

GEOGRAPHIC LOCAL ROUTING FOR SOCIAL CONNECTION:

A NOVEL APPLICATION FOR THE INTEGRATION OF ROUTING TECHNOLOGY AND
MULTI-USER ENVIRONMENTS

by

Moises Herrera

A Thesis Presented to the
FACULTY OF THE USC DORNSIFE COLLEGE OF LETTERS, ARTS AND SCIENCES

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
MASTER OF SCIENCE

(GEOGRAPHIC INFORMATION SCIENCE AND TECHNOLOGY)

May 2024

Copyright 2024 Moises Herrera

 ii

Table of Contents

List of Figures .. iv

Abbreviations .. vii

Abstract .. viii

Chapter 1 Introduction .. 1
1.1 Motivation ... 2
1.2 Study Area .. 6
1.3 Data ... 7
1.4 Methods Overview .. 8
1.5 Document Overview ... 9

Chapter 2 Related Work .. 10
2.1 Online Neighborhood Networks ... 10
2.2 Scholarly Work Optimizing Routing Algorithms ... 16

2.2.1 Scholarly Work Optimizing Midpoint Routes ... 23
2.2.2 Wang et al. Method for Finding Meeting Midpoints Along Road Networks 24
2.2.3 Fan’s Major Contributions ... 26

2.3 Thesis Level Web Routing Applications .. 27
2.4 Commercial Web/Mobile Routing Products ... 30
2.5 Summary ... 32

Chapter 3 System Requirements and Planning ... 34
3.1 Acquisition of Background Knowledge .. 34
3.2 Development of the User Scenario ... 35
3.3 Construction of the Wireflow ... 38
3.4 Design of the User Interface and Experience ... 42
3.5 Development of the Routing Algorithm ... 46
3.6 Design of the Software Architecture ... 49
3.7 Design of the Spatial Database ... 52

Chapter 4 Methodology .. 55
4.1 Phase 1 Multi-User Web Environment ... 55

4.1.1 Creation and Configuring of Flask Application ... 56
4.1.2 Creation of Account Model ... 59
4.1.3 Use of Flask CRUD API .. 61
4.1.4 Creation of React Application ... 64
4.1.5 Organization of User Interface with Flexbox .. 64
4.1.6 Development of Introduction, GenerateAccount, and LogIn Components 66
4.1.7 Use of Redux to Program User Messages in the Geoprocessing Engine 71
4.1.8 Development of Conditional Rendering for Logged in View 73
4.1.9 Development of Change Password, Delete, and Log Out Functions 73
4.1.10 Display of Account Details and Enable Location Storage 74

 iii

4.2 Phase 2: System Deployment .. 76
4.2.1 Back-End Deployment using Heroku-Github .. 77
4.2.2 Front-End Deployment using Github-Github Pages .. 81
4.2.3 Maintenance ... 82

4.3 Phase 3: Meeting Service .. 83
4.3.1 Meeting Request Functionality .. 86
4.3.2 Spatial Buffer ... 88
4.3.3 Spatial Search to Potential Participants’ List ... 90
4.3.4 Refresh Requests .. 93
4.3.5 Request React Component with Decline and Accept Options 95
4.3.6 Process and Return Midpoint Information ... 98

4.4 Phase 4: Route Visualization .. 104
4.4.1 Redux to Prepare the Route Information ... 104
4.4.2 Conditional Rendering for the Midpoint_Router.js Component 108
4.4.3 Mapbox Profile and an Access Token ... 108
4.4.4 Midpoint_Router.js Component .. 109

Chapter 5 Results .. 115
5.1 Phase 1 Results ... 115
5.2 Phase 2 Results ... 123
5.3 Phase 3 Results ... 126
5.4 Phase 4 Results ... 133

Chapter 6 Conclusions .. 138
6.1 Graph Processing Packages .. 139
6.2 Deployment Environments ... 140
6.3 Design and Styling .. 140
6.4 UI Separation of Concerns .. 140
6.5 Safety .. 141
6.6 Debugging Services .. 141
6.7 Socket Technology .. 142
6.8 Object Relational Mapping ... 142
6.9 Geospatial Operations ... 143
6.10 Meeting Place Algorithm Variations .. 143

References ... 145

Appendix ... 153

 iv

List of Figures

Figure 1. Los Angeles 2km neighborhood centered at 34.0422 N, -118.171 W 7

Figure 2. Vogel’s ONN taxonomy .. 14

Figure 3. Graph with and without properties .. 17

Figure 4. A diagram of Dijkstra's algorithm ... 19

Figure 5. Wang et al. modified algorithm ... 25

Figure 6. General use case diagram .. 36

Figure 7. Specific use case examples .. 38

Figure 8. GLRSC-System-1 wireflow .. 40

Figure 9. GLRSC-System-1 interface ... 43

Figure 10. GLRSC-System-1 routing algorithm ... 47

Figure 11. GLRSC-System-1 architecture .. 51

Figure 12. GLRSC-System-1 spatial database design .. 53

Figure 13. Phase 1 workflow .. 56

Figure 14. Account model with spatial property .. 60

Figure 15. CRUD routes using Flask blueprint in routes.py ... 61

Figure 16. Generate account function in account_services .. 63

Figure 17. GLRSC-System-1 interface setup ... 66

Figure 18. GenerateAccount component .. 68

Figure 19. Axios post request to generate account ... 70

Figure 20. Store geolocation python function ... 75

Figure 21. Deploy local repository to Github ... 80

Figure 22. GLRSC-System-1 meeting service user flow .. 84

 v

Figure 23. Message request HTML form ... 87

Figure 24. Code buffer search area ... 88

Figure 25. Python code for creating a list of potential participants .. 91

Figure 26. Python code to retrieve list of meeting requests .. 94

Figure 27. JavaScript variable that displays requests ... 96

Figure 28. Get midpoint starting function ... 98

Figure 29. Get midpoint secondary function .. 100

Figure 30. Tertiary midpoint function for two participants .. 101

Figure 31. Tertiary midpoint function for more than two participants 103

Figure 32. routeInfoListSlice.js .. 105

Figure 33. Redux store .. 107

Figure 34. Initialize Map on Midpoint_Router.js ... 110

Figure 35. Mapbox API route request ... 112

Figure 36. Add Route to Map ... 113

Figure 37. Load map and container .. 114

Figure 38. GLRSC-System-1 landing page .. 116

Figure 39. System’s generate account function .. 117

Figure 40. System's log in functionality ... 119

Figure 41. Personalized account, user instructions, algorithmic transparency 119

\Figure 42. Location, remaining CRUD, change password, meeting requests header 120

Figure 43. Phase 1 results for storing location .. 121

Figure 44. Verify location accuracy with Geometry Viewer in PgAdmin 122

Figure 45. Heroku manual deploy success ... 123

 vi

Figure 46. Heroku CLI logs indicate successful system deployment ... 125

Figure 47. Github front-end deployment results ... 126

Figure 48. User sends meeting request with message ... 127

Figure 49. User sends request results .. 128

Figure 50. PgAdmin Geometry Viewer renders rectilinear buffer ... 129

Figure 51. Requestor receives request .. 130

Figure 52. Responder waits for meeting instructions ... 131

Figure 53. System returns midpoint and meeting instructions ... 132

Figure 54. Phase 4 results ... 133

Figure 55. Phase 4 results for two live users .. 134

Figure 56. Phase 4 results for more than two users .. 136

 vii

Abbreviations

CLI Command line interface

CORS Cross-origin resource sharing

GIS Geographic information system

GLRSC Geographic local routing for social connection

GUI Graphical user interface

IDE Integrated development environment

NSASC National Strategy to Advance Social Connection

ONN Online neighborhood networks

ORM Object relational mapping

OSNN Online social neighborhood networks

URL Uniform resource locator

 viii

Abstract

Geographic Local Routing for Social Connection (GLRSC) is an innovative and novel

application which integrates road routing algorithms and multi-user digital environments to

facilitate immediate and thematic social networking opportunities for users within a walkable

reach and a 30-minute period. In 2023, the U.S. Department of Health and Human Services

declared loneliness as a public health epidemic; the declaration demands research and innovative

action to help Americans connect with one another through face-to-face contact. This thesis

develops GLRSC-System-1, a deployed full-stack system that integrates GLRSC and introduces

the application online. GLRSC-System-1 helps users increase their opportunities for social

encounters by providing a meeting request system where users can request thematic meetings

with other users within a 2km neighborhood. The system calculates an optimal midpoint for

active participants based on their geolocation and synchronously routes the users to meet at an

optimal midpoint within a 15-minute period. The thesis introduces the essential components

required of any GLRSC system through the phase planning methodology of GLRSC-System-1.

The essential components/phases for a base-level GLRSC system are a multi-user environment,

system deployment, a meeting service, and a routing service. This project demonstrates the

feasibility of implementing GLRSC in online systems and serves as a guide for the future

development of GLRSC technologies.

 1

Chapter 1 Introduction

According to an advisory report by U.S. Surgeon General, Vivek Murthy (2023), the U.S

population is experiencing an epidemic of loneliness that poses grave risks to individuals and

their communities. There has been neither investment, innovation, nor research investigating

how to build technology that can increase social connection with reliable methods to measure

effectiveness and safety. However, new technologies have emerged that provide experiences for

social connection within a user’s walkable reach. For example, location-based games and dating

applications provide experiences for social connection but are not intentionally built to address

the loneliness epidemic. In fact, the epidemic has persisted despite the advances in location-

based social media technology.

Additionally, new community building platforms, such as Nextdoor, Nebanan, and

Mapbuzz, use geographic data and a user’s location to place individuals in online social

networking groups overlayed onto the user’s actual neighborhood. However, these platforms

have not reliable measured the effectiveness of their platforms in quantifiable or theoretical

ways. The loneliness epidemic is ongoing with no viable evidence that suggests that our present

digital social environments have alleviated its pernicious effects. Nevertheless, geographic

applications such as PokemonGo, Tinder, Uber, and Nextdoor help demonstrate how software

developers can apply the user’s geographic information, spatial analyses tools, and design new

software architectures, to create new systems that drive face-to-face social connection and

experiences.

This thesis present Geographic Local Routing for Social Connection (GLRSC) as a novel

application which introduces the integration of routing technologies and multi-user environments

 2

for facilitating immediate and thematic instances of community engagement within walking

distance of the user’s location.

GLRSC-System-1 was developed using a phase planning methodology. Software

development is divided into four phases: (1) multi-user environment, (2) deployment, (3)

meeting service, (4) routing service. Phase planning helps to establish timelines, deadlines, and

ultimately optimize work in both team and individual settings (Biondi 2021). For the case of this

thesis, phase planning also introduces essential GLRSC components required in any base-level

GLRSC system.

The primary goal for this thesis is to introduce GLRSC as a novel application in the

integration of routing services with multi-user environments that can potentially increase the

user’s opportunities for social encounters on desired subjects. This thesis also aims to introduce

necessary GLRSC system components through its methodology so that the future readers and

developers can more easily build GLRSC-like systems. The tertiary goal is to deploy GLRSC-

System-1 online as a learning resource, methodology, and example for building GLRSC

technologies.

1.1 Motivation

Social connection is a necessary human action, event, and state for sustaining personal

and collective mental, physical, and social health; this fact is backed by both sociological and

empirical perspectives. From a sociological perspective, humans evolved within tribes which

coordinate efforts to improve their chances of survival (Kaspersen 2008). If a human experiences

social disconnection or loneliness there is both an impact on the individual, who experiences a

shortage in support from the tribe, and an impact on the tribe, which loses an active contributor

in the affairs of survival. From an empirical perspective, researchers and institutions have

 3

established loneliness as a risk factor for physical and mental illness (Masi et al. 2011). The

health hazard for an individual experiencing loneliness is analogous to that of an individual who

smokes up to 15 cigarettes a day (Holt-Lunstad 2017). Loneliness increases the risk of heart

disease by 29% and the risk of a stroke by 32 % (Valtorta 2016). On the collective level, several

studies link communities who have poor social capital with a decreased ability to face public

health outbreaks, respond to natural hazards, create jobs, and establish representative government

(NCOC 2011; Kim 2019; Makridis 2021)

Social connection is an urgent topic that requires immediate awareness and action. In

2023, the Office of the U.S. Surgeon General published an advisory that declared loneliness as a

public health epidemic (U.S Department of Health and Human Services 2023). The advisory

lists a wide range of social impacts and worsening U.S. connectivity metrics. For instance, the

advisory reports that the epidemic has at least an economic cost of $6.7 billion in excess

Medicare spending annually due to increased hospital and nursing facility spending for socially

isolated elders (Shaw et al. 2017). From 2003 to 2023, time spent alone has increased by 11.7%

and time spent on in-person social contact has decreased by 200% (Kanaan 2023). Additionally,

studies suggest a half of American adults experience loneliness (Cigna 2021). These statistics

highlight a deteriorating state of social capital in the U.S. However, despite the overwhelming

amount of evidence that documents that human social relationships are a top health determinant,

and that healthy human social relationships are in a decline, there is a slow process to

acknowledge the epidemic (Holt-Lunstad 2017).

Nevertheless, loneliness presents both challenges and opportunities. While loneliness is

linked to adverse health outcomes for the self and the community, social connection, the anti-

thesis of loneliness, is a determinant of population health, community resilience, community

 4

safety, economic prosperity, and representative government (U.S Department of Health and

Human Services 2023). Therefore, addressing loneliness is not just a personal health challenge,

addressing and curing loneliness by improving social connection is an opportunity for collective

social advancement. Thankfully, steps are being taken to address the epidemic on a national

scale. The U.S Surgeon General’s Advisory on loneliness establishes the National Strategy to

Advance Social Connection (NSASC) which lists six pillars to advance social connection and

provides a list of recommended action for specific stakeholder groups including governments,

health workers, public health departments, research institutions, philanthropy, academic

departments, workplaces, community-based organizations, technology companies, media

industries, guardians, and individuals.

The first pillar calls for strong social infrastructure in local communities; it includes

supporting pro-connection urban design, community programs, and local institutions. The second

pillar calls for pro-connection public policies; it includes viewing social connection as a cross-

departmental issue that can be incorporated into all policies across various levels of government.

The third pillar calls for mobilization in the health sector; it includes training providers,

supporting patients, and increasing surveillance and interventions. The fourth pillar calls for a

reformation of digital environments; it includes supporting pro-connection technologies,

integrating data transparency, and ensuring user safety (U.S Department of Health and Human

Services 2023). The fifth pillar calls for public education on social connection; it includes

developing a national research agenda, accelerating research funding, and increasing public

awareness. The sixth pillar calls for a culture of connection; it includes cultivating values that

increase connection, modelling the values in one’s personal life, and expanding conversations on

social connection.

 5

This thesis is concerned with advancing and contributing to Pillar Four, reforming digital

environments. The call for a reformation of digital environments can be attributed to evidence

suggesting that some online social media platforms can produce several social negativities that

deepen loneliness (U.S Department of Health and Human Services 2023). The U.S. Surgeon

General’s Advisory claims that current digital environments may be displacing in-person

engagement, monopolizing the population’s attention, reducing the quality of human

interactions, diminishing self-esteem, and undercutting face-to-face engagement (Duke 2017;

Uhls et al. 2017).

 Technology insiders have also commented on online platforms negative social impact.

For instance, ex-president of Facebook, Sean Parker, claims that social media sites integrate

addictive social validation feedback loops and violate user privacy (Solon 2016; Vaidhyanathan

2019). Social media tech-experts, Justin Rosenstein and Nir Eyal, agree that social media sites

are created to be addictive. Furthermore, they agree that social media rewards addictive behavior,

exploits psychological vulnerabilities and lowers the cognitive ability of focus (Brichter 2017).

Former Google employee, Tristan Harris (2017), comments, “It’s changing our democracy, and

it’s changing our ability to have the conversations and relationships that we want with each

other.” Further evidence shows that social media use is positively correlated with an increase in

loneliness (Hunt 2018).

Asserting the truth of claims regarding social media is beyond the scope of this study.

However, there is evidence that suggests that digital environments can be improved to support

positive social connection. NSASC’s Pillar 4 outlines three key actions to help align digital

environments with public health needs. The pillar calls for individuals and institutions to support

the development of pro-connection technology, integrate data transparency, and ensure user

 6

safety (U.S Department of Health and Human Services 2023). This thesis aims to support the

development of pro-connection technology through the development of GLRSC-System-1. The

system integrates some features that promote data transparency such as features that

communicate algorithmic processes. It is also designed to increase the instances of social

encounters for users. At the time of this thesis, GLRSC-System-1 is not released to the public but

must be made safe for users.

The platform audience is the research community. GLRSC-System-1 is made to engage

geospatial professionals, software architects, social connection coalitions, public health experts,

and routing experts in a conversation on how to harness digital routing services with multi-user

environments to improve social connection in local communities. This paper includes topics such

as geographic information systems, software engineering, routing algorithms and social

connection advocacy. Some familiarity on the topics previously mentioned is useful.

1.2 Study Area

GLRSC-System-1 relies on Wi-Fi internet service to obtain the user’s location. The

user’s location is then used to access road network data from OpenStreetMap. OpenStreetMap

holds data on a large percentage of the Earth’s regions. Therefore, the system is theoretically

functional across the globe, but its performance across regions of the Earth is not examined in

this study. This study provides a study area for running the system’s services which is seen in

Figure 1.

 7

Figure 1. Los Angeles 2km neighborhood centered at 34.0422 N, -118.171 W

The spatial context is around the area known as Los Angeles, CA, United States, 34.0422

N, -118.171 W. System usage is restricted to a 2km radius area from the user. The results chapter

includes images of the study areas, regions close or near 34.0422 N, -118.171 W, used in system

testing.

1.3 Data

The sole data source used for this project is road networks from OpenStreetMap.

OpenStreetMap is used as both a software and a data source because it is an open-source web

application that has a database that contains road network data from around the world. Because

OpenStreetMap is open-sourced this project may use its data freely. The data itself is

continuously updated, and a timestamp is not found to address the temporal scope of the data.

 8

Finally, Python and JavaScript scripting were used make API calls to OpenStreetMap for data

processing.

1.4 Methods Overview

In this thesis, GLRSC is presented in its prototype implementation GLRSC-System-1;

GLRSC-System-1 is a desktop web system that provides three distinct services to users: an

authentication and multi-user environment, a requestor/responder meeting service, and a route

visualization service. The system processes the following actions in order: allow the user to

generate an account and login, allow the user to request and/or respond to a meeting request

to/from nearby users within 2km, and provide the user with a route visualization from their

location to an optimal meeting midpoint along the road network. Through the sequence of

actions, the system provides the user with an opportunity to experience face-to-face contact and

meet residents in their neighborhood, defined within the system as a 2km radius area from the

user’s location. Facilitating face-to-face contact is a known strategy to improve social connection

and reduce social isolation and loneliness (Masi et al. 2011, 219). Therefore, GLRSC-System-1

attempts to alleviate loneliness users and increase their feeling of being socially connected.

GLRSC-System-1 is built using open-source technologies such as PostgreSQL, React,

Flask, Github, and the free version of IntelliJ IDEA, an integrated development environment

(IDE). In this thesis, open source is defined as freely accessible and derivable technology

(Maurya et al. 2015). The system also relies on open-source data such as OpenStreetMap.

OpenStreetMap data is processed through the system’s back-end architecture which also relies

on spatial data support systems such as PostGIS, a spatial extension for PostgreSQL for storing

spatial data. The system uses other supporting open-source spatial technologies such as

 9

Geoalchemy2, OSMnx, and Mapbox, which are incorporated and described throughout the

course of the thesis.

1.5 Document Overview

This first chapter has described the motivations, objectives and data for this research. The

second chapter discusses related work on online neighborhood networks, routing algorithms, and

existing routing products. The third chapter describes the project requirements which includes a

section describing the wireflow developed for the system. It also covers use case scenarios, a

specialized routing algorithm, and software requirements. Chapter Four describes the four phases

of development. Chapter Five shows the resulting GLRSC-System-1 with screenshots of a

successful implementation. Chapter Six discusses future research targets, shortcomings, and

research implications.

 10

Chapter 2 Related Work

This chapter reviews four groups of related work. Section 2.1 reviews online neighborhood

networks (ONN) which are a set of online social media platforms that are also a type of

geographic information system (GIS) geared towards improving social connection at the

neighborhood level. Section 2.2 introduces scholarly work optimizing routing algorithm by

describing the historical evolution of routing algorithms and the reasons why optimization is

crucial for its applications. Section 2.3 introduces two web routing applications described in

graduate theses projects that are technically and architecturally comparable to GLRSC-System-1.

Section 2.4 reviews commercial web/mobile routing products such as Uber and Instacart; they

constitute exemplary commercial work and highlight the impact that web routing applications

can have on society. Section 2.4 also addresses long term considerations and goals that should be

made in the development of successful routing technology.

2.1 Online Neighborhood Networks

Online neighborhood networks (ONN) are online social networking and media platforms

that aim to build community at the neighborhood scale. They are important to this work because

they provide a view into the current state of the art in applying GIS to increase social connection.

Some common names include Nextdoor, Nebanan, and Hoplr.

There is evidence that ONN are consciously designed to address the issue of loneliness

and the need to reform digital environments to improve social connection. For instance, company

websites, such as those for Nextdoor and Nebanan, include research on loneliness and social

connection (Nextdoor, n.d.; Vollman 2018). Therefore, ONN serve as great examples of

consciously designed GIS that work towards addressing the loneliness epidemic.

 11

The term ONN refers to the ecosystem of online social media platforms that encourage

digital interactions amongst users that all reside within a local geographically defined area. De

Meulenaere (2021) coins the term ONN to refer to self-initiated online communities where

individuals can interact with nearby residents, such as a city-based Facebook group or a local

WhatsApp group. However, Vogel (2021) advances the topic further and delineates a more

comprehensive taxonomy for ONN which includes company-initiated platforms as well as self-

initiated platforms. This research paper is primarily focused on company-initiated platforms

because of the architectural and engineering work that is required to build them. While this paper

uses the definition laid out by Vogel, it does not use Vogel’s modified term, online social

neighborhood networks (OSNN). ONN is used instead because it is more compact and equally

descriptive as OSNN.

While ONN promises to build community for users, their strategy, it seems, mostly

consists of garnering online user engagement. The appeal to many users is that even though the

relationships and conversations begin or remain online, the users found in ONN are the actual

people existing in their spatial surroundings which promotes community relevancy. In some

cases, one can imagine that encounters in ONN lead to live face-to-face contact. However, there

have not been reports nor regulatory actions that measure the efficiency of ONN to build offline

face-to-face communities. No reports or studies have been produced or released from ONN nor

the public on ONN effectiveness.

Despite the absence of concrete data that documents ONN in improving social

connection, ONN have been viewed optimistically as next generation social media platforms.

ONN are sometimes seen as a natural progression for internet communities because they place

online communities in tangible local environments (Sachdev 2020). They have gained

 12

international appeal; popular ONN have emerged in various countries. For instance, Nebanan is a

popular ONN in Germany; Nextdoor, in the United States and Spain; Hoplr, in the Netherlands;

and IamHere or Simply Local in India. Cataloguing a complete list of existing ONN at an

international level is beyond the scope of this study. However, the Appendix provides a table

listing existing ONN platforms.

More than just highlighting the emergence of ONN in the digital ecosystem of inventions,

the Appendix helps show how various institutions see a value in online neighborhood or

hyperlocal networking. ONN platforms commonly use the term hyperlocal to describe a new

method of digital networking that focuses on the user’s immediate spatial surroundings, the

largest spatial scale that includes a user and the small subset population that resides around them.

ONN sometimes define hyperlocal as a 1-mile radius or sometimes even use government-housed

data to demarcate actual political neighborhood boundaries within a city.

The platform descriptions provided in the Appendix, next to the ONN name, highlight

their potential public value; the descriptions were gathered from the platforms themselves. The

captions help show the enthusiasm behind these platforms, and it is quite common for ONN

founders to feel enthusiastic about the value that their platforms bring. For example, Founder of

Simply Local, Nikhil Bapna, is excited about the future of ONN, and claims that the future of

social networking is within local micro-communities (Sachdev 2020). Micro-communities being

yet another term that has been coined within the domain of ONN to refer to a hyperlocal

geographically bound community of people where only distance matters in defining a social

bond. He also mentions that streamlining communication at the local level makes

communication more efficient. The official website for Nextdoor mentions that their platform is

an opportunity to build stronger, more vibrant, and more resilient neighborhoods (Nextdoor

 13

2023). While Michael Vollman, founder of Nebanan, mentions that ONN can help users build

social capital nearby (Vollman 2018).

Similarly, ONN founders or proponents find that ONN offer a new potential to improve

more popular social networking and media sites. Vollman (2018) critiques social media

networks, such as Facebook or Twitter, as platforms plagued by ego-centric self-presentation,

narcissism, and anonymous populism. Conversely, he comments that ONN are free from these

characteristics. Such a claim is not one made in this thesis; in fact, ONN have engendered a ton

of critique including racial profiling (Lambright 2019). However, it is a fact that proponents of

ONN, including some ONN founders, believe that healthier social networking should exist and

have worked to create digital social networking modalities that are healthier for society than

existing modalities.

 While ONN offer an alternative and bright future for online social networking, there are

some embedded complexities that make ONN effectiveness difficult to measure. The first issue

that ONN present is their infrastructural complexity. ONN are complex platforms that appear in

various forms and can aim for a wide range of objectives. ONN are not uniform; They exist

across different companies and across the globe. Vogel (2021) documents a complete taxonomy

of ONN in his 2021 Dissertation, “Designing Openness-Infusing Socio Technical Artifacts”.

Figure 2 display’s Vogel’s taxonomy for ONN which helps illuminate the complex design

choices that go into developing these platforms.

 14

Figure 2. Vogel’s ONN taxonomy

Vogel catalogues 14 total dimensions, across four categories, that are considered when

designing an ONN. Each dimension is defined by at least two characteristics if not several more.

Each ONN must have its own combination of dimensions with its specified characteristics. Some

examples of the dimension seen in Vogel’s taxonomy are neighborhood delimitation,

neighborhood formation, identity verification, and user-to-user relationships. The total number of

distinct combinations help demonstrate how the ONN domain is expansive and in construction.

The ONN ecosystem is an enormous system of varied products, each trying to find their niche.

Apart from infrastructural complexity, another issue present that inhibits an objective

measure of ONN effectiveness is that there is an absence of standardization and focused research

on ONN; even platforms like Nextdoor, which are conscious about the issues of social

Dimensions
Availability Global Multi-

country
Single-
country

Selected cities Selected neighborhoods

Ownership
Monetization Advertising Advertising paid

listings

No

monetization/nonprofit
Neighborhood Formation
Neighborhood delimitation Municipal

boundaries
Arbitrarily
platform-defined

Radius-based

Local facilitation None

Identity verification None
Invitation mechanism None
Real-name policy None

Extra-platform visibility
Intra-platform audiences
User-to-user relationships
Sub-communities None

Channels Website + mobile app

Own + bordering neighborhoods Own neighborhood only
Available Not available
Groups

Website

Groups + building - level
communities
Mobile App

Online + offlineOnline
Enforced Encouraged

Fully platform-exclusive Optionally semi-public

Platform-initiated Neighborhood-initiated
Arbitrarily
neighbordefined

Key user concept Neighborhood
management service

Self-service Self-service + in-person

O
pe

ra
tin

g
M

od
el

N

ei
gh

bo
rh

oo
d

Tr
us

t &

Id
en

tit
y

U
se

r &
 C

on
te

nt

Characteristics

Private Company Public Organization
Advertising

subscriptions

 15

connection facing the United States, have yet to release reports on their platform’s effectiveness

in improving social connection within neighborhoods.

ONN should be optimized to ensure that the platforms improve social connection in

neighborhoods. But before they can be optimized, effectiveness must first be assessed.

Unfortunately, assessments are not being made neither from the platforms themselves nor from

the public. And it is even unclear who should make the assessments. However, it is ironic that

platforms like Nextdoor can claim to improve social connection in neighborhoods without

providing metrics and public confirmations to verify their claims; their confirmation, it seems, is

simply online user engagement which is not an intervention strategy to improve social

connection or reduce loneliness according to public health literature (Mast et al. 2011).

Nevertheless, ONN have made the significant contribution of opening a discussion on

how GIS can be used to improve social connection. The ONN ecosystem is helping the public

reimagine what social networks are, where networking can take place, and how software

architects can design information systems that increase community development. They have also

brought back the idea that the immediate community surrounding individual is a key part of

one’s livelihood. They help the public acknowledge operations, events, and actions at the micro-

level.

ONN also help visualize how web software infrastructure can embed GIS to create an

application service that matches online users to their actual geographic dimension, creating an

online neighborhood mapped to the actual physical neighborhood where users reside; This

technique is novel and has the potential to improve community information networks.

Lastly, ONN usage testifies to a broad community of millions of users interested in

creating communities within a walking distance. Although the effectiveness of ONN has not

 16

truly been measured, the existence of ONN and their global set of users proves that there is a

public demand to experience social connection at the most immediate spatial scale, the

neighborhood.

2.2 Scholarly Work Optimizing Routing Algorithms

Routing algorithms are a set of instructions that determine an optimal path within a

graph-based model such as a street network (Yildirim 2023). They are derived from path

planning in graph theory, which examines various methods for determining a path within a de-

contextualized graph. Graphs are non-linear data structures defined as sets of edges and vertices

with some special properties.

Routing algorithms are derived from graph theory theorems. For instance, Edsger

Dijkstra’s shortest path algorithm (1959) was first presented as a decontextualized pure

mathematics theorem in his essay “A Note on Two Problems in Connexion with Graphs”. In this

essay, Dijkstra proves that within any simple or complex graph there exists a shortest path from

point A to point B and logically verifies the strategy used to find the path.

 Industries have adopted Dijkstra’s algorithm within their systems. For instance, Google

Maps uses Dijkstra’s shortest path algorithm to help users find easy, navigable, and efficient

paths to their destinations (Singh 2023). Dijkstra’s theorem is a highly important piece of

scholarly work that brought benefits to society in the form of modern day road network routing.

To better understand Dijkstra’s algorithm, it is first necessary to examine what a graph is.

A graph is both a data structure within computer science and a mathematical subject of study. In

mathematics, they are abstract noncontextualized diagrams containing edges and vertices.

Graphs hold various characteristics. For instance, when a graph is complete it means that each

vertex is connected by an edge to every other vertex. Graphs can hold weighted edges which are

 17

edges assigned a number to represent a cost, distance or other metric that can be used to compare

edges. The graph edges may be directed or undirected. Figure 3 provides an image of a graph

along with some relevant graph properties that help introduce the concept to learners.

Figure 3. Graph with and without properties

The figure above shows two graphs. On the top, there is an undirected and unweighted

graph. On the bottom, there is a directed and weighted graph. Directionality and weight are graph

characteristics with clear correspondences in real world networks. For example, street networks

may have streets with weights, a number that can denote a type of measurement which

researchers can use to decide between different paths. For instance, the weight, of any street

within a street network, may be the length of the street in meters or a number denoting the level

 18

of traffic present in that street. Someone deciding between two paths will choose the street with

the lowest weight if the only objective is to reach the destination as soon as possible.

A path within a street network is an exact combination of connected streets from point A

to arbitrary point Z. In computer science, distance and traffic levels can be used as weights to

decide on an optimal path; typically, the path with a lower weight total will be more favorable.

Computers are especially important for optimization because they can quickly examine

thousands of different paths with different weight totals.

In the street routing literature, graph properties are impactful in determining the most

optimal path because some street network characteristics may impede travel altogether.

Directionality is a property that may restrict some streets altogether from being considered when

calculating an optimal path. Streets may be directed edges or one-way streets, which allow for

travel in only one direction and completely restrict travel in the other direction. This is especially

true for vehicle subjects. Again, computer programs are useful because they can analyze a street

network and consider the restrictions in all streets, whereas a human would not be capable of

considering restrictions in such an automatic fashion.

 In short, graph characteristics may be important when identifying optimal paths in any

type of network according to their correspondences to real world laws, phenomenon, and

methods of travel. When computing an algorithm, every factor that may impact the way an

individual decides on the best optimal path must be considered. Take for instance, the different

factors that apply to a moving vehicle vs a walking subject. The walking subject is not restrained

by traffic flow in the same way that a vehicle is. But a computer algorithm must calculate every

factor if it is to be useful for optimizing operations.

 19

The most relevant routing algorithm in this study is Dijsktra’s algorithm. Dijsktra’s

algorithm is used in the routing algorithm developed for GLRSC-System-1. Figure 4 helps

address how Dijsktra’s algorithm works. Figure 4 takes Dijkstra’s written algorithm (1959),

published in his seminal work, and converts it into a diagrammatic form that helps visualize the

processes involved.

Figure 4. A diagram of Dijkstra's algorithm

Dijkstra’s algorithm finds the shortest path between two distinct nodes within a graph-

based model. In the diagram above, there is a graph-based model with various nodes. The

diagram examines how to find the shortest path from Node A to Node G. While finding the

shortest path from two distinct nodes in the graph, Dijkstra’s algorithm also concurrently finds

the shortest paths between Node A to every other node along the way. The algorithm then

decides the shortest path from Node A to destination Node G by first finding the shortest path

 20

from Node A to the node prior to node G. The chain is created from the very first node, Node A,

to the node that follows A, which in Figure 4 is Node B or Node C.

First, the algorithm creates six different sets, or data structures, to store information, then

repeats an execution until the path from Node A to Node G is found. During each execution,

optimal paths from Node A to the nodes are found. To begin the algorithm, one must first create

six sets. Set A is the set used to record which nodes have been examined. Set B stores the nodes

to be examined in the next iteration. Set C stores nodes left to be examined. Set I stores all

shortest paths ordered from shortest to longest. Set II stores the paths to be examined in the next

iteration. Set III stores the paths not yet examined. All paths begin with Node A. Because there

are seven nodes apart from Node A, there are seven shortest paths. Therefore, it is expected that

there will be seven paths in Set I upon completion of the algorithm. The algorithm begins with

all nodes in Set C and all paths in Set III; Iteration 1 is by default setting the algorithm for

execution.

In the second iteration, Node A is examined. Node A is connected to Node B and Node C

through Edges AB and AC. Therefore, Node B and Node C are placed in Set B and removed

from Set C. Paths AB and AC are added to Set II and removed from Set III. Node A, as the first

node which requires no optimal path from itself to itself is placed in Set A.

In the third iteration, the algorithm compares the weights of each edge connected to the

current node, Node A. Paths AB and AC with their associated weights are placed in Set I in order

of shortest to longest. AB is placed in Set I with a weight of 2. AC is placed in set I with a

weight of 4. The next iteration is prepared by selecting a new current node. The new current

node for the next iteration is the node belonging to the shortest path determined in the current

 21

iteration. Therefore, Node B is assigned as the current node for the next iteration, iteration 4,

because AB has a weight of 2 compared with AC’s weight of 4.

Because Node D and E are connected to Node B, the algorithm places them in Set B, and

the algorithm examines paths AD and AE through Node B. Path AD through Node B has a

weight of 4. Path AE through Node B has a weight of 12. Paths AD and AE through Node B are

added to Set II and removed from Set III. They are placed in Set I in the table of the next

iteration if and only if there does not exist a path with same origin and destination nodes with a

lower weight total. For example, in iteration 5, a new Path AE through Node D has a weight of 6

which replaces the Path AE through Node B with a weight of 12 in the table of iteration 4; the

algorithm is effective because it ensures that only the shortest paths make the final set. The next

iteration begins and repeats the process until all shortest paths are found and stored in Set I

including the path from Node A to Node G.

Popular well-known applications have capitalized on algorithms such as Dijkstra’s

algorithm. ArcGIS Pro utilizes routing algorithms and routing analysis via their Network Analyst

tool, which helps determine optimal paths and plan projects (ArcGIS Network Analyst, n.d.).

Apart from Google Maps, Google also uses network analysis through their Page Rank algorithm

which decides the order in which content across the World Wide Web should be listed in

searches (Yoon et al. 2011, 96). Facebook uses graph data structures in social network analyses

which help determine friend recommendations (Iniguez 2022). Any type of traversal through a

graph data structure implies routing in an abstract sense and therefore, these technologies are

made possible partially because of scholarly work optimizing routing algorithms.

Researchers not only improve the algorithm for road network routing purposes but also

for other applications. Yildirim (2023) investigates Bellmanford’s shortest path algorithm and

 22

Dijkstra’s shortest path algorithm in cryptographic tools. Scholarly work optimizing routing

algorithms are important because they allow the continuous application and adoption of routing

algorithms into practical use cases. Improvements, as such, are made across broad communities

of scholars, which help bring benefits to society.

Domain improvements and advancements are critical for algorithm usage. For example,

Fan (2010) improves Dijkstra’s algorithm within the field of road route planning by introducing

more optimal data storage structures and techniques to minimize the search space of large

complex road networks. Fan’s improvements are important because when a computer analyzes

real world street networks, there can be up to hundreds if not thousands of streets, or edges, to

choose from. As the distance from the origin point increases, the number of streets to examine

also increases which results in longer execution time. Imagine Figure 4, used to demonstrate the

processes in Dijkstra’s algorithm, but instead of the seven nodes that were analyzed, there were

20,000 nodes; it is typical that a computer processes the shortest path with a street network of

that size, but a human could not. A computer can analyze the road network so quickly because it

contains optimized algorithms that account for road network complexity through improved data

storage structures and instructions on how to minimize search space. Furthermore, vehicle

navigation systems or other routing software must also consider traffic flow on each street,

directionality, length, and other factors including weather and/or road barriers.

Moreover, in present day, Dijsktra’s algorithm is used through computer programs and

interfaces to serve very large audiences. Companies and other routing services take full

advantage of path planning by designing code scripts using Python, Java, or another

programming language, that can be reused by multiple users within a user interface. However,

the downside to this, is that there must be sufficient computing capacity to handle the request

 23

from thousands, if not millions of users. The systems must also account for multiple factors such

as road lengths, barriers, hazards, traffic, and weather. To meet the demand of scalability and

high performance, there is a requirement to produce the most optimized algorithm possible. The

better the algorithm, the more requests can be handled. Therefore, work that optimize routing

algorithms are critical components of production level success.

Scholarly work optimizing routing algorithms provides, discovers, improves, and

contextualizes various optimization options and therefore are an important area of study not only

for this paper but for all work where routing services are required. For example, Zhang’s work

(2011) uses a GIS-based framework to examine and optimize a bus route network in Wuhan,

China; the research methodology and findings may be used by city transportation departments

investigating optimal bus routes in their city. Likewise, Yongmei’s work uses an Ant Colony

Routing Algorithm (2015) to find more efficient paths for peach product distribution; distributors

may find Yongmei’s research useful for optimizing their operations.

As demonstrated by the two examples, scholarly work optimizing routing algorithms are

often contextual which results in various methodologies. The research presented in this paper

also has its own context; it introduces an approach for using routing algorithms and digital multi-

user environments to determine optimal midpoints between users. The literature for finding

optimal midpoints and routes to the midpoints is discussed below.

2.2.1 Scholarly Work Optimizing Midpoint Routes

Finding optimal midpoints along routes is a small subset of the routing literature. Routing

literature examining optimal algorithms for finding meeting midpoints between two or more

origin points cite Weber’s industrial location theory as an intellectual predecessor (Faron 2002;

Wang et al. 2018; Yan et al. 2011). Weber had a theory that the optimal site to place a company

 24

was at the center of a location triangle consisting of two locations of raw materials and one

market location. However, contemporary practices have largely divorced from Weber’s theory

and methods.

Nowadays, network distance and routing algorithms are used to find optimal midpoints

(Wang et al. 2018; Yan et al. 2011). Hakami (1965) determined that the vertices of a network can

be taken as a set of candidates for the optimal midpoint. The multi-user digital routing strategy

incorporated in GLRSC-System-1 takes from Hakami’s knowledge by also taking the vertices of

a street network as potential candidates for a meeting midpoint. However, different contexts or

variations may emerge that do not use street intersections as ideal meeting places and/or

midpoint. Some variations may be more favorable for community engagement. For instance,

nearby green spaces or friendly commercial locations can also be used as optimal meeting

locations or close enough midpoint; these are topics for further investigation that have not been

addressed in the routing literature. In other words, research that uses the road network vertices as

candidates for finding an optimal midpoint have not included a favorability ranking.

2.2.2 Wang et al. Method for Finding Meeting Midpoints Along Road Networks

Wang et al. (2018) catalogue trip planning, carpooling services, collaborative interaction,

and logistics management as situations where finding a meeting midpoint is helpful. Scholarly

work optimizing routing algorithms, for finding meeting midpoints along road networks, has

made significant key contributions to the work examined in this thesis.

For instance, the key contributions to GLRSC-System-1 are algorithm design considerations, and

techniques for improving algorithm efficiency such as improving data storage structures,

restricting the search space, and improving time complexity.

 25

Wang et al. provide a baseline algorithm for finding the midpoint using SuperMap and

ArcGIS software. The baseline algorithm provides a great reference for developing other

context-based algorithms. Figure 5 renders a slightly modified version of Wang et al. algorithm

structure.

Figure 5. Wang et al. modified algorithm

The first step in the algorithm is to acquire a map with embedded line and point data from

an external source such as OpenStreetMap. Secondly, process the map into a network topology

using network analysis tools. Third, input the origins, and/or destination points of study. The

fourth step is to apply geoprocessing heuristics or the main substance of instructions to find

optimal routes and midpoints. Lastly, the fifth step is to visualize the optimal routes from the

origin points to the midpoint. This algorithm is mostly copied in this thesis with some key

differences.

Figure 5 excludes a step included in Wang et al. algorithm which integrates context input

weights, such as traffic information, weather, road barriers, etc. For this research input weights

are negligible because the primary user is a walking human subject within a neighborhood

 26

context not an automobile traversing a complex urban area. Context input weights are typically

relevant when creating routes for vehicle navigation systems but are negligible for this thesis

project.

2.2.3 Fan’s Major Contributions

The Fan’s major contribution (2010) is the knowledge on how to improve algorithms for

finding midpoints. Fan lists three useful strategies for improving routing midpoint algorithms:

improve data structure storage, reduce the search space, and reduce time complexity. The three

strategies should be kept in consideration when developing a system that integrates a routing

algorithm because small improvements in efficiency can result in more robust and scalable web

services. But for the purposes of this research, the exact methods of reducing data structure

storage and improving time complexity are ignored. They are advanced methods examined in the

scholarly work but are beyond the scope of this study. Reducing search space is the only strategy

that is addressed and used in this study.

 The reduction of a search space is an action considered and implemented in GLRSC-

System-1. A search space in graph theory is the total network of nodes and edges that is

considered when computing an optimized route. For instance, in the Google Maps routing

service, when a user asks for a route from point A to point B, the software constructs a network

of nodes and edges. The software must also restrict the size of the network to be efficient.

Otherwise, the software processes could endlessly search through the ever-expanding street

network. Search spaces are used in routing algorithms to ensure that only the closest streets are

examined when trying to find the most optimal route (Fan 2010).

 27

2.3 Thesis Level Web Routing Applications

Web routing applications developed in graduate level theses are relevant to this thesis and

have helped inform the thesis methodology. Reviewing architectural and thematic similarities

and differences of related software can be informative in the development process. The projects

in this group provide several tool-choice validations including the decision to use React.js as a

front-end framework and Flask as a back-end framework.

This section is primarily concerned with the work of two different development research

projects. One of the projects develops a single-user web routing application to find optimal

meeting places (Petit 2020). The second project develops a single-user web routing application to

route optimal bike paths (Hruby 2021). Both applications are small scale applications meaning

that they have a low scale technical infrastructure; they are not industry or enterprise-level

products.

While the applications may not be industry-level, they serve as great examples of how to

plan a web development project that integrates routing algorithms along with cartographic

interfaces. Petit’s web application for finding optimal meeting places also provides an analysis

on the efficiency of different routing algorithms. Meanwhile, Hruby’s project showcases how

technical components such as a Flask back-end and a React front-end come together in a web

routing web application.

Petit provides sound reasoning for a routing algorithm that finds an optimal meeting

place between two or more subjects. The two main strategies that Petit (2020) analyzes are the

geographic mean technique and the path traversal technique. The geographic mean is the

simplest approach and takes the sum of the coordinates and divides it by the number of total

coordinates. The next step in the algorithm is to find the nearest street intersection from the

 28

geographic mean; the coordinates of the street intersection become the optimal meeting place.

Finding the street intersection is important because it ensures uniformity. For instance, a

geographic mean can be positioned on any sort of structure such as on top of a building, within

someone’s yard, in a lake, etc. Making all use cases use a street intersection as a meeting point

prevents potential problems in location. Petit uses OSMnx, a python programming package, to

identify the nearest street intersection from the geographic mean (Boeing 2017). All nodes in a

graph street network retrieved from OSMnx correspond with real world street intersections

(Boeing 2017).

Petit also provides an analysis on the geographic path traversal technique which helped

verify the decision to exclude it from the thesis and system implementation. The geographic path

traversal technique also finds the coordinates of the street intersection via the geographic mean.

It then finds a shortest path for each origin point to the street intersection using Dijkstra’s

algorithm. Using these paths, the algorithm checks each consecutive node from each path’s

origin node. If by chance, the next node of one path is the next node of another path, it

recomputes the geographic mean node using the new coordinates from each node, which

produces a new street intersection as the meeting place. The algorithm then re-computes

Dijkstra’s algorithm again for each node. This process is continued till there are no nodes left in

all paths. The results are a meeting place that accounts for shared paths. It is computationally

heavier and more complex than the geographic mean technique, but the results render a meeting

place that minimizes distance for the parties involved.

While the geographic path traversal technique accounts for shared paths, this thesis

research uses the geographic mean technique. Petit’s provides a computational analysis of both

techniques; the results of his analysis influenced my decision to use the geographic mean within

 29

GLRSC-System-1. According to Petit, the geographic mean technique is simpler and has lower

computational costs than the path traversal technique in most cases (Petit 2020).

Petit also runs an analysis on NetworkX’s and OSMnx’s shortest path function, which

uses the Dijsktra’s algorithm previously mentioned, and finds that Dijsktra’s shortest path

algorithm is much more efficient than other shortest path algorithms. NetworkX is also a python

programming library that helps create street network maps and runs useful function’s such as

finding a shortest-path or a nearest node (Hagber et al. 2008). Petit makes a significant

contribution to this work by positively validating the decision to use Dijkstra’s algorithm when

finding shortest paths.

Furthermore, both Hruby and Petit provide information on how to further improve the

efficiency of routing algorithms by incorporating contraction hierarchies (Hruby 2021). But

contraction hierarchies are not included in this research to limit the scope of the project.

Nevertheless, contraction hierarchies can be considered for future research to optimize the

routing algorithms developed for GLRSC-System-1.

Both projects also present their own back-end engines using either Flask or Django as

back-end python-based frameworks. Petit uses Django while Hruby uses Flask. GLRSC-System-

1 uses Flask, but both are equally viable options for developing small- or large-scale web routing

applications. Petit and Hruby’s projects testify to the feasibility of using python as a language for

programming a back-end API of a routing web application.

Both Hruby and Petit import third party python-based geospatial libraries to help process

spatial data from OpenStreetMap. Petit uses NetworkX and OSMnx while Hruby chooses

Libosmium. Lastly, Hruby uses PostgreSQL and PostGIS for back-end storage, which provides

some validation for choosing the technology in this thesis.

 30

Furthermore, both projects have digital user interfaces backed by JavaScript, HTML, and

CSS. Petit sticks to standard JavaScript web development without employing a framework.

Hruby utilizes React.js as their front-end framework. Hruby’s decision to use React as a front-

end framework in a web routing application adds validation to my decision for choosing React

for GLRSC-System-1.

Similarly, Petit provides positive validation for the use cases provided in this work. Like

GLRSC-System-1, Petit’s web application provides a service for computing an optimal midpoint

given the coordinates of two or more human subjects. However, Petit does not employ a spatial

scale nor encourages connections in local communities. Petit’s application is vehicle-centric and

is a single-user environment rather than a multi-user environment. Petit’s work also has an

expansive spatial scale without a limit. Therefore, a single user could use coordinate points 10 or

more kilometers away in distance to compute an optimal midpoint. In contrast, this thesis

research restricts the spatial scale to a 2km radius, which encourages walking and engaging with

a local community. Furthermore, Petit’s system is a single-user environment and is not designed

to provide a communication channel between two users using the system synchronously. Lastly,

Petit also utilizes context input weights which indicates that Petit’s work targets a user audience

who own and use vehicles. In contrast, GLRSC-System-1 is designed for a walking subject to

connect with peers who live within 2km from the user.

2.4 Commercial Web/Mobile Routing Products

Routing applications have emerged as powerful platforms that are changing multiple

facets of society including transportation, consumerism, and work. Applications such as Uber,

Instacart, and DoorDash are not hypothetical routing services, but rather tangible large-scale

routing products with real-world impacts and consequences. They are also a testament to the

 31

adaptiveness of routing algorithms and their utility in shaping a new and efficient world. Beyond

the criticism targeted towards these platforms, it is a fact that they have changed how some

people travel, consume and work. Advances in web routing applications may continue to

catalyze social changes. Commercial routing products are included in this section because they

are exemplary work that can offer practical insights on how to produce and engineer a routing

product that scales. Learning from exemplary commercial routing products can help produce

robust and efficient routing web applications.

One factor that should not be ignored for this group is that they are all highly developed,

highly complex, as well as highly resourced ecosystems. Each of the applications mentioned in

this section rely on a complex, meticulously engineered bundle of web infrastructure which

makes their systems so robust. For example, Uber has publicized their technological stack. Some

of the key tools that they incorporate in their products are hybrid cloud models, globally

distributed data centers, caching systems, logging systems, app provisioning, routing and service

discovery, customized front-end engines, and in-house visualization libraries (Lozinski 2016).

This list of course only includes some of the components listed on their publication and just

stratches the surface of the product ecosystem. In a similar manner, Instacart lists connected data

pipelines, third party data providers, machine learning models, real-time data streams, consumer

tracking services, payment systems, scalable databases, optimized routing algorithms with traffic

context metrics, and rule-based formulas (Rao 2020). For the purposes of this thesis, GLRSC-

System-1 does not attempt to mimic these infrastructural systems; that is beyond the scope of the

study. However, applications like Uber and Instacart are models of how impactful routing

services can be beyond navigation. GLRSC-System-1 attempts to highlight this truth. This

research provides a very small-scale infrastructure that serves as a resource for developers

 32

creating their own routing services. This research does not attempt to reach application

deployment nor production level robustness.

The main contribution that commercial level routing products have made to this thesis

research is highlighting the correlation between the availability of a routing multi-user

environment and social impact. Commercial web/mobile routing products all incorporate multi-

user environments to achieve success. Multi-user environments ensure that a single user can

create a profile and demand a service from another, perhaps unknown, user. A multi-user

environment provides a communication channel for nearby users to facilitate various types of

exchanges that become real-world actions and services such as those seen on the Uber platform,

which provides an instant carpooling service, and those seen on the Instacart platform, which

provides an instant grocery delivery service. In short, multi-user environments secure the

facilitation of human-to-human contact, interaction, and exchange. The construction of a multi-

user environment is a major priority for GLRSC-System-1 for this reason.

Both Uber and Instacart have publicly released sources cataloguing the various

components that make up their platform’s technical infrastructure. For individuals and teams that

hope to build large scalable systems, these resources serve as invaluable information (Lozinski

2016; Rao 2020, 36). Individuals or teams who are building routing applications can reference

Uber and Instacart documents to identify the different infrastructural components that may be

needed when scaling a product. GLRSC system research and development may benefit from

these resources in future work.

2.5 Summary

In this chapter, ONN were introduced as a complex understudied set of online GIS

platforms with the aim of helping users engage with their local neighborhood communities.

 33

Compared with the other related work groups, ONN differ because ONN do not employ routing

algorithms. Conversely, they are comparable to GLRSC-System-1 because ONN provide users

with a method to network with nearby peers in a spatially defined neighborhood using

geographic information tools.

Scholarly work optimizing routing algorithms was defined as an important historical

undertaking that is responsible for much of the advancement in modern digital routing services.

Dijkstra’s algorithm is an example of an optimized shortest path routing algorithm that is used in

this work. Furthermore, not only are optimal routing algorithms relevant to the work conducted

in this project but critical and used in all routing services. Scholarly work optimizing routing

algorithm help discover new applications by finding solutions to optimization challenges.

Web routing applications found in graduate level thesis typically comprise of small-scale

independent efforts that document a development process. These projects integrate specific

routing algorithms and serve as a guide to develop routing systems. This group is ideal for

technical beginners who need an example of how to proceed with development. They introduce

various helpful frameworks and libraries that independent researchers can use when developing

relatively simple or small-scale web routing applications.

Commercial web/mobile routing products are large scale industry level applications with

complex technical architecture and are highly resourced. They are exemplary applications that

successfully integrate routing algorithms, efficient cartographic designs, and robust technical

infrastructure. The high level social, cultural, and economic impacts of their work is a testament

to their success and the impact that web routing products, beyond navigation services, have on

society. They are helpful as exemplary pieces of work from where to garner sound

considerations, practices, and aspirations.

 34

Chapter 3 System Requirements and Planning

For GLRSC-System-1, ten necessary planning tasks were executed: acquisition of background

knowledge, development of the user scenario, construction of the wireflow, design of the user

interface, development of the routing algorithm, design of the software architecture, selection of

the supporting software, design of the spatial database, and plan the system dependencies.

3.1 Acquisition of Background Knowledge

Software development and geographic information systems/science (GIS) are two related

yet separate fields whose practice/theory were both used to build GLRSC-System-1. Software

engineering guidebooks and training material describe the best practices and methods for

building data-related computer systems using an arrange of tools and frameworks. GIS deals

with the storage, analysis, management, and presentation of geographic data (ESRI, n.d.).

Knowledge from both fields was helpful to conceptualize and actualize GLRSC-System-1.

This thesis project builds GLRSC-System-1 as a simple CRUD API. In the field of

software development, create, read, update, and delete (CRUD) functions are emphasized as

foundational computer functions that should be relatively easy to implement in a back-end

database system. Software engineering also introduces the concept of an application

programming interface (API), which is defined as a connected system of computer programs or

systems. For example, a full-stack application is an API consisting of a database, a back-end

framework, a front-end framework, a server, a website, and potentially many more systems and

sub-systems. GRLSC-System-1 is an API, albeit a small and closed one. One must review

software engineering books that discuss CRUD and API. The concepts can be investigated via

 35

the internet, university curriculums, and/or private company programs – commonly known as

coding bootcamps.

GLRSC-System-1 draws most fully from GIS related principles such as cartography,

spatial data accuracy, spatial data models, spatial topology, and projected coordinate systems.

For example, GLRSC-System-1 presents a geographic route on a cartographic display which is

designed with cartographic best practices in mind. GRLSC-System-1 ensures that it stores an

accurate measurement of the user’s location by using Wi-Fi positioning. GLRSC-System-1 uses

computer points and polygons to represent real life objects such as people and their

neighborhoods, respectively. Lastly, GLRSC-System-1 addresses the topic of spatial topology,

by acknowledging and applying people’s presence within spatial neighborhoods; The system

uses spatial topology knowledge to decide which users can meet and where they should meet.

One should reference reliable sources to gain correct information regarding GIS and its topics.

Developing GLRSC-System-1 has been an effort in both GIS engineering and software

engineering. GIS engineering requires a comprehension of GIScience. And the ability to practice

both disciplines was imperative to build GLRSC-System-1; this thesis requires an integrative

GIS engineering – software engineering approach.

3.2 Development of the User Scenario

GLRSC-System-1 has the objective of facilitating community engagement by routing

nearby users to meet at a nearby midpoint, within 2km, along the road network. In other words,

the general use case is face-to-face social networking within a walking distance. GLRSC-

System-1 is successful when it has facilitated face to face contact with a nearby user; this is

designed to be part of the user experience. Figure 6 displays a general use case between two

nearby hypothetical users, one as the requestor and the other as the responder.

 36

Figure 6. General use case diagram

From top to bottom, Figure 6 describes a system whose goal is to combine a computer

environment with the natural environment under one abstract operation: user-to-user social

contact. The exact reason for social contact is not explained in Figure 6. But the exclusion of a

specific reason for social contact gives more focus to the desired outcome, social contact.

The very top of the diagram demonstrates that when a user interacts with GLRSC-

System-1 the first action must be profile or account registration. The second action, from the

user’s perspective, is to log in, which is followed by viewing the system’s interface.

GLRSC-System-1 has two types of user designations: responder and requestor. The user

type is important not only in understanding how the system works but also in designing and

 37

engineering the system. Within the interface, one can act as a requestor or a responder. The

requestor sends a request to meet while the responder responds affirmatively or negatively. If the

responder declines, the responder denies meeting in the physical environment and GLRSC-

System-1 has failed to facilitate contact for the requestor. However, if the responder accepts the

request, GLRSC-System-1 guides the users to meet at a nearby point along the road network,

ensuring a successful use case.

User-to-user social contact is an abstract operation because it could result in many

outcomes. However, GLRSC-System-1 has a way to make the outcome more specific and

predictable. GLRSC-System-1 features a meeting request message which serves as a method to

specify the general use case and/or provide a theme to the meeting. In the meeting request

message, the requestor can specify a reason to meet using a 75-character limit input. Every

unique meeting request message creates a specific use case that extends the general use case. The

feature also benefits the responder because it provides them with an additional reason to meet.

Some specific use cases are shown in Figure 7; They highlight the potential specific use cases

achieved through a custom request message. The specific use cases reduce loneliness and

enhance social connection.

 38

Figure 7. Specific use case examples

The specific use cases shown in Figure 7 help highlight the specific applications for

GLRSC-System-1. Applications can range from an individual searching for a friend to someone

who wants to play chess. By allowing users to specify a theme for the meeting, GLRSC-System-

1 expands the potential use cases and/or gives the users the ability to define the use cases for

themselves.

3.3 Construction of the Wireflow

A wireflow is a set of two or connected wireframes that depicts both the organizational

structure of the web page but also how the pages lead to one another (Angeles 2024). Building

the wireflow is a necessary action to determine the organizational layout not only of the front-

end user interface but also of the entire codebase. Highly organized and modular code is

necessary to build software that can scale and remain maintainable (Meruliya 2022). Building the

 39

wireframes within the wireflow helps adhere to the principle of modularity because it provides a

developer with an opportunity to divide the user interface into organized components.

GLRSC-System-1 uses a layout of three columns. The system renders two columns, each

containing three boxes aligned vertically. The last column contains two boxes aligned vertically.

Each box in the wireframe corresponds with a front-end functional component assigned to a

system function. For instance, one box may be assigned with the functions to generate an

account while another may print messages to the user. The separation of concerns on the front-

end UI, reflected on an original wireframe, lays the foundation for how the code is organized not

only on the front-end but also on the back-end.

Building the wireflow presented in Figure 8 was an immensely helpful task that

determined software design choices later in the development process. The wireflow makes it

possible to approach development using a piece-by-piece, component-by-component, mentality.

 40

Figure 8. GLRSC-System-1 wireflow

Figure 8 shows the application divided into two separate views. The decision to

incorporate only two views was encouraged by concepts of simplicity and minimalism which not

only make the application easier to develop but also make the application easier to navigate.

Both views are composed of components. In Figure 8, the components are identified by

black border boxes. Each component is a separate functionality that renders on top of a single

web page. Therefore, GLRSC-System-1 has two views with independent components that render

conditionally.

For instance, the components in view one are responsible for generating accounts and

enabling log ins. Two of these components give textual and audio introduction to the system,

 41

respectively. There is also a component that processes and displays system messages to users;

this component is called the geoprocessing engine and promotes data or algorithmic

transparency.

The wireflow contains a logical flow that demonstrates how a user transitions between

view one and view two. In Figure 8, there is an arrow connecting the log in form from view one

to view two. The arrow demonstrates that to access view two, the user must first log in.

The second view shares the same black border boxes as view one, but separate functional

components are present. For instance, in place of view one’s generate account and log in buttons,

view two shows account information.

Different functional components appear in view two because of conditional

programming. Upon login, the user should have access to GLRSC-System-1’s services. The user

should also have access to authentication and account services that would not make sense to

include on a landing page where users who are not logged in should not have access to functions

such as change password, delete profile, and log out functionalities.

View two has four additional components. The user console is like the geoprocessing

engine in that it displays system generated messages to the user. However, the user console is

concerned with user instructions rather than algorithmic and data transparency. View two also

has a component that displays an optimal route, a component that allows users to accept or

decline a request, and a component that allows users to send a meeting request with a custom,

75-character limit message.

Returning to Figure 8, an arrow connects view two’s delete account and log out buttons

to view one. The connected arrow indicates that the user can access view one by using either

button.

 42

In conclusion, the wireflow helps define system organization and user flow. Therefore, it

was given considerable thought and attention before developing GLRSC-System-1. Designing

the wireflow for GLRSC-System-1 was an iterative process. The wireflow in Figure 8 changed

to reflect updated decisions and what the system should do and be. Well documented design

iterations can help communicate the development process. For concision’s sake, only the final

iteration is presented. The diagram in this section was created using LucidCharts, a web

application for creating wireframes and other prototype visual models (Lucid, n.d.).

3.4 Design of the User Interface and Experience

The objective for the user interface is to not only to provide the users with a unique

routing service that allows them to facilitate a quick meeting along the road network within a

walkable distance, but also to incorporate key informational elements that provide system

knowledge. The audiences are the scientific community and the public because the system hopes

to present a new idea and be useful for the everyday person.

 Figure 9 depicts the user interface for GLRSC-System-1, followed by a description of

the key elements of the interface and how they facilitate a specific user experience.

 43

Figure 9. GLRSC-System-1 interface

Figure 9 uses the organizational layout from Figure 8. In Figure 9, view one is defined by

four active components: generate account and login service, introduction paragraph, introduction

video, and the geoprocessing engine. View two is defined by six active components: account

information, basic functions, user console, cartography and routing component, meeting service,

request feature, and the geoprocessing engine. Like Figure 8, Figure 9 is divided into two views,

view one where the user is logged out, and view two where the user is logged in.

 44

Figure 9 shows the user experience characterized by five experiential elements: an

authentication system, a meeting service, a routing service, user instructions and informational,

and data transparency. The elements are reinforced throughout the system and not consolidated

into just one component. The authentication system creates a multi-user environment where each

independent user has their own private account that holds required functions such as log in,

change password, log out, and delete profile; this provides the user with a sense of personal

space and control over their user experience. The authentication system is most visible in

component one of view one and component one and two of view two.

The meeting service is visible in component four and five of view two. The service

provides users with the ability to send a custom meeting request and to receive request from

others. The user is given the power to decline or accept any request. All requests provide some

information from the requestor account. The information that is provided is the same that is on

component one in view two, account details. The system displays requestor account details

within all meeting requests to help improve user safety; each user has the right to know who they

meet. The meeting service provides an engaging and exciting experience where users may feel

intrigued by the ability to send and respond to requests from nearby peers for a face-to-face

meeting.

The routing service is consolidated to component four of view two. Component four of

view two presents the route from the user’s location to a meeting midpoint once a meeting has

been accepted. Component four provides a cartographic display of the route on a fixed non-

adjustable neighborhood map. The cartographic display helps communicate the objective of the

system and helps guide people to the meeting point location. The routing service and component

creates a scientific space which bolsters spatial cognition. It provides users with geographic data

 45

and the route from the user’s location to the midpoint makes the experience very personal and

real.

User instructions and informational material is visible in components three and four of

view one and component three of view two. User instructions and informational material are

important to inform the user on GLRSC-System-1. This increases the learning experienced and

gained using the system. Nevertheless, user instructions are likely required for any system

practicing GLRSC. Users need to know where to meet, when to meet, and with whom they are

meeting; any secure and safe system should address these concerns and communicate them with

a user.

 Data transparency is visible in component seven of view one and components seven,

three and one of view two. Component seven of view one and view two are the same component.

The geoprocessing engine reveals to the user how their data is being used. This helps gain user

trust and promotes learning by describing the Flask back-end operations and algorithms. Flask,

version 3.0.0, is used for this project as the back-end framework (Flask, n.d.). This development

is influenced by ArcGIS and other scientific software which include some transparency on

behind-the-scenes data functions. Data transparency is incorporated into the system interface to

demonstrate the scientific foundations of the system.

The choice of the front-end programming language and front-end framework were

validated during the development of the wireframe and user interface. React, version 18.2.0, was

chosen as a front-end development framework for this thesis because it makes the development

process easier by organizing front-end code into individualized components that corresponds to

components on the user interface (React, n.d.). React is programmed in JavaScript, ES6, and

 46

therefore, I used JavaScript, ES6, as the front-end programming language by necessity (React,

n.d.). The diagrams in this section were created using Adobe Photoshop and Illustrator 2024.

3.5 Development of the Routing Algorithm

GLRSC-System-1 relies on a specific implementation of a routing algorithm that requires

the consent of two or more parties. Before programming the system, the algorithm was tested to

ensure feasibility. Testing was done through Jupyter Notebooks, version 7.0.6, whereby a script

was written to simulate a production level system (Jupyter 2024). The exercise of pre-writing the

script in Jupyter Notebooks was helpful to increase confidence in project feasibility.

The routing algorithm for this research is a step-by-step process and pipeline used to

convert the coordinates of two or more users into a useful optimal route that leads to a meeting

along nearby road networks. Once the optimal route and meeting midpoint are calculated, they

are exported to the front-end for visualization. Figure 10 displays the steps in the algorithm

which run in the Flask back-end and are spread out across the back-end source files.

 47

Figure 10. GLRSC-System-1 routing algorithm

The routing algorithm can be summarized in nine steps. The scenario where there is only

one other user willing to meet, a one-to-one meet, is described first. The first step is to store the

user location in a PostgreSQL database as a Geometry Point. The second, third, fourth steps are

done efficiently using a Spatial SQL function that generates a 2km buffer, checks the users that

exist within the buffer, and returns a list of the users. The fifth step is to send a request to the list

of users who lie within the buffer. This request appears on the interface through a registered and

logged in account. Users either accept or decline. The users who accept are placed into a new list

 48

of participants. The sixth step is to program a conditional that runs separate heuristic processes

depending on whether there are one or more than one participant. In the case that there is only

one participant, python code runs Dijkstra shortest path algorithm to produce a route from user A

to user B. The seventh step is to find the median node of the Dijkstra route and designate it as the

meeting midpoint. Dijkstra routes are calculated as a series of nodes, each of which correspond

to real-world street intersections. It is easy to find the median node by determining the number of

nodes, street intersections, in the route and dividing by two. The eighth step is to execute

Dijkstra shortest path algorithm two times more, once for user A to the midpoint and again for

user B to the midpoint. The result is two routes AC and CB. The final ninth step is to send the

routes and midpoint information to correspondent user profiles via the user interface.

In the case that there is more than one participant, the GLRSC routing algorithm first

calculates the geographic mean of the participants’ coordinates and then find the nearest node, in

the 2km buffer area of step three, to the geographic mean. Using the OSMnx, version 1.9.1,

python package, one can find the nearest node from a pair of latitude and longitude coordinates

and a defined street network area (Boeing 2017). The nearest node to the geographic mean is

assigned as the meeting midpoint. For each user, GLRSC-System-1 routing algorithm creates

routes to their locations to the midpoint location. GLRSC-System-1 routing algorithm then sends

the route and midpoint information to the front-end for further processing and visualization.

The choice of database, back-end programming language, back-end framework and graph

processing packages were validated during the development of the routing algorithm.

PostgreSQL, version 15.7, was selected because it is open-source, free to work with, and has

many years of supporting spatial extensions like PostGIS, version 3.4.2 (PostgreSQL, n.d.;

PostGIS, n.d.).

 49

Python, version 3.9.0, was selected for the back-end programming language not only

because it is a highly popular and developed language, but it also has several geospatial libraries

that support geospatial web development (Sharma 2023; Python, n.d). OSMnx was selected

because it proved to be useful in calculating the midpoint and its resources are more than

adequate for this project. Flask was chosen because it is one of two back-end frameworks that

uses Python. A back-end framework that uses Python is essential for this project because the

back-end must be able to use OSMnx. Therefore, Flask was selected. It was selected over Django

because it has a higher level of customizability and less rules to follow.

3.6 Design of the Software Architecture

GLRSC-System-1 contains a highly customized and conceptual function that is not

available in any known system. To build the web application, it was assembled piece by piece

with different software building tools.

 GLRSC is a niche concept that is not supported by modern GIS systems or software. To

develop such an idea into a functional piece of software, it was best to have maximum control

and develop the application piece by piece. It is also ideal to not be restrained by costs in the

development process. Therefore, free open-source systems, software, and data were necessary to

build it. There are many definitions for open-source tools. For this thesis, open source is defined

as technology or data that is freely distributed and derivable (Maurya et al. 2015).

There are many high functioning and highly developed tools that work with routing

algorithm. For instance, ArcGIS Pro has a Network Analyst tool and modern GIS may be able to

compute midpoints including geographic means or median nodes. However, traditional scientific

GIS has separate priorities in concern with network science such as analyzing traffic congestion

or identifying optimal paths. Present day GIS have not integrated GLRSC. They also do not

 50

incorporate multi-user environments where users directly pass data, and consent, to one another

such as accepting meeting requests. Therefore, the technology that constitutes GLRSC-System-1

is a novel application and invention but it was assembled through existing lower-level

components. The basic components necessary for building a GLRSC system are a database, a

back-end framework, a front-end and a server. All four components are systems themselves with

existing lower-level tools, libraries, and extensions.

 For the database, PostgreSQL is required because it is scalable, free to use, and comes

with PostGIS, a required spatial extension that enables storing geometry features, creating spatial

indexes, and conducting geography related queries. A Flask back-end framework is required

because Flask is free to use, has few rules for how to build a system, and is python-based.

Limited rules are ideal because less rules allow for a higher level of control and customizability.

Python is required because it is a highly supported language in the geospatial community and by

using it one can be confident that they have all the necessary functions required to complete the

project (Sharma 2023); there are various geospatial libraries that add support to geospatial

development processes such as Geoalchemy, version 0.14.3, a python package, which provides

Flask application code with geospatial classes in which to create spatial objects. Geoalchemy

maps the Flask spatial objects to a supporting spatial SQL table which is a required functionality

for this development effort (Geoalchemy, n.d.).

Lastly, a front-end framework that supports routing visualization libraries is required.

React is used as an open-source front-end framework. It was selected because it is free to use,

supports Mapbox, a map visualization service, and has strong organizational rules (React, n.d.).

Because of the highly organized layout of GLRSC-System-1, as seen in Figure 8, it is necessary

to use a framework that has organizational rules that make it easy to design the layout. React

 51

uses component logic which means it requires developers to separate files for each component on

the page and render each component separately. React’s component logic is perfect for GLRSC-

System-1. The servers used for GLRSC-System-1 include Github and Heroku cloud servers

(Github, n.d.; Heroku, n.d.) Github and Heroku are web applications accessible online. While

they must have versioning for their platforms, software hosted on their platforms are unaware of

their versions and do not need to keep track of their versions. Heroku and Github were selected

because they are mostly free to use and automate processes for a simplified development

experience. Github was selected because it works well with Git, a version control system. Lastly,

Heroku was selected because it has storage resources more than adequate for this project.

Figure 11 depicts a deployed version of GLRSC-System-1 architecture. The figure was

created before development as a tool that helps guide development.

Figure 11. GLRSC-System-1 architecture

 52

The figure is divided by major groups. The major groups that determine the functionality

of the application are the front-end React engine, the back-end Flask engine, the PostgreSQL

database, and the user interface. These major groups incorporate or include extended

functionality. For instance, the React engine includes Mapbox, version 3.2.0, for routing

visualization (Mapbox, n.d.). The PostgreSQL database includes a spatial data extension,

PostGIS. All four major groups are connected to cloud servers, Github and Heroku, that allow

access to the connected system via the World Wide Web. Data and instructions are passed

amongst major groups through the cloud providers.

Furthermore, all software development was done using an integrated development

environment, IDE. IDE are software building toolsets for writing code and running projects. The

IDE that was chosen for this project was IntelliJ IDEA version 2023.2.5 for its number of

features and comprehensive abilities for software development (IntelliJ IDEA, n.d.). For

example, IntelliJ IDEA has windows where a user can define the Python SDK or examine system

dependencies. IntelliJ IDEA also has a great user experience that makes it easy to navigate the

complexities of software development.

3.7 Design of the Spatial Database

GLRSC-System-1 must keep a record of data objects that are essential to the

functionality of its services. For instance, for a user to create and access account at their leisure

requires a system that has the capacity to store that information for later use. The data objects

essential to system performance are recorded in a database. A record of past transactions

essential to the system’s performance are kept in a PostgreSQL database.

To successfully complete this project, a database with spatial data capabilities was used

because spatial data is essential to the system’s service and design. Spatial properties measure

 53

the location of the object in geographic space and its spatial dimensions. Because of the spatial

properties associated with the data objects, GLRSC-System-1 requires a spatial database which

is a database with an extension for supporting spatial data and a schema that holds objects with

spatial properties. To satisfy this requirement, PostgreSQL is used with a PostGIS extension.

Figure 12 shows the spatial database design for the system.

Figure 12. GLRSC-System-1 spatial database design

Figure 12 is a very simple design that consists of only four data objects. The simplicity of

the design reflects the simplicity of GLRSC-System-1’s functionality which concerns itself with

the most minimal services required to achieve its objective. The database design has an account

table, a meeting request table, an active meeting table, and an account meeting (potential

participant) table.

Account objects are created when the user generates an account. Once the user logs in,

the user can then give consent to share their location with the system. The user’s location is

 54

stored in the account table as a geometry point. The meeting request object is created when a

user sends a request; it holds a spatial property called buffer which is a geometry polygon. This

buffer is the 2km buffer zone which GLRSC-System-1 uses to search for nearby potential

participants. The account request object is created immediately after the meeting request object is

created; it stores the account id numbers to record the accounts that lie within the buffer zone.

The accounts that fall within the buffer zone are potential participants. Lastly, an active meeting

record is created when a user accepts a request. Users within this table have confirmed that they

would like to participate in a meeting and are, therefore, active participants in an active meeting.

Furthermore, PgAdmin version 4.8.1 was used to connect to a PostgreSQL database and

verify the success of object relational mapping capabilities (PgAdmin, n.d.). PgAdmin provides a

superior experience in database management and production. Using PgAdmin, developers can

query the database, create a spatial index, examine available functions, and search for records.

 55

Chapter 4 Methodology

Phase planning is a methodology to complete projects. For this thesis, phase planning was used

to organize development related tasks and establish deadlines which helped with initiation and

termination of chunks of essential duties. During research and development, four key phases

were identified: multi-user environment, deployment, meeting service, and route visualization

service. The four phases were built separately and chronologically. The phases also correspond

to the essential components required to build any GLRSC system. Because this is an innovative

system that has not been developed before, the methodology is also new. The work that most

resembles comes from Petit (2020). Nevertheless, this methodology is new because it not only

computes optimal midpoints using routing algorithms to arrange meetups, like Petit, but it also

provides a multi-user environment that serves as a communication channel among nearby users.

Furthermore, the methodology presented in this thesis presents a system designed for pedestrians

rather than automobile users.

4.1 Phase 1 Multi-User Web Environment

In phase one, a local multi-user system was created, to allow users to make an account,

log in, change their password, log out, delete their account, and store their location. Figure 13

shows the steps required to complete phase one.

 56

Figure 13. Phase 1 workflow

There are ten steps required to complete phase one. Figure 13 divides steps into sub-steps

which it displays in bulleted lists. Within each step, different files or imports are made. To

examine the exact composition of each file and the overarching file structure, the source code is

made available at: https://github.com/spatial-moi.

4.1.1 Creation and Configuring of Flask Application

This section creates, configures, and initiates a production level system. An IDE is a

software application that helps developers build software by providing editing, building, testing,

 57

and packaging capabilities (AWS 2024). In the case of this research, IntelliJ IDEA was used as

the only IDE. After IntelliJ IDEA is installed, the official Flask website guide is referenced to

initialize the application. Because Flask is python-based, a python installation is required. I

referenced the official IntelliJ IDEA guide to configure a Python SDK (IDEA, n.d.). It is

recommended best practice to activate a virtual environment for a Python SDK configuration. I

ran a script that activates a virtual environment on the IDE terminal using the official Flask

instructions (Flask, n.d.). I also referenced the Flask page to create a file that holds a minimal

Flask application.

I created a file named server.py. The .py extension is one used for all Python files. The

file was stored within a folder named src. I imported the Flask library within the server.py file. I

then installed Flask through the IDE terminal using the script, “pip install flask” or through the

IDE branch File>Project Structure>SDKS>Python 3.9>Install Flask. Once installed, the minimal

flask application runs and executes successfully. IntelliJ IDEA has a run execute button on the

top right corner of its interface that is used to run the back-end application. The application can

only be run if the current file is set to server.py.

The paragraph above describes how to build the most minimal flask application in a

single file. Theoretically, all application code can fit into this single file. However, it is best

practice to build an application that is modular, maintainable, and scalable (Shyamal 2014).

Building an entire application into a single file is not best practice. Therefore, the next task is to

think ahead and configure the application so that it is production ready. To configure the

application, within the src folder I created a config.py and an .env file. I created the config file in

accordance with the official Flask configuration rules under the heading development/production

(Flask, n.d.). I programmed a .env file which holds a variable called CONFIG_MODE which I

 58

can manually change its value to one of four options: development, testing, staging, or

production. In the .env file, I create URL variables for each configuration mode and set them to a

PostgreSQL URL. At this stage of development, I use the standard localhost PostgreSQL URL,

“postgresql+psycopg2://postgres:postgres@localhost/postgres”. Later in the methodology, I

change the production configuration to a production cloud PostgreSQL URL.

In a separate file, called config.py, I created python classes for each configuration mode

and assigned to them three properties: a self-referencing Boolean that determines their

configuration mode, a Boolean that determines if the application is in debug mode, and a

database URL which calls on the .env file to retrieve the respective URL for each mode. Before I

import the .env variable in server.py function through one of the classes in config.py. I first

created an __init__.py file where I defined a function called create_app which takes as an

argument one of the configuration python classes. The create_app function in the __init__.py file

determines the setting of the application and then returns the application. The server.py file calls

on the __init__.py function create_app and receives the Flask application; this design pattern is

called an application factory and is required for production level applications. The __init__.py

file is created according to the official Flask application factory standards (Flask, n.d.). Lastly,

within the server.py file, a call to create_app includes a string named “CONFIG_MODE” which

points to the .env file. I defined the configuration setting that the Flask application uses by

manipulating the .env string called CONFIG_MODE to one of the four initial values:

development, testing, staging, or production.

To conclude, flask_jwt_extended version 4.6.0, a python package, was installed and

imported into the new __init__.py file in src folder. Additionally, the flask_bcrypt python

package version 1.0.1 was also installed and imported into the __init__.py file. Respective JSON

 59

Web Token (JWT) and Bcrypt objects are instantiated in __init__.py. These packages and their

respective objects ensure that the system has open access to authentication services and security

capabilities. The finishing application file structure for this step is a src folder with a server.py

file, an __init__.py file, a config.py file, and a .env file. The application is configured for

switching between development and production environment while also setting up the presets for

required application services such as authentication and password encryption through

flask_jwt_extended and flask_bcrypt.

4.1.2 Creation of Account Model

The Account Model is programmed to have eleven fields. These eleven fields are ID,

created, updated, username, password, dob, city, firstname, lastname, sex, and location. The first

step is to create a model.py file and store it within the src folder. Then, I referenced development

the work of Yahia Qous (2023) who provides a reliable blueprint to build the account model. For

the next step, I copied and pasted the model from Quos’ tutorial on building a CRUD API using

Python Flask and SQL Alchemy ORM with PostgreSQL. The instructions from this tutorial were

followed including their instructions on how to install PostgreSQL and SQL Alchemy. Once

PostgreSQL install is complete, PostGIS is enabled according to the official PostGIS install

instructions (PostGIS, n.d.).

To summarize, I completed Qous’ tutorial up to and including the model portion. Once

complete, the model file is customized for the needs of GLRSC-System-1. The tutorial model

fields are replaced with the eleven account fields mentioned previously. Then, to enable spatial

python classes, I installed Geoalchemy2, version 0.14.3, within the IDE and imported the library

into the model.py file, which enabled support for the Geometry Python type. Figure 14 shows

the model including the location field which requires support from Geoalchemy2.

 60

Figure 14. Account model with spatial property

The code snippet shows the account model with its properties. ID, created, and updated

are auto-generated fields which means that no code, other than the one written in Figure 14, is

required to handle these data fields; the logic is automatic. Below the three auto-generated fields

are the remaining eight fields. One of these is the location field. With the Geoalchemy2 import,

Flask supports spatial classes (Geoalchemy, n.d.). For the location field, the corresponding

PostgreSQL column is defined as one that stores point geometries. The spatial reference system

is defined as 4326 which maps to the WGS 84 spatial reference system. The SRID ensures that

the PostgreSQL database can position the location data into a geographic map. Lastly, the spatial

index property is set as true which automatically ensures that a spatial index is created for the

spatial data table on the PostgreSQL database (Geoalchemy, n.d.). The spatial index ensures that

the system can conduct rapid spatial queries that are required for phase three (PostGIS, n.d.).

Figure 14 also shows that the Account class takes as input a Python database model and a

Python base object, which are created using the SQLAlchemy library. SQLAlchemy, version

2.0.25, is a python package that supports object relational mapping (ORM), between the back-

 61

end and the database. The database object within the model.py file can be instantiated by writing

db = SQLAlchemy () and the base can be instantiated by declaring Base =

orm.declarative_base(). These are requirements for the Account model.

Once the model is completely defined, the db object needs to be imported into the

__init__.py file which hold the Flask application. Quos (2023) is referenced for the changes that

are required in the __init__.py file to update its capabilities to register the database object which

makes a connection with the PostgreSQL database. The changes ensure that the ORM occurs

during Flask startup; Flask startup creates a data table in the database as defined in the model.

4.1.3 Use of Flask CRUD API

In this step, I add three more files to the application file structure to continue with best

practices of modularity and efficient organization. To begin, I create a file called routes.py in the

src folder. This file routes incoming HTTP API calls. GLRSC-System-1 utilizes a Flask routing

method known as blueprints which helps modularize code. Blueprints are incorporated as

described in the official Flask blueprint documentation (Flask, n.d.). Figure 15 shows the

blueprint routes needed for phase one.

Figure 15. CRUD routes using Flask blueprint in routes.py

 62

CRUD stands for generic create, read, update, and delete commands. Most actions, in any

system, can be defined as CRUD. Figure 15 shows six core actions required in most multi-user

environments. A user must be able to create, or generate, an account. A user must be able to

login. A user must be able to access their account. A user must be able to log out of their

account. A user must be able to delete their account. A user must be able to change their

password. These routes are important parts of the development effort that become useful when

developing front-end API calls. Notice that in Figure 15, the six functions are imported from a

file called account_controllers.

I created two new folders: one called controllers and the other called services. In the

controller folder, I created a file called account_controllers.py; this file is used to define the exact

functions that are executed per each route. In the services folder, I created a file called

account_service.py, which describes and contains advanced protocols and rules for each function

according to the required specifications. The account_service.py is separated from

account_controllers.py to make the application code more organized.

Account_service.py contains the code that utilizes the authentication and security

capabilities made possible in the __init__.py file. The functions need to be created in the order

listed in Figure 15 because they are dependent on one another. For instance, a user cannot log in

if there is no account. A user cannot change a password if they are not identified and logged in.

Figure 16 demonstrates the first function that is created and highlights how each function

provisions the next.

 63

Figure 16. Generate account function in account_services

The generate account function acquires information from an HTTP call and then checks

to see if an account already exists with the information given. If an account does exist, an error is

thrown. However, if an account does not exist, steps are taken to generate the account. The first

action that the script takes is to ensure user security by encrypting the user’s chosen password so

that it is inaccessible to developers. Then an account object is generated and is passed to a

 64

database function which maps, adds, and commits the object into a data table within the

PostgreSQL database. Finally, a success message is returned.

Each of the six functions contain their own set of instructions but rely on one another. For

instance, the log in function decrypts the user’s password and produces a JSON Web Token

(JWT) to provide more security. JWTs ensure that users do not need to send their password

information across servers more than once. JWTs are implemented according to standards

defined by the official Flask JWT package (Flask, n.d.). Furthermore, each of the following four

functions, delete, log out, change password, and access account, require that a JWT be attached

as a header in any HTTP call.

Once I defined all the functions, I used Postman software, version 10.24.16, to test the

back-end routes (Postman, n.d.). It is important to test the routes at this stage of development to

ensure that they run successfully. Once they have run successfully, I proceeded to the next step

in GLRSC-System-1 development process.

4.1.4 Creation of React Application

My next step was to create a React application using IntelliJ IDEA IDE. I created a new

project gave it the name of the project. Next, using the official React website as a reference, I

used the IDE terminal to run the command “npx create-next-app@latest” in the project’s

directory (React, n.d.). This script creates a react app in the project folder. To start the app, I used

the command “npm start” this command opens a page on the web browser with a default React

homepage that can be removed later (React, n.d.).

4.1.5 Organization of User Interface with Flexbox

To organize the user interface only two files are needed. App.js and App.css are default

files that are provided with every React project. Therefore, I did not create any additional files in

 65

this step. The App.js file contains a return function that contains the HTML for the default React

homepage. I deleted the default information and kept only the main parent wrapper div with a

class name of “App”. A div is an HTML element used to organize web page content (Mdn web

docs 2023). I programmed the “App” parent div to have three div children each with a class

name of “column” plus their number in consecutive order. For instance, the first child div has a

class name of “column-1”. The second child div has a class name of “column-2”. The third child

div has a class name of “column-3”.

The first column has two separate child div with the naming rule “column number” then

“box number”. For instance, the first column has two child div. The first child div has a class

name of “column1-box1”. The second child div has a class name of “column1-box2”. This

format proceeds for each column. The second column has three child div. The third column has

two child div.

Once I wrote the HTML within the return function of App.js, I applied CSS to the

elements in the App.css file. I used a CSS tool called Flexbox to create an organized box layout

as seen in Figure 17.

 66

Figure 17. GLRSC-System-1 interface setup

I referenced the official Flexbox page to learn how to apply stylistic rules and methods

(Mdn web docs 2023). The class names that were given for each div are referenced within the

App.css file. Using CSS, I gave black borders to each box and defined their sizes and spacing.

The result is GLRSC-System-1 layout which provides a minimalistic single-page application

environment where each black box loads different interface requirements.

4.1.6 Development of Introduction, GenerateAccount, and LogIn Components

In a React application, HTML is divided into components which are stored in separate

files (React, n.d.). Not only do these components store and produce HTML, which is then seen

on the user interface, but they also store application logic that corresponds to the HTML that

they display. Once each component is securely defined to produce the logic and HTML that is

desired, they are brought in by name to the App.js file and their name is written within one of the

 67

respective HTML div that were defined in 4.1.5. This is the steps I took to program all React

components and have them display on the interface.

To program the Introduction component, I created a folder called detailer within the

default src folder. I then created and programmed a file named Introduction.js inside the detailer

folder. The introduction component renders a paragraph text that informs the reader about

GLRSC-System-1. In the introduction there is no data manipulation or HTTP call to the back-

end API. Therefore, this was a very simple step to accomplish because I only needed to create

the React component and place HTML in the default return function. I then imported the

component into App.js and placed it within a div.

I gave each div in App.js a className, which is a reference that React uses to apply CSS.

A class is a type of object that is named according to what the object type does within the context

of the system. For instance, an object that stores the user’s name, age, password, and email

would likely be responsible for dealing with that user’s account. Therefore, the class is given a

className of account. Each black box in the layout is given a column and box numbers as a

className to distinguish the position within the interface; this className protocol is used for

GLRSC-System-1 but that does not mean that all React applications use the same className

conventions. Typically, developers get to decide the class name conventions according to what

makes sense for them and their systems. Once a React component is imported into the layout by

writing its name in the div, it renders on the user interface unless a conditional is programmed to

hide the component.

To generate an account in the database from the front end, there needs to be both a button

that accesses the back-end routes and a front-end user facing form that can be completed which

includes the account fields defined in the account model. The generate account ability is of

 68

particular importance because it set the stage and organizational flow for how I programmed the

remaining CRUD actions React. I copied, pasted, and adjusted the JavaScript programming code

in the GenerateAccount.js and GenerateAccountModal.js files to make React components for the

remaining CRUD actions. Figure 18 shows a file called GenerateAccount.js. This file serves as a

template for other CRUD actions which require both a button and a pop-up modal form.

Figure 18. GenerateAccount component

The first function in the GenerateAccount class is the constructor function. The

constructor function is required to initialize a GenerateAccount global object with the defined

 69

properties within its brackets. The properties include a Boolean variable named “seen” and a

function named “toggleSeen” which changes the state of “seen” to true rather than false.

The return function returns an HTML button element wrapped in a separate div. The

wrapper div is used for stylistic purposes only and is not relevant to the application logic. Within

the HTML button element, a click event point to the “toggleSeen” function indicates that the

“seen” variable is switched to true when the button is clicked. The last thing I programmed in

this file is a conditional below the HTML button element. The syntax of brackets within the

return statement are React’s version of enabling conditional rendering. The bracket code states

that if the “seen” variable is set to true, show a component named GenerateAccountModal stored

in a file named GenerateAccountModal.js. Lastly, I imported the GenerateAccount component

into the App.js file inside the first column-first box div to ensure that the user has access to the

generate account feature.

The file GenerateAccountModal.js is the second file that is used to program the generate

account functionality. The GenerateAccountModal component returns an HTML form where

users can input information for the following account model variables: username, password, first

name, last name, date of birth, sex, and city. The HTML form also has a submit button. The

submit button triggers a function within GenerateAccountModal called generateAccount which

creates an account object named account with the information that the user submitted.

The account information is stored within a JavaScript dictionary named config which

stores key value pairs with information that is required to make a request to the back-end. For

this application, I used axios as an HTTP client package. Axios allows the application to make

HTTP requests to a back-end server. Figure 19 depicts how the config dictionary is used within

an axios POST request to generate an account.

 70

Figure 19. Axios post request to generate account

 71

The config dictionary stores the account object with the form information. It also holds a

method key with the value of post which indicates that the function is meant to create data, one

of the four CRUD actions. The url key holds the route url seen in routes.py file within the Flask

back-end. The headers key describes the type of data transfer standard that is used to transfer

account data.

A couple lines below the config dictionary is the axios request. The config dictionary is

passed as an argument. The axios function with the config argument sends the request. Then the

.then(response) call captures a response from the server. Finally, at the very end, a toggleClose

function closes the modal.

The log in functionality follows the same structure and strategy in LogIn.js component.

The only difference is that the config data key in LogIn.js holds different information. The

config data only holds username and password as input. In the LogIn.js component, the server

returns a JWT access_token. LogIn.js component uses local storage to store the JWT

access_token for future account actions. The code in GenerateAccount.js and LogIn.js can be

used interchangeably and updated according to program needs. The LogIn.js component is also

imported into App.js column1-box1 and its name is written inside the div.

4.1.7 Use of Redux to Program User Messages in the Geoprocessing Engine

To uphold the projects commitment to data transparency, GLRSC-System-1 required a

dedicated interface element that is responsible for printing messages to the user. This interface

element is called the Geoprocessing Engine or Geoprocessing_Engine.js in the React codebase.

The messages that the Geoprocessing Engine prints ranges according to the functionality of the

system. For instance, when a user generates an account, the Geoprocessing Engine prints a

message that the API call was successful. When a user decides to give the system permission to

 72

their location, the Geoprocessing Engine informs the user that their location data is stored and

what is done with it. The goal for the Geoprocessing Engine is that it communicates algorithmic

processes, such as routing processes. This helps make the system informative and scientific as

well as educational. The Geoprocessing Engine facilitates a user experience that is rich in

knowledge and openness.

To create such a panel, all React components, such as GenerateAccount and LogIn need

access to a centralized storage unit where they can send messages to, upon successful or

erroneous completion. As a solution, Redux, version 4.2.1, is a predictable centralized state

container, that I used for storing variables that are needed across the application file structure

(Redux, n.d.). I imported a redux store into individual React components and then added

messages into the store within independent file contexts.

 Then I created a folder called geoprocessing_engine. Then within the folder, I created a

file called Geoprocessing_Engine.js. I followed the instructions from the official Redux

installation page. Then created a folder called redux under src. Within the redux folder I created

two files, geMessageListSlice.js and store.js. Then, I referenced the redux installation

instructions to access the code that should be placed in both files (Redux, n.d.). Within

geMessageListSlice.js and store.js, I created a variable and made it accessible to all parts of the

application. The global redux variable is accessed within React components that require global

storage capabilities. Within the .then function of an axios CRUD request, global redux variables

are accessed, called, modified, and stored again in Redux.

For example, once a user logs in, a redux variable is accessed and modified.

Simultaneously within the GeoprocessingEngine.js file, the modified redux variable is read, and

the modified variable is printed onto an HTML div. In App.js, column3-box2 is designated as the

 73

panel for the Geoprocessing Engine. The GeoprocessingEngine.js component is imported into

App.js and its name is written inside column3-box2. Redux set up is done within the file

structure and no external programs or websites need to be used. The tutorial is very

comprehensive, and it is easy to adjust it to the needs of GLRSC-System-1 or any other system.

4.1.8 Development of Conditional Rendering for Logged in View

Redux variables can also be used to program conditional rendering in App.js. In GLRSC-

System-1, the user should expect an initial landing page where they can either generate an

account or log in. Once logged in, the generate account and log in buttons should disappear from

the user interface. In their place, GLRSC-System-1 should render new components that are

required for the system’s service.

In other words, the system itself must know if the user is logged in or out, and this

information must be updated at the exact moment that a user successfully logs in. I created a

global variable called, ‘loggedIn’ following the same instructions from the official redux page

(Redux, n.d.). The new variable’s default value is “false”. In the LogIn.js component the redux

variable is modified and set to true. In App.js, the updated stored variable is re-accessed and

read. The system applies conditional rendering using the loggedIn variable to hide components

and show others. This is done by pairing the redux variable with the React component using the

format “{reduxVariable && </ReactComponent.js>}” within the corresponding div in App.js.

4.1.9 Development of Change Password, Delete, and Log Out Functions

Change password functionality is divided into two files: ChangePassword.js and

ChangePasswordModal.js. Both are made by using GenerateAccount.js and

GenerateAccountModal.js as templates. The difference is that the data key in the config

dictionary changes to include only the data that is necessary. For the change password there are

 74

only two variables stored in config, the user’s current password and the new password. The route

changes from “/generate” to “/password”. The method changes from “post” to “patch”. Patch is

an update function from the four CRUD functions.

In ChangePasswordModal.js, Delete.js, and LogOut.js, I included an authorization JWT

header key in the config dictionary; this is done to add advanced security and password

authentication capabilities. At the time of logging, the system back-end generates and returns a

JWT access token which is then stored in the system’s front-end local storage. I programmed the

system to require authorization for change password, delete, and logout HTTP calls. Therefore,

the system calls on local storage to access the JWT access token which are then placed as

headers in HTTP calls.

I reduced delete and log out functionality to one file each: Delete.js and LogOut.js. There

is no need to include a modal because neither require the user to submit information. Both

Delete.js and LogOut.js make direct axios calls without including data.

4.1.10 Display of Account Details and Enable Location Storage

As mentioned in Section 4.1.8, when the user logs in, the GenerateAccount.js and

LogIn.js buttons disappear. In their place, account details are presented. To program account

details, I created a new file called Account.js. The Account.js component also makes an HTTP

request, but it does not pass data like LogOut.js and Delete.js. Instead, it makes a “Get” request

to the “/account” url in the Flask back-end which returns a list of account details such as first

name, last name, sex, dob, and city.

Finally, I programmed a button with location storage capabilities and included it within

the Account.js component. The location button is tied to a click function called storeLocation

within Account.js. The store location button raises a prompt to the user to allow or reject location

 75

sharing. If the user gives the prompt permission, the user’s location is stored in a React variable

and the system triggers an axios HTTP request to update the location field in the account model.

Figure 20 shows the axios request’s destination code.

Figure 20. Store geolocation python function

In the store_geolocation function, the system stores integer values of latitude and

longitude from the axios data. However, PostgreSQL requires the WKTElement to process

spatial data. Therefore, the system first converts the integer latitude and longitude coordinates

into a WKTElement. Then the system makes an update command using SQLAlchemy syntax. If

 76

the action is successful, the system returns a success message that informs the user that their

location has been stored. The system displays the message in GeoprocessingEngine.js.

4.2 Phase 2: System Deployment

GLRSC-System-1 deployment is achieved using Github and Heroku which are remote

application repositories that can serve code to clients. Using Github-Heroku for deployment

simplifies the process by automating server setup, network administration and database tuning

(Pattan 2023). It is a pay to use bundle where developers pay according to HTTP traffic to their

hosted API. Furthermore, the strategy that is used to ensure continuous user access to updated

versions of the application is known as continuous deployment and it can be done using the

Heroku-Github pair. Continuous deployment emphasizes minor changes to the application with

each deployment. By not bundling all updates into a single version, application bugs can be more

swiftly identified. For each deployment, Heroku runs automated checks to ensure that each

update is viable for production. Heroku checks the code for viability and then pushes the changes

it to a live environment. HTTP requests can be sent from a live user to access API resources and

computations. This project stores the system files in a Github repository and uses Github Pages

for hosting its domain making the system accessible to users. Github Pages is a service within

Github that provides automated and quick domain name assignment which ensures that the user

has a custom URL to access the system interface.

This section covers the first deployments for the back-end and the front-end. The section

uses the previously discussed phase 1 code as the first deployment unit. The section begins with

back-end deployment using Heroku and Github. It is followed by a section on front-end

deployment using Github and Github Pages. The section ends with a discussion on maintenance.

 77

The maintenance section discusses relevant information needed to successfully execute

continuous deployment for this project.

4.2.1 Back-End Deployment using Heroku-Github

First, I created a Heroku account by visiting the website and following the graphical user

interface (GUI) instructions. After I created an account, I navigated to the dashboard, and

selected create application. I assigned the application a name and then clicked create. The name

used for this project was “GLRSC-System-1”.

After I created the application, I navigated to the dashboard with the application name

which holds seven tabs: overview, resources, deploy, metrics, activity, access, and settings. In

the resources tab there is a horizontal bar to configure add ins where I selected the Heroku

Postgres add in. The Heroku Postgres add in is used to create and manage a PostgreSQL

database. I followed the GUI instructions to create the Heroku PostgreSQL instance for

production while keeping the local PostgreSQL instance for development. A PostgreSQL

database is required because that is the database that was used in phase 1 and GLRSC-System-1

is configured to use PostgreSQL. To use the Heroku PostgreSQL service, it is also required to

enter a payment method in Account Settings > Billing.

The next step I took was to install the Heroku command line interface (CLI). The CLI

provides functionality and commands that are required to deploy GLRSC-System-1. The official

Heroku guide is used to install the CLI (Heroku, n.d.). Brew is used as the command line install

option.

Once installed, I typed “heroku login” in the CLI and clicked enter. This allowed me to

connect to the Heroku application from my computer and enable needed commands. Once

logged in, I connected to the PostgreSQL database instance using the command “heroku

 78

pg:psql”. Once connected to the PostgreSQL instance, I ran the command, “CREATE

EXTENSION postgis”. PostGIS is a required extension. In Phase 1, the model was created with

a geometry point. If PostGIS is not installed at this point, deployment fails because Heroku

cannot store geometry points without the PostGIS extension.

On the Heroku GUI, I navigated to the application settings. There is a section titled,

“Config Vars” where there is a variable named DATABASE_URL. The key string for

DATABASE_URL is the URL that is used to connect to the PostgreSQL instance. However,

Heroku requires a slightly modified string. Therefore, I clicked the add variable button, and

made a new variable named DATABASE_URI. I copied and pasted the string from

DATABASE_URL and assigned it to DATABASE_URI. I then modified the string by adding

“ql” to the prefix “postgres”. The DATABASE_URI string is identical to the DATABASE_URL

string except for the distinct prefix “postgresql” rather than “postgres”. I then copied and pasted

the DATABASE_URI string to the production configuration PostgreSQL URL in the .env file in

the Flask back-end. I also changed the CONFIG_MODE variable to “production” rather than

“development”. In config.py, I updated the variable DATABASE_URI in the ProductionConfig

python class to match the DATABASE_URI variable described in the previous paragraph. These

specific changes are made to configure the application for production.

Next, I configured the application to allow cross origin resources. To do this, I modified

the __init__.py file by adding an array variable called cors_origin that holds different URL sites

that can access the Flask back-end routes. Secondly, I used the CORS python package version

4.0.0 to define a CORS object that allows from cross-origin resource transfer. CORS stands for

“Cross-Origin-Resource-Sharing”. The CORS object also takes the cors_origin as an argument.

 79

Next, I ran the command “pip3 freeze > requirements.txt” in the Flask repository in the

IDE terminal. This command created a file called requirements.txt in the Flask file structure.

This file is required for Heroku deployment. The command created a file with project

dependencies and defined version numbers. This process is automatic. However, the result is a

list of roughly 400 dependencies. Most of the dependencies are extraneous. I removed many of

them and only kept the ones that I explicitly imported into Flask python files. Heroku installs

other needed dependencies automatically upon deployment.

Trimming the dependencies is important because doing so reduces the slug size. There is

a maximum slug size of 500MB for standard Heroku deployment. Keeping the 400 original

dependencies guarantees a slug size of over 500MB and halt deployment. Furthermore, more

dependencies may be added in Phase 3 and 4 so it is best to plan and optimize slug size.

Next, I created a file labeled “Procfile”. This file is another Heroku requirement. In the

file, I typed “web: gunicorn server:app” on one line. In deployment, Heroku reads the Procfile to

identify the Python application.

Next, I created a file called “runtime.txt”. In it, I typed 3.9.6. This number indicates the

Python version used to develop the application. Heroku identifies the runtime.txt and makes a

deployment using the specified Python version. As a necessary pair, I changed the Heroku Stacks

to 20. Heroku Stacks is the version number that supports different programming languages and

version. By default, Heroku Stacks is set to 22. However, Heroku Stacks 22 is not compatible

with Python 3.9.6. To configure GLRSC-System-1 to use Heroku Stacks 20, I run “heroku

stack:set heroku-20” in the Heroku CLI.

The application was then ready for deployment. For Heroku to run checks on the

application, the application must first be stored in a cloud server. I used Github to store the

 80

application. It is required to create a Github account and then create a repository on that account.

For this project, the repository for the back-end is called, “GLRSC_S1_FLASK”. S1 stands for

system 1. This project uses a tutorial by Cerminara (2022) for instructions on back-end

deployment. Figure 21 summarizes the processes involved according to Cerminara.

Figure 21. Deploy local repository to Github

The commands in Figure 21 are run from the MacOS terminal at the head of the project

directory. The first command, “git init”, initializes a git repository; it enables version control.

The next command, “git add -A”, creates an update object and adds all files in their current state

to the update. The “git commit” command commits the changes. It bundles the update and

prepares it to be pushed remotely to the Github repository. The quotations following the

command should give a description of that update in a couple of words. The next command, “git

remote add origin”, is used to pair the local repository to the Github repository created with the

name, “GLRSC_S1_FLASK”. Finally, “git push -u -f origin main” executes deployment to

Github. Once I ran the code above, the repository was made available on Github.

To deploy from Heroku, on the GUI, I navigated to the application created previously in

this section. In the deploy tab, under deployment method, I selected Github, typed

“GLRSC_S1_FLASK”, selected the master branch and clicked connect. The application then

deploys successfully. I then viewed the deploy back-end webpage through a link that Heroku

 81

provides. To access HTTP requests and logs that are sent to the API, I ran the command, “heroku

logs –tail –app=heroku-app-name”, from the Heroku CLI which served as a great resource to

debug and to monitor the API.

4.2.2 Front-End Deployment using Github-Github Pages

Within the React front-end system, the first course of action, was to modify the HTTP

request URL to point to the Heroku deployed back-end. During the end of the Heroku build,

right before successful deploy, the Heroku GUI provided the URL that is used to make HTTP

requests. This URL is https://glrsc-system-1-27a1742ceb52.herokuapp.com.

I had to change all HTTP requests that pointed to localhost:5000 to instead point to

https://glrsc-system-1-27a1742ceb52.herokuapp.com. However, while I developed Phase 3 and

Phase 4, I reverted the URL paths back to localhost:5000 so that I can test the system without

needing to run continuous deployment.

I used environment variables to replace the localhost URL. I first created a .env file at

the root of the React directory. Within this file, I typed the variable REACT_APP_API_URL.

When using environment variable in React, it is necessary to prefix the variable with

REACT_APP. Any modifications without the prefix do not work. Next, I assigned the variable

to the deployed Heroku URL. Assignment is easily done by placing an equal mark between the

variable and the URL.

I made each HTTP request within the React app by creating a new variable called “path”

in each of the necessary files. I assigned the “path” variable to REACT_APP_API_URL. Then in

the config variable, for each Axios HTTP call, I prefixed the route with “path”.

https://glrsc-system-1-27a1742ceb52.herokuapp.com/
https://glrsc-system-1-27a1742ceb52.herokuapp.com/

 82

At this point of development, I updated the HTTP request structure to match in the

following files: GenerateAccountModal.js, LogInModal.js, ChangePassword.js, DeleteProfile.js,

LogOut.js, and Account.js.

I deployed the project to Github using the instructions from Figure 21. The final step is to

use Github-Pages to host the site. Hosting on Github-Pages allows for a quick domain name

assignment that simplifies the deployment process. Within the terminal from the React project

root directory, I ran the commands: npm install, gh-pages –save-dev, npm run build, and gh-

pages -d build. And then committed the changes using git and push to Github using the same

syntax from Figure 21.

On Github, I navigated to settings and then pages. Under the source heading, I made sure

that source pointed to gh-pages branch. Once source is set to gh-pages, deployment is automatic.

The initial deployment takes only a few minutes. Github provided a link to the deployed site

within settings > pages, right above the source heading.

4.2.3 Maintenance

For Phase 3 and Phase 4, testing is done in production as well as development. It is

necessary to create different branches for different work settings. For both the Flask back-end

and React front-end, I used git within the terminal to create different branches. Beginning from

the root directory of each project, I ran “git checkout -b ‘development” and then checkout to

master using git where I ran “git checkout -b ‘production’”. These commands prepared and

created the development and production branches. All local work is done within development

and all production-level work done in production. This set up provided me with an organized

workflow.

 83

4.3 Phase 3: Meeting Service

GLRSC-System-1 required a meeting service that enables and processes meeting

requests, executes necessary front and back-end spatial functions, and delivers vital meeting

information to the user interface. The meeting service objective was to schedule an immediate

meeting, within 30 minutes, and provide the latitude, longitude coordinates of the meeting place

to all self-registered participants.

To achieve the meeting service objective, GLRSC-System-1 integrates a data flow which

mimics the procedures of the GLRSC routing algorithm described in Figure 10. Figure 22

diagrams the GLRSC routing algorithm and data flow within the context of a deployed multi-

user system and displays how the system meets the meeting service objective.

j
84

Fi

gu
re

 2
2.

 G
LR

SC
-S

ys
te

m
-1

 m
ee

tin
g

se
rv

ic
e

us
er

 fl
ow

 85

Figure 22 is a diagram that simplifies and summarizes the steps required to achieve the

meeting service’s objective. A user achieves the first step, while playing the role of a requestor,

when they send a request. The send request button triggers an HTTP call to GLRSC-System-1

back-end which matches the call to a specified route called ‘send_request’. In the request call,

the system creates a Meeting Request object.

The second step the system takes is to define the buffer geometry polygon, in the Meeting

Request object, representing the search area or neighborhood. The system’s geospatial functions

process and convert the requestor’s location into a geometry polygon and then store the Meeting

Request in the database along with its buffer as an attribute.

 The third step in the system is to retrieve a list of potential participants; it is achieved by

running a geospatial function facilitated by PostGIS. In the function, the code checks for

accounts whose location lies within the buffer geometry polygon. Those accounts that are within

the buffer are then referenced in a table called Account_Request, which is a table for potential

participants.

The fourth step in the system requires a separate account, a Responder, who chooses to

access meeting requests by clicking an interface button called, “refresh requests” which sends an

HTTP call to the system’s back-end which matches the call to a specified route called,

“/refresh_requests”. The route queries the back-end across the Account table and the

Meeting_Request table to produce an object that has attributes from both tables. The system

returns the custom object to the Responder’s front-end engine. The front-end engine then renders

the custom object as a record in a table of meeting requests. Each meeting request on the React

front-end interface provides important key details of a meeting such as the name of the person

who sent it, their age, their sex, and the custom message that sets the theme for the meeting. Each

 86

meeting request also allows the Responder to decline or accept the request. In the case of a

decline, the Responder’s information is simply deleted from Account_Request table. However,

in the case that the Responder accepts the request, the system stores the Responder’s account

information in a new record in the Active_Meeting table which indicates that the Responder is

now an active participant in the meeting.

Step six processes all account references stored in the Active_Meeting table. The system

uses the accounts’ locations and third-party python libraries to calculate an optimal meeting

place along the road network. After the system is finished determining the midpoint, the system

sends the information back to each registered account referenced in Active_Meeting. The

process is done synchronously so that each participant receives a notification of the meeting

place latitude and longitude coordinates at the same time. Section 4.3 reviews each of the six key

steps in detail and documents important code blocks.

4.3.1 Meeting Request Functionality

To position the meeting request form on the user interface, I first created a folder called

Meetings under the src folder in the React repository. I then created a file called

MeetingRequest.js in the Meetings folder. I exported the React component and included it within

the App.js file within the div with the className of “column3-box1”. Within MeetingRequest.js,

I defined an HTML div that determines the component’s appearance and responsiveness with

attributes such as the width of the text box and the limitation of characters. I also defined the

MeetingRequest.js component to make an axios call to the route “send_request”. In the

configuration dictionary, I defined a variable named message and programmed the HTML text

box to set the message variable as the user’s text in the text box. The div from Figure 23 sets up

the functionality for the MeetingRequest.js component.

 87

Figure 23. Message request HTML form

Figure 23 defines how the form is displayed with tags such as maxLength, minLength,

number of rows, columns, and placeholder text. Within the textarea tag, there is a property called

onChange that sets a variable called message to whatever is typed inside the text area. The

HTML includes a button element which is tied to an onClick event. The onClick event triggers

an axios function called sendRequest in the React file.

The variable message is used to define the topic of the meeting. For instance, a user can

type, “Let’s plant seeds” or “Cookout! Bring your own goods”. Once the user clicks the send

request button, the system sends the message and registers a Meeting Request object via an axios

call using the format of Figure 19.

Lastly, to enable the meeting request feature, I created a new redux variable named

updateRequest using the methods from 4.1.7. In the axios request, I updated another redux

variable known as ucMessages with a message of, “Wait 15 min for user response”. The system

displays the message in a component known as User Console which is like Geoprocessing

Engine, but it has a separate position in the HTML grid layout. User Console is placed in

 88

“column2-box1” and delivers instructions and a midpoint, consisting of longitude and latitude

coordinates, to the user. Furthermore, the Meeting Request div renders onto the interface when a

redux variable called isLocated changes to true using the conditional rendering methods from

4.1.8. The user changes the redux variable isLocated to true when they click on the location

button in account details.

4.3.2 Spatial Buffer

On the back-end, the system calls to a route named send_request. The first step that the

system takes is to create a buffer search area from the requestor’s location. Figure 24 displays the

code that creates the buffer location.

Figure 24. Code buffer search area

The code describes the series of steps to create and store the buffer search area. First, the

program acquires the requestor’s account. Then it creates a variable called to_shapely. The

to_shapely variable utilizes the shapely python library to convert the requestor’s location into a

 89

readable shapely point. Whenever a user clicks the location button on the user interface, their

location is stored in the database as a WKTElement, a data format consisting of a string of

encrypted characters. Therefore, when a user queries GLRSC-System-1, it returns WKTElement

format which is converted into a more useful format for geospatial processing. Shapely converts

the WKTElement into a Shapely geometry point that holds readable latitude and longitude

coordinates. The program uses shapely once more to convert the shapely point into a shapely

buffer. The parameters for the buffer function are distance, quad_segs, cap_style, and srid. The

distance has a value of .02 in degrees. The quad_segs divides the buffer area into eight sections

then restitches them together. The cap_style is the shape of the buffer which is set to square. The

srid is set to 4326 which corresponds to the WGS 84 spatial reference system which uses degrees

not meters. The program then converts the shapely buffer back into WKTElement so that it can

be read and processed by PostgreSQL. The program sets the buffer as the Meeting Request

object. Then the script adds the Meeting Request object to the database.

For reference, the parameters used to create the buffer are not optimal nor were they the

parameters that were planned during pre-project planning. During testing, the results were

observed in PgAdmin, a software for administering PostgreSQL databases. The original

parameters were attempted but found to be suboptimal. For instance, the original plan was to use

a cap_style of circle, but when using a srid of 4326, PgAdmin renders the buffer as an elongated

oval. Different srids were tested but PgAdmin did not successfully render a map for any srid

except for 4326. Lastly, because 4326 uses degrees not meters as a unit of measurement, there

was no option but to use degrees as a unit of measurement. A degree measurement of .02

provides a buffer with a radius of roughly 2000 meters, but inaccurate measurements are

expected. More research and work should be conducted to optimize rendering and to determine a

 90

methodology where meters can be used as a distance unit, and a circle can be used as the buffer

shape in place of a square.

4.3.3 Spatial Search to Potential Participants’ List

Step three begins in the same function, send_request, as step two. After the buffer has

been successfully stored, the system creates a list of potential partners and store them in a table

named Account_Request. All accounts whose locations lie within the buffer area have their

information stored in Account_Request. Furthermore, the system stores the requestor

information in a separate data table named Active_Meeting. Both Account_Request and

Active_Meeting tables are defined in models.py and are created upon starting the application.

The Active_Meeting table stores account information from those accounts who are confirmed

active participants in the meeting. Figure 25 displays the script used to achieve the actions

described.

 91

Figure 25. Python code for creating a list of potential participants

 The script first acquires the meeting request that is tied to the requestor’s identification

number. A variable named receivers_list runs a database query using a special PostGIS function,

ST_Within. The ST_Within function takes two parameters, the first is a spatial object of any

type, and the second is also a spatial object. The function checks if the first argument is within

the second object. If the first object is within the second, the function returns true. Otherwise, it

returns false. The database query uses the ST_Within as a filter to return only those accounts that

 92

lie within the spatial object defined in the second argument. The result is a list of accounts that

lie within the buffer area.

The script then defines a for loop which loops through each element in the list and locates

the identification numbers for each account in the list. Using the account identification numbers,

the script creates new Account_Request objects for each identification number and adds the

objects to the corresponding data table, Account_Request. This action ensures that the list of

potential participants is set in record and can be accessed in further processes. Further down in

Figure 25, another object called active meeting is added to the database. The active meeting data

table is a record of participants which are confirmed as active participants. Each account has only

one active meeting object associated with it. The logic behind this decision is that one user can

only attend one meeting at a time. The active meeting object is updated when a user sends or

accepts a request to register the new meeting information. The log behind this decision is that if a

user is sending a request, they are expected be one of the active participants.

 Once the send request function is complete it returns a status of success to the requestor.

A useful feature that is unique to React programming is that the HMTL on a website or web app

is constantly being rerendered after reading any component file. Therefore, App.js is constantly

being re-read and reprocessed as HTML on the interface. This is beneficial because after the user

sends a request, the program can conditionally remove the meeting request box immediately.

Afterall, the user can only attend one meeting at a time. Therefore, after a user sends a request,

the request form is hidden. In its place a timer of fifteen minutes is rendered in “column3-box1”.

The React application hides one component and shows another through conditional rendering,

redux variables, and React re-rendering. When the React application re-renders it notices that the

redux global variable requestSent has been modified to true. The conditional rendering brackets

 93

for the MeetingRequest.js box ensures that when requestSent is set to true, the system renders a

component called MR_TimerDelete.js instead of the MeetingRequest.js component. The

MR_TimerDelete.js file runs procedures according to instructions by Adhikary (2022).

4.3.4 Refresh Requests

While the requestor waits for fifteen minutes so that other users may respond to their

request, the responder(s) is given fifteen minutes to respond to incoming requests. Apart from the

timer that the system displays for the requestor, there are also timers that the system displays for

the responder. The front-end system displays each individual request as a record in a request

table on the user interface. Each record holds key details. For instance, within a request, a timer

function is one of the columns in a request record. The initial value for the timer is fifteen

minutes but countdowns toward zero per second as one second passes from the time that the

request was registered in the PostgreSQL database. The timers in the meeting request records on

the user interface use MR_TimerDelete.js as a template. Basically, they are the same code based

off Adhikary’s tutorial (2022). However, before a responder can accept, decline a request, or see

the timers, they must first acquire the requests.

GLRSC-System-1’s interface provides a component called MeetingListHeader.js placed

in “column2-box3”. The MeetingListHeader.js component contains a refresh_requests button

that runs an axios call to a route named ‘/requests’ in the Flask back-end. Figure 26 displays the

function that runs in the Flask back-end.

 94

Figure 26. Python code to retrieve list of meeting requests

At the start of the script above, the Python code runs a query to acquire all the

Account_Request rows where the responder’s identification number is present. The requests

object in the Python script holds the connection between responders and meeting requests. If

there are no requests present, there has been no requestor in a 2km radius that has sent a request,

meaning there are no active requests in the responder’s geographic area. Otherwise, if there are

active requests in the area, the script runs a for loop on the requests object. The for loop builds

custom request objects for every record in the requests object. Important information exists in the

Meeting Request and Account table. Therefore, GLRSC-System-1 navigates through all tables,

 95

extracting important information and building a custom interface request that is both visually

appealing and functional within the React interface.

Figure 26 demonstrates how the system creates custom interface requests. For each

record in the requests object, the system queries and stores the corresponding meeting request

and account. Using the information from meeting request and account tables, the system builds a

custom request with the following properties: first name, last name, meeting request id, account

id, user’s sex, custom user message, created timestamp, and the user’s age. The system stores

each custom request object within a list called required data. The system converts the required

data into json format and returns the required data to the front-end system for presentation.

4.3.5 Request React Component with Decline and Accept Options

The React system receives the required data as a response within the axios function called

refresh_requests withing the MeetingListHeader.js component. The function checks if there is

valid data in the response. If there is valid data, the system stores the custom request objects in a

redux global variable called requestList. The MeetingListHeader.js component provides an

HTML layout that has one parent div with a className of Meeting List and two children divs

with className of MeetingListHeader and MeetingListSub. The system renders requestList in

MeetingListSub by using a variable named “requests” that maps through the “requestList” and

customizes its content into usable HTML.

Figure 27 displays how the system defines the requests variable and shows the unique

properties that enable accept and delete functionality.

 96

Figure 27. JavaScript variable that displays requests

The “requests” variable is one with embedded HTML. The system creates the variable by

looping through the redux variable “requestList” which holds the custom request objects. For

each custom request in the requestList, the system declares two important variables. One of these

is the usefulKey which holds the unique meeting request id. The other variable is called

THEN_IN_MS which holds the created timestamp from the meeting request. Both variables are

necessary for JavaScript processes within the MeetingListRow div. The child div with a

className of ColumnAccountInfo displays the requestor’s name, sex, and age. The child div

with a className of ColumnAccountMessage displays the custom request message. The child

div with a className of ColumnRequestTimer displays a component that countdowns the time

left to respond to the request. The timer sets the countdown in minutes and seconds according to

 97

the difference from when the request was created to when the responder retrieves the request.

The timer always sets to fifteen minutes or less.

The child div with a className of ColumnDeclineRequest provides a button to decline a

request. It provides an onClick function called declineRequest which takes the usefulKey as an

argument. The child div with a className of ColumnAcceptRequest provides a button to accept

a request. It provides an onClick function called acceptRequest which takes the usefulKey and

THEN_IN_MS variables as arguments.

The declineRequest button triggers an axios call to the route named ‘/declineRequest’ in

the Flask back-end. The script in the Flask back-end takes the usefulKey to filter for the

Account_Request row that the user belongs to and deletes the record. In other words, the script

removes the user from the list of potential participants.

 The acceptRequest button triggers two events. First, it sends an axios call to the route

named ‘/acceptRequest’, which transfers’ the responders account information to the

ActiveMeeting table. In other words, the acceptRequest button confirms the user as an active

participant. The second event is an update on the UserConsole.js component. A redux variable

named ucMessages updates to include an instruction to wait an allotted time for more

participants to join the meeting. A timer is added to the ucMessages, using MR_TimerDelete.js

as a template, which then appears in the UserConsole.js component. The new timer begins where

the old timer left off. In total, all users responding to a particular request have fifteen minutes to

respond from the time the request was stored in the PostgreSQL database.

 98

4.3.6 Process and Return Midpoint Information

The requestor’s timer and the responder’s timer both serve a critical function in the last

step of the meeting service. Both timers are synchronized in a countdown of fifteen minutes from

the creation of the meeting request. Once the fifteen minutes are up, both timers, on both ends of

the system, trigger an axios call to routes that return midpoint information. The responder’s axios

calls a route named ‘/getMidpoint’ on the Flask back-end while the requestor’s axios calls a

route named ‘/getOwnerMidpoint’. These functions are responsible for calculating the midpoint

between the responder or requestor and all other accounts in the Active_Meeting table.

The’/getMidpoint’ and ‘/getOwnerMidpoint’ functions are divided into three-parts. This section

first reviews the responder’s ‘/getMidpoint’ route then the requestor’s ‘/getOwnerMidpoint’

route. Figure 28 shows the first part of ‘/getMidpoint’.

Figure 28. Get midpoint starting function

 99

The midpoint calculation begins by first querying for the account object in the data table.

A script declares a request id which is set to the usefulKey described in 4.3.5. The usefulKey is

the meeting request id. To obtain the information from Active_Meeting, the list of active

participants, the application must search for an attribute that all records shares. In this case, the

meeting request id is stored in every row and is, therefore, the shared attribute. Next, a variable

named active_meeting stores the return list of the database query. A variable called route is

designated to store the responder’s coordinates and the midpoint coordinates.

The route variable is set to a function called check_meetings and is passed an argument

of the active_meeting and the responder’s account. The function check_meetings processes the

active participants and the responder’s account and returns routing information which includes

the midpoint latitude and longitude coordinates. Figure 29 shows the second part of the process

which is the functionality within check_meetings.

 100

Figure 29. Get midpoint secondary function

The function begins by defining the origin tuple. The origin tuple consists of the

responder’s latitude and longitude coordinates. The function then checks whether there are two

or more active participants in the active_meeting list object. If there are more than two

participants, the tuple latitude and longitude are appended to separate lists containing only

longitude coordinates or only latitude coordinates. Then the script calls a function called

midpoint_more which calculates a midpoint using a geographic mean for more than two

participants.

 101

 However, if there are only two participants the script calls on a separate function. First,

the script identifies the singular partner that joins the user in the meeting. The script then defines

a destination variable that consists of the partner’s latitude and longitude coordinates. The

check_meetings function ends with a return call to a function called midpoint_two which calls

external python packages to compute an optimal midpoint. Figure 30 displays the last part of the

get midpoint process.

Figure 30. Tertiary midpoint function for two participants

In this function, the system makes calls to the OSMNX python package (Boeing 2017).

The first call to OSMNX creates a graph centered on the responder’s location with a radius

buffer of 2km. The graph is defined as a street network that includes all edges where walking is

 102

permitted. Using the graph output and the locations of the responder and requestor, the script

determines the nearest nodes from each user on the street network and stores them in separate

variables. With the two nodes, the script can then call on another graph-based python package

called NetworkX, and its function called shortest_path (Hagber et al. 2008). The shortest path

function finds the shortest path between the responder’s location and the requestor’s location.

When the path has been determined, the program evaluates it and extracts the middle node on the

path. A path output is a series of edges and nodes in a singular non-circular line. Therefore, the

nodes can be counted, and a median can be found. The middle node on the path is the midpoint

for the meeting. However, it must also be converted to a format that is usable for the users.

Therefore, the script converts the middle node into latitude and longitude coordinates. The script

returns the responder’s location and the middle node’s latitude and longitude to the

check_meetings function which then returns the coordinates to the get_midpoint function and

then back to the React front-end interface.

Alternatively, the check_meetings function identifies more than two participants and calls

on the midpoint_more function. Figure 31 displays the tertiary midpoint function for more than

two participants.

 103

Figure 31. Tertiary midpoint function for more than two participants

 The midpoint_more function takes the responder’s latitude and longitude coordinates as

well as two lists: one list of the participants’ latitude coordinates and another list of the

participants’ longitude coordinates. The script calls on two functions to determine the average

longitude and the average latitude. The average longitude is stored in the midpoint_x variable.

The average latitude is stored in the midpoint_y variable. The program defines a midpoint tuple

with the average longitude and the average latitude.

The average longitude and latitude can be used as the midpoint coordinates, but they need

further processing because the midpoint coordinates could be positioned in a geographic space

where public meetings cannot occur. For instance, the midpoint coordinates could be in a lake,

on someone’s property, or at an inaccessible location. To ensure that the midpoint coordinates

can be used for a public meeting, the script calls on OSMNX to calculate a street network with

the same arguments as midpoint_two. The program then uses the nearest_node function to find

the nearest street intersection, a node on the street network, from the midpoint coordinates. The

 104

script then extracts the longitude and latitude coordinates from the nearest node. The new

coordinates are assigned to a new variable called refined_midpoint_tuple which is returned to the

React user interface.

 The requestor’s ‘/getOwnerMidpoint’ route works in a similar way in that is also calls on

the secondary and tertiary functions described in Figure 30 and Figure 31. However, its primary

function has additional steps that are only applicable to the requestor’s account. If the list of

active participants only contains the requestor’s information, after 15 minutes have passed, the

system sends a message to the React interface that no users have registered for the meeting. It

also deletes the requestor’s record in the active_meeting table. However, if there are active

participants, the React system displays the message, “Walk to the designated location for your

meeting. Arrive within 15 minutes”, on both the requestor’s and responder’s UserConsole.js

component. The React system also prints the midpoint coordinates in the UserConsole.js

component.

4.4 Phase 4: Route Visualization

The objective for Phase 4 is to render the returned information from Phase 3 as a visual

route within “column2-box2” of the user interface. The React system assigns “column2-box2” as

the HTML element to display Midpoint_Router.js component. The steps to complete the phase

are as follows: use a redux variable to prepare the route information, apply conditional rendering

for Midpoint_Router.js, create a Mapbox profile and access token, program the

Midpoint_Router.js component.

4.4.1 Redux to Prepare the Route Information

Once the route information arrives to the front-end, it must be stored in a secure redux

variable to be used in a different React component. For instance, the route information arrives

 105

through one of two components, the UC_TimerDelete.js or the MR_TimerDelete.js. Both

components contain timer functions which trigger a call to retrieve the route information once

fifteen minutes pass. However, once the back-end system returns route information, the data is

needed in a separate component called Midpoint_Router.js distance from UC_TimerDelete.js or

MR_TimerDelete.js. To pass the information to Midpoint_Router.js, I used redux for storing the

global route information and created a file named routeInfoListSlice.js within the redux folder. I

also used the redux Store.js which was created in 4.1.7. Store.js stores all the redux variables in a

system while routeInfoListSlice.js specifies the variable specific to the routing information and

defines the functions that can be applied to the variable. Figure 32 shows routeInfoListSlice.js.

Figure 32. routeInfoListSlice.js

 106

The image above depicts the Python code for routeInfoListSlice.js. It defines an initial

state of the variable which in this case is an array of numbers. The array is the data structure

where the system stores the coordinates that are needed to display the route. The file also

contains a name property which helps the system recognize the variable throughout the code

base. After that, the file defines functions that are applied to the variable. There are add and reset

functions which enables the system to add coordinates to the array, or reset the array to its

original default state, as needed. Lastly, the file exports the routeInfo property and the objects

using the last three statements in the file. Store.js is a separate file that contains all the redux

variables created throughout the development process. Figure 33 shows store.js contents at the

end of the development process.

 107

Figure 33. Redux store

The Python code above defines a redux store where all the redux variables, used in the

system, are stored, and made available to the entire codebase. Here, you can see all the variables

that have made the system functional: geMessages stores the messages displayed in the

Geoprocessing Engine, loggedIn enables conditional rendering, isLocated enables conditional

rendering, ucMessages stores the messages displayed on the User Console, requestOut enables

conditional rendering, refreshCounter enables conditional rendering, requestList stores the

incoming requests on the Meeting List component, requestAccepted enables conditional

 108

rendering, midpointReturned enables conditional rendering, and finally routeInfo shares the

origin and destination to Midpoint_Router.js for route visualization.

4.4.2 Conditional Rendering for the Midpoint_Router.js Component

The system conditionally renders the Midpoint_Router.js component. The

Midpoint_Router.js is paired with two redux variables that must be set to true before the

component can appear on screen. The two redux variables are loggedIn and midpointReturned.

In short, the user must be logged in and must have gone through the process of accepting a

request or sending a request that was accepted by another user. The midpointReturned variable

becomes true when the Flask back-end returns route information to either UC_TimerDelete.js or

MR_TimerDelete.js and has been stored in the routeInfo redux variable.

4.4.3 Mapbox Profile and an Access Token

I chose Mapbox software to render the route. I programmed the Midpoint_Router.js

component to use Mapbox’s API functions. Before Mapbox was used, I first created a Mapbox

account and created an access token using the button create access token on the log in landing

page. The access token allowed me to use Mapbox resource through HTTP requests. Once I

made the access token, I created a variable named REACT_APP_MAPBOX_KEY in the .env

file of the React repository’s root level. The access key from the Mapbox page is to be copied

and pasted as the value for REACT_APP_MAPBOX_KEY. Any variable in the .env file is

secure and private while still being accessible to the codebase. The Midpoint_Router.js calls on

the .env file to access the access token. Using a variable such as REACT_APP_MAPBOX_KEY

from the .env file is like using a local storage global variable or a redux variable.

In Midpoint_Router.js, I programmed the JavaScript script to use Mapbox functions that

take as arguments the origin and destination coordinates in routeInfo. The Mapbox function runs

 109

as soon as the system stores the route information in the redux variable. Once the Mapbox

function sends the information to Mapbox, Mapbox responds with a route from the origin point

to the destination point. I used Mapbox functions in the Midpoint_Router.js component to

determine the route, the basemap, the zoom level, the control features, etc.

4.4.4 Midpoint_Router.js Component

I programmed all the code that produces the route visualization in the Midpoint_Router.js

component. It contains several important operations such as importing Mapbox, initializing the

map, acquiring the route, adding layers to the map, and displaying the map in an HTML div.

Figure 34 displays the initial operations as read from top to bottom.

 110

Figure 34. Initialize Map on Midpoint_Router.js

The script begins with import statements that allow the system to use Mapbox and

Redux. The script sets the Mapbox access token to the .env variable,

REACT_APP_MAPBOX_KEY, discussed in the previous section. Once the access token has

been set the script declares its main function called Midpoint Router. The main function uses a

React feature called useState which allows a file to create a variable and a function to determine

 111

the value of the variable. The file uses useState to set the initial value of “map” to null. The map

variable displays the route. The script declares a variable named routeInformation and sets it to

the redux variable routeInfo, which has the user’s coordinates and the midpoint coordinates.

The file uses a React feature called useEffect which tells the system to execute the

following commands after rendering the component. The initializeMap function is set inside

useEffect, which tells the system to render the map once the browser reads and displays the file.

The initializeMap function defines a Mapbox map and sets the behavior of the map as well as its

container which is defined as an HTML div in Midpoint_Router.js. Finally, in the last lines of

code in Figure 34, the script extracts the user’s coordinates and the midpoint coordinates from

the routeInformation variable and stores them in two variables, start_coords and end_coords.

Figure 35 shows how the system sends an API request to Mapbox using the user’s coordinates

and the midpoint coordinates.

 112

Figure 35. Mapbox API route request

In Figure 35, the script defines a function, called getRoute, which is used to get the route.

The function getRoute executes later in the script. The function getRoute makes an asynchronous

call to Mapbox’s API. The API call takes origin coordinates, destination coordinates, as well as a

profile string. The script uses start_coords for the origin coordinates and end_coords for the

destination coordinates. For the profile string, the script uses the string “walking” which tells

Mapbox that the route should be generated for pedestrian use. The system gives preference to

routes optimized for walking subjects because it fits the scope of the thesis project and is a great

fit for the system objective. The final parameter in the API request is the access token that was

initially created in Mapbox and then stored as a .env variable. The response for the API request

is a large data object that holds the necessary route information including path edges and nodes.

 113

 The next lines of code clean the data by first converting it into a legible json data format

and then extracting only the needed information. The script defines the geojson variable which

holds the necessary information to visualize the route. Figure 36 shows the next lines of code

which are responsible for adding the route to the map.

Figure 36. Add Route to Map

In Figure 36, the script adds the geojson route layer to the map ensuring that it renders a

route to the midpoint. The layout object provides the route with some styles such as a line that

has a round cap. Furthermore, the paint object describes the color, width, and opacity of the line.

Two similar code blocks succeed Figure 36 which are responsible for adding origin and

destination points using the coordinates from the end of Figure 34. At the end of the two code

blocks the getRoute function closes. Figure 37 shows the final Python code that completes the

Midpoint_Router.js component and its functionality in the system.

 114

Figure 37. Load map and container

Figure 37 shows the code that runs after map initialization. The code executes the

getRoute function from Figure 35 and Figure 36. The system uses the setTimeout function to

allow the getRoute function ten seconds before running. This is done so that the map loads first

and then the system sets the route. If the system were to conduct both at the same time the

system would crash because it would try to add layers to a map that is not yet defined.

Finally, the div with className “mapContainer” stores the map. In Figure 34, the div is

set to be the map’s container. The code within the return statement ensures that the browser loads

the map within a div on the HTML-driven user interface.

 115

Chapter 5 Results

The results for this thesis demonstrate that GLRSC is a feasible application that can facilitate an

immediate social encounter for the user. The implementation of GLRSC in GLRSC-System-1

was successful. Its success provides readers with the opportunity to visualize GLRSC in action.

Furthermore, GLRSC-System-1 is fully functional and meets its objective of routing nearby

peers to a midpoint along the road network for a thematic meeting. Because GLRSC-System-1

has met its objective, the methodology, described in Chapter 4 of this thesis, is a reliable guide

for building a routing service and multi-user environment that implements GLRSC. GLRSC-

System-1 is hosted on https://spatial-moi.github.io/GLRSC_System_1/. This chapter discusses

the results divided into four sections: multi-user environment, deployment, meeting service, and

routing service. All the results displayed in this chapter were gathered from the live production

system proving that the system is fully functional and has met all its objectives.

5.1 Phase 1 Results

The Phase 1 objective was to create a multi-user environment where users can execute

the basic CRUD functions on their accounts. The results of the Phase 1 methodology proved to

be successful in creating a multi-user environment where a user can generate an account, log in,

change their password, delete their account, and log out. The methodology also successfully set

up a front-end system that creates a personalized space and that communicates algorithmic, and

data driven processes within the system. Furthermore, the methodology proved successfully

implements the system capability to store the user’s location.

Figure 38 depicts the system’s landing page.

https://spatial-moi.github.io/GLRSC_System_1/

 116

Figure 38. GLRSC-System-1 landing page

The system’s landing page shows two buttons, an introductory paragraph, and tutorial.

The generate account and log in buttons are essential to have on the landing page and serve as

gates for the system’s services. The introductory paragraph describes the system’s objective,

GLRSC, and the technology that enables its capabilities. The introductory paragraph is

informative for a system user as well as a researcher who wants to understand the system from a

scientific perspective. The video component provides a full tutorial of the system and has a

duration of roughly eleven minutes; it also has educational value for visitors and researchers.

While Figure 38 shows a very minimal landing page, it also displays the organizational

rules that were established in the methodology. The methodology’s organizational rules enable

the engineer with the foundations required to build the system. The rules also dictate the

organizational structure of the code base. From Figure 38, the user sees that the system is divided

into three columns. Within each column there are a few boxes. The first column has two boxes.

 117

The second column has three boxes. The last column has two boxes. The boxes serve as

containers for distinct system functionality.

Figure 39 shows the results for the system’s create account functionality.

Figure 39. System’s generate account function

 The figure above shows how the user is expected to create or generate an account. The

user must type in their username, password, date of birth, city, sex, first name, and last name. In

 118

Figure 39, a user has completed the form. Once the user hits the ‘Generate Account’ button, the

system successfully processes the request and returns a success message to the user. The next

figure, Figure 40 demonstrates the system’s log in functionality.

 119

Figure 40. System's log in functionality

Figure 40 depicts the system’s log in functionality. The user must enter their username and

password in the form. In the example provided, a user has typed their username and password.
Once the user hits the ‘Log In’ button, the user will enter the system’s second page and receive a

message that the user has successfully logged in.
Figure 41 shows the systems second page and zooms in on some key features.

Figure 41. Personalized account, user instructions, algorithmic transparency

 120

Figure 41 helps demonstrate how the system provides a personalized private account by
returning the user’s information when a user logs in using the correct username and password.
The personalized private account helps produce a multi-user environment by giving ever user

their own private account which they control. The second zoom in on
Figure 41 provides user instructions. One assertion that I had to make during this project is that
the user does not know how the system works. Therefore, to provide for a more friendly user

experience, I provided the system with an interface that gives user instructions. In
Figure 41, these instructions state, “Enable location to access meeting and routing services”. The

statement attempts to convince the user to enable the system’s geolocation capabilities by
clicking the ‘Location’ button shown under the ‘City’ attribute within the user’s account details
and profile section. Lastly, when the user logs in, the system will provide them will messages in

the Geoprocessing Engine that describe system processes. The Geoprocessing Engine’s
messages are meant to promote algorithmic transparency. In

Figure 41, the message shown states that a ‘Read’ action has occurred, one of the four CRUD

actions; The user has logged in. The system also provides messages for the other CRUD account

including when a user creates an account, when the user changes their password, when a user

deletes their account.

\Figure 42. Location, remaining CRUD, change password, meeting requests header

\Figure 42 has a zoomed in view on the panel containing the remaining CRUD buttons. The log
out button leads the user back to the home page and provides a message in the Geoprocessing

 121

Engine. The change password button makes a change password modal appear on the screen. The
change password modal is seen in

\Figure 42 right below the CRUD buttons. In the modal, the user can type in a new password.

When the user clicks “Change Password” their password will change, and the system will keep

the user logged in. When the user logs in, the system provides the meeting request header with

the “Refresh Requests” button in case the user wants to check for meeting requests upon signing

in. However, the system’s entire functionality relies on having a longitude latitude coordinate for

each registered user. The location button will raise a prompt to enable location services. The user

must respond to the prompt to have access to any service.

Figure 43. Phase 1 results for storing location

 Figure 43 depicts some elements of the system interface at log in after the user clicks the

location button. The location button is programmed to trigger a location prompt which appears at

 122

the top left corner of Figure 43. To proceed with the system’s services, the user must either

select, “Allow this time” or “Allow on every visit”. When the user selects one of the two

affirmative options, the user will receive a message in the Geoprocessing Engine on the lower

right that their location has been stored in the database. At the same time, the system processes

and returns the user’s longitude and latitude coordinates and displays them to the right of the

‘Location” button. In conclusion, Figure 43 shows that the system is successful in capturing the

user’s location and returning it to the user.

 However, for Phase 1 to be successful, it is not sufficient for the system to only store the

location, but it must also make sure the location is accurate. For this reason, PgAdmin software

is used to view the location data on a map interface and to verify the results. Figure 44 shows

how PgAdmin is used to verify the results.

Figure 44. Verify location accuracy with Geometry Viewer in PgAdmin

 When a user generates an account and stores their location, as described in the previous

figure, the system stores the information in a PostgreSQL database within a table named account.

 123

Using software like PgAdmin, I was able to view the results, the accounts registered, and their

locations. I queried the account table and selected the location column. Each column that holds a

spatial data type will also have an additional tab to open the Geometry Viewer. Using the

Geometry Viewer, I was able to verify that all the tests of latitude and longitude coordinates

were in an accurate position within the map. Figure 44 shows an accurate positioning of an

intake longitude-latitude coordinate which I confirmed as my own location.

5.2 Phase 2 Results

The Phase 2 objective was to deploy the system in a production live environment using

Heroku and Github. Phase 2 also provides a methodology for deployment including the steps

required to deploy the Flask application and how to diagnose the system during production. This

section presents a few figures to help prove that the system’s deployment was a success using

Heroku and Github. Figure 45 shows the Heroku GUI deployment logs that are produced during

deployment.

Figure 45. Heroku manual deploy success

 On the Heroku GUI, the manual deploy option streamlines application

deployment. The manual deploy option provides information on several operations and tests that

 124

execute during application deployment. Figure 45 shows some of the affirmative logs that

indicate a successful deployment; these logs are printed during the final deployment for GLRSC-

System-1. In Section 4.2.1, the methodology specifies several instructions. For instance, the

methodology specified to change Heroku stacks to version 20. It also specifies to create a

runtime.txt file and write the Python version in the file. Finally, it specifies to create a Procfile.

In Figure 45, the Heroku GUI manual deploy console verifies that the prior instructions were

done successfully. The GUI, seen in Figure 45, claims that system deployment is using Heroku

stack 20, the runtime.txt file, and the Procfile. The console also prints the slug size which is

useful because it prints the system’s memory limit. Finally, on the last line of Figure 45, the

console mentions that the system back-end is available at the specified URL domain, which

indicates a successful deployment operation.

To verify that deployment is successful, I also visited the domain and discovered that an

indicator of successful deployment with Heroku was if the webpage rendered a “Not found”

message. Furthermore, I verified successful deployment by monitoring the system and incoming

HTTP calls through the Heroku CLI. I tested the application functions such as create an account

or delete an account. If my actions on the front-end were reflected on the Heroku CLI, I was

assured that the system was working. Figure 46 demonstrates how the developer can use Heroku

CLI to verify system deployment and monitor HTTP calls. Figure 46 is made possible by

following the methodology described in Section 4.2.1.

 125

Figure 46. Heroku CLI logs indicate successful system deployment

The figure above displays many lines of codes that describe technical background

processes and operations necessary for system deployment. Much of these messages can be

difficult to understand. However, some of the messages are easy and practical to interpret. For

instance, the first line in Figure 46 prints a message that the build has succeeded which indicates

a successful deployment. Several lines below, the logs claim that the state of the application is

now up, meaning that the application is now live and ready to take HTTP calls.

The Heroku CLI logs print when HTTP calls reach GLRSC-System-1. For instance,

Figure 46 lists routes “/login_token” and “/account”. These routes correspond to operations

described in Section 4.1.6, and indicate that a live user is accessing and using the system in real-

time. The Heroku CLI logs further prove that system deployment was a success and that users

are accessing a functional real-time system.

 126

It is also important to verify that the front-end is deployed successfully. After completing

the methodology from Section 4.2.2, I visited the domain to verify if deployment is successful.

However, it is also important to verify that the correct front-end version is deployed. Figure 47

depicts a method to verify that front-end deployment uses the correct front-end version.

Figure 47. Github front-end deployment results

The figure above displays the Github Pages functionality within the Github GUI. The

Github Pages tab allowed me to verify which deployments are being used for the live production

environment. Figure 47 shows updates, which are deployment versions, that were made two

weeks ago. On the middle-left portion of the figure, a label reads “47 deployments” which

indicates there has been 47 different deployment versions that have been used since the

beginning of the project’s history. On the upper-left, the GUI lists the most recent and live

deployment and gives a URL to the front-end site. Finally, I clicked on the URL, and it led to the

system’s landing page which verified a successful deployment effort.

5.3 Phase 3 Results

The Phase 3 objective is to provide the user with the ability to send a request to peers

within a 2km radius and to respond to requests sent from within a 2km radius. Phase 3 is also

 127

responsible for programming the system to calculate the midpoint coordinates once it receives a

meeting request and an affirmative response. The system should return the midpoint coordinates

to the user. The methodology described in 4.3 proved to be successful in meeting the objective

mentioned in this paragraph. Figure 48 displays the system’s ability to prepare and send user-

generated meeting requests.

Figure 48. User sends meeting request with message

As shown in the figure, in the deployed GLRSC-System-1 the user can prepare a custom

generated messaged with their meeting request. The meeting request feature is only shown in

GLRSC-System-1 after the user has clicked on the ‘Location’ button. Therefore, Figure 48 is a

continuation of Figure 47. In Figure 48, a user has also typed a custom message in the ‘Account

Message’ text box. The message reads, “Let’s plant seeds”. The custom message highlights the

broad applicability of the system and its ability to create specific use cases as seen in Figure 7.

Users can customize and set the theme of the meeting.

 128

Figure 49. User sends request results

Once the user clicks on the button “Send Request”, the system will display three new

elements. The first can be found in the User Console. The new message instructs the user to wait

15 minutes for users to respond to the request. In place of the meeting request box, the system

renders a countdown of 15 minutes that helps the reader visualize the process taking place.

Lastly, the Geoprocessing Engine, in accordance to the objective of providing algorithmic

transparency, prints a message that informs the reader that their request has been sent to users

within a 2km radius area. In the back-end, the 2km radius area is used to group accounts into a

list of potential participants.

PgAdmin is used verify that the system creates a spatial buffer that is appropriate for this

application. To meet project requirements and ensure that the system creates and uses a spatial

buffer that is useful to GLRSC-System-1, some design modifications were made to the spatial

buffer. What was originally planned to be a circular search area of 2km radius is instead a square

area as seen in Figure 50.

 129

Figure 50. PgAdmin Geometry Viewer renders rectilinear buffer

Nevertheless, Figure 50 shows a spatial buffer that is appropriate for GLRSC-System-1

use. Changes had to be made because attempts to produce a circular area were unsuccessful and

no clear solution was available. The specific errors that were faced will be discussed in the

Chapter 6. However, a rectilinear buffer does not indicate an unsuccessful search operation. In

fact, the system uses the rectilinear buffer area and successfully searches for potential

participants. The area’s radius is roughly 2km, but some measurement errors should be expected.

From Figure 48 to Figure 50, this chapter section has taken the perspective of a user who

is making a request for a meeting. However, GLRSC-System-1 is a multi-user environment that

requires at least two user roles. Figure 51 shows the perspective of a user who is responding to a

nearby meeting request right after the user clicks on the “Refresh Requests’ button within the

 130

Meeting List header. The prerequisites for a meeting request to appear on a user’s page are that a

requestor has already sent the request and that the responder has enabled location storage on their

account before the requestor sent the request.

Figure 51. Requestor receives request

 Figure 51 shows a user who has clicked on the “Refresh Requests” button and has

received a request. The request appears under the Meeting Requests header. Any and all requests

appear under this header and more than one request can appear at any moment. However, a user

can only accept one request at a time. A user’s system who has more than one request, and

accepts one request, will remove all other requests from the list. Figure 51 shows a zoomed in

view of one request. The request is divided into columns containing important meeting details.

The first column shows a profile picture which is important for verifying identity. The second

column shows key account details such as name, age, and sex. Again, these details are important

for users who are responding to the request. The account message is in column three and it is

used to establish the theme for the meeting. The fourth column holds a timer that counts down

from 15 minutes which begins when a user hits the ‘Send Request’ button. The timer is

 131

important because it provides a user experience that is consistent, regular, ordered and

predictable. Because of the timer, the users will receive notification on the midpoint within 15

minutes and the meeting can happen immediately within a 30-minute period. Finally, the last two

columns hold two separate buttons: delete and accept. The decline button removes the user from

the list of potential participants. The accept button will lead to Figure 52 on the responder’s

interface.

Figure 52. Responder waits for meeting instructions

 The figure above shows a user who has accepted a request and is waiting for the

countdown to end. The countdown that appears on the User Console is the same countdown seen

in Figure 49 and Figure 51. On both sides of the system, responders and requestor, the

countdown remains the same. A synchronous timer across the multi-user environment allows the

system to deliver important midpoint and meeting information at the same time. The timer also

 132

makes the system fair for users by giving each user the same amount of time to respond to the

event. The timer is set to 15 minutes which is a short amount of time that facilitates fast

turnarounds and meeting arrangements. After the countdown is over both user roles receive a

similar message with important details as seen in Figure 53.

Figure 53. System returns midpoint and meeting instructions

Figure 53 reads, “Midpoint Identified: -118.284016, 34.0746283. Walk to the designated

location for your meeting. Arrive within 15 minutes”. This message arrives to all active

participants at the same time. Furthermore, the midpoint latitude-longitude coordinates are

uniform for all active participants. In the back-end, the system uses all active participants’

coordinates to determine the midpoint. Figure 53 demonstrates that the system successfully

computes the midpoint among nearby users in a shared meeting. It also sets the stage for the real

in person meeting because it gives the user instructions to walk to the midpoint. Lastly, because

the system returns the midpoint and instructions to all active meeting participants at the same

time, one can be sure that, if the user chooses to walk to the midpoint, the user will arrive within

 133

the same period as all other active participants, given that all participants also follow the systems

instructions.

5.4 Phase 4 Results

The Phase 4 objective is to display a route from the user’s location to the midpoint

introduced at the end of Phase 3. The methodology described in 4.4, when implemented,

successfully renders the route from the user’s location to the midpoint. Figure 54 shows the

interface from a user’s perspective once the system returns the midpoint.

Figure 54. Phase 4 results

Figure 54 demonstrates that GLRSC-System-1 is a complete system that has met its

objective to facilitate an immediate meet up at a midpoint along the road network with nearby

peers. The Midpoint_Router.js component is seen in “column2-box2” with a route from the

user’s location to the meeting midpoint. The results prove that the algorithmic, persistence, and

visualization processes in the front and back-end successfully conduct their respective roles.

 134

Furthermore, GLRSC-System-1 proved to be successful in a deployed live environment.

The system was tested with live users who synchronously accessed, used, and queried the

system. Figure 54 shows Phase 4 results from the responder’s interface. However, Figure 55

shows Phase 4 results, as seen on GLRSC-System-1, for both the requestor and responder.

Figure 55. Phase 4 results for two live users

 135

Figure 55 displays two routes that meet each other at a midpoint. Both routes are

displayed within the GLRSC-System-1 interface on the users’ respective accounts. The

requestor’s route begins at their location. From their map, the requestor’s location is south of

Hollywood Fwy and above Temple St. The route ends between N. Vendome St and N Reno St.

The responder’s route begins at their location. From their map, the responder’s location is right

at Silver Lake Hotel. The route ends between N. Vendome St and N Reno St. Both users’ routes

destination points land in the same area. Their timers are also synchronous meaning that they

will receive the route on the interface at the same time. The User Console informs both users to

arrive within fifteen minutes; the instructions provide a period whereby they are both expected to

arrive, and it will help ensure that they coincide at the meeting midpoint.

Finally, to conclude, Phase 4 demonstrates GLRSC-System-1 success in returning

midpoint information, routes, and instructions for a meeting with more than two participants.

Figure 56 displays Phase 4 results, as seen on the GLRSC-System-1 interface, for three separate

accounts who tested the system within a live environment.

 136

Figure 56. Phase 4 results for more than two users

Figure 56 displays three routes that meet one another at a midpoint. All three routes are

displayed within the GLRSC-System-1 interface on the users’ respective accounts within

 137

“column2-box2”. The requestor’s route begins at their location, between S. New Hampshire Ave

and S. Catalina St, and on 3rd St. Their route ends at a point just east of Vons supermarket. The

first responder’s route begins at their location, on Shatto Pl, just south of W 5th St. Their route

ends at the same point just east of Vons supermarket. The second responder’s route begins at

their location, Silver Lake Hotel, and ends at the same point just east of Vons supermarket.

These results are from the accounts of all three users who used the deployed system at the same

time but in different locations. All three users were within a 2km radius zone from the

requestor’s geolocation. As discussed with Figure 55, the system delivers the route information

and further instructions synchronously ensuring that the users/pedestrians coincide at the meeting

midpoint at the same time.

 138

Chapter 6 Conclusions

Throughout the course of this thesis, GLRSC-System-1 implementation of GLRSC has been

both successful and filled with moments where system improvement was recognized and

documented. This thesis has been successful in introducing GLRSC. Through GLRSC

implementation in GLRSC-System-1, this thesis demonstrates how routing technologies and

multi-user environments can be integrates to achieve GLRSC. The application has real potential

to increase the number of instances of social encounters for its users, and thereby alleviate the

loneliness epidemic. Not only that, but GLRSC-System-1 outlines a method that allows the user

to dictate the moment and topic of that encounter. The system also shows success in algorithmic

transparency and user account security.

The results chapter proves that Chapter 4 Methodology describes methodologies that are

effective for implementing a base-level GLRSC system, which consists of the four phases: multi-

user environment, system deployment, a meeting service, and a routing service. Therefore, this

thesis has successfully identified the components necessary for implementing a base-level

GLRSC system. As such, this thesis provides the methodologies and frameworks necessary for

future developers to create their own implementations of GLRSC and are encouraged to do so.

Lastly, this thesis present GLRSC-System-1 as a functional live and fully closed system

that has the capacity to be used and applied in present time. The existence of GLRSC-System-1

is hopefully not only helpful for individuals who experience loneliness, but it also serves as a

tangible resource from which discussions may emerge on GLRSC.

Nonetheless, as the first iteration or version, GLRSC-System-1 holds many areas of

improvement, which will be considered in future work. For the current iteration, ten areas of

improvement are identified: graph processing packages, deployment environments, design and

 139

styling, UI separation of concerns, safety, debugging services, socket technology, object

relational mapping, geospatial operations, meeting place algorithm variations.

6.1 Graph Processing Packages

 GLRSC-System-1 uses NetworkX and OSMNX python graph processing packages to

process and identify a midpoint along the road network. However, from a user’s perspective,

OSMNX may be taking too long to return the midpoint. Currently, within the user experience,

once a user has accepted a request or has sent a request, when the timer of fifteen minutes

terminates, the system takes roughly 7 seconds to process a graph from OSMNX and identify a

midpoint. The system takes another 2 or 3 seconds to render the route on the graph, for an

estimate total of ten seconds. During these ten seconds, the user may lose interest in the system

or believe that the system has failed. To engage users as much as possible, graph processing must

be sped up. One mechanism that can potentially increase processing speed is to try alternative

graph processing packages such as Medina, a python package with similar functionalities as

OSMNX. However, the main obstacle to overcome is to identify the computer location where the

processing takes place. Once the location is identified, actions can be taken to optimize the speed

related to the computer or software component. It would be smart, even, to determine if there is a

way to reduce Mapbox’s search space so that it has less nodes and edges to check for a shortest

path; this could possibly reduce the size of the reference dataset. But further research needs to be

done to determine how to reduce Mapbox’s reference dataset, if possible. However, further

diagnoses should be made on the root source of slow processing speed during midpoint

computation.

 140

6.2 Deployment Environments

 The system’s current use of Heroku as a deployment platform is inadequate for

production level services because Heroku does not provide a window to view spatial data

recorded in the database. As a system administrator, it is necessary to check and test the

functionality of the system including viewing the system records and verifying data. For

instance, the system’s ability to generate and store a buffer search area should be verified and

tested in a production environment. However, Heroku does not have a service for viewing spatial

data for deployed systems. Therefore, a system administrator cannot check to see if the buffer

zone has a radius of 2km. There is only a high level of confidence that the buffer zone does have

a radius of 2km because the system was tested to verify the correct size of the buffer zone in the

development environment. Nevertheless, the buffer size cannot be fully verified in production.

Therefore, Heroku is not adequate for supporting GLRSC-System-1 in a production level setting.

6.3 Design and Styling

 GLRSC-System-1 was not developed with design nor styling in mind which resulted in a

simple and plain interface. CSS could be applied to add some aesthetic dimensions. Images

would also help make the background more appealing. The landing page can improve to be more

dynamic, appealing, and engaging. Additionally, the route visualization was designed to be

practical but not aesthetically pleasing or unique. Much more can be done to improve the route

such as improving the color palette, choosing a more engaging basemap, styling the routes and

end points, and incorporating route movement with animation.

6.4 UI Separation of Concerns

 The system currently struggles to meet both requestor and responder expectations for

conditional rendering because both roles share a single page interface. Conditional rendering in

 141

the system is difficult to comprehend, manage, and perfect because the single page interface uses

the same redux variables for both user roles. As a result, some interface components still appear

when they should be hidden. For instance, when a requestor sends a request, the meeting list

header should disappear altogether, but it does not. Likewise, when a responder accepts a

request, the message request form should disappear altogether, but it does not. The system

cannot meet both conditional rendering standards using the same single page interface and

shared redux variables. Therefore, there must be a separation of concerns on the user interface. In

other words, the single page system must extend to at least two pages assigned to the each of the

two user roles; there should be a single page for the requestor only, and another single page for

the responder only.

6.5 Safety

 Safety is a serious concern for public use of GLRSC-System-1. While GLRSC-System-1

is not released to the public, further research should prioritize features and systems that increase

and ensure user safety. For instance, the system could develop a meeting log feature that will

record the meeting details and participants. If an accident ever occurs, the system knows when,

where and with whom it occurred. Additionally, GLRSC-System-1 should integrate identity

verification systems to ensure that users are who they claim to be. A safety standard should be

defined, documented, implemented, tested, and improved.

6.6 Debugging Services

 Future iterations of GLRSC-System-1 will require working, improving, expanding, and

reorganizing the codebase. During these tasks, more challenges and errors are likely to arise.

GLRSC-System-1 requires a more robust system to identify system errors. During the

development of GLRSC-System-1, the terminal and console log functions were invaluable assets

 142

that helped diagnose issues. However, stronger records and logging systems can vitally improve

diagnosis speed. Logging systems should be programmed into the codebase to maximize

diagnosis potential and feasibility. A stronger debugging system will increase confidence of the

system and allow developers to work with software development more easily.

6.7 Socket Technology

 Socket technology is the suite of packages and systems that allow chatboxes and instant

messengers to function the way that they do. Sockets provide a path through which one computer

can interact with the other without having to check a database. GLRSC-System-1 enables

communication by requiring its users to check the database regularly; this approach makes for a

poor user experience where communication is not automatic. GLRSC-System-1 communication

could vastly improve with socket technology. For instance, once GLRSC-System-1 integrates

socket technology there will be no need to have a refresh_requests button because all requests

will arrive automatically, which will make the user experience more exceptional, engaging and

captivating. More research should be conducted on how socket technology can improve GLRSC-

System-1 objectives.

6.8 Object Relational Mapping

 Object relational mapping, ORM, is a powerful database technology that helps back-end

codebases create database designs through a script. The script itself could be written in any back-

end programming language like Python or Java. Nevertheless, ORM makes system development

easier. GLRSC-System-1 does use ORM. However, it was not done as efficiently as it could

have been. GLRSC-System-1 uses Flask SQLAlchemy as an ORM library but fails to capture the

value of the library. When the system starts, Flask SQLAlchemy reads the system’s code and

creates the database design, but table updates are not linked automatically. Instead, the system

 143

does all table updates manually. For instance, when the user accepts a request, the system

manually adds the user to a separate table that records all active participants, but the action

should be automatic. More research should be conducted to implement ORM correctly and take

advantage of its features to the extent that they benefit GLRSC-System-1.

6.9 Geospatial Operations

 A major area of improvement is in the system’s geospatial operations. The project failed

to meet the expectations laid out during project planning. For instance, the objective during

Section 4.3.2 was to create a perfectly circular buffer area but a rectilinear buffer area was used

instead as shown in Figure 50. The objective was not met because the system required a srid of

4326 corresponding with WGS 84 spatial reference system. PgAdmin software failed to display

spatial data with other srid except 4326. Therefore, GLRSC-System-1 required srid 4326 which

makes measurements using degrees not meters. When the system defined a circular buffer of

radius 2km, the buffer area was distorted into an elongated oval. Because of this error, the

system defines a square as the preferred buffer shape. Additionally, the system measures the

square using degree not meters. Therefore, the original GLRSC-System-1 objective of searching

for potential participants in a circular search space with radius of 2km was not met. Further

research requires a comprehensive diagnosis of the issue and a solution.

6.10 Meeting Place Algorithm Variations

 The final area of improvement that should be considered in future research and

development is the meeting place algorithm. GLRSC-System-1 uses Dijkstra’s shortest path

algorithm to find a shortest path along the street network between two or more users. Then finds

the median node in the path. The median node is assigned as the meeting place. However, there

are other methods to identify a meeting place, within an area of 2km radius, that could

 144

potentially be safer or more optimal. Street networks are unpredictable, and the resulting

midpoint could be under a highway or in an unsafe environment. Further research and

development can consider meeting place algorithm variations. For instance, the system could use

the nearest park or commercial shopping center as an optimal meeting place. The system can also

allow users to set their own meeting place within a 2km radius. All variations are more

predictable and maybe even more desirable but require distinct methodologies. User testing and

research is required to define the most optimal meeting place algorithm.

 145

References

Adhikary, T. 2022. “How to create a countdown timer using React Hooks.” GreenRoots.
https://blog.greenroots.info/how-to-create-a-countdown-timer-using-react-hooks

ArcGIS Network Analyst. n.d. “ArcGIS Network Analyst Extension.” ESRI. Accessed May 1,
2024. https://www.esri.com/en-us/arcgis/products/arcgis-network-analyst/overview

Angeles, M. n.d. “Wireframing User Flow with Wireflows.” Balsamiq. Accessed May 1, 2024.
https://balsamiq.com/learn/articles/wireflows/

AWS. n.d. “What is an IDE (Integrated Development Environment)?” AWS. Accessed May 1,
2024. https://aws.amazon.com/what-is/ide/

Bishop, B. 2008. The Big Sort: Why the Clustering of Like-minded America Is Tearing Us
Apart. New York: Houghton Mifflin.

Biondi, H.G. 2021. “The Role of the Planning Phase in the Project Life Cycle.” Appvizer.
https://www.appvizer.co.uk/magazine/operations/project-management/project-life-cycle-
planning-phase

Boeing, G. 2017. “OSMnx: New Methods for Acquiring, Constructing, Analyzing, and
Visualizing Complex Street Networks.” Computers, Environment and Urban Systems 65:
126-139. https://doi.org/10.1016/j.compenvurbsys.2017.05.004.

Brichter, L. 2017. “Our minds can be hijacked: The tech insiders who fear a smartphone
dystopia.” The Guardian.
https://www.theguardian.com/technology/2017/oct/05/smartphone-addiction-silicon-
valley-dystopia

Cigna Corporation. 2021. “The Loneliness Epidemic Persists: A Post-Pandemic Look at the State
of Loneliness among U.S Adults.” The Cigna Group.
https://newsroom.thecignagroup.com/loneliness-epidemic-persists-post-pandemic-look

Cooper, L. 1968. “An extension of the generalized Weber problem.” Journal of Regional
Science, 8, no.2: 181-197.

Cortright, J. 2015. “Less in Common.”, City Observatory. https://cityobservatory.org/wp-
content/uploads/2015/06/CityObservatory_Less_In_Common.pdf

De Meulenaere, J., Baccarne, B., Courtois, C., and K. Ponnet. 2021. “The development and
psychometric testing of the expressive and instrumental Online Neighborhood Network
Uses Scale (ONNUS).” Cyberpsychology: Journal of Psychosocial Research on
Cyberspace 15, no. 3: https://doi.org/10.5817/CP2021-3-8

Dijkstra, E.W. 1959. “A Note on Two Problems in Connexion with Graphs.” Numerische
Mathematik 1: 269 – 271. https://doi.org/10.1007/BF01386390.

 146

Duke, E., and C. Montag. 2017. “Smartphone addiction, daily interruptions and self-reported
productivity.” Addictive Behaviors Reports. 6:90-95.
https://doi.org/10.1016/j.abrep.2017.07.002

Dunkelman, M. J. 2014. The Vanishing Neighbor: The Transformation of American
Community. New York: W.W. Norton & Company, Inc.

Esri. n.d. “What is GIS?” Esri. Accessed on May 1, 2024. https://www.esri.com/en-us/what-is-
gis/overview

Garret, J.J. 2002. The Elements of User Experience: User-Centered Design for the Web.
Thousand Oaks, CA: New Riders Publishing.

Singh, S. 2009. “GeoAlchemy: Using SQLAlchemy with Spatial Databases.” GeoAlchemy.
https://geoalchemy.readthedocs.io/en/latest/

Github. n.d. “Let’s build from here. The world’s leading AI-powered developer platform.”
Github. Accessed on May 1, 2024. https://github.com/

Guest, A.M., and S.K. Wierzbicki. 1999. “Social Ties at the Neighborhood Level: Two Decades
of GSS Evidence.” Urban Affairs Review 35, no.1: 92-111.
https://doi.org/10.1177/10780879922184301

Gunduz, U. 2017. “The Effect of Social Media on Identity Construction.” Mediterranean
Journal of Social Sciences 8, no.5. https://doi.org/10.1515/mjss-2017-0026.

Fan, D.K., and P. Shi. 2010. “Improvement of Dijkstra’s Algorithm and Its Application in Route
Planning.” Seventh International Conference on Fuzzy Systems and Knowledge
Discovery 4: 1901-1904. https://doi.org/10.1109/FSKD.2010.5569452.

Faron, D. 2002. “Alfred Weber, Theory of Location of Industries 1909 CSISS Classics.” UC
Santa Barbara: Center for Spatially Integrated Social Science. Retrieved from
https://escholarship.org/uc/item/1k3927t6.

Flask. n.d. “User’s Guide.” Flask. Accessed on May 1, 2024.
https://flask.palletsprojects.com/en/3.0.x/#

—. “Application Factories.” Flask. Accessed on May 1, 2024.
https://flask.palletsprojects.com/en/2.3.x/patterns/appfactories/

—. “Configuration Handling.” Flask. Accessed on May 1, 2024.
https://flask.palletsprojects.com/en/3.0.x/config/

—. “Flask-JWT-Extended’s Documentation.” Flask. Accessed on May 1, 2024. https://flask-
jwt-extended.readthedocs.io/en/stable/

—. “Installation.” Flask. Accessed on May 1, 2024.
https://flask.palletsprojects.com/en/3.0.x/installation/

 147

—. “Modular Applications with Blueprints.” Flask. Accessed on May 1, 2024.
https://flask.palletsprojects.com/en/3.0.x/blueprints/

Fortunati, L. 2005. “Is Body-to-Body Communication Still the Prototype?” The Information
Society 21: 53 – 61. https://doi.org/10.1080/01972240590895919

Hagber, A., Schult, D., and P. Swart. 2008. “Exploring Network Structure, Dynamics, and
Function using NetworkX.” USDOE, Los Alamos National Laboratory.
https://www.osti.gov/servlets/purl/960616

Hakimi, S.L. 1965. “Optimum distribution of switching centers in a communication network and
some related graph theoretic problems.” Operations Research 13, no. 3: 462-475.
https://doi.org/10.1287/opre.13.3.462.

Heroku. n.d. “What is Heroku?” Heroku. Accessed on May 1, 2024.
https://www.heroku.com/what?utm_source=google&utm_medium=paid_search&utm_ca
mpaign=amer_heraw&utm_content=general-branded-search-
rsa&utm_term=heroku&gad_source=1&gclid=CjwKCAjwouexBhAuEiwAtW_Zx-
KR8McKD-gpu3QP87UR-
Lnj1r4PB7DNf3Hlsg6MbGI499SvjuRuZxoCNXYQAvD_BwE

—. “The Heroku CLI.” Heroku. Accessed on May 1, 2024.
https://devcenter.heroku.com/articles/heroku-cli

Holt-Lunstad, J., Robles T.F., and D.A. Sbarra. 2017. “Advancing social connection as a public
health priority in the United States.” The American Psychologist 72, no.6: 517-530.
https://doi.org/10.1037/amp0000103

Hruby, K. 2021. "Map Routing." Bachelor Thesis, Charles University.
http://hdl.handle.net/20.500.11956/148394

Hunt, M.G., Marc, R., Lipson, C., and J. Young. 2018 “No More FOMO: Limiting Social Media
Decreases Loneliness and Depression.” Journal of Social and Clinical Psychology 37, no.
10:751. https://doi.org/10.1521/jscp.2018.37.10.751.

Iniguez, A. 2022. “Graph theory and its uses with 5 examples of real-life problems.” Xomnia.
https://www.xomnia.com/post/graph-theory-and-its-uses-with-examples-of-real-life-
problems/

Jupyter. n.d. “Jupyter – Free software, open standards, and web services for interactive across all
programming languages.” Jupyter. Accessed on May 1, 2024. https://jupyter.org/

IntelliJ IDEA. n.d. “IntelliJ IDEA – The leading Java and Kotlin IDE.” JetBrains. Accessed on
May 1, 2024. https://www.jetbrains.com/idea/

—. “Configure a Python SDK” JetBrains. Accessed on May 1, 2024.
https://www.jetbrains.com/help/idea/configuring-python-sdk.html

 148

Kannan, V., and P. Veazie. 2023. “US Trends in social isolation, social engagement, and
companionship – nationally and by age, sex, race/ethnicity, family income and work
hours, 2003-2020.” SSM – Population Health 21.
https://doi.org/10.1016/j.ssmph.2022.101331

Kaspersen, L.B., and N. Gabriel 2008. “The importance of survival units for Norbert Elias's
figurational perspective” The Sociological Review 56, no. 3: 370–387.
https://doi.org/10.1111/j.1467-954X.2008.00795.x

Kim, M., and M. Cho. 2019. "Examining the role of sense of community: Linking local
government public relationships and community-building." Public Relations Review 45,
no. 2: 297 – 306. https://doi.org/10.1016/j.pubrev.2019.02.002.

Lambright, K. 2019. “Digital Redlining: The Nextdoor App and the Neighborhood of Make-
Believe.” Cultural Critique 103: 84-90.
https://doi.org/10.5749/culturalcritique.103.2019.0084

Larsen, M.C. 2022. “Social Media insecurities in everyday life among young adults – an
anonymous Jodel disclosure” Nordisk tidsskrift for pedagogikk og kritikk, Special issue:
Digitalisering av utdannings- og oppvekstspraksiser 8: 298-313.
http://dx.doi.org/10.23865/ntpk.v8.4071

Lozinski, L. 2016. “The Uber Engineering Tech Stack, Part I: The Foundation” Uber.
https://www.uber.com/blog/tech-stack-part-one-foundation/

Lucid. n.d. “UML Use Case Diagram Tutorial.” Lucidchart. Accessed on May 1, 2024.
https://www.lucidchart.com/pages/uml-use-case-diagram

—. “Where seeing becomes doing?” Lucidchart. Accessed on May 1, 2024.
https://www.lucidchart.com/pages/

Makridis, C.A., and Wu, C. 2021. "How social capital helps communities weather the COVID-
19 pandemic." PLOS ONE 16, no. 9. https://doi.org/10.1371/journal.pone.0258021.

Mapbox. n.d. “API Reference.” Mapbox GL JS. Accessed on May 1, 2024.
https://docs.mapbox.com/mapbox-gl-js/api/

Masi, C.M., Chen, H.Y., Hawkley, L.C., and J.T. Cacioppo. 2011. “A meta-analysis of
interventions to reduce loneliness.” Personality and social psychology review: an official
journal of the Society for Personality and Social Psychology, Inc 15, no. 3: 219–266.
https://doi.org/10.1177/1088868310377394

Maurya, S.P., Ohri, A., and S. Mishra. 2015. “Open-Source GIS: A Review.” Department of
Civil Engineering, IIT.
https://www.researchgate.net/publication/282858368_Open_Source_GIS_A_Review

Mdn Web Docs. n.d. “Flexbox.” Mdn Web Docs. Accessed on May 1, 2024.
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Flexbox

 149

—. “HTML elements reference” Mdn Web Docs. Accessed on May 1, 2024.
https://developer.mozilla.org/en-US/docs/Web/HTML/Element

Meruliya, P. 2022. “Benefits of modular programming and how to avoid spaghetti mess.”
DhiWise. https://medium.com/dhiwise/benefits-of-modular-programming-and-how-to-
avoid-spaghetti-mess-with-dhiwise-4f37212fa074

National Conference on Citizenship. 2011. "Civic Health and Unemployment: Can Engagement
Strengthen the Economy?" National Conference on Citizenship. https://ncoc.org/wp-
content/uploads/2011/09/2012IssueBrief_CivicHealth_UnemploymentII.pdf

Nextdoor. 2023. “We believe in the possibilities nearby.” Nextdoor. https://about.nextdoor.com/

—. “Research in the Neighborhood.” Nextdoor. https://about.nextdoor.com/research/

OpenStreetMap. 2024. “Welcome to OpenStreetMap.” OpenStreetMap.
https://www.openstreetmap.org/#map=4/38.01/-95.84

OSMnx. 2024. “OSMnx 1.9.3 Documentation.” OSMnx.
https://osmnx.readthedocs.io/en/stable/#citation

Pattan, I. 2023. “CI/CD Pipeline for Web Application Deployment using Heroku and Github.”
Cloudthat. https://www.cloudthat.com/resources/blog/ci-cd-pipeline-for-web-application-
deployment-using-heroku-and-github

Pettit, A. D. 2020. “Developing a Web-Based Application for Finding Meeting Points.” Bachelor
Thesis, The College of Wooster. https://openworks.wooster.edu/independentstudy/9080

PgAdmin. n.d. “PgAdmin – PostgreSQL Tools.” PgAdmin. Accessed on May 1, 2024.
https://www.pgadmin.org/

PostGIS. n.d. “Introduction to PostGIS.” PostGIS. Accessed on May 1, 2024.
https://postgis.net/workshops/postgis-intro/installation.html

—. “Spatial Indexing.” PostGIS. Accessed on May 1, 2024.
https://postgis.net/workshops/postgis-intro/indexing.html

Postgresql. n.d. “PostgreSQL: The World’s Most Advanced Open-Source Relational Database.”
PostgreSQL. Accessed on May 1, 2024. https://www.postgresql.org/

Postman. n.d. “Build APIs together.” Postman. Accessed on May 1, 2024.
https://www.postman.com

Prakash, N. 2018. “Origins and Development of Graph Theory prior to 20th Century.” Medium.
https://medium.com/@nikhil07prakash/origins-and-development-of-graph-theory-prior-
to-20th-century-47543867c909

 150

Putnam, R. 2000. Bowling Alone: The Collapse and Revival of American Community. New
York: Touchstone.

Python. n. d. “Welcome to Python” Python. Accessed on May 1, 2024. https://www.python.org/

Quos, Y. 2023. “How to build a CRUD API using Python Flask and SQLAlchemy ORM with
PostgreSQL” Medium. https://medium.com/@yahiaqous/how-to-build-a-crud-api-using-
python-flask-and-sqlalchemy-orm-with-postgresql-7869517f8930

Rao, S., and L. Zhang. 2020. “The Algorithms that make Instacart Roll: How Machine Learning
and other Tech tools Guide your Groceries from Store to Doorstep”. IEEE Spectrum 58,
no. 3: 36-42. https://doi.org/10.1109/MSPEC.2021.9370062.

React. n.d. “The library for web and native user interfaces.” React. Accessed on May 1, 2024.
https://react.dev/

Redux. n.d. “Getting Started with Redux.” Redux. Accessed on May 1, 2024.
https://redux.js.org/introduction/getting-started

Rong, Q.G., Zhang, X.L., and S. Gu. 2017. "A Systematic Review of Logging Practice in
Software Engineering." 24th Asia-Pacific Software Engineering: 534-539.
https://doi.org/10.1109/APSEC.2017.61.

Sachdev, N. 2020. “The Third Generation of Social Networking is Micro and Right in your
neighborhood” The Tech Panda. https://www.thetechpanda.com/the-third-generation-of-
social-networking-is-micro-and-right-in-your-neighbourhood/30628/

Schumaker, E. 2011. " 'I care about it': Sen. Chris Murphy's battle against loneliness" Politico.
https://www.politico.com/news/2023/11/05/sen-chris-murphy-wants-to-help-you-make-
friends-00125372

Singh, S. 2023. “The Algorithms Behind the Working of Google Maps” Medium.
https://medium.com/@sachin.singh.professional/the-algorithms-behind-the-working-of-
google-maps-
73c379bcc9b9#:~:text=Google%20Maps%20essentially%20uses%20two,defined%20by
%20edges%20and%20vertices.

Sharma, N. 2023. “70 Geospatial Python Libraries” Medium.
https://medium.com/@ns_geoai/70-geospatial-python-libraries-54604d815a7b

Shaw, J.G., Farid, M., Noel-Miller, C., Joseph, N., Houser, A., Asch, S. M., Bhattacharya, J., L.
Flowers. 2017. “Medicare Spends More on Socially Isolated Older Americans.” AARP
Public Policy Institute. https://capitolhillvillage.org/wp-
content/uploads/2018/11/medicare-spends-more-on-socially-isolated-older-adults.pdf

Solon, O. 2017. “Ex-Facebook President Sean Parker: Site Made to Exploit Human
‘vulnerability’” The Guardian.

https://medium.com/@ns_geoai/70-geospatial-python-libraries-54604d815a7b

 151

https://www.theguardian.com/technology/2017/nov/09/facebook-sean-parker-
vulnerability-brain-psychology

Tufte, E. 1983. The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.

Uhls, Y.T., Ellison, N.B., and K. Subrahmanyam. 2017. “Benefits and costs of social media in
adolescence.” Pediatrics 140, no. 2: 67-70. https://doi.org/10.1542/peds.2016-1758E.

U.S. Department of Commerce. 2023. "Community Resilience." National Institute of Standards
and Technology. https://www.nist.gov/community-resilience

U.S. Department of Health and Human Services. 2023. Our Epidemic of Loneliness and
Isolation: The U.S Surgeon General's Advisory on the Healing Effects of Social
Connection and Community. V. Murthy. Office of the Surgeon General.
https://www.hhs.gov/sites/default/files/surgeon-general-social-connection-advisory.pdf

Valtorta, N.K., Kanaan, M., Gilbody, S., Ronzi, S., and B. Hanratty. 2016. “Loneliness and
social isolation as risk factors for coronary heart disease and stroke: systematic review
and meta-analysis of longitudinal observational studies” Heart 102, no. 13:1009-1016.
https://doi.org/ 10.1136/heartjnl-2015-308790.

Vaidhyanathan, S. 2019. Antisocial Media: How Facebook Disconnects Us and Undermines
Democracy. Oxford: Oxford University Press.

Vogel, P. 2021. "Designing Openness-Infusing Socio-Technical Artifacts", PH. D Diss,
University of Hamburg. https://ediss.sub.uni-
hamburg.de/bitstream/ediss/9019/1/Dissertation_Vogel_Pascal.pdf

Vollman, M. 2018. “Hyperlocal Neighborhood Networks: Building Social Capital and
Empowering Local Urban Communities” UrbanNet.
https://www.urbanet.info/hyperlocal-neighbourhood-networks/

Wang, S., Feng, X., Murray, A., and Y. Zeng. 2018. “A context-based geoprocessing framework
for optimizing meetup location of multiple moving objects along road networks”,
International Journal of Geographical Information Science 32, no. 7: 1368-1390.
https://doi.org/10.1080/13658816.2018.1431838.

Weissbourd, R., Batanova, M., Lovison, V., and E. Torres. 2021. “Loneliness in America”
Making Caring Common Project, Harvard Graduate School of Education.
https://static1.squarespace.com/static/5b7c56e255b02c683659fe43/t/6021776bdd04957c4
557c212/1612805995893/Loneliness+in+America+2021_02_08_FINAL.pdf

Xu, Z., and H.A. Jacobsen. 2010. “Processing proximity relations in road networks.”
Proceedings of the 20120 ACM SIGMOD international conference on management of
data: 243-254. https://doi.org/10.1145/1807167.1807196.

Yildirim, G. 2023. “Routing Algorithms as an Application of Graph Theory” M.S. Thesis,
Middle East Technical University. https://hdl.handle.net/11511/102142

https://doi.org/10.1542/peds.2016-1758E

 152

Yongmei, R., Linghong, H., and M. Yongqing. 2015. "Logistics Distribution Route Optimization
Method for Peach Products Transport." 2015 Seventh International Conference on
Measuring Technology and Mechatronics Automation: 609 – 612. https://doi.org/
10.1109/ICMTMA.2015.153

Yoon, S., Ko, D., Koh, S., Nam, H., and S. An. 2011. “PR-RAM: The Page Rank Routing
Algorithm Method in Ad-hoc wireless networks.” IEEE Consumer Communications and
Networking Conference: 96-100. https://doi.org/10.1109/CCNC.2011.5766654

Zhang, N., and Z. Huang. 2011. "Evaluation and Optimization of Bus Route Network in Wuhan
China" The Seventh Advanced Forum on Transportation of China: 140-148.
https://doi.org/10.1049/cp.2011.1392.

 153

Appendix

Application
name

Self-description Link

Konnect Make local friends https://apps.apple.com/us/app/konnect-make-local-
friends/id1182587961

YikYak Anonymously
connect in college

https://yikyak.com/

Bump Grinnell Connect with your
Grinnell
communities

https://bump-bump-bumping.en.aptoide.com/app

Meetup Find local groups https://www.meetup.com/

Nextdoor An app for
neighborhoods

https://nextdoor.com/

PartyWith Find people
nearby who want
to party

https://www.instagram.com/partywithapp/?hl=en

oOlala A local hangout
app

https://www.instagram.com/oolalaapp/

MeetnGreet Make new friends
nearby

https://www.facebook.com/sdmeetngreet

Spontaneous Hangout with
family and friends
nearby

https://apps.apple.com/lb/app/sponty-spontaneous-
gatherings/id1558525532

Localmind Know what’s
happening
anywhere

https://www.facebook.com/localmind/

Circle The local app https://play.google.com/store/apps/details?
id=com.circleme&hl=en_US

Patch Everything local https://patch.com/

Mapbuzz Meet people
nearby

https://www.mapbuzz.com/

Nebenan Social networking
with neighbors

https://nebenan.de/

Hoplr Neighborhood
social networking

https://hoplr.com

 154

OneRoof Social platform
for apartment
residents

https://www.oneroofapp.com/

NearGroup Private
neighborhood
networking app

https://neargroup.me/

PublicNext Connects the
neighborhood

https://publicnext.com/

SOSAFE A citizen network https://play.google.com/store/apps/details
?id=cl.sosafe.panicbuttonandroid.app&hl=en&gl=US

Therr.app Local social
networking

https://www.therr.app/

Playsee Location focused
social media

https://playsee.co/

Shoelace Google’s hyper
local social
networking
application

https://techcrunch.com/2020/04/29/google-is-shutting-
down-shoelace-the-social-app-youve-probably-never-
heard-of/

SimplyLocal Neighborhood
public noticeboard

https://www.simplylocal.app/

Jodel Your hyper local
community

https://jodel.com/en/

Hobbin Meet friends near
me

https://apps.apple.com/us/app/hobbin-meet-friends-
near-me/id1614610374

Localysis Connect you to
people in your
desired location

https://hi-in.facebook.com/localisys/videos/localysis-is-
a-universal-mobile-handy-app-that-connects-you-to-
people-services-e/686129955107837/

WithLocals Find local things
to do near you

https://apps.apple.com/us/app/withlocals-tours-travel-
app/id655695313

OneRoof Meeting your
neighbors made
easy

https://www.oneroofapp.com/

Neighbors by
Ring

Join the
neighborhood

https://apps.apple.com/us/app/neighbors-by-
ring/id1218902777

