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Abstract 

Flooding and its associated risks and challenges pose a persistent problem for the city of 

Houston, Texas. Worsened by climate change and increased urban growth, the growing flood 

severity appears to have far outpaced any current or past efforts towards managing floods. It is, 

therefore, imperative to understand how flooding can affect Houston residents, and who is the 

most at risk and the most vulnerable. While much has been written about flood risk in Houston, 

relatively little current research exists regarding flood vulnerability, which in this case can be 

described as the intersection of flood risk, shelter accessibility, and certain social justice factors. 

This study used principal component analysis (PCA) and dasymetric mapping to assess flood 

vulnerability in Harris County, which encompasses Houston. The goal of the project was to 

create a flood vulnerability index (FVI) that could be used to identify areas of high vulnerability. 

The results of the analysis identified several high-vulnerability areas around various watersheds 

in the county. Several of these areas have histories of flooding and slow recovery. These results 

indicated that the index could effectively identify areas of high vulnerability. The residents living 

in these areas would be likely to experience greater suffering during a flood than in other areas. 

The FVI could be used by disaster planners and managers to distribute resources and aid during a 

flood efficiently.
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Chapter 1  Introduction 

The issue of flooding in Houston, Texas is an ongoing problem that seems to be growing 

increasingly more severe. Each new tropical storm or hurricane brings major logistical 

challenges to response and mitigation. Certain neighborhoods and communities are 

disproportionally underserved in terms of emergency aid and access to evacuation shelters. 

While flood risk in Houston has been heavily researched, the issue of flood vulnerability and the 

social factors which may contribute to it have not received as much attention. Although an 

accurate assessment of areas prone to flooding is critical for flood preparation and response, it is 

also imperative to understand which of those flood-prone areas contain the highest 

concentrations of vulnerable populations. This study implemented dasymetric mapping and 

statistical analysis to create a flood vulnerability index (FVI) for Harris County, and develop a 

methodology that could be improved, updated, and re-applied over time. 

1.1. Project Overview 

Harris County encompasses the city of Houston, as well as several smaller surrounding 

towns (Figure 1). This area has historically been heavily affected by flooding, which has 

worsened drastically due to climate change and urbanization. The issue of flood mitigation and 

response remains a major logistical challenge to this city, in which many people’s homes are 

located on a floodplain, and are at risk of flooding during periods of heavy rainfall. Some of 

these people have disproportionally struggled to find shelter when they were forced to leave their 

homes, and received insufficient aid in the aftermath of major floods. Many people living in 

areas at risk of flooding have limited mobility and resources due to factors associated with their 

socioeconomic status. People with physical limitations would struggle to evacuate or find shelter. 
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Low-income workers would likely face considerable financial difficulties. Areas of Houston with 

these kinds of vulnerable populations are also prone to flooding, and have previously been 

heavily affected. The purposes of this study were to develop a methodology for identifying those 

areas and determine where people are going to have a greater need for shelter or aid in the event 

of a flood. 

 

Figure 1 Harris County, Texas. 

This study developed an FVI for Harris County, using spatial and statistical analysis, to 

identify flood-prone areas that could be in disproportionate need of aid or shelter during floods. 

High vulnerability tracts were identified by local neighborhood names, which were cross-

referenced against reports of aid and shelter disparities in Houston. The expected results of this 

analysis were that the index would identify socioeconomically marginalized areas with 

documented histories of flooding and flood damage. 
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The index ranked Harris County census tracts by a weighted average of three primary 

factors: flood risk, shelter accessibility, and social justice. Flood risk and shelter accessibility 

were assessed through a dasymetric analysis, in which tract-level populations were disaggregated 

and redistributed among smaller parcel features. This allowed for a more precise understanding 

of population distribution with reference to floodplains and evacuation shelters. Principal 

component analysis (PCA) was used to derive the social justice factor from various American 

Community Survey (ACS) population estimates. This method gave statistical significance to the 

input variables. After a sensitivity analysis of various weighting schemes, the analytic hierarchy 

process was used to compare the relative importance of the three factors and assign weights to 

each one. 

The final results of the index calculation were compared against Harris County 

neighborhood boundaries, to determine if high vulnerability tracts were located in previously 

affected areas. This analysis revealed that the highest-ranked tracts were located in 

neighborhoods that have historically suffered from flooding, most notably Alief (Greater 

Houston Flood Mitigation Consortium, 2018), Sharpstown (Hennes, 2019), and Greater 

Greenspoint (Rogers, 2016). Based on these results, the analysis was successful in identifying 

vulnerable areas of Harris County. 

Although the analysis produced an FVI that correctly identified vulnerable areas in 

Houston, there remains the potential for improvement to both the input data and the analysis 

itself.  For this reason, the two main stages of the analysis were developed into Python scripts, 

which allowed for the process to be easily repeated. The scripts modeled the analysis in a way 

that allowed for input workspaces and datasets to be easily changed. The landscape of flood 

vulnerability is constantly changing in Houston, as well as the data associated with it. New ACS 
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estimates are released every year, and the Federal Emergency Management Agency (FEMA) is 

currently re-drawing its floodplain maps for the Houston area (Despart, 2018). Python scripting 

allows for these updated data to be integrated into the process, producing a new and updated FVI 

layer. 

This thesis begins with a description of the status and recent history of flooding in 

Houston, as well as the state of flood management in the city in Chapter 2. Previous influential 

studies on the subjects of flood risk, statistical and spatial analysis, and social vulnerability to 

natural hazards are summarized, and their influences on this study are explained. A detailed 

description of the analysis methodology is provided in Chapter 3, and the results of that analysis 

are presented in Chapter 4. Finally, the implications of those results are further discussed, and 

future research steps are proposed in Chapter 5. 

1.2. Houston and Flooding 

The nature of flood risk in Houston can be seen through an assessment of its floodplain 

maps. FEMA has demarcated several floodplains or zones which define varying degrees of flood 

risk (FEMA, 2007). The 100-year floodplain indicates areas in which there is a 1% annual 

chance of flooding. This is considered to be a high-risk flood zone, referred to as a special flood 

hazard area (SFHA). Beyond the 100-year floodplain lies the 500-year floodplain, with an 

expected 0.02% yearly chance of flooding. Although the degree of risk is reduced in this area, 

there remains the potential for flooding. With the watersheds of four major bayous passing 

through the city, many of its residents live at risk of flooding.  

Floodwaters in the Houston area have not only exceeded FEMA’s SFHA boundaries, but 

have done so at an alarming rate over a relatively short period of time (Blackburn, 2017). The 

first of these storms was Tropical Storm Allison in 2001, which passed over the city twice, 
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bringing flood waters that reached well beyond the 500-year floodplain and inundated about 

74,000 Harris County homes. The next major flood occurred in 2012, during which the 100-year 

(1% annual chance) rainfall amount was exceeded within 24 hours. The 2015 Memorial Day 

floods brought 11 inches of rainfall in just 12 hours, which led to eight deaths and 581 water 

rescues. The 2016 Tax Day flood was even more severe, bringing 15 to 17 inches of rainfall in 

the same period, qualifying as a 500- to 1000-year flood event. The worst storm to ever impact 

the city was Hurricane Harvey in 2017, which brought unprecedented levels of rainfall and 

flooding over four days. Large areas of southeast Texas received over 40 inches of rain, with 

most of Harris County receiving at least 30 inches. Tropical Storm Imelda, which brought up to 

43 inches of rain to some parts of southeast Texas, also impacted Houston in 2019 (Mervosh, 

2019). 100- and 500-year floods have also occurred in Houston in recent decades, and life in this 

city is often punctuated with flooding from lesser storms and floods. However, the increasing 

frequency and severity of these events within the first two decades of the twentieth century is 

cause for concern. 

1.2.1. Factors Behind Major Floods 

 There are several possible explanations for this noticeable surge in rainfall and flooding. 

Some studies have pointed to climate change as a primary culprit. The Gulf of Mexico has 

become increasingly warmer during this period of unprecedented flooding, providing fuel for 

severe weather events bringing vast quantities of rainfall (Blackburn, 2018). This pattern seems 

likely to continue, as indicated by a study conducted by Li et al. (2019). They used predictive 

modeling to demonstrate that mean annual precipitation over the Houston area would remain 

constant or even slightly decrease over several decades. However, it would be characterized by 

lengthy dry spells followed by short, intense periods of rainfall which could bring flooding. 
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Climate change does not appear to be delivering higher overall quantities of rainfall to the city 

but instead is impacting how that rainfall is distributed over time. This pattern can be seen in the 

weather conditions for Houston in 2017, during which the city experienced a severe drought 

followed shortly by Hurricane Harvey and the worst flooding in its history. Storms considered 

“extreme” in the past may now become increasingly more commonplace for the Houston area. 

This means that not only will more people likely be affected by flooding, but also that people 

already living in flood-prone areas will likely have to endure more severe floods than before. It 

is, therefore, vital to recognize this critical issue, and work towards an improved understanding 

of the areas of Houston which are the most at-risk, as well as its most vulnerable people. 

 Ever-growing urbanization can also be attributed to the increase in flood severity for the 

Houston area. Urbanization has been well-documented as an exacerbator of flood risk. With 

increases in urban growth come associated increases in impermeable surfaces (Munoz et al., 

2017). Rainwater that is unable to penetrate the ground becomes runoff, which drains into local 

streams. The resulting increase in streamflow can cause water levels to rise quickly and overflow 

well into and beyond the 100-year floodplain. Through this increase in rainfall runoff, 

urbanization can be cited as a factor in increasing flood extents, putting people and their homes 

in danger of flooding, who previously would not have been considered at risk. Another 

connection between urban growth and severe rainfall has also been proposed by Zhang et al. 

(2018). A study comparing modeled hurricane simulations found that the rough urbanized 

ground surface of a large city such as Houston could result in greater amounts of drag on a 

storm, pulling it closer to the city, bringing greater quantities of rainfall. Urbanization could 

therefore potentially have a two-fold impact. It could be responsible for both heightened flood 

levels due to both increases in impermeable surfaces and wind drag, but also more frequent 
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occurrences of major floods as storms are drawn to the city. More research is likely required to 

determine which of urbanization or climate change is primarily responsible for the more frequent 

and severe flooding of the Houston area. Still, the current research does make it clear that this 

increase in flooding is a significant problem which will only get worse as both climate change 

and urbanization continue unabated. 

1.2.2. Flood Preparation and Response 

 Houston’s size and the number of people living in flood-prone areas present considerable 

challenges regrading flood preparation and evacuation. While a city-wide evacuation would be 

the ideal strategy for preserving human life, it is unfortunately not a practical or realistic option. 

Tufecki (1995) dismisses this potential evacuation strategy in favor of local evacuation options. 

He asserts that if an entire population of a city or county took to the few roads and highways 

heading away from a storm, they would put themselves at risk of creating massive traffic 

gridlock, exposing themselves to the elements, possibly including the storm itself. Tufecki’s 

argument was unfortunately validated in 2005 when Hurricane Rita crossed the Gulf of Mexico 

in the wake of Hurricane Katrina. The response to this approaching storm was a mass 

evacuation, in which approximately 3.7 million people attempted to evacuate the coastal region 

(Baker, 2018). This evacuation resulted in massive traffic jams on every highway in the area. 

Hyperthermia, dehydration, and a heat-related explosion on a bus claimed the lives of over 100 

evacuees, producing an evacuation death toll several times greater than that from the storm itself. 

There have been no large-scale evacuations from the Houston area since then. The city-wide 

strategy of sheltering in place has presented a whole new set of issues, however, made painfully 

apparent by Hurricane Harvey. Due to flooding from this storm, 30,000 people who sheltered in 

place rather than evacuate were forced to leave their homes (Haynie et al., 2018). This new 
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strategy resulted in a shelter crisis as the 230 open FEMA shelters across Texas were unable to 

accommodate the sudden influx of such large numbers of evacuees. Heavy rainfall could also 

impact the city with minimal warning. Tropical Storm Imelda made landfall within 4 hours of 

being classified as a tropical storm (Brown, 2019). Floods such as these would not allow enough 

time to effectively organize a mass evacuation effectively. While localizing evacuation is 

undoubtedly the best course of action for a large city such as Houston, the shelter shortage that 

occurred during Hurricane Harvey indicates that there is still more to be done regarding shelter 

and evacuation planning.  

 Socially vulnerable populations, who are more likely to suffer from medical problems or 

financial distress, are therefore more likely to require the assistance of an emergency shelter in 

the event of a storm. Low-income residents may not be able to afford the necessary supplies to 

adequately prepare for a flood. People with medical issues, especially those that affect mobility 

may not have access to a hospital or emergency care facility. Local evacuation shelters are 

critical for supporting disadvantaged people who are unable to seek help through traditional 

means. Karaye, Thompson, and Horney (2019) found that shelters in the Houston-Galveston area 

can only accommodate 36% of evacuees with housing and transportation needs. With such a 

significant disparity between shelter availability and potential evacuees,  in the event of future 

storms, it is necessary to understand where shelter deficits for socially vulnerable people are 

highest.  

1.2.3. Flood Management 

 Although the current response plan for major floods in Houston is in need of expansion 

and other improvements, the city is still making significant efforts towards mitigating floods and 

the damage they cause. The Harris County Flood Control District (HCFCD), which was founded 
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in 1937, is currently conducting a series of improvement projects on several of Houston’s major 

watersheds (Lynn, 2017). These projects include Project Brays, a multi-phase undertaking which 

has been ongoing since 1994. The project was about halfway complete when the Brays Bayou 

overflowed during the 2015 Memorial Day flood. This situation allowed Bass et al. (2017) to 

compare the areas which had been improved against the areas which had not yet been improved. 

They found that flooding in finished areas was confined to the 100-year floodplain, while 

flooding exceeded the 100-year floodplain in areas where construction had either not begun or 

had not yet been completed. In 2018, Harris County voters passed a $2.5 billion flood bond, and 

now approximately 80 more improvement projects which, as of November 2019, are in various 

stages ranging from waiting for funding to just beginning construction (Arraj, 2019). The county 

adopted a “worst first” criteria for expediting individual development projects primarily based on 

the severity of flood risk for each project area. The HCFCD intends to have begun all 80 projects 

by 2022. These projects should be major undertakings that will likely significantly improve 

numerous flood-prone areas of Houston. However, construction will not be a quick process, and 

many of these projects will not be complete for several years. Considering the frequency of 

flooding in the Houston area, it is likely that some of the areas that are slated for improvements 

will be impacted by flooding before those improvements are complete. While those projects are 

underway, it should be a priority to ensure that effective local evacuation strategies are in place. 

The identification of vulnerable areas along the various at-risk watersheds could be useful for 

those strategies. 

 In addition to the numerous watersheds in Harris County which are waiting for 

improvements, other watersheds experience regular flooding but do not qualify for federally 

funded improvement projects due to the low value of the structures located in vulnerable areas. 
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One such neighborhood that does not meet that qualification is Greater Greenspoint, which is a 

low-income area that has been heavily impacted by flooding five times in the twenty-first 

century (Elliott, 2017). This neighborhood is intersected by the Greens and Halls Bayous, which 

are the source of frequent and severe flooding. Although this area is clearly in dire need of 

substantial mitigation, only limited work has been approved for the Greens Bayou watershed 

(Blackburn and Bedient, 2018). Greenspoint serves as an example of why social justice factors 

are an important element to consider in flood management. Residents in this area are generally 

low-income, and cannot afford to move or rebuild after a flood (Miller and Goodman, 2019). 

With 5,700 homes located on floodplains, increased flood mitigation efforts in Greenspoint (as 

well as similar low-income neighborhoods) would significantly reduce the number of socially 

and economically vulnerable people in need of aid, and allow for better distribution of resources 

and responders. 

 With increasing urbanization, climate change, and the numerous improvement projects 

intended to curb the side effects of those two factors, Houston’s flood risk landscape will likely 

change significantly over time. The digital representation of that landscape will change as well, 

with new FEMA floodplain maps expected by 2023 (Despart, 2018). Several studies have 

demonstrated that FEMA’s 100- and 500-year floodplain maps drastically underestimate the 

potential extent of flooding in Houston. One-third of the homes damaged during the 2015 

Memorial Day floods were located outside the furthest extent of FEMA’s floodplain map (Hunn, 

Dempsey, and Zaveri, 2018). The Tax Day flood just over a year later would flood numerous 

homes, 55% of which were located outside the 500-year floodplain. Similarly, over half the 

homes damaged in Hurricane Harvey were located outside the 500-yer floodplain. An earlier 

study of flood insurance claims from 1978 to 2008 found that 47% of all claims were located 
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outside of the 100-year floodplain (Highfield, Norman, and Brody, 2013). While FEMA’s 

floodplain maps can substantially underestimate the extent of flooding, they do still indicate 

areas where flooding is most likely to occur, particularly in and around Houston’s numerous 

bayou watersheds. The analysis developed for this study utilized the 100-year floodplain for its 

flood hazard layer, although it would benefit from more accurate data. For this reason, the 

dasymetric analysis model was designed as a Python script, which could be re-applied with 

updated floodplain data. 

1.2.4. Social Justice and Flooding 

People with social and economic disadvantages can have greater vulnerability to flooding 

than those without those disadvantages. Vulnerability in the context of flooding refers to the 

potential harm an individual could suffer when their home or community is affected by a flood 

(Balica, Wright, and van der Meulen, 2012). Vulnerable people can be described as those who 

are at risk of flooding and are likely to struggle to prepare, respond to, and recover from a flood. 

Flooding has impacted much of Houston, and has affected both rich and poor neighborhoods 

(Castles, 2018). However, areas with high populations of residents with limited financial means, 

medical problems, and restricted mobility are likely to disproportionately suffer in the event of a 

flood. An assessment of flood vulnerability is therefore incomplete without a social justice 

element, as it can indicate to planners and responders where the greatest amounts of aid should 

be allocated in the event of a flood. 

Greater Greenspoint is not the only economically distressed Houston neighborhood to 

suffer from regular flooding. Still, it provides a stark example of the struggles faced by residents 

living in such an area. Numerous large, aging apartment buildings located near the bank of 

Greens Bayou flood regularly, and the impoverished residents living within them have few 
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options regarding preparation and evacuation (Rogers, 2016). With high costs of living 

elsewhere in the city, many living in these buildings have no choice other than to live through the 

flooding. To simply raze the damaged structures and mandate that all residents move to less 

flood-prone areas would fail to address the underlying socioeconomic problems which led to 

their settling in that neighborhood in the first place. Displaced residents could be unable to find 

similarly located homes, and many of those without personal vehicles may lose access to their 

place of employment if they were forced to move to a different part of the city. Until a solution 

to this cycle of poverty and flood risk is devised, the most realistic current action is to identify 

areas of vulnerability, so that they can receive adequate aid in the event of a flood. This study 

was designed to identify areas such as Greenspoint, where many residents are at risk of flooding, 

but lack the means to effectively evacuate and recover from it. 

 Social justice factors and their relation to flood risk and vulnerability have been 

previously examined for the Houston area, although there is not a substantial body of research on 

the subject. Peacock et al. (2012) performed an assessment of social justice factors in nearby 

Galveston and presented an analysis to inform disaster response. Their analysis used many 

similar criteria as this study’s FVI analysis. An environmental justice index was also 

incorporated into Harris County’s plan for implementing the HCFCD’s improvement projects 

(Arraj, 2019). It should, however, be noted that some Harris County officials did oppose its 

incorporation into the criteria for determining the schedule of projects. Increased research into 

the subject of flood vulnerability and social justice as it relates to natural hazards could allow for 

methods to be refined and for the field of study to become more widely accepted. 
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Chapter 2 Literature Review 

This project is a contribution to the growing body of knowledge regarding Houston’s 

struggle with flooding and its work towards effective mitigation. This subject encompasses 

various topics of study, including flood risk, shelter accessibility, and social justice analysis. This 

thesis presents a methodology for determining vulnerability as the intersection of those three 

topics. There is a substantial quantity of literature surrounding these subjects, and a sample of 

this literature is described below. Much has been written on flood risk and shelter accessibility in 

the Houston area. Also, some studies have discussed the potential for correlation between flood 

risk and socioeconomic factors. However, there are relatively few works describing analyses that 

examine social vulnerability as an exacerbating factor for people living in at-risk areas for 

flooding. This literature review presents various peer-reviewed reports on subjects directly 

related to this project. Those subjects include flood risk delineation, dasymetric mapping, shelter 

accessibility, social justice factors and their relation to flood risk, flood vulnerability analysis, 

and the statistical challenges when conducting such an investigation. These topics are addressed 

in this chapter, and inform the methods and concepts which were applied in this study. This 

project heavily relied on existing flood risk, land use, and demographic data for its flood 

vulnerability analysis. The studies summarized in this chapter provide examples of the effective 

use of similar datasets, as well as their capabilities and limitations. 

2.1. Mapping Flood Risk 

 There are a multitude of different strategies for demarcating flood risk using a variety of 

spatial analysis methods and tools. Several of these methodologies have been applied to the 

Houston area. Generally, these analyses use predictive modeling to determine future flood extent 

based on the interaction of several input datasets. The current authoritative source for flood risk 
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extent in the U.S. is the Federal Emergency Management Agency’s (FEMA) National Flood 

Hazard Layer (NFHL). This layer demarcates the floodplains using a hydrologic model. 

Blessing, Sebastian, and Brody (2017) describe how that model can produce inaccurate results. 

There is potential for measurement error due to limited hydrometeorological observations, as 

well as inaccuracies due to changing land use over time. Houston continues to grow, and with 

that growth comes increases in impermeable surfaces and rain runoff, which leads to a greater 

risk of flooding (Muñoz et al., 2017). After a series of major floods in the early twenty-first 

century, FEMA’s floodplain maps for Houston began to come under scrutiny. They were 

demonstrated to significantly underestimate the extent of flood risk for the city, as numerous 

flood insurance claims over several years have been made for properties well outside of the 100-

year floodplain.   

 Although FEMA’s dataset continues to be considered a useful indicator of potential flood 

risk, analytical methods have been proposed, which could potentially improve their flood risk 

maps. One such method is described by Bass and Bedient (2018), whose study combined several 

predictive models to account for flooding resulting from both storm surge and rainfall. They took 

into account the potential to be impacted by flooding from both sources due to the study area’s 

location in southeast Houston on the Texas Coast. Another study by Gori et al. (2017) addresses 

the issue of changing land use by incorporating land use projections into their process for flood 

risk delineation. FEMA and Harris County are redrawing the floodplain maps for the Houston 

area using LiDAR and predictive flood modeling (Despart, 2018). Several floods, including 

Hurricane Harvey, exposed the current maps, which were completed in 2001, as severely 

underestimating potential flood extent in the Houston area. The goal of this project, which is 

expected to be completed by 2023, is to gain a better understanding of flood risk extent in Harris 
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County. Efforts to develop a comprehensive system for identifying flood risk are ongoing, and 

flood risk data for Houston will continue to change over time with improvements in technology 

and analytical methods as well as changes to the landscape itself. 

2.2. Dasymetric Mapping 

 Dasymetric mapping is the redistribution of spatial data to smaller, more specific spatial 

units for more precise analysis (Petrov, 2011). It has been utilized for mapping flood risk and 

vulnerability. Maantay and Maroko (2009) used a methodology referred to as the Cadastral-

based Expert Dasymetric System (CEDS) for mapping flood vulnerability in New York City. 

Through this method, they disaggregated tract-level census data into smaller residential units. 

The results of the study indicated a substantial difference in calculated at-risk populations, with 

the dasymetric method indicating a much lower population. Maantay, Moroko, and Herrmann 

(2013) further describe this system in another article. This method of disaggregation utilizes tax 

parcel data to gain a more precise understanding of housing density within a given census tract. 

In urban areas where population density can vary significantly from parcel to parcel depending 

on structure type, this methodology allows for the most accurate possible estimation of that 

distribution. A simpler method, referred to as the three-class method, was utilized by Giordano 

and Cheever (2010) to identify communities at risk of hazardous waste exposure. This method 

identifies a habitable zone, and then divides that zone into three new land use classes. The three 

classes defined for their study were nonurban, low-density residential, and high-density 

residential. Populations were then redistributed across those three classes.  

2.3. Shelter Accessibility 

The availability of local shelter options for evacuees is critical for effective flood 

response. Tufekci (1995) suggests that establishing local shelter options is preferable to mass 
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inland evacuation in advance of an approaching hurricane. He asserts that if an entire population 

of a city or county took to the few roads or highways heading away from the storm, they would 

run the risk of creating a massive traffic jam, exposing them to the elements for a long period of 

time, and even the storm itself if it were to change direction. The failed evacuation from 

Hurricane Rita confirmed these concerns a decade later (Baker, 2018). It is therefore necessary 

for any assessment of flood vulnerability to take local shelter accessibility into consideration. 

As with flood risk, there are several methods for determining shelter accessibility, which 

range in complexity and number of inputs. An example of one of the more complex methods is 

described in a paper by Curtis (2016), whose study utilized a network analysis for determining 

the closest local shelters to certain areas of the Dallas-Fort Worth Metroplex. Roadway data was 

utilized to determine routes and travel times to shelters, and bridge data was used to identify 

locations of potential impedances in the case of an earthquake. Travel times were compared 

against each other to determine degrees of shelter accessibility. This method is among some of 

the more complex methods for quantifying hurricane shelter accessibility, although it could also 

be assessed by simply identifying shelter service areas, which consist of the area within a defined 

radius from the shelter location (Chen et al., 2017). This service area-based methodology, which 

could be performed through a buffer analysis, was applied for this study. 

The association of social justice factors with shelter accessibility has also been explored 

through spatial analysis. Karaye, Thompson, and Horney (2019) used spatial statistical methods 

to determine shelter accessibility for people with housing and transportation needs. The study 

found that Harris County, which contains Houston, had the highest shelter deficit of Texas 

coastal counties. There simply are not enough established shelters in Houston to accommodate 

the massive numbers of evacuees from a severe flood. The results of this analysis were made 
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apparent during the shelter crisis following Hurricane Harvey (Haynie et al., 2018). The lack of 

accessible shelter in Houston is factored into this study through the examination of proximal 

shelters to at-risk areas. This element of the analysis identifies areas which are especially 

deprived of adequate shelter options. 

2.4. Social Justice and Flood Risk 

 Natural disasters such as major floods can expose societal inequalities in the areas they 

impact. Certain groups of people can struggle to evacuate or recover from a flood more than 

others. These people are typically economically disadvantaged and/or socially marginalized. 

There is a substantial body of existing research on the subject of social justice and its relation to 

natural hazard risk, both in terms of describing that relationship as well as quantifying it through 

multiple regression analysis. This section provides a sample of those works and their 

implications for this study. 

2.4.1. Previous Studies in Houston 

Prior studies have used spatial analysis to examine the spatial correlation between flood 

risk and social justice factors. Castles (2018) performed such a study for the Houston area, in 

which she utilized a variety of ACS data ranging from economic status to race to determine 

whether or not socially vulnerable people in Houston were concentrated in high-risk flood zones. 

Interestingly, although her findings indicated a concentration of marginalized populations in the 

inner-city areas, they did not show a direct correlation between flood risk and social 

vulnerability. Instead, the results indicated an indirect correlation. Another study conducted by 

Maldonado et al. (2014) focused on the distribution of Hispanic immigrants. They found that 

there is a higher likelihood for Hispanic immigrants to live on a 100-year floodplain than non-

Hispanic whites. These two reports seem to contradict each other, although that is likely due to 
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the more comprehensive nature of Castles’ analysis. Another study conducted by Chakraborty, 

Grineski, and Collins (2019) found that people with disabilities were disproportionally exposed 

to flooding during Hurricane Harvey. The results of these studies suggest that while some 

socially vulnerable populations may be more highly concentrated in flood-prone areas, others 

may not. Therefore, it cannot be assumed that all socially vulnerable people in Houston are at 

greater risk of flood exposure without further research regarding each specific population. 

Houston is intersected by many bayou floodplains, which cover much of Harris County (Figure 

2). The purpose of this study, then, is to identify locations where high concentrations of socially 

vulnerable populations and flood risk areas intersect, indicating areas that would be at greatest 

need during a major flood. 

 

Figure 2 High-risk flood zones in Harris County, Texas. 



 

   19 

2.4.2. Social Vulnerability Index and Multicollinearity 

Multicollinearity is a potential problem for the social vulnerability index and other 

multiple regression models (Graham, 2003). With numerous input variables, there is the 

possibility for correlation between two or more variables, despite them being independent of 

each other. This could affect the statistical significance of the input variables, casting doubt on 

the analytical process. Multicollinearity among a group of variables can be assessed by 

examining the correlation matrix for all of the variables. In a matrix where numerous variables 

are highly correlated with each other, there will likely be multicollinearity within the dataset. 

Multicollinearity can be quantified for individual variables, by calculating the percent increase in 

variance caused by one variable’s correlation with the other variables. This calculation produces 

the variance inflation factor (VIF) for each variable. Variables with a high VIF can be indicators 

of high multicollinearity in a linear regression model. 

Cutter, Boruff, and Shirley (2003) describe a methodology for creating a social 

vulnerability index which has been heavily referenced by numerous subsequent studies. Their 

analysis used a Principal Component Analysis (PCA) to mitigate multicollinearity and reduce 

variance inflation. A PCA creates new, composite variables, or components from the input 

variables. In order, each component explains an increasingly smaller percentage of the variance 

within the new component dataset. Cutter, Boruff and Shirley (2003) applied this analysis to 32 

independent variables used for their social vulnerability index. These variables consisted of 

several types of social justice factors, including personal wealth, gender, age, and ethnicity. 

(Table 1). PCA created 32 new components; each one was a composite score of the 32 input 

variables. From these components, 11 were selected for inclusion in the vulnerability index. 

These final components were selected through the application of the Kaiser Criterion, in which 

the eigenvalues of the components’ correlation matrix were calculated, and components with 
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eigenvalues greater than 1.0 were selected for inclusion in the final index (Guillard-Gonçalves et 

al., 2015). This eliminated components that did not explain an acceptable amount of variance. A 

Varimax rotation was then applied to the values in each component, which maximized the 

number of very high and very low values. The variable with the highest positive or negative 

correlation to a component was determined to be the dominant variable for that component. 

Table 1 Principal components for a social vulnerability index. 

 

Source: Cutter, Boruff, and Shirley (2003) 

 The social vulnerability element of this thesis relies on the methods described by Cutter, 

Boruff, and Shirley (2003). Their social vulnerability index has been repeatedly tested and 

applied in in areas of the United States (Sherrieb, Norris, and Galea, 2010), Canada (Oulahen et 

al, 2015), Brazil (Roncancio and Nardocci, 2016), and Portugal (Guillard-Gonçalves et al., 

2015). Most importantly, their use of PCA to calculate index scores has been demonstrated to be 

an effective method for mitigating the effects of multicollinearity, which can be expected in such 
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an analysis. The flood vulnerability index created through this study utilizes similar inputs for 

identifying at-risk populations, several of which are highly correlated. The use of a PCA reduces 

the dimensionality of the input data and maximizes the variance among the components. 

Flanagan et al. (2011) performed a study in which they used a multiple regression 

analysis to assess social vulnerability. They created a social vulnerability index for emergency 

management use in New Orleans, using variables and methods derived from Cutter, Boruff, and 

Shirley (2003). They assessed vulnerability at the tract level using fifteen census variables. In 

addition to creating the index, they demonstrated its value through comparison with data related 

to the impact of flooding from Hurricane Katrina. They examined mail delivery rates four years 

after the hurricane as an indicator of recovery in neighborhoods damaged from flooding. They 

found that mail delivery rates returned to or exceeded pre-Katrina rates in areas with the least 

social vulnerability, and were less than twenty-five percent in the Lower Ninth Ward, which 

contained tracts in the highest rank of the social vulnerability index. This comparison 

demonstrates how a social vulnerability index can be used to identify areas that are most likely to 

struggle to recover from a catastrophe such as a flood. The authors do, however, provide the 

caveat that such an index is part of a larger system including natural hazards, vulnerable 

infrastructure, and community resources. In order to gain a complete picture of vulnerability, 

those additional factors must also be assessed. 

2.5. Flood Vulnerability Analysis and Criteria 

Flood hazard data can be incorporated into a social vulnerability index to create an FVI. 

Although relatively little work has been done regarding flood vulnerability analysis in the 

Houston area, other such studies have been performed in other flood-prone parts of the world. 

Burton and Christopher (2008) developed a flood vulnerability index for the Sacramento-San 
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Joaquin Area in California. They examined their index in the context of potential flood risk due 

to levee failures. They found that sizeable clusters of vulnerable populations lived within the 

flood risk zone they developed using FEMA’s Hazus model. These findings indicated that the 

areas containing those clusters would likely struggle to recover and require substantial aid in the 

event of a flood. The inclusion of flood risk data with the social vulnerability index afforded an 

additional level of specificity in assessing vulnerability to potential floods. 

 Flood vulnerability indices can be used for a variety of different purposes relating to 

flood preparation and response. Balica, Wright, and van der Meulen (2012), for example, 

demonstrated how their flood vulnerability analysis could be used to assess current vulnerability 

conditions for a range of cities, and to predict future flood mitigation needs as climate change 

continues to alter the hydrologic landscape of coastal cities. “Zachos et al. (2016), in their 

vulnerability analysis, generated an index that can be used for spontaneous disaster planning by 

incorporating predictive flood models as well as other ecological, economic, and social factors. 

An FVI can be used in a generalized context to assess vulnerability for an entire region, or it can 

be used to identify specific areas of vulnerability within the actual or estimated extent of a flood.  

The criteria for an FVI can vary, depending on the physical characteristics of the study 

area and the residents living within it. Remo, Pinter, and Mahgoub (2016) developed an FVI at 

different spatial granularities for Illinois. In addition to concluding that vulnerability is best 

assessed at the block level (the smallest scale for census data), they also found that vulnerability 

has different characteristics in rural as opposed to urban areas. Their findings indicated that 

vulnerability in rural areas was more driven by losses due to flooding, while social vulnerability 

was the main driver in urban areas. When urban areas are assessed for flood vulnerability, the 

unique socioeconomic characteristics of people and communities within them must also be 
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considered. Balica, Wright, and van der Meulen (2012) describe social justice criteria for an FVI 

as factors that affect people’s everyday lives, depriving them of mobility or the ability to recover, 

such as disability, age, or poverty. These can be relevant indicators of vulnerability in most urban 

areas, although there may be other factors that may be more appropriate when considered in 

certain areas rather than others. Oulahen et al. (2013) argue that flood vulnerability indices 

would be more effective if they were developed with the input of local policy workers. When 

developing such an index, it is critical to have an understanding of the nature of social 

vulnerability in the local population, and the specific challenges they may face. Indices such as 

that developed by Zachos et al. (2016) can be re-created in different areas with similar social and 

geographical makeup. 

Although many social justice variables can be considered relevant to flood vulnerability, 

they should not all necessarily be factored into the FVI calculation. This can potentially 

overinflate the value of certain indicators. Balica and Wright (2011) describe a revision of a 

model they had previously developed four years prior. In their assessment of their model, they 

found that many of the variables they used were either redundant or unrelated to vulnerability. 

Through a process in which they factored out numerous highly correlated variables, they reduced 

the number of vulnerability indicators from 71 to 28. They emphasize the importance of using 

only the minimum number of necessary indicators. Reducing the number of variables not only 

improved the quality of the index data, but allowed for the index to be more flexible and easier to 

understand for those who wish to apply the analysis to a new study area. 

2.6. ACS Data Accuracy 

 Population estimates compiled through programs such as the ACS can be used for a 

variety of purposes, including social and environmental justice analyses. The spatial component 
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of census data allows for it to be compared to and associated with other spatial datasets, so that 

the relationship between demographics, socioeconomics, and other possible correlating factors 

can be examined. However, not all population estimates can be assumed to represent their 

associated areas accurately. Each population within an ACS table also has an associated margin 

of error. These margins of error can vary considerably, depending on the reliability of the survey 

results and the size of the sampled population (Folch et al., 2016). Under a single count field 

within an ACS table, some counts may be analytically viable, and others may not. This inherent 

uncertainty in ACS estimates must be addressed in any analysis that uses them. 

 Spielman, Folch, and Nagle (2014) propose a method for mitigating the uncertainty in 

ACS data, which would be useful for the analysis described in this proposal. Potential 

inaccuracies in ACS estimates can be mitigated through aggregation. Although inaccurate 

estimates may be fed into an investigation, they can be negated to a degree by other more 

accurate estimates. This aggregation can be performed either by combining estimates across 

different spatial features, such as multiple adjacent tracts, or by combining multiple estimates for 

a specific geographic area. Combining multiple different ACS attributes increases sample sizes 

and mitigates potential error within certain variables. For multiple regression analyses such as 

the FVI, which considers several different social justice populations, attribute aggregation is a 

useful method for reducing uncertainty in the independent social justice variables. 

2.7. Analytic Hierarchy Process 

In multi-criteria analyses such as in this study, it is necessary to assign certain weights to 

the input criteria in order to return a result that reflects the anticipated effect of each criterion. 

The allocation involves a high degree of subjectivity, even if the relative importance of each 

criterion is known. A commonly used method for assigning weights is through AHP (Saaty, 
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1990). It derives weights through a comparison matrix, in which all criteria are compared against 

each other. The weights are calculated from the normalized principal eigenvector values of the 

matrix. AHP is a widely used methodology for analytical models for a variety of industries, 

including marketing, health care, energy, and numerous others (Subramanian and Ramanathan, 

2012). Although the AHP is still partly subjective, it introduces a degree of statistical objectivity 

to the weighting process and helps justify weight assignments. 

AHP has been utilized in various multi-criteria GIS models. This type of analysis is 

useful for the creation of indices and site suitability analyses. Wu et al. (2011) conducted an 

analysis using GIS and AHP to determine floor water inrush vulnerability of a coal seam in a 

mine in China. They present the combination of GIS and AHP as a series of three steps: process 

spatial data through GIS to quantify the various analysis factors, calculate factor weights through 

the construction and application of a comparison matrix, and then map and display the results of 

the combined weighted factors. Uyan (2013) conducted a GIS-based study, which analyzed 

several criteria, including terrain, local climate, and proximity to transmission lines to identify 

the best possible locations for solar farms in the Karapinar region of Turkey. Weights were 

assigned to the various criteria and sub-criteria of their site suitability analysis. The use of AHP 

allowed for multiple different variables to be compared according to their relative importance 

and generated weights through a logical and statistically driven process. 

2.8. Sensitivity Analysis 

 There are two major types of sensitivity analysis: local, or one-at-a-time (OAT), and 

global, or general sensitivity analysis (GSA) (Feretti, Saltelli, and Tarantola, 2016). Sensitivity 

analysis through OAT is the simplest methodology, in which one factor is changed at a time in 

order to determine the models’ sensitivity to the changed variable. GSA methodologies are 
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referred to as global because they perform an overall examination of analysis inputs and their 

influence on outputs (Zhou, Lin, and Lin, 2008). Although the OAT methodology is widely used, 

it has certain shortcomings. OAT can produce inaccurate results when applied to more complex 

models, as a greater number of variables increases the dimensionality of the dataset (Saltelli and 

Annoni, 2010). Altering one factor at a time does not account for that dimensionality, which 

requires a more statistically sound methodology. For this reason, GSA methods are preferred. 

 A simple strategy for determining sensitivity is the relative deviation (RD) method 

(Hamby, 1994). This method is similar to the OAT method, in that one model parameter is 

changed at a time. However, the RD method is different in that a much larger sample of the input 

distribution is used. The relative deviation for each output is calculated as the ratio of the 

standard deviation to the output mean. This test can indicate each factor’s contribution to the 

variability in the model’s output. Hamby (1995) compared RD against several other sensitivity 

analysis methods, and found it to be a reliable method for measuring a given parameter’s 

sensitivity.   
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Chapter 3 Data and Methods 

This project used a combination of spatial and tabular data to identify areas of flood 

vulnerability in the Houston area. Census population estimates were redistributed among lot-

sized parcels, and flood risk was assessed as the spatial intersection between flood hazard 

boundaries and populated parcels. Similarly, shelter needs were identified as populated flood 

hazard areas which did not have access to local shelter options. Statistical analysis through PCA 

was applied to various social justice population estimates for inclusion in the analysis model. 

The three main factors, flood risk, shelter accessibility, and social justice were combined to 

create an index showing flood vulnerability across Harris County. The data and methodologies 

used to create this index are described in this chapter. 

3.1. Data 

 The inputs for this analysis consisted of a table with 12 columns of demographic data, 

and five spatial datasets (Table 2). The demographic input variables were chosen due to their use 

in previous vulnerability analyses (Cutter, Boruff, and Shirley, 2003; Guillard-Gonçalves et al., 

2015), as well as their potential to affect disaster response and recovery. The specific nature of 

Houston’s transportation system was also taken into consideration with the inclusion of the no-

car household variable. The spatial datasets include census tract boundaries, tax and land use 

parcels, FEMA floodplains, and FEMA National Shelter System (NSS) locations. These datasets 

were incorporated into a spatial analysis, which also included the demographic data, to create the 

FVI. 
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Table 2 Input spatial and tabular datasets for the study analysis. 

 

3.1.1. ACS Data 

 Each of the 12 social justice variables was gathered from tract-level ACS estimates, and 

were chosen for their potential impact in flood situations (Table 3). The reasoning for each 

variable has also been previously explained by Cutter, Boruff, and Shirley (2003), with the 

exception of No Car, the reasoning for which has been previously explained above. This study 

utilized a smaller number of variables compared to other studies, with particular focus given to 

the factors which could negatively affect one’s ability to evacuate or recover from a flood. 

 

 

 

Dataset Type Description Source

ACS Social Justice 
Populations Table

Social justice population estimates were 
extracted from several ACS tables, and 
merged into a single table, which was then 
used as the initial input for the PCA portion of 
the analysis.

United States Census (data.census.gov)

Census Tracts Polygon Feature 
Class

The vulnerability index was developed and 
displayed at the tract level, the boundaries of 
which were demarcated as part of the 2010 
Census.

City of Houston Open GIS Data (cohgis-
mycity.opendata.arcgis.com)

Flood Risk Zones Polygon Feature 
Class

Flood risk areas were defined as the extent of 
FEMA's 100-year floodplain, which was 
extracted from the original floodplain dataset, 
and input into the analysis as a polygon feature 
class.

City of Houston Open GIS Data (cohgis-
mycity.opendata.arcgis.com)

Land Use Parcels Polygon Feature 
Class

Each parcel contained a descriptive code, 
which indicated the type of structure located in 
that parcel. The land use dataset was used to 
identify large residential structures.

City of Houston Open GIS Data (cohgis-
mycity.opendata.arcgis.com)

FEMA Shelters Point Feature 
Class

A "snapshot" of the FEMA NSS during 
Hurricane Harvey in 2017 is the most current 
spatial representation of FEMA shelters, the 
shelter points within were used to determine 
the degree of shelter need in each tract.

FEMA ( gis.fema.gov)

Tax Parcels Polygon Feature 
Class

This dataset contained the same parcel 
geometry as the land use dataset, with a 
different coding system. These parcels were 
used to identify smaller residential structures.

Harris County Appraisal District 
(pdata.hcad.org/GIS)
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Table 3 ACS estimates included in the social justice dataset. 

Variable Source Table Description 

Disability 
Sex by Age by 

Disability Status 
(B18101) 

People with disabilities could face 
challenges in evacuating from a flood as 
well as in seeking medical treatment. This 
impact on mobility can make them more 
reliant on emergency services. 

Female Sex by Age (B01001) 

Women are more likely than men to 
struggle during natural disasters due to 
generally lower wages and increased 
likelihood of parental responsibilities. 

No Car 
Household Size by 
Vehicles Available 

(B08201) 

Most Houston residents heavily rely on 
personal vehicles for transportation. The 
lack of a car would seriously impact one's 
ability to evacuate, seek medical assistance, 
and gather emergency supplies. 

Over 64 Sex by Age (B01001) 
Older people are more likely to have 
restricted mobility and require specialized 
assistance. 

Part-Time 
Worker 

Full-Time, Year-Round 
Work Status in the Past 
12 Months by Age for 

the Population 16 years 
and Over (B23021) 

Part-time workers may lack the financial 
capabilities to endure a prolonged natural 
disaster. This may be exacerbated by a lack 
of employment caused by the event. 

Poor English 
Speaking 

Language Spoken at 
Home by Ability to 

Speak English for the 
Population 5 Years and 

Over (B16001) 

An inability to effectively communicate 
with disaster response personnel and other 
residences could impede one's ability to 
adequately prepare for and respond to a 
disaster situation. 

Poverty Poverty Status in the 
Past 12 Months (S1702) 

Low-income residents affected by a flood 
would likely struggle to recover. A lack of 
financial means could also impact their 
ability to effectively prepare for a flood. 

Receive Public 
Assistance 

Public Assistance Income 
in the Past 12 Months for 

Households (B19057) 

People who rely on social programs for 
support would likely also need additional 
assistance during a natural disaster. A 
disruption of those services could also 
increase their need for aid. 

Renter Tenure by Household Size 
(B25009) 

Renters often do so out of financial 
necessity, as they cannot afford home 
ownership. If their lodging were to become 
uninhabitable, they could face difficulty in 
finding shelter or a new living space. 
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Single Parent Households and Families 
(S1101) 

Single-parent households often have 
limited financial means, and an increased 
burden due to the necessity of child care. 

Under 10 Sex by Age (B01001) 

Young children are typically reliant on 
parental support for survival. They lack the 
mobility, financial means, and knowledge 
necessary to effectively respond to a 
disaster. 

Unemployed 
Employment Status for 

Population 16 Years and 
Over 

Unemployed residents are likely to be 
struggling financially, which would be 
exacerbated by the costs associated with 
flood evacuation and recovery. 

 

These 12 variables, although independent of one another, could still be highly correlated 

with each other. Multicollinearity, in which several variables are correlated with several other 

variables, could inflate the variance within the social justice dataset. This variance inflation 

could affect the statistical significance of the social justice dataset and cast doubt on the analysis 

results. Multicollinearity was assessed through the calculation of the VIF for each variable. A 

PCA was then performed on the dataset when several high VIFs indicated a high degree of 

multicollinearity. 

3.1.2. Parcel Data 

Reliable and authoritative parcel data for the Houston area was critical for the dasymetric 

mapping of population data. Two different parcel datasets were available from the Harris County 

Appraisal District, which satisfied this requirement. Both land use and tax parcel datasets utilized 

the same polygon geometry, although with two different classification systems. The land use 

parcels were classified using four-digit, numeric land use codes, while tax parcels were classified 

using two-character, alphanumeric state classification codes. Although the two different codes 

provide similar descriptions of the parcels they classify, they do so with varying degrees of 

specificity. For example, a land use parcel with  code 1003, improved residential, could be 
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coincident with a tax parcel with the state classification code 1003, single-family residential. 

Although both the land use and tax parcels indicate that a particular area has a residential use, the 

tax parcel provides a more specific description. conversely, an area classified by a tax parcel 

with state classification code B1: multi-family residential, could be coincident with a land use 

parcel coded as 4212: 4-12 story apartment structure. In this case, the land use code is more 

descriptive than the state classification code, and can be used to compute a more accurate 

estimation of the number of people living within that parcel. Through a comparison of the two 

different parcel datasets, land use parcels were found to better represent larger residential 

structures, and tax parcels were found to more accurately classify smaller structures (Figure 3). 

Therefore, they were both combined in the analysis for the most accurate possible assessment of 

population distribution within each census tract. 

 

Figure 3 Distribution of parcels across Houston by residential structure size. 
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3.1.3. Flood Hazard Data 

The extent of FEMA’s 100-year floodplain was chosen as the indicator for flood hazard 

extent in the study area (see Figure 2). That extent was retrieved from FEMA’s NFHL, which 

contained polygon features for all of the different floodplain types. The 100-year floodplain 

feature class was comprised of numerous polygon features. The whole area covered by those 

features was used as the SFHA layer for delineating flood risk boundaries. 

Although FEMA’s floodplain maps have been shown to underestimate the potential for 

flooding in certain areas of Houston (Bass and Bedient, 2018), they remain the current 

authoritative flood hazard data. This dataset was still useful for this study because while it may 

underestimate the potential for flooding in some areas, it does not overestimate the potential for 

flooding in others. All areas within the 100-year floodplain can be considered to be in danger of 

flooding.  

3.2. Research Design 

 The flood vulnerability index was compiled from three main components: flood risk, 

social justice, and shelter accessibility. The analysis to create this index was therefore developed 

in three main stages, one for each major component (Figure 4). It consisted of two elements, one 

statistical and the other spatial. Social justice variables were assessed through a PCA, and each 

tract was ranked by social justice score. Flood risk and shelter needs were identified through the 

application of dasymetric mapping. Weights for the three main index factors were assigned 

through the implementation of an AHP after various weighting schemes were compared in a RD 

sensitivity analysis.
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3.2.1. Dasymetric Mapping 

 Tract-level population data was disaggregated to smaller parcel features in order to 

generate a more precise estimate of at-risk populations in each tract (Figure 5). This was 

accomplished through spatial analysis using ArcGIS, with the aid of Python scripting and the 

ArcPy module. The analysis utilized two different spatial datasets with identical geometry, so a 

degree of pre-processing was necessary to prepare the data for the analysis. Tax parcels with 

state classification codes were better suited for accurately identifying smaller residential 

structures, while land use parcels were better for identifying larger residential structures, such as 

apartment buildings. Parcels with certain classifications were extracted from each dataset, where 

the two extracted datasets covered all residential areas in Houston, with no overlapping parcels. 

In certain cases, multiple single-family residential parcels would occupy the same geometry, 

being part of the same apartment building in that parcel. Those parcels were all retained in the 

analysis. Additionally, land use parcels classified as correctional facilities or schools were 

manually identified, and all parcels containing residents (prisons, on-campus housing) were 

retained, and the remainder were removed. 
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Figure 5 Estimated parcel populations in Harris County. 

 Specific weights were assigned to each parcel based on its land use or state classification 

(Table 4). The weights estimate the number of “families” living in each parcel. This is based on 

the smallest unit of the weighting scheme, A1, or single-family residential. The weights logically 

increase with two-, three-, and four-family structures, while apartment structures are weighted as 

double the next smallest structure. Other forms of residence, such as schools, nursing homes, and 

subsidized housing were weighted by comparison with structures with similar occupancy. To 

calculate the total number of “families” in each tract, the count of parcels for each parcel code 

was multiplied by its respective weight and then summed with all other weighted counts. The 

2018 population estimate was divided by the family count for each tract to calculate the 

estimated people per residential unit (PPU). This was then multiplied by the weight of each 

parcel to calculate parcel populations.. 
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Table 4 Parcel classification Codes and weights. 

Code Description Weight 
A1 Single Family Residence 1 
A2 Mobile Home 1 
B2 Two-Family Residence 2 
B3 Three-Family Residence 3 
B4 Four+ Family Residence 4 

4209 4-20 Unit Apartment 
Structure 12 

4211 Garden Apartment Structure 24 

4212 Mid-Rise Apartment 
Structure 48 

4214 High-Rise Apartment 
Structure 96 

4221 Subsidized Housing 48 
4222 Tax Credit Apartments   
4313 Dormitory 48 
4316 Nursing Home 48 
4613 College/University 96 
4670 Jail/Prison 96 

  

With estimated populations calculated for each residential parcel, the process for 

determining at-risk populations for each census tract was comparatively simple. Each tract had a 

unique ID that was assigned to all coincident parcels whose geometric centers crossed the tract. 

All parcels which intersected the SFHA layer were selected, and then all selected populations 

were summed for each tract ID. The populations for each tract were then ranked by percentile for 

the final flood risk score. 

 A similar strategy was applied to the shelter accessibility component of the analysis. 

First, 1-mile buffers were created around all shelter point features. Portions of the SFHA layer 

were then removed where they intersected with the shelter buffers. The same selection method 

that was used to calculate the total at-risk population was then used to determine the number of 

at-risk people without nearby shelter options, which was then also ranked by percentiles. 
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3.2.2. Principal Component Analysis 

A PCA was performed to mitigate the problem of multicollinearity in the social justice 

dataset. The degree of multicollinearity was assessed through the creation of a correlation matrix 

for all 12 input variables, and the calculation of the Variance Inflation Factor (VIF) of each 

variable. The VIF indicated the variables which were highly correlated with other variables, and 

the correlation matrix showed the degree of correlation between individual variables. This 

multicollinearity test indicated high multicollinearity among several variables, thus making a 

PCA necessary. 

The PCA was performed primarily through Python scripting, with the use of several 

modules. The Pandas module was utilized for table reading and writing. ACS estimates could be 

retrieved from the ACS API through the CensusData module. Specific fields were extracted and, 

if necessary, combined to create new variables for the input social justice populations. The result 

of this extraction was a Pandas DataFrame containing all of the necessary social justice variables 

to be included in the PCA. 

The first step of the analysis was to standardize the input data. Standardization allowed 

for a more accurate assessment of the variables’ relations with each other. Percentile rankings 

were chosen because the goal of the index was to identify the largest concentrations of at-risk 

populations. The percentile score for each value in reference to its containing field was 

calculated using the SciPy module. The NumPy and SciPy modules were then used in 

combination to calculate the VIF for each variable. Several VIFs with a value over 5.00 indicated 

high multicollinearity, which was confirmed through the creation of the correlation matrix. 

Unlike all other elements of this analysis, the correlation matrix was created in Microsoft Excel, 

using the Analysis ToolPak. The PCA itself was performed using the Scikit-Learn module. 

Before the PCA was performed, the data was scaled using Scikit-Learn’s StandardScaler. This 
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standardized the input data to have a mean of zero and a standard deviation of one. The scaled 

data was then fit to the object created through the PCA function, transformed, then exported as 

12 new components, one for each input variable. 

 Each new component consisted of composite scores generated from all 12 input 

variables, with each variable represented by specific loadings of varying weight. The amount of 

information accounted for by each component varied as well, in the form of explained variance. 

Each component explained a certain percentage of the total variance within the dataset, and only 

components over a certain variance threshold were kept. The Kaiser Criterion was applied to the 

components in order to determine which of them contained an acceptable degree of variance 

(Cutter, Boruff, and Shirley, 2003). The eigenvalues for each component’s covariance matrix 

were assessed using Python and Scikit-Learn, and components with eigenvalues greater than one 

were retained, and the remainder discarded. This process reduced the number of components 

down from 12 to 3, with a combined percent variance explained of 72.84. A Varimax rotation 

was then applied to the remaining components with the aid of the NumPy module. The Varimax 

rotation was a useful step, in that it decreased the number of highly correlated variables to each 

component. This allowed for a more simplified approach to determining factor loadings, which 

was performed in Excel. The input variables and resulting components were combined in a 

single table, from which a correlation matrix was created. Factor loadings were then determined 

by examining the most highly correlated variables with each component. Although every 

variable had a degree of correlation with each component, the associated correlation coefficients 

varied from component to component, with certain variables being much more highly correlated 

than others. The variable with the highest (positive or negative) correlation was then determined 

to be the “dominant variable” for that component. These dominant variables, along with other 
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less but still highly correlated variables, were used to assign a name to each component and 

determine the sign of its associated component score. Components were given names that 

reflected the commonalities between the dominant variable and other heavily loaded factors. 

Components with generally positive factor loadings were assigned a positive sign, while those 

with negative factor loadings were assigned a negative sign. All input variables indicated a 

heightened likelihood for flood vulnerability, so negative correlation with those variables would 

therefore indicate a negative contribution to the final social justice score. In the case of this 

study, the component with the highest explained variance, the Household Characteristics 

component, was found to generally have a negative correlation with its most heavily loaded 

factors, so it was assigned a negative sign. The raw social justice scores created from the 

combined component scores were then ranked by percentile, so they could be standardized and 

incorporated into the index score with the flood risk and shelter accessibility scores. 

3.2.3. Final Index Calculation and Sensitivity Analysis 

After dasymetric analysis and PCA were utilized to calculate scores for the three main 

factors of flood risk, shelter accessibility, and social justice, specific weights were assigned to 

each factor, and then the weighted factors were combined for the final index score. The 

determination of weights was a subjective process, which took into consideration the relative 

importance and urgency implied by each factor in an emergency. Due to this subjectivity, the 

index was calculated several times with different weighting schemes, in order to determine each 

factor’s effect. The index was first calculated with each factor weighted equally with a third of 

the final score. It was then calculated three more times, with one “heavy” weight at 50% and the 

other two at 25%, with a new heavy factor each time. 
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By using an OAT analysis method, the four index scores created for the sensitivity 

analysis were regrouped under five new classes: very low (0-10), low (10-25), medium (25-75), 

high (75-90), and very high (90-100). The frequency of each class was compared across the 

various scores, as well as the descriptive statistics, including minimum, maximum, mean, mode, 

and standard deviation. Noticeable differences among the indices were observed through a side-

by-side comparison (Figure 6), and further statistical analysis was deemed necessary to complete 

the sensitivity analysis. The RD methodology for measuring sensitivity was used to evaluate the 

four index calculations. The relative standard deviation (RSD) was calculated as the ratio of the 

standard deviation to the mean of the index values. A higher RSD indicated higher variation, and 

therefore greater model sensitivity to the variable. 

 

Figure 6 Distribution of index scores created through sensitivity analysis. 

The final weights for the analysis were created through the application of the AHP. This 

was performed through an Excel template available from Business Performance Management 

Singapore (Goepel, 2013). Through this analysis, the three main factors were compared against 

each other, and a matrix was created, which showed how important each factor was in 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Very Low Low Medium High Very High

Even Weights Shelter Heavy SJ Heavy Flood Risk Heavy



 

   41 

comparison to each other factor. Shelter accessibility was ranked as generally having low 

importance, as the relevant data could also be found within the flood risk layer. Flood risk was 

determined to have generally high importance, as a flood vulnerability index cannot be created 

without some kind of flood hazard data. Social justice was determined to be less important than 

flood risk, due to the aggregate nature of the population estimates. However, it was ranked as 

more important than shelter accessibility due to the uniqueness of the dataset and the 

vulnerability indicators associated with it. The resulting matrix from this evaluation was then 

input into the AHP template, which calculated weights based on the normalized eigenvectors of 

the input. The FVI score was then computed using those weights.  
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Chapter 4 Results 

The study accomplished its goal of creating a flood vulnerability index based on factors 

related to flood risk, shelter accessibility, and social justice. The analysis was developed into two 

scripts, which are available at https://github.com/mawilson10/Houston-FVI, along with 

descriptive documentation of the processes utilized in the analysis model. The scripts can also be 

found in Appendix A. The index layer is available in a web map at https://arcg.is/0vuDDW. The 

results of the PCA and dasymetric analysis are described; the results of the sensitivity analysis 

and the final index calculation are discussed in this chapter.  

4.1. Vulnerability Index 

 The vulnerability analysis was performed with various spatial and tabular datasets, and 

scripted entirely in Python, in order to provide a concise record of the exact analysis. Scripting 

the entire process allowed for continuous updates to be made to the process, which could then 

simply be re-run, as discoveries were made about the behavior of the data and the relationships 

between the different datasets. Although the initial goal was to develop a single script which 

could accept all of the input feature classes and tables, the process was instead broken into two 

separate scripts, one spatially focused (dasymetric mapping), and the other statistically focused 

(PCA). This structure is reflective of how the study was developed, with one major phase 

dedicated to performing the social justice PCA and another phase dedicated to flood risk and 

shelter analysis. The two scripts could also be re-purposed to new models for different purposes, 

so they were separated in order to make them more flexible. Both scripts were shared publicly on 

GitHub. 
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4.1.1. Principal Component Analysis 

 Prior to the PCA implementation, the input social justice variables were tested for 

multicollinearity, in order to determine if the PCA would be necessary. This was accomplished 

through the creation of a correlation matrix, and the calculation of each variable’s respective 

VIF. While a VIF of 1.00 would indicate no multicollinearity, three variables, under 10 years of 

age, part-time workers, and single parents were found to have VIFs over 5.00, and the female 

variable had a VIF over 10.00 (Table 5). These relatively high VIFs indicated that those 

variables might have been highly correlated with several other variables in the dataset. A 

correlation matrix was then used to confirm the existence of multicollinearity (Table 6). Each of 

the variables with high VIFs also shared correlation coefficients over 6.00 with multiple other 

variables. It was therefore highly likely that multicollinearity was present in the dataset, and that 

certain variables might explain others. A PCA was determined to be necessary to increase the 

variance within the dataset. 

Table 5 VIFs for each social justice variable. 

Variable VIF 
Female 10.312 

Part-Time Worker 6.132 
Single Parent 5.364 

Under 10 5.124 
Poverty 3.923 
Disabled 3.106 
Renter 2.938 
No Car 2.660 

Unemployed 2.578 
Poor English 1.592 

Public Assistance 1.439 
Over 64 1.121 
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Table 6 Correlation matrix created from social justice variables. 

 

 After the input data was scaled, the PCA was performed. The analysis was conducted 

according to the methodology outlined by Cutter, Boruff, and Shirley (2003). It initially 

produced 12 components with decreasing percentages of variance explained. The Kaiser 

Criterion was applied to the results, in which components with eigenvalues less than 1.00 were 

retained. This reduced the number of components to three. A correlation matrix including both 

the components and the input variables was then used to determine the components’ factor 

loadings and sign. Each component was assigned a name based on its most heavily loaded input 

variable, with consideration given to other highly correlated variables. Although no input 

variables were included which would negatively affect vulnerability, the family characteristics 

component was found to have a high negative correlation with several variables. The component 

score sign was therefore reversed. The three component scores were then added together. The 

combined percent variance explained for all three components was 72.84% (Table 7). The 

combined score was then standardized by percentile score and incorporated into the vulnerability 

model. 

 

 

Female No Car Under 10 Over 64 Disability Poor 
English

Poverty Renter Part-
Time 

Unem-
ployed

Public 
Assistanc

Single 
Parent

Female 1.0000 0.2083 0.8512 0.0618 0.7093 0.4435 0.4583 0.4566 0.8961 0.6593 0.4294 0.7279
No Car 0.2083 1.0000 0.2692 -0.1727 0.3085 0.0122 0.6320 0.6779 0.2629 0.3413 0.2300 0.4944
Under 10 0.8512 0.2692 1.0000 0.0257 0.6093 0.2878 0.6104 0.4232 0.7567 0.6260 0.4203 0.7591
Over 64 0.0618 -0.1727 0.0257 1.0000 0.1142 0.0860 -0.1887 -0.1318 0.0310 0.0098 0.0142 -0.0349
Disability 0.7093 0.3085 0.6093 0.1142 1.0000 0.1231 0.4541 0.2859 0.6544 0.6604 0.4659 0.6709
Poor English 0.4435 0.0122 0.2878 0.0860 0.1231 1.0000 0.0298 0.3144 0.4772 0.2108 0.1452 0.2031
Poverty 0.4583 0.6320 0.6104 -0.1887 0.4541 0.0298 1.0000 0.5832 0.4433 0.5597 0.3895 0.7744
Renter 0.4566 0.6779 0.4232 -0.1318 0.2859 0.3144 0.5832 1.0000 0.5087 0.4092 0.3213 0.5810
Part-Time 
Worker 0.8961 0.2629 0.7567 0.0310 0.6544 0.4772 0.4433 0.5087 1.0000 0.6800 0.4081 0.6765

Unemployed 0.6593 0.3413 0.6260 0.0098 0.6604 0.2108 0.5597 0.4092 0.6800 1.0000 0.4344 0.7067

Public Assistance 0.4294 0.2300 0.4203 0.0142 0.4659 0.1452 0.3895 0.3213 0.4081 0.4344 1.0000 0.5188

Single Parent 0.7279 0.4944 0.7591 -0.0349 0.6709 0.2031 0.7744 0.5810 0.6765 0.7067 0.5188 1.0000
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Table 7 PCA components and dominant variables. 

Component 
Percent 

Variance 
Explained 

Dominant 
Variable Correlation 

Household 
Characteristics 50.23% Single Parent -0.906 

Mobility 13.61% No Car 0.555 

Communication 9.00% Ability to Speak 
English 0.663 

4.1.2. Dasymetric Analysis 

 Dasymetric mapping was used to disaggregate tract-level populations and assign 

estimated populations to individual residential parcels. This strategy was similar to CEDS, 

developed by Maantay and Maroko (2009). At-risk populations were determined for each tract 

by calculating the sum of populations for parcels intersecting the 100-year floodplain. 

Populations without access to a shelter were identified as at-risk residents located further than a 

mile from the nearest shelter. 567 of Harris County’s 786 census tracts were found to contain at 

least some at-risk population, and 463 tracts were found to contain people in need of accessible 

shelter (Figures 7 and 8). The shelter accessibility score was determined as the number of at-risk 

people outside of 1-mile shelter buffers. The population was limited to only those in flood risk 

areas so high scores would not be assigned to tracts with low potential for flooding and therefore 

low need for shelter. As with the PCA score, the population estimates for both flood risk and 

shelter accessibility were each standardized by percentile score for inclusion in the final index 

score.  
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Figure 7 At-risk populations in Harris County. 
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Figure 8 Areas of shelter need in Harris County. 

4.2. Factor Score Results 

 The spatial and statistical analysis produced three significantly different sets of scores for 

flood risk, shelter accessibility, and social justice. A weighted average of the three scores was 

used to compute the final vulnerability analysis. The factor scores were mapped and compared, 

to determine the differences and similarities between their respective distributions across Harris 

County. The results of that comparative analysis are described in this section. 

The flood risk analysis revealed numerous high-risk tracts, that were confined to several 

creek and bayou floodplains intersecting Harris County (Figure 9).  However, high-risk 

populations were not evenly distributed across all of the Harris County watersheds. Even within 

individual watersheds, high-risk tracts often occurred in dispersed concentrations. Highly at-risk 
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tracts were identified in suburban areas south and southeast of Houston, located along Clear 

Creek and at the confluence of Clear Creek and Armand Bayou. High risk was indicated in 

numerous tracts surrounding Brays Bayou in southwest Houston. High-risk tracts were identified 

at several different areas along the Greens, Halls, and White Oak Bayous in northern Houston. 

High degrees of risk were also identified in several tracts in suburban areas north and northwest 

of Houston, located along portions of Cypress Creek. Low-risk tracts were also found to be 

widely distributed across the county, particularly in the downtown area of Houston. 

 

Figure 9 Harris County tracts, ranked by at-risk populations. 

The shelter accessibility analysis produced similar results to the flood risk analysis 

(Figure 10), as it utilized the 100-year floodplain in addition to shelter service areas for 

identifying populous areas without local shelter options. Although similar, a paired t-test 
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comparing the two sets of scores indicated a significant difference between them. High shelter 

inaccessibility was identified in many of the areas with high flood risk. However, several high-

risk tracts were also found to have low shelter scores, indicating shelter availability for the at-risk 

populations within them. These low-risk tracts with high shelter accessibility were in the highest 

frequency along a portion of Brays Bayou in southwest Houston. This area also contained the 

highest frequency of tracts with high levels of both flood risk and shelter need. Several other 

high-risk, low-accessibility tracts were also dispersed along White Oak Bayou in northwest 

Houston. Other high accessibility tracts were sparsely distributed along Sims and Armand 

Bayous, as well as Clear Creek in the southern Houston area. 

 

Figure 10 Harris County tracts, ranked by shelter need. 

Tracts with high social justice scores were not confined to the areas surrounding Harris 

County waterways in the same manner as most high-risk and many low-accessibility tracts. 
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Generally, most of the high-scoring tracts covered large contiguous areas in smaller cities and 

towns surrounding Houston, as well as portions of northwest and southwest Houston. Of the 197 

tracts with social justice scores classified as “high” (over 75), 38 tracts (19.2%) were found to 

have no flood risk. Although the remaining tracts had some degree of risk, many of those were 

classified as less than high-risk. However, large clusters of high-risk, highly socially vulnerable 

tracts were identified in areas surrounding portions of Brays Bayou, Clear Creek, and Cypress 

Creek. 

 

Figure 11 Harris County tracts, ranked by social justice score. 

 The three factors had particularly high scores in several areas of Harris County. These 

areas included portions of the Brays Bayou, Greens Bayou, Clear Creek, and Cypress Creek 

watersheds. These areas were therefore expected to be the highest-ranked areas in the final index. 

Tracts with low shelter need scores were expected to reduce the degree of vulnerability in certain 
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areas, particularly around Brays Bayou in southwest Houston. Several NSS shelters were located 

in or near high-risk regions of the bayou’s watershed. Although several tracts with high social 

vulnerability scores also contained high flood risk and shelter-need scores, social justice 

populations were also high in tracts with little to no flood risk. The low degrees of shelter-need 

and flood risk in those tracts were expected to offset those high social vulnerability scores in the 

final index. 

4.3. FVI Calculation and Sensitivity Analysis 

 Before the final FVI score was computed, a sensitivity analysis was performed to assess 

the stability of the index when subjected to different weighting systems. The FVI score was 

calculated as a weighted average of the three main input variables. The results of the sensitivity 

analysis were used to inform weight selection for each variable. Multiple index scores were 

calculated with varying weights and inputs to test the effect of certain variables on the final 

score. Four different weighting schemes were used. The first index score was calculated simply 

as the mean of the three scores. The remaining three index scores had one factor weighted at 

50%, as the “heavy” factor, and the other two at 25% (Table 7). The RD sensitivity analysis was 

applied to the index scores created through those calculations (Table 8). The shelter-heavy index 

was found to have the highest RSD, and the flood-risk-heavy index had a similarly high RSD. 

The RSDs of both indices were significantly higher than that for the social justice-heavy index. 

This indicated that the model was particularly sensitive to those two variables. 
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Table 8 Factor weights for each sensitivity analysis weighting scheme. 

  Weights 

Scheme Name Flood Risk Shelter 
Accessibility 

Social 
Justice 

Even Weights 33.333 33.333 33.333 

Flood Risk-
Heavy 50 25 25 

Shelter Need-
Heavy 25 50 25 

Social Justice-
Heavy 25 25 50 

 

Table 9 Descriptive statistics for FV scores generated from the four weighting schemes. 

Weighting 
Scheme 

Standard 
Dev. Mean Median Maximum Minimum RSD 

Even 
Weights 24.985 35.574 34.261 97.99 0.085 70.2398 

Flood Risk-
Heavy 26.309 37.961 33.583 98.449 0.064 69.30534 

Shelter 
Need-Heavy 26.329 36.307 29.409 98.493 0.064 72.5177 

Social 
Justice-
Heavy 

23.669 41.444 40.081 97.03 0.127 57.1108 

 

 The RD analysis returned similar RSD values for even, flood risk-heavy, and shelter 

need-heavy index scores. Descriptive statistics across the board were generally similar for the 

three scores. The social justice-heavy index score was found to have the highest mean, and the 

lowest standard deviation, resulting in the lowest RSD. Although this would appear to indicate 

that the model was more sensitive to the social justice input data, the results of the RD analysis 

imply that it was more sensitive to the flood risk and shelter need inputs. The level of sensitivity 

was assessed through the RSDs, which indicated greater variation when more weight was 
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assigned to either the flood risk or shelter need scores. This is likely since the two datasets are 

related, and that shelter need areas are contained within flood risk areas. Heavily weighting one 

dataset without significantly reducing the contribution of the other could disproportionally 

amplify their combined effect. Therefore, the analysis could be interpreted as indicating model 

sensitivity to both variables. This discovery led to an assessment of the correlation between the 

two variables. Although a comparison matrix revealed that the two variables were highly 

correlated, a paired t-test returned a p-value well below zero, indicating that there was a 

significant difference between the two datasets. 

 Although the sensitivity analysis did produce varying results, the distribution of the index 

scores was relatively similar across the different index calculations (see Figure 6). All four 

scores followed the same pattern in which there were more tracts designated as very low or low 

vulnerability than high or very high, with the majority of tracts classified as medium 

vulnerability. This indicated that although the different score calculations varied, altering the 

weights of one factor would not drastically alter the vulnerability score. No scores changed more 

than one level of vulnerability when compared against different weighting schemes. Although 

sensitivity was identified within the analysis, it did not appear to drastically alter the nature of 

the output data. 

 Due to the apparent impact of weight variation on the final score, an AHP was 

implemented to calculate weights through a statistical process. Through this methodology, the 

high sensitivity to flood risk and shelter accessibility was addressed. In the comparison matrix, 

social justice was determined to be three times more important than shelter needs, and half as 

important as flood risk (Figure 12). Flood risk was determined to be three times more important 

than shelter need. Shelters are an important element of flood planning and response, but they 



 

   54 

cannot completely mitigate the effects of flooding. Shelters in highly populated areas would 

likely not have the capacity to support every local resident if all of their homes flooded. 

Therefore, shelter accessibility’s effect was deemed less significant than the other two factors. 

The flood risk factor was critical to the FVI, in that it demarcated the areas where flooding could 

occur. Without the flood risk input, the model would not be capable of accurately identifying 

areas of vulnerability. Social justice was also considered to be particularly important, but not as 

important as flood risk. Some tracts with high social justice scores did not contain any at-risk 

residents. Although these areas could still be affected by other problems, such as power outages 

or wind damage, they are not in danger of taking on significant flood damage. The social justice 

score was therefore given a lower importance than flood risk so as not to overstate the 

vulnerability of people not living at risk of flooding. Some tracts with high social justice scores 

could be in no danger of flooding. This was taken into consideration when determining the 

factor’s relative importance. With the assigned importance values, the AHP returned weight 

values of 33.3, 14.0, and 52.8 for social justice, shelter accessibility, and flood risk, respectively 

(Figure 13). The flood risk weight was reduced to 52.7 so the combined weights added up to 100. 

The final flood vulnerability index score was calculated using these weights. Summary statistics 

were calculated for the final scores, which revealed that the FVI scores had a larger mean and 

smaller standard deviation than all previous index calculations, except for the social-justice 

heavy calculation (Table 9). Although the index had been calculated with a heavy weight 

assigned to the flood risk factor, its RSD was significantly lower than those of the previous non-

social justice-heavy index scores.  
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Figure 12 AHP comparison matrix created in Excel worksheet developed by Goepel (2013). 

 

Figure 13 Results of AHP analysis. 

Table 10 FVI descriptive statistics. 

Standard Dev. 25.324 
Mean 39.845 
Median 36.471 
Maximum 97.958 
Minimum 0.085 
RSD 63.556 

 

 The FVI layer was examined using Houston waterways as a reference. Certain patterns 

that were observed in the examination of each of the three index factors were also present in the 

final index layer (Figure 14). Tracts in south and southwest Harris County, around Clear Creek 

and Brays Bayou, were found to be highly vulnerable. Tracts near Greens and Halls Bayous in 
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north Houston were also found to contain exceptionally high levels of vulnerability, as were 

tracts coincident with Cypress creek in northwest Harris County. These highly vulnerable tracts 

were consistently identified as the highest-scoring tracts for each of the three FVI factors. In 

instances where one variable score was significantly different than the other two variables, the 

index results do not appear to significantly skew towards the outlying variable (see Figure 6). 

This is especially apparent in tracts with high social vulnerability scores but comparatively low 

shelter accessibility and flood risk scores. These tracts were not highly ranked in the final index, 

as it was likely that only a fraction of the potentially vulnerable social justice populations were in 

danger of flooding. In several tracts near Brays Bayou, low shelter need scores and moderate 

social justice scores offset high flood risk scores, producing a moderate index score. Social 

justice was found to have a significant impact on several tracts as well, in which a high social 

justice score combined with moderate or low flood risk and shelter accessibility scores produced 

a high index score. These tracts were not focused in any particular watershed, but were sparsely 

scattered across the county. 
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Figure 14 Final FVI layer with Harris County waterways. 

 The tracts with the highest FV scores were compared against coincident neighborhood 

boundaries in the City of Houston’s Super Neighborhood layer (Figure 15). Super neighborhoods 

are divisions within Houston that represent distinctive communities, each with their own unique 

identity. These regions are often bound by major physical features such as roadways or 

waterways, and are comprised of interrelated commercial and residential areas (Zhang et al., 

2015). The tracts with the highest vulnerability scores were found to lie within several super 

neighborhoods that were heavily impacted by storms from 2015 to 2019. Among the high-

vulnerability neighborhoods around Braes Bayou are Alief and Sharpstown. These are two low-

income neighborhoods that have been severely impacted by flooding. Alief, Sharpstown, and 

South Belt/Ellington, which also suffered considerable flooding during Hurricane Harvey, each 
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contains three tracts classified as having “very high” vulnerability. Alief and Sharpstown also 

each include eight tracts ranked as “high”. No other neighborhoods contained as many tracts 

ranked as high or very high. Greater Greenspoint, which was among the neighborhoods with the 

highest mean vulnerability score, did not contain any tracts in the very high range. However, it 

includes five tracts ranked as high. In total, 22 of the 88 super neighborhoods contained at least 

one “very high” tract, and 41 contained at least one “high” tract. The full table ranking all of the 

super neighborhoods by average FV score can be found in Appendix B.
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The super neighborhood layer only covers certain areas of Houston, and does not include other 

areas of Harris County that have been suffered from similar flooding. Further examination of the 

layer in relation to waterways and roads revealed additional highly vulnerable and historically 

impacted areas, including Baytown near the Bay of Galveston in Eastern Harris County, and the 

community of Cypress, intersected by Cypress Creek in northwest Harris County. This 

examination of the FVI in the context of super neighborhoods and other community boundaries 

was used to verify the accuracy of the vulnerability model. 



 

   61 

Chapter 5 Discussion and Conclusions 

This study developed an FVI for Harris County, Texas, through a statistically driven 

multi-criteria regression analysis. The index was created as a weighted average of three primary 

factors: flood risk, shelter accessibility, and social justice. The goal of this study was to identify 

areas of Harris County, where large concentrations of socioeconomically marginalized people 

lived in danger of flooding. Such people can be considered vulnerable, as they are more likely to 

suffer and struggle to recover from a flood. The dasymetric analysis was used to increase the 

spatial granularity of population data for more precise identification of at-risk populations. PCA 

was utilized to mitigate the effect of multicollinearity among the twelve social justice 

populations. The final index weights were calculated through the application of an AHP. The 

analysis expected that the FVI would identify vulnerable tracts located in historically impacted 

areas, indicating the index’s accuracy. Comparison of the FVI with local neighborhood 

boundaries indicated that the tracts with the highest FV scores were located in low-income 

neighborhoods that had been repeatedly and severely affected by flooding from 2015 to 2019. 

This chapter reviews and interprets the results for each of the three primary factor scores, 

as well as the calculation of the final FVI score. The implications of these results are described, 

particularly regarding how the different factors contribute to the FVI and their accuracy in 

identifying vulnerable areas. The benefits of scripting this analysis in Python are also explained. 

The study and its results are placed in the greater context of relevant existing research, from 

which this analysis’ methods were derived. The potential for expansion of this research through 

further examination of flood risk and vulnerability in the Houston area is also explained.  
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5.1. Study Findings 

 The FVI analysis revealed the nature of flood vulnerability across Harris County. The 

comparison of the three contributing factors with Houston waterways identified certain patterns 

of distribution that were also apparent in the index layer. The final index was computed as a 

weighted average of the primary factors. A sensitivity analysis was performed to assess each 

factor’s effect on the index score. The factor weights were computed through an AHP, in which 

the three factors were compared based on their relative importance to flood vulnerability. The 

results of the sensitivity analysis were also used to inform that comparison. The implications and 

meanings of the FVI and sensitivity analyses are discussed in this chapter. 

5.1.1. Index and Individual Factor Results  

The analysis revealed similar, but varying distributions for the three primary factors 

across the county. Many flood risk and shelter accessibility scores were similarly ranked for the 

same census tract. Large social justice populations were also identified in many areas with high 

flood risk, although several tracts with high social vulnerability were also located outside of 

flood risk boundaries. The similarities between these three factors resulted in an FVI in which a 

single factor seldom heavily influenced the scores. However, individual factors were still capable 

of making meaningful contributions to the final analysis results in certain areas. 

Tracts with high flood risk scores were generally clustered along certain portions of 

several Houston area waterways (see Figure 9). These clustered tracts were often located in areas 

that had previously been severely affected by flooding. This dispersed distribution of flood risk 

is indicative of the varying degrees of flood management and at-risk housing density throughout 

the county. Large, affordable, but flood-prone multi-unit housing structures such as those in 

Greenspoint contributed to disproportionate levels of risk in several low-income areas (Miller 
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and Goodman, 2019). The area surrounding Brays Bayou, which includes the neighborhoods of 

Alief and Sharpstown, was found to contain numerous high-risk tracts. This pattern implies that 

further flood mitigation improvements to the bayou watershed are necessary to reduce the 

potential floodplain extent and protect at-risk residents. The current ongoing improvements to 

Brays Bayou have been demonstrated to contain flooding within the 100-year floodplain (Bass et 

al., 2017). However, residents living within the 100-year floodplain are still at risk. These at-risk 

residents will continue to suffer from flooding until more considerable efforts in either flood 

management or re-housing are made.  

As with the flood risk factor, shelter accessibility scores were also confined to the 100-

year floodplain (see Figure 10). The difference between the two sets of scores lies in the 

incorporation of 1-mile radius shelter service areas to the accessibility analysis. Naturally, the 

similarities between the two analyses led to a correlation between them. These two scores were 

not excessively correlated, however, as they were found to have some significant differences. 

The association between shelter needs and flood risk indicates that at-risk populations in 

Houston lack local shelter options. This correlation will decrease if the shelter needs populations 

are reduced through the establishment of additional shelters in or around high-risk areas. This 

similarity between flood risk and shelter needs is reflective of the shelter shortage exposed by 

Hurricane Harvey, during which many residents in inundated regions were unable to find shelter 

(Haynie et al., 2019). Substantial flooding, such as that inflicted by Hurricane Harvey, can make 

roads impassable, and impact mid- to long-range travel. More significant numbers of shelters in 

areas of high risk would allow evacuees to quickly locate a local shelter with minimal exposure 

to the elements.  
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The distribution of social justice populations differed from those of flood risk and shelter 

accessibility. The greatest numbers of socially vulnerable people were found to be primarily 

located in smaller cities and suburban areas on the outskirts of Houston (see Figure 11). 

Although a number of these tracts were within the vicinity of the 100-year floodplain, others 

were in areas with no apparent flood risk. This pattern is indicative of the lower cost of living in 

less urbanized areas further from the city. This distribution supports previous findings that 

indicated that there was no strong positive correlation between social vulnerability and flood risk 

in Houston (Castles, 2018). This does not mean that there are not significant numbers of socially 

vulnerable people living at risk of flooding, however. Clusters of tracts with high social 

vulnerability were identified around several waterways, including Brays Bayou, White Oak 

Bayou, Cypress Creek, and Clear Creek. These results indicate that social vulnerability to 

flooding varies across Harris County and that social vulnerability alone cannot be used to 

identify areas of high flood vulnerability. Instead, the social vulnerability factor was used for the 

purpose described by Cutter, Boruff, and Shirley (2003): as an indicator of areas where the local 

population is most likely to suffer disproportionately in the event of a natural disaster. Highly 

socially vulnerable people within the 100-year floodplain were considered to be especially 

susceptible to flooding. In areas of high risk and shelter need, the inclusion of social justice 

helped identify specific tracts within those areas that would likely be disproportionately affected 

by flooding. Areas with high social vulnerability, that were outside of the 100-year floodplain, 

were also useful for the FVI analysis. Low-risk tracts are less susceptible to flooding, but the 

residents within them could still suffer from other indirect problems, such as loss of power or 

discontinuation of vital services. The inclusion of social vulnerability added an extra dimension 

to the FVI, resulting in a more comprehensive and descriptive index. 
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The final index results were reflective of the three individual factor scores. The highest-

ranked tracts in the FVI were highly ranked for each of the three factors. Each factor was found 

to make a meaningful contribution to the FV score. The flood risk score ranked tracts by the 

estimated number of people living in the 100-year floodplain. This identified the most populous 

at-risk areas in Harris County. The shelter accessibility factor revealed populated areas that 

required local shelter options. Social justice was used to identify high-risk tracts where the 

residents were most likely to suffer disproportionally. All three of these flood vulnerability 

elements had noticeable effects on the final FV score. 

The three factors effectively counterbalanced each other in the tracts where one factor 

score differed considerably from the other two. This is evident in areas of high social 

vulnerability, but low risk and shelter need. In this case, the social justice scores’ effect was 

significantly mitigated by the two lower scores, but still reflected in the final score. Shelter 

accessibility also had a noticeable impact on the final score, particularly in high-risk areas that 

lay within shelter service areas. Shelter accessibility had a lower factor weight than flood risk 

and social justice due to uncertainties regarding capacity and availability. However, in the tracts 

where shelter need was significantly lower than the other two factors, it did moderately affect the 

FV score. These interactions between the three main factors indicated balance within the 

analysis, in which each factor made a meaningful contribution that was reflective of its 

importance during a flood. 

The spatial results of the analysis revealed several large, contiguous areas of high 

vulnerability in Harris County. These areas were generally located in the vicinity of several 

major waterways in the county (see Figure 14). Areas surrounding portions of Brays Bayou, 

Clear Creek, and Cypress Creek contained numerous highly ranked tracts. Smaller numbers of 
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high-vulnerability tracts were dispersed along portions of several other watersheds. This 

distribution of vulnerability indicates that flooding is a widespread problem for residents across 

Harris County. The challenges faced by planners and responders are evident in these results, as a 

county-wide flood would require carefully calculated distribution of limited resources and aid 

across the entire county. However, by identifying areas of high vulnerability, the FVI can be 

used to inform that distribution of resources. 

 Additional analysis through the comparison of the FVI with Houston Super 

Neighborhood boundaries further validated the analysis results (see Appendix B). Large numbers 

of highly-ranked tracts were located in three neighborhoods that had previously been severely 

affected by flooding: Alief, Sharpstown, and Greater Greenspoint. Alief and Sharpstown were 

situated within the large concentration of high vulnerability tracts around Brays Bayou, and as 

such, contained numerous tracts ranked as high or very high vulnerability. In contrast, the high-

vulnerability tracts associated with Greenspoint were part of a dispersed series of tracts along 

Greens Bayou. The numerous high-ranking tracts within and near to these neighborhoods 

indicate that this analysis can accurately identify areas of flood vulnerability. 

 The comparison of the FVI with super neighborhood boundaries could be useful to both 

flood responders and potentially at-risk residents. The general boundaries of these areas are 

known by many Houston residents, who could use them to gain an understanding of vulnerability 

within their communities. This understanding could inform their own preparation for potential 

floods. The history of flooding in many neighborhoods is not as well-documented as it is in 

especially vulnerable areas such as Alief, Sharpstown, and Greenspoint. This comparison could 

help to direct attention and awareness to less expected areas of vulnerability throughout Houston. 
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5.1.2. Sensitivity Analysis and AHP 

The sensitivity analysis revealed the need for a logical weighting system for the final 

index calculation. It also informed the comparative analysis that was used for that weighting 

system. The FVI was not created using any of the four schemes used in the sensitivity analysis, 

but the combined results were used to inform the comparison matrix of the AHP. The sensitivity 

analysis indicated that the model was found to be highly sensitive to both the flood risk and 

shelter accessibility scores due to their correlation with each other. Based on the results of this 

sensitivity analysis, shelter accessibility was determined to be significantly less important than 

the other two factors. This ranking is consistent with shelter accessibility’s role in flood 

management, in which it can be a mitigating factor in heavily affected areas, but does not address 

all of the problems associated with flooding. Flood risk, social justice, and shelter accessibility 

were therefore ranked in that order for the AHP weight calculation. 

Although the sensitivity analysis indicated that weight changes did not drastically alter 

the output FV scores, an AHP was still deemed necessary to calculate the final weights due to the 

three factors’ varying degrees of importance. The AHP was applied to add a degree of statistical 

significance to the subjective process of weight assignment. The resulting weights were 

reflective of the purpose of this analysis. Flood risk accounted for over half of the FV score, as it 

was the primary indicator of potential vulnerability. Social justice accounted for nearly a third of 

the score, due to its potential to amplify vulnerability, especially in areas of flood risk. Shelter 

accessibility’s weight of only fourteen percent reflected its partial contribution to flood response 

and recovery. The varying weights still allowed each factor to make a noticeable impact on the 

final index score. The FVI conclusively showed the combined effects of the three factors. 
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5.2.  Advantages of Python Scripting 

The most significant benefit of Python scripting for this study was that the analysis model 

could easily be re-run repeatedly, as new revisions were made to the input data. This advantage 

was especially evident with the application of the dasymetric mapping model. An initial analysis 

of the land use and tax parcel datasets identified several different residential structure codes 

which could be included in the model. The initial application of the model revealed extremely 

high parcel populations in some tracts and a complete absence of residential tracts in others. 

Land use parcels classified as universities, prisons, and tax credit apartments had not been 

included in the initial list of residential codes, which caused results to be skewed in certain tracts, 

and for others to return null values. With a Python script already developed, the list of residential 

parcel codes and weights could be updated with additional codes when necessary. Weights could 

also be easily altered to create a balanced population density map. This flexibility was a useful 

advantage during the application of the PCA as well, as it allowed for new variables to be easily 

added to the social justice dataset as they were discovered. The ability to re-run the script 

allowed for assessment of the data throughout the development of the model, without minimal 

time lost re-applying the analysis as updates to the process were made with the discovery of new 

information. 

Python scripting allowed multiple different types of processes to be integrated into a 

single workflow. Six different modules were used to perform the FVI analysis. Scripting was 

used to download data, manipulate tables, and perform spatial and statistical analyses. A variety 

of tasks, which would usually require multiple different types of software, were linked together 

in a script which could complete all the necessary tasks and create a spatial representation 

through ArcGIS. The benefit of concatenating processes through Python does have its limits, 
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however. The dasymetric model and the PCA script were initially intended to be combined into a 

single index model. That model was deemed to be impractical, as it would have combined two 

different types of analyses with numerous differing inputs, limiting the flexibility of the FVI 

analysis. The two scripts were thus developed separately, although their outputs were all 

combined in the final step of the analysis. The separation of the FVI model into two different 

elements, spatial and statistical, is reflective of the manner in which the analysis was conducted. 

The PCA and dasymetric scripts were completed in two entirely different stages, each requiring a 

different kind of analytical thinking and knowledge of very different script libraries. 

Through Python, the entire analysis was able to be mapped out as a process which would 

always produce the same results with the same input data, but could also produce new results, 

with different input data. The two scripts developed through this process could be utilized for 

purposes other than FVI calculation. PCA can be implemented in any linear regression analysis, 

and the script created through this study has the flexibility to accept new input data. The 

dasymetric mapping model is much more specifically geared towards Houston’s unique parcel 

classification methods, but with some modifications to the source code, the model could be 

reconfigured to be applied with any kind of classified parcel data, using the same processes and 

calculations used to create the FVI. The PCA and dasymetric analysis methods designed for this 

study could also be applied in other studies. Therefore, the scripts and detailed documentation 

were uploaded and shared on GitHub. The PCA script is a concise methodology for 

implementing the analysis, and can be performed on any table of values. There is likely a 

multitude of uses for it, which could be helpful to future researchers as they seek to understand 

the factors which control their world. The dasymetric mapping model script was also shared with 

the intention that other spatial analysts could apply the methodology and even improve it. Python 
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scripting allowed for a definitive record of this study’s analysis to be created in a standardized, 

logical language. Every method and action can be repeated, reapplied, scrutinized, and modified. 

5.3. Study Limitations 

Although the FVI analysis was successful in identifying areas of flood vulnerability in 

Harris County, and its results were demonstrated to identify historically vulnerable 

neighborhoods accurately, there remains room for improvement in the analysis. Issues such as 

data quality and the sophistication of the analysis can increase the uncertainty of the analysis’ 

results. Further improvements to both the input data and the analytical process can produce more 

accurate results. 

An index can only be as accurate as the data used to create it. This is made especially 

clear by the FEMA floodplain data used to create the FVI. Areas of Houston that were heavily 

impacted by flooding during Hurricane Harvey were not located on FEMA’s floodplain maps. 

Using the SFHA layer as a flood risk input, therefore, produced an index that likely 

underestimated vulnerability in those areas. More accurate flood risk boundary data would 

significantly elevate this analysis. As such data is not yet available, the current floodplain maps 

were used as the best possible source for flood risk extent. When FEMA completes their updated 

floodplain maps for the Houston area, the model should be re-applied with that updated data. The 

results would likely differ significantly from those described in this report, identifying areas of 

high vulnerability not present on the previous floodplain maps. 

The shelter accessibility portion of the analysis could potentially be refined for more 

precise results. A buffer analysis was used, as at the time of the analysis, ArcGIS Pro did not 

have a tool for creating a network dataset from raw road feature data. With the entire analysis 

performed through ArcGIS Pro, network analysis would not have been practical for building a 
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cohesive, scripted model. A tool to create a network dataset was included with the release of 

ArcGIS Pro 2.5. The creation of a network dataset and its incorporation into the FVI calculation 

would further enhance the analysis and add increased precision to the results. This methodology 

could also increase the variation between flood risk and shelter need populations. 

The dasymetric mapping element of the analysis was performed by assigning specific 

weights to each parcel classification, reclassifying them by estimated population density. The 

weights were assigned using a logical process, and overall were effective at estimating and 

mapping urban density, but other strategies could likely be devised which better estimate parcel 

populations. A sliding weighting scale, which determines parcel weight by factoring in tract 

population as well as the number and different types of parcels in each tract, could potentially 

provide more accurate parcel-level population estimates. 

5.4. Further Research 

There is great potential for continued work on the subject of flood vulnerability and the 

analytical methods associated with it. Flood risk is a critical issue in Houston and many other 

parts of the world, and it appears there is an ever-growing number of challenges associated with 

it. Increased research into spatial methods for identifying and quantifying vulnerability could 

allow for areas of need to be pinpointed, and for resources to be distributed accordingly. 

Houston’s flood vulnerability landscape will likely change significantly in the years and 

decades to come. Major projects are currently underway to mitigate flooding in several high-risk 

areas of the city (Lynn, 2017). As the city continues to grow, new challenges regarding flooding 

will likely arise as well. Emergency planners will need to adapt to this ongoing change. The data 

used to create this index could be obsolete by the time the next major flood impacts the city. For 

this reason, the analysis was developed as a Python script, that could be re-applied with updated 
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data. The script itself could also be changed to incorporate new methodologies or introduce new 

vulnerability factors. This flexibility allows for continuous refining and testing of the analysis. 

The analysis described in this study utilized the NFHL layer to identify the areas of flood 

risk. Although this layer effectively identified high-risk areas for the whole of Harris County, 

there are other potential options for demarcating flood risk. The analysis script is equipped to 

accept any polygon features as flood risk areas, so the analysis could be applied with other flood 

risk representations. Predictive flood modelling, based on factors such as urban land use and 

storm data, could provide a more accurate representation of potential flooding. The analysis 

developed by Gori et al. (2017) delineated flood risk based on future land use projections. The 

results of their study could be incorporated into this study, to examine how flood vulnerability in 

Harris County will change over time. Other predictive models could be used to gain a more 

precise understanding of flood risk in specific areas. Harris County is too large of an area to be 

evenly affected by every flood. Bass and Bedient (2018) developed an analysis that delineated 

flood risk based on potential storm surge and rainfall. With appropriate storm data, their analysis 

could be used to locate areas of risk in the way of incoming floods. The vulnerability index could 

therefore be confined to the extent of potential flooding. Narrowing the focus of the analysis to 

regions in the path of a storm would allow for a more precise assessment of vulnerability in the 

most heavily affected areas. 

There is much potential for continued work regarding the shelter accessibility component 

of this study’s analysis. A network analysis, such as that developed by Curtis (2016), could be 

used in place of this study’s buffer analysis. This would likely produce significantly differing 

results, as it could identify points of impedance, where floodwater could block routes to shelters. 

It would also generate more varied results, as Curtis’ network analysis ranked areas by travel 
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times to shelters, while this study only classified residential parcels as either in or out of shelter 

service area range. Additional factors, such as at-risk populations and shelter capacity, could also 

be incorporated into the network analysis to gain a comprehensive understanding of shelter 

accessibility in Harris County. 

Both the flood risk and shelter accessibility factors were analyzed through the dasymetric 

mapping of at-risk populations throughout Harris County. A dasymetric analysis for this study 

was developed using Houston’s unique land use and tax parcel datasets. This methodology was 

based on Maantay and Moroko’s (2009) CEDS analysis. They found their results differed 

considerably from simpler, tract-level assessments of flood vulnerability. If a similar comparison 

were performed for this study’s flood risk and shelter accessibility factors, it would likely 

produce the same results. As shown through Maantay and Moroko’s analysis, a tract-level 

assessment would likely overestimate flood risk and shelter need in certain tracts where only a 

fraction of the residential population lived in a floodplain. This study’s results could also be 

compared to those of other dasymetric methodologies. The application of Giordano and 

Cheever’s (2010) three-class method would likely produce results that would differ from both a 

tract-level analysis and this study’s dasymetric methodology. The reclassification of land use 

areas as either nonurban, low-density residential, or high-density residential would produce more 

precise results than a non-dasymetric methodology. However, that classification method may not 

fully represent the full range of urban and suburban housing density of the Houston area. 

Residential structures in Houston range from single-family houses to high-rise apartment 

structures, with numerous different types and sizes of arrangements in between. Due to this 

variety of housing density, Giordano and Cheever’s (2010) analysis could potentially 

overestimate population density in some areas, and underestimate it in others. A direct 
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comparison between their methodology and this study’s parcel-based method would help to 

quantify the difference between the two different residential land classifications. 

 The social justice component of this study was based on Cutter, Boruff, and Shirley’s 

(2003) methodology for identifying social vulnerability to natural hazards. A comparison 

between their methods and those of this study would reveal useful information regarding the 

input social justice variables. The two analyses utilized similarly themed variables, although this 

study used less than a third of the total variables used by Cutter, Boruff, and Shirley. Their 

analysis, if applied to Houston, would likely produce similar results. Howeber, it would give 

more weight to areas with high African American or Hispanic populations, which were not 

factored into this study. The most significant difference between these two studies was the 

incorporation of flood risk and shelter accessibility factors. While Cutter, Boruff, and Shirley’s 

(2003) analysis quantified social vulnerability evenly across their study area, this study used 

flood risk and shelter accessibility data to determine where that social vulnerability was the most 

impactful. A comparison of social justice with the other two factors revealed noticeable 

differences between them. The social justice layer showed the social vulnerability landscape for 

the entire county, regardless of flood risk. The inclusion of flood risk and shelter accessibility 

data helped further direct scrutiny to vulnerable populations that were most likely to be affected 

by flooding. The data created through Cutter, Boruff, and Shirley’s social vulnerability analysis 

served as a base upon which to build a more specific, multicriteria assessment of flood 

vulnerability. Social justice is a critical issue in any kind of hazardous event. This study provided 

an example of how their methodology can be applied so that future assessments of vulnerability 

to natural hazards can utilize it as well. 
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5.5. Conclusions 

The goal of this study was to use spatial analysis to create an FVI for Harris County, that 

could be used to visualize the extent and distribution of flood vulnerability in the Houston area. 

The analysis sought to identify the neighborhoods in and around Houston, where the greatest 

numbers of people were vulnerable to flooding. Flood vulnerability was assessed as a 

combination of three main factors: flood risk, shelter accessibility, and social justice. The 

highest-ranked areas of the index were expected to be socioeconomically marginalized areas 

with documented histories of flooding. The results revealed various distributions of high-

vulnerability tracts along several major waterways. Several of the highest-ranked tracts were 

located in low-income neighborhoods that had disproportionally suffered from flooding from 

2015 to 2019, including Alief, Sharpstown, and Greater Greenspoint. These results demonstrated 

that the index analysis effectively identified areas of high vulnerability in the Houston area. 

This study contributes to a growing body of research on the subject of vulnerability to 

flooding and other natural hazards. Several similar studies to this one have been conducted for 

different parts of the world, but relatively little work has been done to identify vulnerable 

populations in Houston. This study therefore sought to address that research gap. The results of 

the study indicated the usefulness of such an analysis, as they included neighborhoods that were 

known to suffer considerably from flooding. The results could be used to identify lesser-known 

areas of vulnerability outside of those neighborhoods as well. In this way, the FVI provided a 

comprehensive representation of flood vulnerability across all of Harris County. Such an analysis 

ensures that no vulnerable people will be forgotten or ignored when they are affected by a flood.  

The methods and strategies described in this thesis are not limited solely to the 

assessment of flood vulnerability in Houston. They can be applied to other types of vulnerability 
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studies as well. Various kinds of hazards, such as earthquakes, fires, and chemical spills, threaten 

different parts of the world. Processes such as PCA and dasymetric mapping can also be used to 

assess vulnerability to any of these hazards. Simple modifications to the scripts created for this 

analysis would allow them to be incorporated into new and different vulnerability analyses. 

Future researchers of vulnerability to natural hazards are encouraged to continue to build on this 

study and those that came before it, to promote equality and assistance to vulnerable people 

around the world.
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Appendices 

Appendix A. Python Scripts 

Census data download and PCA script 

import censusdata as cd 
import pandas as pd 
from scipy import stats 
from sklearn.decomposition import PCA 
from sklearn import datasets 
from sklearn.preprocessing import StandardScaler 
from numpy import eye, asarray, dot, sum, diag 
from numpy.linalg import svd 
 
# This script performs a principal component analysis (PCA) on 12 social 
# justice factors derived from the American Community Survey (ACS). The 
# study area for the analysis is Harris County, Texas. social justice 
# populations were selected due to their potential effects during major 
# flood events, and are assessed at the tract level. All input data are 
# retrieved from the ACS API, which can be accessed through the censusdata 
# Python module. The final output consists of two tables: one containing  
# the final component scores created through the PCA, and the other  
# containing the factor loadings for each component. 
 
out_path = r'C:\Users\MWilson\Houston\Final Thesis Data and Docs' 
 
# Specific fields from relevant tables are retrieved from the ACS API. 
 
harris = cd.download( 
    "acs5", 2018, 
    cd.censusgeo([("state", "48"), ("county", "201"), ("tract", "*")]),  
                ["GEO_ID",  
 
                # Total population: 
                "B01001_001E", 
 
                # Female population: 
                "B01001_026E",  
 
                # Under age 10: 
                "B01001_003E", "B01001_004E", "B01001_027E",  
                "B01001_028E", 



 

   84 

 
                # Over age 64: 
                "B01001_020E", "B01001_021E", "B01001_022E", 
                "B01001_023E", "B01001_024E", "B01001_025E", 
                "B01001_044E", "B01001_045E", "B01001_046E", 
                "B01001_047E", "B01001_048E", "B01001_049E", 
 
                # With a disability: 
                "B18101_004E", "B18101_007E", "B18101_010E", 
                "B18101_013E", "B18101_016E", "B18101_019E", 
                "B18101_023E", "B18101_026E", "B18101_029E", 
                "B18101_032E", "B18101_035E", "B18101_038E", 
 
                # Poverty status: 
                "B17020_002E", 
 
                # Unemploymed: 
                "C18120_006E", 
 
                # Part-time workers: 
                "B23027_005E", "B23027_010E", "B23027_015E", 
                "B23027_020E", "B23027_030E", "B23027_035E", 
 
                # Renters: 
                "B25009_010E", 
 
                # Recieve public assistance: 
                "B19057_002E", 
 
                # Single parent households: 
                "B09005_004E", "B09005_005E", 
 
                # Poor English speakers: 
                "C16001_005E", "C16001_008E", "C16001_011E", 
                "C16001_014E", "C16001_017E", "C16001_020E", 
                "C16001_023E", "C16001_026E", "C16001_029E", 
                "C16001_032E", "C16001_035E", "C16001_038E", 
 
                # No vehicle available:  
                "B08201_002E"]) 
 
# Social justice estimates are created from the retrieved fields. 
 
harris["GEOID"] = harris["GEO_ID"].str.split("S", n=1, expand = True)[1] 
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harris["TOTALPOP"] = harris.B01001_001E 
 
harris["FEMALE"] = harris.B01001_026E 
 
harris["UNDER10"] = harris.B01001_004E + harris.B01001_003E + \ 
                    harris.B01001_027E + harris.B01001_028E 
 
harris["OVER64"] = harris.B01001_020E + harris.B01001_021E + \ 
                    harris.B01001_022E + harris.B01001_023E + \ 
                    harris.B01001_024E + harris.B01001_025E + \ 
                    harris.B01001_044E + harris.B01001_045E + \ 
                    harris.B01001_046E + harris.B01001_047E + \ 
                    harris.B01001_048E + harris.B01001_049E 
 
harris["DISABILITY"] = harris.B18101_004E + harris.B18101_007E + \ 
                        harris.B18101_010E + harris.B18101_013E + \ 
                        harris.B18101_016E + harris.B18101_019E + \ 
                        harris.B18101_023E + harris.B18101_026E + \ 
                        harris.B18101_029E + harris.B18101_032E + \ 
                        harris.B18101_035E + harris.B18101_038E 
 
harris["POVERTY"] = harris.B17020_002E 
 
harris["UNEMP"] = harris.C18120_006E 
 
harris["PART_TIME"] = harris.B23027_005E + harris.B23027_010E + \ 
                        harris.B23027_015E + harris.B23027_020E + \ 
                        harris.B23027_030E + harris.B23027_035E 
 
harris["RENTER"] = harris.B25009_010E 
 
harris["PUB_ASSIST"] = harris.B19057_002E 
 
harris["SINGLE_PARENT"] = harris.B09005_004E 
 
harris["POORENG"] = harris.C16001_005E + harris.C16001_008E + \ 
                    harris.C16001_011E + harris.C16001_014E + \ 
                    harris.C16001_017E + harris.C16001_020E + \ 
                    harris.C16001_023E + harris.C16001_026E + \ 
                    harris.C16001_029E + harris.C16001_032E + \ 
                    harris.C16001_035E + harris.C16001_038E 
 
harris["NOCAR"] = harris.B08201_002E 
 
c_fields = ["FEMALE", "UNDER10", "OVER64", "DISABILITY",  



 

   86 

            "POVERTY", "UNEMP", "PART_TIME", "RENTER", "PUB_ASSIST", 
            "SINGLE_PARENT", "POORENG", "NOCAR"] 
 
all_fields = ["GEOID"] + c_fields 
 
SJ_pops = pd.DataFrame(harris, columns = all_fields) 
 
SJ_pops.reset_index(inplace=True) 
 
# Social justice variables occur on several different scales  
# (population, households, population over 16), so they need 
# to be standardized. In this script this is done through 
# percentile rankings. 
 

def percentileTable(in_data, fields): 
    """This function Calculates the percentile score for each 
    value in a numeric field. It takes 2 arguments: 
 
        in_data - input pandas dataframe containing values to be  
       ranked. 
    fields - list containing names of fields within dataframe 
       to be ranked. 
 
    The ouput is a pandas dataframe containing the newly created 
    percentile fields. 
    """ 
    for field in fields: 
        vals = list(in_data[field]) 
        arr = [i for i in vals if i != 0] 
        pctile = [stats.percentileofscore( 
            arr, n) if n != 0 else 0 for n in vals] 
        in_data["P_" + field] = pctile 
 
    p_fields = ["P_" + field for field in fields] 
 
    return pd.DataFrame(in_data, columns=p_fields) 
 
# Scikit-Learn is used to perform the PCA. The PCA_kaiser function 
# first scales the input values, in order to increase the 
# variance within each variable. The PCA is then performed on the  
# scaled data, and components are created which are equal in number  
# to the input fields. the eigenvalues of the correlation matrix of each 
# component are then assessed. The Kaiser rule is then applied to the  
# components, in which only those with an eigenvalue of 1.00 or greater  
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# are retained. 
 
def PCA_kaiser(in_data): 
    """This function performs a PCA for an input dataset with multiple 
    independent variables. The Kaiser rule is applied to the resulting  
    components. The output is a pandas dataframe with all remaining 
    components with and eigenvalue over 1.00.""" 
 
    component_cnt = len(in_data.columns) 
    X_scaled = StandardScaler().fit_transform(in_data) 
    pca = PCA(component_cnt) 
    f = pca.fit(X_scaled) 
    t = pca.transform(X_scaled) 
    PCA_Components = pd.DataFrame(t) 
    keep_components = 0 
    for eigval in pca.explained_variance_: 
        if eigval > 1: 
            keep_components = keep_components + 1 
    return pd.DataFrame(PCA_Components.iloc[:, 0:keep_components]) 
 
# The output components from the PCA are rotated in order to further  
# increase the variance within the dataset. 
 
def varimax(Phi, gamma = 1.0, q = 20, tol = 1e-6): 
    """This function performs a varimax rotation for a set of PCA components. 
    the input is a pandas DataFrame containing the component scores, and the 
    output is a pandas DataFrame with the rotated scores""" 
    p,k = Phi.shape 
    R = eye(k) 
    d=0 
    for i in range(q): 
        d_old = d 
        Lambda = dot(Phi, R) 
        u,s,vh = svd( 
            dot(Phi.T,asarray( 
                Lambda)**3 - (gamma/p) * dot( 
                    Lambda, diag(diag(dot(Lambda.T,Lambda)))))) 
        R = dot(u,vh) 
        d = sum(s) 
        if d_old!=0 and d/d_old < 1 + tol: break 
    return pd.DataFrame(dot(Phi, R)) 
 
# Factor loadings are determined by assessing the degree of  
# correlation (positive or negative) between each component and the 
# input variables. Variables with high correlation coefficients 
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# are considered to be the most heavily loaded. The dominant variable 
# is that which has the highest absolute correlation. 
 

def factorLoadings(PCA_table, in_table): 
    """This function computes the factor loadings for each component 
    in a PCA dataset. The function takes 2 arguments: 
 
        PCA_table - dataframe containing PCA scores 
        in_table - original input dataframe used to create the PCA scores 
     
    The output is a dataframe containing the factor loadings for each  
    component. 
    """ 
    compare = pd.concat([PCA_table, in_table], axis=1, sort=False) 
    corr = compare.corr() 
    pca_cols = len(PCA_table.columns) 
    return corr.iloc[pca_cols:, :pca_cols] 
 
percentiles = percentileTable(SJ_pops, c_fields) 
in_PCA = PCA_kaiser(percentiles) 
PCA_rotated = varimax(in_PCA) 
fl = factorLoadings(PCA_rotated, percentiles) 
# The final PCA scores and factor loadings are exported to CSV files 
# in the output filepath.  
 
PCA_rotated.to_csv(out_path + '\PCA_rotated.csv') 
fl.to_csv(out_path + '\FactorLoadings.csv') 
 

 

Dasymetric analysis and final index score calculation 

# Flood Vulnerability Index Model 
 
# This model utilizes tax parcel, land use, flood hazard, shelter location, 
# and census data to create a flood vulnerability index for Houston, Texas. 
# dasymetric mapping is utilized to disaggregate tract-level population  
# estimates to the parcel level, based on weight of parcel code. 
# Populated parcels are then selected where they intersect flood hazard 
# and shelter need areas. The results of the dasymetric analysis are ranked 
# by percentile and combined with social justice data calculated through  
# principal component analysis in a different script. Factor weights were 
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# determined through analytical hierarchy process (AHP). The final output of this
  
# model is a tract-level vulnerability index score, which is added to the  
# input census tract boundary feature class as a new field. 
 
import arcpy as ap 
from scipy import stats 
 
ap.env.overwriteOutput = True 
 
ap.env.workspace = r'C:\Users\MWilson\Houston\Final Thesis Data and Docs\Houston\
Houston.gdb' 
 
# The input spatial data for the model is listed below. 
 
# Land use parcels containing 4-digit numeric land use codes are used to  
# identify large residential structures. 
 
land_use = "COH_LAND_USE"  
 
# Tax parcel data containing 2-character alphanumeric tax codes are used 
# to identify smaller residential parcels. 
 
parcels = "Parcels" 
 
# Final index scores are stored in the census tracts input feature class. 
 
tracts = "Tracts" 
 
# 100-year floodplain also known as special flood hazard area (SFHA) are 
# used to demarcate areas of flood risk. 
 
SFHA = "SFHA"  
 
# FEMA shelter points are used to identify local shelter locations. 
 
shelters = "Shelters" 
 
# The population table contains American Community Survey (ACS)  
# population estimates for each census tract. 
 
pop_table = "TotalPop" 
 
# The population field from the population table is added to the  
# tract feature class table. 
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pop_field = "TotalPop" 
 
# The tract ID or GEOID is utilized for various join operations. 
 
tract_id = "TRACT" 
 
# Individual scores are calculated for flood risk and shelter 
# accessibility, while the social justice score is provided 
# from a seperate analysis. All three scores are weighted 
# and combined for the final FV score. 
 
FR_Score = "FR_Score" 
 
SA_Score = "SA_Score" 
 
SJ_Score = "SJ_Pctile" 
 
FVI_Score = "FVI_SCore" 
 
# Factor weights were determined through an AHP. 
 
factor_weights = [52.7, 14.0, 33.3] 
 
# A unique weight is assigned to each residential land use or state  
# classification code based on structure size and estimated residential 
# population density. 
 
lu_codes = [['4209', 12], ['4211', 24], ['4212', 48], ['4213', 24], 
             ['4214', 96], ['4221', 48], ['4222', 48], ['4313', 48],  
             ['4316', 48], ['4319', 48], ['4670', 96], ['4613', 96]] 
 
state_codes = [['A1', 1], ['A2', 1], ['B2', 2],  
                ['B3', 3], ['B4', 4], ['E1', 1]] 
 
# Two functions in this model utilize a field calculator codeblock function. 
 
codeblock = """ 
 
# This function returns 0 if an input value is null, and if the value is present,
  
# multiplies that value by a specified weight. 
 
def getcount(count, weight): 
    if count is None: 
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        return 0 
    else: 
        return count * weight 
 
# This function simply returns 0 for a null value and the value if it exists. 
 
def NoNulls(v): 
     
    if v is None: 
        return 0 
    else: 
        return v 
 
""" 
 

# The JoinField function takes an input feature class and join table, and  
# creates a new field in the input table from a field in the join table, with 
# nulls replaced by zeros. For this model, the join field for both inputs is 
# always the tract ID/GEOID. 
 
def JoinField(in_fc, join_table, in_field, out_field, join_field) 
    """This function can be used to create a new field in a feature class 
    table from a field in a joined table. Unlike the ArcPy JoinField_management 
    function, this allows for a different name to be given to the output field 
    This function takes 5 arguments: 
    in_fc - input feature class 
    join_table - table to be joined to feature class 
    in_field - field in join_table to be added to in_fc 
    out_field - name of new field in in_fc 
    join_field - field on which the two tables will be joined. Must be the same  
    name for both datasets""" 
    ap.AddField_management(in_fc, out_field, "DOUBLE") 
    ap.MakeFeatureLayer_management(in_fc, "layer") 
    ap.AddJoin_management("layer", join_field, join_table, join_field) 
    ap.CalculateField_management( 
        "layer", out_field,  
        "NoNulls(!{}.{}!)".format(join_table, in_field),  
        "PYTHON3", codeblock) 
    ap.Delete_management("layer") 
 
# JoinField is used to create the tract population field. 
 
JoinField(tracts, pop_table, pop_field, pop_field, tract_id) 
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# Some multi-unit land use parcels overlap with numerous single-family  
# parcels. In this case, the state classifications are a more accurate  
# indicator of the number of people living in a parcel, and the coincident 
# land use parcel must be removed. 
 
ap.MakeFeatureLayer_management( 
    land_use, "lu_lyr",  
    """"LANDUSE_CD" IN ( 
        '4209', '4211', '4212',  
        '4213', '4214', '4221',  
        '4222', '4313', '4316',  
        '4319', '4613', '4670')""") 
 
ap.CopyFeatures_management("lu_lyr", "lu_res") 
ap.Delete_management("lu_lyr") 
ap.MakeFeatureLayer_management("lu_res", "res_lyr") 
ap.MakeFeatureLayer_management( 
    parcels, "parcel_lyr",  
    """"StClsCode" IN ('A1', 'A2',  
    'B2', 'B3', 'B4')""") 
 
ap.SelectLayerByLocation_management( 
    "res_lyr", "ARE_IDENTICAL_TO", "parcel_lyr") 
ap.DeleteFeatures_management("res_lyr") 
ap.Delete_management("res_lyr") 
ap.Delete_management("parcel_lyr") 
 
# The GetCodeCounts function uses summary statistics to calculate counts for 
# each different parcel code in each tract. Tracts are spatially joined to  
# parcels in order to assign the tract ID field to each parcel Weighted counts  
# are then calculated by multiplying each count by its respective parcel code wei
ght.  
# All weighted counts for each tract are then summed for the total weighted count
. 
 
def GetCodeCounts( 
        parcel_fc, tract_fc, joined_parcels,  
        code_field, tract_id, sum_field, code_list): 
    """This function generates tract-level weighted code counts from Houston 
    parcel data. Weights are determined by estimated housing size. The function 
    takes 7 arguments: 
 
    parcel_fc - input parcel feature class 
    tract_fc - census tract feature class 
    joined_parcels - name of join feature class created from spatial join of  
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    tracts and parcels 
    code_field - name of input parcel code field 
    tract_id - unique identifier field for tracts (GEOID) 
    sum_field - name of field containing weighted code counts 
    code_list - list containing parcel codes and thier associated weights, 
    entered as [[code1, weight1], [code2, weight2], etc] 
 
    The final output is a weighted code count field in the tract feature class 
    """ 
    ap.SpatialJoin_analysis( 
        parcel_fc, tract_fc, joined_parcels,  
        "JOIN_ONE_TO_ONE", "KEEP_ALL", "#", "HAVE_THEIR_CENTER_IN") 
 
    for code in code_list: 
        ap.MakeFeatureLayer_management( 
            joined_parcels, "parcel_lyr",  
            code_field + """ = '{}'""".format(code[0], code_field)) 
 
        ap.Statistics_analysis( 
            "parcel_lyr", "stats_{}".format(code[0]), 
             [[code_field, "COUNT"]],  tract_id) 
 
        ap.Delete_management("parcel_lyr") 
 

    ap.MakeFeatureLayer_management(tract_fc, "tract_lyr") 
 
    for code in code_list: 
        ap.AddField_management( 
            "tract_lyr", "Weighted_{}".format(code[0]), "LONG") 
        ap.AddJoin_management( 
            "tract_lyr", tract_id,  
            "stats_{}".format(code[0]), tract_id) 
        ap.CalculateField_management( 
            "tract_lyr", "Weighted_{}".format(code[0]),  
            "getcount(!stats_{}.COUNT_{}!, {})".format(code[0],  
                                                        code_field, 
                                                        code[1]),  
            "PYTHON3", codeblock) 
        ap.RemoveJoin_management("tract_lyr") 
 
    ap.Delete_management("tract_lyr")    
    sum_codes= [] 
    for code in code_list: 
        sum_codes.append('!Weighted_{}!'.format(code[0])) 
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    weighted_codes  = str(sum_codes).replace("'", "") 
     
    ap.AddField_management(tract_fc, sum_field, "LONG") 
    ap.CalculateField_management( 
        tract_fc, sum_field,  
        "sum({})".format(weighted_codes), "PYTHON3") 
 
# GetCodeCounts is applied to both land use and tax parcels, to get weighted coun
ts  
# from both datasets. The two counts for each tract are then combined for the tot
al  
# weighted residential parcel count. 
 
GetCodeCounts( 
    "lu_res", tracts, "lu_join", 'LANDUSE_CD',  
    tract_id, "LU_WeightedSum", lu_codes) 
 
GetCodeCounts( 
    parcels, tracts, "parcel_join","StClsCode",  
    tract_id, "Parcels_WeightedSum", state_codes) 
 

ap.AddField_management(tracts, "WeightedSum_Total", "LONG") 
ap.CalculateField_management( 
    tracts, "WeightedSum_Total",  
    '!LU_WeightedSum! + !Parcels_WeightedSum!', "PYTHON3") 
 
# The parcels containing the tract ID field created through GetCodeCounts are 
# merged to create a single residential parcel layer. A 'Res_Units' field is 
# added to the feature class table, which is then populated with the assigned 
# weight for a given parcel's classification code. 
 
ap.Merge_management(["lu_join", "parcel_join"], "All_Res") 
ap.AddField_management("All_Res", "Res_Units", "LONG") 
 
ap.MakeFeatureLayer_management("All_Res", "res_lyr") 
 
for code in lu_codes: 
    ap.SelectLayerByAttribute_management( 
        "res_lyr", "NEW_SELECTION",  
        """"LANDUSE_CD" = '{}'""".format(code[0])) 
    ap.CalculateField_management( 
        "res_lyr", "Res_Units", code[1], "PYTHON3") 
     
for code in state_codes: 
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    ap.SelectLayerByAttribute_management( 
        "res_lyr", "NEW_SELECTION",  
        """"StClsCode" = '{}'""".format(code[0])) 
    ap.CalculateField_management( 
        "res_lyr", "Res_Units", code[1], "PYTHON3") 
 
# Tract populations, weighted counts, and the Res_Units field created above  
# are used to estimate each parcel's population. Tract populations are divided  
# by weighted counts to get a 'people per unit' (PPU) field, which is then  
# multiplied by Res_Units to calculate the parcel population. 
 
def ParcelPopulation( 
        tract_fc, parcel_fc, pop_field, 
         count_field, res_units, tract_id): 
     
    """This function estimates the residential populations for parcel features, 
    based on weighted parcel code counts and tract-level populations. It takes 
    6 arguments: 
     
    tract_fc - census tract feature class with population and weighted count fiel
ds 
    parcel_fc - residential parcel feature class 
    pop_field - population field in tract table 
    count_field - weighted code count field in tract table 
    res_units - field in parcel_fc containing estimated number of residential uni
ts  
    (code weight) 
    tract_id - Unique identifier field for tracts (GEOID) 
     
    The output is a parcel population field in the input parcel feature class""" 
 
    ap.AddField_management(tract_fc, "PPU", "DOUBLE") 
    ap.CalculateField_management( 
        tract_fc, "PPU",  
        "!{}!/!{}!".format(pop_field, count_field)) 
    ap.AddField_management(parcel_fc, "ParcelPop", "DOUBLE") 
    ap.MakeFeatureLayer_management(parcel_fc, "parcel_lyr") 
    ap.AddJoin_management("parcel_lyr", tract_id, tract_fc, tract_id) 
    ap.AddField_management("parcel_lyr", "PPU", "DOUBLE") 
    ap.CalculateField_management( 
        "parcel_lyr", "PPU",  
        "!{}.PPU!".format(tracts), "PYTHON3") 
    ap.Delete_management("parcel_lyr") 
    ap.CalculateField_management( 
        parcel_fc, "ParcelPop",  
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        "!{}!*!PPU!".format(res_units), "PYTHON3") 
 
ParcelPopulation( 
    tracts, "All_Res", "TotalPop",  
    "WeightedSum_Total", "Res_Units", tract_id) 
 
# Areas of shelter need (shelter inaccessibility) are defined as areas 
# where at-risk populations are not located within one mile of a shelter. 
# These areas are created as all SFHA areas which do not intersect a 
# shelter buffer. 
 
ap.Buffer_analysis(shelters, "Shelter_Buffers", "1 MILE") 
ap.Erase_analysis(SFHA, "Shelter_Buffers", "Shelter_Erase") 
 
# Flood risk and shelter accessibility are computed at the tract level 
# through a selection of residential parcel within flood risk and shelter 
# need polygon layers 
 
def DasymetricSelection( 
        parcel_fc, pop_field,  
        tract_id, select_fc, out_table): 
    """This function uses parcel-level populations to determine 
    tract-level populations living within certain boundaries.  
    It takes 5 arguments: 
     
    parcel_fc - input parcel feature class 
    pop_field - parcel population field 
    tract_id - tract ID (GEOID) field in the parcel table 
    select_fc - feature class demarcating boundaries for selection 
    out_table - name of the output table with tract-level dasymetric  
    population estimates""" 
    ap.MakeFeatureLayer_management(parcel_fc, "res_lyr") 
    ap.SelectLayerByLocation_management( 
        "res_lyr", "INTERSECT", select_fc) 
    ap.Statistics_analysis( 
        "res_lyr", out_table,  
        [[pop_field, "SUM"]], tract_id) 
 

DasymetricSelection( 
    "All_Res", "ParcelPop",  
    tract_id, "Shelter_Erase", "NoShelter") 
 
DasymetricSelection( 
    "All_Res", "ParcelPop",  
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    tract_id, "SFHA", "FloodHazard") 
 
# JoinField is used to add the population fields from the statistics tables 
# created through the DasymetricSelectionFunction to the census tract layer. 
 
JoinField( 
    tracts, "FloodHazard",  
    "SUM_ParcelPop", "AtRisk", tract_id) 
 
JoinField( 
    tracts, "NoShelter",  
    "SUM_ParcelPop", "ShelterInacc", tract_id) 
 
# The GetPercentile uses the scipy module to calculate the percentile score 
# for each record of an input field, counting nulls and zeros as 0. This 
# function is used to standardize the dasymetric population counts, 
# which can then be combined with the social justice field, which 
# is also ranked by percentiles. 
 
def GetPercentile(in_fc, in_field, out_field): 
    """This function computes percentile scores for each value in an input  
    table field, and writes them to a new field in the same table. It takes 
    3 arguments: 
     
    in_fc - input feature class or table 
    in_field - field to be ranked 
    out_field - name of output percentile score field""" 
 
    ap.MakeTableView_management( 
        in_fc, "table_view",  
        '{0} IS NOT NULL AND {0} <>0'.format(in_field)) 
 
    ta = ap.da.TableToNumPyArray("table_view", [in_field]) 
 
    array = ta[in_field] 
 
    ap.AddField_management(in_fc, out_field, "DOUBLE") 
 
    cursor = ap.da.UpdateCursor(in_fc, [in_field, out_field]) 
 
    for row in cursor: 
        if row[0] !=0 and not row[0] is None: 
            row[1] = stats.percentileofscore(array, row[0]) 
        else: 
            row[1] = 0 
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        cursor.updateRow(row) 
     
GetPercentile(tracts, "AtRisk", "FR_Score") 
GetPercentile(tracts, "ShelterInacc", "SA_SCore") 
#GetPercentile(tracts, SJ_Score, "SJ_Score") 
 
score_fields = [FR_Score, SA_Score, SJ_Score] 
 
# The finalScore function takes two input lists of equal length for the  
# three factor scores and their respective weights. Each factor is weighted 
# and then all three are combined for the final FVI score. 
 
def FinalScore(in_fc, in_fields, weights, fv_score): 
    """This function calculates a weighted average based on a list of input 
    fields and a corresponding list of weights. It takes 4 arguments: 
     
    in_fc - input feature class or table containing fields to be averaged 
    in_fields - list of input fields 
    weights - list of weights for each input field 
    fv_score - name of final score field containing weighted averages""" 
 
    weightcalcs = [weight/100 for weight in weights] 
    fieldcalcs = ["!" + field + "!" for field in in_fields] 
    ap.AddField_management(in_fc, fv_score, "DOUBLE") 
    ap.CalculateField_management( 
        in_fc, fv_score,  
        "({}*{})".format(fieldcalcs[0], weightcalcs[0]) +  
        "({}*{})".format(fieldcalcs[1], weightcalcs[1]) +  
        "({}*{})".format(fieldcalcs[2], weightcalcs[2]), “PYTHON”) 
 

FinalScore(tracts, score_fields, factor_weights, FVI_Score) 
 

 



 

   99 

Appendix B. Super Neighborhoods, Ranked by Mean FV Score 

Super Neighborhood 
Mean 

FV 
Score 

Maximum 
FV Score 

Minimum 
FV Score 

Very 
Low Low Medium High Very 

High 

Braeburn 75.69 94.33 46.23 0 0 4 3 2 

Meyerland Area 67.58 92.79 41.99 0 0 7 6 1 

Westwood 64.19 85.83 27.75 0 0 4 5 0 

Alief 63.84 95.53 25.34 0 0 18 8 3 

IAH/Airport Area 57.65 92.92 30.00 0 0 8 1 1 

Hidden Valley 57.35 79.45 32.13 0 0 4 2 0 

Brays Oaks 57.20 94.33 6.52 1 0 12 4 2 

Fairbanks/Northwest 
Crossing 56.88 87.13 5.34 1 0 7 3 0 

Greater Inwood 56.73 87.13 13.61 0 2 12 5 0 

Sharpstown 56.32 94.33 8.47 1 5 8 8 3 

Willowbrook 55.54 85.98 29.49 0 0 5 1 0 

Braeswood 55.48 93.66 9.41 1 2 9 3 1 

Fondren Gardens 55.07 71.50 26.99 0 0 4 0 0 

Greater Hobby Area 54.15 95.72 0.08 2 1 5 5 1 

South Belt/Ellington 54.14 95.71 8.09 2 3 8 6 3 

Central Southwest 53.82 95.72 8.56 2 1 9 3 1 

Edgebrook Area 53.30 86.87 8.52 1 0 4 3 0 

Lake Houston 52.91 71.50 13.88 0 1 14 0 0 

Eldridge/West Oaks 51.71 97.96 6.05 1 4 12 4 2 
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Greater Greenspoint 50.99 83.90 6.40 1 4 9 5 0 

Kingwood Area 49.06 71.50 12.11 0 2 13 0 0 

Museum Park 48.95 69.04 9.79 1 0 2 0 0 

Lazybrook/Timbergrove 48.70 86.73 3.86 1 2 4 3 0 

South Main 47.17 93.66 18.30 0 2 3 0 1 

Addicks Park Ten 47.04 91.11 6.05 2 1 6 3 1 

Westbury 47.01 78.60 20.45 0 2 9 2 0 

Westchase 46.58 97.96 19.41 0 4 9 3 2 

South Acres/Crestmont 
Park 45.97 95.72 8.74 1 1 5 0 1 

Langwood 45.97 77.75 5.34 2 0 3 2 0 

Gulfton 45.65 92.79 9.32 2 7 3 3 2 

Westbranch 43.21 76.96 25.90 0 0 2 1 0 

Carverdale 43.14 76.96 25.90 0 0 5 1 0 

Willow Meadows/ 
Willowbend Area 42.68 93.66 10.08 0 4 5 1 1 

Fort Bend Houston 41.95 69.51 26.99 0 0 3 0 0 

El Dorado/Oates Prairie 41.30 69.02 9.02 1 1 7 0 0 

Briar Forest 41.16 97.96 13.64 0 5 9 0 1 

University Place 40.91 78.18 6.23 3 1 5 1 0 

Clear Lake 40.39 95.71 5.63 2 5 12 0 2 

Spring Branch East 40.14 86.73 3.86 4 2 6 4 0 

Minnetex 38.77 95.72 3.48 2 2 3 1 1 

Acres Home 38.04 81.14 6.41 3 2 9 1 0 
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Central Northwest 37.49 81.14 1.53 5 2 9 2 0 

Hunterwood 37.20 65.74 12.28 0 1 2 0 0 

Memorial 36.79 75.38 6.05 1 7 16 1 0 

Medical Center Area 36.56 69.04 9.79 1 2 5 0 0 

Astrodome Area 36.20 93.66 1.69 2 4 6 0 1 

Washington Avenue 
Coalition/Memorial 

Park 
34.19 86.73 3.86 1 6 9 2 0 

Northside/ Northline 34.17 82.87 4.75 3 7 8 2 0 

Sunnyside 33.52 71.83 5.85 3 3 6 0 0 

Spring Branch North 32.97 76.96 2.70 3 2 9 1 0 

Settegast 32.93 64.68 9.02 1 1 2 0 0 

Northshore 32.84 69.02 4.19 2 4 9 0 0 

Greater Heights 32.65 86.73 5.17 2 10 9 2 0 

Independence Heights 31.95 72.64 7.12 3 2 6 0 0 

Park Place 31.83 69.96 12.72 0 2 3 0 0 

Mid West 31.20 77.69 2.03 4 9 13 1 0 

Eastex - Jensen Area 30.86 82.87 0.76 6 6 8 1 0 

Spring Branch Central 30.82 75.65 2.70 2 5 8 1 0 

Pecan Park 30.19 69.96 0.55 2 2 6 0 0 

Meadowbrook/ 
Allendale 29.64 69.96 0.17 1 5 5 0 0 

Golfcrest/ 
Bellfort/Reveille 28.56 69.96 0.08 4 7 11 0 0 

Greater Uptown 28.24 65.62 1.40 4 9 11 0 0 

Kashmere Gardens 27.80 64.68 0.76 4 1 6 0 0 
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Gulfgate 
Riverview/Pine Valley 27.59 64.14 0.97 2 2 4 0 0 

East Little 
York/Homestead 27.33 92.92 1.61 4 4 4 0 1 

Spring Branch West 27.11 76.96 2.70 3 9 8 1 0 

Macgregor 26.65 69.04 0.97 5 3 5 0 0 

East Houston 26.02 47.73 5.42 2 2 3 0 0 

Fourth Ward 25.10 50.75 12.20 0 3 2 0 0 

Greater Fifth Ward 24.39 64.68 1.65 5 4 6 0 0 

Pleasantville Area 23.50 64.68 0.85 3 2 3 0 0 

Lawndale/ Wayside 23.44 40.18 0.55 1 4 5 0 0 

South Park 23.16 49.94 2.25 4 3 5 0 0 

Trinity/Houston 
Gardens 22.40 64.68 1.61 5 3 3 0 0 

Harrisburg/Manchester 22.32 69.96 0.17 2 4 4 0 0 

Greenway/Upper Kirby 
Area 21.53 68.74 3.39 7 5 3 0 0 

Magnolia Park 20.86 29.53 13.01 0 6 2 0 0 

Afton Oaks/River Oaks 
Area 19.36 55.19 1.40 4 7 3 0 0 

Greater Eastwood 19.33 47.89 0.47 3 3 4 0 0 

Second Ward 18.38 42.21 4.32 2 6 2 0 0 

Downtown 18.28 53.25 0.47 5 3 3 0 0 

Midtown 18.07 68.02 1.02 5 4 2 0 0 

Near Northside 17.92 45.43 0.76 4 8 3 0 0 

Denver Harbor/Port 
Houston 17.46 64.68 1.74 4 6 2 0 0 

Neartown - Montrose 17.28 50.75 2.29 5 8 3 0 0 
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Greater Third Ward 16.93 68.02 0.47 8 1 3 0 0 

Clinton Park Tri-
Community 16.22 37.60 0.85 2 2 2 0 0 

Greater Ost/ South 
Union 11.79 44.24 0.97 7 5 1 0 0 
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