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Abstract 

The fire season has lengthened as heat waves induced by global warming have created life 

treating conditions around the globe. One of the most affected regions is the West coast of the 

United States where, in particular, California experiences record breaking fires year after year. 

This trend is most likely to worsen in the following decades. In order to improve pre-fire 

detection, the remote sensing platforms use a combination of the integrated small satellites 

constellation and regular satellite platforms to provide an early warning system. The combined 

satellite early warning system relies on multispectral and multiresolution satellite networks.  This 

statement of research proposes a fire susceptibility scenario that will attempt to delineate fire 

susceptible areas from (1) drought indices, (2) prediction, and (3) weighted overlay analysis. In 

order to avoid reliance 5+ hours latency between data transfer and data processing for state-of-

the-art satellites. The proposed methodology of this study is to assess data pipeline from 

acquisition with a focus on short-interval pre-fire assessment that will delineate potential high-

risk areas hence allowing officials to focus preventive measures accordingly. The research aims 

to improve the short-interval pre-fire data analysis by assessing the Bobcat fire outbreaks and 

taking a closer look at pre-fire detection methodology.  Results from weighted overlay analysis 

scenarios delineate areas that are classified as susceptible. On the other hand, prediction and 

drought indices scenarios do not yield expected results.



 

 

 

Chapter 1  Introduction 

The fire season was already putting strain on the Southern California Fire department before the 

Bobcat fire was initiated. Between August 16-17, 2020 a series of fires were triggered by 

thunderstorms. Shortly after the extreme episode of Santa Ana dry winds created a record-

breaking heat wave that created a mega-complex where multiple fires merged together. With fire 

departments on strain a possible aid to fire prevention could come from GIS observation and 

assessment of ground conditions. 

 Climate and fire experts have predicted that wildfires will grow. Yet, many fire and 

climate scientists were surprised by the atmospheric environment  that caused many of the fires 

in 2020 (Voiland 2020).  

  Satellite instruments were helping climate scientists to understand the extent and strength 

of the wildfires in September 2020. Each weather disaster analysis requires specific 

computational needs. Monitoring pre-fire conditions on the ground requires data streams from 

satellite constellations and weather stations. In addition, processing large datasets was time 

consuming hence scaling down data size without losing crucial information was one of the goals 

of this study.   

Are fire regimes changing due to global warming? There was an apparent upward trend 

in extreme wildfire events, as shown in Figure 1. In figure 1 on horizontal axis time frame was 

inserted and on the vertical axis carbon emission units in Tg. Tg stand for tera-gram (1Tg = 

10e12 grams). The fire season has lengthened along with fire intensity and frequency.
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In 2020 Bobcat fire burned approximately 115,800 acres while causing unhealthy air 

quality, property destruction, and multiple freeways closures.  

 

Figure 1. Carbon Emission from Fires in California. 

 

1.1. Study Objective 

The research motivation was to assess GIS fire detection capabilities of different 

resolutions and provide a more targeted response by first responders before the fire outbreaks. 

Pre-fire assessment could delineate locations where the moisture content and proximity to 

electric cables and road network were classified as more than average hence labeling the regions 

as more hazardous. In addition, processing large datasets was time consuming hence scaling 

down data size without losing crucial information was one of the goals of this study.   

A hope was that this research will have two potential users: land management agencies 

and first responders. Land management agencies can adjust development plans for potential fire 

prone areas while the first responders could delineate fire prone areas and deploy preventive 

measures.  
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One key ingredient in minimizing the damage caused by fire was the reaction time. From 

the moment when satellites acquire images that were classified as fire, then the ground station 

processing and distributing took 4 to 5 hours (Marder 2019). During the 4 to 5 hours’ time frame 

the fast-moving fire could burn as much as one acre per second of farm, residential, and 

developing land. The first responders could be more efficient in containing fire if they can obtain 

pre-fire warnings from a GIS analysis.  

1.2. Motivation 

The research aimed to simulate the short-term pre-fire data analysis by assessing Bobcat 

fire outbreaks and taking a closer look at pre-fire detection methodology. Therefore, looking for 

a potential modification in raster analysis that could delineate risk areas more precisely.  

The fire outbreak had happened during the extreme episode of Santa Ana winds. These 

meteorological conditions were responsible for many fire outbreaks in Southern California. In 

addition, the weather pattern was related to deteriorating air quality and increased the probability 

of a quick-fire spreading (Voiland 2020). After burning more than 460 square kilometers of the 

San Gabriel Mountains in September 2020, the Bobcat fire now ranks among the largest fires on 

record for Los Angeles County, California. The wildfire initiated on Sunday, September 6 near 

Cogswell Dam. Supported by shifting wind direction, the fire grew with steady peace over the 

next twenty days during unusually warm, dry conditions.  

1.2.1. Fire health Hazard 

A smoke from fire penetrates deep into lungs producing a wide span of health problems.  

Smoke plums from wildfire carried ozone, carbon monoxide, nitrogen dioxide, polycyclic 

aromatic hydrocarbons, aldehydes, and particulate matter (PM) less than 2.5 mm in diameter 

(PM2.5) (Naeher et al. 2007).  In the paper by Jia (Jia et al. 2014) the authors synthesized over 60 
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health studies where the connection between health hazard and wildfire was established. 

Majority of studies analyzed data from remote sensing platforms by tracking pollutants level 

(PM10). The aforementioned paper explores how climate change amplifies the link between fire 

occurrences and public health. Another study by Hauptman expanded and suggested that climate 

effects not only will exacerbate wildfire patterns but they will add the long-term chronic effects 

that are less studied. In addition, Hauptman pointed out that children's developing lungs are more 

susceptible to lung damages (Hauptman, Balmes, and Miller 2020).  

Health studies required a longitudinal approach; thus, this study drew similarities with 

previous fire episodes. One of these fire episodes happened in Northern California in 2008. The 

Northern California 2008 fire complex was composed of many fire patches burning at the same 

time and lasted for 42 days. The study region (Reid et al. 2016) included the San Francisco Bay 

Area, the Sacramento Valley, Lake County, the Mountain Counties, the North Central Coast, and 

the northern part of the San Joaquin Valley. Due to its widespread spatiotemporal extent this fire 

complex, according to Reid, represented a relatively solid case to study hospitalizations and 

asthma triggered by wildfire exposures. In this study as in previous studies (Delfino et al. 2009; 

Henderson et al. 2011) a model found substantial increase in asthma and hospitalization that was 

caused by PM2.5. 

Additionally, to long and intermediate health effects studies that often require years to 

complete, the immediate health hazard was obvious from the smoke plume that was recorded by 

NASA’s Calipso instrument on September 7, 2020, in Figure 2. On the upper right corner of the 

atmospheric cross section we can see the satellite orbital path. The path passed over the Bobcat 

wildfire outbreak. 
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Figure 2. Atmospheric cross-section acquired by Calipso fly-over on September 7, 2020. 

1.2.2. Fire Advisory 

 Delivering near-real time fire data is provided by NASA’s Fire Information for Resources 

Management System (FIRMS). The system issues Near-Real Time (NRT) fire data at an 

approximately 3 hours’ time window. MODIS and VIIRS platforms are used by NASA FIRMS 

for fire detection. While both platforms complement each other, Krishna Vadrevu and Kristofer 

Lasko’s comparison between two platforms pointed that VIIRS fire detection was between 4.8 

and 6.5 times higher than MODIS platform (Vadrevu and Lasko 2018). However, this project 

was focused on pre-fire assessment, and MODIS platform datasets were used to observe the 

region on the coarser scale. MODIS product will be discussed in more depth in Chapters 2 and 3. 

In addition, the study introduced the viability of high-resolution data from Planet small satellite 

constellation. 
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1.3. Study Area 

Bobcat Fire most likely happened when tree branches touched the electric lines. A more 

in-detail analysis could map areas where electric lines proximity to vegetation could be classified 

as hazardous. Hence, local authorities could have intervened and perhaps prevented the event. 

 Bobcat fire outbreak occurred North of Downtown Los Angeles at West Fork of San 

Gabriel Canyon at Cogswell Dam which is part of Azusa, CA (Figure 3). The most likely culprit 

was tree branches touching an electric transmission line that is operated by Edison Power 

Company. In addition to the spatial randomness of this event, it was important to describe the 

highly extreme weather conditions that made the whole environment highly prone to the wildfire 

outbreaks. Climate was controlled by Pacific air masses where the summers are dry and sunny 

and winter months received all the rainfall, according to Cities of the United States (Los 

Angeles: Geography and Climate). During the fall and winter months the prevailing high-

pressure system in the Great Basin created Santa Ana winds. The winds started to blow from the 

cold dry air mass in the desert areas towards the Pacific. These meteorological phenomena 

affected a couple of major metropolises such as Los Angeles, San Diego, and Mexicali (Alvarez 

and Carbajal 2019).   Just before the fire outbreak, there was a disaster waiting to happen. 

Prolonged drying and heating of both local vegetation and air triggered multiple fires that have 

surpassed the previous California record for the number of square kilometers burned in one 

year.  Bobcat’s exact coordinates were pinpointed to 34.241 latitude, -117.868 longitude 

according to Cal Fire Department.  

  Los Angeles County was home to around 10 million people in 2020.  Together with 

southern Orange County and Riverside the population number jumps to 13.8 million which 

makes one of densest urban sprawls in the United States. Despite the high population density of 
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Los Angeles County, the fire, in general, stayed away from urban areas. In addition to 

meteorological conditions local topography played a role in fire susceptibility. Slope terrain 

tends to accelerate fire spreading due convective heating.  Los Angeles topography was shaped 

by various tectonic processes. L.A. County is situated in the basin that is created through tectonic 

subsidence during a three-stage evolution process (Ingersoll and Rumelhart 1999) and as such its 

topography exhibits high variability in elevation distribution. 

Figure 3. The Map of study area, ArcGIS PRO, Basemap Imagery Layer, LANDSAT.  
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Chapter 2 Literature Review 

Substantial reporting on the Bobcat Fire outbreak has been produced since the event took place 

on September 6, 2020.  Chapter 1 introduced specific reports produced by NASA that showed 

the magnitude of damage caused by Bobcat fire.  The following chapter is divided into regional 

context, relevant studies for weighted pre-fire susceptibility assessment, and resolution problems. 

This report explores ancillary research that subdivides each of the previously mentioned 

divisions into subcategories.  

2.1. Regional Context 

When drying happens, both dead and living green cover dries out and become more 

combustible. Thus, the likelihood of ignition increases together with the fire spread. As drought 

continues then the number of days with higher vegetation flammability and fire spreading rises. 

There is a growing consensus among policymakers and land management agencies that 

developing new wildfire mitigation strategies is necessary to mitigate the growing cost of fire 

suppression. The U.S. Department of Agriculture and Forest Service projected that the cost for 

fire suppression will reach USD 1.8 billion per year. This estimate was done in 2015 (U.S.D.A. 

Department of Forest 2015).  

 In the study by Salguero et al. 2020 the authors pointed out that interconnectivity 

between manmade and natural factors have increased wildfire occurrences. The study concluded 

that the wildfire occurrences have been increasing over the contiguous United States (CONUS). 

The California region is not an exception to the trend, moreover figure 1 suggests that California 

wildfire regimes are accelerating. However, due to a wide spatial extent demarking area with 

high fire occurrence require creating Fuel Management Zones (FMZ). This approach is described 

in detail in the study by Afonso and colleagues in 2020 (Afonso et al. 2020). Their work used a 
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machine learning approach where the variable size buffers are created around manmade 

infrastructure. The study is located in central Portugal.  

FMZ method created an interconnected web of fire prone areas. Due to coarse spatial 

resolution of the MODIS platform this project observed the fire fuel accumulation in a regional 

context. A similar approach was done in paper by Littell and colleagues in 2016 where authors 

evaluated fire changes of different parts of North America. They concluded that there is a 

complex interplay between drought and fire. While drought (Littell et al. 2016) is a main 

contributor for fire events the local factors such as type of tree and tree morphology accelerate or 

buffer fires regimes. 

This study observed fuel accumulation while using MODIS satellite 500-meter pixel 

resolution. At this pixel resolution creating FMZ did not seem as a viable strategy due to a 

coarser spatial resolution when compared to Sentinel 10-meter pixel resolution. However, the 

scenario-based approach did observe Southern California region fuel accumulation and surface 

reflectance fluctuations by creating multiple indices and raster predictive models that will be 

discussed in next sections. 

2.1.1. Multidimensional Data 

 The concept of Big Geospatial data with near-real time image streaming capabilities 

provides an early warning system for disasters such as wildfire outbreaks (Goodchild 2018). 

According to Goodchild, patterns derived from big data are replacing traditional empirical 

approaches with simulations powered by algorithms. This project used big data and pattern 

detection algorithms in order to extract information that would otherwise be time consuming for 

one person. 
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Large amount of climatological and meteorological data was collected and stored in 

space-time cubes. Retrieving useful information that could signal a potential fire hazard from 

space-time cubes is best achieved by packing data in gridded multidimensional data format. The 

space-time cubes are gridded multidimensional datasets packed in GRIB, NetCDF, and HDF file 

formats. This thesis used HDF data formats. Also, this packaging allows for a large volume of 

data to be retrievable and displayable in GIS software such as ArcGIS or IDRISI TerrSet (Xu et 

al. 2016). Xu and colleagues also pointed out that NOAA and NASA HDF datasets have shown 

great utility when visualized and analyzed with GIS platforms such as ArcGIS. Daily temporal 

coverage and wide spatial extent of NASA’s data from MODIS provided an excellent testing 

ground for utilizing these instruments on the Los Angeles County scale.   

2.1.2. Pre-Fire Indices 

Multiple studies focus on detecting signals in the physical environment so the damage 

from the fire outbreak could be minimized or even prevented. Possible pathway to early warning 

was to create map products that utilize indices derived from RS platforms. In the literature 

review paper Barmpoutis and colleagues (Barmpoutis et al. 2020) point out that as of 2020 the 

current state-of-the-art fire detection technology uses Sun-synchronous satellites MODIS and 

VIIRS for fire prediction. The fire prediction is relying mostly on normalized difference 

vegetation index (NDVI), land surface temperature (LST), and temperature extremes. The 

aforementioned paper also assessed the efficiency of small satellites with respect to fire and 

smoke detection. The Bobcat wildfire project assessment used a similar approach. This project 

used selected satellite-derived indices the normalized multi-band drought index (NMDI) and 

normalized difference water index (NDWI). 
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NMDI index fitness for use is discussed by Lingli Wang and John J. Qu (2007) where the 

findings suggest that fitness for use is highly dependent on vegetation density and soil type (Gu 

et al. 2008). NMDI is proposed in 2007 by Wang and Qu (2007) for remote sensing of water 

content from satellites. The aforementioned index returns a more precise pixel value for drought 

severity. A drought severity index is successfully used by many researchers and responsible 

agencies to forecast fire hazard. This study used a top down view from MODIS satellite using 

NMDI and NDWI indices. Forecast, in this form of pre-fire warnings, are often used by FIRMS 

(Fire Information Management System) where the MODIS and VIIRS satellites are tracking 

thermal anomalies across the globe. Similarly, to this approach, this project used NMDI and 

NDWI indices to track water content anomalies across the Southern California region.  

The previously mentioned authors point out that NMDI and NDWI have been used to 

track soil moisture deficit which is directly related to plants' health, when studying fire outbreaks 

in Georgia, USA, and southern Greece in 2007. Wang and his colleagues focused their study on 

NMDI, NDWI, and Normalized Burn Ratio (NBR) (Wang and Qu 2008). A study by Xu and 

collegues (2008) that is not directly involved in pre-fire assessment complimented Wang’s study 

by testing how the aforementioned indices respond to site measured water content 

fluctuations.  Xu and colleagues concluded that indices accuracy is highly dependent on soil type 

and soil’s diversity. 

Wang and Qu (2007) used MODIS satellites to compare the efficiency between NMDI, 

NDWI, and NBR. NMDI has a higher detection rate and it is able to delineate fire spots more 

accurately using NIR and SWIR bands. Even though this study was focused on detecting pre-fire 

conditions, this approach appears applicable for observing ground drought conditions prior to 
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fire outbreak. Multiple studies have identified the drought, water soil content and humidity, as 

governing variables in wildfire occurrences (Farahmand et al. 2020; Litell et al. 2016). 

2.1.3. Data Transformation 

 This thesis worked with a large volume of data. Therefore, computational requirements 

pose a challenge when it came to time needed to complete analysis and storage needs. In order to 

reduce computational requirements this project explored previous publications on principal 

component analysis (PCA).  Rokni and colleagues (Rokni et al. 2016) study of surface water 

changes applies an analytical method using data storage saving methodology. The 

aforementioned methodology used indices, NDWI, NMDI, Water Ratio Index (WRI), and 

NDVI. This data saving approach, named principal component analysis (PCA), used LANDSAT 

ETM + datasets, with three images from August 2000 and three images from July 2010. Images 

covered the study area of lake Urmia in NW Iran. The surface water change was computed using 

PCA transformation. PCA analysis was used for dimensionality reduction while at the same time 

this analysis preserved the variance within the dataspace. This method can be refined and used 

for lowering datasets size. Rokni’s paper pointed out that each image can be processed separately 

or all images can be merged together creating a multitemporal dataset and then PCA can be 

applied on a composite image. Both approaches were explored in the study. Further, each image 

was classified and processed independently and then overlaid and compared on pixel by pixel 

scale. The methodology and results were discussed in chapter 3 and 4. 

2.2. Relevant Studies for Weighted Pre-Fire Susceptibility Scenario 

  On the parallel track the thesis performed the pre-fire susceptibility assessment. Previous 

research has found a strong correlation between topographic features and fire susceptibility. In 

addition, when topo features were combined with atmospheric and land cover data then fire 
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prone areas can be delineated with a higher confidence level. In the paper by Salis (Salis et al. 

2014) the authors synthesize atmospheric, topographic, Digital Elevation Model (DEM) layer 

and its derivatives; Slope, Aspect, and Hillshade, and land cover type with a goal of creating a 

fire prediction model in Sardinia. The island that is located in Mediterranean basin, Italy.  

Similarly, this research integrated the aforementioned variables and it attempted to 

produce a wildfire suitability model. Contrary to Salis’s approach where they observed a wider 

spatial-temporal range a wildfire suitability model focused on a narrower spatial-temporal extent. 

Therefore, the study planned to modify methodology adopted by Salis et al. (2014) and used a 

two-week period right before the fire outbreak.  The fire prediction model developed for Sardinia 

did not utilize satellite imagery but this project’s goal was to run a weighted susceptibility 

scenario with Planet 3 m resolution imagery with DEM 30 m resolution. 

Even though higher resolution was computationally taxing, a higher resolution or the 

pixel size influenced the detection accuracy of the fire prone areas. As suggested by Salajanu 

(Salajanu and Olsen 2001) smaller pixels increased overall accuracy. Salajanu and Olsen 

assessed pixel size in respect to land cover classification when LANDSAT imagery was 

integrated with the SPOT-XS (1.5 m and 6m resolution) platform.   

2.2.1. Angeles National Forest Site Selection for Fire Susceptibility Scenario Using Planet and 

DEM Data   

 The Bobcat Fire initiated in Angeles National Forest covering an area of approximately 

470 square kilometers. The immediate surroundings of the fire outbreak location had a couple of 

roads and electric lines passing through. Road and electric networks intersected the vegetation 

and high slopes at numerous locations. Delineating these touching points was doable with finer 

pixel resolution. Finer scale allowed more accurate classification in transitional zones between 

vegetation and non-vegetation covered areas. Delineating transition from vegetation covered to 
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non-vegetation covered patches was done by using NDVI index.  This project used PlanetScope 

data small satellites cubes that provide 3-meter pixel resolution at the footprint size. This RS 

platform performance was tested against LANDSAT 8 and Sentinel products where all three 

products are compared to LIDAR extracted tree canopy heights in temperate climate (Shimizu et 

al. 2020). In experiment by Csilik (Csilik, Kumar, and Asner 2020) Planet Scope products were 

tested again against LIDAR data for canopy height in tropical forest in Peru. Shimizu’s paper 

suggests that Planet data was more suitable for finer spatial resolution and in some cases where 

the model was compared against Sentinel-2 data, Sentinel-2 achieved better results. On the other 

hand, Csilik research has shown that Planet’s data jointly with DEM datasets can estimate tree 

canopy with RMSE at 4.6 m for tropical forest using a regression model analysis. 

2.2.2. Adding DEM Data 

 The previous research suggested that slope and aspect play a significant factor in fire 

spreading. If the terrain was relatively flat then the fire spreading tended to slow down while 

steeper terrain favors a quicker fire spreading. This was mostly due to pre-heating in an uphill 

direction (Rothermel 1983; Mermoz et al. 2005; Verde 2008). 

Bobcat fire started in Angeles National Forest which is part of the San Gabriel Mountain 

system. With the region's specific topography, climate, and vegetation that draws similarities 

with Sardinia’s wildfire exposure risk modeling (Salis et al. 2014). This research plans to modify 

Salis' approach and apply DEM data into fire susceptibility analysis. 

In order to add a 3rd dimension to this study, integrating a DEM and using DEM 

derivatives such as Slope, and Hillshade adds information to the final map products. 

DEM is served by USGS with standard file formats; IMG, Grid Float, and ArcGrid (Table 4). 

The mapping was originally done with the Space shuttle mission back in 2000. Shuttle Radar 
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Topographic Mission (SRTM) used two radar antennas and one fly-over to produce a digital 

elevation model with remote sensing techniques interferometric synthetic aperture radar 

(inSAR). With spatial resolution at around 30 m, this dataset has been used to derive slope, 

aspect, and hillshade.  

 Sardinia’s wildfire exposure analysis synthesized Slope, Aspect, and Hillshade with fuel 

types in the ArcFuel platform.  When overlaid with a shapefile that had land usage datasets such 

as forest type, urban areas, water bodies, and grasslands, then DEM data, according to Salis 

(Salis et al. 2014), produced a weighted map. A map displayed dead fuel content from low to 

moderate.  

2.3. Scale and Resolution Problem  

Observing pre-fire conditions in the Bobcat-fire region included multiscale observations. 

In the paper by Goodchild (2011), the author evaluated the meaning of scale and how scale 

dependency transcended geographical features and influenced their representation on the map. 

As we zoom in, relatively blurred features were becoming more visible and delineation occurred 

hence individual features were becoming easier to distinguish. The tradeoff between various 

scales was discussed (Avelino et al. 2016) in previous publications.  The governing variables for 

fire indices operated simultaneously at various scales and the magnitude of influence varied 

between the scales. Also, previous studies by Avelino suggested that a higher resolution did not 

necessarily lead to a better analysis. Understanding the appropriate scale of analysis often 

required testing analysis on multiple scales to check for potential biases. 

  The attempt to track these processes had to include multi scale analysis while finding the 

model that had the best fit for the aggregation method. Since there were only two available 

images from LANDSAT satellite for the studied time period, the project opted out from this 
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approach. Because, creating a linkage between various scales and lowering the Modifiable Areal 

Unit Problem (MAUP) this study needed temporal continuity with the LANDSAT 30-meter 

resolution data sets.  MAUP has been a widely discussed problem in the GIS community. 

MAUP is a data aggregation problem. In general, it has zonal and scale effects. In scale case 

point data or pixels were aggregated to a specific areal unit or data from one scale was analyzed 

at another areal scale.  Multiscale analysis, as discussed by Jelinski and Wu (2000), explored the 

relationship between data pattern and scale.  This study concluded that the relationship between 

pattern and scale is evasive. Jelenski and Wu (2000) used two approaches when assessing 

multiscale analysis of landscape pattern; indirect and direct. Indirect methods use a more general 

pattern with classified data while direct methods rely on statistical methods.  

2.3.1. Tradeoff Between Resolutions 

 In addition to the MAUP problem there were sensor resolution limitations. In the paper 

by Boyd and Danson (Boyd and Danson 2005) the authors discussed the challenges when 1 km 

resolution is used to differentiate between forest and non-forest areas.  The authors describe the 

attempt to find a relationship between forest variables and spectral signature. They point out that 

while looking for biomass reflectance in near infrared (NIR) research could not find a significant 

relationship but once they utilize middle infra (SWIR) they did find a strong relationship 

between reflectance and the forest’s biomass. 

  Since the resolution was around one square kilometer then from the information stored in 

the pixel it was not easy to extract and pin point where the forest was dissipating and 

transforming into a meadow, for example.  Similarly, to 1 km, 500 m resolution cannot 

precisely delineate transition zones between forest and non-forest covered features.  The coarse 

resolution for the global observation made this delineation tricky in transition zones. This issue 
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was evident in Bobcat’s area topographic layout. The layout composition contained many green 

forestry patches that frequently were interrupted with bare soil features. Therefore, the surface 

reflectance signal at 500 m resolution contained a mixture of reflectance from bare soil, roads, 

and vegetation covered areas. Even though high-resolution data can aid this problem, processing 

and storing was computationally too intense.   

In general, the tradeoff between resolutions created dynamical interplay between 

variables where an increased spectral resolution allowed sensors to receive shorter wavelengths.   

Hence radio waves detection dropped and even became invisible after a certain threshold, while 

the problem with brightness detection arose. In the case of spatial resolution, the focus is on the 

minimum distance between two objects that can be separated and identified, a forested and 

deforested area (Boyd and Danson 2005).  If the study needs an improved level of detail then 

satellite derived data needs to have a lower altitude flight path or study needs access to high 

resolution sensors from satellite or drone, or both. In both cases, the cost jumps substantially 

(Hendel and Ross 2020).  

In addition, there was a physical limitation of sensor’s size because the sensor optical 

receivers were calibrated for certain wavelengths and if optical receivers were designed for 

longer wavelengths, then shorter wavelengths were not captured by the sensor.  As discussed by 

Cambell and Wynne in their book (Campbell and Wynne 2011), the surface of a digital camera is 

an array of photosensitive cells and each cell captures the energy from arriving photons. Also, 

the size or array and the size of each cell, within the array, controls the resolution of the sensor. 

Consequently, the larger cell can capture more photons and produce more electrons. This feature 

allows imaging in low energy environments while at the same time compromises spatial 

resolution because the image surface is occupied with fewer cells (Campbell and Wynne 2011). 
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Chapter 3 – A Scenario Based Evaluation Framework for Fire Hazard 

Assessment  

This chapter presents data sources and methodology used in this study (Figure 4). The first part 

introduced data sources. In the second part the study laid out the workflow for regional indices 

analysis with IDRISI software and multidimensional raster prediction analysis with ArcGIS Pro. 

The third section of this chapter focused on local extent where data processing techniques were 

discussed in the context of producing Distance Accumulation, Electric Lines, DEM derivatives, 

and NDVI layers. Further all aforementioned layers from local extent were synthesized. 

Therefore, three parallel analyses, data transformation, raster prediction and fire-susceptibility 

analysis, were performed side by side. 

Figure 4. Workflow Diagram. 

3.1. Data Sources 

 Planet data was downloaded from the planet.com explorer was used for imagery analysis. 

The images were corrected for surface reflectance. The time scale was set from 08/24/2020- 

09/07/2020. From the two weeks’ time range there were 7 dates for which satellites captured the 
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full extent. During the flyovers on other dates the images covered between 22%-84% of targeted 

area.  Insofar Planet’s 3 m resolution data was not used for fire susceptibility analysis. This study 

expected that when high resolution data was overlaid with electric lines, road network, and 

slopes then a weighted map would delineate more precise fire susceptible areas.  

 

Datasets Spatial 

(Resolution) 

Tempor

al 

Resoluti

on 

(2020) 

Descripti

on 

Data Type Bands Precision Accuracy Source  

Planet 3.7 m 1 day  Geo-TIFF Raster 

File 

Band1(455-

515nm) 

Band2(500-

590nm) 

Band3(590-

670nm) 

NIR (780-

860nm) 

Dictated by 

Ground 

Sampling 

Points and 

Radiometric 

Correction 

Scale (20x8) 

km 

Cloud cover or smoke 

can affect accuracy 

thus the captured 

image can have ex. 

25% cloud cover. 

Datum 

https://www.planet.com/explorer/  

MODIS 500 m 1 day  HDF 

Multidimensional 

Dataset 

Band 

7(2105 – 

2155 nm) 

Band 6 

(1628 – 

1652 nm) 

Band 2 

(841 – 876 

nm 

Dictated by 

Ground 

Sampling 

Points and 

Radiometric 

Correction  

Cloud cover or smoke 

can affect accuracy 

thus the captured 

image can have ex. 

25% cloud cover. 

Datum 

https://search.earthdata.nasa.gov/sear

ch 

 

 

Road 

Network 

N/A N/A Tiger 

Shapefile 

TIGER 

Shapefile 

2019 

Primary 

and 

Secondary 

Roads 

State-

Based 

Shapefile 

 

Shapefile, 

geometry 

polyline 

N/A Dictated by 

ground 

sampling 

points 

Dictated by datum https://catalog.data.gov/dataset/tiger-

line-shapefile-2019-state-california-

primary-and-secondary-roads-state-

based-shapefile 

 

Electric 

Gridlines 

(Edison 

Power 

Company) 

N/A N/A  Shapefile, 

geometry 

polyline 

N/A Dictated by 

ground 

sampling 

points  

Dictated by datum https://www.arcgis.com/apps/webapp

viewer/index.html?id=05a84ec9d19f

43ac93b451939c330888 

 

 

DEM 30 m N/A  Geo-TIFF Raster 

data 

SAR Dictated by 

topographic 

features  

Dictated by datum https://apps.nationalmap.gov/downlo

ader/#/ 

 

Table 1. Data Sources. 

Electric lines datasets was in shape file format and it is served by California Energy 

Department webpage and Edison company. Coordinate system is WGS 84 and the last data 

https://www.planet.com/explorer/
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
https://catalog.data.gov/dataset/tiger-line-shapefile-2019-state-california-primary-and-secondary-roads-state-based-shapefile
https://catalog.data.gov/dataset/tiger-line-shapefile-2019-state-california-primary-and-secondary-roads-state-based-shapefile
https://catalog.data.gov/dataset/tiger-line-shapefile-2019-state-california-primary-and-secondary-roads-state-based-shapefile
https://catalog.data.gov/dataset/tiger-line-shapefile-2019-state-california-primary-and-secondary-roads-state-based-shapefile
https://www.arcgis.com/apps/webappviewer/index.html?id=05a84ec9d19f43ac93b451939c330888
https://www.arcgis.com/apps/webappviewer/index.html?id=05a84ec9d19f43ac93b451939c330888
https://www.arcgis.com/apps/webappviewer/index.html?id=05a84ec9d19f43ac93b451939c330888
https://apps.nationalmap.gov/downloader/#/
https://apps.nationalmap.gov/downloader/#/
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update occurred on February 24, 2021 (Table 1). Also, TIGER shapefile was downloaded from 

data.gov web page and spatial reference was set to CA State Plane NAD 83 coordinate system 

(Table 2). Both layers were used for susceptibility analysis. As previously discussed, most 

wildfires were triggered by human error or manmade infrastructure. On a few occasions extreme 

weather events such as lightning strikes were responsible for a fire outbreak, as happened with 

the North Complex fire in 2020. However, the majority of the wildfire can be directly or 

indirectly tracked down to human error (Verde and Zezere 2010; Beighley 2009).  

Dataset Geographic Coordinate System Projected Coordinate System  

Planet WGS84 WGS84 UTM Zone 11N 

MODIS WGS84 Sinusoidal Projection 

Transmission Lines  NAD 1983 NAD 1983 UTM Zone 11N 

TIGER/Roads NAD 1983 WGS UTM Zone 11N 

DEM  NAD 83 NAD 1983 UTM Zone 11N 

Table 2. Spatial references. 

3.2. Regional Analysis with IDRISI Terr-Set  

 The study site for the Bobcat fire outbreak stretched from the West Fork of San Gabriel 

Canyon at Cogswell Dam in the Angeles National Forest. Due to its relatively small extent, 

around 118,000 acres, Terra Satellite needed only one overpass in order to capture the full extent 

(Giglio et al. 2018; Oguro et al. 2011). The Terra satellite has 2330km cross track by 10 km 

along track at nadir (Csiszar et al. 2014; Shoreder et al. 2014). 

Also, due to its high temporal resolution (Adab et al. 2016) MODIS instrument was 

widely used to estimate vegetation content over a chosen time scale. The study chose a two-week 

period prior to the fire outbreak and data was downloaded from NASA’s Earthdata portal as 

HDF file format. The Government Data Provider Formats import option was used where the 

MODISCONV tool worked to import HDF files for a 14 days period. Since, HDF was a 
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multidimensional raster each day produces seven reflectance bands. MODISCONV tool 

generated 210 files that included IDRISI. rst raster file formats and supporting RDC files. Out of 

105 raster files, the study needed NIR and SWIR images which included surface reflectance 

bands 2,6, and 7. 

Downloaded MOD09GA products were corrected for atmospheric conditions such as 

Rayleigh scattering, water vapor, gasses, and aerosols, and the product was ready to use. 

3.2.1. NMDI and NDWI Analysis 

 Having three bands per day on the 14 days’ time span this task had to create a NMDI 

raster expression which contrary to NDWI indices (Gao 1996) was less centered around single 

liquid water absorption wavelength. This comparison and equation were derived by Wang et al. 

2008, in equations 1 and 2.   

(1)                                                                      𝑁𝐷𝑊𝐼 =  
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
=

𝐵2−𝐵6

𝐵2+𝐵6
 

(2)                                             𝑁𝑀𝐷𝐼 =
𝐵2−(𝐵6−𝐵7)

𝐵2+(𝐵6−𝐵7)
 = 

0.86𝜇𝑚−(1.64𝜇𝑚−2.13𝜇𝑚)

0.86𝜇𝑚+(1.64𝜇𝑚−2.13𝜇𝑚)
 

The Raster Calculator created NMDI images for each day by using the difference 

between two water absorption bands, B6 and B7 (1.64nm and 2.13nm). This index offered an 

estimation for both soil and plant water content hence this index provided a more detailed 

estimation of drought condition and fire susceptibility. The normalized multiband index, 

proposed by Wang and Qu (2007), used bands focused around 0.86nm or Band 2 which were 

tuned for leaf water detection changes. 

 Since there was no batch processing option in IDRISI each NMDI image had to be 

processed individually with IDRISI GIS Analyst tab and Image Calculator option.  Interestingly, 

the IDISIS image calculator does not read files that are displayed on the TerrSet Explore file 

menu. Thus, this task used the browsing tab to reconnect to the file folder where HDF files were 
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extracted. Then, by re-connecting to the originally extracted HDF files the Image Calculator was 

capable of inserting images and calculating NMDI. At the same time, the initiated re-connection 

displayed the files in the TerrSet Explorer file menu along with already displayed files. Actually, 

these were the same images just coded differently. It was not clear why IDRISI software had this 

unnecessary extra step. With 51 images to process this work took approximately 2 hours to 

complete.  

 Additionally, this project created NDWI indices.  NDWI has shown its utility for drought 

observation and in early warning for wildfires in various studies (Gu et al. 2007; Ceccato, Flasse, 

and Gregoire 2002). This satellite derived index combined NIR and SWIR.  NIR has shown 

sensitivity to leaf internal structure and leaf dry matter content but not by liquid water presence. 

On the other hand, SWIR has been able to detect fluctuations in both vegetation water 

presence and the spongy mesophyll structure in vegetation canopies (Gao 1996). 

3.2.2. Principal Component Analysis -PCA 

 The PCA technique in its essence was used for dimensionality reduction. Since an 

average image carries so much data every processing requires a substantial amount of time. 

Therefore, image analysts wanted to reduce volume of data while preserving fitness for use. By 

looking for an optimized linear combination between bands PCA process looked for variations 

between bands that can be related to pixel values within an image.  

 From the equation (3), below, it was clear that this procedure was dependent on the 

coefficient’s value.  

(3)                                                                  A = C1X1 + C2X2 + C3X3 + C4X4 

X1, X2, X3, and X4 were pixel values for four spectral channels and C’s are coefficients 

related to each channel (Campbell and Wynne 2011). Once PCA was performed then 
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reconstructing the bands with inverse T-Mode where the goal was to exclude components that 

represent the noise 

3.3. Raster Predictive Scenario 

The goal of this approach was to step back two weeks prior to fire outbreak and observe 

fineness in pre-fire assessment with a goal to detect a signal from the satellite imagery that could 

indicate a potential high fire hazard. 

The key for developing a solid raster predictive model was having data continuity on the 

time scale and surface reflectance products that covered the NIR and SWIR part of the spectrum.  

The MOD09GA product delivered an estimate of the surface reflectance of Terra 

Moderate Resolution Imaging Spectroradiometer (MODIS) Bands 1 through 7. Images were 

corrected for atmospheric conditions such as Rayleigh scattering, water vapor, gasses, and 

aerosols. Observations were provided along with the 500-meter (m) surface reflectance. The 

reflectance data from the MOD09GA were used as the source data for many of the MODIS land 

products. Dataset contained 15 granules and the data format was HDF. Images were captured 

daily and each image contained a date and time stamp. Even though MODIS instrument was 

designed by NASA to track changes on a large scale there was apparent utility on the smaller, 

county, scale. Usefulness of MODIS data was apparent when integrated with GIS platforms such 

as ESRI and IDRISI. This thesis used IDRISI and ESRI platforms to utilize MODIS imagery. 

3.3.1. Creating Mosaic Datasets 

MODIS data was stored in an HDF format that was collected over multiple times. The 

file was downloaded from NASA’s Earthdata portal where the time range was set between 

8/24/2020 and 9/6/2020.  
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In order to display multidimensional raster in ArcGIS Pro, first an empty mosaic dataset 

had to be created. Once the empty bucket was created then adding raster to the mosaic allows 

specifying the type of dataset that was added. In this case HDF file format was selected from the 

drop-down menu which automatically allowed parametrization. ArcGIS was now connected with 

a file and read data from the file hence by choosing one image from the file ArcGIS Pro was 

capable of displaying all the variables from a multidimensional raster layer. Each one 

represented a different set of data that can be used for analysis or visualization, and the HDF file 

for this dataset had 22 variables in total of which 7 were surface reflectance bands. Table 3 

showed how naming conventions packed product information. 

(MOD09GA.A2020237.h08v05.061.2020343112804.hdf)  

MOD09GA Product Short Name  

A2020237 Julian date of Acquisition  

h08v05 Tile Identifier (horizontal XX vertical YY) 

2020343112804 Julian Date of Production (YYYY DDD HH MM SS) 

hdf Data Format 

Table 3. MODIS Naming Conventions. 

In addition, creating mosaic datasets from MODIS imagery required more processing 

time than initially anticipated. MODIS data occupied 1.36GB of storage space hence creating 

mosaic datasets for each band and rendering images required on average 10-15 minutes for each 

set. There was apparent time processing growth as more mosaic datasets were added. Band 2 

(841-876 nm), Band 6 (1628 - 1652 nm), and Band 7 (2105 - 2155 nm) were displayed in Figure 

5. Band 2 was NIR while Bands 6 and 7 were in short infrared SWIR.  
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Each map used 09/06/2020 as a displayed date. This was a feature of ArcGIS Pro where 

multidimensional layers can be displayed based on date. Maps were displaying reflectance from 

bands 2, 6, and 7, where on the central portion of the map right above the fire outbreak point 

clouds and cloud shadows were visible.  

Figure 5. Band 7(2105 – 2155 nm), upper left, Band 6 (1628 – 1652 nm) down left, and Band 2 

(841 – 876 nm) down right. 

Even though the data cube model, HDF was well-utilized for packing large amounts of 

data yet data handling was not so straightforward.  
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During the first attempt, multidimensional had all seven bands integrated into one mosaic 

dataset. However, displaying and rendering such a big amount of data was time consuming and 

by breaking it down into seven different mosaiced dataset with one band for each set.  The 

resulting products were capable of rendering images from HDF format. Multidimensional data 

covered date range from 8/24/2020 - 9/06/2020. Each layer processing extent was set to the LA 

County boundary extent thus preserving GPU processing requirements. In addition, raster 

processing was checked to Calculate statistics and build pyramids in the processing template. In 

total seven mosaic datasets are created, one for each band.  

On the side note, multiple attempts to produce NMDI indices did not produce results. 

Generating index from Multidimensional processing template produced a raster layer that was 

composed from two bands but the value did not correspond to equation; moreover, the ArcGIS 

Pro processing template took maximum and minimum reflectance value and displayed them on 

the value chart. Apparently, this study could not create processing template, in ArcGIS Pro, to 

calculate NMDI from multidimensional raster. 

MODIS’s instrument Multidimensional data were processed with workflow that was 

borrowed from NASA’s Earthdata documentation page (Madden 2020). 

The workflow in the Figure 8 shows the steps this thesis took in order to extract a pattern in data 

that could lead to an early pre-fire signal. From the spatial extent of Los Angeles county this 

study wanted to find area coverage that could be further analyzed with a finer spatial resolution.  

A model for raster predictive analysis was developed with the Lucidchart app. Figure 9 

shows the path for developing Trend, Predict, and Anomaly analysis. As shown in Figure 9, the 

results for Predict depended on Trend result and Anomaly results depended on Predict results. 
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On the other hand, Argument Statistic and Temporal Profile results were produced from raw 

data. 

3.4. Weighted Fire Susceptibility Scenario with Planet-Scope Imagery, DEM 

derivatives, Electric Lines, and TIGER/Roads Shapefile 

From Los Angeles County two weeks spatial-temporal extent this thesis zoomed in to 

approximately 10 km by 10 km extent in Angeles National Forest region, thus narrowing 

research to a finer resolution while using reverse engineering methods. Since, the fire already 

happened and by knowing the location, the study looked into surrounding man- made 

infrastructure, topo-features, and fine resolution satellite data.  

3.4.1. Distance Accumulation  

As discussed in Chapter 2, previous studies have found that manmade wildfire outbreaks 

were the leading cause of fire. This was why the project's focus was on surrounding roads and 

transmission lines. Roads were represented on maps as a line. A line feature had to be expanded 

so by adding a second dimension a road feature accumulated more information. A one-

dimensional object can contain only information in one direction while 2D objects has length and 

width. Since, the majority of wildfires were triggered by human negligence then the assumption 

was that the road network represented a starting polygon from where a person can move. Often, 

camping or hiking can lead to a more relaxed behavior while under the influence of alcohol or 

medication. Human factors were pointed out by Ventura and Vasconcelos (2006). 

Taking the previously mentioned work into account, this thesis developed a methodology to 

create susceptibility maps that started with importing TIGER shapefile road layer. 

A buffered roads layer was derived from the TIGER/Roads shapefile that covers CA. When 

examining AOI this study delineated one road that passed through the AOI. Selected feature was 
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extracted from the shapefile through Create a Layer From selected feature option and displayed 

on the map. The newly created layer was projected to match the Planet data coordinate system. 

In the next step, the road layer was buffered with a 12 m ring around the line feature. A 12 m 

range was chosen after examining Planet Scope imagery and measuring the width of the road 

with the measurement tool. The width was ranging from 18 m to 22 m based on 3 m pixel 

resolution.  Once the buffer was created then a layer was brought to a Model-builder where it 

was processed with the Distance Accumulation tool. A tool calculated the distance encountered 

by a person or variable that moved through the system.   

 

 

 

 

Figure 6. 3D (left) and 2D (right) models for Eikon equation. 

 The algorithm that calculated surface cost approximated the height from the center of 

each cell where it used the slope from the input cost raster layer, Slope layer. The slope s from 

the input cost  surface was evaluated as the slope of the hypotenuse of the triangle abc (Figure 6). 

Finding the shortest or fastest distance, or least-cost path, impact, time surface is often 

explored in GIS. This problem has been observed in this study in the context of a person moving 

through a terrain with the original starting line being centered at the buffered road layer. 
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Selecting the most appropriate route or the most appropriate impact surface was difficult because 

each additional segment of the path was not independent from other line segments (Goodchild 

1977).   The algorithm was governed by the Eikonal equation (4). This method has been tested in 

detail and insofar it has been shown that second order Gauss-Seidel iteration was sufficient for 

distance function in n-dimensions.  

(4)                                                                         |𝛻𝑢(𝑥)|  =  𝑓(𝑥), 𝑥 ∈  𝑅𝑛 

 To simplify, a person making an impact can move in vertical, horizontal, and diagonal 

directions. Imitating Queen’s movement in chess that can be simplified in 2D surface as shown 

in Figure 5. However, the dynamic nature of the movement, as previously mentioned, 

interdependence between line segments and vertical factors complicated solutions. Further, the 

project added DEM data and synthesized DEM derivatives with the Distance Accumulation 

layer. 

3.4.2. Electric Lines  

 The Bobcat fire was attributed to electric lines and tree branches touching them. This 

happened during the extreme Santa Ana period where the high winds were blowing hot dry air 

from the desert. 

The electric lines shapefile was acquired from Southern California Edison Power Site 

Search Tool. In multistep process electric transmission lines were selected with a selection tool 

thus the extent fell within AOI. This approach buffered the extracted layer with a 5m buffer 

hence adding width or second dimension. A 5-meter buffer choice was done after examining 

Google Earth Pro imagery for the AOI. The width approximation from tree branches to a cable 

was estimated with a measuring tool.   
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Further, this project converted a vector layer to raster with the Feature to Raster tool 

keeping the cell size at 3m. After rasterization was completed the layer was Reclassified as 1.  

To connect different layers, the NDVI layer from Planet data was also reclassified with a 

previously mentioned tool. The reclassification tool assigned 0 as not-susceptible to the NDVI 

layer with a range from 75 to 150 and from 150 to 189 to 1 or susceptible. In this way, both 

layers could be combined with the Raster Calculator (Spatial Analysis Tool). 

The output layer was then reclassified manually to switch results and assign 0 to not-

susceptible and 1 to susceptible areas.    

3.4.3. DEM Layer Processing  

Data quality has a substantial influence on analysis and pre-processing, cleaning, and 

refining datasets are necessary steps before any analysis takes place. Most DEM layers contain 

either spurious pits or peaks that are contained within pixel arrays and this is just a physical 

limitation of instruments. Since DEM datasets were produced by synthetic aperture radar SAR, 

then naturally due to terrain’s complexity there will be pixels that contain erroneous data.  

The literature explanation (Bolstad 2017) was that a possible issue arises from spurious pits that 

are located within the DEM layer. Pits are raster cells that have lower value than surrounding 

cells. The downside of running the tool was that the output raster can require up to four times 

more storage space than the original raster. In the tool, settings z-score controlled the range 

between the depth of a sink and the pour point and determined which sinks will be filled and 

which will remain unfilled.  

Although, the model used a Fill Tool to clean from pits but the efficiency was not 

hundred percent. In addition, a future work can add Sink tool before Fill tool in their analysis 
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since the output identifies the depth in raster data. Once that was solved then setting z-score was 

more straightforward.  

Completeness  Logical Consistency Temporal quality Coordinate System PCS 

complete logic srctime NAD 83 UTM 11N 

 

Description of Dataset Usage Source of data Metadata (Conform) 

Raster data 1 arc second -30m National elevation dataset USGS - Elevation Products FGDC.gov  

Table 4. DEM Data Description. 

3.4.4. Creating Hill-shade and Slope Layers 

Hill shade tool simulated the Sun’s position above the terrain and shows the reflectance 

of the surface. Since the simulation was done by algorithm we can expect that bias within the 

algorithm will propel throughout the analysis.  

Actually, the hill shade surface represents a discrete object in a raster data set. Because 

we see the snapshot in time. The shade in reality moves across the surface as the Sun’s position 

is changing over the sky.  Hence, we have a snapshot based on the chosen incoming sun beam 

and reflection (Zhang, Li, and She 2019). The reflecting light of a pixel cell depends on 

incidence angle.  

Hill-shade tool processing was adjusted according to Planet satellite data, hence the 

azimuth and altitude angles, sun’s relative position, are set to 142 and 62 degrees. These metrics 

were obtained from Planet satellite info section which corresponds to flyover time of the images 

taken on 24 August, 2020 above the Angeles National Forest (ANF). The same approach was 

used to adjust the sun's relative position for September 6 2020.  

http://fgdc.gov/
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Further, Slope, and Hill-shade were processed using the Rescale Function Tool, Figure 7. 

For each layer a specific transformation function is applied. Slope and Hill-shade layers are 

rescaled with Large transformation function indicating that the larger input values have higher 

preference. Salis (Sails et al. 2014; Alan et al. 2011) used a similar approach where the slope, 

aspect, and elevation layer were combined with vegetation cover. 

Figure 7. Model-builder schema for DEM processing. 

3.4.5. NDVI Layer from PlanetScope Data 

 PlanetScope is part of Planet’s satellite constellation and offers almost daily visitation 

capturing a swath of 24 km by 8 km. The onboard sensor covered four bands, and out of four 

three were RGB and one was in NIR (B 4 band at 0.733-0.748(µ)). Combination of bands 3 and 

4 created NDVI indices, equation (5). NDVI has been used as an indicator for drought and 

vegetation density. This project chose two dates for susceptibility assessment, 08/24/20 and 

09/06/20. Each image was downloaded from the Planet data webpage. Once the images were 

downloaded then using the merge raster function all images were stitched together with the 

overlap method set to mean. From here the NDVI tool, from raster functions, created the NDVI 

layer by selecting channels 3 and 4 which corresponded to red and IR wavelengths. In the first 

round this method produced standard scientific pixel value output that ranges from -1 to 1. 

However, due to complications with Rescale by function tool that arose from parameterization 

issues this project switched to 0-200-pixel range. Before continuing with this range, the analysis 

compared the results from both, scientific and default equation output. The comparison 
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confirmed that in both cases higher values were indicators of green vegetation. For scientific 

output a zero means no vegetation and close to +1 (0.8 - 0.9) indicates high density of green 

leaves. Which was related to the default equation in a way that the values from 150 to 179 were 

the indicators of green areas. The equation 5 shows the default equation for NDVI calculation in 

ArcGIS Pro environment.   

(5)                                        𝑁𝐷𝑉𝐼 = ((𝐼𝑅 −  𝑅)/(𝐼𝑅 +  𝑅))  ∗  100 +  100 

3.4.6. Susceptibility Synthesis 

 This project developed two approaches for pre-fire susceptibility assessment. The first 

approach was weighted classification and the second was hard classification. The first approach 

was run with the Model-builder tool where all the layers were included and executed, as shown 

in Figure 8. However, after multiple re-runs the tool has started failing or taking too much time 

to complete geoprocessing.  
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Figure 8. Weighted classification (top) and hard classification (bottom) susceptibility 

analysis models. 

To work around this issue this research broke down the Model-builder into smaller 

components and ran the tool with fewer steps in Model-Builder and it also used the Notebook 

Python environment. 
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Chapter 4 Regional and Local Results 

In this chapter results were presented in the following order: raster predictive scenario (Figure 9), 

regional results from indices analysis, susceptibility scenario - local extent, and synthesizing and 

comparing different extents and resolutions. 

4.1. Raster Predictive Scenario 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. MODIS Multidimensional Workflow. 
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4.1.1. Temporal Profile 

A basic visual inspection of surface reflectance with the MODIS instrument was 

performed with a temporal profile tool in ArcGIS Pro. The temporal profile tool is part of a 

multidimensional data management package that allows big data utilization. A temporal profile 

was created for (Band 2) NIR, (Band 6) SWIR1, and (Band 7) SWIR2. The date range was set 

between 08/24/2020- 09/07/2020. The first step was to create a set up parameters in the chart 

property tab section.  In the Chart property settings this approach chose a multi-location with one 

variable tab and trend line was set to Harmonic trend line.  For the Spatial and temporal 

aggregation project chose maximum values. While the time interval size was set to Days (Figure 

10.1-3). 
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Figure 10 (1-3). Temporal profile for NIR (top), SWIR1(middle), and SWIR2 (bottom) channels, 

Line Boxed Extent. 
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 Figures 10 (1-3) and 11 (1-3) the chart properties are displayed at the upper corner of the 

main map frame. The central section of the map has Los Angeles county delineated with a pale 

gray line while the rectangular bounding box represents the sampling aerial coverage for surface 

reflectance. It is worth pointing out that the sampling box in Figure 10 (1-3) was chosen 

carefully in order to avoid reflectance over the ocean surface. The surface reflectance over the 

ocean could skew the average results, because of water’s ability to absorb IR and NIR (Campbell 

and Wynne 2011). 
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Figure 11 (1-3) Temporal profiles for NIR, SWIR1, and SWIR2 bands, Line Boxed Extent-   

Transparent blue, dark blue, and green. 
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Figure 11 (1-3) showed finer scale with three sampling locations for each band. Of 

special interest is AOI where the fire erupted. In the chart property tab three boxes were drawn 

for the purpose of comparing SR readings from each area. Transparent blue box on top of AOI 

and two more areas with approximately the same spatial extent are displayed in Figures 11 (1-3). 

Also, three charts for each band are displayed on top of the main map frame.  Three sampling 

boxes, Figure 10, did not reveal significant changes in surface reflectance on the observed 

temporal range. A spike visible on chart surface readings was detected on September 7 which 

was one day after fire was ignited.  

4.1.2. Trend 

Temporal profile tool enables a fast display of HDF data. However, the trend within 

multidimensional data was not clearly visible from the temporal profile. The Generate Trend 

Raster tool created a multidimensional raster that estimated the trend for each pixel over the 

entire time series. For a more precise estimate, this project adjusted the type of trend to 

polynomial to account for changes that happen throughout the two-week period between each 

day in a fluctuation pattern. This choice considered the short-term changes in surface reflectance 

temperature.  

Map displays pixel value changes on the right in the legend box, Figure 12. Values 

exhibit high accuracy, between 10 and 12 decimal places. Thus, the LZ77 compression type was 

kept for storing raster output. Accuracy requirement increased processing time and storage 

volume. 
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Figure 12 (1-3). Trend Analysis Bands 2,6 and 7. 

The output multidimensional raster in Figure 12 indicated the direction of change in 

surface temperature values between 8/24/20 and 9/06/20.  Small positive values were present, 

which represent the slope of change in each pixel. If negative values were present that would 

indicate a positive slope change in pixel values. Output CRF layers indicated that the change in 

direction was slightly positive and for the observed date range this approach did not detect an 

area with substantial pixel slope change.  
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4.1.3. Raster Predictive Model 

Figure 13(1-3) the Predict Using Trend Raster tool created a multidimensional raster 

that predicted new hypothetical future surface temperature values based on the trend raster. As 

discussed in chapter 3, temporal range was set from 08/24/2020 - 09/12/2020. Thus, the tool used 

a two-week trend to predict one week in the future. Same as in Trend analysis, the values 

displayed on map legend indicated the slope of pixel change. Results from Predict 

analysis suggested that there was a fluctuation in future surface temperature in the Angeles 

National Forest region. Bounding box 

served as an approximation. The areas in 

red in all three output layers were located 

in regions with little or no combustible 

vegetation.  

 

 

Figure 13 (1-3). Predict Raster layers. Channels 2,6, and 7 (bounding box ~ Angeles 

National Forest) 
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4.1.4. Argument Statistic 

Figure 14. Argument Statistic map for Band 2, Maximum values: Temporal range 

(08/24/20 -09/05/2020; left) and (08/24/2020 – 09/06/2020: right). 

 

Figure 15. Argument Statistic map for Band 6, Maximum values: Temporal range 

(08/24/20 -09/05/2020; left) and (08/24/2020 – 09/06/2020: right). 
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This step of the project measured the duration of exposure at which each pixel reached 

the maximum value during the two-week period. In Figures 14-16 two maps for two different 

time ranges are displayed, as specified. Shortening analysis for one day was done after the first 

round of analysis was performed for 08/24-09/06 date range. However, after visual inspection 

the assessment concluded that cloud cover affects results and shifted the pixel values towards 

maximum. Clouds were located near the fire outbreak region.  Since water vapor emits radiation 

from the top of the clouds then the surface reflectance was not readable from satellites. 

Therefore, assessment shortened analysis for one day by using cloud free imagery.  

Figure 16. Argument Statistic map for Band 7, Maximum values: Temporal range 

(08/24/20 -09/05/2020; left) and (08/24/2020 – 09/06/2020: right). 

4.2. Regional results from indices analysis 

 For the time range between August 24, 2020, and September 6, 2020 IDRISI created a 

NMDI and NDWI raster index for each day. The index creation was fairly easy and each raster 

creation took 4-7 minutes to create. Further, each image was normalized manually where in 

Layer Properties the classification schema was set to equal intervals with stretch type, number of 

classes 256. Also, the display setting values as a part of manual normalization were set from 0 

and 1.  
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Contrary to NMDI index that required raster calculator NDWI was created with image 

processing VEGINDEX display that was already set up for processing NDWI. After each image 

was created the pixel values were set to scientific scale from -1 to 1. 

4.2.1. PCA Analysis (8/24/2020 and 9/06/2020 Images) 

 Before the aforementioned NMDI analysis took place, this project tested the viability of 

data saving statistical analysis. Principal Component Analysis was performed on channels 2,6, 

and 7 for two dates, 08/24/2020 and 09/06/2020 with IDRISI TerrSet software. 

 Four output tables from PCA analysis created new uncorrelated variables from a data set. 

Since the governing variable was temperature in multispectral data which makes Bands 2,6, and 

7 highly correlated. The TerrSet has two PCA methods: the forward t-mode and s-mode. In the t-

mode images are analyzed as a temporal change while in the s-mode images are processed as 

spatial variables. This project used the t-mode process. The PCA process included rotation and 

translation of the band's axes while at the same time it produced the same number of new bands 

that were orthogonal to each other in data space.  

 

 

T-MODE 

VAR/COVAR 

B2 8/24 B6 8/24 B7 8/24 B2 9/6 B6 9/6 B7 9/6 

B2 8/24/20 2334505 1694940 1553376 39416.56 28009.06 -14695.8 

B6 8/24/20 1694940 1947262 1776244 242522.5 460756.6 487760.9 

B7 8/24/20 1553376 1776244 5473963 384969.9 661730.9 848812.5 

B2 9/6/20 39416.56 242522.5 384969.9 1441494 1511751 1495765 

B6 9/6/20 28009.06 460756.6 661730.9 1511751 1989063 1903853 

B7 9/6/20 -14695.8 487760.9 848812.5 1495765 1903853 6312743 



 

47 

 

 

T-MODE COR. 

MATRIX 

B2 8/24 B6 8/24 B7 8/24 B2 9/6 B6 9/6 B7 9/6 

B2 8/24 1 0.794959 0.434538 0.021487 0.012998 -0.00383 

B6 8/24 0.794959 1 0.544051 0.144755 0.234118 0.139119 

B7 8/24 0.434538 0.544051 1 0.137047 0.200542 0.144395 

B2 9/6 0.021487 0.144755 0.137047 1 0.89279 0.495847 

B6 9/6 0.012998 0.234118 0.200542 0.89279 1 0.537279 

B7 9/6 -0.00383 0.139119 0.144395 0.495847 0.537279 1 

       

T-MODE 

COMPONENT 

C 1 C 2 C 3 C 4 C 5 C 6 

% VAR. 44.29467 31.91338 11.182 9.788297 2.078551 0.743103 

T-MODE 

EIGENVAL. 

8637032 6222799 2180381 1908623 405297.3 144897.9 

T-MODE 

EIGENVEC. 1 

0.20457 -0.3768 0.657763 0.037474 -0.58182 -0.2088 

T-MODE 

EIGENVEC. 2 

0.271467 -0.30762 0.47323 -0.05961 0.731383 0.263166 

T-MODE 

EIGENVEC. 3 

0.528166 -0.60981 -0.5804 0.085736 -0.07043 0.001191 

T-MODE 

EIGENVEC. 4 

0.244051 0.170338 -0.00279 -0.57782 -0.31335 0.692354 

T-MODE 

EIGENVEC. 5 

0.318657 0.186913 -0.02323 -0.65749 0.151541 -0.63854 

T-MODE 

EIGENVEC. 6 

0.666629 0.57234 0.077411 0.47067 -0.02122 0.007724 

 

T-MODE 

LOADING 

C 1 C 2 C 3 C 4 C 5 C 6 

B2 8/24 0.393484 -0.61519 0.635679 0.033884 -0.24243 -0.05202 

B6 8/24 0.571725 -0.54991 0.500757 -0.05901 0.333672 0.071787 

B7 8/24 0.663441 -0.65018 -0.3663 0.050626 -0.01916 0.000194 

B2 9/6 0.597388 0.353914 -0.00344 -0.66488 -0.16615 0.219509 

B6 9/6 0.66402 0.330604 -0.02432 -0.64405 -0.068406 -0.17234 

B7 9/6 0.779753 0.568248 0.045495 0.258802 -0.00538 0.00117 

Table 5. Output from PCA Analysis Bands [2.6,7] Dates: 08/24/2020 and 09/06/2020. 
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 The first table shows the variability of the bands and how bands relate to each other. On 

the second table PCA displays correlation matrix. A correlation matrix display coefficient which 

provides the maximum knowledge that can be transferred by any single band created by linear 

combinations of original bands. On the side note, calculation of the previously mentioned 

coefficients is better described in advanced statistical publications (Gould 1967). 

The third table shows transformed bands. Each band was formed from a linear 

combination of original bands. Bands 2 and 6 account for about 75 % of total data variation. 

While Bands 2,6, and 7 account for about 86 % of total data variation. The result of declination 

in data content is visible in Figure 17. Where PCA components 1,2,3, and 4 are compared side 

by side. The remnants of the noise in the system from the atmospheric scattering and topo 

features were contributing to image brightness as well. Previous publications reported over 90% 

in data variation from one channel and when adding one more channel data variation often 

achieved 95-98%. Therefore, this thesis chose to abandon PCA methods for data savings 

approach.  

Results from PCA suggest that substantial information would be lost if the project relied 

only on PCA components.  
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Figure 17. PCA Components 1,2,3, and 4.  These images displays four out of six components for 

the images described in table. 

4.2.2. NMDI and NDWI Results 

Figure 18 the Southern California extent is visible on the left. Los Angeles County is 

delineated with the Los Angeles County shapefile in black and on the right Los Angeles County 

region is overlaid with the road network. Further this scenario zoomed in to the ANF extent 

where the fire outbreak occurred, bottom image. At this spatial extent and pixel resolution there 

is apparent limitation in delineating sufficiently small fire susceptible areas. In addition, at this 

pixel resolution vegetation and soil in immediate fire origin proximity did not experience water  
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Figure 18 (1-4). NMDI Results for three spatial extents; Southern California, top left, Los 

Angeles County, top right, and Angeles National Forest, bottom middle. NDWI results for 

Angeles National Forest extent, bottom. (Acquisition date 08/24/2020). 
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stress that could flag this area as hazardous. In the Appendix NMDI results suggested that the 

Southern California area was going through drought (Appendix: NMDI and NDWI Results).    

   This interpretation for soil and vegetation moisture, observed by Wang in 2007, ranged 

from 0-1 where values 0.3-0.5 indicate medium soil dryness, and 0.7-0.9 extreme dry bare soil. 

Similar interpretation can be drawn from NDWI time-series imagery where the dimensionless 

range -1 to 1 provided the information of spatial distribution water stress.  High values, close to 

1, indicated higher water content, areas in red. Low values, in blue, indicated low 

vegetation water content. Relationships are reversed for NMDI results, red indicates low while 

blue indicates high water content. 

The spatial distribution of NDWI and NMDI anomalies, as shown in Appendix, 

supported the observation, as discussed in chapter 1, that the Southern California region was 

experiencing severe drought (Delbart et al. 2005). 

4.3. Susceptibility Scenario  

 This section summarized results from each geo-processed layer and lastly it synthesized 

them in the final reclassed map products. The hope of this method was that the results would 

encourage more focus on GIS type pre-fire assessment by responsible agencies.   

4.3.1. DEM Results 

 Slope was weighted into the model because steep slopes are amplifying convective 

heating uphill thus accelerating fire propagation. Whereas on the flat terrain fire spread is slower. 

However, the presence of strong winds, such as Santa Ana, contributed to fire propagation on flat 

surfaces. Adding Hill-shade layer was necessary thus the model considered areas that were more 

exposed to a sun’s radiative heating during the day.  
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4.3.2. Distance Accumulation (DA) Results 

Figure 19 shows maps in 3D and 2D layouts. A scale change and space rotation allowed 

for visualization of surrounding terrain.  Accessibility of the terrain in Angeles National 

Forest depends on slope. 

 

Figure 19. Distance accumulation maps (ArcView 3D, left, and 2D layout, right). 
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 The DA tool models how easy it is for a person to move across the surface. Green areas 

represent areas that are accessible and close to the road. Since the starting point was the road 

feature, as described in chapter 3. The assumption was that hikers or random sightseeing stoppers 

would keep their movement close to the road. Therefore, the features that were classified with 

orange to red to white were deemed as less prone to human impact.  

4.3.3. NDVI Results 

Figure 20 shows two maps with NDVI results for two different dates. The stretch type for 

pixel values shows a slight decline in NDVI values for September 6, 2020 when compared to 

August 24, 2020. This drop in healthy green vegetation volume can be attributed to continuously 

drying  

Figure 20. NDVI maps for 09/06/2020 (left) and 08/24/2020 (right), PlanetScope Scenes. 
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conditions that existed prior to the fire outbreak. As vegetation was drying it was slowly creating 

a combustible fuel for a potential fire event. 

4.3.4. Rescale by Function  

 Because the values of each dataset are relative to the criteria they represent before 

integrating them and weight these criteria relative to each other a susceptibility assessment had to 

transform their values to a common scale.  Reclass by Function tool transforms all four raster 

layers. For Hillshade, Slope, and NDVI layers project applied reclass by scale large function. A 

large function preferentially favors large values, where the midpoint parameter defines the 

transition point of function. DA layer used linear rescaling. Contrary to the large function, the 

linear function in the fire susceptibility model favored values that increased at the constant rate 

from the road. Functions behavior and graphs are discussed in more details in publication by 

Jiang and colleagues (Jian et al. 2000). 

4.3.5. Weighted Susceptibility Results (Soft Classification) 

 Each previously described layer was weighted with the Weighted Sum tool. In Figure 21 

(1-2) maps were displaying areas that were more susceptible based on the input parameters. The 

weighted values were set to 1 for NDVI and Slope layers while for the DA layer the value was 

set to -1. The negative value for the DA layer was selected for the purpose of inverting the 

results from the rescale by function operation. This flipped the results while at the same time 

preferentially weighted areas closer to a road as more susceptible on the scale from -10 to -1, 

where -1 was more susceptible.  For the Hillshade layer the value was set to 0.3. The weighting 

was done arbitrarily where the coefficient values did not represent the best possible 

parametrization but rather it laid down a methodology for a potential end user of this method. 
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Figure 21 (1-2). Susceptibility maps 8/24/20 (left) and 09/06/20 (right). 

  Maps are showing the extent of PlanetScope image capture. The capture area represented 

the smallest spatial resolution for this project centered around fire outbreak origin which was 

marked with a blue dot.  

A green surface area that cut through the southern centered region lay on top of San 

Gabriel reservoir. Water’s flat surface area had a 0 Slope thus once the Slope layer was weighted 

with Weighted Sum tool then the reservoir area was deemed not-susceptible. Both dates on 

above maps, when compared, showed similar spatial distribution of susceptible areas.  

Map products from a Figure 21 (1-2) were geo-processed with Reclassify raster tool 

where classification method created two classes, susceptible 1 and non-susceptible 0. Reclassify 

raster threshold was set to 0 from -2.139 to 17 and as unsusceptible and to 1 from 17-18.19 as 

susceptible for 8/24/2020, and to 0 from -1.875 to 17 as unsusceptible and 1 from 17-19.357 as 

susceptible. Classification threshold values were chosen after the original layers from the figure 



 

56 

 

were manually classified in the Symbology tab (Figure 22. 1-2). Again, this study was aware that 

this was not the best possible fit but one of many solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 (1-2). Reclassed Susceptibility maps 8/24/20 (bottom) and 09/06/20 (top). 
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4.3.6. Manual -Hard Classification Susceptibility Results  

 Similarly, to Weighted semi-soft classification approach manual hard-classification 

methodology delivered two susceptibility maps for two dates. Two-week time difference was 

picked arbitrarily for comparison. Based on the original goal where first responders and local 

authorities had to respond to rapidly deteriorating ground conditions by running frequent GIS 

assessments. Based on the original goal where first responders and local authorities had to 

respond to rapidly deteriorating ground conditions by running frequent GIS assessments. Since 

the Santa Ana winds were present, low humidity had already persisted before the fire erupted. 

The idea behind these approaches was to have multiple models and methodologies ready for 

daily assessment.  

Two products delineated fire prone zones in red, labeled 1 on the Legend section (Figure 

23.1-2). The rest of AOI was labeled 0 and manually changed into transparent gray. 

Interestingly, both map products labeled fire origin location as susceptible. Contrary to the 

weighted model that produced less susceptible regions by surface area and more dispersed 

pattern. This modeling approach appeared more accurate.  
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Figure 23 (1-2). Manual hard-reclassified susceptibility maps; 08/24/2020 (top) and 

09/06/2020 (bottom) 
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4.3.7. Electric Lines  

 To avoid similar outbreaks susceptibility assessment produced a reclassed transmission 

lines susceptibility map. In Figure 24 green lines represented areas where transmission lines were 

passing through vegetation. Chapter 3 described that vegetation presence was detected using 

NDVI indices derived from PlanetScope imagery. Purple areas were classified as less 

susceptible. However, the cutoff between both classes should be examined by the end user of this 

product on the ground.  

 

Figure 24. Electric lines (Buffered 3m, converted to raster, and combined with NDVI 

layer with Raster Calculator tool) 



 

60 

 

4.4. Synthesizing and Comparing Different Extents and Resolutions 

 The following results compared the coarse resolution results, Southern California extent 

with Los Angeles County and finally Los Angeles County extent with a section of Angeles 

National Forest. This comparison was done between maps produced with MODIS, DEM, and 

Planet resolutions. 

4.4.1. Overlaying Susceptibility and Electric Lines Maps 

 On the fine scale, this subsection integrated reclassed weighted and hard classification 

map products with electric lines susceptibility map. To illustrate the relationship between Slope, 

Aspect, DA, Electric lines, and NDVI two maps for two different dates, 08/24/2020 and 

09/06/20202, are shown in Figure 25. Despite the positive results, the application of overlaying 

different layers is limited to local topographic and climate features.  
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Figure 25 Synthesized susceptibility maps for 08/24/2020 (right) and 09/06/2020 (left) 
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4.4.2. Comparing Two Scenarios-MODIS Resolution 

 When NMDI and NDWI results were compared with raster trend, prediction, and 

argument statistics results this project observed that the aforementioned drought indices spatial 

distribution was showing similar fitness for use as raster predictive models.  

 

 

Figure 26. Spatial distribution of NMDI over Los Angeles County 08/24/2020, left, and 

09/06/2020, right, overlaid with road network shapefile. 

 Figures 12 (1-3), 13 (1-3), 14, 15, and 16 the areas that were outside the Angeles national 

forest were showing a higher rate for pixel change.   This was most likely due to the lack of 

vegetation in that area. The bare soil accumulates more radiation thus the surface reflectance in 

the IR spectrum was substantially higher when compared to vegetation covered areas.  

Similarly, Figure 26 shows that vegetation covered areas returned pixel values that were 

less than non-vegetation covered. The remote sensing of both soil and vegetation water content 

from space by using three channels centered near 860 nm, 1640 nm and 2130 nm has shown 

results that were consistent with expectations, Figures 17, Appendix: NMDI and NDWI, and 25. 
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4.4.3. MODIS and DEM-PlanetScope Comparison  

 As conditions on the ground were rapidly changing during August 2020, then susceptible 

areas would have needed to be delineated as wildfires were raging across California.  

In the hypothetical scenario first responders could perform parallel analyses with coarse, 

medium, and fine scale resolutions. Ideally first responders would detect an anomaly centered 

around a road network from space platforms, such as MODIS, with coarse resolution. Then run a 

finer scale analysis, PlanetScope, to refine and pinpoint high-risk areas. The preliminary results, 

suggested that this scenario where a pixel will be mapped as dry soil condition if the NMDI is 

>0.7, intermediate if NMDI is within the range of 0.6 to 0.7, and wet if NMDI is <0.6 did not 

delineate sufficiently small area. Similarly, to NMDI NDWI has shown similar performance. 

 The area that could be further scaled down, where adding ancillary datasets such as 

Slope and Hillshade could pinpoint hazard areas with higher confidence. Even though the DEM-

PlanetScope model mapped susceptible areas that included fire outbreak location this was done 

with hindsight bias. This project opted to perform reverse engineering and look for linkage 

between different scenario-based models. However, this work did not find solid linkage between 

previously mentioned scenarios.     
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Chapter 5 Discussion 

This project’s objective was to compare remote sensing platforms' utility for pre-fire assessment. 

MODIS, DEM, and Planet data were manipulated with three different scenarios to estimate the 

spatial and temporal distribution of fire indices and topographic variables. This project's 

collateral goal was to provide valuable insight to first responders and land management agencies. 

This chapter emphasizes the inferences from this thesis, together with the obstacles and 

limitations. In addition, the future research was also brought up with a more in-detail assessment 

of methods and workflows in order to expand and better this work. 

5.1. Discussion  

Monitoring the severity and attributes of drought was crucial in modern pre-fire 

assessment and risk management. Despite the wide range of studies and funding it was still an 

elaborate assessment. In general wildfire susceptibility scenario-based assessment had two 

approaches one was dynamic analysis where a research focused on meteorological variables and 

the second is topographic analysis where the research evaluated how the terrain structure 

affected fire outbreaks.  

However, these scenario-based models were not scale immune. That issue does raise a 

question on how these models perform when the area of interest shifts to a different region. By 

just moving to Northern California this project would encounter different vegetation types and 

agricultural practices.  

In the previous chapters, namely 3 and 4, the analysis was performed with three different 

spatial and radiometric resolutions. The results were mixed and the MODIS’ instrument spatial-

temporal analysis did not yield sufficiently small delineation of fire hazardous areas. The NDWI 

and NMDI analysis did suggest that the region as a whole was becoming highly flammable while 
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the area in immediate proximity of the fire outbreak did not return pixel values that could be 

classified as hazardous. The expectations were that coarse scale analysis would point out 

sufficiently small regions that could be further in-depth analyzed with ancillary datasets such as 

road and electric networks. 

Wildfires were not exclusive to the California region and many publications have 

described different approaches to model and map wildfire susceptibility. Some work approached 

from different perspectives and used the nearest-neighbor method. This was done by Amatulli 

and colleagues (Amatulli, Perez-Cabello, and Riva 2007) where the assessment used 

interpolation tools to map wildfires caused by human and thunder strikes.   

5.2. Limitations  

The triple scenario presented in this work has brought some insightful findings. Results 

presented insofar account for a small part of what is necessary to create a more in-depth 

susceptibility assessment. While NMDI and NDWI indices were crucial to understand what areas 

were the most impacted by drought, the presence of man-made infrastructure dictated the hazard 

of fire outbreak.  

5.2.1. NMDI and NDWI  

 Producing both indices with IDRISI TerrSet was straightforward and relatively easy to 

complete. One advantage that this project had was the availability of preprocessed MODIS data. 

Previous chapters pointed out that MODIS MOD09GA Version 6.1 data was corrected for 

atmospheric gasses. This thesis used corrected images for NMDI and NDWI indices estimation. 

This was done to accelerate the workflow and bypass conversion of DN values into spectral 

radiance. First responders or responsible agencies would have extra steps and correct acquired 
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images.  The end user would acquire almost in-real-time imagery and then perform atmospheric 

correction.   

5.2.2. Multidimensional Analysis 

Raster predictive analysis produced some interesting results compared to NMDI and 

NDWI analysis. However, this was the most time-consuming part of the study. Building 

multidimensional datasets where 7 mosaiced datasets were created took approximately two 

hours. Additional time, two days in total, was spent on rendering data and producing Temporal 

Chart profiles, Trend Analysis, Prediction Tool, and Argument Statistic CRF file. Raster 

predictive analysis had some stumbling blocks throughout the tool’s execution. Trend Analysis 

produced results only with second degree polynomial function. At first it was unclear why 

harmonic function choice did not work but after reviewing function’s utility it was clear that 2nd 

degree polynomial function fitted data that had more fluctuations.  

Predict tool produced results based on trend analysis. Therefore, the slope trend of pixel 

change in trend analysis was determining the future trends. Hence, results amplified the existing 

slope trend. Pixels that had a bigger slope change were projected to have higher values. This 

feature could lead to a somehow incorrect map interpretation since this method did not 

consider weather oscillations. Oscillatory nature of weather in Southern California was 

controlled by penetrations of ocean air masses and desert dry air masses. Thus, any predictive 

analysis on the Los Angeles County scale could lead to ambiguous results.  

5.2.3. Susceptibility Analysis and Ground Truthing 

 A more responsible land and forest management system would benefit if pre-fire 

susceptibility mapping methodology was predetermined by authorities. When estimating human 

dwelling range with Distance Accumulation equation (4) and overlaying it with DEM layer and 
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its derivatives (Slope and Hillshade), Planet Scope NDVI, and adding Transmission lines then 

the results from analysis came spatially close to the fire outbreak origin. Some map products 

actually overlapped the susceptibility areas with the fire origin. Perhaps, armed with hindsight 

this project was unintentionally nudging parameters so the result came close to outbreak point.  

However, the aforementioned mapping approach was validated by coming spatially close 

to the point of fire origin. What this project wanted was to use methods that were already there 

and modify them thus when the pre-fire conditions are present then the local authorities can have 

a workflow for mapping in place. 

5.3. Future Research  

 The findings presented in this work represented a fraction of possible pathways that could 

produce fire susceptible areas. The additional steps in this research would be to include 

Notebook Python environments, VIIRS satellite data, and county scale electric road networks 

analysis. 

5.3.1. Model-builder vs. Notebook Environment  

 The simplified Model-builder often failed while Notebook performance was much faster 

and storage efficient, table 6. This was a great advantage over Model-builder that creates an 

output file. An output file occupied storage space, 117,19MB. Frequently, throughout this thesis 

minor glitches and wrong parametrization would produce both an erroneous layer and empty 

layer. From this thesis work experience future projects could perform more efficiently if they 

rely more on the Notebook environment. Moreover, a combination of both compliments each 

other. This was evident when inputting a DA layer into the geoprocessing interface. Because an 

interface allows data reading, then from the readings it was possible to adjust settings in the 

Notebook code line.  
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Tool  Model-Builder Notebook environment 

(Python)  

Execution Time (Rescale by 

Function)  
Application Stopped working 
or ArcGIS Pro issue coded 

warning  

41 seconds 

Table 6. Model-builder versus Notebook. 

5.3.2. Adding VIIRS product 

  The Suomi National Polar-orbiting Partnership (SNPP) platform-based NASA VIIRS 

L1B calibrated radiances product derived from the five image-resolution or I-bands, which have 

a 375-meter resolution at nadir. These I-bands comprise three reflective solar bands (RSB) and 

two thermal emissive bands (TEB). Each of the I-bands has 32 detectors in the along-track 

direction with 32 rows of pixels per scan. Ranging in wavelengths from 0.6 µm to 12.4 µm, the 

I-bands are sensitive to visible/reflective, near-, shortwave-, mediumwave-, and longwave-

infrared wavelengths.  In contrast to a MODIS L1B product, which temporally spans 5 minutes, 

the VIIRS L1B calibrated radiances product contains a nominal temporal duration of 6 minutes. 

This spatial and radiometric resolution would be used to calculate an additional raster 

predictive model. Also, 375-meter resolution would be used for coarse scale susceptibility 

analysis. Therefore, a comparison between two different resolutions would test both 

susceptibility approaches with more rigor.  

5.4. Conclusion 

 This thesis partially achieved its results when assessing scenarios for pre-fire 

susceptibility, raster predictive, and drought indices models. These pre-fire susceptibility map 

products were compared to raster predictive maps and regional indices maps. A comparison 

found that there was very little or no relationship between raster predictive, regional, and 
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susceptibility analysis. In the future, the methodology would include overlapping electric and 

road networks with coarse scale pre-fire indices analysis. In addition, data-processing would 

include more Notebook Python environment data processing, thus speeding up some steps that 

this thesis found time consuming. 

Wildfires pose a substantial risk that must be mitigated by local first responders and land 

management agencies. This thesis might provide some intuition to previously mentioned 

organizations. 
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Appendix: NMDI and NDWI Results 
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Appendix (Images 1-29). NMDI and NDWI 

Spatial-Temporal Results. Figure 17-29 shows 

Los Angeles County area. 
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