASOTA 87 55.98 254 387140 2.03 74.096 555.87 696.4578049 

SEMINOLE 37 56.578 74 437086 3.39 75.468 309.22 1413.511416 

ST. JOHNS 165 46.03 377 207443 9.16 75.19 600.66 345.3584391 

ST. LUCIE 48 64.732 136 282821 1.81 76.758 571.93 494.5028238 

SUMTER 19 68.22 83 111125 18.95 71.893 546.93 203.1795659 

SUWANNEE 15 41.226 376 44168 6.29 71.595 688.55 64.1463946 

TAYLOR 53 63.328 277 22932 1.6 77.428 1,043.31 21.98004428 

UNION 16 54.528 116 15647 0.72 70.161 243.56 64.24289703 

VOLUSIA 395 51.516 752 503851 1.87 74.223 1,101.03 457.6178669 

WAKULLA 5 49.012 65 31285 1.65 76.216 606.42 51.58965733 

WALTON 27 52.326 219 59793 8.63 76.771 1,037.63 57.6245868 

WASHINGTON 13 52.326 120 24959 0.25 76.771 582.8 42.82601235 

 


