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Abstract 

Cities have prioritized the utilization of trees and the urban tree canopy (UTC) due to their 

associated benefits of cooling, atmospheric carbon sequestration, and runoff water interception, 

among others. However, conditions of inequitable canopy coverage are inherent. Tree planting 

initiatives, like the City of Los Angeles’s Green New Deal, attempt to tackle this inequity 

through the identification of regions with the greatest lack of, and therefore greatest need for the 

UTC. Remote sensing and GIS are necessary tools for the city managers to monitor the urban 

forests and conduct temporal comparisons. Thus, this analysis compared pixel-based, object-

based, deep learning, and data fusion image classification approaches in identifying urban tree 

canopy using very-high resolution multispectral imagery, one-meter resolution LiDAR point 

clouds, and vector data. An accuracy assessment was conducted to compare each classification 

method according to type I error, type II error, and classification agreement with ground truth 

data. A final decision on best classification method is predicated on accuracy as well as 

methodological complexity, time, and replicability. The data fusion classification provides the 

result with the best accuracy results across both land cover classes despite its long geoprocessing 

time. The pixel-based, object-based, and deep learning classifications were unable to produce 

adequate classification accuracies regardless of improved geoprocessing times. Future analyses 

may look to automate similar data fusion classifications to produce similarly high classification 

results at a larger scale.  
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Chapter 1 Introduction 

As global temperatures increase, natural protection against this increased heating effect becomes 

imperative to maintaining the livability of urban environments. These heating consequences are 

of great concern in the City of Los Angeles given its infrastructural prioritization of the car as a 

primary mode of travel and its flat landscape with little existing shade. The city aims to counter 

the consequences of global warming through sustainable development approaches, including tree 

planting. In 2019, Los Angeles announced its most recent green legislation, the Los Angeles 

Green New Deal which calls for the growth and maintenance of a healthy and robust urban tree 

canopy.  

The urban tree canopy (UTC) is the condition of tree canopy cover in a city driven by 

tree planting. Although the existence of a UTC is not new, its role in urban forestry is still a 

relatively novel concept. Initially, interest in city tree planting began as a response to the poor 

living conditions brought on by the industrial revolution, which spurred early planners into 

leveraging trees as a means of beautification and connectivity through nature (Pincetl et al. 

2013). Although this remains a primary goal of the UTC in urban forestry, modern UTC 

implementation approaches aim to quantify the UTC’s natural benefits (i.e. stormwater runoff 

capture, carbon sequestration, and shade coverage) given new methodological advancements 

(Pincetl et al. 2013). These analyses, however, rely on the classification and quantification of 

areal tree canopy change over time to correlate growth and decay trends in the UTC against the 

growth and decay trends of its provided benefits.  

Subsequently, these change-over-time analyses require ample modern and historical 

classifications of tree canopy which is complicated by limited data availability and processing 

capabilities due to the technological capabilities of the time. Thus, canopy growth comparison 
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requires the recontextualization of historic datasets into a tree canopy classification with ample 

thematic and spatial resolution that matches that of modern data types. 

This thesis compared four image classification approaches - pixel-based, object-based, 

deep learning, and object-based data fusion - in their ability to identify tree canopy at a high 

spatial resolution. Tree canopy was classified using multi-spectral and light detection and 

ranging (LiDAR) datasets from 2017, one year before the announcement of the Green New Deal, 

which builds a base canopy classification with which future practitioners may look to quantify 

canopy change over time as measure of the Green New Deal’s efficacy. Accuracy, analytical 

complexity, and time were considered in the determination of a best classification approach. 

With the expected release of very high-resolution LiDAR point cloud coverage over Los Angeles 

County in 2024, this thesis aimed to identify the optimal image classification type in identifying 

UTC. Given the Los Angeles Green New Deal’s nature as a long-range plan with periodic 

progress checkpoints, the results of this analysis may be used to collect the necessary 

information to judge the success of this plan in achieving its tree planting goals. Additionally, 

given this plan calls for a geographic information science (GIS)-forward approach to UTC 

management, this thesis looks to identify an ideally reproducible classification workflow in 

hopes of providing the groundwork for UTC identification across multiple future time steps 

rather than through a singular comparison of progress.  

1.1 Tree Planting in Los Angeles 

Given global warming continues to drive increasing global temperatures as world 

populations increase in global cities, urban greenspaces play an increasingly important role in the 

climate regulation of cities. Within this context, trees are utilized for their shade benefits and 

their ability to sequester atmospheric carbon, which is particularly useful in global cities with 
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high emissions like Los Angeles (Gillespie et al. 2012). Furthermore, urban trees have been 

associated with positive social benefits including neighborhood beautification and lower 

perceived levels of stress (Watkins et al. 2017). Although these benefits can be quantified, there 

is still limited confirmation of the relationship between these benefits and the proliferation of the 

UTC (Riley and Gardiner 2020). Thus, to better aim the benefits of the UTC at the communities 

most in need, it is necessary to understand the relationship between UTC growth and the 

ecosystem service benefits which it provides.  

1.1.1 History of Los Angeles’s Urban Tree Canopy 

Historic analyses of Los Angeles’s UTC reveal non-uniform trends to canopy growth 

across the city’s neighborhood council districts. According to Gillespie et al. (2012), total tree 

density has increased across the Los Angeles Basin and San Fernando Valley whilst density 

decreased in Hollywood since 1920. That said, canopy density increased in a uniform fashion 

across private land whilst canopy density did not follow the same uniform pattern of growth on 

public land (Gillespie et al. 2012). This research exemplifies that time-series analysis of tree 

density and cover to be a primary methodological typology in urban forestry, however, it also 

reveals major limitations to tree identification in dense conditions. Furthermore, this research 

marked the beginning of tree planting which targeted vacancies in the public right-of-way.  

1.1.2 Los Angeles’s Current Tree Planting Approach 

Notable modern investment in robust tree planting initiatives (TPIs) in the City of Los 

Angeles began in 2006 with the announcement of the City of Los Angeles Million Trees 

initiative, which responded to the history of stagnant tree growth on public land in comparison to 

private land noted above through a one-million tree planting commitment (McPherson et al. 

2008). Said initiative determined that only about 20% of the potential benefits incurred by the 
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proposed planting contributed to natural benefits like carbon sequestration and stormwater 

runoff, however, this would still result in approximately $1.95 billion in savings by the year 2040 

(McPherson et al. 2008). Whilst the Million Trees initiative proposed marked monetary benefits 

from tree planting, it alternately revealed gaps in the city’s GIS infrastructure including a lack of 

a county-wide tree inventory, which tracks tree growth and health characteristics, and a lack of a 

central data hub.    

Mayor Eric Garcetti revealed Los Angeles’s Green New Deal in 2019 which features Los 

Angeles’s next milestone tree planting commitments. The commitment not only calls for the 

citywide planting of 90,000 new trees but a 50% canopy area increase in neighborhoods of 

greatest need with baseline growth of 20% across the city. The plan’s greatest potential 

contribution to the academic meta on urban tree canopy, however, is its prioritization of tree 

protection programs which leverage state funding to preserve older trees which have grown a 

mature canopy. This is supplemented by the desired development of ‘Adopt-A-Canopy’ 

programs which call for homeowners to grow young saplings on their property. By planting trees 

in safe locations outside of the public right-of-way, tree mortality fueled by vandalism and motor 

accidents will decrease ultimately contributing to the growth of a more mature and resilient 

future canopy. That said, this complicates the management process given tree maintenance after 

planting is the responsibility of the resident meaning the success of these programs are reliant on 

both homeowner capability and interest in fostering tree growth.  

1.1.3 Los Angeles Canopy Management 

Since the announcement of the Green New Deal, the City of Los Angeles has contracted 

private tree management company Davey Trees in the creation of a citywide tree inventory 

which captures tree size, species, health, and management characteristics, responding to the 
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informational gaps of Los Angeles’s past tree management approaches. Furthermore, the Los 

Angeles Region Imagery Acquisition Consortium (LARIAC) has announced their new data 

product list expected to release summer 2024, which includes very-high resolution orthoimagery 

products standard in tree canopy remote sensing analyses.  

This marks a notable modern advancement in the GIS approach toward urban forestry in 

the City of Los Angeles. The improved data products from LARIAC are directly applicable in 

the derivation of terrain and surface features in urban settings which could allow researchers to 

identify the UTC through the volatile surface conditions of tree canopies. The city’s contract 

with Davey Trees also marks its transition into a more robust street tree management approach in 

which canopy health and growth conditions can be identified at the individual tree level rather 

than approximating canopy health through a calculation of canopy change over time. Despite 

these technological advances in the city’s GIS urban forestry infrastructure, historical data 

sources used in past urban forestry research are still limited by the technology of their time 

rendering their use in modern urban forestry limited due to non-similar temporal, spatial, and 

thematic resolutions. However, assessments of canopy development, like change over time 

analyses which attempt to correlate canopy growth and decay against socioeconomic indicators 

of wealth, require historical data to be in like resolutions to maximize the actionability of these 

results. In response, this thesis compared the effectiveness of four different image classification 

methodologies in classifying the UTC at an ample and actionable resolution with which 

practitioners can develop future tree canopy growth methodologies.  

1.2 Study Area 

Located due east of downtown Los Angeles, as seen in Figure 1, the unincorporated 

neighborhood City Terrace is an epicenter of Los Angeles’s urban forestry efforts. The 
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neighborhood boasts a 95% Latino population, approximately a third of which are either elders 

or children (Urban Trees Initiative 2023). Additionally, given 70% of households fall far below 

the federal poverty level, much of which can be correlated with historic redlining practices, the 

neighborhood’s population is especially vulnerable to the socioeconomic impacts of the UTC. As 

a result of the robust industrial presence in the neighborhood, observed particulate matter 

concentrations are up to 90% higher than the average of other neighborhoods in California 

(World Health Organization 2021). Given these conditions, UTC development in City Terrace is 

notably limited making the neighborhood an area of interest for TPIs. The University of 

Southern California’s Urban Trees Initiative research project, in partnership with the City of Los 

Angeles, has identified City Terrace as a target neighborhood for tree planting efforts which have 

spawned out of the Green New Deal. Thus, the study area used for analysis was the geographic 

region defined by the City Terrace neighborhood of East Los Angeles.  
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Figure 1. City Terrace study area boundary 

 

 Due to its large area of residential zoning, the City Terrace study area has high potential 

for UTC growth. As seen in Figure 2, City Terrace is comprised of primarily residential zoning. 

Commercial zoning is primarily situated around larger, through-traffic streets which are expected 

to have higher densities of street tree cover given their role as beautification in commercial 

centers. The northern-most portion of the study area is dedicated nearly exclusively to industrial 

zoning; however, this area is bordered by residential zoning indicating potential for either high or 

low tree canopy coverage. Given the proximity of residential zoning to industrial zoning in this 

area, ample tree canopy coverage is important as a counter to the consequences of the industrial 

presence. Blue zones in Figure 2 are indicated as government zoning, however, comparison 
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against ground truth imagery reveals these zones to be primarily local parks. Thus, the City 

Terrace study area has high potential for future tree canopy growth, however, current tree canopy 

development may be limited by alternate socioeconomic factors including neighborhood income 

and social standing.    

 

 

Figure 2. City Terrace land use zoning 

 

1.3 Methodological Overview 

This thesis compared pixel-based image analysis (PBIA), object-based image analysis 

(OBIA), deep learning, and data fusion image classification in their ability to accurately identify 

and quantify UTC cover using LiDAR point cloud data and 4-band satellite imagery. The PBIA, 
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conducted in ArcGIS Pro, applied 700 training data pixels to an SVM classifier to classify 4-

band satellite imagery into first a seven-class land cover schema which was subsequently derived 

into ‘tree’ and ‘not tree’ classes. The OBIA, similarly conducted in ArcGIS Pro, applied 700 

training data polygons to an SVM classifier to classify image objects pre-segmented from 3-band 

satellite imagery into a seven-class land cover schema which was again reclassified into ‘tree’ 

and ‘not tree’ classes. Using ArcGIS Pro’s deep learning extension library, the ‘tree 

segmentation’ deep learning algorithm derived from the DeepForest model was used to identify 

tree canopy objects in 3-band imagery. Finally, in Trimble’s eCognition, 4-band imagery 

derivatives and LiDAR surface raster derivatives were used to segment and reclassify image 

objects derived from LiDAR point cloud data into a ‘tree’ and ‘not tree’ classification of land 

cover. Finally, each of these classification results were accuracy assessed via confusion matrix 

building on a stratified random sampling method.  

1.4 Thesis Overview 

Chapter 1 has discussed the history of Los Angeles’s TPI approach, the analysis study 

area, and overall project goals. Chapter 2 discusses the consequences of urbanization, the role 

that trees play in managing these consequences, Los Angeles’s tree planting approach, and the 

use of remote sensing in managing this approach. Chapter 3 outlines analysis design, specifically 

the different remote sensing classification approaches and how they were compared via pixel-

based accuracy assessment. Chapter 4 provides the results of this analysis whilst chapter 5 

discusses the implications of these results, specifically by deciding which classification approach 

is best and how future analyses may look to improve upon each classification.  
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Chapter 2 Related Work 

As awareness of the detriments of urbanization increase, the use of trees in improving the urban 

condition is seen as an important tool in both natural and social ecosystem management. Given 

the expected heating impacts of climate change as well as its exacerbation of drought conditions 

in Los Angeles, a sustainable approach toward climate management is necessary. Los Angeles’s 

prioritization of cars through robust street and freeway systems means the city land cover is 

comprised of primarily impervious surfaces which exacerbate the heat island effect, a condition 

in which the sun’s rays are trapped in these surfaces leading to increased temperatures. As 

populations are expected to grow, the number of people who are subjected to the consequences 

will only increase. Furthermore, given the nature of urban trees as a social amenity, 

socioeconomic and demographic biases drive canopy growth leading to an inequitable 

distribution of its benefits. This chapter discusses how the UTC can be leveraged as a means of 

sustainable development and how current methodological advancements in the monitoring of the 

UTC can be used to plan more equitable tree planting.  

2.1 Consequences of Urbanization 

The rapid and extensive urbanization fostered in urban cores, like Los Angeles, is 

understood to produce numerous detriments to the ecosystem health of cities. The three fronts of 

urbanization’s impact on the natural environment of urban cores include impacts on water 

systems, air quality, and urban heating. A primary facet of urbanization’s consequences to urban 

water systems is a growing concern with mass water storage and their supply chains (Lundqvist, 

Appasamy, and Nelliyat 2003). Although current remedies include outsourcing water supply 
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from regional agricultural reservoirs, these become both financially and logistically implausible 

as population thresholds are approached (Srinivasan et al. 2013).  

Research into urban heat islands (UHI), a phenomenon in which heat is trapped and 

amplified in the hardscape which defines urban environments, reveal marked increases in 

average temperatures, incidence of extreme temperature pockets, and the disparity between 

average temperatures of urban environments and their rural counterparts (Xiong et al. 2012). 

Figure 3, from the United States Environmental Protection Agency (EPA), adds context to these 

findings by revealing how surface and air temperatures compare per land cover type, revealing 

the severity of the built environment’s heat trapping effects. This figure indicates that as 

neighborhood typology transitions from rural to the urban core the disparity between day and 

night air temperatures decrease given the urban hardscape traps heat longer.  

 

 
 

Figure 3. Night and daytime difference in retained surface and air temperatures per locale. Figure 

by US Environmental Protection Agency 
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Finally, concerns with urbanization’s impact to air quality are of particular interest, 

especially in Los Angeles which has boasted some of the highest global emission through the 

middle of the 20th century (Hassler et al. 2016). According to the World Health Organization, 

high rates of PM 2.5 emissions are a primary contributor to high mortality rates worldwide. 

Furthermore, research indicates that conditions of increased PM 2.5 are correlated with high 

population densities especially in areas with inherently dusty emissions, both of which are 

notable characteristics of Los Angeles (Han, Zhou, and Li 2016).    

The natural consequences of urbanization are only expected to amplify given future 

population growth trends and their correlation with global climate change. The United Nations 

expects 70% of the global population to inhabit urban cores by 2050, a 20% increase from 

current population levels. Thus, global water shortages are expected to affect up to 3.1 billion 

people globally because of seasonal shortages incurred by increasingly severe and frequent 

drought conditions (McDonald et al. 2011). Additionally, given the higher heat fluxes of the 

impervious surfaces of urban cores paired with increased urban build-up as a response to 

increasing population demands, nighttime UHI heating thresholds are expected to increase by up 

to 30 degrees Fahrenheit by 2050 given increasing global temperatures (Wang et al. 2016). Thus, 

it is important for the legislative powers which control the regulation of urban systems to 

implement changes which limit the ecosystem impacts of urbanization.  

2.2 Urban Tree Canopy 

The UTC is the condition of canopy cover created through tree planting in urban 

conditions. Although historically used as a means of city beautification aimed at fostering 

community, modern iterations of tree canopy development prioritize the use of the tree canopy as 
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means of sustainable development. Canopy benefits in Los Angeles produce monetary, health, 

and ecological benefits, however, this relies on the maintenance of a mature and healthy canopy. 

The ecosystem and health benefits of the urban canopy range from storm water management and 

filtration, temperature mitigation through shade cover, air quality improvement through the 

filtration of atmospheric particulates, and mitigation of perceived stress. Although this is 

universally desired, equitable tree canopy growth is inhibited due to social and demographic 

drivers of social stability including minority status and median household income.  

2.2.1 Ecosystem and Health Benefits 

Modeling of the environmental benefits of the UTC point to potential monetary savings, 

however, this success is reliant on a mature tree canopy. Common applications of greenspace in 

urban centers include public parks, community gardens, hiking trails, water systems, and 

conservation areas, however, understanding and application of the UTC’s role in green urban 

infrastructure is still novel (Roy, Byrne, and Pickering 2012). As the body of academic research 

on the benefits provided by the UTC has expanded, however, its role and importance in 

providing both ecosystem and health benefits has become increasingly evident. Xiao and 

McPherson (2002) finds that the existing UTC in Santa Monica, California captures 1.6% of 

yearly precipitation which translates to approximately $111,000 in runoff stormwater treatment 

and flood control cost savings. This research points to a strong disparity in savings dependent on 

tree size in which large, mature trees intercepted up to 40% more rainfall in comparison to 

smaller trees. This points to the importance of tree size and maturity in relation to the benefits of 

the UTC aside from the larger area of shade they may cast.  

Although modeling on the cooling effects of the UTC indicates a direct correlation, the 

proliferation of these benefits relies on the three-dimensional structure of the canopy. In a model-



 14 

based comparison of the temperature cooling benefits of urban trees and grass lawns, Wang et al. 

(2016) reveals cooling impacts of up to 5 degrees Celsius at peak times, however, also points to a 

disparity in both the structure of and cost of achieving these benefits. Firstly, lawns induce 

cooling secondarily by reducing the heat which contributes to vaporization during green 

evapotranspiration whilst trees produce more direct shade impacts by intercepting solar radiation 

from reaching and reflecting off the ground (Wang et al. 2016). Furthermore, the cooling impact 

of trees can be further compounded by increasing canopy density and understory presence in the 

third dimension whilst scaling of the shade benefits of lawns is limited to the second dimension. 

Figure 4 illustrates common tree forms and their respective shadow. Round, vertical-oval, and 

horizontal oval tree canopies project a more substantial shadow on the ground plane while 

pyramidal and columnar produce narrower features whose shadow is elongated as the aspect 

between the sun and the tree decreases.   

 

   
 

Figure 4. Tree-form shadow pattern diagram. Image from Shahidan and Jones (2008) 

 

Most importantly, urban trees require less water to grow and maintain given their drip 

irrigation watering systems have more control over water waste relative to traditional lawn 

sprinklers (Wang et al. 2016). Although the benefits achieved by supplementing the UTC with 

other green climate mediators, like the lawn, may be implied, model-based life cycle assessments 



 15 

of their relationship are limited due to complications variable collinearity (Spatari, Yu, and 

Montalto 2011). 

2.2.2 Inequity in the UTC  

Although the benefits of the UTC are both observable and quantifiable, variable 

correlation in the socioeconomic drivers of canopy distribution reveal inequity in the distribution 

of the UTC in urban regions. Tree canopy cover exhibits a positive relationship with population 

density in which canopy cover and accessibility increases in more populous regions. Although 

this expected, this information can be used as normalization in analyses which aim to identify the 

socioeconomic drivers of canopy growth. For example, Zhuang, Xie, and Yu (2023) identifies a 

starkly positive relationship between UTC and housing prices in Guangzhou, China pointing to 

an economic bias in canopy distribution. This research also reveals a positive relationship 

between UTC and neighborhood age, suggesting stagnant canopy growth in older neighborhoods 

which has yet to be addressed with current planting initiatives. Additionally, Watkins et al. 

(2017) applies a statistical regression to correlate the presence of tree canopy with various 

demographic and socioeconomic factors of stability. This analysis finds higher incidence of 

planting initiatives in communities with higher percentages of African American and Hispanic 

residents pointing to a racial bias in accessibility. Furthermore, the neighborhoods with both low 

median income and high ethnic minority composition had the lowest incidence of TPIs pointing 

to a compounding of these negative biases (Zhuang, Xie, and Yu 2023). Thus, the socioeconomic 

drivers of inequitable canopy distribution must be understood together rather than as independent 

influences. 
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2.3 Urban Tree Planting Approaches 

To counter the negative effects of urbanization and their inequitable distribution across 

the spatial domain, many cities implement TPIs as a commitment to leverage trees as a counter 

benefit. The United States’ investment in these planting programs began in the mid-20th century 

as a response to mass Elm tree loss due to Dutch elm disease (Eisenman et al. 2021). The 

occurrence of these initiatives has since grown including a seven time increase academic 

publications focused on the matter in the last decade (Eisenman et al. 2021). Most TPIs function 

at small scales given the amount of public investment required, however, both New York City 

and the City of Los Angeles have proven successful in implementing larger scale programs. This, 

however, is reliant on the fact that these larger cities are better equipped to coordinate efforts 

between public, private, and non-profit constituents in maintaining the commitments of planting 

initiatives (Roman et al. 2015). TPIs also act as important political leverage for both lobbying 

and campaign efforts which in smaller cities with less non-profit and private leaderships can 

prove detrimental to their lasting success (Pincetl et al. 2013). Thus, modern planting initiatives 

must take a multi-faceted approach toward urban forestry in which the governing bodies that 

control them take both a coordinated, community focused approach toward canopy management. 

In this instance, non-profit organizations involved in community tree planting may look to 

employ private, neighborhood-level TPIs which properly address the ethnic biases of their 

community whilst city legislators would bolster these efforts with citywide, public planting 

commitments aimed at catalyzing economic development through their scope and scale.  

2.4 Remote Sensing in Urban Forestry 

As the technical capabilities of modern remote sensing technologies have improved, 

urban forest management constituents have adopted the use of satellite imagery in the 
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identification and management of the UTC. Through the development of remotely sensed data 

types, like the ability to capture hyperspectral data in high resolution and the use of passive 

remote sensing to collect 3D point representations of the earth’s surface, remote sensing urban 

tree canopy management methodologies have improved in their ability to accurately quantify the 

area and location of UTC cover. Standard techniques include the reclassification of high-

resolution satellite imagery via pixel- or object-based image analyses as well as the 

transformation of four-band imagery into representations of vegetation health; However, modern 

methodological advancements in the application of remote sensing techniques allow for the 

combination of data types and identification techniques into a single ‘data fusion’ workflow 

which expands on the temporal and spatial limitations of traditional approaches.  

2.4.1 Data types 

Despite the growing public availability of remotely sensed data, the longer geoprocessing 

times associated with larger remotely sensed datasets limit their widespread usability. Medium 

resolution imagery from MODIS and Landsat are most often employed in time series-based 

change monitoring and detection analyses, however, their resolution causes pixel mixing which 

confidence in the accuracy of their results (Shojanoori and Shafri 2016). Furthermore, this 

imagery has long collection cycles which limits their use in time series analyses given less data is 

available per time step. High or very-high resolution satellite imagery is preferred in urban 

forestry applications given its clear image picture allowing for high-accuracy object 

identification (Agarwal et al. 2013). QuickBird, IKONOS, and WorldView-2 satellites provide 

the most popular high-resolution imagery given their inclusion of multispectral bands which can 

be used to better identify vegetation in complex urban scenes (Ouma and Tateishi 2008).  
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Limitations caused by the large file size and high cost of hyperspectral imagery limits its 

widespread application which has lead practitioners in the direction of active sensing options like 

synthetic aperture radar (SAR) and LiDAR to develop techniques on capturing 3D tree shapes. 

Most commonly, SAR data is used in natural forest health evaluation given the SAR can 

penetrate through the ground surface to study tree root health. Alternatively, like in Sung (2012), 

LiDAR data is used in calculating tree heights and canopy shape via the subtraction of ground 

return LiDAR values from canopy return values which identifies trees in areas of high difference 

values between first and last return LiDAR points. This calculation, however, is limited in urban 

scenes due to the presence of rooftops which are confused with canopy. Rather, in urban settings 

LiDAR data is used supplementarily to identify structural characteristics like 3D canopy shape 

and height whilst hyperspectral imagery is used more traditionally to identify vegetation 

characteristics like species and health (Zhong et al. 2022).  

2.4.2 Techniques 

Given the dense spatial condition of objects in urban scenes, the identification of tree and 

other object features in satellite imagery is differentiated between traditional pixel-based 

approaches and newer OBIA methods. PBIA requires the creation of training datasets in which 

pixels in the image scene are classified into new land cover classes. This identification type only 

considers the information hosted in each image pixel in its identification decision, which leads to 

easier and faster geoprocessing, however, is limited by issues of image speckling and pixel 

mixing which cause error in the final classification (Shojanoori and Shafri 2016). Alternatively, 

OBIA models leverage the information from neighboring pixels, including color, shape, and 

texture, in their decision of classification results (Shojanoori and Shafri 2016).  
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Although OBIAs may be expected to produce better classification results given their 

consideration of both spatial and spectral characteristics, final classification accuracies inevitably 

vary depending on the characteristics of a proposed study area resulting in unique application 

conditions. In a comparison of PBIA and OBIA techniques, Sibaruddin et al. (2018) finds that 

OBIA produced final classifications up to 21% more accurate than their pixel-based alternatives. 

That said, two of the five tested classification scenarios returned OBIA results only about one 

percent more accurate than their pixel-based counterparts. In fact, although they produce 

inherently less accurate results, PBIAs are useful in the case of big data given ease and speed of 

geoprocessing (Sibaruddin et al. 2018). Ultimately, their application in forestry is limited to 

natural forest detection given the presence of objects in the scene, like buildings, which may 

create classification confusion. Thus, OBIAs are the standard classification approach in urban 

forestry given their consideration of object shape characteristics which can be trained to 

differentiate canopy from conflating objects like building rooftops.  

To avoid the manual processes required by standard PBIA and OBIA approaches, 

practitioners employ deep learning classification models built on neural networks for image 

object classification. Neural networks are a means of artificial intelligence which automate the 

processing of input data according to numerous processing layers into a final output (Ma 2019). 

In the case of their use in remote sensing, deep learning algorithms are incorporated in the 

training, segmentation, and classification steps of image classification methodologies to 

eliminate the time dedicated to these manual processes (Ma 2019). The convolutional neural 

network (CNN), the most popular deep learning image classification model, is used to process 

singular data inputs according to multiple output arrays and is thus best suited for the 

classification of multispectral imagery (LeCun, Bengio, and Hinton 2015). In contrast, recurrent 
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neural networks (RNN) are applied when processing input and output data of varying sequential 

lengths and are thus best suited in analyses with sequential inputs (Ma 2019). Thus, derivative 

RNN models are useful in multi-step classification processes whilst CNNs best service one step 

processes which classify imagery with training data.   

2.4.3 Applications 

Despite the prevalent use of both active and passive sensor types in capturing remotely 

sensed imagery, larger methodological applications of remote sensing in urban forestry are 

primarily focused on location identification, species identification, and structural detection. Tree 

location detection methodologies are a standard application of remote sensed imagery in urban 

forestry given they can be conducted using both manual visual-interpretation and computer-

driven image classification techniques. Visual interpretation is most useful in supplementary land 

cover classification given the inherent human error involved. Unsupervised PBIA methods 

provide a marginal increase in analytical difficulty given these do not require the creation of 

training datasets, however, these often result in inaccurate, pixelated results in urban conditions 

due to this lack of image training (Shojanoori and Shafri 2016). In response, supervised PBIA 

models, like maximum likelihood, minimum distance, and the SVM, are employed, however, 

still struggle with image pixelization given the spectral variability of urban settings (Yu, Chen, 

and Chang 2006). Thus, researchers alike prefer object-based models, like the Artificial Neural 

Network which rely on fuzzy classification logic, given their improved classification results in 

urban settings (Liu and Xiao 2010). Not only do these techniques improve classification 

accuracy but allow for the extraction of additional tree characteristic information.  

Urban tree canopy detection in urban forestry remote sensing improves on the techniques 

employed to improve tree counting accuracies. Unlike individual tree counting approaches, tree 
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canopy detection research leverages an array of spectral information instead relying on physical 

object characteristics in the image, like texture and shape, as classification determinants. Thus, 

OBIA is preferred over PBIA approaches, however, is instead applied on high-contrast imagery 

and imagery derivatives, like the Normalized Difference Vegetation Index (NDVI), which better 

differentiate shapes in an image (Liu et al. 2004). Figure 5 is the calculation of the standard 

deviation of LiDAR point elevation which reveals tree canopy in a stark white contrast given the 

variable three-dimensional structure of tree canopy. This contrast improves object-based imagery 

classifications.  

 

 
   

Figure 5. Standard deviation of LiDAR point cloud elevation. Image from O’Neil-Dunne et al. 

(2013) 

 

Additionally, Yao and Wei (2013) and like researchers reveal the benefit of LiDAR in 

revealing 3D structure in remote sensing analyses. Given LiDAR can penetrate and detect tree 

canopy in the z-dimension, this data is integrated with 2D classification products to improve 

overall classification accuracies beyond that which can be achieved with exclusively LiDAR or 
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2D imagery classification techniques. However, the use of LiDAR in tree canopy detection 

scales in difficulty in the transition from natural to urban forests given the increase in structural 

and spectral complexity of urban scenes. In fact, Yao and Wei (2013) find that misclassification 

of tree canopy in urban environments is most often caused by buildings and their shadows which 

interfere with young street tree shapes in image scenes.  

 Rather than limiting tree canopy monitoring workflows to the use of one image in a 

classification, researchers have developed methods to merge the spectral and spatial information 

from multiple non-like data types into a single image classification schema through data fusion. 

Pixel-level data fusion is the process of compiling multiple raw data sources into single-

resolution data which hosts the fused spectral and spatial data. This process is preferred when 

attempting to identify the relationship between variables given the incorporation of multiple 

input attributes into a singular final output (Zhang 2010). Alternatively, feature-level data fusion, 

the method this thesis employed, fuses raw input data to extract image features for combination 

into a final output (Zhang 2010). This approach is preferred in analyses with big data 

requirements, like hyperspectral imagery and LiDAR point clouds, given the user’s ability to 

extract only the necessary pieces of information from each raw data input rather than stacking all 

input information into a single output (Zhang 2010). This requires an initial pixel-level 

classification of input data before final segmentation into image features.  
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Chapter 3 Methods 

This thesis quantified tree canopy changes in Los Angeles using a pixel-based, object-based, 

deep learning, and data-fusion image classification techniques. High-resolution 60-centimeter 

satellite imagery, LiDAR point clouds, and building footprint polygon data were sourced from 

the National Agricultural Imagery Program (NAIP), LARIAC, and Los Angeles’s GeoHub open 

data website respectively. In ArcGIS Pro, LiDAR point cloud data was then used to produce 

surface and terrain raster derivatives while NAIP four-band imagery was converted into an 

NDVI classification of vegetation. NAIP imagery was classified into seven land cover classes in 

ArcGIS Pro using a supervised pixel-based classification approach, a supervised object-based 

approach, and the ArcGIS ‘Tree Segmentation’ deep learning package guided by the work of 

O’Neil-Dunne, MacFaden, and Royar (2014) and O’Neil-Dunne et al. (2013). Additionally, 

LiDAR derivates were segmented into two land cover classes via OBIA, tree canopy and 

unclassified, and improved using contextual spectral and spatial information provided by both 

polygon and raster datasets in the GIS software eCognition. Each classification result was then 

compared via a confusion matrix using a stratified random sampling process. Information on 

geoprocessing time, complexity, and applicability was considered in the final determination of an 

ideal classification approach.   

3.1 Methods Overview 

The PBIA was conducted in ArcGIS Pro on 4-band NAIP imagery. First, 700 sample 

training data pixels were collected according to a custom 7-class land cover schema organized 

into tree, shrub/grass, dirt, buildings, paved ground, water, and shadow land cover classes. The 

image was then initially classified using the SVM classifier first into this 7-class land cover 
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scheme then subsequently reclassified into a two-class scheme which segmented the imagery 

into ‘tree’ and ‘not tree’ land cover classes.  

The OBIA analysis was conducted in ArcGIS Pro on 3-band, red, green, blue (RGB) 

imagery derived from the previously referenced 4-band NAIP imagery as seen in Figure 6. First 

the image was segmented into image objects according to both the spatial and spectral similarity 

of pixels across the study area. Next, 700 training sample polygons were collected within the 7-

class land cover schema created for the PBIA. Then, the 3-band NAIP image was classified 

using the SVM classifier into the 7-class scheme and finally reclassified into ‘tree’ and ‘not tree’ 

land cover classes. 

 The deep learning classification was conducted in ArcGIS Pro using the ‘Tree 

Segmentation’ deep learning package provided in the ArcGIS Pro deep learning image analyst 

extension. This deep learning package is served pre-trained thus eliminating the need for 

classifier training. Finally, the data fusion analysis is conducted in the GIS software eCognition 

using both NAIP 4-band imagery and sourced LiDAR point cloud data. First, the sourced LiDAR 

point cloud were derived into nDSM, nDTM, zDifference, and slope surface raster datasets 

which were then segmented into image objects according to like spectral and spatial qualities. 

Next, these surface rasters, as well as an NDVI raster derived from the NAIP 4-band imagery, 

were used to reclassify these image objects into ‘tree’ and ‘not tree’ canopy classes via a 

stepwise reclassification approach. Once complete, these image objects were shape refined into a 

final two-class land cover classification of tree cover.  

Once all classification analyses were completed, all classified results raster datasets were 

assessed according to their classification accuracy via confusion matrix. First, stratified random 

sample points were created for each resultant raster. Each set of sample points were then 
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reclassified according to the land cover class of the image pixel that each assessment point 

intersected with in both the classified image result and in the ground truth NAIP imagery. These 

points were then used to compute confusion matrices for a final comparison of all classification 

types according to accuracy and agreement.  

 

 

Figure 6. Thesis workflow 

 

3.2 Software 

This thesis analysis was completed using both Esri’s ArcGIS Pro and Trimble’s 

eCognition software. ArcGIS Pro acts as the industry standard GIS program, however, requires a 
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purchasing license to be used. Alternative programs, like QGIS, act as suitable alternatives to 

ArcGIS Pro’s GIS capabilities, however, ArcGIS Pro provides the benefit of its robust 3D 

processing capabilities which are amply suited for this analysis given its use of 3D LiDAR point 

cloud datasets. Additionally, ArcGIS Pro allows access to Esri’s greater online GIS infrastructure 

making data serving far more streamlined. Thus, ArcGIS Pro’s compatibility and data sharing 

infrastructure make it the ideal software for use in this thesis which looked to serve actionable 

results paired with an easily replicable workflow. Similarly, Trimble’s eCognition acts as the 

industry standard data fusion software. Given data fusion is a relatively new advancement in GIS 

image classification, past analyses have developed workflows which allow for data fusion, 

however, must be conducted across multiple programs like ArcGIS Pro and R Studio. Thus, 

eCognition allows for the streamlined processing of multiple data types (vector, raster, etc.) in a 

singular GIS software. Additionally, eCognition workflows are saved in rule set notebooks 

which can be exported and shared with others. These notebooks can be immediately processed 

without having to manually rewrite each rule set making reiteration easier.    

3.3 Data and Pre-Processing 

This analysis leveraged both four-band imagery and LiDAR point data as its remotely 

sensed source data. Shown in Table 1, NAIP four-band imagery was collected from the 

California Department of Fish and Wildlife’s online ArcGIS REST Services Directory which 

hosts all California NAIP products collected between 2005 and 2022. This 4-band imagery was 

used for the PBIA analysis and was extracted into a 3-band, RGB derivative which was used to 

complete both the OBIA and deep learning classifications. LARIAC LiDAR point clouds were 

collected from the NOAA: Data Access Viewer, an open data website dedicated to serving land 

cover, imagery, and LiDAR data. This point cloud data was derived into various 1-meter 
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resolution raster datasets for use in the data fusion classification of tree canopy. Both the 

LARIAC and NAIP datasets were collected in 2016 according to the dataset owners, however, 

visual analysis of features indicate collection likely occurred at different times of the year. All 

datasets in this analysis were initially imported into an ArcGIS Pro project and reprojected into 

the NAD 1983 StatePlane California V FIPS 0405 Feet projection to ensure analysis readiness.  

 

Table 1. Data 

Dataset Description Format 
Data 

Type 

Spatial 

Unit/Scale 

Temporal 

Scale 
Source 

LARIAC-4 

LiDAR 

LiDAR point 

cloud  
.laz 

3D 

Point 
1m  2016 LARIAC 

NAIP 4-Band 

Imagery 

60 cm resolution 

R, G, B, NIR 

band satellite 

imagery 

.tiff Raster 60 cm 2016 

CA 

Department of 

Fish and 

Wildlife 

LA 

Neighborhood 

Council 

Districts 

Polygon dataset 

of neighborhood 

council district 

boundaries. 

.shp Vector Feet 2015 LA GeoHub 

LA Building 

Footprints 

Polygon dataset 

of building 

footprint 

boundaries with 

attribute 

information on 

building height 

and elevation. 

.shp Vector Meters 2016  LARIAC 

 

 

To prepare for the data fusion the sourced LiDAR point cloud data was converted into 

derivative raster datasets which described various surface feature conditions of the study area. 

First the LARIAC 4 LiDAR tile grid shapefile, named ‘tilegrid.shp’ for analysis, was 

downloaded from the LARIAC website and imported into an ArcGIS Pro project. This polygon 
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dataset identified thearea that each LARIAC point cloud dataset was collected. Next, the Los 

Angeles neighborhood council districts dataset, named ‘districts.shp,’ was imported and 

reprojected into the same projection. Using the select by location tool with an intersect 

relationship, all LiDAR grid tiles that intersect with the study area polygon in the ‘districts.shp’ 

layer were selected and exported into a final ‘studyarea.shp’ dataset. Then, each LiDAR point 

cloud within this tile grid was downloaded in their served .laz file format. Each .laz file was then 

converted into the compatible .lasd file format using the ‘Convert LAS’ tool in ArcGIS Pro. 

Finally, each LiDAR .lasd file was imported into a single projected SA_LAS.las dataset for later 

processing in ArcGIS Pro. This singular point cloud dataset was then derived into various raster 

datasets which describe different study area surface conditions.  

3.3.1 NDVI 

Using the reprojected four-band NAIP imagery ‘NAIP.tif’ an NDVI raster was created in 

ArcGIS Pro. NDVI is created by calculating the ratio of the difference between reflectance 

values captured in the red (R) and near infrared (NIR) bands in four-band imagery according to 

the equation below: 

NDVI = (NIR reflectance – R reflectance) / (NIR reflectance + R reflectance) 

This was completed in ArcGIS Pro by using the NDVI raster function on the NAIP four-

band imagery. The NDVI map in Figure 7 scores vegetative health on a numeric scale between -

1 and 1 in which positive values are considered vegetation and negative values are considered 

non-natural, impervious surfaces. Based on a visual analysis of the NDVI values within the study 

area, pixels with NDVI values greater than 0.2 were to be considered light vegetation or shrubs 

while pixels with NDVI values greater than 0.5 were to be considered tree cover.  
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Figure 7. Normalized difference vegetation index 

 

3.3.2 DEM 

A digital elevation model (DEM) was created in ArcGIS Pro the LiDAR .lasd dataset 

produced in pre-processing. First, a ground points LAS filter was applied to the .lasd dataset 

which isolates only ground points in the LiDAR dataset. Then the final DEM was created using 

the “LAS to Raster” function set with an ‘AVERAGE’ cell assignment type and a one-meter 

pixel resolution which is equal to the sample distance of the original LiDAR point cloud thus the 
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finest possible output resolution. The one-meter spatial resolution output raster dataset, DEM.tif, 

seen in Figure 8 captures the elevation values of the ground surface in each raster cell which was 

later used to normalize other LiDAR derivative raster outputs according to the local elevations of 

the study area. 

 

 

Figure 8. Digital elevation model 
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3.3.3 nDSM 

Next, a normalized digital surface model (nDSM), shown in Figure 9 was created in 

ArcGIS Pro using the LiDAR dataset produced in pre-processing and its derived DEM. First, an 

LAS filter was applied to SA_LAS.lasd dataset to extract first return values which fall at the top 

surface of the study area. The elevation values of these first return LiDAR points were then 

rasterized using the “LAS to Raster” tool. In the “LAS to Raster” tool settings, the cell 

assignment type parameter was set to ‘MAXIMUM’ and the output spatial resolution was set to 

one meter. The derived one-meter resolution raster dataset was named DSM.tif. Next, the 

DSM.tif dataset was normalized using the elevation values stored in the DEM.tif layer created 

previous. Using the raster calculator tool, the normalized DSM is derived by subtracting the 

DEM.tif from DSM.tif resulting in a one-meter output raster named nDSM.tif.  
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Figure 9. Normalized digital surface model 

 

3.3.4 nDTM 

A normalized digital terrain model (nDTM), shown in Figure 10 was created in ArcGIS 

Pro using the SA_LAS.lasd LiDAR dataset produced in pre-processing and its derived DEM. 

First, an LAS filter was applied to the .lasd dataset to extract ‘last’ return values which fall at the 

bottom of the LiDAR point cloud. Then the “LAS to Raster” function was used to rasterize these 

’last’ return values into a DTM. In the tool settings the cell type assignment parameter was set to 

‘MAXIMUM’ and the output spatial resolution is set to one meter. This creates a one-meter 

raster output DTM labeled DTM.tif. Finally, this output DTM was normalized using the raster 
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calculator tool to divide the DTM.tif raster by the DEM.tif to produce an output nDTM named 

nDTM.tif.  

 

 

Figure 10. Normalized digital terrain model 

 

3.3.5 zDifference 

A zDifference dataset was created in ArcGIS Pro using the nDSM.tif and nDTM.tif raster 

datasets derived from LiDAR imagery previous. Using the “Raster Calculator” function, the 

nDTM.tif was subtracted from the nDSM.tif which produced a one-meter raster output titled 

zDifference.tif. The values stored in the raster output indicate the difference in the elevation 

between first and last return LiDAR points. Clusters of pixels with large zDifference values are 
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to be considered canopy given their loose canopy foliage allows for LiDAR sensors to penetrate 

to the ground surface whilst clusters of pixels with small zDifference are likely buildings given 

that the LiDAR cannot penetrate their impervious roof structure (O’Neil-Dunne et al. 2013). This 

is confirmed in a visual analysis of the raster output seen in Figure 11.  

 

 

Figure 11. zDifference 

 

3.3.6 Slope 

A slope dataset, titled slope.tif, was created using the nDSM.tif raster created in section 

3.1.3 and the ‘Slope’ tool found in the ArcGIS Pro Spatial Analyst toolkit. The output 

measurement parameter was set to ‘degree’ whilst all other tool parameters remain default. The 
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result was a one-meter resolution raster dataset which captures degrees slope in each raster pixel. 

As seen in Figure 12, trees are identified as round batches of white pixels given their variable 

canopy structure returns high slope values whilst buildings are identified as black rectangular 

polygons outlined with white, high slope pixels given their flat roof structure constitutes low 

slope returns.  

 

 

Figure 12. Slope 

 

3.4 Supervised Pixel-Based Classification  

Supervised pixel-based classification was conducted in the ArcGIS Pro Imagery Wizard 

on the 60-centimeter four-band NAIP imagery sourced for this analysis. First, a seven-class land 
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cover schema was created to describe all desired land cover domains in the study area upon 

which 100 training sample pixels were collected per land cover class. The Support Vector 

Machine (SVM) classifier was then applied to produce a one-meter resolution raster image 

product. Finally, this raster product was reclassified into two land cover classes classes, ‘tree’ 

and ‘not tree’, for a later assessment of accuracy.  

3.4.1 Training Data Collection 

First, the Training Sample Manager in the ArcGIS Pro classification tools was opened 

whilst the 2016 NAIP imagery was selected in the contents pane of the map project. This ensured 

that the NAIP imagery was used as the input for training sample collection. Next, as seen in 

Figure 13 a new land cover schema in the training samples manager was created. This schema 

captured seven land cover classes: tree, shrub/bush, dirt, building, paved ground, shadow, and 

water. This schema is then exported into an Esri Classification Schema (.ecs) file entitled 

schema.ecs for use in the final classification. 

 

 

Figure 13. PBIA workflow 
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Next, using the pixel selection tool in the training samples manager, 100 training sample 

pixels per land cover class were identified in the image scene. Table 2 describes the 

characteristics of each land cover class within the image scene and provides figures of sample 

training pixels identified for each class. Given a PBIA leverages the reflectance values and RGB 

intensity of training data sample pixels in the final classification, capturing a large range of pixel 

colors and types was prioritized. For example, in the tree canopy class, training sample pixels 

included both dark green tree canopies that which belonged to healthy trees with a denser canopy 

as well as lighter yellow and brown pixels which belonged to trees with less dense and ‘non-

traditional’ canopy structure. Additionally, pixels in the most exposed part of the trees and pixels 

in the dark, shaded portions of the tree canopy were selected to ensure shaded holes in the 

canopy were not ignored in the classification result. Once training sample collection was 

complete, all training samples were exported into an independent vector point dataset (.shp) 

entitled PBIA_samples.shp.  
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Table 2. PBIA land cover class pixel characteristics 

Land Cover Class Image Characteristics Sample Data 

Tree Canopy 
Circular groupings of 

pixelated green pixels 

 

Grass/Shrub 

Angular groupings of 

contiguous green pixels, often 

found in yards or sidewalks 
 

Dirt 

Angular groupings of 

contiguous brown pixels, 

often found in yards or 

sidewalks  

Buildings 

Rectangular groupings of 

white and gray pixels which 

define rooftops 
 

Paved Ground 

Contiguous linear groupings 

of dark gray, light, gray, and 

white pixels in the road and 

sidewalk network 
 

Water  

Contiguous angular 

groupings of blue and light 

blue pixels 
 

Shadow 

Circular and angular groupings 

of dark black pixels found 

adjacent to trees and building 

footprints  
 

 

3.4.2 Classification Parameters 

Finally, the PBIA classification was completed using the ‘Classify’ tool in the ArcGIS 

Pro classification toolkit. Before the ‘Classify’ tool was opened, the NAIP four-band imagery 

was selected in the project contents to ensure its use as the input for classification. First in the 

classify tool, the classification method parameter was set to supervised, which mandates the use 
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of training samples, and the classification type parameter is set to pixel based. Next, the seven-

class land cover schema described previously was assigned to the classification which ensures 

that the result image is separated into these seven classes. Then the training samples data created 

for this classification previous, PBIA_samples.shp, were assigned to the training samples 

parameter in the classify tool. Finally, the SVM with a constraint maximum number of 500 

samples per class was assigned as the final parameters of the ‘classify’ tool at which point the 

tool was prompted to classify and export the resultant raster image: PBIA.tif.    

3.5 Supervised Object-Based Classification 

Supervised object-based classification was conducted in the ArcGIS Pro Imagery Wizard 

on the four-band NAIP imagery sourced for analysis. First, the MeanSegmentShift tool was 

applied on the imagery to derive image objects for classification. Using the same seven-class 

land cover scheme created for the PBIA, 100 training sample objects per image class were 

chosen using polygon object selector within the ArcGIS Pro training samples manager. Next, the 

NAIP imagery was classified using the SVM classifier trained on the sample objects collected. 

Last, the output was reclassified into a two-class land cover classification. The final product is a 

one-meter resolution raster classified into ‘tree’ and ‘not tree’ classes.  

3.5.1 Segmentation 

First the 2016 four-band NAIP imagery used for this analysis was extracted into a 

derivative 3-band image using the ‘Extract Bands’ raster function to ensure data compatibility 

with the classifier. The input raster parameter was set to the 2016 NAIP imagery, the method 

parameter was set to ‘Band IDs’ and the band combination is set to ‘1 2 3’ which selects the 1, 2, 

and 3 (red, green, and blue) for extraction. The output of this tool was a three-band raster image 
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entitled NAIP_3band.tif with the same spatial extent, resolution, and projection of the original 

four-band imagery but limited to only the red, green, and blue bands.  

Before training data collection, the input three-band NAIP imagery was segmented into 

image objects using the ‘Segment Mean Shift’ tool which segments input raster imagery into 

groups according to similarities in their spectral and spatial characteristics. The spectral detail 

parameter of the tool defines the level of importance that spectral features, like color and 

reflectance, have on the final segmentation in a value range between 1 and 20. Higher spectral 

detail parameter values are chosen to produce more a more contrasted segmented output when 

multiple, separate object features share spectral characteristics while lower parameter values are 

chosen to create smoother outputs and perform better when object features have less like spectral 

characteristics. A spectral detail value of 16.7 was chosen given the spectral diversity of the 

image to ensure separation between natural objects, like trees and lawns, and nonnatural objects, 

like buildings and road surfaces.  

The spatial detail parameter defines the level of importance that feature proximity has on 

segmentation. Higher spatial detail values are ideal for image scenes with small, clustered object 

features while lower detail values result in smoother output segmentation. Given the small size 

and near proximity of tree, building, and built environment features being segmented in the 

NAIP imagery, a spatial detail value of 16 was chosen to create a more detailed output. The 

result is a segmented raster dataset, entitled SegmentedNAIP.tif,  

3.5.2 Training Data Collection 

As seen in Figure 14, the training samples manager tool in the ArcGIS Pro classification 

tools was opened whilst the NAIP_3band.tif imagery was selected in the contents pane of the 

map project. This ensured that the three-band NAIP imagery derived previous was used as the 
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input for training sample collection. Next, the seven-class land cover schema created for the 

previous PBIA, schema.ecs, is opened in the training samples manager. This ensures the land 

cover classes used for the OBIA mimics that of the PBIA for the sake of later comparison.  

 

 

Figure 14. OBIA workflow 

 

Next, using the linear, circle, and freehand polygon selection tools in the training samples 

manager, 100 training sample polygons per land cover class were identified in the image scene. 

Table 3 describes the characteristics of each land cover class within the image scene and 

provides figures of sample polygons identified for each class. Once training sample collection 

was complete, all training samples were exported into an independent vector point dataset (.shp) 

entitled OBIA_samples.shp.  
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Table 3. OBIA land cover class pixel characteristics 

Land Cover Class Image Characteristics Sample Data 

Tree Canopy 
Circular groupings of 

pixelated green pixels 

 

Grass/Shrub 

Angular groupings of 

contiguous green pixels, often 

found in yards or sidewalks 

 

Dirt 

Angular groupings of 

contiguous brown pixels, 

often found in yards or 

sidewalks 
 

Buildings 

Rectangular groupings of 

white and gray pixels which 

define rooftops 

 

Paved Ground 

Contiguous linear groupings 

of dark gray, light, gray, and 

white pixels in the road and 

sidewalk network 
 

Water  

Contiguous angular 

groupings of blue and light 

blue pixels 

 

Shadow 

Circular and angular groupings 

of dark black pixels found 

adjacent to trees and building 

footprints  
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3.5.3 Classification Parameters 

Finally, the OBIA classification was completed using the ‘classify’ tool in the ArcGIS 

Pro classification toolkit. Before the ‘classify’ tool was opened, the NAIP three-band imagery, 

NAIP_3band.tif, was selected in the project contents to ensure its use as the input for 

classification. First in the classify tool, the classification method parameter was set to supervised, 

which mandates the use of training samples, and the classification type parameter was set to 

object based. Next, the seven-class land cover schema, schema.ecs, was assigned to the 

classification which ensures that the result image is separated into these seven classes. Then, the 

training samples data created for this classification previously, OBIA_samples.shp, were 

assigned to the training samples parameter in the classify tool. Finally, the SVM with a 

constraint maximum number of 500 samples per class was assigned as the final parameters of the 

‘classify’ tool at which point the tool was prompted to classify and export the resultant raster 

image: OBIA.tif.    

3.6 Deep Learning Classification 

The deep learning classifier used to accomplish this analysis was the ‘Tree Classification’ 

deep learning classifier developed by the Esri analytics team and was applied in ArcGIS Pro to 

identify tree canopy polygons in 2016 NAIP imagery. This polygon output was then rasterized 

and derived into a raster dataset which classified tree canopy into the same ‘tree’ and ‘not tree’ 

land cover classes used in the PBIA and OBIA classifications for the sake of later comparison.   

3.6.1 Classification 

First, the deep learning classifier .dpk file was downloaded out of the ArcGIS Living 

Atlas catalog and stored to a location on the local drive of the computer used for this thesis. 

Next, given the required input data of the model is three-band imagery, the four-band NAIP 
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imagery sourced for this analysis was converted into an appropriate three-band alternative. Using 

the ‘extract bands’ tool found in the ArcGIS Pro raster functions toolkit, bands 1, 2, and 3 of the 

NAIP imagery (the red, green, and blue bands) were extracted and merged into a new composite 

three-band image for deep learning classification. Once the input was properly prepared, the tree 

segmentation model was run using the ’Detect Objects Using Deep Learning’ tool in the ArcGIS 

Pro Image Analyst toolkit. The input raster was set to the newly created three-band NAIP 

imagery and the model definition is set to the pathway which leads to the location of the tree 

classification deep learning .dpk file on the local computer with all other settings remaining 

default. This created a vector layer which identified tree canopy through polygons.  

3.6.2 Rasterization 

To prepare this output for a pixel-based accuracy assessment, rasterization into the ‘tree’ 

and ‘not tree’ land cover classes was required. To create the ’not tree’ region to contrast the tree 

canopy polygons, the erase tool, with the input being the studyarea.shp study area polygon and 

the erase features being the deeplearningtree.shp polygons, was used to erase the tree canopy 

areas from the study area polygon resulting in a ‘not tree’ polygon. Next, in the fields view of 

both the ’tree’ and ‘not tree’ polygon layers a like ‘CLASS’ text field was created to store the 

assigned layer classification. In the deeplearningtree.shp layer the ‘calculate field’ function was 

used to assign the text ‘tree’ in the CLASS field. Then in the studyarea.shp layer the ‘calculate 

field’ function was used to assign the text ‘not tree’ in the CLASS field. This ensured that each 

datasets classification is hosted in the attribute information of each layer. Next, the ‘merge’ tool 

was used to join the deeplearningtree.shp and studyarea.shp layer inputs into a single polygon 

dataset deeplearningpolygons.shp. The result was a spatially contiguous polygon dataset which 

classified ‘tree’ and ‘not tree’ area in the previously added and now merged ‘CLASS’ field. To 
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complete rasterization, the ‘polygon to raster’ tool was used to convert the 

deeplearningpolygons.shp layer into a raster classification for later accuracy assessment. In the 

tool parameters, the original NAIP.tif imagery was assigned as the snap raster which ensured that 

the rasterized output of the deeplearningpolygons.shp layer mimics the spatial resolution, extent, 

and projection of all other data in this analysis.  

3.7 Data Fusion Classification 

The data fusion OBIA in this thesis was conducted in the Trimble GIS software 

eCognition. The stepwise approach applied in the segmentation and reclassification process was 

adopted from methods developed in O’Neil-Dunne, MacFaden, and Royar (2014) and O’Neill-

Dunne et al. (2013) which call for a data fusion OBIA built on initial classifications of high-

resolution LiDAR imagery. An initial object-based classification was followed by the 

incorporation of raster then vector data in a data fusion process which reclassified initially 

misclassified pixels according to spectral and spatial properties of supplementary data. Initial 

fusion steps incorporated high-resolution raster data due to their minimal parallax effects which 

minimize classification speckling and pixel mixing whilst still initially ‘over classifying’ tree 

canopy. Next, higher-resolution raster data, like NDVI, is introduced into the data fusion which 

is followed by a final vector data incorporation to fix the initial misclassification of built 

environment pixels as vegetation.  

3.7.1 Segmentation 

Initial segmentation began with the multiresolution segmentation of imagery into object 

shapes. First a rule set with the multiresolution segmentation algorithm was created which 

considered slope, zDifference, nDTM, and nDSM values in its determination of image objects. 

Each image layer was assigned the default layer weight value of one aside from the nDSM layer 
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which was assigned a layer weight of three which increases the influence of values in the 

deciding of image objects. The nDSM was weighted the heaviest as its high image and pixel 

value contrast best differentiate object features. The scale factor parameter, which defines the 

size of objects identified in the image scene between one and infinity with larger values 

correlating with larger objects, was assigned a value of five, rather than the default 10, to both 

ensure that smaller object features in the image are captured and that larger obect features are 

segmented into smaller objects which can be accurately reclassified into tree objects. The 

compactness factor, which defines object compactness on a scale from 0 – 1.0 with higher values 

resulting in more compact segmented features, was assigned a value of 0.9, greater than the 

default of 0.1, to ensure compact and editable image objects. Finally, the shape parameter was 

assigned a value of 0.9 which is greater than the default value of 0.5. This parameter defines the 

influence object shape has on final segmentation with higher values within the range from 0 – 

1.0 indicating a higher shape influence than color influence in the final object segmentation.  

3.7.2 Refinement 

Once object segmentation was complete, the newly created image objects were classified 

into ‘tree’ and ‘other’ object classes using the ‘assign class’ ruleset. First, all image objects with 

a mean nDSM value greater than or equal to two meters, according to the nDSM.tif layer, were 

assigned to the tree class. As seen in Figure 15, this assigned all object features that are taller 

than two meters to the tree class creating a base ‘over’ classification which can be edited using 

values in other .tif imagery layers.  
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Figure 15. Intermediate nDSM classification 

 

Next, all image objects newly assigned to the ‘tree’ class with a mean zDifference value 

less than or equal to 0 according to the zDifference.tif image layer were reassigned to the ‘not 

tree’ class. This is due to the assumption that any pixels with no difference in first and last return 

height values are likely flat, impervious surfaces, like buildings, and should be classified as 

‘other.’ Next, all ‘tree’ image objects with a mean slope less than 25 degrees, according to the 

values stored in the Slope.tif image layer, were assigned back to the ‘not tree’ class. This was 

done under the assumption that any features with flat slope can be assumed to be a manmade 

object and is confirmed through an inspection object slope values in the image scene. Finally, 

‘tree’ objects with a mean NDVI value less than or equal to 0.1 are assigned to the ‘other class.’ 

This is according to an inspection of the NDVI values of objects in the image scene and the 

assumption that image pixels with NDVI values less than 0.2 are non-vegetative. Once this initial 
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set of object classification rules was complete, further classification was repeated to refine the 

accuracy of the image classification. 

First, all ‘other’ object with a mean NDVI value greater than or equal to 0.5 were 

assigned to the ‘tree’ class. Next all ‘tree’ objects with a mean zDifference greater than or equal 

to 0 were reassigned to the ‘not tree’ class. Next, all ‘tree’ objects with a mean slope less than or 

equal to 25 degrees were assigned to the ‘not tree’ class. Next, any ‘other’ objects comprised of 

less than 35 pixels and that shared more than 50% of their boundary with ‘tree’ objects were 

reclassified to the ‘tree’ class. As seen in Figure 16, this was meant to fill any holes in tree 

canopy objects which had been misclassified as ‘not tree.’  

 

 

Figure 16. Stepwise data fusion workflow 
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3.7.3 Vector Incorporation and Object Resizing 

Once raster reclassification was complete, building footprint vector data was imported 

into the eCognition for further reclassification. Using the ‘assign class by thematic layer’ tool 

with the building footprint vector layer, all ‘tree’ objects that shared more than 50% of their 

border with ‘other’ objects within the polygon boundary of the building footprints vector layer 

were reclassified to ‘not tree.’ This was done to fix any tree objects that have been misidentified 

within known building footprint boundaries. Next, all ‘other’ objects that shared 100% of their 

border with ‘tree’ objects were assigned to the tree class to further fill holes in the classification. 

This was repeated twice more with all ‘not tree’ objects which share over 75% of their boundary 

with ‘tree’ objects. At this point, all ‘tree’ object features were joined together using the ‘merge 

region’ tool resulting in whole tree canopy object features. Finally, the pixel-based object 

resizing tool was used on the newly joined ‘tree’ class to round out tree shapes and smooth 

object boundaries. After the reference was set to object, all candidate surface tension settings 

were left at their default values except for the ‘Value’ parameter which was increased from 0.2 to 

0.5. The result was exported into a raster dataset ‘eCognition.tif’ which was stored locally for a 

later accuracy assessment in ArcGIS Pro.  

3.8 Accuracy Assessment 

To compare each classification approach, this thesis conducted a per-pixel based 

accuracy assessment for each classification output via a stratified random point sampling 

method. These classifications were then compared against a ground truth image using a 

confusion matrix which assesses classification accuracy according to Type I error (false 

positives), Type II error (false negatives), and a kappa statistic which quantifies the agreement of 

each classification with the ground truth imagery. Additionally, this thesis considered 
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geoprocessing times, methodological complexity, and data suitability in its decision of an ideal 

classification method.  

First, the supervised pixel-based classification output was accuracy assessed in ArcGIS 

Pro using the ‘Create Accuracy Assessment Points’ tool. The tool input was set to the final pixel-

based classification image layer PBIA.tif with the sampling method parameter set to stratified 

random and the number of output points set to 1,250. The result of this was a set of stratified 

random sampling points for the PBIA.tif image with hosted value fields, ‘CLASSIFIED’ and 

‘GROUNDTRUTH’. The ground truth field comes unpopulated while the ‘classified’ field hosts 

the classification of the sample point according to the land cover class of the image pixel with 

which it intersects. Thus, if a given sampling point overlaps with a ‘tree’ pixel in the classified 

PBIA.tif image, its ‘CLASSIFIED’ field value will be ‘tree’ whereas if it overlaps with a ‘not 

tree’ pixel it will be assigned the value ‘not tree.’ Given that the sampling method was stratified 

random, the number of sampling points which were pre-classified to the ‘tree’ and ‘not tree’ 

class in the CLASSIFIED field were proportional to the percent area of each land cover class in 

the classified image. This resulted in 100 sample points with a ‘tree’ classification and 1,150 ‘not 

tree’ sample points in the CLASSIFIED field. Next, to populate the GROUNDTRUTH field, 

each accuracy assessment point was manually classified through visual assessment into a ‘tree’ 

or ‘not tree’ delineation according to the stock NAIP imagery used for this analysis. Once both 

the CLASSIFIED and GROUNDTRUTH fields are populated the ‘Compute Confusion Matrix’ 

tool was used to create an output confusion matrix for assessment.  

This process of creating, classifying, and assessing accuracy assessment points for the 

PBIA classification result was replicated for the output of each classification approach to ensure 

a means of comparison. Given the stratified random sampling method used determined the 
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number of pre-classified accuracy assessment points proportional to the area of each land cover 

class in the classified image, each classification’s accuracy assessment required a different 

number of total accuracy assessment points to ensure enough assessment points. The intent was 

to have 100 ‘tree’ class assessment points per set. Thus, each accuracy assessment was 

completed with the number of points seen in Table 4.  

 

  Table 4. Accuracy assessment sample point count 

Classification Number of Assessment Pixels 

PBIA 1250 

OBIA 1250 

Deep Learning 1500 

Data Fusion 1250 

 

 

Finally, the ‘Compute Confusion Matrix’ tool was used with the fully classified accuracy 

assessment points as inputs to create final confusion matrix with which the accuracy of the pixel-

based classification of tree canopy can be assessed. This tool returned a standalone table in 

ArcGIS Pro which described the user and producer accuracy of the classification of each land 

cover class as well as a kappa statistic on the agreement between the classified image and ground 

truth imagery. User accuracy describes type one error which shows false positives in which 

pixels which do not belong to the desired land cover class are misclassified as another class. In 

this instance, this would be non-tree canopy pixels in the NAIP imagery which have been 

misclassified as tree canopy or tree canopy pixels in the NAIP imagery which have been 

misclassified as non-tree canopy. User accuracy is calculated by dividing the number of pixels in 

the classified image belonging to a land cover class by the number of pixels belonging to the 

same class in the ground truth imagery. Producer accuracy describes type two error, or false 
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negatives, in which pixels belonging to the desired land cover class in the ground truth imagery 

are misclassified. Producer accuracy is calculated by dividing the number of misclassified pixels 

in the confusion matrix by the total number of classified pixels in this class. The Cohen’s kappa 

statistic scores the agreement between both classified images on a numeric scale from 0 to 1 with 

larger values indicating higher agreement (McHugh 2012).  

This accuracy assessment process was repeated three more times using the results raster 

produced from the supervised OBIA in ArcGIS Pro, the deep learning classification, and the 

OBIA fusion in eCognition. This resulted in the creation of four confusion matrices which 

describe the accuracy of each classification for comparison.   
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Chapter 4 Results 

Each image classification methodology produced a 60-centimeter resolution raster dataset 

classified into ‘tree’ and ‘not tree’ land cover classes. By dividing the area of tree pixels by the 

total area of the study area, tree canopy cover was estimated to be approximately 8.7% of the 

study area. Based on a per-pixel stratified random sample-based accuracy assessment of each 

result, each classifier was judged according to the user and producer accuracy of the 

classification of both the ‘tree’ and ‘not tree’ land cover class.  

4.1 Supervised Pixel-Based Classification 

The result of the supervised pixel-based classification was a 60-centimeter spatial 

resolution raster image of the study area which is classified into ‘tree’ and ‘not tree’ land cover 

classes. As seen in Figure 17, the ‘tree’ land cover class was colored in green (HEX#38A800) 

whilst the ‘not tree’ areas are left transparent. Using the ‘Extract by Attribute’ tool, the number 

of raster pixels in the ‘tree’ land cover class was identified and divided by the total number of 

pixels in the study area to determine percent area of tree canopy. Then, by dividing the count of 

tree canopy pixels by the total number of pixels in the study area it was determined that the 

pixel-based classification of tree canopy identified 8.5% of the image scene as tree canopy, or 

0.63 square miles.  
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Figure 17. Supervised pixel-based tree canopy classification 

 

The result of the ‘create confusion matrix’ accuracy assessment tool was a standalone 

table in ArcGIS Pro which described the user and producer accuracy each land cover 

classification as well as a kappa statistic on the agreement between the classified PBIA.tif image 

and the ground truth NAIP.tif image. User accuracy describes type one error which shows false 

positives in which pixels which do not belong to the desired land cover class in the ground truth 

image are misclassified in the classified imagery. In this instance, this described non-tree canopy 

pixels in the NAIP imagery which have been misclassified as tree canopy. This could also 



 55 

describe tree canopy pixels in the NAIP imagery which have been misclassified as non-tree 

canopy. User accuracy is calculated by dividing the number of pixels in the classified image 

belonging to a land cover class by the number of pixels belonging to the same class in the ground 

truth imagery. Producer accuracy describes type two error, or false negatives, in which pixels 

belonging to the desired land cover class in the ground truth imagery are misclassified. Producer 

accuracy is calculated by dividing the number of misclassified pixels in the confusion matrix by 

the total number of classified pixels in this class. The Cohen’s kappa statistic scores the 

agreement between both classified images on a numeric scale from 0 to 1 with larger values 

indicating higher agreement (McHugh 2012). Table 5 describes agreement depending on the 

value range of the returned kappa statistic. 

           

          Table 5. Kappa statistic agreement interpretation. From McHugh (2012) 

Kappa Statistic Level of Agreement 

0.01 – 0.2 No/Slight Agreement 

0.21 – 0.4 Fair Agreement 

0.41 – 0.6 Moderate Agreement 

0.61 – 0.8 Substantial Agreement 

0.81 – 1.0 Perfect Agreement 

 

 

 According to the accuracy assessment of the supervised PBIA classification, total 

classification accuracy is 95.5%. Although this points to a marginally successful classification 

result, an inspection of the disparity of classification accuracies between ‘tree’ and ‘not tree’ 

classes reveal complications. Given that overall accuracy is expressed as the dividend of 

correctly classified accuracy assessment and total assessment points used, any bias in 

classification accuracy per land cover class is hidden. Inspection of the type one and type two 
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errors in this classification reveal that the PBIA more accurately classified the ‘not tree’ land 

cover class.  

 According to Table 6, he user accuracy of the classification of the ‘tree’ land cover class 

was 73.6%. This is given the moderate rate of false positive classifications as 28 of the 106 

accuracy assessment points which were misidentified as ‘tree’ in the classified PBIA image 

instead belonged to the ‘not tree’ class according to the ground truth NAIP imagery. In contrast, 

the ‘not tree’ land cover class returned a user accuracy of 97.8%. This is given that only 41 of the 

1400 accuracy assessment points classified as ‘not tree’ according to the PBIA image instead 

belonged to the 'tree’ class according to NAIP ground truth imagery. This disparity in the percent 

producer accuracy of classification between ‘tree’ and ‘not tree’ classes was mimicked in the 

PBIA producer accuracy results. The producer accuracy of the ‘tree’ land cover class was 75.7% 

due to the high rate of false negative classifications. Of the 103 accuracy assessment points 

which belong to the ‘tree’ class according to the ground truth NAIP imagery, 25 were 

misclassified as ‘not tree’ in the PBIA imagery. This is contrasted by a 97.6% producer accuracy 

of the ‘not tree’ class given only 28 false ‘tree’ classifications in the OBIA result relative to the 

ground truth imagery.  

The kappa statistic value of 0.72 returned by the accuracy assessment of the PBIA 

describes the classified image as having substantial agreement with the ground truth imagery, 

however, the disparity between the kappa statistic and overall accuracy values suggests 

inconsistent classification performance which undermines the quality of the resultant 

classification (McHugh 2012).  
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Table 6. PBIA accuracy assessment confusion matrix 

 Tree  Not Tree Total User Accuracy 

Tree 78 28 106 73.6% 

Not Tree 25 1119 1144 97.8% 

Total 103 1147 1250 N/A 

Producer 

Accuracy 
75.7% 97.6% N/A 

Overall 

Accuracy: 

72.3% 

 

4.2 Supervised Object-Based Classification 

The result of the supervised object-based classification was a 60-centimeter spatial 

resolution raster image of the study area which is classified into ‘tree’ and ‘not tree’ land cover 

classes. As seen in Figure 18, the ‘tree’ land cover class was colored in green (HEX#38A800) 

whilst the ‘not tree’ areas are left transparent. Using the ‘Extract by Attribute’ tool, the number 

of raster pixels in the ‘tree’ land cover class was identified and divided by the total number of 

pixels in the study area to determine percent area of tree canopy. It was determined that the 

object-based classification of tree canopy identified 6.7% of the image scene as tree canopy, or 

0.50 square miles.  
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Figure 18. Supervised object-based tree canopy classification 

 

 According to the accuracy assessment of the OBIA classification of tree canopy, overall 

classification accuracy was 96.5%. This suggests a successful classification given a classification 

accuracy result greater than 90%. However, a significant disparity in the producer accuracy 

between the ‘tree’ and ‘not tree’ land cover classes suggest a less consistent result.  

 According to Table 7, the user accuracy of the classification of the ‘tree’ land cover class 

is 88.0%. This is given the moderately low rate of false positive classifications as 12 of the 100 

accuracy assessment points which were misidentified as ‘tree’ in the classified OBIA image and 
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instead belonged to the ‘not tree’ class according to the ground truth NAIP imagery. In contrast, 

the user accuracy of the ‘not tree’ land cover class is 97.1%. This is given that only 41 of the 

1400 accuracy assessment points classified as ‘not tree’ according to the OBIA image are false 

negative classifications and instead belong to the 'tree’ class according to ground truth imagery. 

However, the disparity in the percent producer accuracy of classification between ‘tree’ and ‘not 

tree’ classes is greater than the disparity in user accuracies. The producer accuracy of the ‘tree’ 

land cover class is 68.6% due to the high rate of false negative classifications. Of the 129 

accuracy assessment points which belong to the ‘tree’ class according to the ground truth NAIP 

imagery, 41 of which were misclassified as ‘not tree’ in the OBIA imagery. This is contrasted by 

a 99.1% producer accuracy of the ‘not tree’ class given only 12 false ‘tree’ classifications in the 

OBIA result relative to the ground truth imagery.  

 Given the disparity in classification accuracies per land cover class, the kappa statistic of 

this classification assessment can be used to provide more context on classification success. The 

kappa statistic of the OBIA was 0.75 which points to a substantial agreement between the ground 

truth NAIP imagery and the OBIA classification result. However, given the difference between 

the kappa statistic and overall accuracy values as well as the disparity in classification accuracy 

values between land cover classes, further context is necessary to determine classification 

success. 
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      Table 7. OBIA accuracy assessment confusion matrix 

 Tree  Not Tree Total User Accuracy 

Tree 88 12 100 88.0% 

Not Tree 41 1359 1400 97.1% 

Total 129 1371 1500 N/A 

Producer 

Accuracy 
68.6% 99.1% N/A 

Overall 

Accuracy: 

75.6% 

 

4.3 Deep Learning Classification 

The result of the deep learning classification was a 60-centimeter spatial resolution raster 

image of the study area which is classified into ‘tree’ and ‘not tree’ land cover classes. As seen in 

Figure 19, the ‘tree’ land cover class was colored in HEX#38A800 whilst the ‘not tree’ areas are 

left transparent. Using the ‘Extract by Attribute’ tool, the number of raster pixels in the ‘tree’ 

land cover class was identified and divided by the total number of pixels in the study area to 

determine percent area of tree canopy. It was determined that the deep learning classification 

identified 1.8% of the image scene as tree canopy, or 0.13 square miles.  
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Figure 19. Deep learning tree canopy classification 

 

According to the accuracy assessment of the deep learning classification of tree canopy, 

overall classification accuracy was 94.5%. This suggests a successful classification given a 

classification accuracy result substantially greater than 90%. However, like the accuracy 

assessment result of both the PBIA and OBIA, this is challenged by significant disparity in the 

producer accuracy between the ‘tree’ and ‘not tree’ land cover.  

 According to Table 8, the user accuracy of the classification of the ‘tree’ land cover class 

was 80.0%. This is a result of the low rate of false positive classifications as 20 of the 100 
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accuracy assessment points which were misidentified as ‘tree’ in the deep learning classified 

image instead belonged to the ‘not tree’ class according to the ground truth NAIP imagery. In 

contrast, the user accuracy of the ‘not tree’ land cover class was 97.1%. given only 62 of the 

1400 accuracy assessment points were misclassified as ‘not tree’ according to the OBIA image 

and instead belong to the 'tree’ class according to ground truth imagery. However, the disparity 

in the percent producer accuracy of classification between ‘tree’ and ‘not tree’ classes is greater 

than the disparity in user accuracies. The producer accuracy of the ‘tree’ land cover class was 

56.6% due to the extreme rate of false negative classifications. Of the 142 accuracy assessment 

points which belong to the ‘tree’ class according to the ground truth NAIP imagery, 62 of which 

were misclassified as ‘not tree’ in the deep learning classification. This is contrasted by a 98.5% 

producer accuracy of the ‘not tree’ class given only 12 false ‘tree’ classifications in the deep 

learning result relative to the ground truth imagery.  

 Given the difference in classification accuracy per land cover class, the kappa statistic of 

this classification assessment can be used to provide more context on classification success. The 

kappa statistic of the OBIA was 0.63 which suggests only moderate to substantial agreement 

between the ground truth NAIP imagery and the OBIA classification result. Given this disparity 

between the kappa statistic and overall accuracy values as well as the disparity in classification 

accuracies per land cover class, further context is necessary in defining classification success.  
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          Table 8. Deep learning accuracy assessment confusion matrix 

 Tree  Not Tree Total User Accuracy 

Tree 80 20 100 80.0% 

Not Tree 62 1338 1400 95.6% 

Total 142 1358 1500 N/A 

Producer 

Accuracy 
56.6% 98.5% N/A 

Overall 

Accuracy: 

63.2% 

 

4.4 Data Fusion Classification 

The result of the data fusion classification was a 60-centimeter spatial resolution raster 

image of the study area which is classified into ‘tree’ and ‘not tree’ land cover classes. As seen in 

Figure 20, the ‘tree’ land cover class was colored in HEX#38A800 whilst the ‘not tree’ areas are 

left transparent. Using the ‘Extract by Attribute’ tool, the number of raster pixels in the ‘tree’ 

land cover class was identified and divided by the total number of pixels in the study area to 

determine percent area of tree canopy. Then, by dividing the count of tree canopy pixels by the 

total number of pixels in the study area it was determined that the pixel-based classification of 

tree canopy identified 8.3% of the image scene as tree canopy, or 0.62 square miles.  
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Figure 20. Data fusion tree canopy classification 

 

According to the accuracy assessment of the data fusion classification of tree canopy, 

overall classification accuracy was 98.9%, the highest of all four classification types which 

suggests a successful classification given a classification accuracy result greater than 90%. 

Furthermore, the similarity of user and producer accuracy between land cover classes suggests 

more consistent classification performance. 

 According to Table 9, user accuracy of the classification of the ‘tree’ land cover class was 

92.0%. This is given the low rate of false positive classifications as only eight of the 100 
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accuracy assessment points which belong to the ‘tree’ class according to the ground truth NAIP 

imagery were misidentified as ‘not tree’ according to the data fusion output. Similarly, the user 

accuracy of the ‘not tree’ land cover class was 99.5%. This is given that only six of the 1,150 

accuracy assessment points classified as ‘not tree’ according to the ground truth NAIP were 

misclassified as ‘tree’ in the data fusion output. However, the disparity in the percent producer 

accuracy of classification between ‘tree’ and ‘not tree’ classes is greater than the disparity in user 

accuracies. The producer accuracy of the ‘tree’ land cover class was 68.6% due to the high rate 

of false negative classifications. Of the 129 accuracy assessment points which belong to the 

‘tree’ class, according to the ground truth NAIP imagery, 41 of which were misclassified as ‘not 

tree’ in the data fusion classification. This is contrasted by a 99.1% producer accuracy of the ‘not 

tree’ class given only 12 false ‘tree’ classifications in the OBIA result relative to the ground truth 

imagery.  

 Given the difference in classification accuracy per land cover class, the kappa statistic of 

this classification assessment was used to provide more context on classification success. The 

kappa statistic of the data fusion classification was 0.92 which suggests near perfect agreement 

between the ground truth NAIP imagery and the data fusion result. Furthermore, given the 

minimal difference between the kappa statistic and overall accuracy values returned by this 

analysis’ accuracy assessment the data fusion classification of tree canopy can be deemed 

successful.  
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Table 9. Data fusion accuracy assessment confusion matrix 

 Tree  Not Tree Total User Accuracy 

Tree 92 8 100 92.0% 

Not Tree 6 1144 1150 99.5% 

Total 98 1152 1250 N/A 

Producer 

Accuracy 
93.9% 99.3% N/A 

Overall 

Accuracy: 

98.9% 
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Chapter 5 Discussion 

Based on the results of the accuracy assessment of each image classification process, the data 

fusion classification methodology was identified as the optimal image classification type. The 

data fusion classification produced the most consistent classification output given its high 

classification accuracy of both the 'tree’ and ‘not tree’ class. Despite its marginally longer 

geoprocessing times, the stepwise nature of data fusion methodology allows for customization in 

future iterations despite requiring a more robust reclassification process. Future image 

classification iterations may look to incorporate LiDAR derivatives in canopy edge feature 

classification whilst leveraging NDVI to fill tree objects to avoid complications of pixel shift and 

mixing. Future analyses may look to automate a data fusion classification using deep learning to 

capitalize on the benefits of both classification types. Ultimately, the findings of this analysis lay 

the groundwork to develop more robust tree management datasets for Los Angeles’s future TPI 

efforts which can be later leveraged to quantify the impact of the UTC on heat and air quality.  

5.1 Findings 

 This thesis aimed to compare four different image classification methodologies in their 

ability to accurately identify tree canopy from satellite imagery of Los Angeles in a replicable 

manner. Thus, the classifications were compared according to both the accuracy of the results 

and the complexity of processing. Based on the processing time information collected in both 

ArcGIS Pro and eCognition during the analysis, the decision on the most suitable classification 

method according to geoprocessing load was made.  

The PBIA was completed in approximately four to five hours of total analysis time split 

between pre-processing, sample data collection, and tool geoprocessing. The pre-processing 
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steps of data collection, imagery projection, and masking of its spatial extent to the study area 

were completed in one hour, however, this was negligible given this was repeated across all 

classification methodologies. Sample data collection of all 700 training data sample pixels across 

the seven desired land cover classes was completed in approximately three to four hours. The 

sample data collection time for other iterations of this same PBIA analysis may fluctuate given 

the variety of factors which influence processing difficulty. For example, a study area with a 

greater variety in land use typologies would result in a more complex set of built environment 

conditions which would increase the spectral complexity of the image pixels. This could 

necessitate an increase in land cover classes in the final classification to capture all built 

environment conditions in the image as well as an increase in the number of sample pixels per 

class to ensure the entire spectral range of each land cover class is captured. This resulted in a 

marginally successful overall classification accuracy of 72.3% that was impacted by low 

classification accuracy of the ‘tree’ land cover class; however, this is expected given the PBIA 

classification’s function as an analytical control.  

The OBIA classification was intended to create an output result more accurate than that 

of the PBIA with a marginal increase in geoprocessing time and complexity. Given the PBIA and 

OBIA share input data, pre-processing was ignored from total processing time as in the PBIA. 

Segmentation of the input NAIP imagery for this analysis took approximately one to two hours 

given it required iteration to identify the ideal segmentation parameter values. Additionally, 

given the positive relationship larger raster file sizes and geoprocessing times in ArcGIS Pro, any 

future iterations of this OBIA which use larger raster data will suffer from a scaled increase in 

geoprocessing. Next, OBIA training data collection was completed in approximately six hours, 

an increase relative to that of the PBIA given the increase in sample data complexity. Whilst 
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PBIA training data only captures individual pixels in the image scene which represent each land 

cover class, OBIA training data captures user-drawn polygon shapes which intersect with all 

image objects that feature the spectral and spatial characteristics of the desired land cover class. 

Thus, any increases in the spectral and spatial complexity of the image used in classification may 

result in increases to total analysis time relative to that of the PBIA given the added complexity 

of training data collection. Unfortunately, the OBIA classification resulted in a 75.6% overall 

classification accuracy, only a negligible improvement over the PBIA despite nearly double the 

processing time. Additionally, the OBIA produced a more inconsistent classification given the 

user accuracy of the ‘tree’ class in the OBIA is 14.4% more accurate than the PBIA whilst the 

producer accuracy of the same ‘tree’ class in the OBIA is 7.1% less accurate than the PBIA. 

Thus, the OBIA cannot be identified as a decidedly more successful than the control PBIA.  

The deep learning ‘Tree Segmentation’ classifier used in ArcGIS Pro for this analysis 

was used to compare the ability of deep learning classifiers in producing similarly accurate 

results relative to traditional PBIA and OBIA classifiers at a fraction of the total processing time 

and load. The pre-processing of the deep learning classification, primarily dedicated to extracting 

three-band imagery out of the original four-band NAIP image, took approximately 30 minutes to 

complete given the run time of the ‘extract bands’ tool. Next, processing of the image via the 

‘tree classification’ classifier was completed in approximately 5.5 hours. Processing time was 

exclusively dedicated to the running of the deep learning classifier given it does not require any 

training data sampling to assist. Thus, the simplicity of the classifier justifies its use given the 

ease of replicability, however, its processing times may be subject to change with differences in 

the size of the input imagery data and differences in the processing capability of the workstation 

used for analysis.  
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Given the processing simplicity of deep learning classifiers and the impact data size has 

on analytical complexity, this thesis suggests the automation of this classification type. For 

example, Gamanya, Maeyer, and Dapper (2009) suggest the automation of LANDSAT and 

ASTER imagery across a single study area into the Department of Food and Agriculture’s Land 

Cover system. Gamanya, Maeyer, and Dapper (2009) automate their classification system to 

classify multiple sets of input imagery within the same study area extent. Future iterations of the 

deep learning classification proposed in this thesis which attempt to classify across a larger study 

area may look to automate classification across multiple smaller study area segments so to ensure 

digestibility without the need for manually conducting classification on each segment. That said, 

use of deep learning classifiers in ArcGIS Pro requires the installation of the ‘Deep Learning 

Libraries’ extension which requires an NVIDIA GPU with CUDA Compute Capability 6.1 or 

later, NVIDIA GPU drivers version 527.1 or higher, and 8 gigabytes of dedicated graphics 

memory. Additionally, different deep learning classifiers feature different hardware 

compatibility requirements which exacerbate the issue of replicability and feasibility. Ultimately, 

given the 63.2% overall classification accuracy of the ‘tree segmentation’ deep learning 

classification result the classifier was deemed inadequate despite its ease of use.  

Finally, the data fusion image classification analysis conducted in eCognition produced 

the classification result with ideal output accuracy yet was limited by analytic load and 

complexity. Geoprocessing was divided into pre-processing and ruleset development. Pre-

processing was comprised of sourcing and merging LiDAR data into a singular dataset which 

covered the study area extent and the extraction of derivative products, like an nDSM. LiDAR 

sourcing and merging took approximately two hours to complete with 30 minutes being allocated 

to data sourcing. The remaining one hour and 30 minutes of processing was dedicated to 
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converting the raw LiDAR data into ArcGIS Pro compatible .lasd data type. Next, the creation of 

all LiDAR derivative raster datasets using the ‘LAS to Raster’ tool was completed in one hour of 

processing time per dataset. The processing time required to derive these raster datasets, 

however, is susceptible to change depending on the size and complexity of input data. For 

example, the pre-processing time of any analysis iterations completed on a larger study area 

extent would compound due to the larger file sizes requiring an increased number of analysis 

steps and increased geoprocessing time.  

Ruleset development was completed in an iterative process. Although extensive literature 

on data fusion analysis in eCognition already outlines the tools necessary to complete the 

analysis, user-defined iteration is necessary given each rule set is developed based on values 

hosted in the input raster data. Rule set development was completed in approximately 12 hours, 

however, future iterations of this analysis which look to develop a more rigorous classification 

should expect longer rule development time. Once the classification rule set was developed, 

classification geoprocessing was completed in eCognition in 10 minutes. Thus, future data fusion 

classification methodologies should note analysis time must be dedicated to manual 

classification development. Based on these results, it was concluded that the data fusion image 

classification methodology is the best classification method given its high output accuracy and 

short processing times relative to the size of the study area and data sets used for analysis.  

5.2 Error and Implications 

This chapter discusses the various reasons for error in this analysis and how they 

implicate the adequacy of the result. The PBIA struggled in differentiating the ‘tree’ class from 

the ‘shrub/grass’ land cover class due to the spectral similarity of the training data pixels used for 

analysis. The OBIA similarly struggled in separating the ‘tree’ class from other natural land 
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cover classes specifically in instances of proximity given the object-based model’s prioritization 

of spatial, geometric, and spectral similarity. Despite its ease of replicability, the deep learning 

classification produced inadequate accuracy results given its one step pretraining on natural 

forest tree imagery incongruent with the characteristics of the urban study area. The data fusion 

classification produced the most accurate result, however, at times misclassifies tree canopy 

given temporal discrepancies in the collection time of input data. Future practitioners who look 

to employ a similar data fusion classification must ensure a like temporal resolution across all 

datasets to maintain classification adequacy.  

5.2.1 PBIA 

The PBIA conducted for this thesis failed to adequately classify UTC due to a difficulty 

differentiating tree canopy pixels from vegetation with like spectral qualities. The accuracy 

assessment results of the PBIA indicate an unsuccessful classification of the ‘tree’ land cover 

class given the insufficient user and producer accuracies of the ‘tree’ land cover class: 73.6% and 

75.7% respectively. Based on a visual inspection of the result on a larger scale shown in Figure 

21, the PBIA struggled most with differentiating the ‘tree’ class from the ‘grass/shrub’ class in 

the initial seven-class schema. The PBIA both misclassified ‘tree’ class for the ‘grass/shrub’ 

class and misclassified the ‘grass/shrub’ class as the ‘tree’ class. This is likely due to overlap in 

the spectral characteristics of the training pixels used to train both the ‘tree’ and ‘shrub/grass’ 

land cover classes.  
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Figure 21. PBIA misclassified grass pixels 

 

According to Shackelford and Davis (2003), PBIA classifiers decide the land cover class 

of each pixel by comparing the spectral values of each individual pixel in an image against the 

spectral values of the training data collected for classification. Thus, any spectral overlap in the 

training data collected per class could cause confusion and misclassification between like 

classes. For example, both vegetation pixels identified in the ‘grass/shrub’ class, like lawns or 

fields, and ‘tree’ class pixels share similar green and yellow pixels which could be identified as 

tree or grass pixels dependent on their specific reflectance value. The misclassification error of 

the PBIA between the ‘tree’ and ‘grass/shrub’ class is expressed in the result given that these two 
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classes are later reclassified into to the ‘tree’ and ‘not tree’ class. Other land cover classes which 

share spectral qualities, like the ‘paved ground’ and ‘building’ class are also susceptible to 

similar misclassification, however, this is corrected for later when the seven-class scheme is 

reclassified into a two-class scheme, merging these similar field into the same class. This error, 

however, is not corrected for between the ‘tree’ and ‘not tree’ classes given that they remain 

separate and are not reclassified into the same land cover class. The PBIA used the SVM 

classifier which performs better in instances of limited training data, however, still struggles 

when differentiating homogeneous land cover classes.  

5.2.2 OBIA 

Like the PBIA, the OBIA classification conducted in this thesis also failed to adequately 

classify the ‘tree’ land cover class due to a difficulty separating the tree objects from like 

vegetation objects in the study area. The 75.6% overall classification accuracy of the analysis is 

explained by the discrepancy in the classification accuracy of the two identified land cover 

classes in which the user and producer accuracies of the ‘tree’ land cover class of interest are 

between 10% and 20% less accurate than that of the ‘not tree’ land cover class. A visual 

inspection of the result of the seven-class OBIA revealed a difficulty in differentiating the ‘tree’ 

from the ‘shrub/grass’ class, specifically in instances in which ‘tree’ and ‘shrub/grass’ object 

boundaries overlap like in lawns on private property. 

Object-based image classification classify groups of image pixels into homogeneous, 

contiguous image objects based on spectral similarity, spatial proximity, and geometric similarity 

(Shackelford and Davis 2003). In sample data collection, all image objects with pixels that 

belong to the classification object of desire in the image scene, like tree pixels, are to be selected. 

Training data samples must capture both the geometry and spectral specificity of objects in land 
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cover class. Error in which adjacent ‘tree’ objects are misclassified ‘grass/shrub’ objects was 

likely caused by the selection of sample objects which share the spectrally similar pixels 

belonging to opposite land cover classes. As seen in Figure 22, these objects often lie along the 

boundary of a given feature and overlap into boundary of an adjacent feature, like the edge of a 

tree canopy in the image scene. To solve for this error, one must reiterate upon the segmentation 

process to produce smaller segmented objects which adhere more explicitly to the geometry of 

their respective land cover class feature. Thus, future iterations of a similar OBIA may look to 

employ more stringent segmentation parameters resulting in the creation of smaller, more 

homogeneous image objects with less overlap across land cover classes.  

 

 

Figure 22. OBIA result tree canopy and grass objects overlap 
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5.2.3 Deep Learning 

Due to the resolution of the NAIP imagery used in this analysis and one-step training 

used to train the deep learning classifier, the deep learning classification of tree canopy failed to 

capture ample street and private tree cover. The classifier used for analysis was the ‘Tree 

Canopy’ deep learning package provided in the ArcGIS Living Atlas data catalog. This package 

uses the Segment Anything Model (SAM) developed by Meta AI for accurate image 

segmentation with limited or no training data. Despite superior performance when segmenting 

geometrically defined objects like trees or buildings according to Osco et al. (2023), the deep 

learning classification conducted in this thesis produced an inadequate 63.2% overall 

classification accuracy. This is likely because the ArcGIS Tree Segmentation deep learning 

package provided in the catalog uses a one-shot approach trained on imagery from the National 

Ecological Observatory Network. Given that this training data likely does not share the spectral 

or spatial characteristics of the tree features of the study area, this discrepancy is likely the 

reason for poor performance. The resultant classification specifically failed to capture smaller 

trees or trees with non-dense canopy, as seen in Figure 23, likely because the deep learning 

model is trained on a true forest representation of tree canopy. Additionally, the SAM model 

struggled to achieve maximum classification performance when used on imagery with a larger 

than 30-centimeter resolution, like the 60-centimeter resolution NAIP imagery used for this 

thesis (Osco et al. 2023). Future analyses may look to employ the SAM model separately to 

leverage its no step processing capabilities or train the SAM model into a custom one step 

process.  
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Figure 23. Deep learning classification tree canopy and grass objects overlap 

 

5.2.4 Data Fusion 

Despite a temporal disparity in the collection times of all input data used in the analysis, 

the data fusion classification produced the most accurate and actionable result. However, the 

NDVI used in the analysis produced error in both misclassified tree canopy edge pixels and 

whole misclassified tree objects within the scene. First, given the one-year temporal disparity in 

the capture times of the NAIP four-band imagery and the LARIAC LiDAR point cloud, 

classification using the NDVI data derived from the NAIP imagery results in the addition of trees 

in the final classification. The NDVI dataset was incorporated in the second half of the rule set 

classification thus accounting for trees which existed in the NDVI image and not in the original 
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LiDAR imagery, as seen in Figure 19. Despite this error, future iterations should maintain 

incorporating NDVI later in their data fusion classification given canopy detection error inherent 

to NDVI capture. According to Towers (2021), the existence of shade in an image scene due to 

high illumination angles falsely adjusts reflectance values along tree canopy edges. Thus, NDVI 

must remain incorporated later in the data fusion classification. Regardless, this error effect can 

still be observed at the edge of certain tree canopy objects, as seen in Figure 24, resulting in 

misshapen tree shapes. Future iterations of this data fusion analysis should instead look to 

incorporate NDVI classification for internal tree canopy objects while leveraging LiDAR to 

classify tree canopy borders.  

 

 

Figure 24. Nonexistent tree polygons in data fusion result 
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5.3 Future TPI Development 

 This thesis conducted a comparison of four different classification methods in their 

ability to identify the existence of tree canopy in satellite imagery of Los Angeles. The result was 

a quantification of the area of tree canopy across the study area per image classification type. 

Although useful for comparison, this result is not actionable in urban forestry given a lack of 

description on tree characteristics, like canopy shape, tree age, and tree health. Instead, future 

iterations of this data fusion analysis may look to incorporate further LiDAR surface data into an 

identification of more specific tree characteristics for the sake of urban tree management.  

For example, Zhong et al. (2022) utilized UAV hyperspectral imagery and LiDAR point 

cloud data in an identification of both tree heights and tree species in the forests of northeast 

China. Zhong et al. (2022) segment the LiDAR point cloud into individual tree point locations 

which is uniquely useful in identifying tree positions hidden by the canopy top cover in satellite 

imagery. This analysis is especially useful in identifying the extent of tree planting on private 

property on which the City of Los Angeles is unable to track planting progress. Additionally, 

Wang et al. (2023) propose an analysis which estimates forest canopy heights in a canopy height 

model according to similar LiDAR point cloud data. Both tree height ranges and tree species 

information are already collected in the City of Los Angeles’s current street tree inventory, 

however, this can only be managed in the public right-of-way. Thus, the city is left with little 

information on current planting conditions on private property. Future analysis iterations which 

incorporate the identification of tree heights and species in their classification of the UTC can 

identify the crucial information necessary to manage tree planting on private land thus 

supporting the city’s goal to develop an ‘Adopt-a-Canopy’ residential planting operation as 

outlined in the Green New Deal.  
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 Whilst the result of this thesis provides opportunity to develop and compare the City of 

Los Angeles’s current planting conditions against past approaches, they also allow for the future 

quantification of the impacts of Los Angeles’s current Green New Deal. Given its young lifespan 

thus far, practitioners have been unable to conduct robust assessments on the success or impact 

of the tree planting goals outlined. In past comparisons, practitioners have estimated the potential 

success of TPIs in Los Angeles by comparing proposed tree planting goals against the space 

available and necessary to achieve them. For example, McPherson et al. (2008) estimates the 

potential Los Angeles’s old 1-Million Trees planting initiative by counting and comparing the 

number potential tree planting sites in Los Angeles against the number of trees called for in the 

initiative. Given this analysis was conducted at the onset of the 1-Million Trees initiative, it acts 

as a predictor of success rather than a quantification. Thus, the existence of the Green New Deal 

provides an analytical opportunity to compare the approach of both the Green New Deal and 1-

Million Trees TPIs as a judgement of success and efficacy. Furthermore, given the Green New 

Deal’s standing as a long-range plan, this comparison may provide important context necessary 

to consider a restructuring of the plan.  

 The tree canopy area results quantified in this thesis set the groundwork for a 

quantification of tree canopy impact on physical health. Historically, research on the heating 

impacts of shade has prioritized the identification of the explanatory variables which define 

thermal impact (Spagnolo and Dear 2003). By identifying both the climatic and human factors 

which drive changes in heat, practitioners can model the magnitude each variable necessary to 

create a change in perceived heat. Furthermore, given the relationship between shade and heat 

impacts, practitioners, like Middel et al. (2016), can quantify the relationship the area of shade 

cover has on changes in temperature through regression-based modeling analyses. In the summer 
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of 2024, the LARIAC Consortium will release their LARIAC 7 LiDAR point cloud data which 

will significantly improve on the data’s spatial resolution in comparison to LARIAC LiDAR data 

of past. A reiteration of the analytical methods proposed in this thesis using the 2024 LiDAR 

data would provide practitioners with a second time step necessary to quantify areal tree canopy 

growth over time.  

Given the temporal resolution of each LARIAC collection corresponds with each 

development checkpoint outlined in the Green New Deal, the results of this analysis become a 

means of determining its success throughout its implementation. A time-stepped assessment of 

the Green New Deal would provide the opportunity to restructure the planting initiative to better 

achieve its goals. This, however, requires high-resolution, at least 1-meter spatial resolution, 

raster imagery of tree canopy cover. Whilst the methods of this thesis were able to achieve this 

result, its replicability is slow and limited. Thus, to standardize time stepped comparisons of 

success in TPIs, practitioners should improve upon deep learning and automated data fusion tree 

classification approaches to capitalize on their speed and reproducibility. As these methods 

become easier to reproduce, the repository of information gleaned by these results will become 

accessible. Furthermore, these results should be supplemented with data on local temperatures 

and air quality to determine how increased tree canopy affects these factors. Thus, rather than 

speculating on the perceived impacts of trees and their shade benefit, practitioners can use the 

results of this thesis to calculate the human impacts of trees down to the individual tree level. 

These results may be used to convince homeowners of the potential benefits of private tree 

planting or in the development of tree planting legislation as evidence to the importance and 

necessity of trees in the framework of current urban green infrastructure.  
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