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Abstract 

 The majority of the world’s poorest populations live in areas where the road network is 

unmapped, leaving them isolated from help during disasters.  The Humanitarian OpenStreetMap 

Team (HOT) aims to solve this problem through volunteered geographic information.  Although 

Humanitarian OpenStreetMap Team volunteers have traditionally digitized new roads manually, 

the organization is collaborating with Microsoft and Facebook AI to explore the application of 

machine learning to computer-assisted mapping workflows.  As interest in machine learning 

applications grows within the humanitarian community, new organizations and volunteers may 

seek to carry out road classification projects for poorly-mapped regions.  This thesis evaluates 

the major considerations of a classification workflow – primarily training data engineering and 

model selection.  The study showcases the implications of training and model decision on a 

subset of the SpaceNet Road Network Detection dataset using five models: Random Forest, 

Support Vector Machine, Maximum Likelihood Classifier, UNet, and DeepLabV3.  Models are 

evaluated in extensive experiments, assessing the impact of varying width of the road features 

used to label the training data.  Each scenario is evaluated using a Matthew’s Correlation 

Coefficient, confusion matrix, and visual inspection of the predictions. Based on these results, 

the project reports valuable lessons-learned that can inform humanitarian organizations’ design 

for road classification workflows. 
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Chapter 1 Introduction 

Despite technological advancements in geographic information systems and the 

increasing scope, quality, and accessibility of geospatial data, many of the world’s most 

vulnerable communities remain unmapped.  The lack of geospatial data in developing countries 

makes it difficult to respond to humanitarian crises, exacerbating the hardship of impoverished 

people.  The Humanitarian OpenStreetMap Team carries out large-scale volunteer mapping 

campaigns to expand open-source data to vulnerable and disaster-stricken regions, enabling relief 

organizations to reach those affected.   

For example, in the city of Mwanza, Tanzania, the Humanitarian OpenStreetMap Team is 

partnering with a variety of cartographic charitable organizations to map new, high-risk urban 

growth.  During 2019 and 2020, the city experienced 5.56 percent population growth, mostly in 

the form of unplanned communities (Macrotrends 2021).  81 percent of Mwanza’s residents are 

beneath the global poverty line, and these unplanned communities have even less access than 

their neighbors to basic utilities such as drainage and sanitation (Erman, et al. 2019).  These 

circumstances exasperate the ever-present risk of flooding and landslides presented by Mwanza’s 

topography of steep slopes and draws with rivers draining into Lake Victoria (Adinani and 

Kovacic 2020).  The Humanitarian OpenStreetMap Team and its partners are working with 

university students in the region to manually digitize road and building footprint maps from 

overhead imagery, simultaneously creating data to empower response to near-term disasters and 

transferring knowledge to local GIS professionals to build long-term resilience.  In addition to 

campaigns that focus on vulnerable locations like Mwanza, the organization also supports 

massive mapping global campaigns.  The Humanitarian OpenStreetMap Team has partnered 

with DigitalGlobe and the United States Agency for International Development (USAID) to 
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provide geospatial support to malaria prevention campaigns.  From 2016 to 2017, five thousand 

5000 volunteers mapped over 560,000 square kilometers in Botswana, Zambia, Zimbabwe, 

Cambodia, Laos, Guatemala, and Honduras, mapping over five million buildings for the Clinton 

Health Access Initiative.  During 2017, volunteers mapped an additional 30,000 square 

kilometers and another million buildings in Mali and Rwanda for Indoor Residual Spray 

sanitation under the President’s Malaria Initiative  (Humanitarian OpenStreetMap Team 2020). 

In addition to these fully manual digitization campaigns, the organization has explored 

options for greater computer-assistance, including collaborations with Microsoft, Facebook, and 

a variety of smaller and more regionally focused technology research organizations (Percival, 

Delattre and Eckle 2020).  One of the most fruitful of these efforts has been Facebook AI’s 

development of the MapWithAI tools (Basu, Bonafilia, et al. 2019).  These tools integrate with 

the Humanitarian OpenStreetMap Team’s Tasking Manager and allow volunteers to quickly 

digitize roads by simply confirming or rejecting predictions made by a deep learning model 

trained for road classification.  These mapping campaigns expand the OpenStreetMap 

Foundation’s world map using both manual digitization and machine learning techniques.  A 

growing number of humanitarian mapping efforts has also developed adjacent to HOT which are 

also evaluating machine learning workflows.  One such effort is UNICEF’s recent collaboration 

with Development Seed to map over seven thousand previously unmapped schools in Colombia 

and eleven Caribbean nations (Yi 2019).  As the sphere of organizations involved in ML-assisted 

humanitarian mapping grows, it will become important to identify best practices for the 

development of certain workflows, to prevent redundant work.  This is especially true for road 

classification and extraction, a problem for which many solutions have been proposed and 

implemented.     
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Figure 1: Road extraction workflow.  This project focuses on optimizing the ‘Classify Pixels’ step. 

 Figure 1 lays out a general template for the workflow an organization could employ to 

map roads with machine learning.  The automated component of this workflow are pixel 

classification, raster segmentation, and feature extraction.  The organization would begin by 

using a machine learning technique to classify the pixels in a given area.  The output from this 

step would be a raster layer containing the predicted class (‘road’ or ‘non-road’) for each pixel in 

the original imagery.  The next step would be to segment the predicted raster – to separate the 

regions where each class dominates and smooth these areas, then convert the resulting raster to 

features (Hay, et al. 2005).  The initial road map would be extracted from these features, and it is 

at this point that volunteers would become involved in the process by manually editing the 

predicted features.  The hand-corrected data would then be ready for production mapping.  An 

organization implementing such a workflow would have numerous decisions to make, with some 

of the most difficult ones pertaining to the pixel classification process (Hay, et al. 2005).  This 

study focuses on this first step in the workflow.     

1.1 Research Objectives 

 The objective of this project is to evaluate best practices for the design of machine 

learning workflows for humanitarian road network mapping.  Common problems when 

designing a pixel classification process include model selection and training data preparation.  

Many existing machine learning models may be applicable to the problem of road detection, but 

some perform better than others.  For this reason, it is important to evaluate the comparative 

performance of different existing machine learning models for unique use cases.  Another 
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important step in the workflow, training data preparation is studied as it has direct influence on 

the model prediction performance.   

 To tailor insight to humanitarian applications, the experiment will focus thematically on a 

historical case study – HOT’s response to the massive flooding that occurred in Khartoum, 

Sudan in 2013 (OCHA 2013).  With few complete public maps available, HOT collaborated with 

regional NGOs to add roads and buildings to OpenStreetMap to aid in damage assessments 

(OpenStreetMap Wiki Contributors 2018).  This project will assess that scenario by classifying 

roads in Khartoum using satellite imagery from the SpaceNet dataset, with OpenStreetMap roads 

acting as ground-truth labels for both training and validation.   

   The experiment will evaluate model selection and training data preparation by running 

five machine learning models for multiple iterations, each time varying the buffer distance used 

to create training data labels from the OpenStreetMap roads data.  The results of this experiment 

will inform best practices for mapping organizations that integrate machine learning in their 

responses to future disasters like the 2013 Khartoum floods.   

1.2 Motivation 

 Accurate road mapping is crucial to humanitarian response to natural disasters.  Massive 

volunteer mapping campaigns like those carried out by the Humanitarian OpenStreetMap Team 

support infrastructure damage assessments and help relief workers locate and navigate to those in 

need of support (Humanitarian OpenStreetMap Team 2020).  Integrating machine learning in 

mapping workflows holds the potential to multiply the positive impact of each volunteer 

mapper’s effort, in turn helping governments and NGOs provide relief faster and more 

effectively to people in disaster-stricken regions.  This project advances that end by developing 
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best practices for integrating machine learning with a future disaster response scenario analogous 

to the 2013 Khartoum floods. 
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Chapter 2 Related Work.    

 This project focuses on developing best practices for applying state-of-the-art machine 

learning tools and techniques to road mapping for humanitarian response. This study informs 

which models are appropriate for use in this experiment. 

 A variety of machine learning techniques are applicable to imagery classification 

problems (Mondal, et al. 2012).  The concept of a random forest classifier is that it is an 

aggregation of the results from several decision trees (Breiman 2001).  Each decision tree makes 

predictions by applying successive conditions until the classifications fit the training data.  

Individual decision trees are prone to overfitting – random forests mitigate this by generalizing 

across many instances of decision trees (Breiman 2001).  Support vector machines (SVM) are 

similar to random forest classifiers in that they solve a classification problem by estimating a 

feature to most effectively distinguish target classses.  SVMs are reported to more accurately 

separate classes that cannot be distinguished with linear classifiers with the use of kernels 

(Pupale 2018).    Maximum likelihood classifiers (MLC) are another general-purpose machine 

learning model.  This technique calculates the likelihood that any point within a data model will 

fall into each possible class, then assigns each point to its most likely class.  In remote sensing, 

these models have been applied to land cover classification as well as segmentation of manmade 

objects (Mondal, et al. 2012).   

 Deep Neural Networks (DNNs) are emerging as the standard technique for image 

segmentation and pixel classification (Langkvist, et al. 2016).  These models are based on image 

convolution, where a system iterates across an image tile and aggregates the values from each 

raster cell, producing a lower-resolution output that generalizes the features of the original input 

(Caia, Dimitriou and Arandjelovic 2020).  UNet is one such technique, which implements a long 
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series of convolutional layers and pooling operations to aggregate an image, and then a reverses 

the pattern to generate segments from down-convolution (Ronnenberger, Fischer and Brox 

2015).  DeepLab is another DNN technique that improves on the original convolution method by 

introducing Atrous convolution (Zhou, Zhang and Wu 2018).  This technique introduces gaps in 

the cell of the image that is being aggregated, thereby capturing a wider area in each cell of the 

output (Chen, et al. 2018) 

 Many previous studies have compared different types of machine learning models for 

specific practical applications (Langkvist, et al. 2016).  This project does the same for road 

detection for humanitarian applications, with the purpose of identifying best practices.  The work 

of Bonafilia, Yang, Gill, and Basu (2019)  has been prominent in this area.  Adopting a technique 

developed for the DeepGlobe 2018 challenge (Zhou, Zhang and Wu 2018), Basu et al. (2019) 

produced a dataset of road predictions spanning over 1.8 million square kilometers, accurately 

enough for immediate navigational use in many places (Basu, Bonafilia, et al. 2019).  This 

dataset has been integrated with HOT’s mapping tools and applied to large scale mapping 

campaigns in Thailand (Basu, Bonafilia, et al. 2019) and elsewhere.      

 Training data preparation is a key consideration in addition to model selection, and 

numerous satellite image classification experiments have developed novel labelling techniques 

(Langkvist, et al. 2016).  Approaches have often combined automated and manual processes – 

for example, segmenting an imagery dataset then manually labeling each segment according to a 

classification schema (Langkvist, et al. 2016).  Unsupervised feature labeling processes have also 

been applied to images (Singh, et al. 2018), with promising results in road network extraction 

(Basu, Bonafilia, et al. 2019).  Due to the wide availability and coverage of OpenStreetMap 

roads, much attention has been given specifically to converting them into suitable labels for 
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machine learning.  One such approach includes creating a buffer around each street-centerline 

feature, with a width determined by the class assigned by the volunteer according to 

OpenStreetMap’s guidance for the region (Zuraban, Wightman and Brovelli 2019).  One 

outcome of this experiment is to evaluate such a technique by measuring the effect of different 

buffer widths on prediction accuracy.     
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Chapter 3 Data and Methods 

The application focus of this project is to support humanitarian mapping campaigns by 

identifying best practices for applying machine learning to road network extraction.  The project 

focuses on state-of-the-art machine learning methods, and the free and publicly available 

SpaceNet Roads and OpenStreetMap datasets.  A comparison of machine learning tools and 

training data preparation methods help identify best practices for organizations tackling road 

detection problems.   

 

Figure 2: Template for an imagery classification workflow. 

 Imagery classification workflows typically follow the outline shown in Figure 2  The 

workflow begins with training data preparation.  For a road network extraction problem like the 

one evaluated here, the data sources normally include remotely sensed imagery and road 

centerline data.  The first step is to prepare the road centerlines for use as labels for the imagery.  
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This is important because regardless of the data format accepted by the software platform used to 

interface with a machine learning model, the models themselves will almost invariably require 

data to be in the format of an n-dimensional array, also known as a tensor (Stevens, Antiga and 

Viehmann 2020).  The array is a single data structure that contains all the variables the model 

will consider for each pixel – its classification (road or non-road in this case), as well as the 

frequency sensed for each band in the imagery (eight in this case).  The classification stored in 

the array for each pixel will depend on whether it is overlaid by the road label.   

 Road datasets typically consist of polyline geometries, so without any pre-processing 

only pixels which intersect the street’s centerline would receive the road label classification.  

Creating a buffer around the centerline turns the roads into polygons that can more accurately 

label road pixels.  Depending on the tools selected for implementation, it may be necessary to 

convert the road buffers to a raster layer, so that the two datasets can be converted to arrays and 

combined.  One way to execute this step is to replace the values in the satellite imagery with 

ones, then clip the resulting raster to the road polygons.  Since this project ran the models in their 

ArcGIS Pro implementations, some special considerations were made to label creation and data 

wrangling that Section 3.2 describes.   

 The second step is to train the model itself.  Each model evaluated in this experiment 

approaches the actual problem of pixel classification differently, but for deep neural networks 

(DNNs) the learning process generally stays the same.  Each DNN has a set of classification 

tools in place, as well as a set of optimizers – parameters that can be adjusted to change the 

model’s outputs.  The goal of the training process is to optimizes models in a manner that 

minimizes loss – the difference between predicted and ground-truth classes for a target dataset.  

Models are trained by repeating the classification process many times against the training 
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dataset.  At the end of each iteration, known as an epoch, the model calculates the loss based on 

its predictions, then makes an adjustment to the optimizers (Stevens, Antiga and Viehmann 

2020).  This process repeats for a specified number of epochs, with loss decreasing after each 

iteration.   

 With the model trained, the final step is to generate and assess predictions.  This means 

running the model against a new imagery dataset, then calculating metrics to see how it 

performs.  The test data will typically be a section of the original dataset of imagery and roads, 

selected at-random and set aside at the beginning of the workflow (the ‘Split Train-Test’ step in 

Figure 2).       

 The project’s experimental component is a sensitivity analysis of factors in a pixel 

classification workflow for road detection that require subjective choices.  The first experimental 

variable is the distance used to create buffers from the street centerlines represented in the 

OpenStreetMap data.  Scenarios will vary the width of the polygon road features used to label 

the training data, thereby exploring a wider search space in training the models that predict roads 

in the test iteration.  The second experimental variable is the model being employed to predict 

the roads.  By testing each model after training on a variety of road buffers, the experiment 

provides insight into how to optimize those parameters in a road classification workflow (Table 

1). 
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Variable Description Expected Effect 

Model The type of machine learning model 

employed – Random Forest, Support 

Vector Machine, Maximum 

Likelihood Classifier, UNet, or 

DeepLabv3. 

Some models are general-purpose 

while others are designed specifically 

for image classification problems, so 

some should perform better than 

others. 

Road Label Width The radius used to create the buffers 

used for road labels. 

Buffers that are too wide will produce 

false positives, while buffers that are 

too narrow will produce false 

negatives 

   

Metric Description Assesses 

Matthew’s 

Correlation 

Coefficient 

Overall accuracy metric based on 

confusion matrix (see Equation 1). 

Tests the overall predictive power of 

the model and quality of the results 

Confusion Matrix Compares predicted and ground-truth 

labels to calculate the rate of true-

positive, false-positive, true-negative, 

and false-negative predictions. 

Breaks down true predictions and 

errors to help identify causes of issues. 

Visual Inspection Visualize and review the results. Validate and identify any issues with 

the other metrics. 

 

Table 1: Experimental variables and metrics. 

 The experiment will evaluate the models’ performance in each scenario (combination of 

classifier and buffer distance).  The first is an accuracy score representing the proportion of 

accurate predictions.  The accuracy score is a Matthew’s Correlation Coefficient (MCC), 

calculated as 

𝑀𝐶𝐶 =  
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Equation 1: Matthew’s Correlation Coefficient. 

where TP is the number of true positive predictions, TN is the number of true negative 

predictions, FP is the number of false positive predictions, and FN is the number of false 



13 

 

negative predictions (Equation 1) (Chicco and Jurman 2020).  MCC metric summarizes a 

classifier’s predictive power.   

The confusion matrix compares the number of true- and false-positive predictions against the 

number of true- and false-negative predictions.  This will allow a more in-depth analysis of the 

accuracy of each model’s predictions and is likely to assist with understanding each model’s 

sensitivity to widening or narrowing the road labels.  Visual inspection of the predictions 

generated by each scenario will serve as a final validation metric, identifying any obvious issues 

that the MCC and confusion matrix may not reflect.       

3.1 Data Description  

 Table 2 summarizes the project’s data sources.  The SpaceNet Roads dataset consists of 

over 765sqkm of 31cm-resolution GSD WorldView3 imagery for Khartoum, Shanghai, Paris, 

and Las Vegas.  The dataset is freely available through an Amazon Web Services S3 service, 

with download instructions on the SpaceNet project website.  In addition to presenting the most 

difficult classification problem due to its many unpaved roads, Khartoum is a fitting study area 

candidate because it was the site of an extensive HOT mapping campaign after a series of 

destructive floods in 2013 (OpenStreetMap Wiki Contributors 2018).  The imagery comes with 

some preprocessing done.  It is divided into training and test datasets, each of which is divided 

into tiles and processed into four formats – multispectral (8-band), pan-sharpened, pansharpened-

multispectral, and pan-sharpened-RGB.  The training data consists of 471 TIFF images.  Each 

pixel in the pansharpened-multispectral imagery contains sixteen bits of data and covers twenty-

seven square centimeters.  The tiles are projected to WGS1984, and each one takes up 25.79 

megabytes of memory uncompressed.   
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 DigitalGlobe’s WorldView-3 satellite collects a panchromatic band, eight multispectral 

bands (blue, green, yellow, red, red-edge, and two near-infrared bands), eight short-wave 

infrared bands, and twelve bands capturing clouds, aerosols, water vapor, ice, and snow 

(CAVIS).  To maximize the resolution and number of input variables for the training data, this 

project used the pansharpened-multispectral imagery.  This imagery consists of the eight-band 

multispectral imagery combined with the panchromatic band.  The multispectral imagery is 

collected at a 124cm resolution, and the panchromatic band is collected at a 31cm resolution, so 

combining the two datasets produces eight-band imagery with 31cm pixels (DigitalGlobe 2014).   

    

 

Name Source Accuracy/Resolution Description 

 

OpenStreetMap 

Highways for Africa 

 

OpenStreetMap, 

Esri 

Visual inspection 

confirms suitability as 

ground-truth reference. 

 

Hand-digitized road network 

produced by OpenStreetMap 

volunteers 

 

 

SpaceNet Roads 

Dataset - imagery 

 
SpaceNet 

 

31cm pixel-size 

 

765sqkm of GSD 

WorldView3 multispectral 

imagery, pre-sorted into 

training and test datasets.  

  
Table 2: Data sources.. 

  

 The project uses OpenStreetMap roads to label both training and test imagery. A visual 

inspection of the roads confirms their quality as a ground-truth reference for this project (Figure 

3).  OpenStreetMap data is available through many sources – for this project, it was accessed via 

https://spacenet.ai/spacenet-roads-dataset/
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the ‘OpenStreetMap Highways for Africa’ Living Atlas Feature Layer from ArcGIS Online, then 

clipped to the SpaceNet imagery extent.  

  

Figure 3: Sample of the data used in this study.  To the left is an image of the OpenStreetMap roads overlaying SpaceNet 

imagery.  Top-right is an image of a section of the OSM roads buffered to the distances tested here – these buffers served as the 

road labels.  Bottom-right is an example of a no-data section of the imagery.     

 Figure 3 highlights key characteristics of the source data.  First, the OpenStreetMap 

roads appear complete and very accurate for the study area (left).  This is likely due to the 

attention this section of the map received during the Humanitarian OpenStreetMap Team’s 

response to the Khartoum floods in 2013 (OpenStreetMap Wiki Contributors 2018).  The image 

on the top-right illustrates how different buffer distances fit roads in the study area.  Getting a 

buffer distance that accurately captures the roads is a key aspect of preparing the training data, 

and this experiment will assess the impact of different buffer distances.  Image on the bottom-

right displays an area of a tile where no data was available.  The SpaceNet dataset contains 

numerous such dark spots, which consist of pixels containing a zero for each raster band.  Tiles 

with large dark spots, corresponding with zeros on all bands, were omitted.    
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3.2 Experimental Design 

 The experimental design’s purpose is to refine a pixel classification workflow by testing 

combinations of buffer distances and machine learning models.  These scenarios produce 

classification diagnostics (Figure 6) that will indicate the best model and the most optimal road 

buffer distance to produce the most accurate and efficient predictions.  The diagnostics will also 

highlight the effect of buffer-distance and model selection, evaluating the importance of these 

choices.  The method described below was implemented with the GIS data processing tools and 

machine learning models available through ArcGIS Pro.  The workflow consisted of three 

sections: data preparation, pixel classification, and accuracy assessment. 

 Preparing the data for classification and accuracy assessment entails staging the imagery 

and preparing the ground-truth labels.  This process consists of creating the road buffers and 

splitting the imagery tiles further into 256 pixel x 256 pixel chips, along with their corresponding 

labels.  Once the imagery and labels are in the appropriate format, they are randomly split into 

training and test datasets for model training (Figure 4).  Two complications during 

implementation are worth noting here and will receive further discussion in Chapter 5.  The first 

is that the standard machine learning models (Random Forest, Support Vector Machine, and 

Maximum Likelihood classifiers) required labels from each class in the classification schema in 

order to train.  The solution to this was to label the training data for those models with two 

buffers – the first denoting ‘road’ pixels, and the second denoting ‘non-road’ pixels, as shown in 

the right-side image of Figure 4  Another issue was that the standard machine learning models as 

implemented for this experiment were not compatible with tiled images – only single raster 

layers or mosaics. However, with the hardware available, only a single 1.69-megapixel image 
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could be processed at a time.  This limited the training and testing of these models to a single 

SpaceNet imagery tile. 

 

Figure 4: Training data preparation process. 

 With the training and test data prepared, the classifiers are run against test imagery, with 

varying combinations of models and buffer distances.  The method of accuracy assessment in 

this project is an Matthew’s Correlation Coefficient and confusion matrix for each scenario run.  

After a set of predictions is generated, the workflow defines five-hundred random points on the 

classified raster which serve as a representative sample of predictions.  The result is an accuracy 

assessment points feature class that includes the predicted and actual classification for the pixel 

at each point.  Based on this data, the experiment calculates a Matthew’s Correlation Coefficient 

(Equation 1) and confusion matrix.     

3.2.1 Overview of Models  

 This project compares five models for image classification: Random Forest, Support 

Vector Machine, Maximum Likelihood Classifier, UNet Classifier, and DeepLabV3 classifier.  
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Each has strengths and weaknesses in both predictive power and performance.  Random Forest 

classifiers, Support Vector Machines, and Maximum Likelihood Classifiers are general-purpose 

machine learning models which see application across a variety of industries.  UNet and 

DeepLabv3 are both deep neural networks (DNNs) which were designed specifically for 

processing images.  The Random Forest Classifier aggregates the results of several different 

decision trees.  A decision tree classifier fits to a dataset by successively adding and adjusting 

conditions that split the data into its respective classes.  Decision trees tend to be extremely fast 

and performant on large datasets, but are generally prone to overfitting (Breiman 2001).  

Random forest models mitigate this by running several decision trees on different subsets of the 

training data and then aggregating the results, at the expense of time (Liberman 2017). 

 A support vector machine (SVM) attempts to separate two classes by fitting a line, 

similarly to how a decision tree classifier works.  SVMs improve over decision tree and random 

forest classifiers by projecting data into higher dimensions when no line separating classes can 

easily be fitted.  For example, if points of two classes are not linearly separable, the SVM may 

project those points into three dimensions with use of kernels. As a result, non-linear decision 

surfaces can be defined with linear functions (Pupale 2018).  In previous comparisons, SVMs 

have outperformed random forest classifiers when a large number of features are present in 

imagery (Sheykhmousa, et al. 2020).   

 Maximum Likelihood Classifiers (MLC) are another commonly employed classification 

technique.  An MLC calculates the likelihood of a pixel falling into each class based on the 

training data, and then assigns each pixel the most likely class.  SVMs have been shown to be 

more accurate than MLCs across many classification problems, including separation of 

humanmade structures (Mondal, et al. 2012).   
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 The two Deep Neural Network models tested in this project are UNet and DeepLabV3.  

UNet was originally developed to segment microscope images for medical research.  The 

original design consists of 23 convolutional layers with pooling layer interspersed between.  The 

convolutional layers generalize an image by moving across each row of pixels and summarizing 

the values in each section until, for example, a 586x586-cell image tile is reduced to 284x284.  

This process then gets reversed, and each layer successively learns to build a more accurate 

image (Ronnenberger, Fischer and Brox 2015).  DeepLabV3 reflects a more traditional ‘sliding-

window’ convolutional neural network.  However, its developers introduced Atrous convolution, 

which widens the perspective of a convolution layer by introducing holes in the window (Chen, 

et al. 2016).    

 Although DeepLabV3 and UNet represent the cutting edge and industry standard for 

image segmentation, the literature suggests that SVMs may present strong competition from the 

domain of more general-purpose machine learning models (Mondal, et al. 2012).  
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Chapter 4 Results 

This project classified road and non-road pixels using different techniques with varying 

parameters and training data.  From these results, the project derived lessons learned for imagery 

analysis in small-scale GIS implementations. These issues themselves provide valuable insight to 

practitioners seeking to implement a GIS for humanitarian road network mapping.     

In addition to lessons learned from implementation, the outputs of the experiment provide 

insight that can inform future workflows.   The quantitative results generated for each scenario 

are a confusion matrix displaying true and false predictions for road and non-road pixels, 

Matthew’s Correlation Coefficients calculated for each confusion matrix, and the raster datasets 

containing the predictions themselves made by each model. 

  

Figure 5: Classification predictions.
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 The first result that stands out on examination of the predictions (Figure 5) is that the 

standard machine learning models appear far more prone to false positives than the DNNs, 

whereas the DNNs appear to tend toward false negatives – the tiles for RF, SVM, and MLC are 

crowded with positive predictions, whereas the UNet and DeepLab tiles appear sparse.  The 

confusion matrices (Figure 6) support this result, reporting an average false positive rate for the 

standard models twenty-seven percent higher than the DNNs.  The confusion matrices also report 

average false negative rates 36% lower for the DNNs than for the standard models.   

 The effect of road label width also appeared to have a far stronger impact on the DNNs 

than on the standard machine learning models.  The standard models’ average true positive rate 

increases only three percent between one-meter buffer and three meter buffers, whereas the 

average true positive rate drops by forty two percent for the DNNs.  This difference is clear when 

observing the predictions – while RF, SVM, and MLC produce similar predictions across all 

buffer distances, UNet and DeepLab both produce far fewer positive predictions with three-

meter buffers than with one-meter buffers.   
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Figure 6: Confusion matrices.   

 The MCCs for each scenario are displayed in Table 3.  MCC scores range from negative 

one to one, with negative one indicating one hundred percent false predictions and one indicating 

a perfect set of true predictions.  A range of .229 to .577 indicates a moderately strong positive 

correlation between model predictions and true values overall (Chicco and Jurman 2020).  

Across all fifteen scenarios, the average coefficient was .362.  The MCCs do not appear to 

sharply divide the standard models from the DNNs, except for the UNet scores at one meter and 

two meters.  UNet achieved the highest coefficient at .577 with the two-meter labels, the only 

model to reach a coefficient over .5.  This score is sharply contrasted with DeepLabv3’s score of 

.367, also with the two-meter buffers.  UNet appears to peak with two-meter buffers, dropping to 

.382 with three-meter buffers. This peak in accuracy, as well as the contrast between UNet and 

DeepLabv3 with two-meter buffers, are also both clearly visible in Figure 5.   
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 RF SVM MLC UNet DeepLabv3 

1m .294 .341 .327 .522 .481 

2m .229 .402 .341 .577 .367 

3m .310 .312 .331 .382 .218 

 

Table 3: Matthew’s Correlation Coefficients for each scenario.  

 Comparing the mapped predictions themselves, confusion matrices, and MCCs both 

quantify and qualify the test’s results – the visual inspection provides an intuitive insight into 

performance, and the confusion matrices and MCCs each provide quantitative evidence to 

support those intuitions. The confusion matrices confirm the visible overall difference in 

prediction accuracy between the standard models and the DNNs – the standard models were 

generally prone to false positives, whereas the DNNs were more prone to false negatives in some 

cases, though not all.    UNet stands out as the most accurate classifier in this test, especially 

when trained with two-meter road buffers.  The difference in accuracy between UNet and 

DeepLabv3 with two-meter buffers also stands out as anomalous.  Although the MCCs differ 

between UNet and DeepLabv3 for all three buffer distances, two meters is the only distance 

where the predictions also differ visibly.   
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Chapter 5 Conclusion 

 Out of the models tested here, UNet performed with the highest accuracy, producing 

outputs that could be mistaken for pre-processed road features rather than mere classified rasters.  

Road label width was a strong factor in accuracy for the DNNs (though less so for the standard 

machine learning models).  UNet’s performance peaked when trained on two-meter buffers, then 

fell sharply when the buffers increased to three meters.    

 Further review of the implementation in this project reveals several useful lessons.  

Buffering multiple rings around an object can be an effective way to convert existing data into 

training labels with built-in ‘non-road labels for binary classification.  However this is not 

necessary for more feature detection-oriented models like UNet and DeepLabV3.  Excluding 

‘non-road’ labels for these models results in only the positive road predictions being included in 

the output, which could streamline the post-processing workflow.  The accuracy assessment 

method – calculating confusion matrices from a stratified random sample of points, then 

generating Matthew’s Correlation Coefficients – proved effective at quantifying and supporting 

the results which were already evident upon visual inspection of the predictions.   

The primary limitation of this experiment was the processing capacity available for 

articulating the imagery.  Although it was still possible to train the DNN models on the full 

SpaceNet Khartoum training dataset, this was not possible for the standard ML models, which 

instead trained on a single 400m x 400m tile.  This presents a confounding factor when 

interpreting the experiment’s results, as it is possible that standard ML models could have 

performed much better if trained on a larger dataset. 
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Figure 7: Road labels created from three-meter buffers.  The three-meter buffer appears to fit the roads in Khartoum well - any 

wider and the label would likely start catching too many non-road pixels and cause false positives. 

 Training the DNN models took upwards of three hours for each scenario, not to mention 

the classification itself, meaning that running all ten buffer distances for the two DNNs alone 

could have more than a week to complete.  This issue forced the reduction from ten buffer 

distances to three, as shown in Figure 3 in Chapter 3.  Regardless, this change does not likely 

impact the experiment’s outcome dramatically, because upon visual inspection it appears that 

any buffer beyond three meters would have resulted in false positives (Figure 7).  Adding 

increments of less than a meter (i.e 1m, 1.5m, 2m, 2.5m, 3m) likely would have not provided 

valuable results for the time it would have taken to run those scenarios.   

 As for the standard machine learning models, as noted in Chapter 3, attempting to train 

the models on anything larger than a single 1.69MP tile caused the tool to fail, likely due to lack 

of available computing resources.  Because of this, these models were trained on a single tile and 

tested on another tile.  The issue with this is that it puts the standard ML models at a 

disadvantage compared to the DNN models, which were able to train on the entire dataset.  This 

is a consideration when evaluating the results.  
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 Future work can pursue the goals of this project by adding scale to the experiment.  One 

plausible approach is to implement the same experimental design with a system purpose-built for 

ingesting and processing a high volume of imagery, and to expand the sample size for training 

and prediction.  This study focused on a single locale, residential roads in Khartoum, and can be 

extended to areas of the city at various states of development.  Another way is to include models 

omitted here.  For example, this experiment did not test the more recently developed Multi-Task 

Road Extractor, which improves the connectivity of detected roads by simultaneously learning 

road direction and pixel characteristics (Batra, et al. 2019).  Additionally, future work could test 

the effects of different training data preparation techniques. For example, a binary mask could be 

used to remove no-data values from the training imagery, shown in Figure 3.  A future 

experiment could also evaluate the results of labelling roads by creating buffers with different 

widths depending on the road segment’s classification in the OpenStreetMap data (Zuraban, 

Wightman and Brovelli 2019).  Finally, future work could extend these studies into production 

and evaluate the performance of mapping volunteers working with each extracted dataset 

(Percival, Delattre and Eckle 2020).   

 The results found in this assessment are of value to any organization that intends to 

integrate machine learning in a road mapping workflow, especially for humanitarian purposes.  

There is a growing community of NGOs, corporations small and large, and government agencies 

involved in this work, with increasing interest in machine learning.  These organizations have 

many factors to consider when planning a road extraction workflow, of which pixel classification 

is small but crucial component.  This experiment indicates that when implementing a pixel 

classification process, organizations should consider two-meter centerline buffers for residential 
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roads for their training labels, and that UNet will provide more accurate results than comparable 

DNN models and more general-purpose machine learning techniques.   
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