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Abstract 

Landslide susceptibility mapping incorporates variables such as slope, precipitation, and 

lithology, among others, alongside a wide range of different methodologies in order to generate 

maps that may aid in landslide prediction. Criteria in the literature is expansive and varied, and 

the weighting methods used equally so. Weighted overlay and fuzzy overlay were chosen and 

compared using a select number of criteria as a means of testing which method would yield a 

better, more accurate result. Between the two, fuzzy overlay appears to be the more accurate of 

the two methods after evaluating the outputs, and this is due to the ways in which the two 

methods classify criteria. Of the eight criteria used, slope has been the most influential criterion 

for both methods with lithology coming in as a surprisingly strong factor for the weighted 

overlay and drainage systems as a strong influence for the fuzzy overlay. This influence is 

reflected in the locations of areas of higher landslide susceptibility and reveal that weighting and 

bias have definite effects on the outputs. There then exists a circular influence between the 

outputs shaping decisions that may affect large numbers of people and decisionmakers’ opinions 

affecting criteria emphasis. Of the two methods used, fuzzy overlay produced less biased results 

than weighted overlay, as the emphasis used in weighted overlay are highly subjective and 

influenced by the user. 



 

1 

 

Chapter 1 Introduction 

Landslides are natural phenomena that cause extensive damage to property and loss of life across 

the globe (AMERICAN GEOSCIENCES INSTITUTE n.d.; USGS n.d.; Wayllace et al. 2019; 

Wieczorek and Leahy 2008). They are not easy to predict, as they have various triggers and 

mechanisms of movement (Highland 2008; Korup 2017). Researchers use geographic 

information science (GIS) to not only image the before and after of a landslide event (Petley 

2012) but also to create predictive maps and models on landslide severity and frequency (Lai and 

Tsai 2019; Qiu and Mitani 2017; Saha et al. 2005; Tan et al. 2020; Zhou et al. 2021). The 

purpose of this project is to compare landslide susceptibility results of two methodologies, 

weighted overlay and fuzzy overlay, to understand how differences in weighting methods affects 

the results. An overview of the different criteria used in the literature is covered, as well as what 

variables were included in the analyses. The results of the two methods are then compared along 

with limitations of this study as well as how projects like this impact society. 

1.1.  Background 

The combination of geographical information science and geology makes logical sense, 

as both fields convey information primarily through the use of maps. Studies viewing landslides 

through the combined lenses of geology and GIS have been done before, and research and 

modelling within the geoscience realm has prioritized the effects of precipitation and 

groundwater on landslide initiation and movement (Bogaard et al. 2007; Shou and Chen 2021; 

Wayllace et al. 2019). Many studies on various geologic properties of landslides that are not 

strictly “spatial” and do not employ GIS exist, such as studies of water saturation and pore 

pressure (De Maio et al. 2020; Schulz et al. 2009; Viesca and Rice 2012; Wang and Sassa 2009), 
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soil composition and geology (Blońska et al 2018; Donnarumma et al. 2013; Park 2015), and 

slope angle (Çellek 2020; Coe et al. 2004; Iwahashi et al. 2002; Zakaria et al. 2017). 

A variety of models have been used for landslide hazard and prediction ranging from 

heuristic fuzzy approach to machine learning (Ercanoglu and Gokceoglu 2001; Feizizadeh and 

Blaschke 2012; Feizizadeh and Blaschke 2014; Francioni et al. 2019; Kavzoglu et al. 2013; Lai 

and Tsai 2019; Palcic and Lalic 2009; Stanley and Kirschbaum 2021; Zhou et al. 2021). Multiple 

criteria decision analysis (MCDA) has been the most frequently used method to determine 

locations of highest landslide risk. There are multiple methods within MCDA to weight criteria, 

and each method has its strengths and weaknesses. Here, the weighted overlay method was used 

to rank and weigh criteria and a fuzzy overlay was used as comparison. 

This project utilized a number of criteria that have been used for landslide susceptibility 

mapping and evaluation. A digital elevation model (DEM) is an important dataset for this 

project, as from this one piece of data, slope may also be derived. As far as properties of the 

natural environment go, geology, precipitation, and rivers have been shown to be important 

factors that were used (Ayalew and Yamagishi 2004; Chen and Li 2020; Du et al. 2014; Erener 

et al. 2016; Feizizadeh and Blaschke 2013; Feizizadeh and Blaschke 2014; Lai and Tsai 2019; 

Mallick et al. 2018; Patil et al. 2020; Roccati et al. 2021; Shou and Chen 2021). Data on the built 

environment includes roads, to analyze proximity of landslide risk to areas of human habitation 

and activity. 

1.2.  Study Area 

The study area is a 10,947 square mile portion of Colorado that covers most of the Front 

Range just to the west of the urbanized metroplex of Denver, Boulder, and Fort Collins. This 

area was chosen because the presence of the Rocky Mountains renders it particularly prone to 
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landslides. The Front Range is a smaller mountain belt within the Rocky Mountains that lies 

directly west of the Denver area (Figure 1). 

 

Figure 1 Schematic diagram of the geometry of the Denver Basin  

Its boundary demarcates a five-mile buffer around three counties that encompass the 

majority of the predicted high-hazard locations: Larimer, Boulder, and Jefferson Counties. 

Figure 1 shows the locations of predicted landslide hazards as generated by the United States 

Geological Survey (USGS), along with population centers within Colorado borders. The 

predicted locations tend to coincide with areas of relatively significant elevation change (Figure 

2).  
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Figure 2 Area of interest location and detail 

The goal of this project is to produce detailed analyses of potential landslide 

susceptibility locations using both weighted and fuzzy overlays. These results are compared not 

only to each other, but also to the landslide susceptibility inventory generated by the USGS.  

1.3.  Motivation 

Landslides are significant natural hazards around the globe, and the US has its fair share 

of landslides (Regmi et al. 2013). According to the USGS, landslides account for 25-50 deaths in 

the US each year (USGS, n.d.; Wieczorek and Leahy 2008) and between $2-4 billion in annual 

losses (AMERICAN GEOSCIENCES INSTITUTE, n.d.; Wayllace et al. 2019). The ability to 

predict landslide events, like volcanic eruptions and earthquakes, can save numerous lives as 
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well as decrease damage to property and infrastructure (Winter et al. 2019). Other natural 

disasters, such as wildfires, earthquakes, tsunamis, and volcanic eruptions (Korup 2012), or rapid 

changes in weather (Huggel et al. 2012) also have a tendency to affect landslide frequency. 

Therefore, it is important to have a baseline understanding of topographies that are more 

susceptible to landslides in different environments. 

Prediction of landslide occurrences may be improved upon with improved integration of 

GISci and geology. The field of geology covers a sizable range of topics of study, among them 

the wholesale study of the various kinds of landslides, including composition, failure 

mechanisms, and movement mechanics (Çellak, 2020; Çellak, 2021; Cerri et al. 2020; Chen et 

al. 2016; Donati et al. 2019; Donnarumma et al. 2013; Hu and Bürgmann 2020; Di Maio et al. 

2020; Clague and Stead 2012; Glade et al. 2005; Highland 2008; Martel 2004). Many of these 

studies observe landslides strictly through the lens of geology, though the integration of GIS into 

geologic studies has increased as technology has developed (e.g., Ali et al. 2021; Bragagnolo et 

al. 2020; Chen and Li 2020; Feizizadeh and Blaschke 2013; Feizizadeh and Blaschke 2014; 

Francioni et al. 2019; Kavzoglu and Colkesen 2012; Mallick et al 2018; Saha et al. 2005; Zhou et 

al. 2021). Many of these studies have incorporated geology into spatial modeling to further 

landslide susceptibility mapping. However, they may still be lacking in the comparison between 

the two weighting methods, as well as an analysis on how bias affects the results. 

1.4.  Importance 

There are many variables that go into the process that both affected and are affected by 

the opinions of the decisionmakers. Variables are weighted according to what are believed to be 

more or less important, and this relative subjectivity is integrated into the results. The availability 
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of data, as well as the quality of data, also affects results. These results then may be incorporated 

into land surveys for future infrastructure and urban expansion. 

The utility of landslide susceptibility mapping cannot be overstated, particularly in 

regions prone to landslides. The ability to predict where landslides might occur is an area of 

study that is continually growing, and the environmental impacts of these natural occurrences 

can be felt for years after an event. This project aims to look at the differences between two 

variations on MCDA: weighted overlay and fuzzy overlay. These two methods were chosen due 

to their widespread usage, and this project aims to compare the results within the AOI with 

various criteria. 

Research into landslide susceptibility mapping has yielded a number of different criteria 

depending on the location, data available, and if there is a specific aspect of landslide 

susceptibility that is being focused on. Bias in criteria selection or methodological decisions must 

be considered when building a project and generating results, and these results may affect people 

who live and work within the study area in question. The number of criteria reviewed for this 

project far exceeds the number used. Some of the reviewed criteria are location-specific to the 

studies conducted, and ultimately the results of this project are pertinent to the AOI alone. This 

project does not aim to test models that address global landslide susceptibility mapping.  

Many factors had to be considered over the course of this project. How this project would 

contribute to both the scientific community as well as the wider general populace was a key 

component in determining the subject matter and study area. The results of this project were 

meant to be a practical and useful piece of information to aid in more accurate and precise 

potential landslide location determinations. 
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1.5.  Overview 

The remainder of this thesis is split into four chapters. Chapter 2 details previous work 

done that is related to this project, delving into more depth with regards to landslides, landslide 

susceptibility mapping, utilized criteria, and criteria weighting. Chapter 3 discusses the 

methodology used in this project, including data acquisition, research design, data preparation, 

and data processing. Chapter 4 focuses on the material results from the project. And finally, 

Chapter 5 dives into the analyses of the project results, as well as its impact on the scientific 

community. 
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Chapter 2 Related Work 

Landslides are hazards that have increasingly posed potential threats to mankind (Glade and 

Crozier 2005). With ever-expanding urbanization encroaching on areas of unpopulated 

wilderness, increasing numbers of people are living in environments prone to landslides 

(AMERICAN GEOSCIENCES INSTITUTE, n.d.; USGS, n.d.; Winter et al. 2019), and 

therefore it becomes ever more important to both understand and forecast how and where 

landslides form. Geoscientists have reconstructed historical landslides in order to get a better 

grasp on landslide susceptibility prediction (Ebertardt 2012; Regmi et al. 2014; Reid et al. 2012), 

and the USGS maintains an extensive inventory of historic landslides in the US. Predicting 

landslide locations is done through the use of models constructed with specific criteria in mind – 

conditions that are necessary for landslide initiation. Geoscientists, therefore, have generated a 

number of various model types used for landslide susceptibility mapping. Understanding the 

overall processes that initiate landslides and what conditions are necessary for initiation is a 

primary point of interest for this project. 

2.1.  Regional Setting 

The study area covers a small central-western portion of the Denver Basin that lies 

directly to the east of the Front Range. The present-day basin formed as a result of the uplift of 

the Front Range, with eroded sediment from the mountain belt loading down the western edge of 

the basin (Figure 3). The sediment weathered and eroded from the Front Range is deposited at 

the base of the mountains, which in turn causes that side of the basin to sink—hence the fact that 

the Denver Basin is what geologists would call an asymmetric basin. The Front Range consists 

primarily of uplifted formations that range from the Precambrian to the present – the 

Precambrian basement is predominately granite, the Paleozoic and Mesozoic layers consist 
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primarily of alternating siliciclastic and carbonate rocks, and the Cenozoic rocks are composed 

of mixed-source sedimentary rocks (Knepper 2002). 

 

Figure 3 Cross-section of the Denver Basin (Nelson and Santus 2011) 

The uplift of the modern Rocky Mountains, the mountain belt of which the Front Range 

is a part of, began during the late Pennsylvanian period, around 300 million years ago. The 

Denver basin was a shallow basin for most of its lifespan up until the Paleogene (65-45 Ma), 

when the Laramide orogeny uplifted the modern Rocky Mountains, causing sediment from the 

mountains to deposit and depress the western end of the basin (Nelson and Santus 2011). The 

Front Range is one of many smaller mountain belts that make up the greater Rocky Mountains. 

The metropolitan areas of Denver, Boulder, and Fort Collins sit just to the east of the 

Front Range, near the axis of the basin. The locations of the cities themselves do not directly 

suffer from the effects of landslides, though their corresponding suburbs to the west – 

particularly where they press into the foothills of the Front Range – tend to feel said effects more 

frequently due to proximity to potential landslide hazard locations. 
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Ott (2020) and Suchet et al. (2003) indicate that intrusive igneous rocks, metamorphic 

rocks, and siliciclastic sedimentary rocks weather the slowest, while carbonate sedimentary rocks 

weather the fastest. In between these endmembers are extrusive igneous rocks and rocks 

consisting of a mix of igneous, metamorphic, and sedimentary rocks. Unconsolidated lithology 

consists of material that has already been eroded and mixed with other sediments that, size-wise, 

are more likely to be easily transportable. As the Front Range consists of Precambrian granite – 

an intrusive igneous rock – at its core with Paleozoic and Mesozoic siliciclastic and carbonate 

rocks above, the softer carbonates likely eroded before the siliciclastic rock and granite. 

2.2.  Landslide Overview 

The term “landslide” encompasses a wide range of mass movement, be it slope failure or 

otherwise due to gravity (Highland 2008; Korup 2012; Yamagishi 2017). Highland (2008) and 

Yamagishi (2017) break down the term landslide into different classifications based on 

movement type and involved material. Different terms to describe displacement of land 

masses/material include avalanche, fall, flow, slide, slump, spread, and topple (Clague and 

Roberts 2012; Highland 2008; Yamagishi 2017), and each of these terms have their own set of 

criteria that differentiates how they are named. Landslides have a variety of triggering 

mechanisms, some of which include earthquakes, heavy precipitation, snowmelt, and erosion 

(Korup 2012). For purposes of this project, the term “landslide” refers primarily to mass 

movements of earthen material that is categorized as a flow (spatially continuous movement of 

material where surface of shear is short-lived, closely-spaced, usually not preserved), slide 

(cohesive, relatively undeformed material moves over surface of rupture or relatively thin zones 

of intense shear strain), or fall (detachment of rock and soil from a steep slope along a surface 

with little no shear displacement) (Highland 2008). 
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2.2.1. Landslide Anatomy 

A failure surface, or sliding surface, is the plane on which the bulk of a landslide’s 

material travels over (Highland 2008; Martel 2004). The surface itself is a plane of weakness 

where gravity is able to overcome the shear frictional forces keeping the material above it 

immobile and may be planar or curved (Martel 2004). These failure surfaces may be visible on 

the surface and are known as rupture surfaces (Highland 2008). 

A landslide consists of multiple features, though terminology can differ even when 

referring to the same feature. The surface of rupture, also known as the sliding surface, is the 

main surface on which the loose debris travels upon. The head of a landslide is the term used to 

describe the area furthest upslope where material has shifted, while the toe of a landslide 

represents the material that has traveled furthest downslope. Scarps form at or near the head of 

the landslide due to tension, and tension fractures may form on the flanks of the landslide. 

Material that has traveled downslope may buckle if there is a decrease in the travel velocity, 

forming ripples or ridges on the surface. 

2.2.2. Landslide Triggers and Characterization 

Landslides occur due to a variety of triggering mechanisms, both natural and artificial 

(Korup 2012). In places with high amounts of precipitation, rainwater can saturate the soil and 

turn it into mud, which then slumps downhill due to decreased structural integrity (Highland 

2008). Volcanic eruptions, along with earthquakes that may or may not be associated with said 

eruptions, can destabilize the uppermost layer of earthen material due to the excessive vibrations 

caused by such events (Korup 2012). Time and erosion may initiate slope failure simply due to 

gravity (Clague and Roberts 2012). Manmade structures, such as roads, may also cause 

landslides both during the construction process – destabilization of the surface due to 
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construction equipment and explosives, if bedrock is needed to be cleared – and post 

construction – the resultant excavated road is a surface of high change in relief (Highland 2008).  

Regmi et al. (2014) performed a study that focused on characterizing landslides in 

Colorado. In their paper, they described two different types: smaller, surficial landslides and 

larger, deep-seated landslides. According to the authors, these two kinds of landslides have a 

temporal aspect to size: evidence of shallow landslides are modern-aged and small- to large-

sized, while evidence of large, deep-seated landslides are much older in age (hundreds to 

thousands of years old). Shallow small- to medium-sized landslides tend to be located in areas of 

steeper slope and are dominated by sedimentary rock close to rivers, while large-sized landslides 

trend along areas of flatter slope (Cruden and Varnes 1996; Regmi et al. 2014; Wieczorek and 

Leahy 2008). Shallow landslides have a sliding base that generally lies at the boundary between 

soil and bedrock, and pore water plays a major role in the initiation of a landslide (Regmi et al. 

2014). Deep-seated landslides have been determined to be older due to the fact that they tend to 

have dense vegetation cover (Regmi et al. 2014). Shou and Chen (2021) imply that collapse and 

movement mechanics tend to dictate the type of landside the occurs. 

Of the landslides that have occurred in modern times in the state of Colorado, the 

Slumgullion earthflow in southwestern Colorado has been the most heavily studied (Amitrano et 

al. 2019; Gomberg et al. 1995; Gomberg et al. 2011; Madison et al. 2019). This nearly four-

kilometer-long landslide has been in motion for approximately 350 years at a rate of up to two 

centimeters per day (Amitrano et al. 2019; Madison et al. 2019), giving scientists a natural 

laboratory on landslide kinematics. The lithology and hydrology of the Slumgullion area has 

been extensively studied, and the scale of the landslide has given rise to various “sections” 

within the total length that act semi-independently of the whole, therefore allowing geoscientists 
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to study temporal and mechanical differences within the Slumgullion (Gomberg et al. 1995; 

Gomberg et al. 2011; Madison et al. 2019). This research has tremendously increased knowledge 

on landslide mechanics, and that translates into generalized landslide susceptibility mapping. 

2.3.  Criteria Employed in Landslide Prediction 

For this project, a spread of forty-two papers (Table 1) were used to determine what 

criteria were most frequently used in landslide susceptibility efforts. These studies varied widely 

in terms of location: the studies were spread out within fourteen different countries across the 

globe.   
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Table 1 Literature references (in alphabetical order) 

Number Reference 

1 Ali et al. 2020 

2 Ayalew and Yamagishi 2004 

3 Bragagnolo et al. 2020 

4 Chen and Chen 2021 

5 Chen and Li 2020 

6 Chen et al. 2015 

7 Du et al. 2017  

8 Ercanoglu and Gokceoglu 2015 

9 Erener et al. 2016 

10 Feizizadeh and Blaschke 2013 

11 Feizizadeh et al. 2014 

12 Ghorbanzadeh et al. 2019 

13 Huggel et al. 2012 

14 Kavzoglu et al. 2013 

15 Korup 2012 

16 Lehmann et al. 2019 

17 Lombardo and Mai 2018 

18 Mallick et al. 2018 

19 Nandi and Shakoor 2009 

20 Nohani et al. 2019 

21 Patil et al. 2019 

22 Pawluszek and Borkowski 2016 

23 Pham et al. 2020 

24 Pourghasemi et al. 2012 

25 Pourghasemi et al. 2020 

26 Regmi et al. 2014 

27 Rengers et al. 2016 

28 Roccati et al. 2021 

29 Roodposhti et al. 2016 

30 Roy and Saha 2019 

31 Roy et al. 2019 

32 Saha et al. 2005 

33 Saito et al. 2009 

34 Schulz et al. 2009 

35 Shou and Chen 2021 

36 Vahidnia et al. 2010 

37 Vakhshoori and Zare 2016 

38 Vojtekova and Vojtek 

39 Wayllace et al. 2019 

40 Zhao et al. 2017 

41 Zhou et al. 2021 

42 Zhu et al. 2014 
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A multitude of various criteria were used in landslide susceptibility modeling, ranging 

from atmospheric to geologic and everything in between. These criteria were used depending on 

the purpose of the model being used. Landslide susceptibility is dependent on a number of 

factors, though lithology, slope, and groundwater level are three of the most heavily studied 

parameters (Regmi et al. 2014; Schulz et al. 2009; Wayllace et al. 2019; Zhou et al. 2021), 

though they are certainly not the only parameters taken into consideration. Attributes such as 

elevation, aspect, soil composition, land use, stream power index (SPI), and topographic wetness 

index (TWI) have also been used in landslide susceptibility studies (Highland 2008; Kavzoglu et 

al. 2013; Martel 2004; Saha et al. 2005; Schulz et al. 2009). Natural disasters and changes in 

weather (Huggel et al. 2012; Korup 2012) have also been studied with regards to landslide 

initiation frequency, and vegetation cover is one of the lesser-known factors studied in landslide 

frequency (Lehmann 2019; Rengers et al. 2016). 

The criteria authors working in landslide susceptibility mapping chose include various 

attributes specific to not only their study areas, but to certain aspects of their study that they 

either wanted to emphasize or had particular access to. For example, Chen et al. (2015) utilized 

evaporation rates and soil water retention in their study – a criterion that no other study 

referenced in this thesis has used. Roccati et al. (2021) used terracing and existing landslide 

proximity as criterion for their own study – factors which influence slope gradient and surface 

stability. The individual criteria, in the order listed in Table 2, are detailed in the following 

sections, organized by criteria category.  
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2.3.1. Topography 

Topography forms the basis of all landslide modeling. Without surface data, landslide 

susceptibility modeling would not be possible. Different types of topographic data were utilized 

in the various studies, with some forms being derivatives from others. A number of topographic 

data are usually derived from DEMs (Ali et al. 2021; Ayalew and Yamagishi 2004; Chen and 

Chen 2021; Chen and Li 2020; Chen et al. 2015; Mallick et al. 2018; Nohani et al, 2019; 

Pawluszek and Borkowski 2016; Pham et al. 2020; Pourghasemi et al. 2020; Roodposhti et al. 

2016; Roy and Saha 2019; Saito et al. 2009; Vahidnia et al. 2010; Vojtekova and Zare 2016; 

Zhao et al. 2017) and are discussed below. 

2.3.1.1. Elevation 

Elevation is the vertical distance from a given baseline, usually mean sea level (Dempsey 

2020), and elevation is an interpolated surface representation of DEMs (Du et al. 2014; Erener et 

al. 2014). This vertical distance changes depending on surface features, such as mountains and 

valleys above sea level. Chen et al. (2015) indicate that regions with low relative elevation 

throughout are more prone to inundation, and that areas with a steeper topography have a lower 

probability of flooding since water can be drained downslope. 

2.3.1.2. Slope 

Certain conditions need to be met in order for a landslide to occur, the least of which is a 

slope gradient. Difference in elevation has a negative correlation with slope stability (Çellak, 

2020; Kayastha 2015), and this factor is one of the most commonly used in landslide 

susceptibility modeling, as reported by Çellak (2013), Dağ (2007), and Hasekioğullari (2011). 

Çellak (2020) also mentions how slope plays an important role in lithological and soil properties, 

such as permeability, cohesion, strain, and shear and normal stress, as well as hydrological 

properties dealing with groundwater flow and saturation. Coe et al. (2004) reported that around 
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ninety-six percent of landslides within their study area had slopes between sixteen to forty-four 

degrees. Patil et al. (2020) found in order of highest to lowest frequency of landslides occurring 

on slope angle ranges in their study area: 30° – 40°, 20° – 30°, 10° – 20°, 40° – 50°, < 10°, 50° – 

60°, 60° – 70°, > 70°. It is with their analysis that the ranking of slopes was determined for this 

project. 

2.3.1.3. Aspect 

Erener et al. (2016) define aspect as a slope’s orientation using compass degrees, i.e., 0° 

through 360°, with 0° and 360° both being due north, a property that may contribute to landslide 

susceptibility modeling by implying which slopes are more likely to be affected by atmospheric 

conditions, such as wind and precipitation, as well as amount of sunshine received (Pourghasemi 

et al. 2012). Ghorbanzadeh et al. (2019) goes so far as to say that aspect is one of the most 

important topographical features that can be used in landslide susceptibility studies. Aspect is 

calculated based on the derived slope values. 

2.3.1.4. Curvature 

Curvature, as defined by Ghorbanzadeh et al. (2019) and Pourghasemi et al. (2012), is a 

slope or aspect’s rate of change with respect to a particular direction. This criterion is particularly 

useful in landslide susceptibility mapping because curvature defines topographic features as 

concave, convex, or flat. Chen and Chen (2021) split curvature into five groups; Chen and Li 

(2020), Lombardo and Mai (2018), Pourghasemi et al. (2020), and Saito et al. (2005) broke up 

curvature into two categories for further distinction. 

2.3.1.5. Geomorphology 

Geomorphology refers to the landscape of an area that includes not only static surface 

features, but also temporal aspects to the landscape, including seasonal changes (Mallick et al. 



 

22 

 

2018). Roy et al. (2019) use geomorphology to classify surface features into regions that not only 

include lithological and soil composition, but also hydrological components. 

2.3.1.6. Slope length 

Slope length was a criterion that Pourghasemi et al. (2012) utilized, wherein this 

parameter was a measurement of slope steepness and length. It was used as a means to measure 

soil loss and sediment transport capacity overland through the use of a fluid. 

2.3.1.7. Roughness 

Pawluszek and Borkowski (2017) utilize roughness as a criterion. Roughness, as defined 

by the authors, is a derivative from a slope map and applies a moving standard deviation filter 

with a defined kernel size. Typically, rougher areas tend to indicate areas affected by landslides, 

and the degree of roughness may correlate with specific types of landslide activities. Roughness 

can be used to generate landslide inventory maps (McKean and Roering 2004). 

2.3.1.8. Shaded relief 

Shaded relief is, as defined by Pawluszek and Borkowski (2017), a hypothetical surface 

illumination that works by visualizing shaded relief from eight different sun directions. Similar 

in function to solar radiation, this data may be derived from DEMs.  

2.3.1.9. Topographic position index 

Topographic position index (TPI) is the calculated difference between the elevation of 

one raster cell and the mean elevation of its surrounding cells (Pawluszek and Borkowski 2017). 

This criterion identifies different topographic features based on the sharpness of edges, such as 

ridges and valleys. 
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2.3.1.10. Desiccation height 

Saito et al. (2009) use this criterion as a means of approximating ideal erosion volumes 

and heights for both the past and the future. They define desiccation height as summit level 

minus elevation (Dis), or depth from the summit level. 

2.3.1.11. Undesiccation height 

Undesiccation height, as defined by Saito et al. (2009) is the height above the river level, 

or elevation minus river level. This criterion, like desiccation height, is used to approximate ideal 

past and future erosion volume or height. Saito et al. (2009) further mention a correlation 

between relief and slope angles to the standard deviation of undesiccation height. High relief and 

steep slopes tend to have high standard deviation while low relief and flatter slopes correlate to 

low standard deviation. The formulas to calculate the average undesiccation height in order to 

get the standard deviation of undesiccation height are: 

 𝑈𝑑𝑖𝑠𝑎𝑣 =
1

𝑁
∑ 𝑈𝑑𝑖𝑠

𝑑
 ( 1 ) 

 𝑈𝑑𝑖𝑠𝑠𝑑 =
1

𝑁
∑ ((𝑈𝑑𝑖𝑠 − 𝑈𝑑𝑖𝑠𝑎𝑣)2)

1
2

𝑖
 ( 2 ) 

where Udis is measured undesiccation height, Udisav is average undesiccation height, Udissd is 

the standard deviation of undesiccation height, and N is the population size. 

2.3.1.12. Slope shape 

Zhu et al. (2014) describe slope shape in terms of curvature: whether or not slopes are 

flat, straight, convex, concave, or a combination thereof. They stated that areas with upper 

convex, lower concave slopes are more likely to have landslide activity. The authors decided 

upon slope shape instead of curvature because slope shape takes the shape of the entire slope into 

account, whereas curvature measures the shape of a slope of a single pixel independently of its 

neighbors. 



 

24 

 

2.3.2. Hydrology 

Hydrology, for the purposes of this project, covers everything that pertains to water with 

respect to landslide susceptibility. This includes, atmospheric, terrestrial, and subterranean water, 

as water in all locations affect landslide initiation and propagation – water is generally the 

lubricant that allows a landslide to travel on a slip surface (Wayllace et al. 2019). It can also be 

the cause of slope failure – either by, again, due the fact that it can act as a lubricant, or by 

weight should a soil absorb enough (Rotaru et al. 2007). Either way, reaching a critical saturation 

point can tip a slope from being stable to unstable, thus giving rise to slope failure and 

consequently, a landslide. 

2.3.2.1. Drainage proximity 

Many studies have used drainage proximity as one of their criterion (Chen et al. 2016; Du 

et al. 2017; Erener et al. 2016; Feizizadeh et al. 2014; Ghorbanzade et al. 2019; Mallick et al. 

2018; Pawluszek and Borkowski 2016; Pourghasemi et al. 2012; Roodposhti et al. 2016; Roy 

and Saha 2019; Roy et al. 2019; Vahidnia et al. 2010; Vakhshoori and Zare 2016; Zhao et al. 

2017). Weighting was done based on buffered distances to the nearest river or stream. Du et al. 

(2016) point out how slope instability can develop as a result of river incision, hence the increase 

of landslide susceptibility with drainage proximity. 

2.3.2.2. Precipitation 

A number of studies utilized precipitation as their means of gauging rainfall in their study 

area. Chen et al. (2015) used daily rainfall, while Ali et al. (2021), Chen and Li (2020), 

Feizizadeh et al. (2014), Vakhshoori and Zare (2016), and Zhao et al. (2017) used average 

annual rainfall. Feizizadeh and Blachke (2013) and Mallick et al. (2018) used a 30-year 

meteorological data, while Nandi and Shakoor (2009) used annual cumulative rainfall. 
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Regarding precipitation patterns, it has been noted that rainfall has a tendency to increase with 

elevation, a trend that has been termed the orographic effect (Daly et al. 1993). 

2.3.2.3. Drainage density 

Chen et al. (2015), Feizizadeh et al. (2014), and Roodposhti et al. (2016) utilized 

drainage density in their studies. Chen et al. (2015) defined drainage density as the length of 

rivers for a given area. As mentioned by Du et al. (2016), the presence of a river can influence 

slope stability, and therefore knowing what the drainage density is within a study area is crucial. 

Kavzoglu et al. (2012) list the formula for drainage density as: 

 
𝐷𝑦 = ∑ 𝐿 𝐴⁄  ( 3 ) 

where Dy is the drainage density, L is stream length, and A is the catchment area. 

2.3.2.4. Stream power index 

Stream power index (SPI) is defined as flow erosion potential at a given surface point 

(Pawluszek and Borkowski 2017; Roy et al. 2019) and is calculated with a formula Pourghasemi 

et al. (2012) cited in their study: 

 
𝑆𝑃𝐼 = 𝐴𝑠 × tan 𝛽 ( 4 ) 

where As is catchment area and β the local slope in degrees. 

2.3.2.5. Topographic wetness index 

Pourghasemi et al. (2012), Pawluszek and Borkowski (2017), and Roy et al. (2019) 

define TWI as a factor used to quantify topographic control on hydrologic processes. TWI is a 

function of the slope and upstream contributing area per unit width orthogonal to flow direction: 

 𝑇𝑊𝐼 = ln
𝐴𝑠

tan 𝛽
 ( 5 ) 
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where As is the area that is drained through a certain point, and β the slope at the point of 

drainage. 

2.3.2.6. Sediment transportation index 

Sediment transport index (STI) is a factor used to measure how an area directly 

contributes to sediment discharge – it quantifies the process of erosion and deposition. Roy et al. 

(2019) include the equation for STI in their study: 

 𝑆𝑇𝐼 = (𝑚 + 1) × (
𝐴𝑠

22.13
)

𝑚

× sin (
𝐵

0.0896
)

𝑛

 ( 6 ) 

where As is the catchment area, B the local slope in degrees, the contributing area exponent m is 

usually set to 0.4, and the slope exponent n to 0.0896. 

2.3.2.7. Solar radiation 

Pawluszek and Borkowski (2017) define solar radiation – more specifically, area solar 

radiation (ASR) – as a derivative of slope and aspect. This criterion combines radiant energy 

from the sun with the sun angle and direction for a given location. Ali et al. (2021) describe 

higher amounts of solar radiation being indicative of greater availability of soil and rock pore 

space – hence a lower probability of landslide occurrence. Both Pawluszek and Borkowski 

(2017) and Ali et al. (2021) essentially use solar radiation as a means of measuring evaporation. 

2.3.2.8. Evaporation 

Evaporation, as defined by Chen et al. (2015), is the sum of water, soil, and plant 

evaporation. This criterion takes into account evapotranspiration from plants and evaporation 

from surface water, though Chen et al. (2015) point out that this parameter is more critical during 

the summer when evapotranspiration rates are higher due to seasonal rainfall and longer hours of 

sunlight. 
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2.3.2.9. Water condition 

Ercanoglu and Gokceoglu (2002) factored water condition – the amount of moisture 

found on a given surface – into their study. They used a simple classification for assessing water 

condition, as dense vegetation and mountainous terrain sometimes prevented direct observation. 

Four categories were used: landslide susceptibility is high if water condition is wet, moderate if 

water condition is dripping or flowing, low if water condition is damp, and a non-issue if water 

condition is dry. 

They caveated their observations by stating that water conditions in the same area change 

with the seasons, and that the observations they used were what had been noted specifically at 

the time the study was being conducted. 

2.3.3. Subsurface 

The subsurface category consists of any criteria that deals with data beneath the Earth’s 

surface. These data include lithology, lineaments, various soil properties, and seismic activity, to 

name a few. Subsurface data is primarily collected by geologists, geophysicists, hydrologists, 

soil scientists, though data collection is not restricted to these professions. In terms of landslide 

susceptibility mapping, subsurface data is important because a large part of why landslides occur 

and where they occur is dictated by subsurface properties. 

2.3.3.1. Lithology 

Lithology is a key component of landslide susceptibility mapping, as geology affects not 

only the subsurface, but the surface as well. The lithological composition of an area tends to 

dictate not only subsurface properties such as porosity, permeability and fluid composition 

(Schulz et al. 2009; Wayllace et al. 2019), but it also affects surficial properties such as 

topography, rates of weathering and erosion, and soil composition (Ott 2020). Because geology 

is such a key component of landslide susceptibility mapping, a significant number of the authors 
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referenced in this study have used lithology as one of their key criteria. Vojtekova and Vojtek 

(2020) went one step further and used geology as a proxy for permeability. 

2.3.3.2. Lineament proximity 

Lineaments, in the geological and geographical sense, comprise surface features that are 

generally indicative of subsurface structures, such as elongated hills and valleys. Florinsky 

(2016) states that lineaments are usually associated with linear subsurface features such as faults 

and fractures, and to a lesser extent, mechanical deformation – fracturing or folding – or zones of 

higher permeability. Lineaments indicate planes of weakness in the subsurface, areas that may 

slip with enough pressure or lubrication, resulting in landslides if they are close to the surface, or 

earthquakes if they are deep within the Earth’s crust. Landslides may also result as an event 

secondary to an earthquake, thus further reinforcing the correlation between landslide activity 

and lineament proximity. 

2.3.3.3. Soil composition 

Soil composition is largely a result of the lithology of a region, as the soil’s minerals are 

primarily sourced from their parent rocks. Different soil compositions have different properties, 

such as soil depth, land use type, and level of erosion, and certain soil compositions correlate 

more readily to landslide frequency (Erener et al. 2016; Pourghasemi et al. 2020). Pourghasemi 

et al. (2020) also indicate that variation in soil composition changes the permeability and 

strength of a slope surface. 

2.3.3.4. Soil water retention 

Chen et al. (2015) identify soil water retention (SWR) as the amount of water a soil can 

store after some sort of precipitation or inundation event. Dependent on the soil composition, as 

well as types of vegetation on the surface, SWR may change depending on the season. Chen et 

al. (2015) include the formula for calculating SWR: 
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 𝑆𝑊𝑅𝑖 = 𝑆𝑊𝑅0 (
100

𝐶𝑁𝑖
− 1) ( 7 ) 

where CNi is an integer between 0 to 100 that is determined by hydrologic soil properties and 

ground cover conditions, and SWR0 is a scaling factor dependent on the unit of measurement. 

2.3.3.5. Depth of soil 

Erener et al. (2016) utilizes depth of soil in their study by classifying soil depth into four 

categories: very deep, deep, shallow, and very shallow. The authors of this paper have 

discovered that for their study area in northwestern Turkey, landslides occurred most frequently 

in the very deep category, in which soil depth was over 90 cm and the occurrence rate was 78%. 

2.3.3.6. Seismic zone 

Roy et al. (2019) used seismic zones as a criterion – seismic zones meaning areas where 

there is ongoing tectonic activity, primarily in the form of earthquakes. Given that their study 

area was in western Bengal in the foothills of the Himalaya Mountains, earthquakes are not 

uncommon to the region and therefore likely serve as triggers to landslides that occur in the area. 

2.3.3.7. Major structure proximity 

Patil et al. (2020) used the proximity to major structures as a criterion, their chief focus 

being thrust faults. Saha et al. (2005) also denote importance to proximity to major tectonic 

structures, most notably thrust faults. Both Patil et al. (2020) and Saha et al. (2005) single out 

thrust faulting in particular because of the fact that their study areas are in the Himalaya 

Mountains, where active thrust faults routinely generate earthquakes. 

2.3.3.8. Soil liquidity index 

Soil liquidity index was used by Nandi and Shakoor (2009) quantifies the amount of 

water needed in a soil to change it from a solid state to a plastic based on soil composition. The 

equation for soil liquidity is: 
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𝐿𝐼 = (𝑊𝑛 − 𝑃𝐿)/(𝐿𝐿 − 𝑃𝐿) ( 8 ) 

where LI is the liquidity index, Wn is water content, PL plastic limit, and LL liquid limit. 

2.3.4. Surface 

Surface data plays a large role in landslide susceptibility mapping. Of the data used in 

landslide susceptibility studies, surface information changes the most frequently. This is due to 

the fact that surface attributes are and have been anthropomorphically shaped in timescales that 

can easily fit within an average human’s lifespan. The changes wrought on the surface therefore 

heavily affect surface properties that, in turn, affect the probability of a landslide occurring. 

2.3.4.1. Land use/land cover 

Land use/land cover (LULC) were a significant component of many studies. Pourghasemi 

et al. (2020) mention how land use can affect hydrological and mechanical slope stability 

properties. Human activity is generally the cause of multiple triggers that contribute to climate 

change, and changes in LULC is a means of mapping how anthropogenic activity affects natural 

process, landslides included (Mallick et al. 2018). 

2.3.4.2. Road proximity 

Studies have revealed a correlation between landslide activity and the presence of roads 

in mountainous regions (Erener et al. 2016; Feizizadeh et al. 2014; Pawluszek and Borkowski 

2017; Pourghasemi et al. 2012; Roy et al. 2019). This is due to the fact that the construction of 

roads requires the excavation of rock and soil, which subsequently weakens slope integrity 

(Pawluszek and Borkowski 2017). Nohani et al. (2019) point out that road construction on slopes 

more than 10 degrees are more prone to landslide activity. 
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2.3.4.3. Vegetation coverage 

Du et al. (2017) and Mallick et al. (2018) both use vegetation coverage (VC) in their 

studies, as it was noted that increased vegetation cover negatively affected landslide frequency. 

Mallick et al. (2018) calculated VC from Landsat-8 satellite imagery. Du et al. (2017)’s VC data 

was derived from Landsat ETM+ imagery, and both Du et al. (2017) and Roy et al. (2019) used 

normalized difference vegetation index (NDVI) to calculate VC as follows: 

 𝑁𝐷𝑉𝐼 =  
𝐼𝑅 − 𝑅

𝐼𝑅 + 𝑅
 ( 9 ) 

 𝑉𝐶 =  
𝑁𝑉𝐷𝐼 − 𝑁𝑉𝐷𝐼𝑠𝑜𝑖𝑙

𝑁𝑉𝐷𝐼𝑣𝑒𝑔 − 𝑁𝑉𝐷𝐼𝑠𝑜𝑖𝑙
 ( 10 ) 

where NVDI is the normalized difference vegetation index, IR the infrared portion of the 

electromagnetic spectrum, R the red portion of the electromagnetic spectrum, NVDIsoil the NVDI 

of uncovered soil, and NVDIveg the NVDI for pure vegetation. 

2.3.4.4. Erodibility 

Erener et al. (2016) and Mallick et al. (2018) measure the ability of sediment to be eroded 

from the soil. This erosion includes consideration of ease of soil transport due to infiltration and 

runoff. The equation Mallick et al. (2018) used for this calculation is: 

 
𝐾 = 0.0293(0.65 − 𝐷𝐺 + 0.24𝐷𝐺

2) ( 11 ) 

 𝑒𝑥𝑝 {−0.0021 (
𝑂𝑀

𝑓𝑐𝑙𝑎𝑦
) − 0.00037 (

𝑂𝑀

𝑓𝑐𝑙𝑎𝑦
)

2

− 4.02𝑓𝑐𝑙𝑎𝑦 + 1.72𝑓𝑐𝑙𝑎𝑦
2 }  

 
𝐷𝐺 = −3.5𝑓𝑐𝑙𝑎𝑦 − 2.0𝑓𝑠𝑖𝑙𝑡 − 0.5𝑓𝑠𝑎𝑛𝑑 ( 12 ) 

where K is the soil erodibility factor, DG is geometric mean radius, OM is the percentage of 

organic matter, fsand the percentage of sand, fsilt the percentage of silt, and fclay the percentage of 

clay. 
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2.3.4.5. Settlement proximity 

Patil et al. (2020) used settlement proximity by weighting inside a Landslide Numerical 

Risk Factor geospatial model, though no detail as to how they weighted settlement proximity 

was given. Roccati et al. (2021) used a buffer distance of ten meters and broke down 

“settlement” into further categories: buildings, other manufacts, and retaining walls. 

2.3.4.6. Existing landslide proximity 

Roccati et al. (2021) also considered the existence of pre-existing landslide deposits, 

which may be indicative of higher slope instability. The authors separated previous landslides 

into four categories: active/reactivated/suspended landslides, dormant landslides, 

inactive/stabilized landslides, and area affected by widespread shallow landslides. 

2.3.4.7. Terracing 

Roccati et al. (2021) take terraced surfaces into account with regards to slope stability. 

They discuss how terracing both improves and worsens slope stability, depending on amounts of 

rainfall and runoff, as well as vegetation growth. Vegetation increases slope stability, while 

rainfall and runoff decreases slope stability. 

2.3.4.8. Landslide-rainfall index 

Shou and Chen (2021) define this criterion as the correlation between cumulative rainfall 

and rainfall intensity at different landslide locations, and the dataset is used to predict the 

landslide-rainfall index at a chosen location. As shown in Figure 4, L1 and L2 indicate the upper 

and lower thresholds for a dataset, which is then used to generate a rectangular bound for the 

data. Midpoints are then used to determine the slopes for L1 and L2, and a line perpendicular to 

L1 and L2’s slopes is used to determine d1 and d2, which are the distances between a chosen 

point and L1 and L2, respectively. The equation for the landslide-rainfall index (Id) is: 
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𝐼𝑑 = 𝑑2/(𝑑1 + 𝑑2) ( 13 ) 

where d1 is the distance from L1 and d2 is the distance from L2. 

 

Figure 4 How landslide-rainfall index is graphically calculated (Shou and Chen 2021). 

2.4.  Modeling Methods 

Landslide susceptibility mapping is a generalized term used to denote spatial analysis 

regarding landslide susceptibility, and a number of studies have utilized various methods for 

generating landslide susceptibility models. Criteria and methodologies have differed among 

these studies, but several specific criteria and susceptibility analysis methods have been utilized 

more frequently than others. 

Multiple-criteria decision analysis (MCDA) and logistic regression (LR) were some of 

the more commonly used modeling methods used. Other methods are briefly covered, though 

their usage within landslide susceptibility mapping is much less frequent than that of MCDA and 

LR. 
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2.4.1. Multiple-Criteria Decision Analysis  

 MCDA is a decision-making model that utilizes weights to determine the importance of 

criteria relative to one another in order to achieve a result that best fits the criteria used, and it is 

this method that was used for this project. The MCDA process requires several key components: 

the decision maker, evaluation criteria, and decision alternatives (Malczewski and Rinner 2015). 

MCDA is a frequent choice for environmental suitability studies, as it provides a systematic 

means of incorporating decision maker priorities and various criteria and outputs various 

alternatives which the decision maker can then select from (Huang et al. 2011; Jankowski 1995). 

Different studies utilized different methods for generating landslide susceptibility models and 

maps. MCDA, logistic regression, and machine learning were some of the modeling methods 

used. MCDA, as mentioned before, stands for multi-criteria decision analysis, and this method is 

dependent upon using a weighting scheme to determine the importance of one criterion against 

another. 

MCDA with regards to GIS can be a powerful tool if properly utilized. GIS on its own 

analyzes and visualizes spatial data, while MCDA provides a structure and weighted criteria for 

decision making. The combination of the two (commonly referred to as GIS-MCDA) 

complement each other, as the combination allows for decision-making to occur while taking 

into consideration spatial data (Feizizadeh and Blaschke 2013). Malczewski and Rinner (2015) 

argue that the purpose of using GIS-MCDA is to provide options with geographical input to aid 

decision makers in developing and making better-informed solutions to the problem that required 

an MCDA in the first place, as opposed to yielding a single solution. GIS-MCDA is therefore a 

powerful, systematic tool that offers options to assistance in solving a problem with spatial 

information that supports the decision maker’s ability to come to a decision that not only 

incorporates spatial data, but also their own value judgments. 
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Under the umbrella of MCDA are a number of different methods to weight criteria. Of 

these, analytical hierarchy process (AHP) is the most widely used method (see, e.g., Ahmed 

2015; Chen et al. 2015; Feizizadeh and Blaschke 2013; Feizizadeh and Blaschke 2014; 

Pawluszek and Borkowski 2017; Pourghasemi et al. 2012; Roccati et al. 2021; Roy and Saha 

2019; Vojtekova and Vojtek 2020), though de Montis et al. (2005), Huang et al. (2011), 

Malczewski (2004), Malczewski and Rinner (2015), and Triantaphyllou and Baig (2005) discuss 

other weighting methods as well. Of these papers that discuss different weighting methodologies, 

AHP was discussed in all five papers. ELimination Et Choix TRaduisant la REalité (ELECTRE) 

was mentioned in three out of five, and multi-attribute utility theory (MAUT) and Preference 

Ranking Organization METHod for Enrichment Evaluations (PROMETHEE) were each 

discussed in two of the five papers listed. These methods are described in the following 

paragraphs. 

AHP was developed by Saaty in 1980. A hierarchy of criteria is created before paired 

comparison ratios are used to determine how criteria are weighted (de Montis et al. 2005; Huang 

et al. 2011; Malczewski 2004; Malczewski and Rinner 2015; Triantaphyllou and Baig 2005). 

AHP has found wide usage in suitability analyses and conflict resolution (Saaty 1987). 

ELimination Et Choix TRaduisant la REalité (ELECTRE) was developed in 1968 by Roy (de 

Montis et al. 2005; Huang et al. 2011; Malczewski and Rinner 2015). This method compares the 

concordance and discordance of paired alternatives, wherein if one criterion is determined to be 

better than the one its being compared to, it receives a higher rank, or weight. MAUT, developed 

by Churchman, Ackoff, and Arnoff in 1957, allows for multiple objectives, qualitative data, and 

intangible factors to be considered in the weighting process (de Montis et al. 2005; Huang et al. 

2011). It allows for the comparison of risky outcomes through computed expected utility. 
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PROMETHEE is similar to ELECTRE in that it also uses a ranking scheme and paired 

alternatives. Unlike ELECTRE, PROMETHEE ranks the paired alternatives based on criterion 

type and threshold values (Huang et al. 2011; Malczewski and Rinner 2015). 

This project intends to use two methods that fall under the MCDA umbrella: weighted 

overlay and fuzzy overlay. The two overlays utilize multiple criteria in which each criterion is 

weighted or ranked in terms of importance.  Weighted overlay works by breaking criteria into 

sub-criteria and reclassifying them according to importance before then weighing the criterion 

itself in relation to other criteria. Roslee et al. (2017) and Hassan et al. (2020) utilize weighted 

overlay in spatial suitability analyses with the former focused on landslides in Pahang, Malaysia 

and the latter on agricultural land in Pakistan. Both studies use weighted overlay to determine 

spatial susceptibility or suitability based on the rankings they assigned to criteria. Fuzzy overlay, 

unlike weighted overlay, substitutes assigned ranks with fuzzy memberships. There are seven 

different memberships: fuzzy Large, fuzzy Small, fuzzy Linear, fuzzy Near, fuzzy Gaussian, 

fuzzy mean and standard deviation (MS) Large, and fuzzy MS Small. Each membership 

reclassifies a criterion based on what sub-criteria are considered more important than others. 

Once each criterion has an associated fuzzy membership, a fuzzy overlay method is chosen. 

There are five methods: fuzzy And, fuzzy Or, fuzzy Product, fuzzy Sum, and fuzzy Gamma, and 

each one emphasizes specific aspects of the resultant combination of fuzzy memberships. 

Hasanloo et al. (2019) and Baidya et al. (2014) use fuzzy overlays to analyze flood risk and land 

resources. 

With how many varied weighting methods there are, both weighted overlay and fuzzy 

overlay seem to be ideal candidate methods for decision making with multiple criteria. 

Malczewski (2004) points out that data – particularly spatial data – has inherent inaccuracy and 
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imprecision due to ambiguity in inputted data, be it from scaling or from user preferences. The 

fact that data formatting is not standardized means that different data sources have different 

levels of accuracy and precision (Malczewski 2004). De Montis et al. (2005) indicates that the 

choice of weighting method by the decision maker may or may not be the best fit for whatever 

problem they are trying to solve, and Steele et al. (2009) furthers this argument by suggesting 

that weighting individual criterion is subjective because ranks are defined by the decision maker. 

While MCDA in general is a popular and widely used method for decision-making that involves 

multiple criteria, there are certainly other methods that exist to generate similar outputs. 

2.4.2. Logistic Regression 

Logistic regression (LR) is a multiple criteria regressive analysis in which the dependent 

variable may be neither continuous nor quantitative, and the relationship with several 

independent variables is explored (Lee 2005). It is a method that is used in predictive analysis, 

utilizes binary dependent variables, and generates nonlinear models (Kavzoglu et al. 2012; Lee 

2005). This method was used by Du et al. (2014), Erener et al. (2016), Kavzoglu et al. (2012), 

and Lee (2005) as a means of comparing different methodologies. Ayalew and Yamagishi (2004) 

and Lombardo and Mai (2018), in contrast, use LR as their sole means of analyzing landslide 

susceptibility.  

LR is calculated based on a general linear model equation: 

 𝑃 =
1

(1 +  𝑒𝑍)
 ( 14 ) 

where P is event probability, e is the base of the natural logarithm, and Z is a value that ranges 

from -∞ to +∞, and Z is defined by the following equation: 

 
𝐷𝐺 = −3.5𝑓𝑐𝑙𝑎𝑦 − 2.0𝑓𝑠𝑖𝑙𝑡 − 0.5𝑓𝑠𝑎𝑛𝑑 ( 15 ) 
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𝑍 = 𝐵0 + 𝐵1𝑋1 + 𝐵2𝑋2 + ⋯ + 𝐵𝑛𝑋𝑛 ( 16 ) 

where B is the model’s intercept, n is the number of independent variables, and Bn is the 

coefficient that measures Xn, which is the contribution of an independent variable. The dependent 

variable in LR is expressed as: 

 
𝐷𝐺 = −3.5𝑓𝑐𝑙𝑎𝑦 − 2.0𝑓𝑠𝑖𝑙𝑡 − 0.5𝑓𝑠𝑎𝑛𝑑 ( 17 ) 

 
𝐿𝑜𝑔𝑖𝑡(𝑝) = ln (

𝑝

1 − 𝑝
) = 1 1⁄ +  𝑒𝐵0+ 𝐵1𝑋1+ 𝐵2𝑋2+⋯+ 𝐵𝑛𝑋𝑛 

( 18 ) 

where p is the dependent variable probability and 𝑝 (1 − 𝑝)⁄  is the likelihood ratio.  

The advantage of using LR in susceptibility analysis is that the dependent variable only 

outputs as one of two values: 0 or 1, and the results can be interpreted as a probability that ranges 

from 0 to 1. If the result is closer to 0, then it has a lower probability of success, whereas if the 

result is closer to 1, the odds of the result occurring is higher (Kavzoglu et al. 2012). 

2.4.3. Other Methods 

Aside from MCDA and LR, a number of other modeling methods exist. Of the studies 

referenced for this project, over twenty different modeling methods were utilized for landslide 

susceptibility mapping. These other methods have been summarized in Table 3.
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Table 2 Weighting schemes used in other studies 

Method Study 

Artificial neural network Vahidnia et al. 2010 

Analytic network process Ali et al. 2021 

Association rule mining Erener et al. 2016 

Convolutional neural network Ghorbanzadeh et al. 2019; Li 2020 

Frequency ratio Vakhshoori and Zare 2016 

Fuzzy logic 
Ercanoglu and Gokceoglu 2002; Roy and Saha 2019; 

Vakhshoori and Zare 2016 

Fuzzy membership function Roodposhti et al. 2016 

Heuristic fuzzy approach Stanley and Kirschbaum 2017 

Fuzzy interference system Vahidnia et al. 2010 

Information value method Du et al. 2014; Saha et al. 2005 

Landslide nominal susceptibility 

factor 
Saha et al. 2005 

Landslide numerical risk factor Roy and Saha 2019 

Long short-term memory Li et al. 2021 

Naïve Bayes Ali et al. 2021 

Machine learning Lai and Tsai 2019 

Monte Carlo Feizizadeh and Blaschke 2013 

Ordered weighted average 
Feizizadeh and Blaschke 2012; Feizizadeh and Blaschke 

2013 

Random forest 
Ali et al. 2021; Ghorbanzade et al. 2019; Lai and Tsai 

2019 

Shannon entropy Roodposhti et al. 2016; Zhao et al. 2017 

Support vector machine  
Ghorbanzadeh et al. 2019; Li et al. 202; Roy et al. 2019; 

Vakhshoori and Zare 2016 

Support vector machine regression Kavzoglu et al. 2012  

Variable weight combination Li et al. 2021 

Weight of evidence Nohani et al. 2019; Roy et al. 2019 

Weighted linear combination 
Feizizadeh and Blaschke 2012; Feizizadeh and Blaschke 

2013 
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Chapter 3 Methodology 

This project aims to generate a model in which landslide susceptibility maps are created through 

the use of weighted criteria. Two different methods for weighting were used to analyze the data: 

weighted overlay and fuzzy overlay. The base data used for these different methods are identical 

but are differentiated due to respective geoprocesses, and weighting was determined using 

previous studies as a guide. 

3.1.  Research Design 

The purpose of this project is to not only generate a model in which landslide 

susceptibility locations may be predicted, but to also determine what criteria weigh more heavily 

in determining landslide initiation. Data of all types have been used in a variety of studies that 

used a number of methods, though this project did not use the complete list of criteria detailed in 

Chapter 2. 

For this project, Esri’s ArcGIS Pro is the primary software used in modeling landslide 

susceptibility in the south-central Front Range. The data for this project were collected and 

formatted before undergoing susceptibility analysis. Two methods – weighted overlay and fuzzy 

overlay – were used, resulting in maps that can then be compared to determine the most accurate 

predictions. These two methods were chosen to allow for repeatability and to test how different 

methods affect results. A simplified workflow is shown in Figure 5. 
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The DEM was chosen to be used as the basis for both the scale and the snap raster 

because of its high resolution and coverage area. Any generated rasters would be created using 

the 10-meter resolution of the DEM, as well as the bounds. Other snap rasters were considered, 

but the DEM was ultimate chosen due to the fact that it is the base upon which almost all of the 

other analyses build upon.  

A map projection was selected for the project, chosen based on what projection best fit 

the AOI: in this case, NAD 1983 UTM Zone 13N. NAD 1983 Colorado State Plane Central FIPS 

502 was considered but not used due to the fact that the three Colorado State Plane projections 

focus on latitudinal bands of the state, as opposed to longitudinal bands (USA Contiguous Albers 

Equal Area Conic USGS). As landslides vary in size and scale, data with the highest resolution 

was used as the snap raster. For this project, the data with the highest resolutions available were 

elevation and slope at ⅓ arc-second (10-meter), and elevation was selected as the snap raster. 

Subsequent rasters generated from various shapefiles retained the same resolution as the snap 

raster. 

3.2.  Choice of Study Area 

The study area was chosen based on several factors, the first of which was the average 

frequency of landslide occurrences. Colorado has a high incidence rate of landslides that 

originate from the western half of the state that lies within the bounds of the Rocky Mountains. 

The fact that the state has a long history of recorded landslides further made it a feasible 

candidate study location, and the USGS also has multiple marked locations marked as “high 

risk” for landslide activity. The fact that the Colorado Geological Survey also had landslide data 

on their website also helped in determining what area to focus on for this study.  
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Once the initial data was downloaded, an AOI was selected based on data coverage, and 

this location was determined using the USGS’s landslide hazard inventory and county 

boundaries. Areas in the landslide inventory with a high density of high confidence in landslide 

activity were focused on first. The region with the highest density of likely landslide locations 

encompasses the Front Range in north-central Colorado. The Pairwise Buffer tool was used to 

generate a buffer of five miles around county boundaries, and the bounds of the AOI were drawn 

using points determined by the buffers of three counties: Larimer, Boulder, and Jefferson 

Counties (Figure 6). These counties were chosen due to the fact that a majority of the high-risk 

landslide hazard locations from the landslide inventory fell within these counties. Initially, these 

three counties were to be the AOI for this project, but the cluster of high confidence that 

straddled Clear Creek and Summit Counties to the west-southwest of the three counties could not 

be ignored, and so the AOI was expanded to follow latitudinal and longitudinal lines. Once the 

AOI was established, the rest of the data was clipped to the AOI for ease of use. 
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Figure 5 Buffers on Colorado county boundaries with the three chosen counties (Larimer, 

Boulder, and Jefferson) lightly shaded in grey 

3.3.  Criteria Selection and Data Preparation 

Eight different criteria were used for this study: elevation, slope, precipitation, drainage 

proximity, drainage density, lithology, lineament proximity, and road proximity. These criteria 

were chosen based on a combination of usage in the literature, data availability, and AOI 

coverage (Table 4). Each of the criteria covered in 2.3 was searched to see if the associated data 

could be included in this project and, if found, retained if the data coverage extended over the 

whole of the AOI. Five different data sets were used to generate the eight criteria that were 

ultimately used in this project. The data come from different sources and in different formats, 
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some of which required more preparation than others. The following sections detail these criteria 

and data preparation processes. 

Table 3 Variables employed and raw data utilized for this project 

Criteria Data Format Source Description 

Elevation  DEM geoTIFF USGS 
DEM with coverage across the 

contiguous US 

Slope DEM geoTIFF USGS 
DEM with coverage across the 

contiguous US 

Precipitation Precipitation shapefile USDA 
Averaged annual rainfall by state 

from 1981 to 2010 

Drainage 

Proximity 
Rivers shapefile NOAA 

Rivers and streams within the 

contiguous US 

Drainage 

Density 
Rivers shapefile NOAA 

Rivers and streams within the 

contiguous US 

Lithology Geology shapefile USGS 
Geologic units and faults with 

attribute data by state 

Lineaments Geology shapefile USGS 
Geologic units and faults with 

attribute data by state 

Road Proximity Roads shapefile 
Colorado, 

USCB 

Major roads and highways within 

the state of Colorado 

3.3.1. Elevation 

Elevation ranking was taken from a number of sources, as almost every study included 

elevation as one of their criteria. Many of the studies observed a correlation between landslide 

frequency and higher elevation (Ayalew and Yamagishi 2004; Chen and Li 2020; Du et al. 2017; 

Feizizadeh and Blaschke 2013; Feizizadeh et al. 2014; Mallick et al 2018; Patil et al. 2019; 

Roodposhti et al. 2016; Shou and Chen 2021; Vakhshoori and Zare 2016), though the number of 

studies that detailed their ranking categorization were few and far in between. 

Elevation was derived from a series of DEMs downloaded from the USGS. The USGS 

has multiple resolutions available to the public that cover the entirety of the contiguous US and 

the state of Alaska. The ⅓ arc-second (10-meter) resolution was chosen for this project because 

of all the resources searched, it was the highest-resolution DEM available that covered the entire 
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extent of the AOI. The DEM used in this project consisted of a mosaic of smaller geoTIFFs 1° × 

1° in size that were combined using the Merge tool, and the color bar for the resultant DEM was 

normalized into a single uniform color bar for better visualization. Elevation that was then 

clipped to fit the AOI was derived from the merged DEM (Figure 7). Within the AOI, the 

elevation ranged from 1,438 meters to 4,356 meters (4,717.8 feet to 14,291.3 feet).  

 

Figure 6 Elevation in meters 
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3.3.2. Slope 

 Slope was derived from the merged DEM (Figure 8).  Within the AOI, the slope ranged 

from 0° to 85.1° For slope ranking, Patil et al. (2019) and Çellek (2020) indicated that slope 

gradients of between roughly 20° to 40° experienced landslides the most frequently, with 

landslide frequencies tapering off as slopes both decreased below 20° and increased greater than 

40°. 

     

Figure 7 Slope in degrees derived from elevation 
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3.3.3. Precipitation 

Precipitation was chosen as a criterion due to the frequency of its use in other studies, as 

well as the fact that the data was readily available. The data consists of averaged annual rainfall 

in inches that date from 1981 to 2010. The data was sourced from the USDA and was 

downloaded as a shapefile that covered the entire state. The clipped AOI data has a range of 10 

inches to 52 inches (Figure 9). Precipitation was a somewhat common criterion used, and studies 

found a correlation between higher landslide frequencies and increased amounts of rainfall (Ali 

et al. 2020; Chen et al. 2015; Feizizadeh and Blaschke 2013; Feizizadeh et al. 2014; Nandi and 

Shakoor 2009; Roy et al. 2019; Zhao et al. 2017).  
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Figure 8 Precipitation in inches 

3.3.4. Drainage Proximity 

A shapefile of major rivers in the contiguous US was downloaded from the NOAA 

(Figure 12). This shapefile covers the contiguous United States and includes portions of rivers 

and streams that originate in Canada. Drainage systems data was easily accessible and drainage 

proximity factored into a number of studies (Ali et al. 2020; Erener et al. 2016; Ghorbanzadeh et 

al. 2019; Nandi and Shakoor 2009; Nohani et al. 2019; Roccati et al. 2021; Vahidnia et al. 2010), 

which revealed a correlation between distance from rivers and streams and landslide frequency. 
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The shapefile was clipped to the AOI and the Euclidean Distance tool was used to generate 

distance buffers, which is shown in Figure 10. 

  

Figure 9 Drainage proximity in meters with clipped drainage systems superimposed  

3.3.5. Drainage Density 

Drainage density used the same shapefile as drainage proximity and was generated with 

the aid of the Line Density tool (Figure 12).  Drainage density was, unfortunately, not as well 

documented in the literature, and Saha et al. (2019) was the only one to detail how they 

categorized the river density criterion. 
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Figure 10 Drainage density in meters/meters squared with clipped drainage systems 

superimposed 

 

3.3.6. Lithology 

Geology was downloaded from the USGS. The shapefile covered the whole of the state 

of Colorado before being clipped to the AOI (Figure 12). The different lithological compositions 

were then visualized according to the associated key. Lithology was used as a criterion in many 

studies (Ali et al. 2020; Chen and LI 2020; Du et al. 2017; Kavzoglu and Colkeson 2013; 

Lombardo and Mai 2018; Pham et al. 2020; Roy and Saha 2019; Roy et al. 2019; Saha et al. 

2005; Zhao et al. 2017). Despite the frequency of its use, however, Ott (2020) was the only 



 

52 

 

5
2
 

author to categorize lithologies by erodibility, and the rankings used in this project are based on 

Ott (2020)’s work.  

 

     

Figure 11 Lithologic classifications 

 

3.3.7. Lineament Proximity 

The lineament shapefile covered the entirety of Colorado and was color-coded according 

to standard geological map key colors (Figure 13). Lineament proximity was used in several 

studies, and many studies determined a correlation between lineament proximity and landslide 
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frequency (Chen and Li 2020; Erener et al. 2016; Ghorbanzadeh et al. 2019; Mallick et al. 2018; 

Pham et al. 2020; Vakhshoori and Zare 2016).  

     

Figure 12 Lineament proximity in meters with lineaments superimposed 

 

3.3.8. Road Proximity 

Road data was provided by both the US Census Bureau and the state of Colorado in the 

form of shapefiles. A shapefile consisting of primary and secondary roads within Colorado was 

downloaded from the Census Bureau while a shapefile containing major streets came from the 

Colorado government. These two shapefiles were merged in order to form a more complete 

reference for transportation passages throughout the state using the Merge tool before being 
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clipped to the AOI bounds (Figure 14). Road proximity was included in a number of studies 

because the construction of roads – particularly in areas of dynamic topographical change – have 

a tendency to destabilize slope gradients by way of creating extremely steep slopes in order to 

create enough space level enough to build a road. This abrupt change in slope greatly increases 

the chances of slope failure, which in turn may develop into a landslide (Ayalew and Yamagishi 

2004; Chen and Chen 2021; Nohani et al. 2019; Pawluszek and Borkowski 2016; Shou and Chen 

2021). 

    

 Figure 13 Road proximity in meters with clipped roads layer superimposed 
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3.3.9. Unselected Criteria 

As mentioned in Chapter 2, landslide susceptibility mapping can and does utilize a 

variety of different criteria. Some of those mentioned had been intended for use in this project, 

but for various reasons ended up being discarded. The five criteria that were planned but rejected 

were aspect, LULC, soil composition, water saturation, porosity, and population/census tracts. 

Aspect was derived from elevation but was dropped due to insufficient data on what cardinal 

direction landslides tended to occur on within the AOI and therefore an appropriate weighting 

scheme would not be possible for the AOI. While data for LULC that covers the entire extent of 

the AOI exists, it was not discovered until the analysis was already completed. Soil composition 

had missing attributes in the attribute table that rendered the data inadequate for the purposes of 

this project. Water saturation data was spread out throughout the AOI, but the data points were 

sparce enough and spread out far enough that interpolation and extrapolation were not feasible. 

The data for porosity downloaded in a format that required additional processing outside the 

scope of this project to be used. 
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3.4.  Weighted Overlay 

Weighted overlay is but one of many MCDA methods that take into account criterion 

ranks and value functions (Malczewski and Rinner 2015). Weighted linear combination, 

weighted linear average, weighted summation, and simple additive weighting are other names 

this method is known by. This process is straight forward in that it is based on assumptions of 

additivity and linearity, in which the former indicates criteria are independently preferential of 

each other. The latter assumes that the preferential weight of a criterion is constant on every level 

it is considered in. 

3.4.1. Reclassification of Criteria 

For the weighted overlay, the data needed to be reclassified into a uniform scaling. The 

Reclassification tool was used here to change the scales from their original values to a 1 to 5 

ranking with 5 being of high importance and 1 being of low importance. The breakup of ranking 

categories is described in further detail by criteria. 

3.4.1.1. Elevation 

Elevation was reclassified according to height above sea level. In this case, the higher the 

elevation, the greater the ranking, as there is a rough correlation between landslide activity and 

elevation (Clague and Roberts 2012). Table 5 shows the cutoff values for each rank, and Figure 

15 is a visual representation of the reclassified elevation. 

Table 4 Elevation reclassification ranks and cutoffs 

Elevation Rank Cutoff 

(meters) 5 <3500 
 4 3000 

  3 2500 

  2 2000 

  1 1500 
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Figure 14 Reclassified elevation 

 

3.4.1.2. Slope 

The reclassification of slope utilized the cutoffs of several studies (Chen and Chen 2021; 

Chen and Li 2020; Feizizadeh and Blaschke 2013; Vakhshoori and Zare 2016) for the rank 

cutoffs used in this project. The ranking of these cutoffs were based on Patil et al. (2020)’s 

statistics for their study area. Table 6 breaks down the slope cutoffs for each rank and Figure 16 

is a visual representation of reclassified slopes.  
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Table 5 Slope reclassification ranks and cutoffs 

Slope Rank Cutoff 

(degrees) 5 20-30 
 5 30-40 

  3 10-20 

  3 40-50 

  2 0-10 

  2 50-60 

  1 60-70 

  1 <70 

 

 

Figure 15 Reclassified slope 
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3.4.1.3. Precipitation 

The reclassification of precipitation was a simplistic scaling using the minimum and 

maximum averaged rainfall in the shapefile. In order to reclassify precipitation, the shapefile had 

to be rasterized. The Polygon to Raster tool was used for this process. The cutoffs were equally 

distributed within that range with a higher rank given to increased average rainfall (Ali et al. 

2020; Nandi and Shakoor 2009). The cutoffs are summarized in Table 7 and visualized in Figure 

17. 

Table 6 Precipitation reclassification ranks and cutoffs 

Precipitation Rank Cutoff 

(inches) 5 >50 

 4 50 

  3 37.5 

  2 25 

  1 12.5 
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Figure 16 Reclassified precipitation 

 

3.4.1.4. Drainage Proximity 

Reclassification of drainage proximity required the use of the Euclidean Distance tool. 

The cutoffs were chosen based on work from Chen and Chen (2021), Erener et al. (2016), Patil et 

al. (2019), and Zhao et al. (2014). Table 8 shows the ranking cutoffs and Figure 18 visualizes 

these rankings.  



 

61 

 

Table 7 Drainage proximity reclassification ranks and cutoffs 

Drainage Proximity Rank Cutoff 

(meters) 5 3750 

 4 7500 

  3 11250 

  2 15000 

  1 >15000 

 

 

Figure 17 Reclassified drainage proximity 
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3.4.1.5. Drainage Density 

Drainage density was not as commonly used in the literature, though Roodposhti et al. 

(2016) and Saha et al. (2005) use this criterion in their own studies. Table 9 delineates the cutoffs 

for the different ranks, while Figure 19 visualizes these cutoffs. 

Table 8 Drainage density reclassification ranks and cutoffs 

Drainage Density Rank Cutoff 

(meters/square meters) 5 >4 
 4 4 
 3 3 

  2 2 

  1 1 
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Figure 18 Reclassified drainage density 

 

3.4.1.6. Lithology 

Lithology required a different approach to reclassification because the symbology used 

for this shapefile is not numerical.  Ott (2020) summarized the erodibility of different lithologic 

compositions, and the rankings were generated based on that author’s work. The shapefile used 

for lithology also had to be converted to a raster in order to be reclassified, and therefore the 

Polygon to Raster tool was used. The Fuzzy Membership tool was then used to assign rankings to 

the different lithologies. The breakdown of ranks is shown in Table 10 and visualization is 

featured in Figure 20.  
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Table 9 Lithology reclassification ranks and categories 

Lithology Rank Category 
 5 Unconsolidated, undifferentiated 

  4 Sedimentary, carbonate 

  3 Igneous, volcanic 

  3 Sedimentary, undifferentiated 

  2 Igneous and Sedimentary, undifferentiated 

  2 Metamorphic and Sedimentary, undifferentiated 

  1 Igneous, intrusive 

  1 Metamorphic, gneiss 

  1 Metamorphic, undifferentiated 

  1 Sedimentary, clastic 

  N/A Water 
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Figure 19 Reclassified lithology 

 

3.4.1.7. Lineament Proximity 

The reclassification of lineaments was relatively simplistic, as it only required the use of 

the Euclidean Distance tool to generate proximity buffers.  The buffer cutoffs were guided by 

studies such as Ali et al. (2020), Du et al. (2017), Erener et al. (2016), Nohani et al. (2019), Roy 

et al. (2019), and Vojtekova and Vojtek (2020). Lineaments were used due to both the frequency 

of its use in other studies, as well as ease of access to the data. The cutoffs are shown in Table 11 

and displayed in Figure 21. 
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Table 10 Lineament reclassification ranks and cutoffs 

Lineament Proximity Rank Cutoff 

(meters) 5 6250 
 4 12500 

 3 18750 

  2 25000 

  1 >25000 

 

 

Figure 20 Reclassified lineament proximity 

 

3.4.1.8. Road Proximity 

Road proximity was a frequently used criterion in the literature (Ali et al. 2020; Ayalew 

and Yamagishi 2004; Feizizadeh and Blaschke 2013; Patil et al. 2019; Vakhshoori and Zare 
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2006). Reclassification was based distance from a road, and the cutoffs are shown in Table 12 

and visualized in Figure 22. 

Table 11 Road proximity reclassification ranks and cutoffs 

Road Proximity Rank Cutoff 

(meters) 5 5000 
 4 10000 

  3 15000 

  2 20000 

  1 >20000 

 

 

Figure 21 Reclassified road proximity 
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3.4.2. Weighting of Criteria 

The Weighted Overlay tool was used to generate a landslide susceptibility map using the 

calculated ranks. The rankings in Tables 5-12 were used in the weighted overlay using the 

reclassified rasters and summarizes the criteria properties that went into the weighted overlay. 

Shit et al. (2016) utilized a weighted overlay for their study, and the equation for the weighted 

overlay is as follows: 

 𝑆 =
∑ 𝑊𝑖𝑆𝑖𝑗

∑ 𝑊𝑖
 ( 19 ) 

where S is the spatial unit value in the output map, Sij is the ith spatial class weight of jth factor 

map, and Wi is the weight ith factor map. 

The criteria were ranked based on how previous studies weighted their chosen criteria, 

which is summarized in Table 13. Of the listed criteria, four studies provided the actual 

percentages each criterion was given for their work. Not all of the criteria used in this project 

were used within the four studies with given percentages. Feizizadeh and Blaschke (2014), for 

example included every criterion used in this study except river density. 
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Table 12 Criteria used for reclassification 

Study Slope Aspect 
Precipi-

tation 
Faults 

Road 

Proximity 

River 

Proximity 

River 

Density 

Ali et al. 2020 

-/6.43/12.13/ 

17.33/ 

23.27+ 

-/69.78/ 

143.39/ 

215.59/ 

287.79 

-/800/900/ 

1000/1250 

0/2498/ 

5333/8304/ 

11680 

0/100/219/ 

362/557 

0/103/211/ 

327/479 
- 

Ayalew and 

Yamagishi 

2004 

-/4/16/31/ 

46+ 

W/NW/NE/

SW/N/E/S/ 

SE/F 

- 50/100/150 
50/100/ 

150 
50/100/150 - 

Bragagnolo et 

al. 2020 

-/7.07/13.2/ 

19.3/25.5+ 

0/60/180/ 

270/359 
- - - - - 

Chen and 

Chen 2021 

-/10/20/30/ 

40/50/+ 

W/NW/NE/

SW/N/E/S/ 

SE/F 

- - 
0/100/200/ 

300/400/+ 

0/200/400/ 

600/800/+ 
- 

Chen and Li 

2020 

-/10/20/30/ 

40/50/60/ 

70/+ 

F/N/NE/E/S

E/S/SW/W/

NW 

-/1221.86/ 

1502.36/ 

1954.28/ 

2639.95+ 

-/1000/2000/ 

3000/4000+ 

0/200/400/ 

600/800+ 

-/200/400/ 

600/800+ 
- 

Chen et al. 

2015 
-/2/4/6/8/+ - - - - 200/400/600 - 

Du et al. 2017  0/15/30/45+ 

F/N/NE/E/S

E/S/SW/W/

NW 

-/1000/1500/ 

2000/2500/ 

3000+ 

-/500/1000/ 

1500/2000+ 

-/200/400/ 

600/800/ 

1000+ 

-/200/400/ 

600/800/ 

1000+ 

- 

Ercanoglu 

and 

Gokceoglu 

2015 

- - - - - - - 

Erener et al. 

2016 

0/5/10/15/ 

20/25/30/35/ 

40+ 

F/N/NE/E/S

E/S/SW/W/

NW 

- 

0/500/1500/ 

2500/3500/ 

5000/6500/ 

8000/9000+ 

0/100/200/ 

300/400/ 

500/700/ 

900+ 

0/100/200/ 

300/400/ 

500/750/ 

1000+ 

- 

Feizizadeh 

and Blaschke 

2013 

0/10.1/20.1/ 

30.1/40.1+ 
F/N/E/S/W 

-/251/301/ 

350/401+ 

0/1001/ 

2001/3001/ 

4000+ 

0/26/51/ 

76/100+ 

0/51/101/ 

151/200+ 
- 

Feizizadeh et 

al. 2014 
Continuous 

F/N/NE/E/S

E/S/SW/W/

NW 

Continuous Continuous Continuous Continuous - 

Ghorbanzade

h et al. 2019 
Continuous 

F/N/NE/E/S

E/S/SW/W/

NW 

- - - - - 

Huggel et al. 

2012 
- - - - - - - 

Kavzoglu et 

al. 2013 

0/5/10/15/ 

20/25/30/ 

35+ 

F/N/NE/E/S

E/S/SW/W/

NW 

  - 25 - 8 

Korup 2012 - - - - - - - 

Lehmann et 

al. 2019 
- - - - - - - 

Lombardo 

and Mai 2018 
- - - - - - - 

Mallick et al. 

2018 
Continuous 

F/N/NE/E/S

E/S/SW/W/

NW 

Continuous Continuous - Continuous - 

        



 

70 

 

Study Slope Aspect 
Precipi- 

tation 
Faults 

Road 

Proximity 

River 

Proximity 

River 

Density 

Nandi and 

Shakoor 2009 

0/7.1/14.1/ 

21.1/35.1/ 

42.1/49.1/ 

56.1/63.1+ 

- 

-/92.7/93.98/ 

95.26/96.53/ 

97.80/99.07/ 

100.34/101.

61/102.67+ 

- - 

0/401/801/ 

1201/1601/ 

2001/2401/ 

2801/3201/ 

3601 

- 

Nohani et al. 

2019 

0/5/15/30/ 

45+ 
F/N/E/S/W - 

0/100/200/ 

300/400+ 

0/100/200/ 

300/400+ 

0/100/200/ 

300/400+ 
- 

Patil et al. 

2019 

30/20/10/40/ 

-10/50/60/ 

70+ 

- 

80.14/89.26/ 

97.24/107.9

6/120.95+ 

5000/10000/ 

15000/ 

20000/ 

25000/ 

30000/ 

35000 

5000/10000/

15000/ 

20000/ 

25000 

2000/4000/ 

6000/8000/ 

10000 

- 

Pawluszek 

and 

Borkowski 

2016 

Continuous 

F/N/NE/E/S

E/S/SW/W/

NW 

- - 
-/50/100/ 

150/200+ 

-/50/100/ 

200/500+ 
- 

Pham et al. 

2020 

0/14.54/ 

29.09/43.63/ 

58.18+ 

F/N/NE/E/S

E/S/SW/W/

NW 

- 

0/101/201/ 

301/401/ 

500+ 

0/101/201/ 

301/401/ 

500+ 

0/101/201/ 

301/401/ 

500+ 

- 

`Pourghasemi 

et al. 2012 

0/6/16/31/ 

51/70+ 

N/NE/E/SE/

S/SW/W/N

W 

- 
0/100/200/ 

300/400+ 

0/100/200/ 

300/400/ 

500+ 

-/100/200/ 

300/400+ 
- 

Pourghasemi 

et al. 2020 
Continuous 

F/N/NE/E/S

E/S/SW/W/

NW 

- Continuous Continuous Continuous - 

Regmi et al. 

2014 
- - - - - - - 

Rengers et al. 

2016 
- - - - - - - 

Roccati et al. 

2021 

0/11/21/36/ 

51/76/ 

100+ (%) 

F/N/NE/E/S

E/S/SW/W/

NW 

- - <5/>5 <10 - 

Roodposhti et 

al. 2016 
Continuous 

F/N/NE/E/S

E/S/SW/W/

NW 

Continuous Continuous Continuous Continuous Continuous 

Roy and Saha 

2019 

0/9.32/ 

18.44/27.34/

36.66+ 

F/N/NE/E/S

E/S/SW/W/

NW 

1877.38/ 

1991.97/ 

2090.45/ 

2167/ 

2239.06+ 

0/1.54/2085/ 

4.2/5.75+ 

0/1.74/3.94/

6.72/10.22+ 

0/0.42/1.1/ 

1.66/2.26+ 
- 

Roy et al. 

2019 

0/9.32/ 

18.44/27.34/

36+ 

F/N/NE/E/S

E/S/SW/W/

NW 

1877/1991/ 

2090/2167/ 

2239+ 

0/1.34/2.61/ 

3.92/5.51+ 

0/1.74/3.94/

6.79/10.28+ 

0/0.42/1.1/ 

1.66/2.24+ 
- 

Saha et al. 

2005 

-15/16/26/ 

36/45+ 

F/N/NE/E/S

E/S/SW/W/

NW 

- 

-

504/505/100

9/1513/ 

2017/2521/ 

3025+ 

- - 
-310/311/ 

620+ 

Saito et al. 

2009 
- - - - - - - 

Schulz et al. 

2009 
- - - - - - - 

Shou and 

Chen 2021 

-25/26/27/ 

28/29/30+ 
- 

Unstable/ 

0/31/101/ 

151/201/ 

Stable 

- - - - 

Vahidnia et 

al. 2010 
Continuous Continuous - Continuous - Continuous - 
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Study Slope Aspect 
Precipi- 

tation 
Faults 

Road 

Proximity 

River 

Proximity 

River 

Density 

Vakhshoori 

and Zare 

2016 

0/5/15/25/ 

35/50+ 

F/N/NE/E/S

E/S/SW/W/

NW 

600/700/ 

800/900/ 

1000 

0/200/400/ 

600/1000+ 

0/250/600/ 

750+ 

0/100/250/ 

500+ 
- 

Vojtekova 

and Vojtek 

2020 

0/2.1/5.1/ 

15.1/35+ 

F/N/NE/E/S

E/S/SW/W/

NW 

- 

-200/201/ 

401/601/ 

801+ 

- 

-100/101/ 

201/301/ 

401+ 

- 

Wayllace et 

al. 2019 
-   - - - - - 

Zhao et al. 

2017 

0/11/21/31/ 

41/50+ 

F/N/NE/E/S

E/S/SW/W/

NW 

650/700/ 

750/800/ 

850/900/ 

950/1000/ 

1050+ 

- - 
0/201/401/ 

600/1200+ 
- 

Zhou et al. 

2021 
- - - - - - - 

Zhu et al. 

2014 
- - - - - - - 

 

 The percentages were summed and normalized, as shown in Table 14, with missing 

values normalized to 0.  

Table 13 Calculation of normalizing percentages 

  

Criteria 
Feizizadeh and 

Blaschke (2014) 

Feizizadeh 

et al. (2014) 

Kavzoglu 

et al. (2012) 

Mallick 

et al. (2018) 

Elevation 0.02 - 0.0265 - 

Slope 0.141 0.177 0.29 0.261 

Precipitation 0.172 0.062 - 0.178 

River Proximity 0.112 0.13 - - 

River Density - 0.101 0.0355 - 

Lithology 0.21 0.15 0.3074 0.056 

Lineament 

Proximity 
0.124 0.092 - 0.128 

Road Proximity 0.036 0.131 0.0181 0.103 

Sum of Percentages 0.815 0.843 0.6775 0.726 

 

ArcGIS Pro, however, requires that inputted percentages are entered as integers that sum 

up to 100%, and the sum of the percentages shown in the “Percentage” column second from the 

right in Table 15, which were rounded to two significant figures, did not equal 100% but rather 

99%. To determine which criterion would receive the final 1%, the difference between the 
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percentages and the actual non-rounded results were calculated, and the criterion with the 

greatest negative difference received the additional 1%. These differences are shown in the 

“Difference” column to the far right in Table 15, and the criterion with the greatest negative 

difference was river density.  

Table 14 Normalization of percentages with missing rounding percent 

Criteria, Normalized 

Feizizadeh and 

Blaschke 

(2014) 

Feizizadeh 

et al. 

(2014) 

Kavzoglu 

et al. 

(2012) 

Mallick 

et al. 

(2018) 

Averaged 

Percentage 
Percentage Difference 

Elevation 0.024540 0.000000 0.039114 0.000000 0.015914 0.02 0.004086 

Slope 0.173006 0.209964 0.428044 0.359504 0.292630 0.29 -0.002630 

Precipitation 0.211043 0.073547 0.000000 0.245179 0.132442 0.13 -0.002442 

River Proximity 0.137423 0.154211 0.000000 0.000000 0.072909 0.07 -0.002909 

River Density 0.000000 0.119810 0.052399 0.000000 0.043052 0.04 -0.003052 

Lithology 0.257669 0.177936 0.453727 0.077135 0.241617 0.24 -0.001617 

Lineament 

Proximity 
0.152147 0.109134 0.000000 0.176309 0.109397 0.11 0.000603 

Road Proximity 0.044172 0.155397 0.026716 0.141873 0.092040 0.09 -0.002040 

Sum of Percentages 1.000000 1.000000 1.000000 1.000000 1.000000 0.99 -0.010000 

 

Once the additional 1% was added to river density, the total summed percentage resulted 

in 100%. Table 16 shows the finalized percentages given for each criterion. 

Table 15 Missing percent added to variable with maximum negative difference 

Criteria, Finalized Percentage 

Elevation 0.02 

Slope 0.29 

Precipitation 0.13 

River Proximity 0.07 

River Density 0.05 

Lithology 0.24 

Lineament Proximity 0.11 

Road Proximity 0.09 

Sum of Percentages 1.00 

 



 

73 

 

The finalized percentage results are shown in Table 17 along with the reclassified rankings for 

each criterion.  

Table 16 Finalized reclassification ranks and percentages of criteria for weighted overlay 

Criteria Rank Category Percentage 

Elevation 5 <3500 0.02 

(meters) 4 3000 

  3 2500 

  2 2000 

  1 1500 

Slope 5 20-30 0.29 

(degrees) 5 30-40 

  3 10-20 

  3 40-50 

  2 0-10 

  2 50-60 

  1 60-70 

  1 <70 

Precipitation 5 >50 0.13 

(inches) 4 50 

  3 37.5 

  2 25 

  1 12.5 

River Proximity 5 3750 0.07 

(meters) 4 7500 

  3 11250 

  2 15000 

  1 >150000 

River Density 5 >4 0.05 

(length/unit area) 4 4 

  3 3 

  2 2 

  1 1 
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Criteria Rank Category Percentage 

Lithology 5 Unconsolidated, undifferentiated 0.24 

  4 Sedimentary, carbonate 

  3 Igneous, volcanic 

  3 Sedimentary, undifferentiated 

  2 Igneous and Sedimentary, undifferentiated 

  2 Metamorphic and Sedimentary, undifferentiated 

  1 Igneous, intrusive 

  1 Metamorphic, gneiss 

  1 Metamorphic, undifferentiated 

  1 Sedimentary, clastic 

  N/A Water 

Lineament 5 6250 0.11 

Proximity 4 12500 

(meters) 3 18750 

  2 25000 

  1 >25000 

Road Proximity 5 5000 0.09 

(meters) 4 10000 

  3 15000 

  2 20000 

  1 >20000 

 

Reclassifying slope required knowledge of how frequently landslides occur at certain slope 

gradients. To that end, Patil et al. (2019) calculated what percentage of landslides occur within 

specific ranges, and the ranking scheme used correlates to frequency. Table 18 explains how 

ranks were calculated, and Table 1 shows the slope gradient ranges with frequency percentages 

and the corresponding ranks.  

Table 17 Ranking for slope derived from frequency  

Rank 
Frequency 

(percent) 

1 <1% 

2 1%-10% 

3 10%-20% 

4 20%-30% 

5 >30% 



 

75 

 

Table 18 Slope categorization by frequency 

Slope 

(degrees) 

Frequency 

(percent) 
Rank 

0°-10° 7.000% 2 

10°-20° 15.000% 3 

20°-30° 30.000% 5 

30°-40° 31.000% 5 

40°-50° 14.000% 3 

50°-60° 3.000% 2 

60°-70° 0.200% 1 

<70° 0.001% 1 

 

3.5.  Fuzzy Overlay 

Fuzzy overlay is different from weighted overlay in that fuzzy memberships are used in 

place of rankings. Different fuzzy memberships are used according to what aspect of a criterion 

is emphasized, and these are then put into a fuzzy function to yield a result. Depending on the 

type of function used, results again vary depending on what aspect of the results is to be 

highlighted. 

3.5.1. Fuzzy Membership Layers 

In addition to the criteria used in this project being reclassified and therefore used in a 

weighted overlay, the same criteria were also used in a fuzzy overlay. The criteria were 

processed with the Fuzzy Membership tool in order to prioritize certain aspects of each one. 

Different membership types were used for different criteria, based on what features ranked more 

important than others. The Fuzzy Membership tool transformed the data into a 0 to 1 scale based 

on what aspect of the criterion is considered more or less important, with 1 being most important 

and 0 being least important. The fuzzy membership type for each criterion is listed in Table 20. 

  



 

76 

 

Table 19 Fuzzy membership for each criterion 

Category Criteria Fuzzy Membership 

Topography Elevation fuzzy large 

  Slope fuzzy Gaussian 

Hydrology Precipitation fuzzy large 

  Drainage Proximity fuzzy small 

  Drainage Density fuzzy large 

Subsurface Lithology fuzzy large using reclassified data 

  Lineament Proximity fuzzy small 

Surface Road Proximity fuzzy small 

 

The equation for the fuzzy Gaussian operator was written out by Kritikos and Davies 

(2014) as: 

 𝜇(𝑥) = 𝑒−𝑓1(𝑥−𝑓2)2
 ( 20 ) 

where μ(x) is the membership value of category x, which is the observed variable value or crisp 

value, f1 is the standard deviation or spread, and f2 is the midpoint. The spread has a range from 

0 to 1. All things being equal, the larger the f1 value, the narrower the spread, while the smaller 

the f1 value, the wider the spread, as seen in Figure 23.  

 

Figure 22 Visual of how fuzzy Gaussian transforms original data into a normal distribution with 

different spread values (Kritikos and Davies 2014) 



 

77 

 

3.5.1.1. Fuzzy large elevation 

Fuzzy large was chosen as the fuzzy membership for elevation. Fuzzy large emphasizes 

larger values more heavily than smaller values, which would be equivalent to the reclassification 

scheme used in the weighted overlay (Figure 24). 

 

Figure 23 Fuzzy large elevation 

3.5.1.2. Fuzzy Gaussian slope 

Using the Fuzzy Membership tool on slope took some trial and error to ensure that the 

range of slope gradients were properly weighted. As mentioned before in 3.4.2, Patil et al. (2019) 

lists the frequency in which landslides occurred for given slope gradient ranges. Using their 
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landslide frequency statistics, the midpoint for the fuzzy Gaussian operator was 30, given that 

Patil et al. (2019) highest landslide frequency percentages ranged from 20° – 40°. A spread of 

0.1 – the default – was used (Figure 25). 

 

Figure 24 Fuzzy Gaussian slope 

3.5.1.3. Fuzzy large precipitation 

The precipitation raster generated for the Weighted Overlay tool was also required for the 

Fuzzy Membership tool. The fuzzy large operator was used to place emphasis on areas with 

higher average rainfall (Figure 26). 
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Figure 25 Fuzzy large precipitation 

 

3.5.1.4. Fuzzy small drainage proximity 

Drainage proximity utilized the fuzzy small operator (Figure 27). In this way, the Fuzzy 

Membership tool output would resemble that used for the weighted overlay in that the closer an 

area is to a drainage channel, the higher the landslide susceptibility. 
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Figure 26 Fuzzy small drainage proximity 

 

3.5.1.5. Fuzzy large drainage density 

The output from using the Line Density tool to calculate drainage density resulted in a 

raster that had large data gaps where there were no rivers or streams. Because the Fuzzy 

Membership tool cannot run on a raster with data gaps, the Reclassification tool was used to 

convert areas with no data into areas with a data value of 0. The resultant raster was reclassified 

and then used to generate a fuzzy membership output using the fuzzy large operator (Figure 28). 
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Figure 27 Fuzzy large drainage density 

 

3.5.1.6. Fuzzy large lithology 

The lithology raster used in the weighted overlay was also required for the Fuzzy 

Membership tool. Lithology also required preparation, though this was in the form of first 

determining which types of lithology weathered and eroded easiest. This data came from Ott 

(2020), and the different lithology types were reclassified using the same ranking method 

mentioned in 3.5.1 (Figure 29).  
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Figure 28 Fuzzy large lithology 

3.5.1.7. Fuzzy small lineaments 

The fuzzy small operator was used for lineament proximity (Figure 30). This follows the 

same rationale as the ranking used in the weighted overlay with a closer proximity indicating a 

higher risk of landslide activity (Chen and Li 2020; Nohani et al. 2019; Patil et al. 2019; Saha et 

al. 2005; Vakhshoori and Zare 2016). 
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Figure 29 Fuzzy small lineament proximity 

 

3.5.1.8. Fuzzy small road proximity 

Road proximity also utilized the fuzzy small operator (Figure 31). The choice of fuzzy 

small for the fuzzy operator followed the same logic as the ranking in the weighted overlay of 

closer proximity to roads means increased landslide susceptibility (Erener et al. 2016; Patil et al. 

2019; Vakhshoori and Zare 2016). 
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Figure 30 Fuzzy small road proximity 

 

3.5.2. Selection of Fuzzy Overlay Method 

The Fuzzy Overlay tool offers five different fuzzy overlay operators: And, Or, Sum, 

Product, and Gamma. The fuzzy membership-converted rasters (listed in Table 20) were used, 

and the fuzzy Gamma operator was selected after examining each preliminary result using the 

five operators on the default settings in ArcGIS Pro. The fuzzy Gamma function works by 

multiplying the fuzzy Algebraic Sum with the fuzzy Algebraic Product, of which both are raised 

to the power of γ. Vakhshoori and Zare (2016) explain how fuzzy Gamma is derived: 
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 𝜇𝑠(𝑥) = 1 − ∏ 𝜇𝑖

𝑛

𝑖=1

(𝑥) ( 21 ) 

 𝜇𝑝(𝑥) = ∏ 𝜇𝑖

𝑛

𝑖=1

(𝑥) ( 22 ) 

 
𝜇𝛾(𝑥) = [𝜇𝑠(𝑥)]𝛾 ×  [𝜇𝑝(𝑥)]1−𝛾 ( 23 ) 

where μs(x) is fuzzy Algebraic Sum, μp(x) fuzzy Algebraic Product, μγ fuzzy Gamma, γ a 

parameter in the range of 0 to 1, n the number of criteria being used, and μi(x) the map with a 

fuzzy membership function. The closer the output is to 1 the more susceptible an area is to 

having a landslide occur. 

Changing γ values changes the results. A γ equal to 1 produces results that are identical to 

the results of fuzzy Algebraic Sum, while a γ equal to 0 yields results equal to the results of fuzzy 

Algebraic Product. Various values for γ were tested to determine what would be most 

appropriate for the final fuzzy Gamma γ value. 

Fuzzy Gamma was chosen as the representative fuzzy overlay output for several reasons. 

Fuzzy And were not chosen because the data was not supposed to be completely exclusive by 

requiring all of the criteria to be present. Fuzzy Or, on the other hand, was too inclusive and 

skewed the results by overemphasizing areas with low landslide feasibility. Fuzzy Sum, similar 

to Fuzzy Or, overemphasized areas with multiple lower-weighted criteria. Fuzzy Product was 

similar to Fuzzy And but to a much more exclusive degree. 

With fuzzy Gamma, the choice of a γ value of 0.9 was selected because it represented a 

reasonable balance between the endmember fuzzy Sum and fuzzy Product. A γ value of 0.5, 

despite being an even balance between fuzzy Sum and fuzzy Product, forced the output to lean 

more heavily towards the fuzzy Product side. The 0.9 γ value output adequately highlighted 
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areas of higher susceptibility while neither overemphasizing nor underemphasizing areas of 

lower landslide susceptibility. 
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Chapter 4 Results 

Weighted and fuzzy overlays were used to generate the final results for this project. The 

weighted overlay used criteria reclassified to an equal scale, and ranks for each criterion were 

calculated based on the utilization frequency in other studies to determine the criterion’s 

importance in landslide susceptibility. The fuzzy overlay ultimately used the fuzzy Gamma 

operator on fuzzy membership criteria rasters and a chosen γ value to determine landslide 

susceptibility.  

Weighting plays a key role in both the weighted overlay and the fuzzy overlay, though 

more so in the former than the latter. How ranks are determined is dependent on the availability 

of data, the quality of the data, and how relevant a data is to the project in question. Due to the 

fact that landslides tend to occur in areas with changes in elevation, most authors consider slope 

to be of high importance with regards to assessing landslide susceptibility, and this decision is 

reflected in how the slope criterion was weighted for this project for the weighted overlay. It is 

therefore unsurprising the amount of influence it had on the weighted overlay result. As for the 

fuzzy overlay result, all of the criteria were given equal weight given that the Fuzzy Overlay tool 

only allows the user to add the necessary rasters and choose the desired fuzzy operator. 

The results for the weighted overlay and fuzzy overlay were both expected and 

unexpected in that the regions of higher predicted landslide activity for the most part overlap 

each other. The unexpected aspects of the results were the differences in how areas with lower 

landslide potential was weighted as well as how bias influences results, particularly in the 

weighted overlay result.  
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4.1.  Weighted Overlay Result 

The weighted overlay result (Figure 32) reveals how the rankings interacted to highlight 

areas of higher landslide susceptibility. The scale for the overlay result was set from 1 to 5 to 

match the reclassification scheme, with 5 indicating high landslide susceptibility and 1 indicating 

low susceptibility. The color bar ranges from 2 to 5, suggesting that with the weighting of the 

criteria used in this project, the entirety of the area of interest is susceptible to some degree of 

landslide activity. 
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Figure 31 Weighted overlay result 

A comparison of the weighted overlay result with the USGS landslide inventory (Figure 

33) reveals that the results from the weighted overlay do not entirely correlate with the landslide 

inventory. Much of the high confidence locations in the inventory fall within areas calculated to 
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have medium landslide susceptibility according to the weighted overlay results. The weighted 

overlay result correlated much better with locations flagged by the USGS as having possible or 

probable landslides in the area. 
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 Both slope (29%) and lithology (24%), as the two most heavily weighted criteria, greatly 

affected the output. The mountainous areas to the west have the highest landslide susceptibility 

outputs, where the slope gradients are highest, with susceptibility decreased to the east until the  

area relatively flattens out where central Denver is located. Likewise, the fluvial deposits east of 

where central Denver is situated had higher susceptibility scores due to the fact that those rivers 

and streams are actively depositing unconsolidated sediment eroded from the Front Range. 

Precipitation (13%) certainly caused an increase in landslide susceptibility, where higher 

amounts of rainwater are more likely to turn dry soil into slippery mud. Lineament proximity 

(11%), with the majority of known mapped lineaments located within the Front Range proper, 

primarily boost landslide susceptibility in areas that statistically have higher elevation and  

steeper slope gradients when compared to the relatively lower elevation and flatter area that 

central Denver covers. Road and river proximity (9% and 7%, respectively) both cover much of 

the area of interest, while river density (5%) highlights confluence areas and areas with a higher 

density of rivers and streams. Elevation (2%) plays a role in landslide susceptibility in that 

generally speaking, the higher the elevation, the more likely a landslide may occur. 

Of note are the higher-ranked areas that more susceptible areas scattered around the Front 

Range peaks. With regards to slope, higher landslide susceptibility appears to be closely 

associated with slopes that range from 20° to 50° (Figure 34). This agrees with Patil et al. 

(2020)’s study, which indicated that slope gradients between 20° to 40° tend to have the highest 

landslide frequencies. 
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The weighted overlay result from the slope criterion’s weight was expected; the result 

from the lithology criterion’s weight was more of a surprise given how much weight the 

unconsolidated sediment of the fluvial flood plains in the Denver metroplex added to the result 

with one river in particular – the St. Vrain River (Figure 35). The expectation was that the flood 

plains would not rank so highly, given that the area lies within the urbanized corridor that 

consists of Denver, Boulder, and Fort Collins. Unconsolidated sediment on the slopes of the 

Front Range – deposited in the incised valleys due to the drainage systems mentioned earlier – 

also increased the ranking of landslide frequency.  Cross inspection of the weighted overlay 

result to elevation, precipitation, drainage systems, lineaments, and roads yielded no easily 

visible correlations.
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4.2.  Fuzzy Overlay Result 

The fuzzy overlay result (Figure 36) yielded a very different output. The γ value chosen 

that best displays the results of the fuzzy overlay is 0.9. The scale used for fuzzy overlay covers a 

range from 0 to 1, with 0 indicating very low landslide susceptibility and 1 indicating very high 

landslide susceptibility. Unlike the weighted overlay result, the fuzzy overlay result displays a 

large majority of the AOI as not particularly susceptible to landslide activity. The fact that the 

much larger swaths of land have a susceptibility rating closer to 0 is indicative of the fact that the 

fuzzy overlay’s weighting result is much stricter in terms of which areas are considered more 

susceptible to landslides than others. 
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Figure 32 Fuzzy overlay result using the fuzzy Gamma operator with a γ value of 0.9 

The comparison between the fuzzy overlay result and the USGS’s landslide inventory 

displays greater commonality with regards to predicted landslide hazard locations (Figure 37). 

Areas marked as high confidence overlap with regions the fuzzy overlay result considered to 

have higher landslide susceptibility. To a lesser degree, areas noted as probable or possible with 
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regards to landslide occurrence overlap with lower landslide susceptibility in the fuzzy overlay 

result. This is indicative of the fact that the weighting generated through the various fuzzy 

membership operators seems to coincide with the predictions of external sources. 
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Two criteria in particular seem to have a higher correlation to increased landslide 

susceptibility than the rest: slope and drainage systems. Landslide susceptibility tends to be 

higher in areas with more ideal slope gradients (20°-40°), and a side-by-side comparison is 

displayed in Figure 38. 
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That localized areas of particularly high landslide susceptibility also tend to coincide with 

incised valleys from said drainage systems is likely due to increased erosion that comes with 

closer proximity to drainage systems (Figure 39). The other criteria do not seem to have as much 

of an impact on the result than the aforementioned two.
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Chapter 5 Discussion and Conclusion 

This project looked at two out of many different MCDA weighting schemes for landslide 

susceptibility mapping: weighted overlay and fuzzy overlay. These two methods were selected 

because there exists little in the way of direct comparisons between the two in literature with 

regards to landslide susceptibility. The ability for the software used to be able to handle such 

analyses had to also be taken into consideration. The various criteria used for this project was 

selected based on data availability and resolution, as well as what authors deemed important 

enough to include in their own studies. 

Bias and limitations play a significant role in how they affect the results as they may 

emphasize certain criteria more than others. The fact that both rankings and fuzzy memberships 

may be chosen differently depending on the user means that the results, even if using the same 

data and same methodology, yields different outputs. This in turn affects how people’s 

understanding of the data is perceived, which also influences how and where people may live 

and what kinds of laws might be put in place to protect them. 

5.1.  Bias and Limitations 

The results of the weighted overlay and the fuzzy overlay had both similarities and 

differences that were visually distinct, though these distinctions were partially a result of the 

inclusion and weighting of specific criterion. The results revealed that the selection of the 

method of weighting as well as how variables are weighted play important roles in result 

expectations. This, in turn, hints at a cyclical influence between how weighting biases affect 

results, and how results can generate biases that affect the decision-making process with regards 

to landslide susceptibility mapping. 
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As noted in Chapter 2, there are a wide variety of variables that were used in landslide 

susceptibility studies. Because of the number of criteria collectively used, it is not possible for 

any given study to include all of them, and it is also likely that this project did not cover the full 

range of criteria used in landslide susceptibility studies. It is impractical for any study to include 

every possible variable used in landslide susceptibility mapping – depending on the size of the 

AOI, the amount of data required could be astronomically high. 

Data such as elevation is readily accessible across the globe, and in varying resolutions. 

The suitability of a given resolution is dependent on the size of the AOI and the scale of the 

subject(s) of analysis. DEMs may be generated from satellite imagery, topographic maps, and 

LiDAR – though the former two are more likely to be “bare-earth” models while the latter 

probably includes surficial features such as buildings and trees (USGS, n.d.). From this, 

derivative variables such as slope and aspect may be generated in resolutions equal to the 

original DEM. Within Esri ArcGIS Pro’s Spatial Analyst toolbox are fourteen tools specifically 

made to generate some derivative layer of elevation in the Surface toolset, not including a tool to 

manually add supplementary information to a surface layer. On the other hand, other variable 

data such as desiccation height and undesiccation height, water condition, landslide-rainfall 

index are specific to individual studies in which the study author(s) likely generated the data 

themselves. Such data on a wider scale would not be available as it does not exist outside of the 

AOIs of the studies in question.  

 In addition to variable resolutions, sourcing data is also a necessary consideration. With 

regards to the data, it can be either readily available to the public or proprietary, in which a user 

would need to purchase access to said data. Data from certain national organizations, such as the 

USGS, USDA, and NOAA, as well as national, state, and local governments, and universities 
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usually offer some data for public consumption. The data that is available may or may not be 

cover the study area in question, and it may also not be of viable quality depending on the project 

scope. The format of the data also had to be taken into consideration, as data incompatible with 

the software being utilized is not useful to the study. In the event that a data format could be 

converted without a loss in quality, such measures are likely to be taken in order to include that 

criterion in a study. 

The eight criteria used in this project were chosen from a combination of factors. The 

landslide inventory from the USGS was used to search for locations within the US that had high 

landslide incidences. Once the location was chosen, searching for data that would be suitable for 

the AOI began, and the criteria listed in Chapter 2 were searched for. Of all the criteria listed in 

Chapter 2, the key data to any landslide susceptibility study was elevation – without elevation, 

derivatives such as slope would not exist. Apart from one study out of the thirty-four examined 

in this project, elevation was included as a criterion for their analysis. The second key criterion 

was aspect, of which thirty-one studies included as part of their dataset, followed by slope at 

twenty-nine studies. 

Aspect was not included in this project because of a lack of information regarding which 

cardinal directions landslides were more likely to occur on. LULC data was found within the 

AOI, but the extent did not cover the whole of the area in question and ultimately had to be 

discarded. Soil composition, water saturation, and porosity were downloaded in unusable formats 

that could not be converted and were similarly deemed unnecessary. Census tract data were 

readily available but a method of distilling census data into spatially representative population 

density data was beyond the scope of this project, and therefore census tract data was abandoned. 
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Choosing rankings for the weighted overlay, and fuzzy memberships and γ values for the 

fuzzy overlay ingrain a subjective bias in the results. This is due to the fact that, depending on 

what criteria the user or decision maker deems more important than others, some variables may 

be weighted more heavily in the weighted overlay. The fact that no means of objectively 

weighting variables exists only emphasizes the fact that bias is an implicit part of the results of 

any analysis that uses a weighting system. The same bias comes into play when fuzzy 

memberships are chosen for the individual criterion, as well as which fuzzy overlay operator is 

used. Subjectivity is therefore introduced by the selection of fuzzy membership by tweaking its 

parameters, and the choice of fuzzy overlay operator is also dependent on what sort of outcome 

the endmember user is expecting. 

With regards to this project, there exist limitations that needed to be acknowledged from 

the onset. Software choice is somewhat dictated by the analysis methodology to be used and vice 

versa – if the software cannot support the desired methodology, then either a different 

methodology must be chosen or created, or a change in software is required so that one capable 

of handling the desired methodology is selected. There is also the possibility that the number of 

variables must also be constrained to a quantity that the chosen analysis software can handle. 

Having too many variables would inevitably cause the processing time to slow dramatically. The 

same can be said of data size – datasets that are too large processes much slower than smaller 

datasets, and this could be an issue if projects are time-sensitive. 

Data quality or resolution can drastically affect the results of an analysis. Working a 

small study area with data resolutions too coarse for the AOI may render any results unsuitable 

for further analysis or future work. Quality of the data in use is important, as the higher the 

resolution, the finer the detail and more comprehensive the results are. The downside of having 
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finer quality data is, as mentioned previously, the size of the data in question. File sizes too large 

may be a detriment to hardware storage and memory capacities – perhaps even cloud-based 

storage capacities – as well as processing time and speed. 

Data compatibility is an issue that needs to be addressed whenever a project requires 

data. Different sources of data provide different formats that may or may not work with certain 

software. It is important to determine then what data is necessary and what is superfluous – upon 

which data deemed essential might require a conversion from its original format into another that 

is software compatible. Should a transformation into a compatible format fail, then either a 

separately sourced data set needs to be found, or the criterion that uses the data in question is 

discarded from the project. 

5.2.  Societal Impacts 

Landslide susceptibility mapping is an important facet of disaster planning and 

management. As populations spread outward and encroach on the foothills of mountains, people 

migrate ever closer to areas prone to landslide activity. This movement towards landslide-prone 

areas means that more lives, as well as property and infrastructure, are at risk. With the rise in 

global population and climatic changes due to global warming, predicting potential landslide 

locations becomes increasingly important in regions already prone to landslides.  

While the global average temperature is slowly climbing, local average temperatures in 

parts of the world have dropped. These localized changes are exaggerated at the poles and 

regions of high altitude, and it is for this reason that landslide susceptibility mapping – 

particularly in mountainous regions with nearby urban centers – is such an important of urban 

planning. The increasing global population has led to wider, more extensive urban sprawl. As 

more people move to larger cities and, in turn, choose to live in the suburbs, cities that are 
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already in close proximity to mountain ranges are spreading upwards into the foothills of said 

mountains. This puts not only people, but infrastructure and property as well, in regions of higher 

landslide risk. Roads that traverse through and along mountains require level surfaces, and so 

slopes are excavated in order to accommodate construction. This excavation, however, comes at 

the cost of slope stability, thereby increasing the risk of a landslide occurring. 

The spreading of population centers and the creation of roads also brings along other 

forms of infrastructure, such as buildings both residential and commercial, electricity, water, and 

communications networks, and potentially other methods of rapid transit. Most of these 

constructions require stable, if not level, foundations for structural longevity and integrity, and 

destabilizing the soil under and around these new constructions must be taken into consideration. 

Landslide susceptibility mapping studies undertaken to better understand the slope stability of 

the construction of these new construction projects may also play a feature role in legislation to 

ensure the safety of both the infrastructure being built, as well as the people working on the 

construction projects. This may be further extended to legislation regarding the protection of 

both residents and commercial businesses, which ultimately means greater safety precautions are 

put into place for the protection of those with a landslide hazard zone. 

The following figures respectively showcase details for both the weighted and fuzzy 

overlays in relation to Front Range and the Denver metroplex. The overlay layers are 

semitransparent to allow visibility of not only Denver and its satellite cities, but also a few of the 

major roads and highways that run through the cities and the hillshade from the basemap for a 

sense of relative relief. 

The weighted overlay result (Figure 40) shows higher susceptibility within the Front 

Range where drainage systems exist. The weighted overlay result suggests that for the most part, 
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residents of Denver and its surroundings are most susceptible to landslides near where the Clear 

Creek drainage system exits the Front Range – the Clear Creek drainage system is the fluvial 

system that crosses the center of Figure 40. This means that when there is precipitation upstream 

in the Front Range, residents in western Denver are at higher risk, and while cities like Golden 

and Boulder are established along the edge of the Front Range, lawmakers may mitigate damage 

and injury by passing laws that require property and infrastructure to be built a certain distance 

away from the base of the mountains. While the weighted overlay results implies that there is an 

increase chance of landslide activity to the north of Denver due to the presence of unconsolidated 

sediment, the fact that there is minimal slope change drops the chances of a landslide 

significantly.  
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Figure 33 Detail of weighted overalay 
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The fuzzy overlay result (Figure 41) is similar to the weighted overlay with regards to its 

characterization of the Clear Creek drainage system, but there is increased emphasis on smaller 

drainage systems to the north that the weighted overlay does not demonstrate to the same extent. 

The result from the fuzzy overlay indicates that a larger percentage of the population in the 

Denver metroplex are more vulnerable to landslide activity. Unlike the weighted overlay, the 

fuzzy overlay result does not consider unconsolidated sediment within the Denver metroplex to 

be a landslide hazard for reasons stated before. In this way, the fuzzy overlay’s result is more 

accurate than the weighted overlay. 
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Figure 34 Detail of fuzzy overlay 
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5.3.  Future Application and Work 

Further work could be done with this project, as the results may be considered 

preliminary if expanded upon. The results of this project could be the first step in creating a more 

robust project for landslide susceptibility mapping in the Front Range. In refining this project, 

more variables might be added to increase the accuracy and precision of potential landslide 

locales. While every possible criterion should not be included, select data that was not included 

here, including soil composition, water saturation, LULC, population/census tracts, and aspect. 

Each of these variables were considered and ultimately discarded for reasons listed in Chapter 3, 

but their inclusion in this project would have enriched the results immensely.  

The results from this project could also be used as a means of comparing methodologies. 

Provided the variables used are weighted as evenly as possible across methods, an analysis of 

which method works better or worse for landslide susceptibility analysis might be useful in 

narrowing down choices for similar projects in the future. As mentioned in Chapter 2, a variety 

of methods have been used for landslide susceptibility mapping in the past, and the results of this 

project might be compared to those other methodologies if they use the same data and AOI. It is 

also possible for the results of this project to be merged into a larger, state-wide or even nation-

wide landslide susceptibility map, one that could provide greater detail if the resolution of this 

project’s output is of better quality than what is otherwise available.  

If given the opportunity or time to further or improve upon this project, the data that had 

been discarded would have been assimilated into the project. If available, information regarding 

wind direction would have also been included, as the direction of prevailing winds have a 

significant impact on climate – and more specifically, precipitation, weathering, and erosional 

patterns, as well as amount of solar radiation an area receives. It is possible that other weighting 
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schemes might have been included to create a more robust comparison to better flesh out both 

the effectiveness and accuracy of the weighting methods as well as incite deeper discussion on 

the relationship between variables and bias. These would be the primary reasons to further 

pursue research through this project, which would, in and of itself, be a hefty undertaking. 
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