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Abstract 

Snow crab, Chionoecetes opilio, is the largest commercial crab fishery in Alaska. Populations in 

the eastern Bering Sea have fluctuated over space and time, challenging statisticians attempting 

to model their distribution and predict stock trends to support sustainable management decisions. 

Climate change contributes to model uncertainty due to increased environmental variance and 

subsequent shifts in species assemblages adapting to changing conditions in the region. This 

research applied statistical toolkits and visualization techniques in GIS for spatiotemporal 

analysis of snow crab distribution in the eastern Bering Sea over thirty-seven years (1982 – 

2018). The National Marine Fisheries Service standardized bottom trawl survey provided a 

robust dataset to statistically explore spatial and temporal patterns and relationships between 

snow crab abundance in terms of catch per unit of effort to sea temperatures, depth, and Pacific 

cod abundance. The temporal correlation in abundance patterns between snow crab year classes 

or cohorts was tested using exploratory regression and geographically weighted regression was 

used to visualize the nature and scale of relationships within the survey region. Overall spatial 

patterns of snow crab distribution in the eastern Bering Sea reflected large scale warming trends 

and contraction of the population to the north towards the Bering Strait. No significant 

relationship was found between snow crab and Pacific cod distributions on a global scale but 

there was evidence of a local scale inverse relationship in the southern survey region. In absence 

of favorable bottom temperatures in 2018, snow crab distribution displayed a greater depth 

dependence in the northernmost region. Temporal correlation was detected between age classes 

of snow crab, suggesting connectivity between maternal cohorts and progeny. These results 

identify local and global scale distribution trends which will support better predictive models for 

fisheries.
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Chapter 1 Introduction 

Snow crab, Chionoecetes opilio (C. opilio), are widespread throughout the eastern Bering Sea 

(EBS) and are harvested in the largest commercial crab fishery in Alaska. Managers monitor the 

distribution and abundance of C. opilio and many other marine species of commercial and 

ecological significance in the region to prevent overfishing and maintain sustainable populations. 

Geographic Information Science (GIS) can be used to model these distributions spatially to 

support traditional stock assessments. 

Climate change in the Bering Sea region has been imposing pressure on species’ 

geographic ranges and the ecological structure of the EBS shelf habitat. Snow crab have 

retreated to the north with sea temperature rise and reduced sea ice (Orensanz 2004) while 

populations of groundfish species such as Pacific cod (Gadus macrocephalus) have increased 

(Windle et al. 2012; Kotwicki and Lauth 2013). The influx of predatorial gadids like Pacific cod 

further obfuscates the future of snow crab in the EBS with implications for both commercial 

fisheries. The significance of the impact of these ecological relationships has been measured and 

quantified in a variety of regression techniques with variable results to support predictive 

modeling of fisheries stock distributions. The goal of this project is to describe the 

spatiotemporal distribution of C. opilio distribution and abundance in relation to temperature, 

depth, and Pacific cod abundance in the EBS through GIS and geostatistical analysis, and in 

doing so, demonstrate how GIS can be applied towards marine ecology and fisheries science.  

1.1. Study Area 

The EBS shelf is a productive, sub-polar ecosystem supporting a diverse range of crab, 

flatfish, and groundfish fisheries. This region extends approximately 270 nautical miles (nm) 

seaward from the west coast of Alaska and breaks to the west near 200 m depth (Figure 1). The 
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main EBS shelf is relatively uniform in substrate and sea floor physiography, but rockier, 

heterogenous habitat is found along the shelf edge where mature snow crab tend to cluster 

(ADFG 2019). St. Lawrence Island (63°N 170°W) marks the northern entrance to the Bering 

Strait which connects the Bering to the Chukchi Sea and Arctic Ocean beyond. South of St. 

Lawrence is St. Matthew Island (60°N 172°W); continuing south the central region of the shelf 

near 57°N is flagged by the Pribilof Islands to the west shelf edge and Nunivak Island to the east 

nearer the coast. The Aleutian Islands form a southern border to the Bering Sea at about 54°N, 

extending from the mainland Alaska Peninsula and Bristol Bay region towards Kamchatka 

Peninsula and the east coast of Russia. St. Paul Island in the Pribilofs (57°N 170°W) is a main 

port for commercial snow crab deliveries and serves as a geographic reference point throughout 

this study. 
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Figure 1. Study area, the eastern Bering Sea and EBS shelf 
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The Alaska Coastal Current is diverted into the Bering Sea from the Gulf of Alaska and 

Pacific Ocean. Much of the Coastal Current is directed through Unimak Pass, just west of the 

Alaska Peninsula, where it becomes the Bering Slope current as it continues north along the 

shelf’s edge. Nutrients carried up from the Aleutian Trench along the south side of the island 

chain help to fuel a productive EBS ecosystem and form a productive front along the shelf edge 

where adult snow crab aggregate. The Pribilof Islands and St. Matthew Island divert flow from 

the Slope current. These island eddies provide a means of redistributing snow crab larvae and 

nutrients across the shelf as the main Slope current pushes north (Orensanz 2004; Parada et al. 

2010). 

Sea ice forms in the Bering Sea during winter months as polar currents from the Chukchi 

creep south over the shallow shelf region. Spring warming causes melt which sinks to the bottom 

forming a pool of colder bottom temperatures, typically under 2℃ (NPFMC 2019). This cold 

pool (Appendix A) and temperature gradient that forms on the EBS shelf defines the ecosystem 

structure as it determines potential habitat for snow crab and other benthic marine species whose 

physiological function is adapted to specific thermal range limits (Molinos et al. 2018). 

Monitoring of temperature and climate tracking in the EBS is therefore vital to understanding 

patterns of species distributions and to anticipate ecosystem change scenarios in the future.  

Ice can extend as far south as Bristol Bay and the Pribilof Islands in cold years, but sea 

ice formation and duration has decreased in recent years and the lowest recorded bottom 

temperature in the summer of 2018 was 1.6℃ as reported by the National Marine Fisheries 

Service (NMFS) (NPFMC 2019). Managers are concerned the warming trends could have a 

detrimental impact on the snow crab fishery which may not be seen or detected for some years 

while the effects are borne out through the population life cycle (ADFG 2019). The Bering Sea 



 

5 

Fishery Ecosystem Plan (BSFEP) was formalized by the North Pacific Fishery Management 

Council (NPFMC) to begin development of ecosystem-based management (EBM) plans to 

supplement traditional fisheries stock assessments through studies that incorporate important 

variables like sea ice extent or sea temperatures along with spatially focused analyses of species 

distribution and relationships (Foy and Armistead 2012; NPFMC 2019). GIS enables integration, 

analysis, and visualization of spatiotemporal fisheries survey data and environmental variables of 

interest to better understand the ecological processes driving species distributions towards EBM 

goals. 

Species abundance data gathered on standardized independent surveys designed by 

statisticians provide the bulk of the data used to model stocks for commercial fisheries. Since the 

1970s, NMFS has conducted an annual bottom trawl survey to provide the necessary data for 

monitoring stocks and environmental conditions in the EBS. This trawl survey spans the shelf 

region (about 216,000 nm2) from the Alaskan coast to the shelf edge as far west as 178°W and 

from the Alaska Peninsula north beyond St. Matthew Island to 62°N. The 50 and 100 m depth 

contours form the coastal, middle, and outer domains which describe the main geographic 

regions across the shelf (see Figure 2). Nunivak Island and St. Paul Island mark the central 

region of the shelf, defined by Zemchug Canyon to the north and Pribilof Canyon to the south.  
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Figure 2. EBS survey coverage area with cross-shelf domains (top) and northern, central, and 

southern survey regions marked by canyons along the shelf edge (bottom) 
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1.2. Snow Crab Spatial Biology 

Snow crab populations fluctuate in cyclical patterns where the frequency of pulse cycles 

of abundance reflects connectivity between maternal year classes (cohorts) and progeny year 

classes of immature snow crab (Ernst et al. 2005; Emond et al. 2015).  

Different environmental conditions are preferred at each benthic life cycle stage of C. 

opilio, so that the population becomes spatially stratified according to age/sex demographics 

across the shelf. Snow crab begin their complex life cycle as larvae in the pelagic zone, 

transported by currents and subjected to prevailing surface temperatures for 3 to 5 months before 

settlement in the shallow and muddy coastal domain (Groβ et al. 2017). Immature snow crab 

migrate towards the middle domain, normally the coldest region of the EBS. Mature crab 

continue this migration towards the deeper outer domain and settle along the shelf edge in 

mature stages where sea temperature is typically warmer and reproductive energetics are more 

efficient (Orensanz et al. 2004).  

Mature female age classes aggregate to the north of the main population and larger, 

commercially targeted males form dense patches along the shelf edge (Orensanz et al. 2004; 

Parada et al. 2010). Maternal cohorts release fertilized eggs in the outer domain near the edge; 

currents then carry the eggs and resulting pelagic larvae towards the shallower coastal domain 

where settlement occurs. Size and age frequency growth studies have shown that newly settled 

crab, or instars, take approximately four to six years of growth to reach the immature age class 

where it is large enough to be detected on survey, and reach maturity after another two to three 

years of growth. As immature age classes make up the largest proportion of the total population, 

this typically results in peaks in total abundance recurring every six to nine years. The contents 

of Pacific cod stomachs collected from EBS survey samples have shown that small and immature 
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snow crab are preferred prey and make up a substantial proportion of Pacific cod diet (Orensanz 

et al. 2004; Burgos et al. 2013; Groβ et al. 2017). This suggests that predation could be a major 

source of juvenile mortality and express a lagged detrimental impact on snow crab abundance, 

while the strength of maternal age classes would express a lagged positive correlation with future 

snow crab abundance and pulse cycles. 

Many factors impact growth and survival of snow crab as age classes move across the 

shelf habitat in structured life history patterns, adapting to changing temperatures and species 

interactions. Spatial and temporal variability make it difficult to describe trends in snow crab 

abundance through global approaches to regression analysis alone (Ciannelli et al. 2008). 

Exploration of the temporal correlation based on life history characteristics and investigation of 

local scale relationships can help construct timelines of impact and describe regions where 

relationships may vary from the overall trends. 

1.3. Fisheries Management 

An ecosystem regime shift occurred in the eastern Bering Sea according to survey data in 

the late 1970s. Species assemblages and spatial distributions were shifting apparently in response 

to warming surface and bottom temperatures and the related decline in sea ice extent and 

duration. The temperature changes resulted in an influx of gadid fishes which began to tip the 

ecological balance of biomass away from sub-polar benthic invertebrates in favor of temperate 

groundfish species such as Pacific cod (Gadus macrocephalus) (Orensanz et al. 2004; Kotwicki 

and Lauth 2013). 

Commercial landings for the 2018 Bering Sea Aleutian Islands (BSAI) snow crab fishery 

totaled 24,820,146 pounds at an ex-vessel price of $3.89 per pound and 130 million dollars for 

the industry (ADFG 2020). The fishery has fluctuated in biomass and landings over decades, 
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with low periods in the mid-1980s and historical lows in the early 2000s. A changing climate and 

shifting ecosystem contribute considerable uncertainty to stock assessment models which seek to 

describe the population dynamics to make predictions for future scenarios in terms of fishery 

productivity and sustainable fishing levels. Stock assessments are scrutinized by scientific review 

boards, government agencies, fish processing and seafood industry associations, fishing 

cooperatives, vessel owners, and permit holders prior to adoption of annual catch limits. 

Historical spatial records captured by standardized surveys are particularly well suited for 

analysis in GIS using statistical modeling developed for spatiotemporal datasets; and effective 

spatial representation in map visuals can help communicate complex results and engage 

stakeholders in the decision-making process for fishery management plans. 

1.4. Summary 

The overall goal of this study is to describe the spatiotemporal patterns of snow crab 

distribution and abundance in relation to environmental conditions (surface temperature, bottom 

temperature, depth) and predation (Pacific cod abundance). This study also seeks to demonstrate 

how GIS can be applied in marine fisheries ecology towards exploring and modeling 

relationships in space and time.  

EBS bottom trawl survey data of snow crab distribution and abundance was gathered in 

ArcGIS Pro 2.6.1. The Space time Pattern Mining Toolbox and Modeling Spatial Relationships 

toolsets provided statistical modeling tools to analyze and visualize spatiotemporal trends across 

the EBS from 1982 to 2018. Concurrent predator abundance and temperature data were included 

for ecological context as two key explanatory variables impacting snow crab populations. Three-

dimensional (3D) rendering of the dataset provided context for regression analysis which 
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explored the scale and significance of the ecological relationships with snow crab distribution in 

2018. 

This thesis is presented in five chapters, beginning with this introduction to snow crab 

spatial biology, significance of the fishery, and EBS ecosystem dynamics. Chapter 2 is a 

collection of related work on the spatiotemporal analysis of species distribution and abundance 

patterns in the EBS, including traditional regression techniques and more novel spatial 

approaches. Each of these works served as a guide in development of the methods outlined in 

Chapter 3, including dataset engineering, GIS integration, geostatistical tools, and analyses of 

spatiotemporal patterns. Chapter 4 presents the results of the analysis and main findings, and 

Chapter 5 expands on the results in a broader ecological context, discusses successes and 

limitations of the chosen methodology and potential for further development. Chapter 5 also 

presents the case for GIS as an effective analysis and visualization tool in marine fisheries 

ecology.  
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Chapter 2 Related Work 

This chapter outlines previous research related to species distribution and climate in the eastern 

Bering Sea and provides examples of GIS as applied to spatiotemporal analysis and spatial 

regression techniques in marine fisheries and ecology. Recent environmental and biological 

trends are described for the EBS environment and C. opilio, and approaches to modeling 

expansive spatiotemporal datasets that extend over a large and dynamic environment like the 

EBS shelf are discussed. Examples from other regions and scientific domains which have 

utilized GIS for statistical analysis are also provided to supplement the relatively few examples 

of GIS and local regression analysis in marine fisheries studies.  

Spatial non-stationarity is typical of species distributions in marine systems, but local 

scale variation is often masked by global scale trends. A better understanding of local variation 

can inform global regression model performance and development of hypotheses for the multi-

scalar processes underlying variation in snow crab distribution and abundance. This project 

demonstrates the efficacy of GIS in performing exploratory spatiotemporal analysis and 

regression modeling of large datasets through visualization and geostatistical analysis. Spatially 

focused methods were structured to capture multi-scale patterns in snow crab distribution in the 

EBS and to introduce alternative methods for exploring temporal correlation as well as 

identifying local relationships in a large dataset. 

2.1. Measuring Ecosystem Change in the Eastern Bering Sea 

Temperature is a main determinate of marine species distribution and preferred habitat 

range as it controls physiological function (metabolism, growth, reproductive rate) (Molinas et 

al. 2018). Stevenson and Lauth (2018) have suggested that warming trends beginning in the 

1970s coincide with a regime shift in which groundfish abundance began to increase and 
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overtake the ecosystem previously dominated by subpolar benthic invertebrates such as snow 

crab. The shift occurred as subpolar species retreated to the north and colder temperatures 

(Mueter and Litzow 2008; Stevenson and Lauth 2012; Kotwicki and Lauth 2013) but the 

significance of the change and the magnitude varies amongst the research depending on 

modeling approach and units of analysis. Though temperature has been identified as the most 

significant environmental determinate of wide scale distribution patterns in snow crab and other 

marine species, there is ongoing debate as to the significance of top-down predator-prey 

relationships between invertebrates and groundfish as populations are shifting (Orensanz et al. 

2004; Zheng and Kruse 2006; Parada et al. 2010; Windle et al. 2010; Windle et al. 2012; Murphy 

2020).  

2.1.1. Spatial Units 

Fisheries and species distributions are often modeled through some form of global 

regression analysis (Cianelli et. al 2008). For large study areas the region is usually divided into 

smaller spatial units prior to analysis to improve model performance as a single equation is fit to 

the spatial unit chosen. Some distribution and abundance studies divide the EBS according to 

oceanographic patterns (Parada et al. 2010) or physical characteristics like depth (Ernst et al. 

2005; Emond et al. 2015). Burgos et al. (2013) divided the EBS according to geographic domain 

(coastal, middle, and outer as described in the introduction), a common reference system for the 

region that was adopted for this study. Burgos et al. (2013) further divided the EBS into 

transverse sections parallel with latitude, resulting in 13 spatial units in their analysis of snow 

crab distribution. Global results for each unit were compared to describe pseudo-local variation 

in distribution in relation to temperature and Pacific cod predation. 
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Snow crab distribution is often related to the extent of the cold pool, which can 

alternately be defined by the 1° or 2℃ isotherms throughout literature. Kotwicki and Lauth 

(2013) calculated the change in area over a 30-year time series of EBS survey data adhering to 

the 1℃ definition of the cold pool. This change variable (∆) was an input parameter for a 

generalized additive model (GAM) to determine the impact on snow crab distribution and is one 

of the rare studies to report no significant relationship between temperature and species 

distributions, as no significant trend was detected in the cold pool extent over the study period. 

Trends in species distribution were attributed to temporal correlation, while environmental 

variables were found to be less significant. Other studies have defined the cold pool by the 2℃ 

isotherm (Mueter and Litzow 2008; Marcello et al. 2012; Murphy 2020). Marcello et al. (2012) 

applied a similar GAM technique to describe snow crab distribution data from surveys in the 

northwest Atlantic and found significant correlation with lagged temperature variables. 

The temporal units of analysis also vary from study to study. Year to year pairwise trends 

have been used to model temporal correlation at single locations (Kotwicki and Lauth 2013). 

Survey years have also been aggregated to investigate cumulative effects and large-scale 

processes (Orensanz et al. 2004; Marcello et al. 2012). Temporal lag from environmental impacts 

at various life history stages in the snow crab life cycle has been investigated to understand the 

cyclical patterns of abundance or temporal correlation and connectivity between year classes of 

snow crab (Ernst, Orensanz, and Armstrong, 2005; Marcello et al. 2012; Emond et al. 2015). 

Spatiotemporal exploration and visualization of species distributions using a multiscale 

approach in GIS can lead to better developed regression models and therefore better prediction of 

species distributions and abundance. Geographically weighted regression (GWR) is used to 

visualize how the strength and nature of relationships vary spatially by performing the regression 
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at each location in the study area, which can identify regions where relationships are consistent 

and the dependent variable is predicted with higher accuracy – or regions where the model 

performs poorly indicating a missing variable (bias) or non-linear relationship (Mitchell 2009). 

In this way model results can help identify ecological regions and the conditions that shape 

species distributions. Global and local regression techniques are discussed in section 2.2.3. 

2.1.2. Ecological Considerations 

As snow crab populations shift north, Parada et al. (2010) postulated that circulation 

patterns in the EBS present a barrier to re-distribution into the southern EBS, even in years of 

favorable conditions (<2°C). A previous study by Orensanz et al. (2004) had termed this 

asymmetrical shift the ‘environmental ratchet hypothesis’ (ERH). In this case warming trends 

initially provided a bottom-up control of crab recruitment and potential range of habitat, but EBS 

currents, female migration patterns, and cod predation on juvenile crab prevented the southward 

expansion during more favorable cold years. This has resulted in a realized niche or limited 

extent of a species’ potential habitat. 

Based on their study of female distribution and immature cohort classes, Burgos et al. 

(2013) hypothesized that an extended cold period from 2006 to 2010 resulted in decreased 

abundance of cod, and therefore predation, which allowed for the observed increase in 

recruitment of immature crab to the middle domain in 2010. Pulses of high abundance have been 

noted throughout the literature and are believed to correlate with the strength of female parent 

cohorts, with some dampening effect of predation and the ERH proposed by Orensanz et al. 

(2004).  

Although temperature may be a main driver of species distributions and biogeography of 

the EBS, multiple factors influence the survival and distribution of snow crab at different stages 
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in its life cycle. Sea surface temperature (SST) will impact the growth and survival of pelagic 

larval stages, whose transport is controlled by surface currents in the EBS; bottom temperatures 

then exert more influence in benthic distribution as immature crab preferentially settle in the 

colder middle domain (Orensanz et al. 2004; Parada et al. 2010). Immature crab and small 

females are preferential prey for Pacific cod, so predation pressure effects are also focused on 

this segment of the population. Studies which break down the snow crab population into 

population demographic groups or sex age classes have captured variable distribution and 

abundance patterns that reflect sex and age class-specific preferences and ecological 

relationships (Ernst, Orensanz, and Armstrong 2005; Ernst et al. 2012; Emond 2015; Murphy 

2020). Variable life history stages and a fluctuating environment in terms of temperature and 

predation suggests spatial non-stationarity, or locally variable relationships, that might contrast 

with global trends in snow crab distribution and abundance. 

Emond et al. (2015) and Boudreau, Anderson, and Worm (2011) also studied female 

cohorts separately from the snow crab population total to describe temporal trends. They 

observed, in many cases, a correlation between mature female abundance and a lagged 

recruitment pulse approximately 4 years later as progeny presumably settled to the benthos. 

Murphy (2020) tracked immature females, mature females, and mature males separately in an 

analysis of snow crab and its cousin, tanner crab, in the EBS to flush out the relationships 

between each demographic with temperature and depth. 

Pacific cod stomach contents from the EBS survey have been analyzed in various studies 

and indicate that snow crab is a main prey item (Lang et al. 2005; Boudreau, Anderson, and 

Worm 2011; Burgos et al. 2013). Predation has also been postulated as a top-down control of 

snow crab abundance, but global regression analyses have failed to capture any significant 
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relationship between predator species and snow crab. This may be due, in part, to significant 

differences in spatial distribution and overlap on the EBS as well as in scales of abundance. This 

scale factor and spatial variation between the two species drives much of the deviation in spatial 

units of analysis seen in previous studies. 

An exploration of the spatiotemporal distribution of snow crab sex-age classes and 

historical environmental conditions can help visualize and define distribution patterns in space 

and time that can inform progressive statistical analysis and support further hypothesis 

development.  

2.1.3. Space Time Exploration of Distribution 

Bottom temperatures in the EBS have fluctuated between averages of .5 to 5℃ for the 

shelf survey region since 1982. A recent warming trend began about 2011 and peaked in 2016; 

after three years of no sea ice formation over the shelf average temperatures remain near peak 

highs over 3℃ (ADFG 2019). Charts for average bottom and surface temperatures and CPUE 

(number/ nm2) for total snow crab, immature snow crab, mature female snow crab, and Pacific 

cod are shown in Figures 3 and 4. 

 
 

Figure 3. EBS average summer sea surface and bottom temperatures, 1982 – 2018 
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Figure 4. EBS annual total CPUE (number per nm square) for immature, mature female, and 

total snow crab age classes, and Pacific cod, 1982 – 2018 

 

Snow crab abundance in the EBS over the time series was highest between 1986 and 

1996. CPUE peaked at over 7 million in 1993, then dropped to under 500,000 by 1999. This was 

the first time Pacific cod CPUE values overcame those of snow crab since 1985. Since the sharp 

decline in 1998 and 1999 down to 500,000 CPUE, a small peak occurred in 2014 at just over 

3,500,000 before CPUE again dropped to the historic low of 250,000 in 2016. Pacific cod 

abundance fluctuated at a smaller scale than snow crab over the series and was relatively more 

dispersed. Peak CPUE of Pacific cod on survey over the time series was just under 2,000,000 in 

2014 and dropped to its lowest survey record in 2018 at 500,000 CPUE.  

Prior to 1998 average bottom temperatures fluctuated between 2 and 3.5℃ (a 1.5℃ 

range) while post-1998 the average fluctuated between .5 and 5.5℃ (a 5℃ range). Average 

bottom temperatures rose from 2℃ in 2006 to 4.5℃ in 2018. After a second year of no sea ice 

formation over the EBS shelf, no cold pool formed in 2018. Only seven stations on the northeast 

fringe of the survey area reached a summer low of 1.6℃ (bottom temperature maps for 2006 to 

2018 are provided in Appendix A). In previous years when the cold pool formed it proliferated 

south along the middle domain (50 – 100 m), and immature snow crab clustered here. 
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2.2. GIS Modeling 

GIS is a technology increasingly used for integrating, analyzing, and visualizing 

spatiotemporal data. Space time analysis and geostatistical methods have been used in various 

domains to explore, quantify, and build on established theories, and the mapping of spatial 

information and data visualization enhances communication. Visualizations can also promote 

engagement in the fisheries management and decision-making process (Kemp and Meaden 2002; 

Cianelli et al. 2008; Hardy et al. 2011). 

Many of the previously mentioned studies apply basic GIS tools to interpolate data points 

and derive surface maps of temperature and abundance patterns, or to plot time series of 

population centers over time. These are simple yet effective methods of visualizing geographic 

shifts in species ranges and ecological relationships. GIS also provides more sophisticated tools 

for the analysis and visualization of spatiotemporal data, and cluster and outlier detection in 

spatiotemporal correlation tests. The suite of regression tools available in ArcGIS Pro has been 

expanded for global and local modeling techniques such as ordinary least squares (OLS) and 

GWR. 

Predictive modeling and machine learning (ML) is also being developed in GIS and may 

provide fisheries managers with tools for making effective decisions for spatial quota allocations 

(Cianelli et al. 2008; Hardy et al. 2011). Extensive, robust datasets and repetitive testing are 

required to train models and accurately identify the scale of ecological processes in action, which 

can change over time. GIS enables manipulation and interchange of variables and analysis units 

(spatial or temporal) as input parameters in regression and ML algorithms towards better 

predictive modeling. 
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2.2.1. Spatiotemporal Analysis 

Standardized fisheries surveys are designed to collect repeated measurements at regular 

frequency and locations to enable robust statistical analysis. This enables managers to measure 

change and estimate its significance over time with some amount of probability or confidence 

(Stamatopoulos 2002). Datasets with spatial locations and time stamps can be structured as a 

space time cube with netcdf file formatting to enable spatiotemporal pattern mining and 

statistical analysis in ArcGIS Pro. The cube structure enables visualization and analysis of 

change over time at each location by assigning location IDs and time step interval designations 

to each record. This makes space time cubes particularly well-suited for modeling ecological 

systems and managing station data like the EBS bottom trawl survey.  

Spatiotemporal analysis in GIS differs from traditional statistics which focus on the 

attribute value in dataspace and assume independence between observations (Fotheringham 

2002; Ciannelli et al. 2008). Spatial and temporal autocorrelation relate to Tobler’s first law of 

geography in that nearby features are more similar than those located farther apart 

(Fotheringham 2002). Spatiotemporal analysis accounts for the autocorrelation of attribute 

values and accepts some degree of dependence between nearby observations by differentially 

weighting features (in this case individual survey station records) according to the distance 

between them (Mitchell 2009). For example, survey stations within a specified distance, or 

spatial neighborhood, are more heavily weighted in spatiotemporal analyses than those outside 

this distance since catch records of snow crab are likely comparable with catch records at nearby 

survey stations. As distance between survey locations increases, the correlation in attribute 

values is likely to decrease so the spatial neighborhood distance should represent the degree of 

interaction or dependency between features.  
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Without any spatiotemporal autocorrelation the attribute values would appear randomly 

distributed across the study area and over time (Mitchell 2009). GIS analyses quantify the level 

of clustering (positive correlation) or dispersion (negative correlation) and incorporate this aspect 

of the data in the calculation of statistics within the context of the spatial neighborhood to 

determine how significantly the patterns diverge from a random distribution (see Mitchell 2009 

for a detailed explanation of the mathematical formulas, or Fotheringham 2002 in the case of 

GWR). A p-value is assigned in the statistical output to indicate whether the pattern is 

significantly different than random, and a z-score with a negative or positive designation to 

indicate if the trend is increasing or decreasing along a standard normal distribution curve (z-

score of zero would be equal to the mean).  

The Mann-Kendall statistic is automatically applied at every defined location during 

creation of a space time cube. This independent bin test summarizes the temporal trend in the 

attribute over time at each station location by summing each bin as an increase (+1) or decrease 

(-1), or tie (0) with the previous time step (Esri 2020). Time series cluster analysis in ArcGIS Pro 

compares these temporal trends for the characteristic or attribute of interest, and groups stations 

together based on correlation in the timing and proportional change in the value over time 

(attribute profile correlation). Time series clusters represent areas of similar population growth 

patterns which could be of interest to fisheries managers and ecologists. 

 Alternative spatiotemporal analyses are adapted from traditional methods to identify 

clusters of similar values. Cluster locations provide context for regression modeling and 

understanding relationships. The Anselin Local Moran’s I statistic (clusters and outliers analysis 

in ArcGIS Pro) is calculated by comparing the target feature bin in the space time cube with 

nearby (local) bins using the spatial neighborhood concept, then comparing the local mean 
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against the global mean of features to identify outliers and/or correlation in the characteristic of 

interest (Esri 2020). Hot spot analysis calculates the Getis Ord Gi* statistic for each bin location 

by comparing the target feature within the spatial neighborhood; hot spots are high value features 

surrounded by other features with high values, and are considered statistically significant if 

locally (in space and time) the sum characteristic of interest is greater in proportion than the 

global sum. Hot and cold spots indicate areas of significant decline or growth in population. 

Emerging hot spot analysis in ArcGIS Pro further describes the trend by classifying each station 

location in the space time cube according to recent temporal patterns (for a full description of the 

emerging hot spot classification scheme see Esri 2020).  

Whereas the spatial component of a data point and visualization are typically secondary 

to the quantitative results and the data attribute value, fisheries managers are increasingly calling 

for spatially focused analyses (ADFG 2019; NPFMC 2019). Kemp and Meaden (2002) 

developed a custom system to support decision making through spatiotemporal exploration, 

visualization, and multivariate modeling via GIS. Their goal was to present users (managers) 

with a tool for exploratory visualization through customized mining of spatiotemporal data. The 

GIS application allowed users to specify input variables (species and/or sex age classes), analysis 

units (spatiotemporal aggregation) and varied statistical tests. The development of customized 

software is beyond the scope of this project, but the project goal demonstrates the value to 

management of exploring spatiotemporal parameters to assess how choices in spatial 

neighborhood and spatial units affect the results. GIS also offers the efficacy of having 

immediate visual support of results. 

There are few examples in related research which take advantage of the recently 

developed space time pattern mining tools in ArcGIS. A Master’s thesis by C. Steves (2017) 
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demonstrated the efficacy of the space time cube in detecting change in the Alaska bottom trawl 

fishery in terms of effort (number of trawl tows) and efficiency (weight per tow). Visualization 

of change in these parameters relative to the location of marine protected areas (MPAs) and sea 

ice extent in the EBS between 1993 and 2015 revealed clusters of increased (hot spots) or 

decreased (cold spots) bottom impact and fishery productivity. These spatial and temporal trends 

could help guide the decision-making process for identifying priority impact areas or low 

productivity fisheries that could benefit from temporary or established conservation areas. 

Epidemiology is another domain which has taken advantage of the space time capabilities 

of ArcGIS software. Zulu, Kalipeni, and Johannes (2014) built a progressive, multi-scale 

statistical analysis based on a 7-year time series of HIV infection in Malawi to better understand 

spread of the disease. This case study applied spatiotemporal analysis and regression in GIS to 

analyze HIV prevalence in Malawi over a seven-year time period. Anselin Local Moran’s I 

statistic identified clusters of similar prevalence rates (high positive autocorrelation) and outliers 

surrounded by much higher or lower prevalence rates (high negative autocorrelation). Clusters 

indicated areas experiencing similar disease trajectories which provided context for the 

regression analysis. OLS was used to measure drivers of infection such as population density and 

distance to population centers. By applying the regression to national and local level district 

administrative units, the results could provide a framework to implement intervention policy 

plans at district and national levels to predict and mitigate the spread of disease. 

The progressive statistical analysis using GIS and visualization techniques for the study 

in Malawi serves as a model for this project’s methods structure. The EBS bottom trawl survey 

provides a robust and extensive dataset to similarly explore space time trends and relationships 

that could help understand how fisheries species distributions are changing in space and time in 
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order to more efficiently allocate quota spatially. As in the Zulu, Kalipeni, and Johannes example 

(2014), preliminary space time explorations were used in this study to provide context to 

regression modeling at multiple scales.  

2.2.2. Predictive Modeling 

A unique and creative application of ML and the space time cube was implemented by 

Aydin and Butler (2019). In this case, random forest (RF) algorithms were used to determine the 

ocean conditions impacting the health of seagrass habitat and predict the expansion or 

degradation of these marine habitats globally. An effective map derived from this analysis 

depicts the results of an emerging hot spot analysis, showing areas of increasing or decreasing 

suitability for seagrass growth. A variation in the time cube 3D visualization structured rising 

temperature along the z-axis rather than time; hot or cold spots were predicted for each location 

depending on the magnitude of warming scenario as per degree of sea surface temperature 

increase. 

Considering the northward shift in species distributions and the limited spatial coverage 

of the EBS survey, Hardy et al. (2011) developed a complex ensemble model for predicting the 

distribution of snow crab in areas outside the range of the survey grid by integrating data from 

the EBS with limited surveys conducted in the Chukchi and Beaufort Seas. Snow crab 

abundance and biomass were overlaid with 20 layers of environmental predictor variables which 

included typical ecological indicators such as sea surface temperature, nitrate concentration, 

salinity, chlorophyll-a, total organic carbon, infaunal biomass (food source), dissolved oxygen, 

and depth. The relative importance of each predictor was used to develop a quantitative model of 

the ecological niche and generate a predictive surface of the entire region. 
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Prediction was not the goal of this project, but the ML examples provide insight that can 

be incorporated in the current research to support choices of explanatory variables. The RF 

model ranked 3 variations of surface temperature as the most important predictor of snow crab 

distribution, supporting bottom temperature and SST as recorded at survey locations as 

significant environmental indicators. While Hardy et al.’s (2011) results were relatively 

successful in detecting the potential niche, the most successful algorithm still failed to accurately 

predict presence or absence in multiple southern regions of the EBS. This supports further 

investigation of factors other than temperature impacting snow crab distribution in the south 

through techniques like GWR which capture this non-stationarity. 

2.2.3. Describing Relationships 

As demonstrated by the seagrass study and the ensemble model of snow crab distribution, 

understanding ecological relationships is necessary to predict future scenarios for these vital 

marine resources in the face of a changing climate. Modeling the distribution of mobile 

organisms in a dynamic environment over time and deciphering the spatiotemporal correlations 

of a multitude of biotic and abiotic interactions presents challenges. Spatiotemporal visual 

exploration and analysis can be a strategic first step to identifying patterns and relationships to 

support regression and eventually predictive modeling. 

Regression techniques such as ordinary least squares (OLS) and GWR have recently been 

developed for Esri’s ArcGIS platform and are included in the Modeling Spatial Relationships 

toolset. Few examples exist in the literature for GWR as applied to fisheries, but the technique 

shows promise as an exploratory tool and is well suited for GIS as each station location is 

assessed individually, enabling visualizations of the results for each relationship in space. 
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2.2.3.1. Global regression 

Many of the previously mentioned works apply global forms of regression such as GAM 

and generalized linear models (GLM) in their approach to modeling distribution of snow crab in 

relation to temperature, predation, and other variates. Global modeling results are highly 

sensitive to the areal unit chosen as the analysis is based on the entire dataset as a single solution 

is calculated for the intercept term, variable coefficients, and the model’s goodness of fit across 

the study region. 

Emond et al. (2015) investigated the cyclical fluctuation in the northwestern Atlantic 

snow crab populations in relation to environmental drivers. By tracking groups of early benthic 

instars over 23 years, this study was able to measure the strength of pseudocohorts (female year 

classes) over time in relation to multiple variables using global regression and ordinary least 

squares (OLS). Results suggested that intraspecies cannibalism and bottom water temperature 

had the strongest influence on distribution and survival for early instars (three years old, newly 

settled snow crab). This countered the hypothesis that historical predation or snow crab 

abundance values were the more significant variables determining the fluctuations in total snow 

crab abundance. Historical variables or lagged variables were incorporated as regression model 

independent variables as representative of the temporal correlation between current snow crab 

distribution patterns and past environmental conditions like sea temperatures, predator 

abundance, and maternal age class abundance or larval production. The global OLS modeling 

applied in this study may have been too large scale to capture local variation inherent in species 

relationships, particularly predator-prey. North Atlantic cod and snow crab ranges only partially 

overlap in this region so community scale relationships would have been dampened by OLS 

which smooths the local variation in favor of the global average. 
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This study in the northwest Atlantic and the works mentioned in relation to spatial 

analysis units highlight a limitation of global approaches to regression. An exploration of these 

processes at multiple scales using GIS (global OLS and local GWR) captures global trends and 

local variation, and spatiotemporal analysis provides context that may help with interpretation of 

scale and autocorrelation. 

2.2.3.2. Local regression 

GWR is a local technique that can be applied in an exploratory way to support the fine-

tuning of global scale regression models (Fotheringham 2002; Foody 2004; Zhang and Shi 2004; 

Bevan and Connolly 2009; Windle 2010). GWR has the advantage of visual exploratory power 

through mapping of each independent variable’s coefficient, calculated at each location in the 

study area. Clusters in residuals indicate collinearity or model misspecification and can therefore 

help identify missing variables and appropriate scale or spatial units. Global and local scale 

regression model diagnostics and the local variable coefficients in GWR can be compared to 

visualize local variation in the strength of relationships as compared to the overall trends 

described globally. 

OLS model diagnostics include the Variance Inflation Factor (VIF), Joint F and Wald 

statistics, the Koenker (BP) statistic, and Jarque-Bera statistic, each with associated probabilities 

of significance. VIF scores greater than 7.5 indicate redundancy in the independent variables or 

multicollinearity. The Koenker statistic determines the level of spatial and value consistency in 

the relationship (nonstationarity). The null hypothesis for this test indicates a stationary process 

in space and CPUE variation, while a significant Koenker (p-value < .05) indicates spatial non-

stationarity and further reasoning for GWR analysis. The Joint F statistic can be interpreted as a 

measure of overall model significance if the Koenker test is not significant. If the null hypothesis 
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is rejected and nonstationarity results in a significant Koenker test statistic, the Wald statistic 

should be used to determine model significance. A p-value < .05 for the Wald or F statistic 

indicates a significant model. Lastly, the Jarque-Bera statistic test indicates a normal distribution 

in the model residuals. If the Jarque-Bera test was statistically significant, this would indicate 

that residuals were skewed and the model was biased towards over- or underestimating CPUE 

values in certain regions on the map and/or in data space. Bias could be due to misspecification 

(missing model variables), nonlinearity in the relationships, extreme outliers, or spatial 

nonstationarity as indicated by the Koenker test. 

Foody (2004) pioneered the application of GWR for ecological research on bird species 

distributions in Europe and found that the relationship between bird species biodiversity, 

temperature, precipitation, and NDVI varied spatially and at different scales in sub-Saharan 

Africa. Similar determinations of spatial non-stationarity or inconsistent relationships across 

space have been demonstrated in other domains in addition to ecology. 

GWR outperformed global OLS models in Zhang and Shi’s (2004) forestry productivity 

study that measured tree growth in relation to several local environmental parameters. In this 

case, mapping of model coefficients provided visualizations of the nature of the relationship 

between growth patterns, stand density, and timber yield for multiple tree species in New 

Hampshire. Local coefficient mapping illustrated the spatial processes under study and supported 

the development of established global models by identifying areas of poor model performance in 

low r-squared (r2) values. GWR local r2 values represent the proportion of variance in the 

dependent variable accounted for by variance in the independent variables. A low amount of 

variance explained indicated model misspecification or missing independent variables and 

differences between tree species. 
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Bevan and Conolly (2014) also demonstrated the utility of GWR and mapping local 

variable coefficients in the field of archaeology. Their investigation of pottery artifact density in 

relation to slope, geology, and other environmental variables across a small island in Greece 

enhanced the predictive ability in finding pottery deposits by identifying areas predicted to have 

similar densities and could help focus sampling efforts to maximize discovery and collection of 

artifacts and helped to focus sampling efforts in areas that transect sampling would have poorly 

covered. Maps of regression model residuals showed a high degree of spatial correlation in the 

pottery deposits and pockets of similar relationships, indicating what may be appropriate spatial 

units of analysis for future studies. This work uncovered spatial structure in pottery deposits at 

variable scales and enabled hypotheses of human settlement patterns and timelines, ultimately 

supporting more accurate global spatial models of ancient civilizations and the geomorphological 

processes which alter their archaeological record. 

A single case of local modeling in fisheries was found in research which applied GWR. 

Windle et al. (2010) compared the performance of global and local regression modeling 

techniques to describe the spatial distribution of northern Atlantic cod off the coast of 

Newfoundland and Labrador, Canada in relation to temperature, distance from shore, and 

abundance of two key prey items (northern shrimp and snow crab). The predictive success (in 

terms of model error or residuals) of a traditional global logistics and binomial GAM were each 

compared to that of a logistic GWR. GWR outperformed the global GAM approach in terms of 

error, and spatial variation in the strength and nature of relationships were visualized through 

mapping of variable coefficients. Mapping of the GWR residuals in this northwestern Atlantic 

example also facilitated the detection of areas where the model was less effective in explaining 
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the observed variance, which supported inference as to model mis-specification or multi-scalar 

processes occurring in these areas. 

In GWR and spatiotemporal analyses, the kernel bandwidth or spatial neighborhood 

chosen for the analysis is critical as it represents the window surrounding the sample location 

included in the local regression and spatially weighted statistical analysis. Windle et al. (2010) 

and Bevan and Connolly (2009) each devised a measure of spatial non-stationarity by iterating 

through increasing kernel bandwidths and comparing coefficient of variation (CV) scores to 

determine the scale at which relationships became heterogenous. Other methods of determining 

appropriate bandwidths include incremental adjustment of the distance until a minimum 

Akaike’s Information Criterion (AIC) score is reached, indicating optimum model performance 

(Fotheringham 2002; Windle et al. 2012). 

The insight gained from Windle et al.’s (2010) initial exploration of 

invertebrate/habitat/predator associations via GWR led to a second iteration in which snow crab 

and shrimp were examined as dependent variables, rather than cod (Windle et al. 2012). This 

study applied GWR to a 20-year time series but limited the spatial extent by first determining 

core habitat ranges for shrimp and snow crab in the northwest Atlantic. Windle et al. (2012) 

chose to highlight a warm (low abundance) and cold (high abundance) year from their time 

series to compare the spatial variability of the GWR coefficients, which proved an effective 

visualization technique. Model residuals were higher in shallower areas, indicating missing 

variables and possible grounds for partitioning of the dataset. 

As in the previous study, the relationships between crab and cod were relatively weak 

and showed stronger dependence on depth and environmental factors. However, the species 

assemblages in this region exhibit variable oceanographic patterns and ecosystem structures 
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compared to the EBS. In the northwestern Atlantic, warmer waters are found at shallower depths, 

which is opposite that of the EBS. Species abundance for snow crab and cod are also much lower 

in the Atlantic and diet studies show that shrimp are preferred over snow crab. For lack of 

widespread presence Windle et al. (2012) restricted their study area to a ‘core habitat’ zone 

where snow crab was more prevalent in survey samples. Snow crab and Pacific cod are both 

widespread across the EBS and their ranges overlap to a greater extent than in the Atlantic. For 

these differences, GWR may produce variable results in the EBS as a significant relationship 

between shrimp and Atlantic cod was described in this study. 

This second GWR study in the Atlantic also highlights an important point, or possible 

pitfall, of regression modeling. Relationships must be linear for OLS and GWR modeling, and 

scatterplots or histograms should be examined to determine if a data transformation is necessary. 

Windle et al. (2012) tested univariate relationships to determine significance and nonlinearity, 

then ran the regression with and without data transformations for the few variables that exhibited 

nonlinear relationships. An interesting result was that there was no significant difference 

between the analyses using transformed data. Methods were developed for this study with these 

factors in mind, and extensive data exploration was performed to understand data distributions 

and achieve a linear transformation. This process is discussed in the following chapters. 

2.3. Summary 

GIS enables integration, analysis, and visualization of complex, multivariate 

relationships, and the detection of spatial and temporal correlation. While GIS tools do not 

eliminate the pitfalls of the MAUP or scale when dealing with large datasets, exploration and 

visualization can help to understand these data characteristics and lead to better informed 

parameter choices.  
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This study seeks to build on these previous works of fisheries biologists and spatial 

analysts to describe the spatiotemporal distribution and abundance patterns of C. opilio in the 

EBS utilizing GIS visualization and statistical tools. Cues from other studies showing spatial 

stratification of the population and temporal correlation in abundance support the breakdown of 

the population into sex-age classes to investigate spatiotemporal patterns. The progressive 

spatiotemporal and regression analysis performed by Zulu, Kalipeni, and Johannes (2014) served 

as a basic methodology for space time and regression workflows while the approach of Windle et 

al. (2010, 2012) in the application of GWR was adapted to the EBS survey dataset. 
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Chapter 3 Methods 

GIS can provide a means of integrating and manipulating complex spatiotemporal datasets, 

performing analysis, and visualizing results in three dimensions. The methods in this study were 

implemented to demonstrate the capabilities and benefits of GIS for these purposes with a 

specific application in fisheries surveys. Spatial and temporal explorations which describe where 

and when change is occurring in these historical spatial datasets facilitate deeper investigations 

into observed changes to understand the relationships and the mechanisms which shape species 

distributions. The methods developed for this study were intended to demonstrate the utility of 

GIS for spatiotemporal analysis and regression modeling, and the power of space time pattern 

mining and GWR in supplementing more traditional methods of fisheries stock assessments and 

statistical analyses. 

3.1. Data Source: EBS Bottom Trawl Survey 1982-2018 

A subset of the EBS bottom trawl survey conducted by National Oceanic and 

Atmospheric Administration’s (NOAA) Alaska Fisheries Science Center (AFSC) and Resource 

Assessment and Conservation Engineering (RACE) division was developed for spatiotemporal 

analysis and regression modeling using ArcGIS Pro. A point feature class was created in ArcGIS 

Pro from the geographic coordinates of each standard survey station (provided by NMFS in 

decimal degrees) and projected to Alaska Albers Equal Area coordinate system. A space time 

cube was created from this feature class for visual exploration and analysis of species 

distributions and environmental conditions from 1982 - 2018.  

This time series included 349 stations sampled annually from 1982 to 2018. EBS CPUE 

survey data was downloaded from NOAA’s RACE division site (AFSC 2019). Catch per unit 

effort (CPUE) was adopted as the species abundance variable in the analysis as it is a 



 

33 

standardized measure often applied in fisheries research and management as a relative index of 

abundance (Orensanz et al. 2004; Parada et al. 2010; Zheng and Kruse 2006; ADFG 2019). The 

dataset was organized so that each survey station annual record included the CPUE for (total) 

snow crab, immature snow crab, mature female snow crab, and Pacific cod, as well as depth, 

near bottom temperature and surface temperature. 

In total the EBS bottom trawl survey samples nearly 216,000 nm2 (400,000 km2) of the 

shelf. Vessels typically tow for 30 minutes at a standard 3 knots (1.54 m/s), starting in the coastal 

domain in late May/early June and ending in August or September with the outer domain 

stations. The survey is designed so that established coordinate locations or stations are sampled 

annually; 349 standard stations are stratified across the shelf in a 20 by 20 nm grid aligned with 

latitude and longitude. Certain areas of high catch rates are fished in a denser grid by adding a 

station at the corner of the 20 x 20 nm grid cell but these stations were excluded from the 

analysis to maintain spatial and temporal consistency in the CPUE index. EBS survey data prior 

to 1982 was excluded due to a change in trawl gear specifications, which likely impacted catch 

efficacy. This resulted in over 12,913 data points over 37 years. 

A bathymetric surface layer was interpolated from the depth of survey stations using the 

geostatistical method kriging. Ordinary kriging defaults were accepted as the layer was for 

visualization purposes only. The default cell size is 1/250th of the lesser extent, height or width, 

in the output coordinate system linear reference – in this case Alaska Albers and meters. This 

resulted in a raster of cell size 2 x 2 nm (3763 m), which was then clipped to the survey extent 

within a 10 nm buffer. Depth contours at 50 and 100 m were derived from this raster layer as a 

second visual aid to delineate the shelf domains (coastal, middle, outer). The cold pool expands 

south from the Arctic along the wide and flat middle domain, between 50 and 100 m. Immature 
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snow crab are stenothermic and thrive within a narrow range of temperatures around 2℃ so the 

cold pool extent is critical in shaping snow crab population spatial structure (Orensanz et al. 

2004).  

One limitation of the EBS survey design is that smaller and more fragile animals (early 

settlement phase snow crab and youngest immature crab) can be missed in the larger net mesh or 

destroyed in the trawling/sampling process. Some survey bias also likely results from timing. 

The survey begins in May/June in the coastal domain and vessels fish towards the shelf edge and 

deeper stations in the outer domain to finish in August/September every year. Climate change 

may be affecting the timing of spring phytoplankton blooms which could affect the timing of 

snow crab migration and reproductive cycles, and the sex-age class spatial structures observed 

during summer months (Orensanz et al. 2004; Parada et al. 2010). Despite these timing and catch 

efficiency biases, the length and consistency of the EBS bottom trawl survey provides a reliable 

dataset that supports rigorous statistical analyses. A complete list of data variables and 

definitions from the survey data used in this analysis is provided in Table 1. 

Results of the spatiotemporal analyses and regression are highly dependent on the spatial 

neighborhood distance or kernel bandwidth. A preliminary test of GWR was performed to 

determine the optimal distance band that would minimize the AIC score. This was done to 

synchronize the distance band with the spatial neighborhood distance applied in the 

spatiotemporal analysis, to maintain scale for comparison. The Gaussian kernel bandwidth in the 

GWR was first tested at 25 nm, or just over the distance between two survey stations. The 

distance was incrementally increased by 20 nm to 45 and 65 nm (just over the distance between 

three stations). The AIC scores dipped to a minimum at 45 nm before increasing again, so 45 nm 

(85 km) was the adopted spatial neighborhood distance for the spatiotemporal analysis and 
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kernel bandwidth in the regression modeling. Snow crab CPUE in 2018 was elected as the 

dependent variable for the regression analysis as this was the most current year available. 

 

Table 1. EBS Spatiotemporal Data: 1982 – 2018 

 

Attribute Definition Unit, resolution Data description 

YEAR Year survey 

conducted 

Year, annual 1982 – 2018 surveys 

 

STATION Survey station ID Nominal ID, unique 349 standard shelf stations 

20 x 20 nm stratified grid 

 

LATITUDE, 

LONGITUDE 

Station location decimal degrees, 1e-05 

°N, °W 

Average geographic 

coordinate location per 

station (approximate centroid 

of grid cell) 

BOT_DEPTH Bottom depth 

 

meters, .1 m Weighted average depth for 

area swept 

BOT_TEMP Near bottom 

temperature 

degrees Celsius, .1 ℃ Weighted average 

temperature measured at 

maximum depth of trawl 

headrope 

 

SURF_TEMP Surface 

temperature 

 

degrees Celsius, .1 ℃ Temperature measured at 

surface 

CPUE Catch number per 

area swept 

number/nm2 

 

Total Snow Crab 

Immature Snow Crab 

Mature Female Snow Crab 

Pacific Cod 

 

3.1.1. Data Distribution and Exploration 

 CPUE data distributions were explored, and a preliminary local regression test was 

performed on snow crab CPUE to determine an appropriate spatial neighborhood or kernel 

bandwidth for analysis. The presence of many records of zero CPUE interspersed throughout the 

dataset by nature of the patchy distribution of snow crab resulted in a skewed data distribution. 

To prevent the loss of any data and maintain a continuous model of distribution, a log (x +1) 
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transformation was applied to all CPUE values to normalize the data and enable regression 

analysis. Twenty-nine stations were removed from the coastal domain which recorded zero 

CPUE for snow crab the entire period (discussed further in the results for time series cluster 

analysis).  

 Abundance data for snow crab remained slightly skewed following transformation 

(Appendix A). Linear regression requires normally distributed data for optimal performance. 

However, previous work of Windle et al. (2012) in their second GWR study showed that the 

regression results did not significantly change by transforming the abundance data from a non-

normal distribution. Considering these results using similar survey data from the NW Atlantic, 

the log (x +1) transformation sufficed for the exploratory intent of this study.    

3.2. Space Time Cube Exploration of Distribution 

A space time cube was created which organized the CPUE station data into bins for each 

year and station location, and time represented in the vertical t dimension so that 37 bins stacked 

represent a time series of CPUE at that location. The space time cube was input to Emerging Hot 

Spots, Local Clusters and Outliers (Anselin Local Moran’s), and Time Series Clusters. Each 

analysis is further explained below. The distance band discovered in the preliminary GWR 

exploration was used to define the spatial neighborhood for these analyses. The results of each 

analysis are written back to the space time cube .nc file in ArcGIS Pro. These spatiotemporal 

trends were then visualized using the Space Time Cube Explorer extension. 

The space time cube 3D visualization encompasses a large dataset of over 12,000 data 

points. Many data classification methods are available in ArcGIS Pro for binning and visualizing 

the range in CPUE values. Quantile classification is typically applied for linear datasets where 

equal number of data values are assigned to each class; this can cause distortion between 
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adjacent classes when the data is not distributed normally. In this case many data values would 

be spread into different classes although they were similar in value due to the skewed 

distribution towards zero or low CPUE values. The geometric interval classification method was 

chosen to accommodate the continuous but skewed CPUE data in this study. For a detailed 

description of the mathematics involved with the class scheme see Esri’s online help (Esri 2020).  

3.2.1. Hot Spots 

The space time cube created from defined locations was input to emerging hot spot 

analysis to identify hot and cold spots in snow crab CPUE for each age class (immature, mature 

female, and total), and for Pacific cod. The time step interval or temporal neighborhood was left 

as one year for this exploratory analysis, so that the temporal neighborhood consisted of three 

years (one year before and one year after the year of the target feature). The spatial neighborhood 

was set at 45 nm to coincide with the Gaussian kernel bandwidth used in the GWR analysis. 

The emerging hot spots analysis categorizes bins as hot or cold then assesses each 

location’s cumulative temporal series in a modified Mann Kendall test of snow crab and pacific 

cod CPUE. The combination of temporal trend and hot spot classification was used to further 

categorize each station location in the space time cube to form a 2D summary visualization of the 

hot and cold spot results. 

3.2.2. Local Clusters and Outliers 

 Clusters and outliers analysis identified significant spatiotemporal clustering of high or 

low CPUE values and outliers of high CPUE stations surrounded by low CPUE stations or low 

CPUE stations surrounded by high CPUE stations. This analysis was applied to each age class of 

snow crab (immature, mature female, and total CPUE) and Pacific cod, using the same spatial 

neighborhood distance as applied in the hot spot analysis and gaussian kernel bandwidth (45 
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nm). A local Moran’s I index value of correlation was calculated for each bin in the space time 

cube and a cluster category was assigned if the pattern was statistically significant with at least 

95% confidence (pseudo p-value < .05).  

3.2.3. Time Series Clusters 

 Time series cluster analysis was applied to identify station locations with similar profiles 

of CPUE for total snow crab and Pacific cod. Results from the default/initial pseudo-F 

permutations analyzing snow crab CPUE time series were explored by specifying the number of 

clusters to identify in the analysis, prior to running the test. Profile correlation in CPUE values 

was selected to determine similarity between station locations. 

3.3. Analysis of Relationships 

Time cube visualization and spatiotemporal analysis of CPUE data helped describe the 

distribution of snow crab and Pacific cod over the time series and provide context for regression 

analysis. Exploratory regression was first used to identify significant temporal correlation with 

historical conditions or abundance patterns. These lagged years of delayed impact on snow crab 

distribution in 2018 were included in the next regression test to compare a global scale ordinary 

least squares technique with and without lagged impact years included in the analysis as 

independent variables. The survey period between 2006 and 2018 was selected to represent an 

average snow crab life span which enabled the exploration of lagged temporal effects related to 

life history stages and age classes, such as mature female snow crab abundance at time of likely 

egg extrusion (maternal cohort connectivity), surface temperatures at time of pelagic larval phase 

of development, and bottom temperatures or predation during settlement and early instar or 

immature life history stages. 
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Model performance and accuracy was compared for GWR and OLS, interpreted through 

Akaike’s Information Criterion (AICc) score and r2 or explained variance. Model residuals were 

mapped and compared for spatial autocorrelation which would indicate misspecification, bias, 

and/or multicollinearity and lack of variation in model variables. For GWR, additional mapping 

of model parameters for each explanatory variable enabled visualizations of the strength and 

scale of relationships of snow crab abundance in space.  

3.3.1. Exploratory Regression 

The final twelve years of the time series were extracted for exploration of lagged impact. 

Each survey station was represented by a single point feature with attribute fields pertaining to 

annual CPUE records from 2006 to 2018. Exploratory regression was run individually for every 

independent variable (bottom temperature, surface temperature, immature snow crab CPUE, 

mature female snow crab CPUE, and Pacific cod CPUE) to determine which lagged years 

correlated most significantly with snow crab distribution in 2018. A full description of the 

variables and the lagged relationship with current snow crab distribution is provided in Table 2. 
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Table 2. Exploratory regression variables and lagged impact on 2018 snow crab CPUE 

 

Independent Variables Lagged Impact on Distribution 

Climate 

Pressure 

 

Surface Temperature Egg extrusion/hatching and pelagic larval 

stages 

 

Bottom Temperature Settlement phase to maturity 

 

Environmental 

Variable 

Depth Immature to mature phase migration 

(no temporal lag, does not vary in time) 

 

Age Class 

Connectivity 

Mature female snow 

crab CPUE 

Abundance of maternal cohort year class is 

reflected in progeny  

 

Immature snow crab 

CPUE 

Immature snow crab represent the surviving 

progeny of matrernal cohort 

 

Predation 

Pressure 

Pacific cod CPUE Vulnerable immature age classes, small females 

 

3.3.2. Global Regression 

After testing each lagged variable, the top three most significant lagged years between 

2006 and 2018 were selected as independent variables for the OLS regression using ArcGIS 

Pro’s generalized linear regression (GLR, equivalent to OLS). This global regression approach 

was also implemented using only 2018 variables (no lagged years as independent variables). The 

strength and significance of the relationship with snow crab distribution per independent variable 

was interpreted through the single, global variable coefficients. Model accuracy and performance 

with and without lagged variables was compared through r2 and AICc values. Spatial 

autocorrelation in model residuals and the regression statistical diagnostics described in Chapter 

2 were used to interpret results between global models, and between the global OLS and local 

GWR models. 
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3.3.3. Local Regression 

 As in the OLS regression, 2018 snow crab CPUE was input as the dependent variable in 

the GWR. Each station location was analyzed using a Gaussian (continuous) model type with a 

distance band of 85 km or 45 nm (just over the distance of 2 survey grid cells, each 20 nm). 

GWR local r2 results and residuals were mapped to assess model performance spatially. Local 

variable coefficients were mapped to visualize change across space in terms of relationship 

strength and consistency. Local model coefficients were divided by the local standard error to 

estimate a scaled magnitude of error, similar to a t-statistic (Esri 2020). The same regression 

modeling diagnostics described in Chapter 2 and interpreted for global OLS tests were 

interpreted for the results of the GWR. 
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Chapter 4 Results 

This chapter outlines the patterns identified in the spatiotemporal analysis and statistical 

diagnostics and of the regression analyses.  Local GWR modeling more accurately modeled 

snow crab distribution patterns observed in 2018 than the global OLS regression. Global 

regression techniques were effective in detecting temporal correlation and lagged impact from 

environmental variables but variance in the GWR local variable coefficients and spatiotemporal 

patterns of snow crab CPUE suggest spatial non-stationarity and heteroskedasticity across the 

EBS. Alternate linear transformations of the snow crab CPUE data should be explored to 

minimize the effect of the skewed abundance patterns. Alternately, GWR derivative results 

comparing local variable coefficients to local error identified transition zones in the relationships 

which could be used to break the study area into smaller, ecologically defined units for further 

spatiotemporal analysis and regression modeling.  

4.1. Space Time Cube and Snow Crab Distribution 

Raw CPUE data can be rendered in the space time cube to visualize overall distribution 

patterns. After running each of the spatiotemporal analyses (hot spots, clusters and outliers) the 

space time explorer can also render the cube according to the statistical results of each test. 

ArcGIS Pro 3D scenes enable the user to explore the cube in any rendering scheme in 360° and 

from adjustable heights and perspectives to view more detail. Snow crab CPUE in the EBS from 

1982 to 2018 is shown in the space time cube from multiple angles in Figures 5 and 6. 



 

43 

 

 
 

Figure 5. Space time cube views of snow crab CPUE due north (top) and south (bottom) 
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Figure 6. Space time cube views of snow crab CPUE due east (top) and west (bottom) 
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The highest concentration of snow crab was located north of the Pribilof Islands along the 

middle domain (50-100 m). Snow crab CPUE decreased from north to south along the middle 

domain and was lowest along the coastal domain (<50 m) and Bristol Bay region in the 

southeastern shelf (left foreground of bottom cube in Figure 6). The most recent survey showed 

that snow crab CPUE has increased in the northeastern region and continues to increase in the 

stations nearest the Bering Strait from west to east. These abundance gradients are inverse to 

bottom temperature gradients in the EBS. As snow crab abundance has increased along the 

northeastern front of the survey, the time cube view looking towards the east (top cube in Figure 

6) shows a clearer view of CPUE trends decreasing over time along the outer domain and shelf 

edge. 

Despite these visible spatial trends, aspatial temporal analysis of snow crab CPUE 

showed no significant global pattern of change in CPUE for any of the age class groups overall, 

or in Pacific cod (see Table 3). The Mann-Kendall statistic did show that immature snow crab 

numbers have increased slightly (1.2687 trend statistic) while the mature female age class has 

declined (-.3270 trend statistic). The total population of snow crab has increased slightly (trend 

statistic .5362), bolstered by the growth of the immature age class.  

 

 

Table 3. Mann-Kendall data trends for CPUE, 1982 - 2018 

 

CPUE Group Trend Direction Trend Statistic p-Value 

Total Crab Not Significant  0.5362 .5918 

Immature Crab Not Significant 1.2687 .2046 

Mature Female Crab Not Significant -.3270 .7437 

Pacific Cod Not Significant .1962 .8445 
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Since 1982 there has been a weakly positive trend in Pacific cod CPUE (.1962 trend 

statistic) but the trend statistic for snow crab is stronger and also positive. Despite management 

concerns of warming sea temperatures and the ecological implications of an influx of predatorial 

Pacific cod populations in the EBS, the temporal trends in CPUE do not suggest a shift in 

ecosystem structure between invertebrate and groundfish communities. Pacific cod and snow 

crab do not show an inverse abundance relationship that might indicate top-down predation 

control of the population at this scale of analysis. 

Temporal patterns of CPUE vary spatially along two axes, from north to south and from 

the coastal to outer domains. These gradients can be visualized through comparison of the 

banding patterns amongst a stratified subsample of time cube stacks spanning the shelf 

geographic regions (north, central, south) and domains (outer, middle, coastal). A group of stacks 

spanning the shelf per each northern, central, and southern survey region are shown in Figure 7. 

Each trio group includes one stack from the outer (>100 m), middle (50 to 100 m), and coastal 

domain (<50 m).  
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Figure 7. Stratified sample of survey station time cube stacks showing regional variation in snow 

crab CPUE, 1982 – 2018 
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 The regional time cube stacks featured in Figure 7 are displayed individually and labeled 

with station ID and survey year in Figure 8 to make further detailed temporal comparisons. In the 

northern region, snow crab CPUE increased across-shelf from west to east, or from the outer to 

middle domain. Abundance began increasing sequentially at these stations across the shelf 

starting in the west or outer domain in 1985. The middle station in this northern region 

subsample then began to increase in 1986, and the easternmost station lagged another year before 

beginning to increase in 1987. This indicates a progression towards colder waters nearer the 

Bering Strait and concentration of the population in the northern region of the survey. 

 Snow crab CPUE average over the time series increases from 488 in the south (station F-

07) to 80,542 in the north (station S-28), and 297,772 in the northeastern-most station closest the 

Bering Strait (V-25). By contrast, the two coastal locations (<50 m) recorded an average CPUE 

of 39 at the station closest Nunivak Island in the central region (N-01) and average CPUE of 5 in 

the southernmost coastal station (I-10). Temporal profiles are revisited in the time series cluster 

analysis results. 

The peak and sustained high CPUE records of snow crab on survey from the mid-1980s 

(bottom half of the stack) until the steep drop in 1998 (midway up the stacks) can be seen in the 

banding patterns at each location. It is also of note from these individual stack visualizations that 

the most variation in CPUE of snow crab occurs along the oceanographic fronts of the EBS: the 

shelf edge along the outer domain where the slope current flows and the northeastern survey 

region nearest the Bering Strait where Arctic currents approach from the north. Snow crab CPUE 

in each of these areas fluctuate on an annual basis while the middle domain experiences more 

gradual change in CPUE over time. This would seem another spatial indicator that bottom 

temperatures maintain influence over snow crab distribution on the EBS. 
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Figure 8. Individual time cube stacks from north to south and from outer to coastal domain 

showing range of temporal profiles of snow crab CPUE, 1982 to 2018 
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Space time cubes of immature and mature female snow crab distributions are shown in 

Figure 9. The CPUE patterns for these age classes reflect the same north-to-south gradient 

described in the general population but female snow crab are restricted to smaller clusters in the 

north flanking either side of St. Matthew Island. The most recent bins along the northwestern 

region of the survey in the outer domain have decreased in the latest time step in each age class. 

Pacific cod do not follow the same environmental gradients observed in snow crab 

distributions. Figure 10 shows the space time cube for Pacific cod CPUE. Stations with higher 

CPUE (>7500) of Pacific cod are clustered along the coastal domain from Bristol Bay to 

Nunivak Island, and additional clustering of high CPUE occurred around St. Matthew Island and 

northeast of the Pribilof Islands.  

 Regional trends in CPUE of Pacific cod are shown in Figure 11 for the same subsample 

of time cube stacks stratified across the survey region as described for snow crab CPUE. Pacific 

cod abundance was historically low in the north and nearly absent in the northeast (station V-25) 

but abundance has increased here recently in 2016 and 2018. Pacific cod abundance was highest 

throughout the central survey region, but the southeast stack in Bristol Bay (station I-10) 

recorded the highest average CPUE of Pacific cod over the study period (8863). Pacific cod 

CPUE in the outer domain has decreased over the time series, similar to snow crab patterns 

although this down trend was only visually apparent in the southern and northern survey region 

time stacks in this example for Pacific cod. 

This dataset and the time cubes encompass a large spatial and temporal range and the raw 

CPUE values can be difficult to decipher. Spatiotemporal analysis of the magnitude scale of 

change in hot spot Getis Ord Gi* and Anselin Local Moran’s I clusters and outliers tests can 

better summarize this CPUE data. 
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Figure 9. Space time cube views of immature snow crab (top) and mature female snow crab 

(bottom) CPUE, 1982 to 2018 
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Figure 10. Space time cube views of Pacific cod CPUE due north (top) and south (bottom)  
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Figure 11. Stratified sample of survey station time cube stacks showing regional variation in 

Pacific cod CPUE, 1982 – 2018 
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4.1.1. Hot and Cold Spots 

Survey stations in the northeastern region of the shelf showed significantly higher CPUE 

values recently, as seen in the cluster of hot spots (red bins) in the time cube in Figure 12 (top). 

Snow crab abundance at these 75 stations was significantly higher than the survey average, and 

CPUE patterns were sporadic or intermittently high throughout the series. No cold spots were 

detected at this scale of analysis applying a 45 nm spatial neighborhood. 

 

 
Figure 12. Space time cube 1982 - 2018 snow crab CPUE hot spots (top), with emerging hot spot 

trend summary (bottom)  
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Space time cubes showing CPUE hot spots for mature female and immature snow crab 

age classes are shown alongside their corresponding 2D emerging hot spot summary in Figure 

13. The immature age class results closely resemble the patterns described by the total 

population, but the cluster is reduced to 64 stations. Two clusters of sporadic hot spots can be 

seen in mature female snow crab CPUE that flank either side of St. Matthew, and new hot spots 

have emerged only recently in this age class on the eastern flank of these hot spot clusters, 

nearest the Bering Strait. These patterns reflect the spatial stratification described in previous 

research that arises from settlement and migration patterns and movement from east to west so 

that immature crab move to the colder domain and eventually migrate to the west. 

    
Figure 13. Snow crab CPUE hot spots for immature and mature female age classes, time cube 

(top) and corresponding 2D emerging hot spots temporal summary (bottom), 1982 – 2018 

 



 

56 

No cold spots were identified despite significant down-trends in CPUE captured by the 

Mann-Kendall temporal trend test. Reasons are likely related to the heteroskedasticity in snow 

crab abundance patterns, or the variation in CPUE variance between southern and northern 

regions. Snow crab CPUE in the north could reach in the millions while in the south the range 

was in the hundreds and thousands. So, despite significantly down-trending CPUE records in the 

south, the intensity of this decrease was too weak to be detected as a cold spot due to extremely 

high CPUE fluctuations in the northeastern hot spots. If exploring spatiotemporal patterns 

further, the spatial neighborhood should be expanded to enable detection of more subtle variation 

in the south. A second option would be to use the results of the GWR to explore spatial analysis 

units so that the study area was broken up into ecological units that reflect the relationships 

patterns described by local variable coefficients. These possibilities for further development are 

revisited in the local clusters and outliers analysis and GWR results, and in the discussion. 

Pacific cod CPUE hot spots were detected throughout the central region surrounding 

Nunivak Island but were mostly restricted to a parallel band along the southern coastal domain 

and Bristol Bay region in the southeast (see Figure 14). No significant temporal trends were 

detected in the emerging hot spot analysis of Pacific cod CPUE and there were no hot spots in 

the last time step (2018).  
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Figure 14. Space time cube showing Pacific cod CPUE hot spots, 1982 to 2018 

 

As described previously in reference to the lack of cold spots detected in snow crab 

CPUE over the time series, a lack of cold spots in Pacific cod CPUE may be accurate or the 

analysis may have failed to identify relatively weak negative trends, or an inappropriate spatial 

neighborhood may have been specified. The distance band (45 nm) in this study was developed 

to optimize analysis of the total snow crab age class CPUE patterns and demonstrate the method 

applied in GIS, but each group could be investigated independently to determine a more 

appropriate spatial neighborhood for the species or age class of interest. 

The spatial variation and timing of Pacific cod CPUE hot spots were visualized in the 

regional subsample of survey stations (Figure 15). There were no hot spots for snow crab CPUE 

in any of the southern region survey stations (C-04, F-07, I-10). One hot spot occurred near the 

start of the series in 1983, in the central region stack nearest St. Paul in the outer domain (H-23). 
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Hot spots then appear in 1990 in the central-middle stack (K-20), closely followed by hot spots 

in 1993 in the northern stations of the middle domain (S-28 and V-25) and the central-coastal 

station nearest Nunivak (N-01). The central-middle stack was identified as a hot spot again in 

2005, and hot spots occurred throughout the northern stacks about 2011. The two northeastern 

stations of the middle domain (S-28 and V-25) have both been classified as snow crab CPUE hot 

spots over the last few time steps (since 2016 and 2015). These trends are captured in the 

sporadic hot spots in the northeast survey region and describe the northward shift and contraction 

of the snow crab population towards colder temperatures. 

Pacific cod CPUE hot spots are shown for the sample of survey stations in Figure 16. 

There were no hot spots in any outer domain locations, or in the northern survey region. The first 

hot spot occurred in the central-coastal domain (N-01) in 1982, followed by a short bloom over 

two years from 1993 to 1994 in the southeastern Bristol Bay region (I-10) and central-middle 

stack (K-20). The next hot spot of Pacific cod CPUE appeared in 2001 in the southeastern Bristol 

Bay region again (I-10). A prolonged hot spot was identified between 2011 and 2016 spread 

amongst the coastal domain stations (N-01 and I-10) and the central-middle stack to a lesser 

extent (2014 to 2016). 
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Figure 15. Stratified sample of time cube stacks across the EBS shelf regions and domains 

showing hot spots of snow crab CPUE, 1982 - 2018 
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Figure 16. Stratified sample of time cube stacks across the EBS shelf regions and domains 

showing hot spots of Pacific cod CPUE, 1982 - 2018 
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The Mann-Kendall trend tests for each snow crab age class and Pacific cod CPUE over 

the time series revealed regions of up- and down-trending abundance. Figure 17 shows the 2D 

summary of temporal trends in the time cube at each station location for each age class of snow 

crab and Pacific cod. 

 

 
 

Figure 17. Temporal trends in CPUE for total snow crab (top left), immature snow crab (top 

right), mature female snow crab (bottom left), and Pacific cod (bottom right), 1982 to 2018 

 

Down trends were detected with 99% confidence in 150 of the 349 total survey stations 

for immature crab CPUE and in 105 of 349 stations for the total population of snow crab, yet 

overall, the global statistics reported previously in Table 3 were positive for both groups (.5362 

and p=.5918 for total, 1.2687 and p=.2046 for immature class). This correlation test does not 
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reflect the magnitude of the trend, which was slight because CPUE of snow crab has been 

historically and uniformly low in the southern region. The decreasing trend here was relatively 

insignificant compared to the global dataset trends that are more heavily influenced by the hot 

spots in the northeast. The down trends in snow crab CPUE in the south were too small in scale 

to be identified in the hot spot analysis as significantly cold. 

Pacific cod temporal trends were also spatially variable and disparate between the Mann-

Kendall trend test and hot spot analysis. The outer domain was classified entirely as down-

trending in Pacific cod CPUE despite a lack of cold spots and no significant global trend (trend 

statistic for Pacific cod was slightly positive, .1962 with p=.8445). A group of four stations along 

the northern fringe of the survey region was categorized as up-trending; these may represent the 

most recent trends of increased CPUE of Pacific cod in the north that is not intense enough to be 

identified as hot spots. Snow crab also showed up-trends in the north corresponding to hot spot 

locations which further supports the ecological hypothesis of northward species shift. 

4.1.2. Time Series Clusters 

Time series correlation revealed four spatial clusters of survey stations with similar 

temporal profiles of CPUE of snow crab in terms of the value and proportionate change over 

time. Cluster trend statistics are provided in Table 4 with corresponding clusters mapped in 

Figure 18. Cluster 4 showed a significant increase in snow crab CPUE over the time series 

(1.6872, p=.0916) and was located in the northeast region of the survey where hot spots were 

detected and the Mann-Kendall tests identified up-trends. This was the only significant trend 

detected in any of the time series cluster groups (tested up to 7 clusters). Clusters 2 and 3 were 

both decreasing but the trends were not significant. These stations were located to the east of 

Cluster 4 along the outer domain and south across the southern shelf. Twenty-nine stations 
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identified as Cluster 1 in Figure 18 recorded zero CPUE of snow crab every year of the time 

series. These stations along the easternmost coastal domain were removed from the dataset prior 

to regression analysis as described in the Methods section. The issue of data transformation and 

analysis units is revisited in the Discussion.  

 

Table 4. Time series cluster trend statistics for snow crab CPUE temporal profile correlation 

*Indicates statistically significant trend 

 

 

Cluster ID Direction Statistic p-Value Locations 

1 

2 

3 

4 

Not Significant 

Not Significant 

Not Significant 

Increasing* 

0.0000 

-1.5302 

-0.6932 

1.6872 

1.0000 

0.1260 

0.4882 

0.0916 

29 

125 

102 

93 

 

 
 

Figure 18. Time series clusters, four groups of survey stations with correlating temporal profiles 

of snow crab CPUE, 1982 to 2018 
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Figure 19. Average snow crab CPUE for each time series cluster group 

* Indicates significant trend 

 

Time series cluster analysis identified two clusters of similar temporal profiles in Pacific 

cod CPUE (see trend statistics in Table 5). The spatial clustering pattern reflects the trends seen 

in the hot spot analysis and Mann-Kendall temporal trends, with decreasing CPUE along the 

outer domain (Cluster 1 in Figure 18). Although Cluster 2 was increasing over the time period, 

these stations were not identified as hot spots due to the recent decline in Pacific cod CPUE 

which has brought the average for each cluster closer together nearest a historical low of 2,000 

CPUE in 2018. 

 

Table 5. Time series cluster trend statistics for Pacific cod CPUE temporal profile correlation  

* Indicates statistically significant trend 

 

Cluster ID Direction Statistic p-Value Locations 

1 Decreasing* -2.8120 0.0049 210 

2 Increasing* 2.5242 0.0116 139 
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Figure 20. Time series correlation in temporal profile for Pacific cod CPUE, 1982 to 2018 

 

 

 
Figure 21. Average Pacific cod CPUE for each time series cluster (*indicates significant trend) 

 

Pacific cod abundance peaked in Cluster 2 between 2012 and 2016, years identified in the 

coastal domain as hot spots. These time series clusters describe spatial heteroskedasticity in the 

data, or unequal change in the variables (CPUE) across space in both the snow crab and Pacific 

cod CPUE data. 
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4.1.3. Local Clusters and Outliers 

A large cluster of low CPUE of snow crab was identified by the Anselin local Moran’s I 

statistic for nearly all survey stations located south of St. Paul and Nunivak. Time cube views for 

all clusters and outliers results for age class of snow crab and Pacific cod are shown in Figure 22.  

 

 
 

 

Figure 22. Time cube views of CPUE clusters and outliers for snow crab (top left), immature 

snow crab (top right), mature female snow crab (bottom left), and Pacific cod, 1982 to 2018 

 

 

Low-low clusters (low CPUE stations near other low CPUE stations) made up 49% of the 

snow crab time cube bins overall (6,031 out of 12,913), and 50% of all survey station locations 

(175 of 349). Snow crab CPUE within these clusters of stations decreased over the time series, 
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but this was an insignificant trend overall for the reasons related to scale and magnitude of 

change as previously described in the hot spot and Mann-Kendall comparisons. The local 

clusters and outliers analysis for snow crab and Pacific cod is summarized in 2D in Figure 23. 

The southern trio of individual time cube stacks ranged from 0 to 18,817 CPUE. Variance in this 

region ranged from 360 to 535,936 and increased by several orders of magnitude in the northern 

region of the survey (up to 60,480,131,868 at station V-25) where CPUE fluctuated between 

25,204 and 673,285. This heteroscedasticity has been visualized in the hot spot analysis regional 

comparison in Figure 15 in which the timing, extent, and frequency of hot spots varies spatially 

across the shelf domains and from north to south. 

 

 
Figure 23. Summary of CPUE clusters and outliers for snow crab (left) and Pacific cod (right), 

1982 – 2018 

 

 

There were 175 survey stations in the southern region categorized as only low-low 

clusters for snow crab CPUE, and 168 as multiple type where the correlation was weaker and 

CPUE variance was higher. Correlation in CPUE of Pacific cod was highest along the outer 

domain in 119 stations categorized as low-low clusters and 219 as multiple type clusters. Low-

low clusters formed a transverse corridor across the shelf of correlated CPUE in stations that 
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stretched from the south side of St. Matthew in the east to the southern flank of Zemchug 

Canyon in the west. These low-low clusters divided the survey area into two clusters of multiple 

type category that follow the cross-shelf depth gradient as opposed to north-south distribution 

patterns seen in snow crab. These visual comparisons of CPUE trends and relationships are 

explored quantitatively in the regression analysis.  

4.2. Lagged Relationships 

The top five variables from past years in terms of lagged correlation with 2018 CPUE of 

snow crab since 2006 are listed in the vertical timeline in Table 6, based on the exploratory 

regression (OLS) testing all independent variables separately. The top three most significant 

years of impact per each independent variable (bottom and surface temperatures, immature and 

mature female age classes CPUE, and Pacific cod CPUE) are outlined in Table 6 and were 

included in the global OLS regression that follows. Positive correlation is presented to the right 

of the timeline, and negative correlation to the left.  

The highest significance in lagged mature female snow crab CPUE was identified for the 

2006, 2008, and 2017 classes (100% associations). This suggests connectivity between maternal 

age classes from 2006 to 2008 and progeny that have grown to and now constitute the total snow 

crab population in 2018. The more recent correlation in 2017 is likely temporal correlation, 

which was similarly identified in the immature age classes in 2017.  
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Table 6. Top three most significant lagged years (2006 and 2018) 

 

 

Lagged Independent Variables 

Snow Crab Population Group 

(approximate life history stage) 

2017 Mature Female Snow Crab CPUE Total Population 

(mature reproductive stage) 2017 Immature Snow Crab CPUE 

2016 Immature Snow Crab CPUE 2016 

Surface Temperature 

Immature Age Classes 

(growth and development stage) 

2015 Bottom Temperature 

2014 Pacific Cod CPUE 

2014 Bottom Temperature 

2013 Bottom Temperature 

2012 Pacific Cod CPUE 

2011 Surface Temperature 

2010 Surface Temperature 

2008 Mature Female Snow Crab CPUE 

Mature Female Age Classes 

(egg extrusion stage) 

2007 Immature Snow Crab CPUE 

2006 Mature Female Snow Crab CPUE 

2006 Pacific Cod CPUE 

The years 2013 likely represent the transition period of growth from early benthic stages 

to mature adults in 2018. Immature snow crab are highly stenothermic and typically aggregate in 

the middle domain where there are colder temperatures (1℃). These were the most significant 

impact years in the timeline for bottom temperature, further supporting evidence outlined in 

previous research into the life history cycle and ecological niche differences between snow crab 

age classes. 

Lagged results for surface temperature showed positive and negative associations and are 

more difficult to interpret but the significance of this variable is clustered between 2010 and 

2016. These years correspond to the warming phase described in the time series charts of average 

EBS sea temperatures at the beginning of this chapter. The exploratory regression also produced 

mixed results for lagged impact of predation but the top three most significant years in the 

timeline for the Pacific cod CPUE variable (2006, 2012 and 2014) expressed an inverse 
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correlation with snow crab CPUE. These years correspond to maternal age classes and the early 

(more vulnerable) benthic stages of snow crab development. 

Snow crab CPUE was most significantly correlated with bottom temperature in the 

lagged years that would have coincided with immature life history stages (2013 – 2016) .  

The shape of the cold pool (<2℃) in 2016 and 2017 reflects the spatial distribution of hot 

spots observed in snow crab CPUE in Figure 11 and the similarity in these years likely 

contributes to temporal correlation detected in immature and mature female age classes. There 

was no cold pool formation in 2018. Only seven stations along the northeastern edge of the 

survey reached a summer low of 1.6℃, which may impact the results of the regression analysis 

if bottom temperatures drive snow crab distribution and the gradient has broken down. EBS 

bottom temperatures were mapped for each year included in the lagged regression analysis, 2006 

to 2018, and figures are provided in the Appendix. 
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Figure 24. EBS bottom temperatures for the most significant lagged impact years for 2018 snow 

crab CPUE since 2006, with 2018 bottom temperature as a reference (bottom) 
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4.3. Global Relationship Trends 

The global regression model was first tested without including lagged independent 

variables identified in the exploratory regression. The OLS restricted to 2018 variables identified 

depth, bottom temperature, and surface temperature as significantly related to snow crab CPUE. 

The relationship with Pacific cod CPUE was positive and not significant, contrary to a presumed 

negative impact. Summary results for each of the independent variables in the OLS (excluding 

lag) are presented in Table 7 and show that bottom temperature has the strongest (negative) 

relationship.  

 

Table 7. Summary of OLS results model of 2018 snow crab CPUE, excluding lagged variables  

* Indicates a statistically significant relationship 

 

 

Variable Coefficient Std. Error t-Statistic p-Value VIF 

Intercept 5.5649 3.0341 1.8341 0.0676 - 

Depth -0.0658 0.0088 -7.4375 0.0000* 2.0837 

Bottom Temperature -2.6118 0.2627 -9.9405 0.0000* 1.6161 

Surface Temperature 1.8950 0.2685 7.0573 0.0000* 2.5039 

Pacific Cod CPUE 0.2084 0.1998 1.0430 0.2978 1.2226 

 

 OLS model diagnostics in Table 8 include results of the global regression test with and 

without including the lagged independent variables identified in the exploratory regression. 

Interestingly, the Koenker (BP) statistic was not significant when lagged variables were 

excluded, so the relationships between snow crab CPUE in 2018 and the independent variables 

were determined to be spatially consistent. The BP test statistic was significant when lagged 

independent variables were included, indicating inconsistent relationships. For this reason the 

robust probability and Wald Statistic values were relied upon to determine coefficient 

significance for the regression results including these lagged variables.  
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Table 8. OLS model diagnostics for 2018 snow crab CPUE, with and without lagged variables 
* Indicates a statistically significant statistic  

 

Statistic No Lag With Lag 

Number of Observations 308 248 

AICc 1654.8338 1108.1404 

Multiple r2 .4922 .7834 

F/Wald 73.4247 (F)* 2056.1117 (Wald)* 

Koenker (BP) 9.3174 39.4512* 

Jarque-Bera 0.8949 5.3024 

 

Jarque-Bera statistics were not significant in either regression (with or without lagged 

variables). Therefore, the model residuals were normally distributed or not clustered or 

significantly biased. Model residuals when excluding lagged variables were relatively small 

(range of 19 from -6 to 13) with some underpredicting in the middle domain where snow crab 

CPUE was higher. The range in residuals was further reduced including lagged variables (range 

of 9, from -3 to 6). Standardized residuals for each of the OLS regression models are shown in 

Figure 25. 

 
 

Figure 25. OLS standardized residuals for snow crab 2018 CPUE without (left) and with (right) 

lagged independent variables since 2006 
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As a measure of model performance including lag significantly reduced the AICc score 

(from 1655 to 1108) and increased model accuracy and r2 from .49 to .78 (% variance explained). 

Due to missing surface and bottom temperature records in the dataset the predicted results when 

including lagged variables were reduced to 248 survey stations; this has limited the efficacy of 

including lagged variables in the regression despite the improved model accuracy and 

performance despite the heavier dependency detected in temporal correlation with historical 

CPUE. An alternate source of surface and/or bottom temperatures would improve the results of 

the regression analysis. A summary of the OLS results including lagged year variables is 

provided in Table 9. 

Bottom temperature in 2018 was not significant according to OLS when including lagged 

variables. Surface temperatures in 2011 and 2016 were the only significant temperature variables 

identified. As previously stated, 2018 was an historically warm summer and no sea ice formed 

the prior winter. Typical temperature associations are likely confounded by this change but the 

lagged impact of the spatial and temporal correlation in previous years distributions of snow crab 

populations supersedes the bottom temperature association when including lagged variables. One 

other weakness in the model was a significant VIF for depth (> 7.5), indicating multicollinearity. 

As there was very little variation in the high bottom temperatures observed in 2018, these two 

variables likely expressed greater collinearity than average years.  

 

 

 

 

Table 9. Summary of OLS regression variable coefficients including top 3 lagged independent 

variables from exploratory regression 
* Indicates a statistically significant relationship  
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** Indicates redundant variable 

 

Variable Coefficient Robust SE Robust t Robust Pr VIF 

Intercept -2.6273 3.1735 -0.8279 0.4086 -------- 

Depth -0.0236 0.0104 -2.2616 0.024653* 7.7238** 

2018 Surface 

Temperature 

0.3714 0.1839 2.0198 0.044564* 3.5858 

2018 Pacific Cod 

CPUE 

-0.1129 0.1558 -0.7245 0.4695 1.5141 

2018 Bottom 

Temperature 

-0.0335 0.3167 -0.1058 0.9159 4.7847 

2017 Mature Female 

Snow Crab CPUE 

0.2074 0.0632 3.2798 0.001213* 2.9622 

2017 Immature Snow 

Crab CPUE 

0.2441 0.1025 2.3806 0.018094* 4.7612 

2016 Surface 

Temperature 

0.3517 0.1392 2.5276 0.012153* 3.1770 

2016 Immature Snow 

Crab CPUE 

0.1567 0.0688 2.2766 0.023725* 2.8841 

2015 Bottom 

Temperature 

-0.2630 0.1771 -1.4853 0.1388 8.9154** 

2014 Pacific Cod 

CPUE 

-0.0896 0.1460 -0.6133 0.5403 2.4020 

2014 Bottom 

Temperature 

0.2759 0.2411 1.1445 0.2536 8.8868** 

2013 Bottom 

Temperature 

-0.2672 0.1832 -1.4584 0.1461 4.1236 

2012 Pacific Cod 

CPUE 

-0.1690 0.1335 -1.2658 0.2069 1.8920 

2011 Surface 

Temperature 

0.3612 0.1967 1.8368 0.0675 6.2667 

2010 Surface 

Temperature 

-0.2321 0.1132 -2.0501 0.041492* 3.9222 

2008 Mature Female 

Snow Crab CPUE 

0.1157 0.0743 1.5568 0.1209 3.7557 

2007 Immature Snow 

Crab CPUE 

0.1702 0.0694 2.4512 0.014980* 3.1556 

2006 Pacific Cod 

CPUE 

0.3697 0.1385 2.6690 0.008150* 1.8548 

2006 Mature Female 

Snow Crab CPUE 

0.0581 0.0542 1.0726 0.2846 2.2235 
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4.4. Local Relationships 

The local form of regression in GWR including only 2018 variables (bottom and surface 

temperatures, depth, Pacific cod CPUE) performed better than the global form and resulted in an 

AICc score of 1410 compared to 1655 in the OLS (see Table 10). The amount of variance 

explained also increased from 49% to 83%. These model results are comparable to the OLS 

including lagged independent variables.  

 

Table 10. GWR model performance and diagnostics 

 

GWR Diagnostics 

r2 0.8328 

Adjusted r2 0.7913 

AICc 1409.7732 

Sigma-Squared 4.9775 

Sigma-Squared MLE 3.9922 

Effective Degrees of Freedom 247.0269 

 

 

Local r2 for the GWR is mapped in Figure 26. Model accuracy was poorest along the 

southern edge of the survey along the Alaska Peninsula as well as the western edge along the 

outer domain, south of Zemchug Canyon. GWR model accuracy was highest (local r2 = .94) in 

the central region and middle domain nearest Nunivak Island but averaged 78%, well above that 

of the OLS (49%). This area coincides with higher snow crab CPUE and Pacific cod CPUE 

values; locally weighted regression requires a certain amount of spatial variation in the 

independent variables, which may explain the pattern of poor performance in other areas.  
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Figure 26. GWR model accuracy (local r2) 

 

The poorest model performance was seen in Bristol Bay where snow crab CPUE was 

consistently low without variance. Depth and temperature variables are spatially uniform across 

the southeastern shelf region which may have contributed to the poor performance considering 

multicollinearity or redundancy was detected in the OLS model when including lagged variables 

(see Table 9, VIF>7.5 for depth and 2014, 2015 bottom temperatures).  

Figure 26 shows that the western shelf edge was more difficult to model using GWR 

compared to the middle domain and central region of the EBS, although the local r2 along the 

outer domain was still over 53%. Larger error residuals accompanied the locations with poorer 

performance along the shelf edge (see Figure 27). There was no significant autocorrelation in the 

model residuals but the map in Figure 27 (top) does show clustering in the Bristol Bay region. 

Snow crab CPUE was perhaps too consistently low or depth and temperature variables lacked 
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enough variation for the regression to accurately model CPUE in the southeastern shelf at this 

scale of analysis.  

 

 

 
 

Figure 27. GWR model residuals and standardized residuals showing spatial performance in 

modeling 2018 snow crab CPUE 
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The scaled magnitude of error, similar to a t-statistic, was calculated at each survey 

station and the results are presented alongside the local variable coefficients in Figures 28 and 

29. Areas of low coefficient to error ratios were identified as transition zones, where the variable 

was not effectively modeled in the GWR (Esri 2020). These areas are symbolized as yellow 

survey stations in Figures 28 and 29, and regions of higher coefficient to error ratios and 

consistent strength in the coefficient are highlighted in red for each variable. 

 

  

  
 

Figure 28. GWR local variable coefficients and scaled error for bottom temperature (top) and 

surface temperature (bottom) 
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Figure 29. GWR local variable coefficients and scaled error for depth (top) and Pacific cod 

CPUE (bottom) 

 

Figure 28 shows the strongest local coefficient for the bottom temperature variable (-4.4) 

occurred throughout the central region of the EBS, between Zemchug and Pribilof Canyons. The 

scaled magnitude of error outside this region decreases, indicating a shift in the relationship 

where other variables gain influence. Outside the central region, snow crab distribution 

correlated (negatively) with depth to the north of Zemchug Canyon according to the highest 

coefficient to error ratio. This matches the patterns identified in the time cube and spatiotemporal 

analysis which showed a gradient of increasing CPUE of snow crab in this area moving from 

west to east towards the Bering Strait and colder temperatures. By comparison snow crab CPUE 
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in the southern region of the EBS shelf appears to be dually influenced by a positive relationship 

with surface temperature and a negative relationship with Pacific cod CPUE (Figure 29). The 

transition zones delineated in the scaled magnitude of error maps represent possible boundaries 

for spatial units of analysis, discussed further in the last chapter.   

 GWR was also applied to the same lagged independent variables tested in OLS 

regression. The model diagnostics are listed in Table 11. Including lag decreased model 

performance and AIC increased from 1108 to 1339. Local r2 was high, 94%, or .84 adjusted for 

the addition of extra explanatory variables (this increases the numerator for the GWR including 

lag. The increased AIC score suggests that including lagged independent variables in a locally 

weighted regression may be less appropriate than this approach using a global form of 

regression. The local variable coefficient results are provided in Appendix B for the GWR with 

lag included, but further research should be done prior to developing this model and is discussed 

in the final chapter. 

 

Table 11. GWR model performance and diagnostics including lag 

 

GWR Diagnostics 

r2            0.9479 

Adjusted r2            0.8370 

AICc:        1339.4155 

Sigma-Squared:      3.1642 

Sigma-Squared MLE:     1.0192 

Effective Degrees of Freedom:  79.8827 
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Chapter 5 Discussion 

Snow crab abundance patterns in terms of CPUE and ecological relationships in the EBS were 

explored through spatiotemporal analyses and a multi-scale combination of global and local 

regression techniques. The results confirmed basic findings of recent research using comparable 

NMFS bottom trawl survey data and showed that snow crab were shifting north and east towards 

the source of the cold pool and the Bering Strait. The varied methods and analyses applied here 

demonstrated the versatility of GIS for performing biostatistical analysis and visualization of 

species distributions from standardized fisheries surveys. Large and complex datasets like the 

EBS trawl survey are easily and effectively modeled by the space time cube data structure.  

 GIS spatial analytics and visual explorations of snow crab distribution across space and 

time in relation to key environmental variables like sea temperature and depth support 

ecosystem-based fisheries management and ecological monitoring efforts. Global methods 

indicated spatial autocorrelation or clustering of similar values. Quantifying local relationships 

and visualizing how these variable coefficients varied in space helped to identify ecological 

regions and transition zones that could be applied towards development of an improved global 

regression model to support fisheries statistical analysis. This type of approach can supplement 

traditional stock assessments that rely on purely statistical analyses which do not account for the 

spatial and temporal correlation inherent in natural systems. As species distributions and by 

extension fisheries in the EBS shift, managers can benefit from GIS and exploratory techniques 

using the space time cube data structure and local regression analysis.  

 This chapter first summarizes the results, shortcomings, and solutions for improvement to 

the spatiotemporal analysis section of the study. Regression results and suggestions are discussed 
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similarly, followed by a discussion of opportunities for further development or model 

adaptations. 

5.1.  Spatiotemporal Explorations 

 The discrepancy in results observed between purely temporal (Mann-Kendall) and spatial 

(Getis Ord Gi* or Anselin Moran’s I) statistics of snow crab abundance patterns highlights the 

utility of performing this type of dual space time exploration to test each aspect of 

autocorrelation in ecological and fisheries survey datasets. No significant global trends were 

identified by the Mann Kendall temporal test but there was obvious regional spatial correlation in 

snow crab CPUE trends. By incorporating spatial autocorrelation and neighborhood context, the 

Getis Ord Gi* and Local (Anselin) Moran’s I tests were able to confirm significantly different 

CPUE trends between northern and southern survey regions over the study period. The snow 

crab population was shifting towards the Bering Strait according to hot spots in the northeast and 

a slow but consistent decline in the south. The difference between observed snow crab CPUE 

space time trends in northern and southern survey regions corroborated previous reports of a 

northern shift in benthic species distributions, based on similar variations of the EBS survey data 

(Orensanz et al. 2004; Parada et al. 2010; Stevenson and Lauth 2018). 

 Exploratory regression revealed temporal correlation in snow crab CPUE or age class 

connectivity between the total snow crab population and maternal and immature age classes as 

laid out by Ernst et al. (2012) and Emond et al. (2015). Snow crab CPUE exhibited a greater 

dependency on historical abundance and the timing between life history cycles than to external 

biological (Pacific cod) or environmental (bottom temperature) variables, historic or prevailing. 

Age classes showed spatial stratification similarly described by Orensanz et al. (2004), evident in 

the time cube visualizations of immature snow crab CPUE (clustered along the middle domain) 
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and mature female snow crab CPUE (aggregated to the north and west of the main 

population/immature age classes).  

 The survey dataset was extensive and covered a wide spatial, temporal, and attribute 

range. Its resulting space time cube contained 12,913 individual space time bins. A simpler view 

of individual time cube stacks was more effective for regional comparisons of snow crab CPUE 

(and Pacific cod CPUE). This stratified sampling approach to visualization also allowed space 

for labeling with information such as survey year which helped to pinpoint the timing of hot spot 

blooms and CPUE change. The spatial variation of temporal trends in snow crab CPUE was 

effectively summarized in the time series profile correlation analysis and helped to visually 

divide the survey region into zones exhibiting variable CPUE patterns, or spatial nonstationarity. 

The arrangement and trend direction of each of the time series cluster zones showed that snow 

crab CPUE varied differentially along each axis of the shelf: numbers decreased to the east and 

west of the middle domain and even more drastically from north to south.   

5.2. Regression Exploration 

  Following spatiotemporal analysis and visualization, progressive regression tests allowed 

for the exploration of snow crab historical (lagged) and contemporary relationships with 

ecological factors, just as Zulu et al. (2014) developed a spatiotemporal context throughout their 

analysis of infection spread in Malawi. GWR performed better than the OLS according to AIC 

and r2 values, just as Windle et al. (2010) showed in their studies of snow crab in the north 

Atlantic. The locally weighted regression became unstable when incorporating lagged 

independent variables but the technique should be studied further in concert with OLS 

development.  
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 Extremely low, near-zero CPUE records occurred in Bristol Bay while near-millions 

snow crab CPUE were recorded in the northeast survey region. These heteroskedastic abundance 

patterns in the snow crab population highlight the limitation of relying solely on a global OLS 

for regression modeling, which smoothed each of these trends to fit a single regression line; the 

result might not reflect the northern or southern distribution trends accurately (Fotheringham 

2002). Though the OLS model residuals were not clustered and there was no significant amount 

of bias or model misspecification, the model diagnostics in the JB statistic identified significantly 

inconsistent relationships, confirming the heteroskedastic attribute scale for snow crab CPUE. 

GWR and an exploration of the local variation in snow crab relationships could then help to 

pinpoint the independent variables which contribute more significantly to shaping the 

distribution and ecologically consistent zones where relationships were stable according to the t-

statistic in the local variable coefficients.  

 The GWR local variable coefficient map of bottom temperature (excluding lag) showed a 

large and consistent cluster of stations in the central survey region where the temperature 

relationship was strongest and most stable. Other explanatory variables gained influence at either 

end of the survey region: the snow crab CPUE relationship with depth was stronger and more 

consistent in the north, while surface temperatures and Pacific cod CPUE were more influential 

in the south. This stands to reason as Pacific cod CPUE increased in shallower areas near the 

main islands in the EBS and the coastal domain, while in the coldest northern regions of the 

survey range distribution varied more according to depth. 

 Results of the GWR and OLS comparison in this study are reflective of those discovered 

by Windle et. al (2010) in the north Atlantic, in that environmental and biological relationships 

varied locally, due to spatial dependence and spatial autocorrelation in the data. For these 
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ecological characteristics the locally weighted regression technique was better able to explain 

local variation in snow crab CPUE and generate a better-fit model. Windle et al. (2010) have 

taken the technique applied in this study one step further by applying a k-means cluster analysis 

of local variable coefficient t-values (coefficient to error ratio) to spatially distinguish consistent 

relationship zones. Multivariate clustering could be applied to the GWR local variable 

coefficient/error in a similar approach to divide the study area into a pre-defined number of 

clusters. Survey stations would be grouped according to likeness of CPUE values through an 

unsupervised ML algorithm, so the attribute or analysis field is standardized to account for the 

stronger influence of variables with large variances. To accomplish this standardization the 

global mean of the attribute is subtracted from each attribute value, then divided by the standard 

deviation for all values (Esri 2020). To investigate the north/south differential and where these 

patterns in CPUE diverge, it may be appropriate to begin with the designation of two clusters in a 

multivariate clustering analysis. GIS enables simple parameter adjustments so that additional 

numbers of clusters could be easily explored. Significantly different clusters would identify areas 

of significantly distribution patterns that would need to be managed according to separate 

standards and/or regulations. 

 Though bottom and surface sea temperature were identified as significant independent 

variable in the first OLS test, the OLS regression test when including lag showed that when 

considering both temporal and spatial correlation throughout snow crab life history, bottom 

temperature was not significant in any year. Temporal correlation and age class connectivity 

were more significant at this scale of analysis, which again emphasizes how useful it can be to 

explore both spatial and temporal autocorrelation, and to consider the dependent variable 

variation at local and global scales to compare results and gain a better understanding of the scale 
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of the attribute as well as the spatial and temporal range. Applying the GWR to each year of 

snow crab CPUE included in the exploratory regression similar to the work of Windle et al. 

(2012) could also show how the ecological relationships have changed in space and/or strength 

over time as climate conditions have shifted. 

5.3. Further Development 

The results of the spatiotemporal analysis showed that the snow crab population trends 

were divergent at either end of the EBS survey range. The study area should be divided into 

smaller spatial units of analysis that would more aptly represent this observed spatial structure in 

the snow crab population. Previous research has parsed EBS survey data spatially in various 

ways prior to analysis to achieve improved results of OLS and other global approaches to 

regression (Ciannelli et al. 2008; Kotwicki and Lauth 2013). OLS regression showed that 

temporal correlation and age class connectivity was the strongest determinant of snow crab 

CPUE in 2018. Rather than use the results of spatiotemporal analyses it may prove more 

representative to model the spatial analysis units after the spatial results of the temporal trend test 

(Mann-Kendall); however, the location of the negative temporal trends in CPUE coincide with 

the low-low CPUE cluster from the cluster and outlier analysis. This would divide the study area 

between northern and southern analysis units and likely increase the accuracy of the OLS model. 

Dividing the shelf between north and south according to where the statistically significant 

downward trends in snow crab CPUE or the low-low cluster of survey stations were identified 

would divide the shelf into northern and southern spatial analysis units at 167°W longitude (just 

west of Nunivak). 

Snow crab CPUE data remains skewed and requires a more effective linear 

transformation. The log (x + 1) transformation improved but did not fully normalize the data. 
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Other work applying GWR alongside a global scale regression by Windle et al. (2012) showed 

the significance of the relationships in their results did not vary whether using transformed or 

raw data for shrimp, snow crab and Pacific cod abundance variables. For this study the log (x + 

1) transformation was accepted with the acknowledgement that the significance of the results 

should be interpreted carefully and only in an exploratory nature. An alternative transformation 

such as box cox should be developed to increase the reliability of the global or local regression 

modeling results. 

 One crucial statistical parameter used in this study that deserves further exploration was 

the spatial neighborhood definition in the spatiotemporal analysis. The EBS survey dataset for 

the standardized 20x20nm stations was left intact and treated as a single spatial unit, and the 

neighborhood distance band remained fixed at 45 nm throughout the spatiotemporal analysis to 

match the gaussian kernel bandwidth applied in the GWR regression. However, the fixed 

neighborhood distance (45 nm) was optimized for the GWR, not necessarily the time cube. This 

parameter should be further tested towards representing the spatial and temporal autocorrelation 

inherent in the entire dataset or space time cube frame. The most common method using ArcGIS 

statistical analysis to determine an appropriate spatial neighborhood distance involves measuring 

the level of spatial autocorrelation at increasing distance band intervals using the Global Moran’s 

I statistic and selecting the distance at which spatial autocorrelation or the I-statistic peaks 

(Mitchell 2009; Steves 2017; Esri 2020). Preliminary exploration following the conclusion of 

these results indicated that peak z-scores in spatial autocorrelation (clustering) occurred at a 

greater neighborhood distance than found for the optimal Gaussian kernel (45 nm). The spatial 

neighborhood applied in the spatiotemporal analysis and the spatial bandwidth of the kernel 

applied in the GWR should each now be fine-tuned according to optimized AIC scores in the 
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case of GWR, and optimal autocorrelation in the case of spatiotemporal analysis. This will likely 

result in varied results for the hot spot analysis, which failed to identify any cold spots in the 

entire series using the 45 nm bandwidth for neighborhood context despite wide-ranging 

downward temporal trends in snow crab CPUE in the southern survey region. 

 Other adjustments to the spatiotemporal parameters should be tested, including the 

temporal neighborhood. A single year/annual time step was selected for this preliminary 

exploration of the space time cube and the EBS survey data. Expanding the temporal 

neighborhood by two or three survey years or aggregating the data into multi-year bins should be 

explored in tandem with adjustments to the spatial neighborhood and spatial analysis units. 

As in previous studies (Orensanz et al. 2004; Windle et al. 2009), regression results 

(excluding lagged independent variables) suggested that snow crab distribution was more 

dependent on bottom-up environmental pressures and climate-scale processes rather than top-

down predation by cod. However, climate change and ecological shifts could result in shifts in 

diet. Including CPUE catch records of other predatory fish such as yellowfin sole or Pacific 

halibut in the predation pressure index by aggregating these attributes into a single predation 

index might provide a better representation of this type of impact on snow crab. 

There are many biological and environmental variables that could be further explored 

using these methods. One key factor which could significantly impact all benthic species in the 

EBS is commercial bottom trawling. C. Steves (2015) showed that gear impact was increasing in 

certain areas on the shelf through a spatiotemporal analysis of trawl fishing effort in Alaska. This 

trend is likely to continue as groundfish and other trawled species increase in the EBS as a result 

of the rising temperatures. In addition to habitat damage, trawling can quickly deplete 

populations of non-target species. Vessels are required carry observers to measure and report 
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commercial bycatch of snow crab and other prohibited or managed quota species to state or 

federal regulatory agencies. Annual bycatch estimates could shed light on a missing model 

parameter.  

Oceanographic data to supplement or replace the bottom and surface temperature data 

from the EBS bottom trawl survey may improve regression model performance, particularly 

when including lag as many survey station bins were missing values at some point in the time 

series, and these locations could not be included in the results. Satellite and remote sensing 

datasets could provide a means of supplementing surface temperature data, which was significant 

in the relationship with snow crab distribution in the OLS with and without lag variables. Ocean 

color satellite imagery can also be analyzed to measure primary production as an independent 

variable (Brody, Lozier, and Dunne 2013). Care should be taken to assess the resolution, range, 

and overall quality or reliability of any data external to the fishery standardized survey.  

5.4. Conclusion 

 The goal of this project was to explore the spatiotemporal distribution of snow crab in the 

EBS using GIS to support marine fisheries and ecosystem-based management decisions. Spatial 

analytics incorporate autocorrelation and, in some cases, reveal trends masked by traditional 

statistical testing or global regression modeling. Spatiotemporal analysis also provides context to 

regression modeling to better understand the strength and significance of key ecological 

relationships. The space time cube was an effective data structure for modeling standardized 

surveys and enabled pattern mining and regression analyses supportive of traditional regression 

modeling and statistical assessments. Spatiotemporal analysis and regression modeling in GIS 

were effective and complimentary approaches to fisheries monitoring and ecosystem-based 

spatial management based on this study. The exploratory regression of lagged environmental 
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variables shows that temporal correlation of snow crab abundance can reveal age-class 

connections between maternal parent classes, immature classes, and total population in a 

timeline. Exploratory temporal correlation can also identify significant past events in the life 

history of snow crab such as climate pressure from sea temperature warming or predation from 

Pacific cod.  

 GIS is a versatile platform that can manage large and complex datasets typical of 

standardized biological surveys and should be explored further to support traditional single 

species stock assessments. With further development these techniques could be developed in an 

ecosystem-based approach towards fisheries management. Spatiotemporal autocorrelation can 

identify homogenous areas of the attribute of interest, and zones of consistent ecological 

relationships that could be applied towards determining or allocating quota.  
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Appendix A EBS Bottom Temperatures, 2006 to 2018 
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Appendix B GWR Local Variable Coefficients (including lag) 
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