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Abstract 

The lack of seafloor information is often a result of the challenging logistics and expenses 

involved with acquiring data in this unique environment. Yet, despite the sparsely sampled 

environment, many significant efforts exist to create global bathymetry models. However, there 

exists a public misunderstanding of the true sampling density in the ocean that can be largely 

attributed to contemporary interpolation and enhanced cartography. The seafloor is more 

sparsely sampled than most people realize. Thus, it is important to understand the influence of 

the underlying source data and the interpolation technique used when creating an accurate digital 

bathymetry model. The accuracy of a surfaces can depend on sampling density, interpolation 

method, and local geomorphology. However, if a bathymetry surface can be accurately created 

using sparse measurements, mission planning can be directed to sample the seafloor at a certain 

resolution. The results of this thesis research encourage future exploration of a computationally 

efficient method to assess the best method of interpolation method in different regions under 

different conditions.  
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Chapter 1 Introduction 

This introductory chapter discusses the history of seafloor mapping, why bathymetry 

measurements remain so sparse, and why there are limited accurate measurements of shallow 

bathymetry. To conclude this section, the research goals and significance of this thesis are 

outlined. 

1.1 History of ocean mapping 

The term bathymetry refers to the measurement of various depths and shapes formed by 

underwater rock or sediment features on the seabed (NOAA 2019). Bathymetric data is an 

essential component within the field of hydrography that can be used to characterize baseline 

information. Bathymetry is critical to many multidisciplinary oceanographic operations including 

biological, geophysical, atmospheric, and even meteorological processes. 

Endeavors to obtain bathymetry have presented a challenging task throughout history. 

The first historical accounts of recording measurements of underwater depth dates back to 

ancient Egypt in 1800 B.C. (Theberge 1989). Early measuring techniques involved a weighted 

lead rope deployed from the side of a ship and lowered into the water until it reached the bottom. 

While believed to be a practical preliminary tool at the time, this method did not consider more 

than one specific point on the seafloor at a time, and nor did it include precise position 

measurements.   

Bathymetric surveys have since evolved from simple, extremely time-consuming 

techniques, to innovative methods involving sound waves. Largely inspired by submarine 

warfare in World War I (1920), sensors were developed that used sound waves to listen and 

detect objects underwater (University of Rhode Island 2019). This efficient two-way sound 

travel prompted the significant development of single beam echosounders (SBES) (Mayer 2006). 
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This improved technique involved an acoustic signal from a ship that is sent down towards the 

seafloor and back. This permits depth to be calculated based on the speed of the signals return. 

This method was expanded upon with the multibeam echosounder (MBES) which provided 

extended swath coverage and increased efficiency in terms of the ship resources.  

While sound navigation and ranging (SONAR) are considered the most effective high-

resolution acquisition technique, limitations do exist. These systems are typically mounted on the 

hull of ships which restrict their use to only mapping deep waters. Ships operating hydrographic 

missions require slower transit speeds in order to accurately acquire seafloor coverage and avoid 

gaps. The fuel required to operate large ships constrains their use to regions whose hydrographic 

offices have designated budgets to support these costly missions. The tradeoff between 

resolution, propagation, and coverage has been recognized as the limiting factor in collecting 

MBES data (Mayer 2016).  

Often in shallow regions various physical and morphological features make these areas 

the most challenging to survey by ship. Modern remote sensing technology such as satellite-

derived bathymetry (SDB) and light detecting and ranging (LIDAR) can also provide 

information on the seafloor.  SDB is derived from multispectral imagery and uses remote 

platforms to collect data spanning multiple spectral bands. Bathymetric LIDAR uses a green 

wavelength to penetrate the water column through airborne acquisition technology. Both 

acquisition sources, however, come at a high cost in terms of the technical production and 

operation. These optical solutions to monitoring bathymetry also are limited by water clarity and 

depth. In coastal regions, collection of adequate shallow bathymetric measurements with optical 

techniques only work as well as the water clarity permits.  
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Currently, there is a shift in the hydrographic community towards applications of 

autonomous survey technology and processing techniques. Two common forms are autonomous 

surface vehicles (ASV) and autonomous underwater vehicles (AUV). This transition towards 

autonomy reduces time and human efforts, that are otherwise very costly in ship-based surveys. 

Autonomous systems offer an advantage of operating in hazardous sites and areas where ships 

cannot navigate, such as shallower waters or underwater caves. Nevertheless, high quality data of 

the shape and depth of the seafloor remain a foundational requirement for operation planning 

before a vehicle can be deployed.  

1.2 Bathymetry compilation efforts 

 Technological advances in the past few decades have seen a substantial increase in the 

ability to compute and digitally visualize the globe. The international General Bathymetric Chart 

of the Oceans (GEBCO) has spent the past 100 years collecting and sharing global bathymetry 

data. This dataset compiles high resolution MBES data fused with a background of coarse 

resolution satellite altimetry. Figure 1 reveals the GEBCO 2014 model, an enhanced view of the 

quality of the surface, and the underlying data used to create the model. A recent evaluation by 

Mayer (2018) showed that 82% of the GEBCO data product contains no data values.  This means 

that only 18% of gridded cells across the globe contain actual data values. The results of this gap 

analysis also revealed that of those gridded cells that contain data, only 9% contained data 

collected by modern sonar technology capable of producing reliable measurements.  
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Figure 1: GEBCO 2014 model (left), the sparsity of underlying high-quality data (upper right), 

and the actual multibeam sonar tracks (lower right) traveled to collect the swath data. (Mayer 

2018).  

 

The coastal regions represent an unusually challenging area for hydrographers. Due to the 

lack of data in this highly transitional zone, the coastal zone is often referred to as the “white 

ribbon” (Leon et al. 2013). Much of the known data in coastal regions comes from electronic 

navigation chart (ENC) soundings. Hydrographic standards allow for contours or sounding 

points to be extracted from ENC to be used in the production of gridded models. There is often a 

strong bias in the spatial presence of these soundings in favor of societal needs (Zoraster and 

Bayer 1992, Haigang et al. 2005). The horizontal spacing of soundings are primarily 

concentrated around shoals, shipping lanes, and ports.  

Many coastal regions also hold restrictions to data access making published ENC charts 

the only viable option for estimating the seafloor. Coastal regions are also notorious for 

continuous change due to many natural and anthropogenic influences. These frequent changes 

demand updated survey coverage in order to maintain accurate data. At a local scale, incomplete 
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or missing coastal elevation data can prevent communities from understanding their own region 

and lead to misrepresented needs for management and protection (Hogrefe, Wright, and 

Hochberg 2008). Legacy depths displayed on ENCs are often less than ideal and do not 

accurately reflect the current depth.  

1.4 Significance and goals of research 

The ocean covers 71% of the Earth’s surface and is a critical component to sustaining 

life, controlling climate, facilitating commerce and managing marine resources. A complete 

digital representation of the seafloor is necessary for an understanding of ocean science. 

Additionally, the physical, chemical, and biological characteristics of many marine systems are 

influenced by benthic depth and features. Yet despite its importance, most of the marine 

environment remains unmapped and unexplored. 

A challenge in creating an accurate bathymetry model is filling the gaps where data 

acquisition is consistently difficult, expensive, or not accessible. Enabled by advances in 

computer science and geospatial technology, interpolation allows for continuous surfaces to be 

generated from remotely sensed data without the need to measure each individual location. Yet 

the elevation models obtained from interpolation analysis are often blindly accepted as the 

absolute truth. It is important to consider the underlying spatial configuration and choices made 

in the process of creating a surface.  

This thesis works towards understanding the influence of source data density and 

interpolation methods on bathymetry accuracy. Specifically, this thesis research addresses the 

question, which interpolation method will provide superior results when measurements are 

collected with half the spatial frequency as the original sampling density. The second objective 

presses on to consider if fewer measurements can be taken while generating relatively similar 
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results.  In order to accomplish this objective, two geomorphic regions within Monterey Bay will 

be explored using three different interpolants and four different densities of input data.  

The significance of this research will be an increased understanding about the trade-offs 

made when constructing a bathymetric model of a region with regard to sampling density, 

interpolation methods, and local geomorphology. The main takeaway from the results derived in 

this study is an improved understanding of how interpolants preform, with varying levels of 

sparsity in sampling, in different types of coastal geomorphology. The implications of these 

results can assist with decision making in planning future coastal surveys, as well as help 

understand the results and accuracy of existing surveys.  

1.5 Thesis organization 

The organization of the remainder of this thesis begins with a review of the published 

literature on the process of creating surfaces, and several interpolation techniques. The third 

chapter discusses the methodology used in this study, including an overview of the study area 

and its properties, GIS data preparation, and interpolation analysis. The fourth chapter provides 

the results of the analysis. The final chapter concludes with a detailed discussion of results, study 

limitations, and future work.  
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Chapter 2 Background 

This section begins with an evaluation of literature studies that evaluate the process of 

generating surfaces from point measurements, and then considers different techniques of doing 

so along with their benefits and shortcomings. 

2.1 Creating a surface 

Models of elevation have been a subject of interest since the sixteenth century. 

Techniques that create these models have seen substantial changes over the last few decades as 

technology advances (Eakins and Grothe, 2014). In an ideal world, consumers of spatial data 

would be able to completely rely on digitized surfaces that are composed of tightly grouped 

measurements. Yet the ubiquitous nature of sparse remotely sensed data demands the existence 

of many different methods, techniques and models that create a surface from different types of 

data. Ultimately sources of error in a digital surface can be the result of input data or decisions 

made by an analyst. It is important to understand these sources of model uncertainty to 

understand the accuracy of elevation models created using these methods. 

Digitizing elevation is a well-trodden area of research. This subject is unique because it is 

purely enabled by Geographic Information System (GIS) and computer technology, rather than 

direct measurements (Deng, Wilson, Gallant 2016). Many studies have evaluated the role of a 

GIS as a means of storage and management for elevation models. A study by Jordan (2007) 

suggested that the functionality provided by a GIS adds additional components of data 

management, analysis, and generation of various outputs to what would otherwise be limited to 

data collection and storage. Another major claim by the author was that problems inherent in 

remotely sensed image analysis can be overcome by using a GIS to tease out the bare earth 

surface in order to assess the field properly.   
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Reviews like Hogrefe, Wright, and Hochberg (2008) suggest the deficiency of reliable 

near coastal bathymetry is due to the turbidity, shallow features, and surf conditions that inhibit 

optimal sampling efforts.  Plant et al. (2002) evaluated the magnitude and scale of errors that are 

related to sampling and use of nearshore bathymetry data. The results of the study supported the 

idea that environmental conditions and the type of sensor directly influence the arrangement and 

size of gridded pixels. Additionally, the authors stated that an analysis of the interpolation error 

can allow for future design of optimal sampling strategies. While many modern hybrid 

techniques have emerged to address this problem, it is well accepted that management of the 

dynamic coastal regions demand accurate and repetitive DEM techniques (Bernstein 2002, 

Mitasova et al. 2003, 2004, Bernstein et al. 2011)  

While analyzing sparse data can be problematic, geographic solutions exist that enable 

continuous scalar fields to be created from sets of discrete measurements. O’Sullivan and Unwin 

(2010) outline a general workflow for creating a continuous surface from remotely sensed data. 

The authors suggest that this two-part process involves sampling the physical surface and 

choosing a form of interpolation. Sampling produces an output from electronic sensing 

equipment which is provided to an analyst as a series of numeric values that represent a mapped 

variable across a surface. Using these known points, values for unmeasured locations can be 

predicted using algorithms that summarize the spatial relationship between known points 

(Michell and Minami 1999). The underlying theory was originally demonstrated in a study by 

Tobler (1970). The author animated cartographic simulations of urban growth to show correlated 

patterns between neighbors. A major claim made by the author is that distance is the most 

important variable that determines the interaction between phenomena or objects in space. This 
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concept is now widely known as spatial autocorrelation and is an assumed precondition for 

interpolation analysis.  

2.2 Related Works 

Interpolation analysis works to find the function that passes through known points while 

providing an accurate representation of all unmeasured values (Burrough 1986, McCullagh 1988, 

Robinson 1994). In the context of spatial data, interpolation is used to build continuous datasets 

from a limited amount of discretely measured points. Throughout the literature, a broad range of 

interpolation models, algorithms, and techniques are discussed. Additionally, over the past few 

decades, further developments in technology and computer science have broadened opportunities 

for control over different aspects within the interpolation process (Achiellos 2008).  

The choice of an interpolation method is ultimately very subjective and should be chosen 

to best fit its application (McCullagh 1988, Achiellos 2008). The review by Schut (1976) 

demonstrated that the accuracy of a DEM is highly dependent on the complexity of terrain 

characteristics, sampling rates, and the interpolant used. Additionally, the study by Achiellos 

(2008) is a good example of the different results that can be produced when using different 

methods, techniques, and models. The study also claimed that the selection of parameters plays a 

significant role in the outcome of a DEM. The use of an interpolator or parameters that are not 

well suited for an application can lead to incorrect decision making. By contrast, given ideal 

conditions of spatial distribution and point density, even the most basic of interpolators can 

provide exceptional results (Schut 1976).  

Accordingly, an in-depth knowledge of various methods and applications can assist in the 

selection of an appropriate interpolant. There is the basic assumption when creating a DEM that 

the raw data presents spatial dependence and the technique chosen will meet the needs of the 
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desired product (Robinson 1994). While no comprehensive study has concluded that any method 

is more suitable than another, the wide range of published literature instead focuses on using 

various methods along with different data.  

The following section describes the three methods used in this thesis research based on 

previous literature, along with contemporary applications and uses. 

2.2.1 Inverse distance weighting 

One of the most basic interpolation techniques available is the inverse distance weighted 

(IDW) interpolation method (Burrough 1968, Schut 1976, Achiellos 2008).  Since this 

deterministic method is included in most systems that create and manage DEMs, its use in spatial 

research is very common. This interpolator considers a local neighborhood and predicts values 

that generate a surface that passes through every data point. IDW assumes that each measured 

location has local influence on the surrounding points that lessens as a function of distance. A 

review by de Mesnard (2012) supported this claim by demonstrating the use of IDW by 

modeling pollution. The author considered measured pollution data as “reference points” and 

used this to create a model. One flaw the study revealed was that different types of pollution data 

warrant different considerations instead of considering all types of data with the same arbitrary 

exponent. The author suggested future studies consider a more advanced method of interpolation, 

such as kriging, for this use case.  

Another study by Lu and Wong (2008) used IDW interpolation analysis to evaluate the 

sensitivity of the parameters used for prediction. The authors reveal that the output surface 

produced by IDW can also vary depending on the user’s level of a priori knowledge of the 

subject and necessary parameters. One important parameter that is applied in the IDW method is 

the variable or search radius. A variable search radius controls the number of points considered 
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at once while allowing for a varied distance depending on the spatial configuration of the data 

set. A fixed search radius holds a constant neighborhood size and uses a minimum number of 

points to determine what is considered for interpolation. A study by Chen and Liu (2011) used 

IDW to consider 46 rainfall stations along with rainfall data. The authors found that if the radius 

distance examined too many or too few stations, problems could arise within the analysis. The 

issues noted included increasing computational runtime (when too many stations are considered) 

and an inaccurate representation of the surface (if too few or no stations were considered).  

The power function is considered the most important parameter used to compute 

predictions using IDW. A study by Fotheringham and O’Kelley (1989) served to exemplify this 

importance. The authors reveal that a decrease in the spatial relationship between two points is 

not simply proportional to distance alone. The IDW method corrects for this by using a power 

function, or distance decay parameter, to modify the weight of the spatial interaction. Several 

studies have identified that this power function is the most important factor in the IDW method 

(Burrough and McDonnel 1998, Priyakant et al. 2003). Another finding from this study was that 

an increased distance between prediction locations resulted in a decreased weight of measured 

points. This means that a higher power value will provide less influence on distant points. 

Despite its popularity, the exact and deterministic IDW method has limitations. One 

restriction in this method is that it does not consider the spatial variability of the phenomena. 

Instead, IDW acts as an exact interpolator and the output surface created is identical to the 

measured points. One example of this is described in the study by Erodgan (2009). The author 

used IDW in a comparative analysis of interpolation methods while considering accuracy and 

uncertainty. The results of the study showed that the resulting surface produced higher 

uncertainty than other methods. The uncertainty can be attributed to the nature of the IDW 
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method creating flattened peaks and valleys. This is often the case when interpolating a sparse 

density of point measurements and can create misleading representations of terrain. IDW is the 

most basic interpolant considered in this study and as a result can be considered a baseline to 

compare the more sophisticated methods to. 

2.2.2 Empirical Bayesian kriging 

 While deterministic methods apply mathematical functions in order to describe a field, 

probabilistic techniques consider the points within a field to be statistical in nature (Krivoruchko 

2012, Wilson 2018). Borgman et al. (1994) recognized that the simplified assumptions and exact 

predictions introduced by deterministic methods do not necessarily recognize environmental 

variability nor address the spatial behavior between sample points. Often for this reason, 

geographers favor describing fields with methods that are rooted in statistics because it leads to 

more realistic views of scalar data.  

Within the class of probabilistic interpolators is a method called kriging. Kriging is also 

referred to as the optimal spatial predictor or best linear unbiased predictor (Cressie 1990). This 

method originally evolved to meet the demand for a quantitative way of characterizing spatial 

autocorrelation and building continuous datasets (Oliver and Webster 1990). Since the 1960s, 

many applications of kriging have been published within meteorology, agriculture, mining, 

epidemiology, hydrology and many other environmental sciences (e.g. Oliver and Webster 1990, 

Moore and Carpenter 1999, Skøien, Merz & Blöschl 2005, Krivoruchko 2012). 

Kriging was explained in a study by Lev Gandin (1959) on optimum interpolation. The 

author suggested that optimal prediction and prediction uncertainty depends on covariance. The 

covariance can be quantified by estimating a semivariogram as a function of the distance and 

direction between pairs of coordinates (Krivoruchko 2012). Matherson (1963) expanded upon 
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this concept through his Regionalized Variables Theory. A regionalized variable is a 

continuously varied numerical function where the spatial variation cannot be accurately 

described by simple mathematics across space (Dias et al. 2018).  

Kriging is desirable because it offers the advantage of generating statistical estimations 

with minimum error in addition to a quantified measurement of that estimation (Cressie 1990). 

Other reviews have suggested that kriging predictors filter measurement error creating a highly a 

reduced prediction uncertainty when compared to other models of measurement errors 

(Krivoruchko 2012). Zimmerman et al. (1999) showed that kriging generated more accurate 

results that did IDW regardless of the landform type or sampling scheme. The author’s results 

demonstrate the flexibility of kriging along with its ability to analyze correlation and covariance 

across varying spatial structures (Arun 2013).  

 Among the many different flavors of kriging is an approach called Empirical Bayesian 

Kriging (EBK). This method requires minimal interaction from the analyst as it automatically 

calculates parameters through many subsets of local models and simulations (Krivoruchko and 

Butler 2013).  EBK differs from other kriging methods because it accounts for the introduced 

error in other kriging methods. This is accomplished through a sophisticated kriging approach 

that calculates multiple semivariogram models throughout the study region, as opposed to a 

single semivariogram apparent in other methods (Krivoruchko 2012). The algorithm considers a 

subset of the data and through iterative simulations it averages many semivariograms across 

space. By using many local models, the algorithm can adapt to small scale changes in the data 

leading to accurate predictions. Although EBK does include attractive qualities, it comes at the 

cost of processing speed and only allows for a limited amount of customization (Esri 2018). This 

form of minimally interactive modeling also has the advantage of opening many doors for 
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automating interpolation analysis across large scale data. One study suggested that Bayesian 

kriging not only obtained more precise results than other kriging methods, but the process leads 

to reduced costs without sacrificing quality of information (Cui, Stein, Myers 1995).  

Across the literature regarding coastal studies, the generation of bathymetric models from 

interpolation analysis is a well-studied technique (e.g. Righton and Mills 2006, Ryan et al. 2007). 

The use of EBK was applied by the U.S. Geological Survey (USGS) to successfully interpolate 

topo bathymetric DEMs (Danielson et al. 2016). The authors found that this method performed 

well when mosaicking together both sparse bathymetry with dense topography. Another success 

of using EBK in this application was that the methods automated the large volumes of data. 

Since coastal models demand frequent updates because of the dynamic nature of the surf, 

automating interpolation with EBK provided a consistent and reliable technique to use repeatedly 

with these models.  

2.2.3 Machine learning and random forests 

An explosive amount of data is now available due to the rise of computers, the Internet of 

Things (IoT), and advanced acquisition technology. Yet in this world where nearly everything 

can be measured and monitored, a review by the New York Times (2009) expressed that “data is 

merely the raw material of knowledge”. The use of machines to solve advanced problems offers 

an advantage because it allows for the discovery of relations that could not otherwise be detected 

by humans alone. Today, machine learning is pervasive among many different domains of real 

world-applications and its use is growing exponentially. The term machine learning encompasses 

many types of work such as data mining, pattern recognition, multivariate statistics, and 

predictive analytics.  
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 A model refers to a generalized representation used for predictions that can be 

extrapolated to instances where data is not available (Esri 2019). In machine learning algorithms 

(MLA), relationships are learned by training a model to detect correlations between dependent 

and explanatory variables. Respectively, these variables refer to the phenomena to be predicted, 

and the variable that caused or explains the dependent variable.  When no data is present, the 

model looks to collect information from explanatory variables in order to connect data that can 

provide information about predicting a value. Guisan and Zimmerman (2000) refer to this model 

formulation as a data driven prediction for a specific outcome based on an observed spatial 

pattern. A major claim by the authors stated that by combining machines with optimal statistics, 

the data speaks for itself with exceptional predictive abilities. 

MLA iteratively explore datasets while connecting variables that infer accurate 

predictions through a series of questions. The model recursively goes through a series of 

questions and makes decisions which infer patterns. The use of MLA to classify remotely sensed 

data of Australian forests serves as an exceptional example of a large sample size that can be 

analyzed to form predictions (Brown de Colstoun et al. 2003). The results of the study showed 

that the land cover map produced an overall accuracy of 82% when tested against a validation 

dataset and 99.5% accuracy under conditions of forest classes. The successful results show that 

the results from the case study can be scaled up to applications of the entire national park system.  

 One strategy employed by MLA is classification and regression trees (CART). This 

technique was first introduced in a study by Breiman (2001). The author demonstrated that an 

efficient way to train predictive algorithms is through a series of decision trees where 

explanatory variables are split into different branches. Since this type of supervised learning 

algorithm can predict both categorical (classification) or continuous (regression) data, it has 
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become one of the most used methods of MLAs. As the study stated, the objective of the model 

is to associate a desired output with a specific value of a specific variable at each stage. The 

study also demonstrated that features are recursively considered within a hypothesis class while 

searching for a function that fits the data. Depending on the training data and hypothesis space, 

MLA are commonly known to observe the data too well. Dietterich (1995) explained this central 

problem inherent in learning algorithms by describing the tendency of a model to fit an objective 

function too closely to the training dataset. This is known as overfitting a model and can create 

issues when noise is precisely mimicked from a dataset.  

 Breiman (2001) used random forests (RF) to directly tackle the issue of overfitting. As a 

more robust way to learn generalized patterns, a forest is built through an ensemble of random 

trees. When individual trees work together as a forest, a model has better predictive performance 

than otherwise with constituent learning algorithms (Esri 2019).  Probability theory and the law 

of large numbers (LLN) states that the iterative result will be a more reliable approximation of 

the truth than would a single, independent realization (Judd 1985, Durrett 1995). Other studies 

also support this claim by investigating the impact of randomness on tree classifiers and model 

accuracy (Amit and Geman 1997). 

 While successful in many applications, RF are not specifically designed for spatial 

applications. Many published attempts have described the process of creating spatially specific 

implementations of the method. These modifications better allow for spatial applications. Sinha 

et al. (2019) explored the application of RF to model population density when predicting parcel 

aggregations that are downscaled from input training features. The results of the study strongly 

suggested that including spatial autocorrelation of the training data played an important role in 

minimizing the residual variance of predicted values. The authors concluded that more research 
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and specialized variants of the RF algorithm may lead to better predictions to be used with 

spatially correlated and heterogeneous data.     

 Georganos et al. (2019) extended the RF algorithm and demonstrated its use with remote 

sensing data along with population modeling. This method was adapted to deal with the 

challenges of highly spatially heterogeneous data. The authors showed that their specialized 

implementation of a geographical RF algorithm offered encouraging support for its use as a 

spatially predictive and exploratory tool. This claim was validated by the study’s results that 

showed a lower residual value of geographic RF when compared to non-spatial implementations 

of the same method. 

 Studies have demonstrated the construction of water depth models using machine 

learning. Manessa et al. (2016) suggested that the depth variable and surface reflectance have a 

complex influence on data collected in shallow coral reef waters. The authors advocate 

incorporating Worldview-2 satellite images and single beam echosounder measurements in order 

to create a robust non-linear regression of the RF algorithm. Additionally, the authors 

incorporated six variable bands and their logarithms in the regression equation as robust 

explanatory variables. Sagawa et al. (2019) also used satellite derived bathymetry and RF to 

predict bathymetric values under conditions of very sparse data. The authors were able to predict 

a depth estimation model with minimal error by incorporating satellite image analysis based on 

cloud computing.  

2.3 Summary 

Virtually all DEMs we interact with on a daily basis are created using some form of 

interpolation. The interpolation technique plays an important role in achieving a high accuracy 

elevation model from discretely collected points. However, there are many different approaches 
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and techniques to consider when creating a surface. The published literature rarely supports the 

use of one method over another, but instead provides comparative case studies to support the 

superior use of an interpolant for a given application.  

For the purpose of this project, the exact deterministic method of IDW was used as a 

benchmark to compare the results of the other methods. As supported by the literature above, the 

IDW method is distance based and provides an interpolant that includes every point in the 

output. Regardless of the underlying spatial process or location, IDW creates one model based on 

known points. To predict unmeasured values, this method connects measured values so that the 

minimum and maximum values occur at sampled points. This often creates surfaces with sharp 

features and can misrepresent areas with steep unmeasured peaks and valleys. In the context of 

this study, this method serves as a baseline to verify the hypothesized superior performance of 

for sophisticated geostatistical methods.  

 EBK is an advanced semi-automated method that integrates the data and creates 

predictions using multiple semivariogram models. This is accomplished by dividing the data into 

many subsets and selecting the best combination of parameters within that subset. EBK has been 

successfully demonstrated to capture multiple underlying spatial processes that drive 

geomorphology. Furthermore, the use of local models allows this method to accurately predict 

values in nonstationary data.  

Lastly, given the presence of secondary variables, RF can provide a method to improve 

interpolation predictions. RF and other MLA are frequently used to generate spatial predictions. 

However, these methods often ignore the geography of measurements in the process (Hengl 

2018). While this method is technically a non-spatial model, the use of spatial covariates are 

expected to increase a model’s effectiveness with spatial data. Previous research has used 
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satellite images and regression models to predict bathymetry values in areas that are unreachable 

by boat or plane. Given more time and resources, this research would take a similar approach to 

explore this method. However, this thesis uses only the sampled data points and therefore 

excludes the use of secondary datasets to drive the regression equation.   
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Chapter 3 Methods 

 This chapter describes the study area and discusses the sample data used to explore 

multiple interpolation algorithms. 

3.1 Research objectives 

 The purpose of this thesis is twofold. The first goal of this research addresses which 

interpolation method will provide superior results when creating a continuous bathymetric DEM 

using discrete measurements collected at half the frequency of the original survey. In order to 

accomplish this objective, two geomorphic regions within Monterey Bay will be explored using 

three different interpolants. As supported by the literature reviewed in the previous chapter, EBK 

and forest-based regression were hypothesized to produce predictions superior to those obtained 

by IDW. In order to validate this claim, IDW has been included to serve as a deterministic 

baseline for comparison. The second objective of this research examines if fewer measurements 

can be taken while generating relatively similar results. This can be addressed by creating a 

series of uniformly thinned measurements and interpolating each using different methods. It was 

hypothesized that different geomorphic regions will have varying thresholds of sampling density 

required to create a reasonably accurate surface. The methods for addressing these two research 

questions are outlined and discussed in this chapter.  

3.2 Study area 

For the purpose of this study, the well sampled region of Monterey Bay will be 

considered the bathymetric ground truth to which the interpolated models will be compared. 

Located off the central coast of California, the region’s unique benthic environment makes it an 

attractive area to study. The Monterey Canyon is one of the largest underwater canyons in the 

world and can be characterized by a rocky nearshore environment and dense kelp forests. The 
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region is also home to many species of marine life including sea otters, bottlenose dolphins, 

elephant seals, humpback whales, sharks, and turtles. 

Research in Monterey Bay is prioritized by many different scientific and conservation 

initiatives with the goal of protecting this special area. The Monterey Bay Aquarium Research 

Institute has prioritized the need to map the seafloor in and around the bay. These DEMs provide 

researchers with a versatile source of information that can be leveraged for many research and 

operational purposes.  

Figure 2 shows the swath bathymetry provided by the USGS formed the primary spatial 

data component used in this study. Bathymetry is traditionally considered fuzzy data, yet the 

high spatial resolution of this dataset validated its application in this thesis research. The survey 

tracks covered the area inside the bay and collected elevation data on the medium and high-

profile shelf regions. The metadata provided with this bathymetry assessed the data’s fitness of 

use. The information revealed cooperative weather conditions during hydrographic surveys 

which permitted marine survey equipment to operate in ideal sea states and collect quality data. 

The weather during data collection is important to note since high surface winds and bubbles 

under the transducer are the primary cause of poor-quality bathymetry acquisition.  
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Figure 2: Bathymetry collected in Monterey Bay, California. 

 

Bathymetry was acquired using a 234.5 kHz SEA (AP) Ltd. SWATHplus-M phase-

differencing side-scan sonar mounted to a hull brace aboard the R/V Parke Snavely (Table 1). A 

common reference frame with a Geodimeter 640 Total Station was achieved throughout the 

survey with the use of sonar heads, GPS antennae, and a CodaOctupus F180 inertial 

measurement unit. Post processing of erroneous soundings was completed in a networked 

workstation aboard the R/V Parke Snavely. Information on the error inherently introduced by the 



23 

 

sensor and survey equipment was not identified in the metadata. Consequently, the derived 

results are specific to this dataset and subject to additional inherent sources of error. 

 

Table 1: SWATHplus-m sonar specifications used in bathymetric data collection in Monterey 

Bay (USGS 2009). 

 

Specification Value 

Sonar frequency 234 kHz 

Maximum swath width 300 m (typically 7-12 times water depth) 

Resolution across track 5 cm 

Transmit pulse length 34 µs to 500 µs 

Ping pulse rater  

150 m swath width 10 pings per second 

300 m swath width 5 pings per second 

Vertical accuracy (range dependent)   

57 m 0.1 m 

114 m 0.2 m 

171 m 0.3 m 

 

 

3.3 Spatial data preparation 

To prepare the data for this thesis research, bathymetry surveyed in Monterey Bay was 

acquired and downloaded from the USGS repository. The downloaded raster was transformed to 

a point feature class in ArcMap10.7.1. The preparation for this analysis necessitated use of two 

versions of Esri’s ArcGIS software because the legacy Maritime Bathymetry extension is limited 

to use only in ArcMap. The bathymetric soundings were then thinned using a shallow-biased 

selection with a nominal thinning radius of 100 m. An advantage of using the Reduce Point 

Density tool enabled through the Maritime Bathymetry extension is that the output feature class 

is thinned for the purpose of increasing processing speed, while retaining the integrity of the 

original collected data. In this case, the total number of point measurements was reduced from 

81,975,729 soundings to 47,293 soundings in the feature class. This step simplified the analysis 



24 

 

by reducing the time spent running geoprocessing operations while ensuring that the program did 

not crash.  

The geodatabase was then connected to ArcGIS Pro 2.4 to continue preparing the 

necessary datasets. The next step was to create multiple datasets composed of uniformly 

distributed random selections of points each representing different levels of sampling coverage 

and density. To accomplish this, an additional attribute was added to the original point feature 

class containing all the measured point values. This new field was populated for each point 

feature with a generated random number using a Python script. The feature class was then 

iteratively selected to include 50, 25, 10, and 5 percent of the original points. Each selection was 

individually exported to create a new point feature class. Introducing randomness in the process 

of selecting points to be included in each layer allowed for an unbiased analysis. 

Different regions of the ocean can be characterized by different seabed geomorphology 

and benthic habitat. Including a constraint on the bathymetry data allowed for depths within 

different zones to be properly assessed according to specific semantics. For the purpose of this 

study, a geomorphologic classification scheme was adopted from Harris et al. (2014).  The 

authors detailed analysis generated the first digital global seafloor geomorphic features and zones 

map. Applying this study to the methods in this thesis research provides the benefit of an easy 

mechanism for differentiating statistically validated types of benthic terrain. The study classified 

each region using quantitative differences analyzed in 30-arc second shuttle radar topography 

mission (STRM) data.  

A folder of polygons was downloaded from the Blue Habits portal and visualized in 

ArcGIS Pro. Each of the polygons represented a different seafloor geomorphic zone or classified 

region. Visual interpretation showed that two polygons representing two geomorphic 
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classifications of shelf profile (medium profile and high profile) intersected the study area. 

According to Harris et al. (2014), the distinction between high and medium profile classifications 

is recognized by analyzing the vertical relief of the continental shelf over a five-cell radius. The 

authors’ study suggests that a medium shelf is classified by 10-50 m vertical relief while high 

profile shelfs exhibit a vertical relief greater than 50 m. 

 

 
 

Figure 3. Study area classified by benthic region. 

 

 

Each of the polygons acted as bounding units for the classified regions. Within each 

polygon, point features were selected using an intersect operation. This process was repeated 
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with each of the down sampled feature classes. The number of features in the resulting eight 

different datasets are reported in Table 2.  

 

Table 2: Number of points retained in each of the generated datasets. 

 

Selection of 

original points 

(%) 

Total point features 

retained  

Medium profile shelf 

features  

High profile shelf 

features  

100 47,239 Not classified Not classified 

50 23,551 6,746 16,819 

25 4,736 3,358 8,554 

10 2,324 1,370 3,367 

5 2,234 671 1,653 

 

 

3.4 Procedure 

 This section discusses how the prepared set of reference points were interpolated to 

create a continuous surface and how the different surfaces obtained were assessed for accuracy.  

3.4.1 Interpolating surfaces 

 The first method applied to the data was IDW. As discussed earlier this method is an 

exact, deterministic interpolator that places weight on each data point by averaging the value of 

points within each processing cell. This method assumes that the value associated with each 

point decreases its influence on neighbors as the distance between points increase. ArcGIS Pro’s 

Spatial Analyst provided access to the geoprocessing tool necessary to complete this operation. 

The tool was used with a default power value of 2 and a variable search radius. This step was 

applied to each set of quadruplicate point datasets to produce a total of eight different surfaces. 
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 Next, the geostatistical technique of EBK was applied to each of the point datasets. 

Kriging calculates averages by predicting error values that minimize the linear sum. The weights 

for each point represent a measure of covariance and location determined by the semivariogram. 

Unlike other kriging methods, this process models many semivariances for each subset of data 

and plots them together in an empirical semivariogram. Figure 4 provides the empirical 

semivariograms for all eight datasets.   

 

 

Figure 4. Empirical semivariograms for observed data values.  
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While EBK is known among the methods of kriging to automate the most difficult 

aspects of building a valid model, user knowledge and input is still required. For each dataset, 

EBK was executed through the Geostatistical Analyst tool in ArcGIS Pro. The nearly normal 

distribution of values did not warrant a data transformation. The default power semivariogram 

was used to calculate the output for each of the eight replicates. Additionally, a parameter was 

set to include the default number of 100 simulations per subset. Given a larger, dispersed dataset, 

increasing the value of allotted simulations can aid in the success of determining a valid kriging 

model. 

Lastly, forest-based regression was used to generate an additional set of eight surfaces. 

Conceptually, a model needs to be trained in order to learn to predict values. In this study, 

distance to shore, slope, aspect, curvature, and a hot spot Getis-Gi* statistic was explored as 

predictor variables to train the model. All of the explanatory rasters were generated as 

derivatives from the downsampled data replicates. It was determined through exploratory spatial 

data analysis that distance to shore and Getis-Ord Gi* values explained most predicted values. 

The Forest Based Classification and Regression tool in ArcGIS Pro generates this claim through 

a Variable Importance Table output from the Train Only setting. These explanatory variables 

were then used to construct the model and predict values to a raster.  

The Forest Based Classification and Regression tool in ArcGIS Pro creates a series of 

decision trees that are intelligently fused together into a forest. An ensemble, or forest, can 

produce a substantially more robust model than if the model is constructed from individual trees 

alone. From each input dataset, 30 percent of the original data was considered a test dataset and 

withheld from building the model. The remainder of the dataset comprised the measurements 
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used to randomly construct the regression model. In accordance with the methods above, the 

result of this interpolation method produced a total of eight surfaces.  

3.4.2 Comparing models 

 Three interpolants were used in this study and applied to eight different sets of 

bathymetry data to obtain a total of 24 surfaces. Quality assessment of each dataset is a critical 

part of DEM production. In this research the accuracy of a surface is considered the absence of 

measured differences between two DEMs. The 24 DEMs were symbolized in an identical 

manner. This was accomplished by applying a classified rendered spectral color ramp on a 

quantile interval scale from 0 to -180 m. This classification method allowed for each class to 

contain values spread across the entire distribution of the data range. Symbolizing the surfaces 

with identical colors and scale allowed for visual assessment by highlighting differences in 

depth.  

 With the goal of quantitatively determining the accuracy of each interpolated surface 

compared to the bathymetric truth, the root mean square error (RMSE) was used as a metric. The 

root mean square error is reported as the difference of residual values between rasters. To 

generate this metric, the raster calculator in ArcGIS was used to calculate in finding the squared 

difference of the surfaces. The mean of this calculated surface was determined using zonal 

statistics. Then, the square root of the mean was recorded. Calculations were repeated for each of 

the 24 rasters to obtain a RMSE between the “known” surface and the interpolated surfaces.   
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Chapter 4 Results 

This section presents the findings of the study and graphically shows the comparison 

between different interpolation algorithms in different coastal geomorphologic regions with 

varying levels of sample sparsity.  

4.1 Interpolation accuracy 

Results of this research can be interpreted in several ways. To address the first objective 

of this thesis research, the surfaces generated from three different interpolation methods were 

analyzed to the most accurate surface when the seafloor measurements are collected half as 

frequently as the original sampling density. RMSE provided a quantitative means of determining 

the most accurate representation between the generated surface and the “known” surface. This 

error metric was calculated using the equation described by Li and Heap (2008). These values 

are first provided as a graph in Figure 5. This formula provides a way to establish how well a 

model agrees with the actual data. A higher RMSE value indicates that the predictions produced 

greater residual values further away from the mean or regression line. Thus, by this measure, a 

lower RMSE values represents a better interpolated model.  

For both the medium and high shelf profile, the RF method provide substantially superior 

results. The RMSE for medium and high profile shelfs are 0.0846 m and 0.1422 m respectively. 

In the medium profile shelf, EBK functioned as a secondary accurate alternate interpolator with a 

RMSE of 0.7669 meters, while the high profile shelf EBK trial exhibited a more substantial jump 

in model differences with a RMSE of 2.9038 meters. As hypothesized in both geomorphic 

regions, IDW generated a surface model with the greatest variation from the true surface. 
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Figure 5. RMSE between ground truth and interpolated surfaces using half as frequently as the 

original measurements.  

 

The morphological differences between shelf classifications can be demonstrated through 

these results. Overall, the interpolated surfaces classified as medium profile shelves revealed a 

lower RMSE for all interpolation methods. All reported surfaces within this zone contain 

residual values of less than one meter. On the contrary, the RMSEs of the high-profile shelf 

region revealed residual values between 0.1142 m and 3.4773 m. These values are a reflection of 

the ability of interpolation to capture the variation inherent in the surface it represents. 

Additionally, this quantitatively illustrates that relatively constant sloping morphology can be 

digitally captured better than that of rugged terrain across all methods. 

Visual analysis provides an alternate method of assessing results. Mapped visuals is one 

of the benefits of using a GIS to generate surface models. In the case of this thesis, the generated 

interpolated surfaces show variation by depth across the bathymetry surface near the shores of 

Monterey Bay, California. While it does provide an attractive report, visual interpretation of 
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outcomes can only capture a subjective idea of general trends obtained with different methods. 

As the precise differences between surfaces are challenging to visualize and results obtained in 

this manner can vary, it is important to consider the qualitative results below along with the 

quantitative results discussed above. 

Figure 6 shows the medium profile shelf surfaces when considering half the sampling 

density of the original measured bathymetry values. Overall, the variation in depth displayed is 

relatively similar horizontally across the surface. In each of the three surfaces, the width of each 

classified depth range is about the same. However, the boundaries between each of the classified 

regions is more jagged in the IDW while the RF surface displays the smoothest transitions 

between classes. The differences are apparent when looking at the complex benthic terrain in the 

left corner of each surface. This northwest region of Monterey Bay reveals a portion of the shelf 

that only comes into focus with the RF interpolation. In the IDW interpolated surface, the same 

corner appears to not contain values of light orange region (-52 to -56 m) as the other depths sink 

more south across the terrain. In the EBK surface, the clarity of this region appears to lie in 

between that of the IDW and RF interpolation.   
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Figure 6: Side by side comparison of medium profile shelf interpolations using 50% of the 

sampled measurements.  

 

 The high profile shelf region is further from shore and exhibits a greater variation of 

depth than the medium shelf surfaces. Figure 7 shows the side by side comparison of high profile 

shelves when interpolating bathymetry composed of measurements with half the sampling 

density. The dark purple region indicating the greatest depths around the mouth of the submarine 

canyon shows a good example of the differences captured by the different interpolants. The RF 

interpolation captured two curved areas in the lower left corner that are not shown in the other 

two surfaces. The medium purple (-120 to -128 m) region in both the IDW and the EBK surface 

appear to have smoothed over the variation between this curved region. This entire classified 

area appears to drop lower through the benthic terrain than does in the RF surface.  
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Figure 7: Side by side comparison of high profile shelf interpolations using 50% of the sampled 

measurements.  

 

 

4.2 Subsample accuracy 

 To address the second objective of this thesis research, artificially created subsamples 

were interpolated to investigate the tradeoff between sampling efforts and the resulting accuracy 

of an interpolated surface. The RMSE for all interpolation replicates produced in this study are 

summarized in Table 3. In all but one trial (medium shelf 5% EBK), using less of the sampled 

data provided the least accurate results. One possible cause for the unlikely high value reported is 

bias due to the only one random subsampling of points that was included in the analysis. Across 

all the replicates, using more data generally tended to provide more accurate results. The 

transitions between accuracy of the trials were greater between the 25 and 10% subsamples than 
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the transitions between the 50 and 25% subsamples. This nonlinear relationship between 

sampling density and an interpolated surface can be seen across all methods. 

 

 Table 3: Residual values (m) between random subsamples (predicted) compared to ground truth 

(observed) shallow bathymetry in Monterey Bay, California. 

 

 50% 25% 10% 5% 

Medium profile shelf geomorphology 

IDW 0.8005 0.8079 0.7844 0.9302 

EBK 0.7669 0.6791 0.6311 0.7302 

RF 0.0846 0.1224 0.3734 0.5412 

High profile shelf geomorphology 

IDW 3.4773 4.2080 5.0856 5.9769 

EBK 2.9038 3.2485 3.6754 4.4830 

RF 0.1422 0.3546 1.0752 3.1566 

 

 The variation in RMSE between the trials with the greatest amount of points and the least 

amount of points can also provide insight into the capability of different interpolation methods to 

provide accurate predictions with varying levels of sampling density. In both geomorphic classes 

and across all levels of sampling density, EBK provided the least variation in RMSE values, 

while RF produced the greatest variation in model accuracy. Across both classes, the variation in 

RMSE produced by IDW interpolation showed intermediate variation. This provides results in 

accordance with how the interpolation methods assess a dataset as either as a global or local 

model.  
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Chapter 5 Conclusions  

 This study created a total of 24 bathymetry surfaces in order to address two research 

objectives. The first part of this project was to assess which interpolation method provided the 

most accurate results when using half of the “known” measurements. This was determined by the 

lowest RMSE value. In both classes, using RF produced the most accurate surface when 

sampling half as frequently as the source data. EBK was demonstrated to be a close alternative 

for accuracy, while IDW ranked third. The overall RMSE for a medium shelf surface was 

substantially lower than the error in the high-profile shelf. This can be attributed to the steady 

sloping terrain of nearshore environments that make it easier to fit a surface to a set of points. In 

other words, a surface that varies more dramatically can be more difficult to model. As 

demonstrated by the results, the high-profile shelf contains complex benthic features which may 

complicate the interpolation process. 

 The second objective of this research sought to determine if fewer samples can be taken 

while providing similar results. The rate of ocean mapping has historically been very slow and 

the goal of providing data in every grid of a global bathymetry model seems far from reachable 

given current sampling practices. However, as demonstrated by this thesis, smoother 

transitioning regions such as the medium profile shelf, can require less input data to obtain 

accurate results. In contrast, complex terrain such as high profile shelfs demand more input data 

for quality results. This represents potential for creating models to fill gaps in data in smooth, 

near coastal regions, where data acquisition is consistently difficult, expensive, or not accessible. 

 Across all replicates, using more data generally tended to provide more accurate results. 

However, as expected, local interpolants such as EBK were able to use less data to create more 

accurate results. While this was demonstrated clearly in the EBK medium profile shelf, the 
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output of EBK trials in the high-profile shelf generated relatively similar results at all sampling 

levels. This indicates that the relationship between accuracy of the resulting interpolated surface 

and the sampling density is not linear, and not uniform for all interpolation algorithms. The real-

world implications of this observation can provide important insight into designing sampling 

schemes and choices of interpolants given varying sampling densities when creating DEMs in 

the future.  

 The most important aspects of this thesis center around the tradeoffs between sampling 

density, interpolation methods, and local geomorphology. The results obtained demonstrate that 

all three criteria play a significant and interconnected role in the accuracy of a digital surface 

product. Assessing the accuracy of varying sampling densities demonstrated that while generally 

denser datasets resulted in more accurate products, this claim did not always hold true. When a 

global interpolator (IDW and RF) was applied to the points, the entire dataset was considered as 

a single model. Both methods resulted in an increase of error as sampling density was decreased. 

However, application of a local interpolator (EBK) was able to capture the fine scale details of a 

model by splitting the region into small subsets and modeling many semivariograms. In 

situations of less data, this method proved very successful. The promising results seen in the 

EBK and RF interpolated surfaces warrant the future exploration of EBK regression prediction 

as way to combine a local geostatistical interpolator along with regression analysis. Given 

appropriate explanatory variables, the potential to achieve more accurate results than either 

method can individually achieve could present a powerful interpolator for sparsely sampled 

regions.  

5.2 Limitations 
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 While this thesis research successfully demonstrated the main objectives, there are 

limitations in the claims made. The identification and future correction of spatial biases are 

essential for quality decision making. One such limitation is that the results discussed are subject 

to random bias. The point measurements included in each replicate were selected through a 

single random trial. By adding multiple random trials to each level of sampling density, 

statistically relevant results can be obtained by averaging the RMSE within each category.  

 The results generated from applying the RF algorithm shows promising potential for 

interpolation as it was able to more accurately produce results than IDW. However, the validity 

of the regression equation cannot be overlooked. The process of deriving the covariates proved 

difficult and no published literature exists on using only a single dataset to correct for a paucity 

of measurements. In many cases, additional SDB or other higher resolution products showed 

great potential for increasing confidence in spatial accuracy. However, more time and resources 

will be required outside the scope of this thesis in order to accurately determine spatial or 

nonspatial covariates that solely depend on the source data. 

 Additionally, a limitation of the RF algorithm is that is only performs well on data it has 

been trained on. This means that it is likely to derive poor results when extrapolating to other 

datasets. One possible way to overcome this challenge is to increase the sample size of the study 

region. This study used one set of geomorphologic classifications to assess the differences 

between seabed relief, geology, and formative processes, to provide a means of categorizing 

different complexities of benthic terrain. By including other study areas with the same benthic 

classification, the statistical validity can be increased as well as the possibility for a stronger 

covariate to be used in the regression equation. 
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Another option for deriving statistically distinct categories is exploring the use of 

indicator kriging (IK) methods. IK is commonly used in geologic and subsurface studies. Both 

applications are analogous to the interpolation of shallow bathymetry where different categories 

of geologic composition can overlap and become mixed within each other. While there are many 

different classification schemas for benthic environments, a coarse proxy will help to statistically 

infer parameters by controlling the spatial continuity within different environmental categories or 

thresholds. 

5.3 Future work 

With the ocean covering the majority of our planet, there is a great need to increase our 

knowledge of the accuracy of products representing the sparsely sampled seafloor. The accuracy 

of a product can impact its usefulness in future studies. It is important for applications of DEMs 

to identify both fine and large-scale details within benthic geomorphology. Misrepresentation of 

these features are likely to have a ripple effect on our overall understanding of ocean science as 

well as other environments across the entire blue planet.   

While the obtained results successfully addressed the two research questions set forth by 

this thesis research, there is encouraging potential for its scalability and development of future 

work. Modifications of the methodology demonstrated in this research can increase the 

application of these results in the real world. Optimizing sampling density provides a means to 

understand the accuracy and results of existing surveys. It also provides a foundation for 

planning future coastal surveys to be optimally executed given that extensive time and resources 

are required to survey the seafloor. However, the ocean is sampled differently than a random 

configuration of points. To properly represent different patterns of coastal paucity of data, 

coastlines should be further studied to assess generalized sampling patterns. It is predicted that 
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there will be three levels of sampling sparsity; low resolution based on satellite gravimeters, low 

resolution with well sampled transect lines throughout, and clustered datasets surrounding fixed 

observation stations. It is likely that different spatial configuration composed of different 

sampling densities will add an additional variable to be considered. 

While this study specifically assessed only four tiers of sampling density, a more accurate 

threshold level can be assessed by exploring all possible levels of point density within particular 

geomorphic regions. In order to accomplish this, future studies can take advantage of many 

different types of data collected by many different sensors. By using a computationally efficient 

way to assess bathymetry data across the globe, such as machine learning, a model can be 

optimized within each geomorphic categorical group indicating the minimum required sampling 

density. Given a statistically relevant sample size, the possibility of using trained models to 

create optimized interpolants for various geomorphologic and sampling schemes or densities can 

assist in the most accurate representation of the seafloor.  
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