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Abstract 

As of April 19th, 2018, there were 34,771 verified locations of cogongrass (Imperata cylindrica 

(L.) Beauv.) infestations within the state of Alabama. Cogongrass is a highly invasive non-native 

species of rhizomatous grass that is considered one of the ten worst weeds worldwide. This 

highly invasive and environmentally destructive species has caused significant damage 

throughout its current distribution and efforts to control and eradicate the threat have been 

underway for almost a decade. This study utilized the Maximum Entropy (Maxent) model to 

predict the location of invasive cogongrass within the state of Alabama. The model developed 

using the presence locations and environmental data for the Model Study Area, one Alabama 

Forest Commission (AFC) Work Unit, was applied to two additional AFC Work Units to test 

transferability of the model to areas of similar and dissimilar ecological and geographic makeup. 

The Model Study Area’s Maxent model resulted in an acceptable AUC (0.725 with sd = 0.0010) 

and fair TSS score (0.4087) with a test omission rate of 0.0832. Transferability test results 

differed between the two test areas. Using the Model Study Area’s model on Test Area 1, an area 

similar in most aspects to the Model Study Area, resulted in an AUC of 0.746 with a standard 

deviation of 0.002, a TSS score of 0.3944 and a test omission rate of 0.0807. These results 

indicated that the original model was sufficiently transferable to the similar Test Area 1. Test 

Area 2 was dissimilar from the Model Study Area in most environmental covariates as well as 

number of verified presence point locations. Applying the model to Test Area 2 resulted in an 

AUC of 0.846 with a standard deviation of 0.017, a TSS score of 0.2377 and a test omission rate 

of 0.2941. These results suggest the need for some concern about the suitability of the transferred 

model to Test Area 2.  
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Chapter 1  Introduction  

Imperata cylindrica (L.) Beauv., commonly known as cogongrass (Figure 1) is a highly invasive 

and environmentally destructive non-native species with serious biological, environmental, and 

economic impacts to the Southeastern United States. In fact, as of October 22nd, 2018, the U.S. 

Forest Service website lists cogongrass as “one of the 10 worst weeds worldwide and a pest in 73 

countries.” Cogongrass, like most non-native 

invasive species, can become an agent of 

change in the ecosystem within which it 

becomes established. As an agent of change, the 

species can have a deleterious effect on native 

biodiversity (McNeely 2001).  

In an effort to better understand the 

distribution and potential infestation threat of 

invasive species, ecologist use tools such as 

species distribution models (SDM) to assist in 

their understanding of the potential species 

spread and to plan for appropriate management 

actions related to the species being studied. The 

Maximum Entropy Model (Maxent) is a SDM which is commonly used by ecologists to study 

the current and predicted future distribution of a species given presence-only datasets. The use of 

this model helps researchers better predict infestation points based on environmental factors and 

assist in their efforts to eliminate this blight by guiding eradication funds to appropriate areas of 

high risks for infestation. Limited funding necessitates that eradication efforts must be focused 

Figure 1: Image of Imperata cylindrica (L.) 
Beauv. in bloom in a pine plantation. Image 
curtesy of Chris Evans, University of Illinois 

with permission via bugwood.org. 
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on areas that respond best to treatment to ensure maximum benefit to the environment, 

community, and rural economy. In this analysis, Maxent was used to model the predicted 

potential distribution of cogongrass infestation given suitable conditions within Alabama 

Forestry Commission’s (AFC) Work Unit 11, which in this document is referred to as the Model 

Study Area. The resultant model was then transferred to two other study areas to test model 

transferability for the species and to theorize the potential for model transferability across the 

state. The two transferability test areas were selected so that Test Area 1 was highly similar in 

ecological niche and number of verified infestation point locations to the Model Study Area and 

Test Area 2 is dissimilar. These study locations are shown in Figure 2. 
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Figure 2: Map of cogongrass infestation presence point locations with the Model Study Area and 
two transferability test areas defined. The Model Study Area is outlined in cyan and the two Test 

Areas are outlined in Magenta.  
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1.1. Cogongrass 

Imperata cylindrica (L.) Beauv. (cogongrass), is a highly invasive non-native species of 

rhizomatous grass that was originally introduced in the southeastern United States accidentally in 

1912 as packing material in shipping crates from Japan for imported goods at the Port of Mobile 

in Grand Bay Alabama (Tabor 1949; Tabor 1952; Dickens 1974; Dozier 1998; MacDonald 2004; 

Damghani 2013). The species was later intentionally introduced from the Philippines in 

Mississippi (Tabor 1949; Tabor 1952; Dickens 1974; Dozier 1998; Ervin and Holly 2011) and 

Florida in the 1920s and 1930s by the USDA as forage and for erosion control (USDA NRCS 

Plants Database). The var. rubra variety (a non-invasive ornamental cultivar) of Imperata 

cylindrica is still sold by the nursery industry in some states as an ornamental grass under the 

name Japanese Blood Grass, or Red Baron, (Dozier 1998; Missouribotanicalgarden.org, last 

accessed 11/4/2018), however all other varietals are listed as a Federal Noxious Weed under the 

Plant Protection Act, which limits its transport between states without an appropriate permit.  

Currently the range of verified infestations of cogongrass within the continental United 

States spans from East Texas, Southeast to South Florida, and as far north as North Carolina, 

according to the Early Detection and Distribution Mapping System website developed by The 

University of Georgia – Center for Invasive Species and Ecosystem Health (EDDMapS 2019). 

Figure 3 shows a map of this distribution. 



5 
 

 

1.2. Research Goals 

The research objectives of this study were two-fold. The first objective was to evaluate 

the fitness for use of Maxent in modeling the predicted potential distribution of cogongrass 

infestation given suitable conditions using the selected environmental covariates within the 

Model Study Area. The second objective was to test the transferability of that model to other 

study areas within the state of Alabama.  

Alabama Forestry Commission Work Units were used to delineate the boundaries of 

study areas within this project. AFC Work Unit 11 was selected as the Model Study Area 

because the area contains a large verified point location dataset to use in the model (9242 points) 

and this AFC Work Unit contains the transferability study area from the Ervin and Holly (2011) 

study (Clarke County, Alabama) that initially sparked my interest in model transferability. 

Percent canopy cover was shown to be the most influential variable on the Ervin and Holly 

Figure 3: County level distribution with density of infestation points of cogongrass 
verified sites. Source: EDDMapS 2019 
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Mississippi model, and therefore we hypothesize that percent canopy will have significant 

influence on the models produced in this study as well.  

The two test study areas were selected based on their similarity and dissimilarity to the 

Model Study Area. It was hypothesized that Test Area 1, which is relatively similar in 

environmental covariate values to the Model Study Area, will have a similar model result to the 

Model Study Area. Further, it is hypothesized that Test Area 2, which is relatively dissimilar in 

environmental covariate values to the Model Study Area, will have dissimilar model results to 

the Model Study Area but will still produce an acceptable model.  

The guiding motivation, beyond the desire to generate an appropriate model that is 

transferable across various areas of the state, is the hope that the resulting model and 

transferability tests will be useful in directing future survey efforts and funding decisions for 

implementing control and eradication measures against invasive cogongrass in the state of 

Alabama. Evaluating the model will help researchers better predict infestation points based on 

environmental factors used and assist in their efforts to eliminate this threat by guiding survey 

and eradication funds to appropriate areas of high risk for infestation. Invasive species 

management has been shown to be more effective when management activities occur in the early 

stages of infestation as attempted management of large, well-established colonies of invasives is 

difficult and cost prohibitive (Ervin and Holly 2011). Limited funding necessitates that 

eradication efforts must be focused on areas that respond best to treatment to ensure maximum 

benefit to the environment, community, and rural economy. The use of Maxent to facilitate 

targeted survey and eradication efforts is possible only if this type of SDM can be shown to be a 

useful tool in predicting the distribution and spread of this species and is transferable across the 
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affected area. In addition, the results of this study can be used to further prompt research into this 

species as well as the use of Maxent in predicting species distribution. 

1.3. Study Organization and Structure 

This study was structured to first define an appropriate Maxent model for cogongrass in a 

specific area in the state of Alabama and then test the transferability of that model to other areas 

within the state. Figure 4 depicts the overall study workflow. First the project goals and species 

were defined. Then the model study area and study related questions were reviewed. These 

questions, and the answers to them, as gleaned from research, guided the definition of the species 

and environmentally appropriate datasets needed to complete the study. Once the required 

datasets were identified, the data was prepared for use by Maxent using Esri’s ArcGIS 10.6 

Desktop. The prepared data was then used within Maxent 3.4.1. A baseline model was trained 

utilizing all gathered datasets and all Maxent default values and then the model for the Model 

Study Area was tuned through iterative runs where maxent settings were modified and 

environmental covariates that were deemed to add little to no added value to the model were 

removed. A final model was created for the model study area and results were analyzed to verify 

fitness for use given the species and environmental extent of the study. The model produced for 

the Model Study Area was then used to test transferability to the two test areas. 
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Figure 4: General structure and organization of the project. 

The remainder of this document is broken into four additional chapters. The next chapter 

provides background context and additional information pertinent to the species being studied, 

the modeling method used, and research that guided the decisions made as this project 

progressed. Chapter 3 describes the data included in this study in detail, as well as the methods 

used to build the models generated by this project. Chapter 4 discusses the results of the models 

produced and specifically focuses on the key statistics for judging model fitness. Finally, Chapter 
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5 includes a discussion of the conclusions gleaned from this project and the models generated in 

the process of this study. 
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Chapter 2  Background 

This chapter provides background context and additional information pertinent to the species 

being studied, the modeling method used, and research that guided the decisions made as this 

project progressed. This chapter begins by describing, in detail, the morphology and biological 

characteristics of the species and the habitat range in which it can grow. The chapter then 

continues by discussing Maxent as a tool for modeling and the tuning and testing of the output 

model. Finally studies pertinent to the decisions made in this study are reviewed. 

2.1. Description of the Species 

Cogongrass has many alternate common names throughout the world. It is also known as 

kunai grass, blady grass, japgrass, alang-alang, lalang grass, as well as many others and is often 

confused with Brazilian satintail (Imperata brasiliensis) which is a closely related species in the 

genus. Cogongrass is fast-growing and can spread by rhizomatous shoot up to 4m2 in as little as 

11 weeks on productive sites (Dozier 1998; Wilcut et al. 1988a). The general biological 

characteristics of the species are defined in Table 1 below. The species is stemless, forming rigid 

leaf tufts developing directly from the rhizomes. Leaves can grow to 150cm in height and 4 to 

10mm in width and have very sharp pointed apex. They have an off-center midrib that is white in 

appearance and has finely serrated margins (Estrada and Flory 2014; Dozier 1998). Cogongrass 

has a high rhizome to shoot ratio which increases its regenerative ability and exhibits allelopathic 

tendencies which inhibit growth of competing native species (MacDonald 2004).  
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Table 1: General biological characteristics of cogongrass 

Biological 
Characteristics Description 

Reproduction Vegetative and seed 

Flower Branched panicle with dense white fluffy spikelets growing 
10-20cm long 

Growth Structure Stemless, grows in loose tufts with leaves emanating from 
rhizomes 

Leaf Blade Long and slender; 15-150cm tall; 4-10mm wide with off center 
white midrib 

Root Structure Rhizomes with attached dense fibrous root system 
 

Rhizomes are the primary mechanism for local spread of the species once invasion has 

occurred. Rhizomes are aggressive, hardy, branched, and grow in dense clumps. These clumps 

form dense mono-species mats that impede the growth of other species that would otherwise 

utilize that environment. In a 1977 study by Lee et al., rhizome density was measured to be 89m 

(linear) per square meter of soil. Rhizome clumps restrict access to nutrients needed for native or 

commercial species to thrive, further harming both the biological and economic environments in 

which it is found. Rhizomes are whiteish in color with short, scaly nodes and sharp barbed tips 

that can penetrate the roots of other species (Dozier 1998). The morphology of the species is 

represented in Figure 5. It is important to note that buds do not form until the third or fourth leaf 

stage of the plant’s life cycle. This is also when dense root development begins (Dozier 1998). 

The importance of this is due to planned timing of infestation eradication. For cogongrass, 

invasive species management has been shown to be more effective when management activities 

occur in the early stages of infestation as attempted management of large, well-established 

colonies of invasives is difficult and cost prohibitive (Ervin and Holly 2011). Therefore, 

eradication efforts will be less costly if management activities can be conducted in young plants.  
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Figure 5: Example morphology of cogongrass. Images reproduced by permission from 
bugwood.org. 

Panicle flower heads are 5-20cm long and silvery-white. The panicle is fuzzy giving the 

flower a soft cottony look (EDDMapS 2019). Some studies suggest that flowering occurs 

generally after disturbance or stress but recent studies counter that thought and show that 

cogongrass produces an abundance of seed even without disturbance or stress and the seeds are 

easily distributed by wind. Each plant can produce up to 3000 seeds annually (MacDonald 2004; 

Dozier 1998; Wilcut et al. 1988a; Holm 1977). Cogongrass spreads locally via rhizome growth 

and long-distance via seed dispersal. Wilcut et al. (1988a) state the average flight of a one-

seeded spikelet was 15m, and a 2011 study by Yager, Miller, and Jones measured the maximum 

flight distance for a spikelet, with seed removed, to be 37m in a pine-tallgrass environment. 

Studies have suggested that the West to East wind patterns along major roads and Interstate 

highways has created a dispersal route for cogongrass infestation by seed (Yager, Miller, and 

Jones 2011; MacDonald 2004; Wilcut et al. 1988a; Hubbard et al. 1944). 

Cogongrass is a very hardy species and is tolerant of shade, high salinity, moisture and 

drought. The general habitat description of the species is defined in Table 2. Cogongrass grows 
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in tropical and subtropical climates ranging in latitude from 45°N to 45°S. occurring in a wide 

range of ecological conditions (MacDonald 2004; Holm et al. 1977). Cogongrass thrives in 

minorly disturbed sites and non-disturbed rural sites but not heavily disturbed sites. The species 

has been shown to thrive along roadways, in pastures and mining sites, pine forests and other 

open areas, but does not thrive in areas of heavy cultivation and repeated tillage (Dozier 1998; 

Willard et al. 1990) Therefore one mechanism for control is repeat tillage treatments when 

infestation occurs on sites where tillage is possible, and it would be expected that cogongrass 

would not infest agricultural row crop sites where repeat heavy tillage occurs. 

Table 2: General habitat description of cogongrass 

Habitat Description 
Range Tropical and subtropical climates (Latitudes 45ºN to 45ºS)  
Site Highly adaptable (occurs in a wide range of ecological conditions from 

xeric uplands to shaded mesic sites)  
• Degraded forests, roadsides, arable land, young plantations, sandhills, 
flatwoods, hardwood hammocks, grasslands, river margins, swamps, 
scrub, and wet pine savanna communities  
• Thrives in areas of minimal tillage and frequent burning  
• Tolerant of varied soil conditions including variations in fertility, 
organic matter and moisture  
• Grows best in relatively acidic soils (pH 4.7)  
• Relatively intolerant of shade  

Rainfall 75 to 500cm  
Elevation Sea level to 2000m  
Temperature -4.5ºC or lower for more than 24 hours is lethal to rhizomes (however 

dense thickets can insulate themselves and may survive temperatures as 
low as -14ºC.  

 

In 2009, the Alabama Forestry Commission received a three-year, 6.3-million-dollar 

grant from the American Recovery and Reinvestment Act to initiate a proactive, coordinated 

campaign to eradicate cogongrass in the state of Alabama. The Commission for the Campaign 

Against Cogongrass was formed to detect, map, and plan an effective program for the eventual 
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eradication of cogongrass from the state. This grant was sufficient to get the initiative started; 

however more funding is necessary to win the war on cogongrass (Bargeron 2009).  

According to the U.S. Fish and Wildlife Service Invasive Species website, invasive non-

native species do not have the natural checks and balances that native species would have in an 

ecosystem. Therefore, when a non-native species is introduced to a new environment, it can 

become invasive if there are no natural elements to restrict its propagation. This invasion of the 

ecosystem by a non-native species can have deleterious effects on the ecosystem, the economy, 

and human health (US Fish and Wildlife Service last accessed 11/4/2018). Cogongrass has been 

an invasive non-native species in the southeastern United States since its introduction in 1912 

and has been shown to have significant impacts both economically and environmentally in 

heavily infested areas. Figure 6 shows an aerial view of the impact of cogongrass infestation in a 

young pine plantation. Cogongrass is a highly adaptive invasive species with a broad tolerance to 

environmental and ecological conditions. Therefore, this species has the potential to adversely 

change the structure and diversity of environments in which it invades. Cogongrass has been 

linked to the reduction of native diversity and alteration of ecological processes within infested 

ecosystems, especially in fire-dependent communities (Lippincott 2000). This highly invasive 

and environmentally destructive species has caused significant damage throughout its current 

distribution and efforts to control and eradicate the threat have been underway for almost a 

decade. 
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Figure 6: Cogongrass infestation in a young pine plantation exhibiting its distinctive circular 
infestation pattern and severity of infestation at occurrence locations. Image courtesy of Greg 

Leach, International Paper via Bugwood.org. 

Economic stressors resulting from the establishment of cogongrass include cost of 

eradication, impact of eradication efforts on native species and agricultural crops, financial loss 

due to disturbance, etc. (Hubbard et al. 1944; Soerjani 1970; Eussen et al. 1976; Daneshgar et al. 

2008). Studies have also shown that cogongrass is particularly problematic in agricultural 

systems where the species directly competes with agricultural crops for both space and nutrients. 

This competition reduces crop yields and increases weed control costs (Ervin and Holly 2011; 

Akobundu and Ekeleme 2000; Terry et al. 1997). Cogongrass has been the subject of numerous 

and diverse studies throughout the Southeastern United States and therefore is a good candidate 

for studying the effectiveness of a Maximum Entropy model (Phillips et al. 2017) in predicting 

its distribution and testing transferability of the same. 
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2.2. Modeling with Maxent 

SDMs are routinely used to predict the potential distribution of a species based on known 

point locations. The species distribution modeling used in this study is the maximum entropy 

method using Maximum Entropy Species Distribution Modeling (Maxent) Version 3.4.1 

(Phillips et al. 2017). Maxent uses presence only species location points and environmental 

variables to develop probability models for the distribution of the species being modeled 

(Phillips et al. 2006; Ervin and Holly 2011; Elith et al. 2011). Presence locations are compared to 

the environment through the use of background points (Crall et al. 2013).  

Maxent has been gaining in popularity and use in the fields of ecology and environmental 

sciences and has been shown to outperform other species distribution modeling methods in 

predictive accuracy (Merrow, Smith, and Silander 2013). Machine Learning models such as the 

Maxent model allow the model to “learn” from iterative model runs given a sample known 

dataset to train the model and a sample known dataset to test the model’s understanding of the 

data and associated environmental layers.  

Maxent is a machine learning model that is well suited for species distribution modeling 

(Phillips et al. 2017). Maxent models are good predictors of species distribution with limited 

datasets and work especially well with presence only data (Phillips et al. 2017; Ervin and Holly 

2011; Elith et al. 2011). Before running the model, the biology and ecological niche of the 

species being studied must be closely examined to ensure that selected environmental variables 

align with the biological and environmental factors that influence the species distribution within 

the intended study area (Manzoor, Griffiths, and Lukac 2018). This species review and 

conscientious environmental data selection can be time consuming but is vital to the production 

of an informed SDM. The Maxent model allows for an understanding of which environmental 
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variables are most important to the distribution of the species being modeled and gives a 

relatively unbiased prediction based on the constraints provided. The model requires a training 

dataset, a testing dataset, and environmental layers to act against the model as predictors 

(Merrow, Smith, and Silander 2013). The training and testing datasets are presence only data and 

can be subsets of the same original larger dataset.  

As Maxent is a presence only modeling application, the pseudo-absence (background) 

points are generated by the model. It is important to note that some sampling bias may be 

introduced into the model if your species presence point distribution does not cover the entire 

range of your study’s geographic extent. If this is the case, you can create a background file in 

ArcGIS to use within Maxent to limit where the model predicts background points so that it does 

not create background points outside of the extent of the presence data points. This can be done 

using the Create Minimum Bounding Geometry tool in ArcGIS then converting the output 

polygon to raster (.asc) format for use in Maxent. In this study, no minimum bounding geometry 

was needed as the presence points spanned the entire extent of the Model Study Area. 

2.2.1. Model Tuning 

In Maxent, model tuning is performed to optimize model complexity and fit. Tuning the 

model smooths the response curves to the specific environmental variables included in the model 

to reduce overfitting (Elith et al. 2011). Maxent provides default settings for parameters that 

were determined to be the average optimal values (Phillips and Dudık 2008), however, it is 

recommended that these settings be tuned for the specific species and region of study 

(Radosavljevic and Anderson 2014). 

To assist with potential issues related to spatial autocorrelation, a baseline (neutral) 

model run can be performed with all parameters set to default. Based on the results of the 
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baseline model run, the model settings can be tuned until an appropriate model output from the 

sample data is derived. Modifications to parameters, constraints, and environmental layers 

included should be based on research of similar studies (Merrow, Smith, and Silander 2013).  

Regularization is an available parameter in Maxent that relaxes the environmental 

constraints so that the predictions do not have to fit the constraints exactly. This allows the 

model to ignore variables that don’t impact the model and to determine the most impactful 

variables on the model output. Regularization protects against overfitting by affecting how 

closely the output distribution is fit to the provided presence data. To get a closer fit (more 

localized output distribution) the regularization multiplier can be reduced (less than 1). To get a 

more spread out distribution, increase the regularization multiplier (greater than 1). Care should 

be taken if the regularization multiplier is modified to avoid overfitting or underfitting of the 

model (Phillips et al. 2017). 

2.2.2. Testing Maxent Results 

The Maxent model provides a robust testing set for measuring uncertainty. Model-based 

uncertainty methods in Maxent models are found in the form of sensitivity and uncertainty 

analysis. Confrontational methods include visual tests and statistics-based tests. The Maxent 

model utilizes both tests in evaluating the outcome of the model. Visual tests can be performed 

from the layers that are generated from the model that can be rendered as graphics for 

understanding the model outcomes. Statistics based tests including sensitivity, specificity, 

threshold dependence plus standard deviation, and regularization help to describe and reduce 

uncertainty. And finally, Maxent can be run iteratively with different parameters and or 

constraints to heuristically observe patterns that arise from the model runs.  
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Indicators of model fitness include the area under the receiver operating characteristics 

curve (AUC), Omission rate, and True Skill Statistic (TSS). The AUC measures the accuracy of 

the model in predicting distribution based on sample data. The closer the AUC is to 1, the better 

the model is at predicting the distribution. In the graphic output provided by Maxent, the mean 

AUC is shown as the area under the red line and the steeper the angle of increase the closer the 

AUC value is to 1. An AUC approaching 0.5 means the model cannot predict class separation 

and therefore cannot predict the distribution at all given the input parameters (the random model 

is the 1:1 random prediction line depicted in black on the graph in Maxent’s output .html file). 

An AUC approaching 0 indicates reciprocity in the prediction (Narkhede 2018). The receiver 

operating characteristics (ROC) curve itself is the probability curve measuring the probability the 

model is a good fit for the data and question being answered. In general, AUC above 70% is 

considered “sufficiently accurate to be used in conservation planning” (Elith et al. 2006, 141).  

Since population size is generally not known but estimated, Maxent cannot produce true 

occurrence rate per grid cell in the analysis. Sensitivity is a rating of how well the model predicts 

positive outcomes (or presence). This is the omission rate of the model. Specificity is the 

measurement of how well the model predicts negative outcomes (or absence). In other words, 

specificity measures the percentage of absence points that are reported as presence (false 

negatives) based on modeled probability. This is the commission rate of the model (Phillips 

2017; Phillips et al. 2006, Elith et al. 2011; Anderson 2012). However, true commission cannot 

be measured with presence only data. Sensitivity, however, can be used as a measure of fit along 

with AUC. Sensitivity and specificity are inversely related. If we decrease the threshold (more 

positive values) we increase the sensitivity (fewer false negatives) and decrease the specificity 

(more false positives) (Narkhede 2018). When using AUC as a measure of model performance, it 
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is recommended that omission and commission rates be included in the evaluation where 

possible (Lobo et al. 2008). Finally, The True Skill Statistic (TSS) is a variation on Kappa that 

mitigates issues of prevalence that limit the use of Kappa in presence only models like Maxent 

(Allouche, Tsoar, and Kadmon 2006).  

2.2.3. Transferability of Maxent Models 

Transferability (also called projection) of SDMs has been an issue of concern in research 

studies as models built in one geographic space do not always project well to different 

geographic space and/or time. To maximize transferability, the environmental layers used within 

the model must align with the requirements of the species but should be broad enough to 

encompass the entire extent of the originally modeled area and the intended projection area. This 

alignment is necessary to allow the model to be transferred across space or time for the specific 

species under review (Anderson 2012; Peterson et al. 2011). Model tuning is recommended to 

maximize suitability of the model for the species and location being modeled and is especially 

important when the ability to transfer the resultant model is a desired outcome of the study 

(Radosavljevic and Anderson 2014). 

2.3. Related Research  

Background research for this thesis included review of research in the following areas: 

Studies which similarly used the Maxent model to predict invasive species distribution, research 

on model transferability, research on modeling distribution of cogongrass specifically, and 

research on Maxent model parameters. There have been several studies of invasive species, 
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including cogongrass, utilizing the Maxent model that are useful background references for this 

study.  

Amanda West et al. (2016) endeavored to predict invasive species distribution of 

cheatgrass (Bromus tectorum L.) utilizing Maxent. West states that presence-only models are 

rarely evaluated against real field data, therefore, the authors determined to test field data 

collected over a period of time against the Maxent presence only model. Presence data collected 

between 2007 and 2013 were used as the sample data for the study. West et al. ran a Maxent 

model across the area in 2007 using limited real data. Then, the Maxent model was rerun using 

the new data from 2008 to 2013 using same parameters as used in 2007 to test the accuracy of 

the previous results. A new model with updated parameters was also run and was tested with the 

same sample dataset collected between 2008 and 2013. West used area under the curve (AUC), 

percent correctly classified (PCC), sensitivity, specificity, and true skill statistic (TSS) to 

evaluate and validate the models. The West et al. study concludes that the Maxent model is a 

good fit for measuring the distribution of invasive cheatgrass in the Rocky Mountain National 

Park .  

Ervin and Holly (2011) performed a similar study at Mississippi State University on 

cogongrass in southeastern Mississippi in an attempt to determine if the Maxent model they 

designed for the Mississippi varietal would transfer to appropriately predict the distribution of 

the Alabama varietal testing their Mississippi model against three subsets of Alabama 

cogongrass data from the same geographic area but collected in three different years. They 

determined that there was low transferability of the Mississippi model from Mississippi to 

Alabama but noted several potential reasons for this low transferability including the landscapes 

that were focused on (Mississippi focused on roadways while Alabama focused on managed 
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timberland) and discrepancies in soils. These concerns related to environmental factors affecting 

transferability support the use of landcover data, distance to roads layer data and soils related 

variables in the Maxent model generated in the current study. Another important point here is 

that the lineage of cogongrass in Mississippi is from the Philippines while the lineage of 

Alabama cogongrass is from Japan. That genetic difference may also be a factor in how the 

species responds to environmental factors within the study (Lucardi, Wallace, and Ervin 2011). 

A study of genetic impact is out of scope for this analysis; however, it is worth noting as lineage 

can play a role in species response to environmental stimuli. Importantly, Ervin and Holly’s 

Mississippi dataset was collected in a different fashion and for a different purpose (different 

landscape focus as mentioned above) than the Alabama dataset used in that study. This could 

have had an impact on the poor transferability of the model.   

A 2005 case study on cogongrass published by the US. Forest Service indicated that 

cogongrass may outcompete native species in poor soils due to its dense rhizome mat (Howard 

2005) allowing the invasive to restrict access to soil nutrients and water for native grasses 

(Howard 2005; Lippincott 1997). Cogongrass rhizomes have been shown to be present in the top 

15cm of fine textured soils or top 40cm of coarse textured soils (MacDonald 2004). Howard also 

noted that native species that outcompete cogongrass successfully generally have deeper root 

systems or taller crowns, although MacDonald noted that cogongrass rhizomes formation may be 

present to depths of 120cm (MacDonald 2004, Holm 1977). This study supports the use of soils 

related variables such as depth to soil restrictive layer, soil texture layers, and drainage class as 

environmental covariates for use with Maxent. 

A 2000 study by King and Grace examined soil moisture content’s effect on cogongrass 

seedling germination and growth, testing soil saturation ranging from dry to inundated. 
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Measurements of plant height and number of shoots were used to define seedling growth rate and 

germination success respectively. This study found that cogongrass seedling germination was 

weakest (reduced by 74%) when soils were inundated and that growth became increasingly 

restricted, especially for smaller seedlings, as soil saturation increased. The authors suggested, 

based on the results of their study that soil inundation in the early stages of cogongrass 

establishment could restrict invasion by seed. 

Roads as a pathway for seed dispersal was reviewed in a 2017 study by Rauschert, 

Mortensen and Bloser. In this study, the authors followed physical seed dispersal of Carthamus 

tinctorius L.(safflower) seeds, by routine rural road maintenance equipment, specifically by road 

graders, on rural dirt roads. Safflower seeds were used in this study as the use of invasive seed 

was restricted. The authors placed four patches of 5000 painted seeds in a grid across a rural road 

that was planned to be graded using a typical three pass approach. Then, immediately following 

the road grading event, Rauschert, Mortensen and Bloser measured the distance that seeds 

traveled based on seed starting location and ending location. The study found that 41.8% of 

seeds moved between 10 and 50 meters and only 1.6% traveled greater than 50 meters with a 

maximum movement of 273m. This study focused on the physical movement of seed by road 

maintenance equipment, however hitchhiking of seeds on vehicles and wind dispersal along 

roadways was not included in this study but has been identified as additional key pathway for 

dispersal related to transportation corridors. This study as well as mention of roads ad vectors for 

dispersal in other studies provides incentive to include distance to road as an environmental 

variable within the current study on cogongrass (Rauschert, Mortensen and Bloser 2017). 

A study on woody shrubs as a barrier to wind dispersal of cogongrass seed (Yager, 

Miller, and Jones 2011) was performed at Camp Shelby Training Site in Mississippi. This study 
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tested the travel distance of cogongrass spikelets (seed removed) released along three sites which 

each contained blocks of pine-shrub forest and pine-tallgrass forest. The goal of the study was to 

determine if forests with a woody shrub mid-story reduced the dispersal of cogongrass spikelets 

and therefore reduced invasive introduction to forested areas along roadways. The study found 

that although mean dispersal distance of cogongrass spikelets was not significantly different 

between the two forest types, that more spikelets traveled further in the pine-tallgrass forest 

(25% dispersed further than 5m) than did in the pine-shrub forest (8% dispersed further than 5m) 

and the mean maximum dispersal distance was greater in the pine-tallgrass forest (37m) than in 

the pine-shrub forest (23m). The study concluded that cogongrass dense woody shrub vegetation 

along forest edges may impede the wind dispersal of cogongrass spikelets and subsequent 

invasion of the species to the forest interior however it does point out that, in areas where 

cogongrass is already present, infestation growth may still occur via vegetative spread as the 

species some shows tolerance to shade.  

A 2018 study reviewed the impact of grain size of predictor variables on the accuracy and 

transferability of SDM models specifically using Maxent to test transferability for an invasive 

plant species (Rhododendron ponticum (L.)) in Wales, U.K. (Manzoor, Griffiths, and Lukac 

2018). The authors noted that the selection of grain size in SDMs is often dependent on the 

availability of appropriate predictor variable (environmental covariate) data and the available 

resolution of that data. As noted by the authors, finer grain size allows for more detailed and 

potentially more accurate prediction of suitable environmental habitat and courser grain size 

inhibits habitat delineation. Maxent requires all environmental covariates to utilize the same 

grain size and therefore, The authors focused this study on comparing Maxent outputs of three 

models. The modeled grain sizes were 1km, 300m, and 50m. For the 50m model, biophysical 
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variables of Altitude, Aspect, Slope, Land Cover, and Distance from water channels were used in 

the model as environmental covariates. These same datasets were resampled to 300m to be used 

in the 300m model and also resampled to 1km for the 1km model (see Manzoor, Griffiths, and 

Lukac 2018 for details on methods used). For the 1km model, bioclimate variables were also 

included as is common in SDM studies (Manzoor, Griffiths, and Lukac 2018). Model 

transferability at all three grain sizes was also tested to determine if grain size has an impact on 

the transferability of the model. 

This study used the Continuous Boyce Index (CBI) to test transferability. The study 

results show that CBI improves as grainsize is reduced in both the training model area as well as 

the transfer test area. In the training model area, the CBI improved from 0.825 for the 1km model 

to 0.895 for the 300m model to 0.964 for the 50m model. In the transfer test area, the CBI 

improved from 0.65 for the 1km model to 0.90 for the 300m model but dropped to 0.77 for the 

50m model. The reduction in CBI between the 300m and 50m models in the transfer test area 

was attributed to differences in range and topography of the two geographic areas of study. The 

authors concluded that, although the use of climate data is widely used in SDMs and in many 

cases this is justified, biophysical variables based on the biology and ecology of the species 

being studied as well as the spatial extent of the study area may be more important for localized 

studies. Therefore, the authors suggest that the use of course grained climate datasets should be 

considered in reference to their overall importance to the specific species and geographic extent 

of the study, and that the inclusion of these climate datasets can produce less accurate SDMs due 

to the required coarser grain size of the model.  
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Chapter 3 Data and Methods 

As discussed in Chapter 1, this study focuses on Imperata cylindrica (L.) Beauv., more 

commonly known as cogongrass, which is a highly invasive species with high tolerance to a 

broad range of environmental conditions. Maxent was utilized to model the predicted potential 

distribution of cogongrass infestation given suitable conditions for the AFC’s Work Unit 11 

(Model Study Area) and then transferred to Work Units 12 (Test Area 1) and 8 (Test Area 2) to 

test model transferability across the state.  

As described in Figure 7, 

the use of Maxent for species 

distribution modeling has four 

key steps. First, the species was 

researched to ensure that 

environmental variables selected 

for the model are relevant to the 

species and study location. This 

is discussed in more detail in the 

Data Description section below. Second, the datasets were cleansed, and data layers were 

prepared. This included both the species presence data as well as the environmental variables. 

Third, the Maxent model was run at default and then tuning occurred to ensure parameter 

settings were appropriate for the study. Finally, the Maxent results were evaluated and model 

performance was determined. 

The ultimate goal of this study was to determine if Maxent is an appropriate tool to 

predict cogongrass distribution and, if so, to determine if a locally constructed model could be 

Figure 7: High level overview of Maxent steps 
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transferred to other areas within the state successfully. This study endeavors to create a model 

that can be transferred to each work unit and reliably predict cogongrass infestation locations to 

help guide survey and eradication efforts by the AFC. 

3.1. Study Area 

The primary Model Study Area (Figure 8) is the Alabama Forestry Commission’s (AFC) 

Work Unit 11 encompassing 10,902 km2 with an average point per km2 of 0.85. This study area 

includes Choctaw, Marengo, Clarke, and Washington counties. The Model Study Area was 

chosen because the area contains a large verified point location dataset to use in the model (9,242 

points) and this AFC Work Unit contains the transferability study area from the Ervin and Holly 

2011 study (Clarke County, Alabama) that initially sparked my interest in model transferability. 

Transferability of the resultant model was then tested against similar as well as dissimilar Work 

Units within the state. Test Area 1 (Figure 9) consists of AFC Work Unit 12 which encompasses 

7,306 km2 with 6826 presence points that fall within the boundary of the study area and an 

average point per km2 of 0.93. Test Area 2 (Figure 10) consists of AFC Work Unit 8 which 

encompasses 8,088 km2 with only 78 presence points that fall within the boundary of the study 

area and an average point per km2 of 0.01. Table 3 shows the comparison of area and number of 

points in each of the Alabama Work Units.  
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Figure 8: Model Study Area with Cogongrass Infestation Presence Point Locations Identified 
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Figure 9: Test Area 1 with Cogongrass Infestation Presence Point Locations Identified 
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Figure 10: Test Area 2 with Cogongrass Infestation Presence Point Locations Identified 
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Table 3: Count of verified point locations, total km2, and average points per km2 in each AFC 
Work Unit. 

Work Unit Count of 
Points 

Square 
Kilometers 

Average 
Points per 

Square 
Kilometer 

1 5 6,468 0.00 
2 47 6,688 0.01 
3 2,355 10,378 0.23 
4 4,253 7,867 0.54 
5 9 7,009 0.00 
6 22 5,840 0.00 
7 6 8,347 0.00 
8 78 8,088 0.01 
9 13 6,689 0.00 
10 1,898 6,700 0.28 
11 9,242 10,902 0.85 
12 6,826 7,306 0.93 
13 7,389 7,302 1.01 
14 256 7,219 0.04 
15 435 5,330 0.08 
16 88 6,425 0.01 
17 1,557 5,916 0.26 
18 262 6,702 0.04 

Total 34,741 131,176  
Average 1,930 7,288 0.24 

 

As can be seen in Table 4, Work Unit 11 is mostly rural with 50% upland 

forest/woodlands and 27% floodplain forest. Eight percent of this area is in agricultural use and 

only three percent is developed. Like the Model Study Area, Test Area 1 is very rural in nature. 

This area includes 47% upland forest/woodlands, 22% floodplain forest, 15% agricultural use, 

and is three percent developed. Test Area 1 has the closest number of presence points per km2 to 

the Model Study Area. Based on visual inspection of the environmental layers using ArcGIS 

10.6, it was determined that Test Area 1 has similar distribution of land use, PctClay, PctSilt, 

PctSand, drainage class and PctCanopy with higher pH and slightly more agricultural use. (See 

Appendix A and Appendix B for maps of each environmental layer used in the analysis). It was 
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therefore expected that Test Area 1 would display a similar predicted distribution to the Model 

Study Area.  

Table 4: Ecological System categories for comparison of study areas’ land use differences. 

Category Model Study Area  
% of area 

Test Area 1 
% of area 

Test Area 2 
% of area 

Forest/Woodlands 49.99 46.88 52.34 
Floodplain Forest 26.54 22.24 0.14 
Agriculture 8.07 14.64 20.84 
Developed 3.18 3.09 15.05 
Disturbed 10.99 12.39 8.19 
Water 1.18 0.68 2.80 
Other 0.06 0.07 0.64 

 

Test Area 2 includes the city of Birmingham, the largest city in the state, and is the most 

urban area within the state of Alabama. This area’s land use includes: 52% upland 

forest/woodlands, <1% floodplain forest, 21% in agriculture and is 15% developed (Table 4). 

Again, based on visual inspection of the environmental layers, it was determined that Test Area 2 

has significantly greater variability in depth to restrictive layer, lower PctCanopy, more PctClay 

and PctSilt and less PctSand than the Model Study Area. Test Area 2 was included to test 

transferability of the model defined for the Model Study Area to an area of dissimilar 

environmental makeup. 

3.2. Scale of Study 

A key component of gridded data, such as the ASCII files used by Maxent, is the grain 

size which represents the spatial resolution of the layers to be included in the analysis (Manzoor, 

Griffiths, and Lukac 2018). For a model such as Maxent to function properly, all layers must be 

set to the same spatial resolution. The resolution selected for this study was 30m resolution 
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which is the resolution of the primary datasets used to build and test the model. The Soils and 

Land Use datasets are both native 30m resolution.  

I considered testing at 200m and 800m to allow for the inclusion of Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) climate datasets. According to the PRISM 

Climate group website at Oregon State University, PRISM data is provided by the PRISM 

Climate Group which gathers climate data from monitoring networks and develops spatial 

climate datasets to be used to show short- and long-term climate patterns. Although the use of 

climate data in species distribution modeling is common (Manzoor, Griffiths, and Lukac 2018), 

it was determined to be unnecessary in this study as the scale of data available was too coarse to 

provide adequate detail to inform the model. Also, given that cogongrass is highly tolerant to a 

wide range of climatic conditions, and the climate of the state meets this range for all pertinent 

climate data in all but the extreme northeastern portion of the state, inclusion of climate data was 

determined to be superfluous. 

3.3.  Data Description 

A wide range of environmental variables are available both publicly and privately for use 

in SDMs such as Maxent. To minimize potential overfitting of the model, care was taken to 

select only variables that were relevant to the species and study location and to reduce 

redundancy in variables where possible. For greater model relevance and to minimize correlation 

between variables used, it is advised to select environmental variables that are relevant to the 

species being studied (Manzoor, Griffiths, and Lukac 2018; Radosavljevic and Anderson 2014).  

When employing data from multiple sources, however, ensuring proper alignment of the 

data can be difficult. Maxent requires that all environmental layers used in a given model match 

in geographic extent, grid cell size, and projection (Elith et al. 2011; Phillips 2017; Ervin and 
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Holly 2011). To this end, all environmental variables used within this study were sampled at a 

30m by 30m grid cell size in the North American Datum (NAD) 1983 UTM Zone 16N 

projection. The species point location dataset was also projected to NAD 1983 UTM Zone 16N 

to match the projection of the environmental variables.  

Datasets to be used within this analysis include the verified point location dataset of 

cogongrass from the Alabama Forestry Commission, USGS GAP Land Cover data set, USDA 

Soils data, and four roads datasets provided by Silvics Solutions LLC comprising Local, State, 

US Highways, and Interstate features (see Table 5). For reference and visualization purposes 

State, County, and Bing Maps base maps were also used in the study. 
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Table 5: Datasets used in this study 

Dataset Source Description 
Cogongrass 
verified 
infestation point 
location dataset 

Alabama Forestry 
Commission 

Point location dataset for all verified infestation 
locations in the state of Alabama as reviewed and 
verified by the Alabama Forestry Commission. The 
publication of this dataset is 4/19/2018. This dataset 
can be acquired through direct request from the 
Alabama Forestry Commission. 

Distance to 
Nearest Road 
Feature 

Silvics Solutions 
LLC 

Calculated using the Euclidean Distance tool in 
ArcGIS 10.6 from four road layers provided by 
Silvics Solutions LLC. 

USGS GAP Land 
Cover Data Set 

Databasin.org 
(https://databasin.org/
datasets/e6c2c82715b
e44bba3579fa6010ac
fd5) 

“The USGS GAP Land Cover Data Set includes 
detailed vegetation and land use patterns for the 
continental United States. The data set incorporates 
the Ecological System classification system 
developed by NatureServe to represent natural and 
semi-natural land cover.” (USGS website). 
Projection = NAD_1983_Albers. 

USDA Soils data 
 

United States 
Department of 
Agriculture Soil 
Survey Geographic 
Database (SSURGO) 

Soils data as collected by the National Cooperative 
Soil Survey. The survey is broken down into map 
units (polygons) describing the soils and other 
components of the soils such as productivity, and 
soil horizons. The information was collected at 
scales ranging from 1:12,000 to 1:63,360. 
Projection = World Geodetic System 1984 in units 
of decimal degrees. 

 

All datasets were projected to NAD 83 UTM Zone 16 North and clipped to the boundary 

of the state of Alabama prior to the outset of the study. Any data falling outside of that boundary 

was removed from this analysis. All environmental variable (covariate) datasets are publicly 

available for download with the exception of the specific road layers used for the Euclidean 

Distance calculation, however similar roads datasets are available publicly. See Table 6 for the 

specific source of each environmental layer used in the study. Maps showing each of these layers 

are included in Appendix A and B.  
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Table 6: Environmental variables used in the study along with their layer name abbreviation and 
specific source and tool used for creation where applicable 

Variable Abbreviation Source 
Percent Canopy Cover PctCanopy nlcd_2011_USFS_tree_canopy_2011_edition_201

6_02_08_cartographic 
Ecological System EcolSys GAP Land Cover Data for Alabama, USA 

(gap_30m_al) 
Distance to Roads Distance Roads layer provided by Silvics Solutions, LLC. 

Distance calculated using the Euclidean Distance 
tool in the Spatial Analyst toolbox in ArcGIS 10.6 

Soil pH pH gSSURGO Soils Data Development Tools toolbox. 
gSSURGO Mapping Toolset. Create Soil Map tool 
for ArcGIS 

Soil Particle Size PartSize MUPOLYGON layer from gSSURGO_g_al 
database 

Drainage Class DC gSSURGO Soils Data Development Tools toolbox. 
gSSURGO Mapping Toolset. Create Soil Map tool 
for ArcGIS 

Depth to Restrictive 
Layer 

Bed gSSURGO Soils Data Development Tools toolbox. 
gSSURGO Mapping Toolset. Create Soil Map tool 
for ArcGIS 

Percent Clay Content PctClay gSSURGO Soils Data Development Tools toolbox. 
gSSURGO Mapping Toolset. Create Soil Map tool 
for ArcGIS 

Percent Silt Content PctSilt gSSURGO Soils Data Development Tools toolbox. 
gSSURGO Mapping Toolset. Create Soil Map tool 
for ArcGIS 

Percent Sand Content PctSand gSSURGO Soils Data Development Tools toolbox. 
gSSURGO Mapping Toolset. Create Soil Map tool 
for ArcGIS 

  

3.3.1. Species Presence Data 

The species presence data used in this study consisted of the verified point location 

dataset for Cogongrass (Imperata cylindrica (L.) Beauv.) as provided by the Alabama Forestry 

Commission. Specifically, this data was provided by Dana Stone, Forest Health Coordinator, 

Alabama Forestry Commission, Montgomery, AL and was provided in shapefile format. Figure 

11 shows the entire set of points. This is a very robust dataset including over fifty-four thousand 

reported points and 34,771 field verified points.  
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Figure 11: Alabama Forestry Commission field verified cogongrass infestation locations in the 
state of Alabama 
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The presence point dataset was cleansed prior to use in this study. First the dataset was 

reduced to only those points that have been field verified, the dataset was then projected to NAD 

1983 UTM Zone 16N and the Extract by Mask tool was used to remove all presence points that 

fell outside of the State of Alabama. This tool was used extensively in the data preparation phase 

of this study and therefore warrants a brief explanation of its function.  

The Extract by Mask tool in the Spatial Analyst Toolset is used to extract cells from an 

input raster that correspond to the area defined by a mask layer which can be vector or raster. 

This tool is used to ensure that the output raster has the exact same cell count in number of 

columns and rows as the mask layer. It is a requirement of Maxent that all environmental layers 

have the same header values in the ASCII files used in the model run. In Maxent, if layers do not 

have the same values in the header, the model will error out and cannot be run until the extent of 

each ACSII file matches exactly. Since the mask feature specified was a vector layer rather than 

a raster layer, the tool internally converts the vector to a raster and marks any point cell whose 

cell center point falls outside of the original vector boundary as No Data (Esri 2019).  

The points were then further extracted to create separate environmental data layers for the 

Model Study Area and the transferability test areas. Once the final point location datasets needed 

for the model were generated, new X and Y coordinate columns were added to the attribute table 

and the X and Y values were calculated in meters.  This table was then exported to Microsoft 

Excel using the Table to Excel tool and the resultant Excel file was converted to a comma-

separated values (CSV) file format for use in Maxent. Steps for preparation of the presence point 

location dataset for use in Maxent are outlined in Appendix C.  
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3.3.2. Soils Data Overview 

Cogongrass’ tolerance to a wide range of environmental conditions (Terry et al. 1997; 

Howard 2005) makes selection of appropriate environmental layers for analysis tricky. The 

ultimate goal of the study is to provide a model that is transferable to areas across the state of 

Alabama and therefore environmental variables considered for the study need to be both granular 

enough to contribute usable outcomes and broad enough to be applicable across the entire state. 

Descriptions of the soils related environmental variables included in this study can be found in 

Table 7 and details on each one are given in the following paragraphs. 

Table 7: Soil variables used in the study 

Soils Variable Description 
Bed Depth in centimeters to the layer that impedes water and air movement 

or restricts root growth within the soil (depth to restrictive layer) 
DC Drainage class is an indication of the soil’s wetness and/or saturation 
PartSize Particle size is the general classification of the soil texture as determined 

by grain size for the topmost horizon of soil (standards used by the U.S. 
Department of Agriculture). Terms defined according to % of sand, silt 
and clay. 

PctClay  Percent clay is the percentage by weight of soil with mineral particles 
less than 0.002 mm in diameter. 

PctSand  Percent sand is the percentage by weight of soil with mineral particles 
ranging from 0.05mm to 2mm in diameter 

PctSilt  Percent silt is the percentage by weight of soil with mineral that range 
from 0.002mm to 0.05mm in diameter 

pH Soil pH is a measure of the acidity or alkalinity of the soil using the 1:1 
water method of measurement. 

 

Depth to Restrictive Layer (Bed) quantifies the depth in centimeters to the layer that 

impedes water and air movement or restricts root growth within the soil. According to the 

metadata layer properties associated with the gSSURGO_CreateSoilMap.py script used to 

generate this layer, the restrictive layer is a continuous layer and can be a physical, chemical, or 

thermal barrier. The fire case study discussed in Section 2.3 indicated that cogongrass may 
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outcompete native species in poor soils due to its dense rhizome mat (Howard 2005) allowing 

the invasive to restrict access to soil nutrients and water for native grasses (Howard 2005; 

Lippincott 1997). Depth to soil restrictive layer as well as drainage class were selected as 

environmental variables within this study as proxy for these considerations. Figure 12 shows 

thumbnail images of this layer. The values range from greater than 201 cm (bright green) to 0 cm 

(red). Note how Test Area 2 is very different from the other two areas as it has much shallower 

depth to restrictive layer in much of its geographic area. For this and all subsequent thumbnail 

images in this section, large images of these layers are included in Appendix A: Soils Related 

Environmental Covariate Maps.  

 

Figure 12: Depth to restrictive layer thumbnail images for each of the study areas. See Appendix 
A for larger images. 

Drainage Class (DC) is a representation of moisture content in the soil in its natural 

condition. There are seven subclasses which range from excessively drained to very poorly 

drained within the drainage class variable (www.epa.gov/enviroatlas). A study by King and 

Grace showed that high water levels restricted cogongrass seedling growth and the seedlings 

germination was reduced by 74% when soils were flooded (King and Grace 2000). The Model 

Study Area had poorly drained soils over 26% of its total area, whereas Test Areas 1 and 2 had 
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15% and 4% of their areas consisting of poorly drained soils respectively. In contrast, the Model 

Study Area had 68% of the total area covered with well drained soils, whereas Test Areas 1 and 

2 had 73% and 86% of total area consisting of well drained soils respectively. Figure 13 shows 

thumbnail images of this layer. Well-drained soils are shown in mossy greens and poorly drained 

soils are shown in blues. Large images of these layers are included in Appendix A: Soils Related 

Environmental Covariate Maps.  

 

Figure 13: Drainage class thumbnail images for each of the three study areas. See Appendix A 
for larger images 

Particle size (PartSize) represents a general classification (grouping) of the soil texture as 

determined by grain size for the topmost horizon of soil using the standards used by the U.S. 

Department of Agriculture. This grouping places soils with somewhat similar properties in the 

same particle size class and is helpful when a general view of soil texture is needed. PartSize 

classification is defined according to percent of sand, silt, and clay as shown on Figure 14, 

therefore there is some correlation between this variable and the individual percentages for sand, 

silt and clay used within the model. Soil particle size, both in broad categorical terms as well as 

percent clay, silt, and sand, were included in this analysis.  
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Figure 14: The soil texture triangle is used to convert the relative amounts of clay, silt, and sand 
in the soil into texture classes. For example, a soil that is 20% clay, 30% silt, and 50% sand is a 

Silty Loam. Image courtesy of Grow it Organically website, https://www.grow-it-
organically.com/facts-about-soil.html 

 
Figure 15 shows thumbnail images of soil particle size . Particle size coloration in the 

maps indicate PartSize categories as clayey soils (oranges), Silty soils (blues), Loams (greens) 

and sandy soils (browns). Note that Test Area 2 has much more fine-loamy soil (light green) than 

the Model Study Area or Test Area 1. Large images of these layers are included in Appendix A: 

Soils Related Environmental Covariate Maps. 

https://www.grow-it-organically.com/facts-about-soil.html
https://www.grow-it-organically.com/facts-about-soil.html
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Figure 15: Particle size thumbnail images for each of the study areas. See Appendix A for larger 
images. 

The Percent Clay Content (PctClay) variable represents the percentage by weight of soil 

with mineral particles less than 0.002 mm in diameter. The percentage and kind of clay found in 

soil has significant impact on land use, drainage, fertility, etc. Figure 16 shows thumbnail images 

of this layer. PctClay ranges across the study areas from 0% to 71.6% clay content where darker 

color indicates higher percentages. Large images of these layers are included in Appendix A: 

Soils Related Environmental Covariate Maps.  

 

Figure 16: Percent clay content thumbnail images for each of the study areas. See Appendix A 
for larger images. 
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The Percent Sand Content (PctSand) variable represents the percentage by weight of soil 

with mineral particles ranging from 0.05mm to 2mm in diameter. Figure 17 shows thumbnail 

images of this layer. PctSand ranges across the study areas from 0% to 94.1% sand content 

where darker color indicates higher percentage. Large images of these layers are included in 

Appendix A: Soils Related Environmental Covariate Maps. 

 

Figure 17: Percent sand content thumbnail images for each of the study areas. Appendix A for 
larger images 

 
The Percent Silt Content (PctSilt) variable represents the percent of mineral soil particles 

that range from 0.002mm to 0.05mm in diameter. Figure 18 shows thumbnail images of this 

layer. PctSilt ranges across the study areas from 0% to 66% silt content where darker color 

indicates higher percentage. Large images of these layers are included in Appendix A: Soils 

Related Environmental Covariate Maps. 
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Figure 18: Percent silt content thumbnail images for each of the study areas. Appendix A for 
larger images. 

The soil pH (pH) variable represents a measure of the acidity or alkalinity of the soil 

using the 1:1 water method of measurement. Cogongrass has been shown to grow best in 

relatively acidic soils (pH of 4.7) and a study by Wilcut et al. (1988a) states that cogongrass 

grew better in soils of pH 4.7 than at pH 6.7. In that study, soil pH of 6.7 was chosen to represent 

typical soil pH of cultivated fields. Seed germination has also been shown to increase at pH less 

than 5.0 (Sajise 1976). Although cogongrass has stronger growth rates in more acidic soils, the 

species can grow in a broad range of pH values at sub-optimal growth rates.  

The soil layers included in this study were selected for their relevance to the biological 

and ecological niche of cogongrass. Several studies have raised the importance of soil pH, not 

necessarily on the presence of cogongrass, but on the health of the species in its environment 

(Ervin and Holly 2011; MacDonald 2004; Eussen and Wirjahardja 1973). Ervin and Holly 

suggested that soil pH may play a larger role in cogongrass infestation in their transferability test 

site in Clarke county Alabama (Ervin and Holly 2011), therefore it was determined that soil pH 

would be a useful environmental variable to include in this study.  
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Figure 19 shows thumbnail images of this layer. Soil pH values range across the study 

areas from 0 to 8.3 where red is the most acidic and blue is the most alkaline. The full pH scale 

ranges from 0 to 10. Large images of these layers are included in Appendix A: Soils Related 

Environmental Covariate Maps. 

 

Figure 19: Soil pH thumbnail images for each of the study areas. See Appendix A for larger 
images. 

Although the soils dataset from gSSURGO is provided in 30m grid cell size, the original 

soil mapping units were in vector format and were based on polygons with a minimum polygon 

map unit size ranging from one to ten acres (Ervin and Holly 2011; Soil Survey Staff 2011). 

Therefore, some reduction in granularity may occur when the Mapunit vector data was converted 

to raster format using the Polygon to Raster tool in the Conversion toolbox in ArcGIS 10.6 

(Ervin and Holly 2011). This tool was used to produce the Soil Particle Size raster layer. All 

other soils related data layers were produced from the gSSURGO Soils Data Development Tools 

toolbox, gSSURGO Mapping Toolset, Create Soil Map tool for ArcGIS. Figure 20 shows the 

workflow used.  
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Figure 20: Data layer creation workflow for Soils data 
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3.3.3. Landcover Data Overview 

Two data attributes from the Landcover dataset were included in the study. They include 

percent canopy cover and ecological system. Percent canopy cover for this study was pulled 

from the 2011 edition of the National Land Cover Dataset (NLCD) Tree Canopy cartographic 

layer produced by the Multi-Resolution Land Characteristics Consortium (MRLC). The 2011 

edition was chosen as it most closely matched the timeframe that the initial Cogongrass 

infestation study was implemented and therefore would represent the percent canopy at the time 

of that study. The NLCD data is downloadable in 30m raster format and was generated by the 

United States Forest Service (USFS). Details related to the layer and its original creation can be 

found on the MRLC website (MRLC accessed 04/13/2019). This layer followed the preparation 

process as depicted in Figure 21.  
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Figure 21: Data preparation workflow for Percent Canopy layer. 



50 
 

The percent canopy cover (PctCanopy) dataset was chosen for this study as several 

studies have suggested that canopy cover is a limiting factor in cogongrass growth as the species 

is somewhat shade intolerant. Percent canopy cover had a 77% contribution in the Mississippi 

portion of the Ervin and Holly study (Ervin and Holly 2011) and ability to survive as an 

understory species (Gaffney 1996) and tolerance up to 50% reduction in sunlight (Patterson 

1980) has been reported. Figure 22 shows thumbnail images of this layer. PctCanopy ranges 

across the study areas from 0% to 100% where darker color indicates higher percentage. Large 

images of these layers are included in Appendix B: Other Environmental Covariate Maps. 

  

Figure 22: Percent canopy thumbnail images for each study area. See Appendix B for larger 
images. 

Cogongrass can survive in a broad range of environmental ecological habitats as 

discussed in Chapter 1 and Chapter 2. Studies have also shown that cogongrass is particularly 

destructive in agricultural systems where the species can compete directly with agricultural crops 

thus creating not only an ecological impact but an economic one as well (Ervin and Holly 2011; 

Akobundu and Ekeleme 2000; Terry et al. 1997; Hubbard et al. 1944). To test the importance of 

ecological system on cogongrass infestation, the ecological system layer was generated from the 

GAP Land Cover Data for Alabama, USA (gap_30m_al). The method for creating the raster 
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layer used in Maxent followed the same process as that used for the percent canopy layer 

described in Figure 21. Figure 23 shows thumbnail images of this layer. Ecological system is 

depcted in these images in grouped categories of Frest/Woodlands (green), Floodplain Forest 

(blue-green), Agriculture (tan), Developed (dark orange), Disturbed (brown), water (blue) and 

undefined/other (grey). Note the larger proportion of Floodplain Forest in the Model Study Area 

and the larger propotion of Developed land in Test Area 2. Large images of these layers are 

included in Appendix B: Other Environmental Covariate Maps. 

 

Figure 23: Ecological System maps for each study area. See Appendix B for larger images. 

3.3.4. Roads Data Overview 

Cogongrass spread occurs via two mechanisms, rhizome growth for local spread, and 

seed dispersal for long range spread as described in Chapter 2. Studies have indicated that spread 

along roads occurs due to wind dispersal as well as seed dispersal via hitch hiking on road 

maintenance equipment (Rauschert, Mortensen and Bloser 2017; Wilcut et al. 1988a; Wilcut et 

al. 1988b; Willard 1990). Although studies have quoted wind as the primary long-distance 

dispersal method (Yager, Miller, and Jones 2011), Willard suggests in his 1990 study that long 

range spread in Florida was primarily due to rhizome pieces being transported in fill dirt (Willard 

et al. 1990). In either case, roads play a part in infestation spread. To test for the impact of roads 
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on Cogongrass, roads datasets were procured and the distance from each grid cell within a 

distance raster to the nearest road feature was calculated using the Euclidean distance tool in the 

Spatial Analyst toolset in ArcGIS 10.6. Roads data was provided for use in this study by Silvics 

Solutions, LLC in the form of four distinct road vector polyline layers. These layers were 

provided in North American Albers Equal Area Conic projection and were projected to NAD 

1983 UTM Zone 16N using the Project tool in ArcGIS 10.6. The original roads layers provided 

consisted of a Local Roads layer, which contained both city and county roads, a State Highway 

layer, a US Highway layer, and an Interstate layer. Some feature overlap occurred between 

layers as some road features are captured in more than one dataset. This was mitigated when all 

road layer features were combined into a single layer and duplicates were removed.  

The Euclidean Distance tool creates a raster dataset where each cell within the layer 

contains a value equal to the distance from the cell center to the nearest road feature. The use of 

the Near tool in the Proximity toolset was also investigated, but it was determined that the 

Euclidean Distance tool provided an output that best meet the needs of the Maxent model. The 

Near tool was utilized in data review, however. The input data layer for the Euclidean Distance 

tool was set to the consolidated roads layer. All four of the original roads datasets were 

combined into one consolidated road data layer in order to run the Euclidean distance tool on a 

raster layer depicting all roads at once. Figure 24 shows thumbnail images of this layer. The 

distance from nearest road ranges from 0 to 5359 meters across the three study areas.  Note that 

in Test Area 2 there are substantially more local road features and therefore fewer cogongrass 

presence points that fall at great distance from roads. Large images of these layers are included 

in Appendix B: Other Environmental Covariate Maps 
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Figure 24: Distance to nearest road data maps for each study area. See Appendix B for larger 
images. 

 

There are two important notes regarding the Euclidean distance raster. First, road width 

was not considered when this road layer was created as it was created from vector polyline layers 

that was then transformed into a 30m raster layer using the Polygon to Raster tool in the 

Conversion toolbox in ArcGIS 10.6. As previously mentioned, according to Ervin and Holly, the 

Polygon to Raster tool can result in some reduction in granularity (Ervin and Holly 2011). The 

output distance is to the center point of the road not the road edge. Second, when species 

presence points of larger distances from roads were visually investigated (using the Near tool and 

measure tool), many of these cells were within closer proximity to unmapped roads, such as 

interior woods roads, than is indicated in the Euclidean Distance raster layer which depends on 

mapped features being present in the dataset. Therefore, it may be a worthwhile endeavor to 

recreate this dataset in a later study with more granular roads data. This road dataset cleaning and 

augmentation is out of scope for this project.  
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3.4. Methods 

Modeling methods for this study were loosely guided by the Ervin and Holly (2011) 

study in which the authors tested the transferability of a Maxent model developed for cogongrass 

location point data collected in the De Soto National Forest (NF) and Sandhill Crane National 

Wildlife Refuge (NWR) areas in southeastern Mississippi to a site consisting primarily of 

commercially managed pine timberlands in Clarke County, AL. This study piqued my interest in 

transferability of Maxent models and prompted a more Alabama centric study of transferability. 

3.4.1. Defining the Model 

Detailed review of biologic and ecological requirements of cogongrass was conducted to 

determine what environmental layers should be considered for this study. Ervin and Holly’s 

(2011) study included soils related variables containing available water capacity, effective cation 

exchange capacity, percent organic matter, pH, and percent Silt content; and Land Cover related 

variables including percent canopy cover, and percent by ecological system (agriculture, 

coniferous forest, deciduous forest, developed, harvested forest, managed forest, and other). In 

the current study, available water capacity (AWC), effective cation exchange capacity (ECEC), 

and percent organic matter (PctOM) were not used.  

AWC was discarded for two reasons, the first being insight gained from the 2000 study 

by King and Grace examined soil moisture content’s effect on cogongrass seedling germination 

and growth and second, because in initial test run iterations AWC added little to no gain when 

reviewing the Jackknife results of preliminary default Maxent runs.  

ECEC was not included as it was a surrogate for total soil nutrient content and 

availability in the Ervin and Holly (2011) study. For the current study, it was decided that this 
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was too broad of a valuation metric and other studies reviewed have sited cogongrass’ ability to 

tolerate a broad range of soil nutrient levels.  

Percent Organic Matter was not used in the current study as the heuristic review of soil 

organic matter data within ArcGIS 10.6 revealed little difference in percent organic matter from 

0 to 200cm of soil depth across the entire state of Alabama. This layer also added little to no gain 

when reviewing the Jackknife results of preliminary default Maxent runs. The other 

environmental covariates used in the Ervin and Holly (2011) study were included in the current 

study as well as the addition of percent clay, percent sand, particle size, and distance to nearest 

road. 

The Maxent model was first run with the default settings in place as a baseline of model 

fitness for use and to assist in the determination of which parameters would need to be tuned in 

order to fit the model for the species and study location.  Five replicates were run for the Model 

Study Area in Maxent for the tuned model followed by five replicates each run against the test 

areas with species and environmental layers masked to the Model Study Area using the 

Projection layers directory/file setting.  

3.4.2. Tuning the Model 

Although Maxent default settings were determined by Phillips based on testing across a 

wide range of species and environmental factors, it is suggested that models be tuned for the 

specific species and location being modeled (Elith et al. 2011; Phillips 2017). Model tuning was 

performed to maximize performance while minimizing the potential for overfitting. The Model 

Study Area Maxent model was built using the biological environmental variables relevant to 

AFC Work Unit 11 and Cogongrass in general (Table 6). Care was taken to select environmental 

variables that both represented specific measures relevant to the biology and habitat preferences 
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of the species and were broad enough to be useful measures across the landscape. This same 

thought process was given to tuning the model.  

Several Maxent default settings were maintained in this study. The regularization 

multiplier was left at 1 as was the case in the Ervin and Holly study. This value is a modifier to 

help smooth the model in an attempt to avoid over-fitting and underfitting and helps to balance 

fit and complexity within the model (Ethel et al 2010). Modifying this value was tested with 

settings of 0.5, 0.8, and 2 (Table 8) with limited improvement when the regularization multiplier 

was reduced and limited reduction in fitness when the regularization multiplier was doubled.  

Table 8: Regularization Multiplier's effect on AUC. All other settings remaining equal. 

Regularization Multiplier AUC (Training/Test) 
0.5 0.712/0.717 
0.8 0.709/0.715 
1 0.708/0.715 
2 0.699/0.705 

 

The AUC calculation on one replicate run was used as the indicator of fitness while 

running tuning tests. The decision to leave the default setting for these values was made as the 

change in AUC due to modification of regularization multiplier alone did not significantly 

change the modeled results. The number of background points, maximum number of iterations 

per replicate run, convergence threshold, and default prevalence were all also left at their default 

settings.  

Parameters that were tuned in the model included values that resulted in modification of 

the model itself and values that resulted in modification of the output from the model. Parameters 

that resulted in modification of the model itself and were tuned in the Model Study Area Maxent 

model were changing the output format to Logistic, modifying the replicate run type, setting the 
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number of replicates, selecting to add samples to the background, and selecting to use samples 

with some missing data. Parameters that resulted in modification to the output files of the model 

but not the model itself included: selecting to create response curves and run jackknife tests, 

increasing the number of processor threads used by the model, selecting to write plot data, 

selecting to add summary results to the Maxentresults.csv file, and selecting to write background 

predictions. Appendix D: Maxent Model Settings Screen Captures shows how all of these were 

set within Maxent. Some of these modifications are discussed below. 

The Logistic output was selected rather than the newer default of Coglog as Logistic 

output was the default in previous versions of Maxent and was the output format selected by 

Ervin and Holly. Logistic output is also recommended in Phillips and Dudik 2007. Modifying 

this setting increased the AUC of the resultant model marginally (0.698 to 0.708) but this minor 

difference is most likely due to the nature of the random seed setting. Increasing the number of 

processor threads allowed the model to use more of the computer’s processing capabilities thus 

allowing some intensive processes such as jackknife creation to run faster. Checking the setting 

to write background predictions was required in order to calculate TSS for each model replicate 

run. Modifying the replicate run type involved setting the replicate run type to sub sample along 

with setting the random test percentage to 50% and checking the random seed checkbox. These 

three settings in conjunction provided a slightly better model AUC than using the default Cross 

validate replicate run type (AUC improved from 0.708 to 0.725). The final model selected to use 

in the study was the model with AUC of 0.725. 

3.4.3. Gauging Fitness of the Model 

The purpose of evaluating a model is to determine if it is useful, or fit, for the purpose the 

model is being used for (O’Sullivan and Perry 2013). The Maxent model uses parameters and 
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constraints to modify the model output. Many studies using Maxent modify a few key 

parameters but leave most parameters set to their default values. Depending on the study subject, 

this may be an appropriate course of action. An analysis of the parameters and settings needed to 

produce an appropriate model was performed in this analysis to ensure that model parameters 

were appropriate to the study. 

The fitness of the model in predicting the distribution of cogongrass was evaluated using 

AUC, Sensitivity (Omission) and TSS. The relative contribution of each environmental variable 

to the model was evaluated by review of the jackknife output tables as well as the plot graphs of 

each individual environmental variable. In Section 3.4.1, analysis of these metrics allowed for 

the removal of datasets that proved to be of little value to the study.  

The Maxent model was set to five sub-sample replicates, withholding a randomly 

selected 50% of the test data in each iteration. Setting the model to 10 replicates was also tested 

however the statistics were not significantly different between the five replicate and 10 replicate 

tests. The model results reported in Chapter 4 represent the resultant predicted potential 

distribution of cogongrass given suitable conditions, averaged across five model replicates as 

well as an averaged standard deviation. 

3.4.4. Testing Transferability of the Model 

To evaluate the effectiveness of the trained model, the predicted distributions produced 

with new environmental data for the test areas were compared to additional verified presence 

points of cogongrass locations in the test areas (test data). These test data were used to determine 

the accuracy of the model’s predicted distribution, and therefore the viability of the model in 

predicting distribution for cogongrass infestations when transferred to different geographic space 

than where the model was originally trained. A model that was trained on a set of environmental 
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variables in one geographic space can be transferred by running the same model using the same 

set of environmental variables that have been extracted to the new study area location (Phillips et 

al. 2017).  

When the model is transferred to a new geographic area, the Projection layers 

directory/field in the Maxent user interface can be set to point the new model run (in this case 

model runs for Test Area 1 and Test Area 2) to the original environmental layers (in this case the 

Model Study Area’s environmental layers) so that the environmental layers used in the new 

model runs are “clamped” to the original model layer ranges. Clamping essentially sets any layer 

value in the new model run’s environmental layers that fall outside of the range of values for that 

layer in the original model run to equal the outer bound of the original environmental layer. For 

example, the range of percent silt in the PctSilt environmental layer for the Model Study Area 

was 0 to 60%, for Test Area 1 the range was 0 to 56.1% and for Test Area 2 the range was 0 to 

66%. Therefore, the new model run for Test Area 1 did not require clamping to the extent of the 

range from the Model Study Area for the environmental variable, but PctSilt did require 

clamping for the new model run for Test Area 2. The response to this variable in the new model 

run for Test Area 2 is held constant for all values that fall outside of the training range (the range 

of values found in this layer for the Model Study Area model run) essentially treating those 

values as if they were at the limit of the range (in this case, 60%). According to Phillips in the 

updated (2017) tutorial on Maxent, testing transferability by projecting the model in this manner 

is appropriate when the goal is to evaluate a model at a set of test locations (Phillips 2017) which 

is the goal of this study. 

In this analysis, transferability of the model was tested by utilizing regional subsets of the 

same environmental layers and maintaining the same parameters in both of the test areas. During 
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the initial environmental data layer creation process, the AFC Work Unit polygons were used as 

boundary extent to split the original data layers into 18 separate raster layers. By using the Split 

Raster tool in ArcGIS 10.6, transferability testing was substantially sped up, as data layer 

manipulation requirements were lessened.  

Maxent was run against Test Area 1 and Test Area 2 utilizing the same setting parameters 

as were defined in the Model Study Area’s Maxent model. For each of the test areas, the 

presence points .csv file was created by extracting only those presence point feature that fell 

within the boundary of the selected AFC Work Unit. This file was then processed and converted 

for use in Maxent as defined in Section 3.3. All environmental layers utilized in the study were 

also extracted to the extent of both test areas as separate files following the same processes as 

defined Section 3.3. The environmental layers folder was set to the folder housing the .asc files 

for the test area included in the transferability test model and the output directory was set to the 

test area folder’s output directory. The projection layers directory/file was set to the directory 

that housed the environmental layers used in the original Model Study Area model run.  

It is important to note that all layers, in each of the environmental layers directories 

should use a common naming convention so that the Maxent model can determine appropriate 

layer clamping for the Test Area model runs. For example, the drainage class layer is named 

“DC” in all three directories (Modeled Study Area, Test 1, and Test 2). The model is then trained 

using the environmental layers set in the environmental layers list for the Model Study Area 

model and then transferred onto the Test Area environmental layers which clamps the 

environmental variables for the current run to the bounds of the original model run to which the 

layers are being transferred (Phillips 2017). 
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TSS is a special case of Kappa that reduces issues associated with prevalence that 

prevents Kappa from being a useful metric for presence only data. TSS was used as a measure of 

model fitness in this study. The formula for calculating TSS is shown in Equation 1. 

 TSS = Sensitivity + Specificity -1 (1) 

A single TSS score for each model was determined by calculating the TSS for each of the 

five replicates in a model run individually and selecting the run with the highest TSS score to be 

the representative score for that test. TSS can be calculated from the Maxent output by selecting 

the “write background predictions” selection on the Experimental tabs in Settings. This setting 

tells Maxent to write background predictions files for each of the replicate runs.  

Next, copy the “logistic” column from the background predictions file of replicate 0 and 

paste it into column A of a spreadsheet (tab labeled 0). Then, open the sample predictions file for 

replicate 0 and copy the “logistic prediction” column into column B of your spreadsheet. Step 

three is to choose which threshold you want to use in the calculation. In this study I have chosen 

to use the 10 percentile training presence logistic threshold. This value can be found in the 

“Maxent Results” file as output by Maxent. For step 4, do a count of sample predictions test 

values greater than the threshold for replicate 0, a count of sample predictions test values less 

than the threshold of replicate 0, a count of background prediction test values greater than the 

threshold for replicate 0, and a count of background prediction test values less than the threshold 

for replicate 0. With these values in hand TSS for replicate 0 can be calculated.  

Calculate Sensitivity as the count of cells where the sample predictions test values are 

greater than the threshold, divided by the total count of sample prediction test values. Then, 

calculate Specificity as the count of cells where the background predictions value is greater than 

the threshold, divided by the total count of background prediction values. As defined above, the 
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TSS for replicate one is Sensitivity plus specificity minus one. This calculation is repeated for 

each replicate in the Maxent run and the largest TSS from the replicate set was then used as the 

TSS score for the model in this analysis. 
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Chapter 4 Results 

Studies exploring the application of Maxent have indicated that there is no perfect metric to 

evaluate all models for fitness to the study. Species such as cogongrass, which can tolerate a 

broad range of ecological and environmental conditions, can produce model results with a large 

area of predicted occurrence (Ervin and Holly 2011). It is suggested that each evaluation metric 

be assessed in context with the specific species and variables in use and the desired use of the 

model output. It is also suggested that a mix of evaluation metrics be used to determine model 

suitability and fitness (Anderson 2012; Merrow, Smith, and Silander 2013; Radosavljevic and 

Anderson 2014; Peterson et al. 2011). To this end, AUC, Sensitivity (Omission Rate), and TSS 

were selected as measures of model suitability. 

The Model Study Area Maxent model used in this analysis was evaluated using a 5-fold 

sub-sample with 50% of the presence points set aside randomly for testing the model. It was 

appropriate to use 50% of the presence points for testing due to the large number of presence 

points included in the species presence data layer. The Model Study Area Maxent model results 

were compared to the results from the Test Area 1 Maxent model and Test Area 2 Maxent model 

transferability tests and the model suitability results for these three models (Model Study Area 

Maxent model, Test Area 1 Maxent model, and Test Area 2 Maxent model) utilized in the study 

are shown in Table 9and are discussed in greater detail below.  

Table 9: Model Suitability Indicator Results 

Indicator Model Study Area Test Area 1 Test Area 2 
AUC (5 fold sub-sample) 0.7250 0.7460 0.8460 
AUC std dev 0.0010 0.0020 0.0170 
Test Omission 0.0832 0.0807 0.2941 
TSS (highest of replicates) 0.4087 0.3944 0.2377 
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4.1. Area Under the Receiver Operating Characteristic Curve (AUC) 

The area under the receiver operating characteristic curve (AUC) indicates fitness of the 

model (Phillips et al. 2017). As discussed in Chapter 2, the AUC shows the average sensitivity 

vs. specificity for the species being modeled and tells us how well the model can discriminate 

between presence locations and background data. According to Elith et al. (2011), an AUC of 

0.70 and above indicates sufficient fit for ecological niche study purposes. Therefore, the AUC 

of 0.725 returned for the Model Study Area, along with its low standard deviation (0.0010), 

indicates a stable model and a good fit for predicting the distribution of cogongrass within the 

study area. Both of the transferability test areas returned AUC above 0.70, however the much 

larger standard deviation in Test Area 2 warrants some concern.  

The mean standard deviation for the AUC in the Model Study Area is 0.0010, which is 

very low and a good indication of model stability. The AUC of Test Area 1 (0.746) is slightly 

higher than that of the Model Study Area (0.725) with similarly low standard deviation (0.0020). 

This is an indication of good transferability of the model to Test Area 1. The AUC of Test Area 2 

(0.846) is even higher than that of Test Area 1, however the standard deviation is higher at 0.017.  

Although this standard deviation is still within a valid range (95% of the replicate runs fall within 

one standard deviation) it is much higher than the standard deviation of the AUC for the Model 

Study Area and that of Test Area 1. Therefore, additional review of the results of the model in 

Test Area 2 is required. 

4.2. Sensitivity (Omission) 

The omission rate for the model is depicted in the .html output file produced by Maxent. 

The omission rates for test samples from the model run on each of the three study areas are 

provided in Table 9. The omission rate shows model performance as a function of the predicted 
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occurrence. For the Model Study Area and Test Area 1, the modeled omission rate follows the 

predicted omission closely with very low standard deviation. The Model Study Area omission 

rate falls at 0.0832 and Test Area 1’s omission rate similarly falls at 0.0807. This shows a very 

good match of the test data to the trained model predictions and is an indicator of a well fitted 

model. For Test Area 2 the Omission rate was significantly higher (0.2941) again, warranting a 

closer look. 

4.3. Variable Contributions and Gain 

An understanding of how the environmental variables selected for use within the model 

effect the model outcome is important in understanding the statistics used to test model fitness. 

Maxent produces very detailed output in the form of multipage html documents. In these 

documents, tables showing the percent contribution and permutation importance of each 

individual environmental variable included in the study assists in understanding the model 

results. Also, in these documents, response curves provide a visual representation of the 

predicted potential distribution of species occurrence in two graphs per variable.  

The percent contribution indicates how much the individual variable contributes to the fit 

of the model (gain). This value should be used with caution when variables are highly correlated 

(Phillips et al. 2007; Phillips 2017) which is a potential issue with the particle size dataset used in 

this analysis. The permutation importance shows the contribution of each variable via random 

permutation (and does not rely on the path the model used to get to the final result) thus a larger 

permutation importance indicates that the model depends heavily on the variable. For this 

analysis we focus on the permutation importance of variables, as this value lessens the impact of 

variable correlation. The percent contribution (Table 10) and permutation importance (Table 11) 

for the Modeled Study Area as well as Test Area 1 and Test Area 2 are provided below.  
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Table 10: Percent contribution of environmental variables for the Model Study Area, Test Area 
1, and Test Area 2. 

Environmental 
Variable 

Model Study 
Area 

Test Area 1 Test Area 2 

PctCanopy 61.1 38.7 20.1 
EcolSys 11 7.7 9.4 
Distance 10 2.1 56.4 
pH 8.2 0.3 0.2 
PartSize 3.5 19.3 1.1 
DC 3.3 17.7 1.2 
Bed 1.1 0.6 7.1 
PctClay 0.7 3.2 1.3 
PctSand 0.5 5.5 2.9 
PctSilt 0.6 5 0.3 

 

Table 11: Permutation importance of environmental variables for the Model Study Area, Test 
Area 1, and Test Area 2. 

Environmental 
Variable 

Model Study 
Area 

Test Area 1 Test Area 2 

PctCanopy 56.9 30 36.6 
EcolSys 14.7 8.8 4.1 
Distance 8 2.4 43.5 
pH 8.2 1.1 0.1 
PartSize 4.4 16.3 2.3 
DC 3 1.3 2.5 
Bed 1.1 0.9 7.5 
PctClay 0.7 13.9 1.5 
PctSand 2.2 8.6 1.2 
PctSilt 0.8 16.8 0.7 

 

Review of individual environmental variable’s response curves in conjunction with data 

on percent contribution and permutation importance provides valuable information into the 

impacts that each variable has on the model outcome. The response curves for each 

environmental variable included in the model (Appendix E: Response Curves) indicate how each 

variable affects the predicted probability of presence when all other variables are set to their 

average value. This means that each curve shows the marginal impact of change to the predicted 
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potential distribution of cogongrass infestation given suitable conditions resulting from changing 

just the one variable selected. Each curve shows the mean response of the 5-fold sub-set model 

in red and +/- one standard deviation in blue. Below the four most significant variable’s response 

curves for each model are explored.  

In keeping with previous studies (Ervin and Holly 2011), percent canopy cover 

(PctCanopy) had the highest permutation importance for both the Model Study Area (56.9%) and 

Test Area 1 (30%) and fell to second highest for Test Area 2 (36.6%) (Figure 25). This is as 

expected as cogongrass is somewhat intolerant to shade, and previous studies have shown shade 

to be an important factor when predicting the distribution of the species (Ervin and Holly 2011; 

Gaffney 1996; Patterson 1980). This is also consistent with the Ervin and Holly (2011) study in 

which PctCanopy had a relative contribution of 77% (recall that their study focused on heavily 

forested ecosystems in Mississippi). As the current study hypothesized, it was expected that 

PctCanopy cover would have significant impact on predicted site suitability.  

 

 
It is relevant to observe that in Test Area 2, where there is significantly more developed 

and open (agricultural) land, the permutation importance of PctCanopy was lower than in the 

other two model areas. As can be seen in the PctCanopy graphs above for both the Model Study 

Area and Test Area 1, the impact of PctCanopy on the model remains relatively high and 

Figure 25: Response Curves for percent canopy.  



68 
 

consistent with low standard deviation (thin blue area around the red response curve). The 

impact of PctCanopy for Test Area 2 was much more variable across the replicate runs as 

indicated by the thick blue area around the red response curve for the Test Area 2 graph. The 

response curves for PctCanopy for all three models indicate a high impact of this variable on 

each model as the curves all increase exponentially at the beginning of the range and decrease 

just as dramatically at the end of the range. 

Ecological System (Eco) was the second highest permutation importance in the Modeled 

Study Area (14.7%). For Test Area 1, Eco was not amongst the top four in permutation 

importance (8.8%) and for Test Area 2, eco was the fourth highest in permutation importance 

(4.1%). This potentially shows some departure in consistency and thus transferability where 

ecological system is concerned. Ecological system is a categorical data set and the importance of 

each individual category plus or minus one standard deviation to the averaged marginal response 

of the model to changing one variable is shown in Figure 26. In the graphs in Figure 26, the 

missing columns represent ecological systems that have no impact on the potential distribution in 

the model indicated. See Appendix F for definition of the categorical values for ecological 

system for each model. Most ecological systems have average impact on the model (hovering 

around 0.5 for the Model Study Area and Test Area 1 where over half of the systems have less 

impact in Test Area 2 and the remainder’s impact is more volatile.  



69 
 

 

At first review of the Maxent output response curves for eco, it is unclear which 

ecological systems have impact and which do not. In this instance it would be prudent to group 

the data results from the three models into one graph to better review the response of cogongrass 

to ecological system across the Model Study Area and the two transferability test areas. 

Figure 27 provides a graph of cogongrass’ response to ecological system in each model with 

consistent numbering for each ecological system present.  

  

Figure 27: Consolidated graph of cogongrass' response to ecological system for each of the three 
models. 

This consolidated graph shows that not all ecological systems are present in all study 

areas included in this test. Two such groups of ecological system are identified in Figure 27. 

Note that ecological systems 11 through 23 (East Gulf Coastal Plain ecological systems) do not 

have any orange bars associated with them indicating that these ecological systems are not 

present in Test Area 2. Also note that ecological systems 39 through 49 (East Southern 

Piedmont, East Southern Interior, and East Southern Ridge and Valley ecological systems) do 

Figure 26: Response Curves for Ecological System 
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not have any blue or green bars associated with them indicating that these ecological systems are 

not present in the Model Study Area or Test Area 1. These results suggest that the attribute 

granularity of this layer may be too detailed for this study. Table 12 offers a potential grouping 

of the ecological system into broader categories that are easier to consume. It is recommended in 

any future studies utilizing this variable, that this data be grouped as indicated in Table 12 and 

the models re-run to better gauge impacts of this variable on the models.  

Table 12: Percent geographic area (km2) occupied by each grouped ecological system within the 
Model Study Area, Test Area 1, and Test Area 2. 

Ecological System 
Group 

Model Study Area 
% of area 

Test Area 1 
% of area 

Test Area 2 
% of area 

Forest/Woodlands 49.99 46.88 52.34 
Floodplain Forest 26.54 22.24 0.14 

Agriculture 8.07 14.64 20.84 
Developed 3.18 3.09 15.05 
Disturbed 10.99 12.39 8.19 

Water 1.18 0.68 2.80 
Other 0.06 0.07 0.64 

 
For the Modeled Study Area, pH was the third highest in permutation importance (8.2%) 

but did not rank in the top four for either of the two test areas.  Cogongrass is tolerant of soils 

with a range of pH values but has been shown to grow best in relatively acidic soils (pH of 4.7) 

(Wilcut et al. 1888a). The graphs in Figure 28 show the impact that the pH covariate has on the 

predicted probability of presence given that all other variables are kept at their average value. 

The Model Study Area graph for pH shows a gradual increase in impact as pH increases from 0 

to 8.3 and the impact decreases at pH values higher than 8.3. Test Area 1 exhibits a different 

pattern in pH’s impact on the model. In Figure 28 pH graph for Test Area 1 shows that impact 

remains high but relatively static until it reaches 5.0 then the impact due to pH decreases slightly 

and the related standard deviation of impact increases as the pH approaches 8.0. For Test Area 2, 
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the pH runs a similar curve to the Model Study Area but with much greater variability to impact 

between model run replicates.  

 
Distance to road was the fourth highest in permutation importance (8.0%) for the Model 

Study Area but did not rank in the top four in Test Area 1 and was the highest in permutation 

importance for Test Area 2. As would be expected given the spikelet wind dispersed travel 

distances discussed in the Yager, Miller, and Jones (2011) study briefly described in Section 2.3 

and the physical seed dispersal distances as shown in the Rauschert, Mortensen and Bloser 

(2017) study, Figure 29 shows that distance to road has its greatest impact in close proximity to 

roads with stable to lessening impact as distance increases for the Model Study Area.  

 

Figure 29: Response curves for distance to nearest road. 

For Test Areas 1, impact to the model due to the presence of the distance to roads 

variable with all other variables remaining at their average rate followed a similar curve through 

Figure 28: Response curves for pH 
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roughly 2000 meters then increased in impact as distance increased. This could potentially be 

due to a lack of interior woods roads in the roads layer dataset as noted via visual inspection of 

the data in ArcGIS 10.6. For Test Area 2, the impact of distance to road was high at close 

proximity then dropped exponentially and recovered only minimally on average over the course 

of the range of distances for the layer. Test Area 2 also shows significant standard deviation 

(greater than 1) as the curve approaches its maximum distance values. As discussed in Section 

3.3.4, the road dataset could be improved with added local roads information in non-urban areas. 

Test Area 2 contains significantly more local roads due to its higher percentage of developed 

land compared to the Model Study Area and Test Area 1. It is recommended that a spatial data 

creation project be launched to augment the roads dataset should this variable be considered for 

future study.  

For Test Area 1, percent silt (16.8%), particle size (16.3%) and percent clay (13.9%) 

were the second, third, and fourth highest in permutation importance respectively in that model. 

None of these variables ranked in the top four in the Model Study Area. These three variables are 

correlated as the particle size categorical values are defined based on the soil texture percentages 

defined by the percent of silt, clay, and sand. It was determined that including both the 

categorical particle size variable and the component specific percentages was important to the 

analysis. Percent silt provided a percent contribution of 10% to the Ervin and Holly study.  

For Test Area 2, depth to soil restrictive layer ranked third in permutation importance 

(7.2%) although this variable did not rank in the top four for either the Modeled Study Area or 

Test Area 1. As Test Area 2 was selected to test the transferability of the model because of its 

many dissimilarities to the Model Study Area, it was expected that this location would differ in 
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variables of importance. For a more detailed discussion of how the test sites were selected, refer 

back to Section 3.1.  

Finally, the jackknife tests run by Maxent are depicted in three charts in the output .html. 

For this analysis, we focus on the Jackknife of test gain charts to judge variable impact on the 

model as test data is used to judge model performance. The Jackknife of regularized training gain 

and Jackknife of AUC could also be used to test model performance. Since we are focused on 

testing the model and the model’s transferability to new geographic regions within the state, it 

was determined that the best test would be to utilize the Jackknife of test gain. “Gain is closely 

related to deviance, a measure of goodness of fit used in generalized additive and generalized 

linear models” (Phillips 2017, 4). Data in these jackknife charts are normalized, so all study area 

jackknife charts can be compared.  

Figure 30 shows the Model Study Area’s jackknife chart. Two points of interest are 

highlighted here. As was shown in the variable contributions table (Table 10), PctCanopy had the 

highest percent contribution and highest permutation importance to the model in the Model 

Study Area. The jackknife analysis seconds this conclusion. In the Jackknife of test gain, the 

PctCanopy row shows that PctCanopy had the most significant information by itself about the 

suitability of the environment for the species (blue bar) and had the most significant total impact 

in the form of reduction in gain, when omitted from the analysis (red bar). Therefore, PctCanopy 

provides the most independently important information that cannot be explained by use of other 

variables included in the model.  
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Figure 30: Jackknife of impact to gain by variables included within the model run for the Model 
Study Area.  

 
For the test areas, the jackknife tests provide key information about the differences in 

variable impact on gain between the Model Study Area and the transferability test sites. Test 

Area 1, which was the most similar to the Model Study Area, also indicates, through the 

jackknife test, that PctCanopy has the most independently important information that cannot be 

explained by use of other variables included in the model just as was the case with the Model 

Study Area. It is important to note that the total percent contribution of PctCanopy droped for 

Test Area 1 which is in large part due to the increase in importance of other variables in the 

model outcome as seen in the jackknife results (Figure 31).  
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Figure 31: Jackknife of impact to gain by variables included within the model run for the 
transferability Test Area 1. 

The percentages of the individual soil textures (clay, silt, and sand) each independently 

provide important information to the maxent model over the Modeled Study Area. The 

importance of ecological system dropped significantly between the Model Study Area model and 

the two test area models. Given the rural nature of Test Area 1 and the comparatively rural nature 

of the Model Study Area, it was expected that these two study areas would have similar variables 

of importance but from the results of the jackknife analysis, it is clear that soil texture plays a 

larger role in site suitability in Test Area 1 than it did in the Modeled Study Area with PctSilt 

providing 16.8% of permutation importance, PctClay providing 13.9% and PctSand providing 

8.6% in Test Area 1. That being said, the inclusion of these layers in the original model was 

advantageous as this allowed for the transferred model in Test Area 1 to utilize these important 

factors. As discussed in Chapter 2, it is important for environmental variables selected for use in 

Maxent to be broad enough in biological or ecological extent yet specific enough to be valuable 
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across the entire intended geographic region, when transferability of the model is a desired 

outcome. The AUC for Test Area 1 (0.746) shows that the model is fit for use in testing the 

probability of occurrence of cogongrass in this area.   

The jackknife chart for Test Area 2 is quite interesting (Figure 32). It was expected that 

the model environmental layers for the Model Study Area would differ significantly in results 

from Test Area 2 as these two areas are quite different in many aspects. It was also hypothesized 

that the model would not be as good a fit for Test area 2 as it was for the Model Study Area. 

However, the AUC for Test Area 2 (0.846) was significantly higher than that of the Model Study 

Area (0.725). Looking at AUC to gauge model fitness would inappropriately lead the modeler 

astray in the assumption that the model is well suited in predicting probability of occurrence in 

the Test area in this case. It is, as previous studies have suggested, important to use several 

indices of fitness and to evaluate the model results thoroughly (MacDonald, 2004; Lobo et al. 

2008).  

 

Figure 32: Jackknife of impact to gain by variables included within the model run for Test Area 
2. 
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The Jackknife test for Test Area 2 shows that all but three environmental variables 

contribute a negative gain when determining the unique information contributed by that layer to 

the model (blue bar). This can be an indicator of highly correlated data layers but not all of the 

layers with negative test gain would be correlated. This draws into question the validity of use of 

this model for Test Area 2 even though the AUC for Test Area 2 was high. PctCanopy 

contributed useful unique information to the model (blue bar) and has the largest impact, after 

distance to nearest road, to a reduction in gain when excluded (red bar). Distance to nearest road 

had the bigest impact on the model as seen in both the jackknife test and the table of variable 

contributions. The jackknife test shows significant reduction in gain when this variable is 

excluded from the model. Test Area 2 has significantly more developed area and significantly 

more mapped road features than the other two areas included in this study. This likely 

contributes to the significance of road nearness to the resultant model 

The three variables that contributed the most significant increase in gain in Test Area 2 

when viewed in isolation acording to the jackknife of test gain, were distance to nearest road 

feature (Distance), ecological system (EcolSys) and percent canopy (PctCanopy) in that order 

acording to the jackknife. These are the three highest in permutation importance and percent 

contribution for Test Area 2 as well.  

4.4. True Skill Statistic (TSS) 

The True Skill Statistic (TSS) is a form of Kappa that is not affected by prevalence or the 

size of the validation set (Allouche, Tsoar, and Kadmon 2006). Allouche suggests that TSS 

should be used over Kappa when a threshold-dependent measure is desired (Allouche, Tsoar, and 

Kadmon 2006). TSS values range from -1 to +1 where values of 0 or less are no better than 

random and the value of +1 is optimal (Allouche, Tsoar, and Kadmon 2006). TSS, as an 
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indicator of model fitness, was calculated for each replicate run within each study area’s model 

results. The highest TSS value for each model was used as the score for that model in evaluating 

model fitness using TSS (Table 13). Since TSS is a special case of Kappa and spans the same 

value range, TSS can be gauged by the same degree of agreement assessment as would Kappa. A 

value of +1 is perfect agreement, values of 0.75 to 1 represent excellent agreement, 0.4 to 0.75 

indicate fair to good agreement and values less than 0.4 are an indication of poor agreement 

(Monserud and Leemans 1992).  

In this study, TSS values for all models were fairly low. TSS for the Model Study Area is 

considered “Fair” at 0.4087 where TSS for Test Area 1 is just shy of “Fair” at 0.3944. the TSS 

score for Test Area 2 was “Poor” at 0.2377. Given that the AUC values for the Model Study 

Area and Test Area 1 were adequate but not stellar (0.725 and 0.746 respectively), a “Fair” TSS 

value would be expected. For Test Area 2, the TSS is very low given the relatively good AUC 

(0.846) however when taking the standard deviation of AUC and very low logistic threshold 

(0.1462) returned from the Test Area 2 model run into account, in this instance TSS helps to 

confirm that the transfer of the model to Test Area 2 is questionable. 

Table 13: TSS for each replicate run for the Model Study Area, Test Area 1 and Test Area 2. The 
highest TSS of the replicates for each model area was used. 

Model  Replicate 0 Replicate 1 Replicate 2 Replicate 3 Replicate 4 
Model Study Area 0.4041 0.4087 0.4064 0.4079 0.4035 
Test Area 1 0.3889 0.3938 0.3944 0.3925 0.3918 
Test Area 2 0.2377 0.1837 0.1863 0.1401 0.2341 

 

In summary, the Model Study Area Maxent model used in this analysis was evaluated 

using a 5-fold sub-sample with 50% of the presence points set aside randomly for testing the 

model. The Model Study Area model was then transferred to Test Area 1 and Test Area 2 and 
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the model suitability results for these three models (Model Study Area Maxent model, Test Area 

1 Maxent model, and Test Area 2 Maxent model) were then compared. AUC, test omission rate, 

TSS, and individual variable contributions were used as indicators of model fitness and 

transferability success. The results of this study showed acceptable AUC (0.725) and fair TSS 

(0.409) with a good omission rate (0.0832) for the Model Study Area. For Test Area 1 the AUC 

was also acceptable (0.746) and TSS fair (0.394) with good omission rate (0.0807). Test Area 2 

produced a good AUC (0.8460) but with a poor TSS (0.238) and poorer omission rate than the 

other models tested (0.2941). Overall the covariates with the most influence on the model, as 

determined by the permutation importance and review of the Jackknife of test gain, were 

PctCanopy (56.9) followed by EcolSys (14.7) and soil pH (8.3) for the Model Study Area. Test 

Area 1’s most influential covariates were PctCanopy (30). PctSilt (16.8), and PartSize (16.3). 

Test Area 2’s most influential covariates were Distance (43.5), followed by PctCanopy (36.6), 

and Bed (7.5).  
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Chapter 5 Conclusions 

The goal of this study was two-fold, to evaluate the fitness for use of Maxent in predicting the 

potential distribution of cogongrass infestation given suitable conditions within the Model Study 

Area and to test the transferability of that model to other study areas within the state of Alabama. 

The guiding objective, beyond the generation of an appropriate model that is transferable across 

various areas of the state, was the hope that the resulting model and transferability tests would be 

useful in guiding future survey efforts and funding allocation decisions. In this chapter, we 

provide a general overview of study concerns as well as results of the study. This chapter 

concludes by providing a brief narrative on inferences gleaned from the study and potential 

future work related hereto.  

To evaluate the fitness for use of Maxent in predicting the probability of presence 

distribution of cogongrass within the Model Study Area and to test the transferability of that 

model to other study areas within the state of Alabama, it was important to thoroughly review the 

species’ biological, climatic and ecological requirements. Cogongrass is highly tolerant to a wide 

range of conditions and therefore determining the best environmental covariates to use within the 

model was time consuming. Cogongrass’ range of habitat with relation to geographic location 

(Latitudes 45ºN to 45ºS), rainfall (75 – 500cm average annual), elevation (sea level to 2000m), 

soil organic matter, habitable sites, and temperature (tolerant to -14ºC) were all generally met 

within the geographic boundary of the state of Alabama. Review of previous research on the 

species was used to guide the environmental covariates used in the study, with a focus on land 

use and soils related variables.  

A review of the test areas’ output data was performed to determine which environmental 

factors play the biggest role in transferability hit or miss. The percent contribution and 
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permutation importance of each variable was reviewed along with modeled response curves and 

the results of the jackknife of regularized test gain. In this study, the most relevant environmental 

covariate for all three study sites was percent canopy. Percent canopy was the variable with the 

highest level of permutation importance and percent contribution for both the Model Study Area 

and Test Area 1 and was the second highest in these factors for Test Area 2. Percent canopy was 

also in the top three for effect on gain according to the jackknife of regularized test gain graph 

included in the Maxent output dataset. Therefore, this environmental variable should be included 

in any future work related to the species. Ecological system, distance to road, percent silt and 

percent clay also showed significance in this study.  

Several of the layers selected for use in the study empirically have some degree of 

correlation, for instance the particle size layer is a general classification (grouping) of the soil 

texture as determined by grain size for the topmost horizon of soil using the standards used by 

the U.S. Department of Agriculture. The individual soil texture layers (percent clay, percent 

sand, and percent silt) are considered in the particle size layer to some degree. However, since 

particle size is a classified categorical dataset and the three soil texture layers are discrete 

measurable values, it was determined that both types of data could be included without issue. 

Correlation between datasets should be taken into consideration when analyzing SDMs such as 

that produced in this study. 

5.1. Uncertainty in the Model 

This model may be used to support decisions related to where to survey for cogongrass 

locations and what counties to focus on for eradication efforts. Therefore, it is important that the 

uncertainty in the model be clearly understood so that the value of the model results can be 

articulated to stakeholders. Sample selection bias is a fundamental limitation of presence only 
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modeling such as is the case in this study using Maxent. This bias can have a significant impact 

on the model outcome (Elith 2011; Phillips et al. 2009). Examples of sample selection bias can 

be found in this study and in the Ervin and Holly (2011) study, which specifically focused on a 

biased sample by sampling along roadways.  

In the current study, sample selection bias is introduced by the method of discovery and 

subsequent reporting of suspected cogongrass location points to the AFC.  The AFC relies 

heavily on landowner and public reporting of suspected point locations and then investigates and 

verifies those locations. This bias cannot be removed due to the nature of infestation reporting; 

however, it is prudent to take it into account when analyzing the model result. Also, some 

sampling bias can be removed from the study in areas where the species presence point data is 

not uniformly scattered across the entire extent of the test area’s geography space by use of a 

minimum bounding geometry layer that will ensure that any test or background pseudo-presence 

data predictions will use the same geographic boundary as the training data. 

5.2. Proposed Future Work  

Future work related to this study should include the testing of transferability across 

additional AFC Work Units and potentially recalibrating and retesting models as new data 

becomes available (Stohlgren and Schnase 2006). It would be appropriate to test the model 

against all AFC Work Units in a future study as differences in model performance was noted 

between the areas included in this study. Further, in the Stohlgren and Schnase study, it was 

recommended that the modeling process be an iterative process in which the model is 

recalibrated as new species presence data become available (Stohlgren and Schnase 2006; Crall 

et al. 2013). Thus, if a model is used to prompt a guided species survey, the survey results can 

then be added to the volume of existing species presence point data and the model can be rerun 
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to create a new model with this updated sample layer to better inform the next guided survey. 

This would be especially important if the output of the model was to be used to guide funding for 

control and eradication efforts in the future. 

Additionally, field verification of model output to determine if the predicted locations do, 

in fact, support cogongrass infestations would be useful. And finally, further work into 

transportation corridor related factors on the distribution of cogongrass should also be 

considered. Specifically, the roads layer used in this study did not contain all interior local roads, 

especially in heavily timbered and rural locations. Since Alabama has a high percentage of 

forested area, it would be prudent to launch a project to update the roads layer used in the 

distance to roads calculation or pursue the purchase or construction of a better suited roads layer.  

5.3. Findings  

Given the acceptable AUC, omission rate and TSS values of the original Model Study 

Area’s Maxent model output, the model produced for this study can be considered to be an 

appropriate model for predicting the presence of cogongrass in the Model Study Area. The 

transferability test for the model leaves some open questions, however. The results of this study 

showed that when the area targeted for transfer is similar environmentally and geographically to 

the Modeled Study Area, this model can perform sufficiently well to be used to inform the 

analyst on predicted probability in the target area. When the target area is highly dissimilar, as is 

the case with Test Area 2 in this study, caution should be taken when transferring the model to 

this new geographic space. It would perhaps be more valid to re-evaluate the model against the 

new geographic area and re-run with a modified set of covariates as appropriate. 

In summary, the model produced by Maxent for the Model Study Area had an AUC of 

0.725 which is considered to be acceptable for use in conservation planning (Elith et al. 2006). 
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The environmental covariates selected for the study were suitably broad in their biological and 

ecological suitability to the species being studied to allow for successful transfer of the model to 

two other AFC Work Units within the state, however detailed review of the model results using 

multiple metrics for testing fitness should be employed when verifying model transferability 

success. 

This study adds to the body of work related to species distribution modeling using 

Maxent for cogongrass as well as transferability studies of Maxent models for invasive species in 

general. Although additional work is suggested to further this study of transferability of Maxent 

model for cogongrass, the findings of this study suggest that Maxent is potentially a suitable tool 

for modeling the predicted potential distribution of cogongrass infestation given suitable 

biological and ecological variables are utilized. This study also suggests that a suitably trained 

Maxent model can be successfully projected to similar geographic areas within a limited extent, 

such as a state as was tested here. The transfer of a suitably trained Maxent model to an area of 

dissimilar geographic or environmental conditions, should be accepted with caution. 
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Appendix A: Soils Related Environmental Covariate Maps 
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Appendix B: Other Environmental Covariate Maps 
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Appendix C: Data Layer Conversion Steps 

This table represents the step for converting the presence point data to .csv for use in Maxent 

Step Description 
1 Open the cogongrass points shapefile in ArcGIS 
2 Add new columns for LatYDD and LongXDD to the shapefile table 
3 Calculate the Latitude and Longitude geometry as decimal degrees 
4 Use the Table to Excel tool in ArcGIS to dump the data into Excel format 
5 Open the file in Microsoft Excel 
6 Convert the .xls file to .csv 
7 Open the .csv file 
8 Remove all columns except Species, LatYDD, and LongXDD 
9 Save the file 
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This table of conversion steps includes data sources and layers that were ultimately not used in 
the final model; however, it may be useful for the reader to review how data from these sources 
were prepared before their usefulness was determined to be insignificant to the study. 

Environmental Layer Description and Conversion Steps 
PRISM climate data • Download climate data from the PRISM Climate Group website 

(http://www.prism.oregonstate.edu/) 
• Each dataset is a raster dataset at 800M resolution (roughly ½ mile 

grid cells). The values in the dataset are presented in millimeters and 
the rasters are classified in 5-inch increments. These datasets are in 
Nad83. 

• Data conversion steps: 
• In ArcGIS  

• Open the AVG Precipitation dataset 
• Clip AVG Precipitation to the study area geometry (the 

state of Alabama)  
• Save as “AVGPrecipClip” 

• Open the AVG Min Temp dataset 
• Clip AVG Min Temp to the study area geometry (the 

state of Alabama)  
• Save as “AVGMinTempClip” 

• Open the AVG Max Temp dataset 
• Clip AVG Max Temp to the study area geometry (the 

state of Alabama)  
• Save as “AVGMaxTempClip” 

Digital Elevation Model • Download digital elevation models for the state of Alabama  
• In ArcGIS 
• Use the Merge to New Raster tool to merge the DEMs together into 

one raster 
• Use Clip Raster tool to clip the new raster to the study area 
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Appendix D: Maxent Model Settings Screen Captures 

Model Study Area Maxent Model Settings: 
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Test Study Area 1 (Work Unit 12) Maxent Model Settings: 
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Test Study Area 2 (Work Unit 8) Maxent Model Settings: 
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Appendix E: Response Curves 

Response Curves for Imperata cylindrica to each environmental variable included in the models 
for each of the three study areas. 
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Appendix F: Ecological Systems with Category Groupings  

Ecological Systems for Model Study Area: 

ID Ecological System % of 
Total 

Category 

1 Cultivated Cropland 1.21% Agriculture 
2 Developed, High Intensity 0.03% Developed 
3 Developed, Low Intensity 0.26% Developed 
4 Developed, Medium Intensity 0.09% Developed 
5 Developed, Open Space 2.80% Developed 
6 Disturbed/Successional - Shrub Regeneration 1.83% Disturbed 
7 East Gulf Coastal Plain Black Belt Calcareous Prairie and 

Woodland - Herbaceous Modifier 
0.02% Forest/Woodlands 

8 East Gulf Coastal Plain Black Belt Calcareous Prairie and 
Woodland - Woodland Modifier 

0.08% Forest/Woodlands 

9 East Gulf Coastal Plain Dry Chalk Bluff 0.00% other 
10 East Gulf Coastal Plain Interior Upland Longleaf Pine 

Woodland - Loblolly Modifier 
34.12% Forest/Woodlands 

11 East Gulf Coastal Plain Interior Upland Longleaf Pine 
Woodland - Offsite Hardwood Modifier 

8.37% Forest/Woodlands 

12 East Gulf Coastal Plain Interior Upland Longleaf Pine 
Woodland - Open Understory Modifier 

0.71% Forest/Woodlands 

13 East Gulf Coastal Plain Large River Floodplain Forest - 
Forest Modifier 

8.83% Floodplain forest 

14 East Gulf Coastal Plain Large River Floodplain Forest - 
Herbaceous Modifier 

0.16% Floodplain forest 

15 East Gulf Coastal Plain Limestone Forest 0.09% Forest/Woodlands 
16 East Gulf Coastal Plain Northern Mesic Hardwood Forest 0.10% Floodplain forest 
17 East Gulf Coastal Plain Small Stream and River Floodplain 

Forest 
8.11% Floodplain forest 

18 East Gulf Coastal Plain Southern Loblolly-Hardwood 
Flatwoods 

0.94% Forest/Woodlands 

19 East Gulf Coastal Plain Southern Mesic Slope Forest 5.72% Floodplain forest 
20 Evergreen Plantation or Managed Pine 5.66% Forest/Woodlands 
21 Harvested Forest-Shrub Regeneration 7.54% Disturbed 
22 Harvested Forest - Grass/Forb Regeneration 1.61% Disturbed 
23 Open Water (Aquaculture) 0.03% water 
24 Open Water (Fresh) 1.15% water 
25 Pasture/Hay 6.86% Agriculture 
26 Quarries, Mines, Gravel Pits and Oil Wells 0.01% Developed 
27 Southern Coastal Plain Blackwater River Floodplain Forest 3.61% Floodplain forest 
28 Unconsolidated Shore 0.01% other 
29 Undifferentiated Barren Land 0.06% other 



127 
 

 

Ecological Systems for Study Area 1: 

ID Ecological System Description % of 
Total  

Category 

1 Cultivated Cropland 7.67% Agriculture 
2 Developed, High Intensity 0.03% Developed 
3 Developed, Low Intensity 0.53% Developed 
4 Developed, Medium Intensity 0.10% Developed 
5 Developed, Open Space 2.36% Developed 
6 Disturbed/Successional - Shrub Regeneration 1.99% Disturbed 
7 East Gulf Coastal Plain Interior Upland Longleaf Pine 

Woodland - Loblolly Modifier 
29.35% Forest/Woodlands 

8 East Gulf Coastal Plain Interior Upland Longleaf Pine 
Woodland - Offsite Hardwood Modifier 

8.78% Forest/Woodlands 

9 East Gulf Coastal Plain Interior Upland Longleaf Pine 
Woodland - Open Understory Modifier 

2.68% Forest/Woodlands 

10 East Gulf Coastal Plain Large River Floodplain Forest - 
Forest Modifier 

4.33% Floodplain forest 

11 East Gulf Coastal Plain Large River Floodplain Forest - 
Herbaceous Modifier 

0.16% Floodplain forest 

12 East Gulf Coastal Plain Small Stream and River Floodplain 
Forest 

5.12% Floodplain forest 

13 East Gulf Coastal Plain Southern Mesic Slope Forest 6.94% Floodplain forest 
14 Evergreen Plantation or Managed Pine 6.07% Forest/Woodlands 
15 Harvested Forest-Shrub Regeneration 7.25% Disturbed 
16 Harvested Forest - Grass/Forb Regeneration 3.15% Disturbed 
17 Open Water (Fresh) 0.68% Water 
18 Pasture/Hay 6.97% Agriculture 
19 Quarries, Mines, Gravel Pits and Oil Wells 0.07% Developed 
20 Southern Coastal Plain Blackwater River Floodplain Forest 5.56% Floodplain forest 
21 Southern Coastal Plain Nonriverine Cypress Dome 0.13% Floodplain forest 
22 Unconsolidated Shore 0.01% other 
23 Undifferentiated Barren Land 0.07% other 
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Ecological Systems for Study Area 2: 

ID Ecological System Description % of 
Total 

Category 

1 Allegheny-Cumberland Dry Oak Forest and Woodland - 
Hardwood 

7.20% Forest/Woodlands 

2 Allegheny-Cumberland Dry Oak Forest and Woodland - 
Pine Modifier 

0.92% Forest/Woodlands 

3 Cultivated Cropland 3.38% Agriculture 
4 Cumberland Riverscour 0.16% water 
5 Developed, High Intensity 0.53% Developed 
6 Developed, Low Intensity 4.48% Developed 
7 Developed, Medium Intensity 1.32% Developed 
8 Developed, Open Space 8.73% Developed 
9 Disturbed/Successional - Grass/Forb Regeneration 1.87% Disturbed 
10 Disturbed/Successional - Shrub Regeneration 3.05% Disturbed 
11 Evergreen Plantation or Managed Pine 5.36% Forest/Woodlands 
12 Harvested Forest-Shrub Regeneration 1.72% Disturbed 
13 Harvested Forest - Grass/Forb Regeneration 1.56% Disturbed 
14 Northeastern Interior Dry Oak Forest - Mixed Modifier 0.00% Forest/Woodlands 
15 Open Water (Fresh) 1.65% water 
16 Pasture/Hay 17.46% Agriculture 
17 South-Central Interior Large Floodplain - Forest Modifier 0.09% floodplain forest 
18 South-Central Interior Mesophytic Forest 6.88% Forest/Woodlands 
19 South-Central Interior Small Stream and Riparian 0.99% water 
20 Southeastern Interior Longleaf Pine Woodland 0.29% Forest/Woodlands 
21 Southern Appalachian Low Mountain Pine Forest 8.70% Forest/Woodlands 
22 Southern Interior Acid Cliff 0.00% other 
23 Southern Interior Calcareous Cliff 0.00% other 
24 Southern Interior Low Plateau Dry-Mesic Oak Forest 0.00% Forest/Woodlands 
25 Southern Piedmont Cliff 0.00% Other 
26 Southern Piedmont Dry Oak-(Pine) Forest - Hardwood 

Modifier 
0.64% Forest/Woodlands 

27 Southern Piedmont Dry Oak-(Pine) Forest - Loblolly Pine 
Modifier 

0.08% Forest/Woodlands 

28 Southern Piedmont Dry Oak-(Pine) Forest - Mixed 
Modifier 

0.09% Forest/Woodlands 

29 Southern Piedmont Mesic Forest 0.11% Forest/Woodlands 
30 Southern Piedmont Small Floodplain and Riparian Forest 0.04% floodplain forest 
31 Southern Ridge and Valley Dry Calcareous Forest 20.74% Forest/Woodlands 
32 Southern Ridge and Valley Dry Calcareous Forest - Pine 

modifier 
1.32% Forest/Woodlands 

33 Undifferentiated Barren Land 0.64% Other 
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Ecological Systems for the Model Study Area, Test Area 1, and Test Area 2 with 
consolidated groupings. 
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