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Abstract 

Increasing rates of maternal obesity during and after pregnancy are associated with numerous 

short- and long-term health risks and outcomes in women postpartum. Hispanic women of 

childbearing age have disproportionally high obesity risks and low physical activity (PA) levels 

compared to non-Hispanic white populations. This dissertation study used 4-day objective, 

highly resolved smartphone location and accelerometry-assessed activity data collected from 62 

Hispanic women of childbearing age in urban Los Angeles, CA, during pregnancy and the early 

postpartum period to investigate the associations among women’s daily mobility patterns 

(Chapter 2), dynamic built-environment (BE) exposures (Chapter 3), and PA outcomes (Chapter 

4). Results of these three empirical case studies revealed exceedingly low parks and open space 

exposure for this group at their daily activity locations and along travel paths during and after 

pregnancy, which had negative impacts on their day-to-day PA outcomes. In addition, important 

modifiers (e.g., late pregnancy, early postpartum, high pre-pregnancy BMI, low neighborhood 

safety) of women’s daily mobility and BE exposures, and their associations with PA outcomes 

were identified. Lastly, measurement error and bias resulting from applying traditional 

residential-based measures were evaluated and their implications for uncovering the relationships 

between BE exposures and PA outcomes were investigated. Future studies should conduct 

qualitative analyses of the BE features (e.g., parks) in which women’s PA were performed, 

mitigate selective daily mobility bias, and apply real-time surveying techniques such as 

ecological momentary assessment (EMA) to elucidate psychosocial pathways from BE 

exposures to PA outcomes. Future PA promotion interventions for pregnant women should target 

at-risk pregnancy periods and sub-population groups to improve their efficacy, especially for 

those of low socioeconomic status and specific racial/ethnic minority groups. 
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Chapter 1  Introduction 

Increasing rates of maternal obesity during and after pregnancy are associated with numerous 

short-term and long-term health risks and outcomes for women postpartum (Algoblan, Alalfi, 

and Khan 2014; Fan et al. 2013; Fowles, and Sterling 2011; Fraser et al. 2011; Soltani and Fraser 

2000; Walker, Walter et al. 2015). Rates of pregnancy-related obesity risks and health outcomes 

are disproportionally high in Hispanic women (Brawarsky et al. 2005; Chasan-Taber et al. 2008; 

Headen et al. 2012; Ogden et al. 2016). Research indicates physical activity (PA), a common 

etiological factor of obesity, is disproportionally low among Hispanic pregnant women (August 

and Sorkin 2011; Hughes, McDowell, and Brody 2008; Arredondo et al. 2016), which may be 

explained by women’s consistent exposures to the built environment (BE) barriers for PA. This 

chapter describes the critical gaps and analytical problems in past studies examining the 

associations between BE exposure and women’s PA during and after pregnancy, presents a 

conceptual framework that aims to tackle these gaps, and further elucidates the impact of BE on 

PA in women of childbearing age, particularly for those of low-income or in specific 

racial/ethnic minority groups. 

1.1. Disparities of Obesity-Related Outcomes in Hispanic Women 

Obesity prevalence is rapidly growing in the US, with the latest 2016 National Health and 

Nutrition Examination Survey showing 39.8% of US adults were obese (Hales et al. 2018). 

Obesity rates for US women of childbearing age have doubled over the past 30 years (Ogden et 

al. 2016). Evidence indicates more than 40% of women gained weight during pregnancy that 

exceeded recommended levels (Rasmussen, Catalano, and Yaktine 2009). Increasing rates of 

maternal obesity during and after pregnancy pose serious health concerns for mothers. Higher 

pre-pregnancy weight and excessive weight gain during pregnancy lead to increased risks of 



    

 
2 

postpartum weight retention (Soltani and Fraser 2000; Walker, Fowles, and Sterling 2011), 

which can result in long-term health outcomes such as diabetes, cancer, and cardiovascular 

diseases (Algoblan, Alalfi, and Khan 2014; Fan et al. 2013; Fraser et al. 2011; Walter et al. 

2015). Rates of pregnancy-related obesity risks and health outcomes are disproportionally high 

in Hispanic women. Latest data indicates that 40% of Hispanic women of childbearing age were 

obese compared to 31% for non-Hispanic white women of this age and 51% of them gained 

more weight than recommended during pregnancy (Brawarsky et al. 2005; Chasan-Taber et al. 

2008; Headen et al. 2012; Ogden et al. 2016). Energy-balance behaviors such as PA and diet are 

common etiological factors of obesity (Taveras et al. 2010; Singh et al. 2008). Although few 

existing studies have examined PA in Hispanic women of children bearing age, some evidence 

indicates Hispanic women overall was less likely to meet the PA guidelines than non-Hispanic 

white population (August and Sorkin 2011; Hughes, McDowell, and Brody 2008; Arredondo et 

al. 2016). Understanding drivers of causes of disparities in PA outcomes among minority women 

is a critical step towards reducing the disproportionate obesity risks borne by these groups. 

1.2. Critical Gaps in Research 

According to Sallis’s socioecological model, exposure to the BE could be linked to 

obesity-related risks and health outcomes through influencing individual-level energy-balance 

behaviors (Sallis et al. 2006). BE exposures typically refer to objectively assessed measures of 

access to destinations (e.g., parks) and features (e.g., street trees) that might influence behaviors, 

as well as measures characterizing urban form (e.g., walkability) within certain spatial extents 

(e.g., buffers of home address points) and time periods (e.g., days) (Sallis et al. 2012; Booth, 

Pinkston, and Poston 2005). For pregnant women, past studies report mixed results of 

associations between BE features and characteristics and their PA behaviors. For instance, a 
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Norwegian study showed positive associations between both objectively measured and perceived 

access to parks and open space in the residential neighborhood and moderate-to-vigorous PA 

(MVPA) minutes during and after pregnancy (Richardsen et al. 2016). However, similar 

associations between total green space area within residential census tracts and PA outcomes 

during pregnancy were not significant in a New Zealand study (Nichani et al.  2016). In addition, 

past studies indicate associations between BE features and PA outcomes only exist at a specific 

pre- and postpartum period. For instance, a US study indicates total greenspace area within 

residential census tracts was positively associated with women’s MVPA minutes during the 3rd 

trimester, while the same study also reports distance from home to transit and PA facilities were 

negatively associated with MVPA minutes at postpartum periods (Porter et al. 2019). However, 

there is little research on how the effects of BE on PA behaviors operate during the pre- and 

postpartum periods. Since PA behaviors of women may be subject to dramatic changes during 

the pre- and postpartum periods due to growing family and childcare responsibilities (Borodulin, 

Evenson, and Herring 2009; O’Brien et al. 2017), as well as biophysiological changes, it is 

important to examine the contributions of various BE features or characteristics to PA among 

this population and how their associations vary across periods for these populations. 

Moreover, besides the disproportionate rates of obesity experienced by Hispanic women 

of childbearing age, previous studies also show that women from disadvantaged minority and 

low-income groups are disproportionately exposed to BE barriers that deter PA, including low 

access to recreational facilities and parks and open space, low quality pedestrian infrastructure 

such as under-maintained sidewalks, and less aesthetically pleasing streetscapes (Lovasi et al. 

2009; Perez, Ruiz, and Berrigan 2019; Sallis et al. 2011; Singh et al. 2008). In addition, past 

research on low-income populations also indicates how the effects of various BE elements might 
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operate differently among different socioeconomic status (SES) groups. For example, a study on 

exercise among low-income African American women reports high membership costs of 

recreational facilities in their neighborhoods as one of the major deterrents for them to utilize 

such facilities to exercise (Krans and Chang 2011). As a result, research to examine BE features 

and the characteristics associated with PA behaviors among low-income Hispanic pregnant 

women can further elucidate the behavioral pathways that link BE exposures to gestational 

weight gain and postpartum weight retention in this population, and to formulate evidence-based 

behavioral interventions, policies, and guidelines to combat the high obesity prevalence. 

1.3. Analytical Challenges 

1.3.1. Daily Mobility in Health and Place Research 

In addition to a lack of research on influences of BE exposures on PA behaviors during 

and after pregnancy, several analytical and inferential problems arise in studies drawing 

inferences between BE exposures and PA outcomes. The most prominent is the lack of 

integration of individual daily mobility into exposure assessment. Many of the published studies 

use the residence-based neighborhood (e.g., radius buffer around the home location or census 

tract or block group) as the measured contextual unit (MCU) of analysis, in which BE features 

and characteristics are assessed with arbitrarily defined spatial extents that may or may not be the 

most relevant or influential for the specific outcome under study (Jankowska, Schipperijn, and 

Kerr 2015; James et al. 2016). This residence-based approach assumes the effect of BE exposure 

on health behaviors and outcomes primarily or exclusively operates around the home and ignores 

areas of contact or exposures that occur outside of the home based on individuals’ every day 

mobility patterns. This may be true if the study population spends most of its time in the home 

neighborhood; however, empirical evidence suggests otherwise. For instance, several studies 



    

 
5 

(e.g., Evenson et al. 2009; Nethery, Brauer, and Janssen 2009; Ouidir et al. 2015; Zhu et al. 

2019) report their participants are highly mobile during data collection periods and spend a large 

proportion of time at non-home locations. As a result, the residence-based approach might result 

in exposure misclassification and attenuate or potentially bias effect estimates in subsequent 

health analyses (Jankowska, Schipperijn, and Kerr 2015; James et al. 2016).  

1.3.2. Uncertain Geographic Context Problem (UGCoP) 

The lack of integration of daily mobility into BE exposure assessment is part of the 

uncertain geographic contexts problem (UGCoP) (Robertson and Feick 2018; Kwan 2012). The 

problem "arises because of the spatial uncertainty (e.g., buffer sizes) in the actual areas that exert 

contextual influences on the individuals being studied, and the temporal uncertainty of the timing 

and duration in which individuals experienced these contextual influences" (Kwan 2012). It is 

also very difficult for any individual study that uses area-based BE contextual variables to 

explain individual behaviors to fully overcome this problem because the complete and perfect 

knowledge of “true causally relevant” BE contexts for PA behavior is unknown (Kwan 2012). 

The mitigation of UGCoP requires more accurate measurement and estimation the "true 

causally relevant" geographic context (true contextual unit or TCU) than is accomplished with 

residence-based approach (Kwan 2012; Matthews and Yang 2013). To achieve this, a growing 

body of research has delineated MCUs through generating daily activity spaces (i.e., activity 

locations visited, or paths traversed in their daily lives) and measure BE exposures within 

activity space-based MCUs (Perchoux, Chaix, and Kestens 2019; Matthews and Yang 2013; 

Rainham et al. 2010; Sherman et al. 2005). In compared to the residence-based approach, the 

activity space-based approach is able to improve accuracy of exposure assessment by linking BE 

exposures and PA outcomes in space and time beyond home contexts (Yi et al. 2019). 
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Nevertheless, there remains the uncertainty of choices of spatial (e.g., buffer size, kernel 

bandwidth) and temporal (e.g., time unit, duration of exposures) parameters in delineating the 

MCU (Smith, Foley, and Panter 2019; Yi et al. 2019). To further mitigate the UGCoP, recent 

review studies have recommended generation of multiple area-based environment attributes 

based on several combinations of spatial (e.g., buffer size, kernel bandwidth) and temporal (e.g., 

hour, day, weekday) parameters for use in sensitivity tests to understand the influence of these 

choices on obtained exposure-response effect estimates, further shedding light on the “true 

causally relevant” spatial and temporal extent of the exposure (Lee and Kwan 2019; Yi et al. 

2019). Additionally, these reviews have also recommended that future studies consider durations 

of exposure in assessments of BE (Lee and Kwan 2019; Yi et al. 2019). However, few GPS-

based studies have been able to adopt these recommendations to incorporate daily mobility and 

start to tackle the UGCoP in their analyses. 

1.3.3. Within-Person Effects of BE Exposures 

In addition to study biases, most often, past studies assessed BE exposures (i.e., 

greenness) and PA outcomes (i.e., walking minutes) at the person-level (Smith, Foley, and Panter 

2019). The person-level analysis offers insights of effects of inter-individual (i.e., between-

person) variations in BE exposures on PA outcomes. For example, whether living in a walkable 

downtown is associated with higher walking activity compared to living in an automobile-

dependent suburb. However, repeated measures designs where individuals are assessed at 

multiple points in time can address questions related to the effects of intra-individual (i.e., 

within-person or day-to-day) variations in exposures due to the impact of daily mobilities of 

study participants on outcomes. For instance, whether the variations in exposures to parks and 

open space within daily activity spaces of individuals are associated with their day-level PA 
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outcomes. Therefore, to provide a more comprehensive understanding on contextual influences 

of BE on PA behaviors, it is very important to examine the effects of both within and between 

person variations in exposures to BE features and characteristics on their day-to-day PA 

outcomes (Dunton 2018). However, very few studies have examined this relationship to date. 

1.3.4. Moderating Mechanisms in Behavioral Pathways 

Lastly, several studies (e.g., Diez Roux and Mair 2010; Sallis et al. 2009; McNeill, 

Kreuter, and Subramanian 2006; Perez et al. 2016; and Larsen et al. 2013) have examined the 

moderating effect of neighborhood social environment (e.g., social cohesion, crime) on 

relationships between BE and PA behaviors. For instance, a study on Hispanic women shows 

perceived safety from crime modified the associations between sidewalk conditions and outdoor 

MVPA minutes (Perez et al. 2016). Nevertheless, most of the studies of this type only examined 

the residential neighborhood environment and did not investigate possible moderators of the 

effects of BE exposure on PA behaviors encountered within activity spaces or in non-residential 

contexts. Moreover, many previous studies have linked temporal factors (e.g., weekdays versus 

weekend days, pregnancy and postpartum periods) to pregnant women’s PA behaviors 

(Borodulin, Evenson, and Herring 2009; da Silva et al. 2019; Jenum et al. 2013; Renault et al. 

2012; Schmidt et al. 2006; Sinclair et al. 2019). For example, a study of 1,482 US women 

reported that pregnant women’s PA decreased over pregnancy periods (Borodulin et al. 2008). 

Another US study of 688 pregnant women showed how PA rebounded during postpartum 

periods compared to pregnancy (Borodulin, Evenson, and Herring 2009). Therefore, it is 

important to understand how these temporal factors can potentially moderate the effect of BE 

exposures on PA behaviors, especially in low-income, Hispanic health disparity populations. 



    

 
8 

1.4. Mobile Sensing in PA Research 

The recent development of mobile sensing technology such as Global Positioning System 

(GPS), accelerometry and ecological momentary assessment (EMA) offer new opportunities to 

collect novel datasets to fill some of aforementioned gaps. Among them, GPS provides users 

with real-time geo-locations, which can then be imported into Geographic Information Systems 

(GIS) to generate individual activity spaces (i.e., MCUs) and measure BE exposures within them 

(Yi et al. 2019). The accelerometer measures the physical acceleration experienced by an object 

and can be worn by study participants to record their epoch-level steps taken and intensity of PA 

(Troiano et al. 2008). Lastly, EMA is an intensive survey technique that allows participants to 

self-report on symptoms, affect, behavior, cognition, and environment contexts close in time to 

experience (Moskowitz and Young 2006). Mobile phone-based EMA applications can be 

programmed at a customized daily frequency over study periods to collect both data of self-

reported environment contexts and energy-balance behavioral outcomes (Dunton 2017). 

Past studies have combined GPS, accelerometry and EMA in answering a variety of 

questions regarding effects of BE exposures on PA outcomes. To start, epoch-level GPS and 

accelerometry data can be aligned by timestamps to generate time-aligned GPS accelerometry 

(TAGA) data so that minute-level relationships between BE and PA behaviors can be examined 

(Yi et al. 2019). For example, one study used TAGA dataset to study minute-level influences of 

greenness exposure level on PA outcomes (Almanza et al. 2012). In addition, GPS and 

accelerometer data can be linked with EMA data by timestamps and aggregated at day- or 

person-levels to examine effects of BE exposures on daily or personal PA outcomes. For 

example, a study might generate activity spaces from daily GPS tracks and calculate densities of 

sport facilities within these spaces to examine associations between daily accessibility to sports 
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facilities and day-level energy expenditure. In addition, the same study might also measure day-

level energy expenditures using movement counts from accelerometry (Shrestha et al. 2019). 

However, no studies on pregnant women have integrated GPS technology with daily movement 

patterns collected by accelerometry to derive daily activity spaces and assess BE exposures 

within these activity spaces to examine the effects of BE exposures on PA outcomes. 

1.5. Conceptual Framework and Dissertation Outline 

This dissertation research aimed to address aforementioned gaps by investigating 

associations between daily time activity and mobility patterns, BE exposures, and PA behaviors 

in a group of predominantly low-income Hispanic women of childbearing age, while accounting 

for potential analytical and inferential errors and biases and considering potential moderation 

mechanisms in the BE-PA relationship. The topics of this dissertation research are organized 

within the conceptual framework summarized in Figure 1.1. This framework is adapted from 

Sallis’s socio-ecological model framework that describes the interplay of the BE, PA behavior, 

and obesity (Sallis et al. 2012). The new model focuses on individual mobility in examining 

effects of BE exposures on PA outcomes. In this model, women’s daily mobility patterns (e.g., 

time spent at home, daily path areas) at pre- and postpartum periods are hypothesized to be 

important determinants of their dynamic daily exposures to BE characteristics such as parks and 

open space access, walkability, which in turn may influence women’s PA behaviors (e.g., sports 

activities, walking to the bus stop) through multiple behavioral pathways (e.g., the visual 

exposure to a park along the sidewalk, the past experience of visiting a nearby exercise facility). 
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Building on this conceptual framework, in three sequential parts (i.e., three empirical case 

studies), this dissertation examines the associations between women’s daily time-activity 

mobility patterns, BE exposures, and PA behaviors during pregnancy and the early postpartum 

period. Among them, the first study (Chapter 2) tackles the “Daily Mobility Pattern” part of the 

framework by examining changes in women’s daily time-activity and mobility patterns across 

pregnancy and the postpartum period, and their potential individual and neighborhood level 

determinants. The second study (Chapter 3) tackles the “Built Environment Exposure” part of the 

framework by examining women’s dynamic daily exposures to BE characteristics derived using 

activity space methods and evaluated the BE exposure measurement error using static compared 

to dynamic methods. The third study (Chapter 4) tackles the “Behavioral Pathways” and 

“Physical Activity Behaviors” parts by examining the associations of dynamic daily BE 

exposures and PA outcomes and tested potential moderators in these associations.  Since all three 

studies are stand-alone manuscripts, each of these chapters includes an introduction as well as 

related work, methods, results, discussion, and conclusions. The fifth and final Chapter provides 

a summary of major findings, the contribution of this work to the current literature and 

limitations, future research directions, and major takeaways. 

  



   

 
 

12 

Chapter 2 Time-Activity and Daily Mobility Patterns during Pregnancy and 
Early Postpartum 

Pregnant women’s daily time-activity and mobility patterns determine their environmental 

exposures and related health effects (Balakrishnan et al. 2015; Blanchard et al. 2018; Dadvand et 

al. 2012; Hannam et al. 2013; Nethery, Brauer, and Janssen 2009; Zhu et al. 2019). Most studies 

ignore these and assess pregnancy exposures using static residential measures exposures (Porter 

et al. 2019; Nichani et al. 2016; Richardsen et al. 2016). This chapter applied 4-day continuous 

geo-location monitoring in 62 pregnant Hispanic women during the pregnancy and early post-

partum periods to derive their daily time-activity and mobility patterns and examine whether 

these patterns differed by individual sociodemographics, temporal factors, and neighborhood 

characteristics. 

2.1. Related Work 

Chemical and physical environment exposures including air pollution, lack of access to 

parks and green space, and low walkability, have been associated with poorer health behaviors 

and increased risk of health problems in pregnant women and their offspring (McEachan et al. 

2016; Porter et al. 2019; Leggett et al. 2018). However, prior studies examining the influence of 

environmental exposures on health behaviors (e.g., PA, diet) and disease outcomes (e.g., asthma, 

obesity, diabetes) in pregnant women have mainly applied the residence-based assessment 

approach (i.e., measuring physical environment features and characteristics at or near residences) 

to estimate individual, personal exposures (Porter et al. 2019; Nichani et al. 2016; Richardsen et 

al. 2016). This approach assumes outdoor environmental exposures around home residences are 

surrogates of daily “true causally relevant contexts” (true contextual units or TCUs) that 

influence behaviors or outcomes of interest (Robertson and Feick 2018). Nonetheless, this 
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assumption has two limitations – it assumes participants always stay within their residential 

neighborhoods when they might be highly mobile daily or they may change their residential 

addresses during and after pregnancy, and that all exposures occur in outdoor environments 

whereas quite often they occur mainly indoors or in transit, resulting in exposure 

misclassification or measurement error (Kwan 2012; Delmelle et al. 2022). 

Indeed, past studies on time-activity and mobility patterns (hereafter referred to as time-

activity patterns) of women during pregnancy have validated these concerns (Zhu et al. 2019; 

Ouidir et al. 2015; Blanchard et al. 2018; Payam Dadvand et al. 2012).  For example, a study in 

Shanghai, China, reported that pregnant women on average spent over a third of their time in 

work locations within three-day observation periods during the 2nd trimester (Zhu et al. 2019). 

Another study conducted in France reported a median of almost 12 non-home h/day for pregnant 

women during a 3-week observation period in the 1st trimester (Ouidir et al. 2015). As a result, 

the failure to capture or model the non-home contribution to environmental exposures in past 

studies might lead to under- or over-estimation of exposures and therefore mask their true 

relationships with health behaviors or outcomes (Yi et al. 2019). Very few studies of pregnant 

women have incorporated time-activity patterns into environmental exposure assessments largely 

due to either feasibility or burden-related challenges with tracking or capturing these patterns at 

high spatiotemporal resolutions in large population-based studies. 

Moreover, unlike other populations, pregnant women have increased demands to prepare 

for childbirth, increased fatigue, difficulty physically moving around, and poor sleep, which 

might influence or lead to dramatic variations in their time-activity patterns across the pregnancy 

and postpartum periods (Varshavsky et al. 2020). For example, a Canadian study on time-activity 

patterns of pregnant women has reported that more time was spent at home during the 3rd 
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trimester of pregnancy compared to the 1st trimester (Nethery, Brauer, and Janssen 2009). 

Another US study has found that in-vehicle travel times were longer during the early stages 

compared to later stages of the pregnancy (Wu et al. 2013). While very few studies have 

examined changes in time-activity patterns of women across pregnancy, to the best of my 

knowledge, none have extended the investigation to the early postpartum period. Given that the 

timing of the environmental exposures during these critical windows of time could have different 

effects on fetal development, early childhood and postpartum maternal health (Porter et al. 2019; 

Nichani et al. 2016; Richardsen et al. 2016), it is important to better understand time-activity 

patterns and how they might change over pregnancy and early postpartum periods. 

Although limited, a small number of studies have implemented various approaches to 

collect mobility data for pregnant women and integrate time-activity patterns into exposure 

assessments. Among them, most have relied on self-reported mobility surveys or diaries 

(Balakrishnan et al. 2015; Blanchard et al. 2018; Dadvand et al. 2012; Hannam et al. 2013; 

Nethery, Brauer, and Janssen 2009; Zhu et al. 2019). This approach is relatively cost-efficient 

with low technical barriers and thus may suit population-based studies with large sample sizes; 

however, the subjective nature of self-reported survey data also makes the approach prone to 

recall bias and measurement error. Additionally, it is difficult to collect highly space- and time-

resolved data using diaries or surveys. Recently, a growing body of research has started to apply 

GPS technology to objectively capture the mobility of participants (Ouidir et al. 2015; Nethery, 

Brauer, and Janssen 2009; Ha et al. 2020). The geolocation coordinates collected from the GPS 

device can be imported into the GIS software, in which spatial clusters and trip detection 

algorithms can be applied to derive time-activity (i.e., time spent in specific contexts, and 

indoor/outdoor microenvironments) and mobility (i.e., modes and durations of trips) patterns of 
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study participants (Thierry, Chaix, and Kestens 2013; Kirby, Delmelle, and Eberth 2017). Also, 

GPS data and these derived time-activity patterns can be integrated with fine-scale (e.g., 10-s) 

personal air pollution monitoring or other wearables data to construct highly individualized, 

contextualized, and space-time resolved exposure models (Ouidir et al. 2015). Finally, activity 

spaces derived from GPS data can be integrated with other geospatial data layers (e.g., crime, 

parks and open space, walkability scores) to understand actual exposure to BE (Yi et al. 2019). 

To address the above gaps, this study combines GPS technology and geospatial analysis 

to describe time-activity patterns in a subset of 62 low-income, Hispanic women participating in 

the Maternal and Development Risks from Environmental and Social Stressors (MADRES) 

cohort study, during 4-day observation periods in the 1st and 3rd trimesters of pregnancy and at 4 

to 6 months postpartum. By analyzing highly time-resolved (i.e., 10-s epoch) GPS data from the 

customized smartphone app for MADRES study (madresGPS), this study aimed to answer the 

following questions: 

 1) What are typical time-activity (i.e., time spent in multiple contexts, and 

indoor/outdoor microenvironments) and mobility patterns (i.e., trips performed, their duration, 

and mode) of women during pregnancy and during the early postpartum period? 

2) Do daily time-activity and mobility patterns change over time, across pregnancy and 

early postpartum periods? 

3) Do temporal (e.g., weekdays versus weekend days), individual sociodemographic, and 

residential neighborhood factors explain some of the variation in these patterns? 

This study hypothesized that women’s time spent at their home residences would 

increase, and time spent in non-home contexts and in transit would decrease as pregnancy 

progresses from the 1st to the 3rd trimesters, and such trends may continue into the postpartum 
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period. Moreover, this study hypothesized time-activity and mobility patterns may differ by other 

temporal, individual sociodemographic, and residential neighborhood factors. 

2.2. Methods 

2.2.1. Study Design 

Data for this study comes from the Real-Time and Personal Sampling sub-study of the 

MADRES cohort (Bastain et al. 2019). This study uses an intensive longitudinal, observational 

panel study design and examines the daily effects of environmental exposures and social 

stressors on maternal pre- and post-partum obesity-related biobehavioral responses (O’Connor et 

al. 2019). A total of 65 Hispanic, women with lower incomes, were drawn from the larger 

MADRES prospective cohort study which recruited participants from prenatal care providers in 

Los Angeles, CA, serving predominantly medically-underserved populations (Bastain et al. 

2019). To be eligible for the larger MADRES study, a participant needed to be 18 years old with 

a singleton pregnancy and be at less than 30 weeks’ gestation at time of recruitment. In addition, 

participants who were HIV positive, had physical, mental, or cognitive disabilities that prevented 

participation, or were currently incarcerated were excluded from the study. Recruitment of 65 

Hispanic women occurred on a rolling basis between 2016 and 2018 from one county hospital 

prenatal clinic (N=16) and one non-profit community health clinic (N=49).  Additional eligibility 

criteria for this sub-study are described in further detail in a separate manuscript (O’Connor et al. 

2019). The University of Southern California (USC) Institutional Review Board approved all 

study procedures and participants signed an informed consent before enrolling into the study. 
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2.2.2. Data Collection 

2.2.2.1. GPS Based Location Information 

GPS data were continuously collected from participants at 10-s intervals for four days 

(two weekdays and two weekend days) during the 1st and 3rd trimester of pregnancy and at 4-6 

months postpartum (O’Connor et al. 2019). MADRES researchers designed a custom 

smartphone application (madresGPS app) for Android operating systems to collect highly 

resolved and encrypted GPS data (O’Connor et al. 2019).  Study coordinators configured the 

application on dedicated study smartphones (Samsung MotoG phone) to gather geographic 

coordinates and geolocation/motion metadata (O’Connor et al. 2019). The application logged 

instantaneous GPS location and sensor data every 10 s from the smartphone’s multiple built-in 

location finding features (cell tower triangulation, WiFi networks, and GPS) and motion sensors. 

Along with the timestamp, metadata such as the number of satellites in use/view, geolocation 

accuracy, source of GPS, velocity (if GPS source), and network connection status (if network 

source) were recorded (O’Connor et al. 2019). 

2.2.2.2. EMA data 

EMA data were self-reported through a commercially available application (MovisensXS 

app) built for Android operation systems, which was pre-installed on the same study phone used 

to collect GPS data. The EMA survey was prompted at random times during each five pre-

specified sampling windows (i.e., wake-up to 10 a.m.; 11 a.m. to 1 p.m.; 2 p.m. to 4 p.m.; 5 p.m. 

to 7 p.m., and 8 p.m. to bedtime) within the same four-day time GPS data collection windows 

during the three study periods (O’Connor et al. 2019). Survey questions included physical and 

social contexts at the prompt time, current affective and physical feeling states, current perceived 
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stress, and past 2-h exposure to a list of daily stressors. The complete list of EMA survey 

questions is described in further detail in a separate manuscript (O’Connor et al. 2019). 

2.2.2.3. Retrospective surveys and medical record abstraction 

Sociodemographic data including maternal height and weight race/ethnicity, enrollment 

age, education, parity, and country of origin were assessed in prenatal interviewer-administered 

questionaries with the women. Weight and height were also measured at study visits. 

Retrospective surveys were completed at various study timepoints to gather residential and 

occupational histories and assessed psychosocial stressors. Working status was also collected via 

questionnaires in the 1st trimester, 3rd trimester, and 6 months postpartum and perceived 

neighborhood cohesion and safety score was gathered in the 2nd trimester (chosen to represent 

pregnancy) and 6 months postpartum questionnaires. Additionally, residential locations at 

screening were geocoded and used to generate residential neighborhood characteristics in this 

work. 

2.2.3. Data processing 

2.2.3.1. GPS processing 

The major processing steps of raw GPS data are described in Figure 2.1. In total, this study 

collected 6,948,118 GPS observations for 62 of the 65 participants.  Raw observations collected 

outside of the 4-day designated monitoring period (during device set up and return) were 

dropped (Ndropped=1,893,013). Then, this study dropped a small number of observations with 

erroneously logged zero values of latitude and longitude (Ndropped=28,848). After that, this study 

devised a logic to drop the least accurate source of geolocation data for every 10-s epoch when 

two sources of data (GPS/Network) were available as follows. This logic was informed by 

comparing the time-series of GPS versus network source coordinates in relation to the  
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Figure 2.1. Global Positioning System (GPS) pre-processing steps of Maternal And 
Developmental Risks from Environmental and Social Stressors (MADRES) real-time and 

personal sampling study GPS data. 

1 Data collection dates included two weekdays and two weekend days. 
2 Three periods were first trimester, third trimester, and four-to-six months postpartum. 
3 Network source included observations recorded by WiFi and cellular networks. 
4 Signal loss scenarios were defined as ≥ 1 min time windows with same timestamps. 
5 Outliers were defined as observations with a distance > 450 m from the median latitude/longitude coordinates 
(corresponding to the maximum realistically possible distance moved in 10 s based on a speed of 45 m/s or 100 
mph) and replaced with the median coordinates within the moving window. 
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participants’ potential movement in space and time. Based on preliminary analyses, the GPS 

source usually exhibited the fastest update frequency compared to the network especially when 

individuals were mobile. When individuals appeared to be stationary (i.e., at home), both sources 

seemed to be frequently updating, but the network source generally exhibited higher accuracy. 

Of particular note, participants were asked to connect study smartphones to their home WiFi 

networks, when possible, to complete study-related EMA surveys on the same smartphones, 

resulting in a high likelihood of phones connecting to home WiFi networks (and thus network 

source geolocation data being available often when stationary/at home) during this study 

(averaging 12.8% per observation day). When both GPS and network sources were available, 

they were examined, and the less accurate source was dropped (Ndropped=542,213).  

In circumstances when the signal from either GPS or network source was lost for ≥1 min 

(i.e., signal loss scenario), the app was designed to log the latest known position for that source 

along with the latest update (or confirmation) time, both of which will be repeated and will not 

change for the duration of time the signal was lost. Once signal loss scenarios were identified 

(per source of data), the update frequency and positional accuracy of the geolocation data from 

both sources were compared and the less accurate source was dropped (Ndropped=81,987). For 

time windows when either the GPS or network source was updating (real sensor data logging 

timestamp changed) but the other was not because of signal loss, the connected source was kept. 

Then, under circumstances when both sources lost signal, the one that indicated no movement 

(no change in latitude and longitude) from the previous to the next interval of time when signal 

was available was dropped. 

Next, this study rounded timestamps to the nearest 10 s and retained the first observation 

within a 10-s window (Ndropped=53,530). This step was performed to allow us to align and 
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integrate GPS data with other simultaneously collected accelerometry and personal air pollution 

exposure monitoring data (in subsequent, ongoing analyses). In addition, it also ensures roughly 

similar temporal spacing and density of GPS data per participant to enable between-person 

comparisons of environmental exposures derived using this GPS data and the kernel density 

algorithm (Jankowska et al. 2017). 

Finally, a moving median filter was applied to remove outliers in windows of 

approximately 1-min duration (7 observations at a 10-s epoch) to correct extreme outliers that 

might occasionally be present in the data (Wang, Gao, and Juan 2017). Outliers were defined as 

observations with a distance >450 m from the median latitude/longitude coordinates 

(corresponding to the maximum realistically possible distance moved in 10 s based on a speed of 

45 m/s or 100 mph) and were replaced with the median coordinates within the moving window. 

The final processed dataset consisted of 4,375,774 observations across 552 person-days.  

Throughout the GPS data processing, this study created flags to indicate data quality or 

identify records affected by any assumptions or decisions made, which were used to inform 

sensitivity analyses. For example, this study created day-level GPS data completeness flags (i.e., 

≤6 h, ≤10 h, ≤16 h), which were then used to evaluate whether time-activity and daily mobility 

patterns were sensitive to day-level GPS data completeness. This study also created flags 

indicating confidence in whether an individual likely stayed at the logged location or moved 

during signal loss windows (see Appendix A). These flags were based on the plausibility of the 

distance moved within the window and total duration of the window. More specifically, higher 

confidence levels were assigned to signal loss windows with shorter duration (e.g., ≤120 min) 

and more reasonable distances traveled (e.g., ≤45 m/s times the time elapsed between the last 

known location before signal loss and the new location after signal loss). For analyses in this 
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study, signal loss windows were removed (Ndropped=523,112) that I either could not make a 

judgement on (i.e., with no distance/duration data) or had extremely low confidence (e.g., 

distance traveled >45 m/s times the time elapsed, >120 min in duration) on whether a participant 

likely remained in the same position when the signal was lost. 

2.2.3.2. Stay-trip detection 

The processed 10-s GPS data were imported into geographic information system software 

ArcGIS 10.8 (Esri, 2020) to first identify trips and stays and then classify stays based on their 

spatial contexts and indoor/outdoor microenvironment. Figure 2.2 describes the steps to process 

GPS tracks for each person and study period combination (i.e., 4-day GPS tracks were treated as 

one sequential time-series). In order to identify trips and stays, the “Activity Place Detection 

Algorithm” ArcGIS toolbox developed by Thierry, Chaix, and Kestens (2013) was used, which 

builds a kernel density surface (50 m bandwidth or search radius) from GPS points and extracts 

local maxima from the surface as candidates for classification as stays. In comparison to methods 

that analyze data points sequentially, the kernel-based method has been shown to have better 

global performance (i.e., better agreement between number of stops detected versus true stops), 

higher spatial accuracy (i.e., shorter Euclidean distance between a detected stop and the true 

stop), and lower sensitivity to bandwidth choices (i.e., 50, 100 m) (Thierry, Chaix, and Kestens 

2013).  Minimum duration for a stay candidate to become a stay was ≥5 min, and two 

consecutive stay candidates within proximity to each other needed to be separated by at least a 

≥5 min timespan to be kept as separate stays. After stays and their respective start and stop times 

were detected, GPS points recorded between two consecutive stays were connected into trips 

(path trajectories) by sequences of timestamp and smoothed (snapped to road networks), and 

their start and stop times were recorded. This essentially means that stays also act as trip origin 
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and destination points when trips occur. A minimum duration of ≥5 min was needed for a loop 

path trajectory (i.e., one that started and ended at the same location) to be kept as a trip. 

2.2.3.3. Context classification of stays 

This study next classified the stays (i.e., trip origins and destinations) into one of seven 

spatial contexts (home residential, non-home residential, commercial and services, parks and 

open space, schools and public facilities, industrial and office spaces, and other). Spatial 

parameters and data sources used in context classification are fully documented in Appendix B. 

The stay with the longest duration in a study period (4-day monitoring period in 1st and 3rd 

trimesters, and at 4-6 months postpartum) was designated as the residential home context given 

participants might have changed residence or lived with family or relatives across study periods. 

Non-home contexts were classified based on their spatial relationships with the Southern 

California Association of Governments existing land use (2016) data (see Appendix B). A 15 m 

buffer was applied to existing land use boundaries to account for potential combinations of 

indoor/outdoor activities within a stay and considering the average width of sidewalks in urban 

Los Angeles. Additionally, an indoor/outdoor microenvironment was assigned to each stay point 

by examining its spatial relationship with Los Angeles County building footprints (2014). A 1 m 

buffer was applied to existing building footprints to account for scenarios when indoor activities 

occurred mainly in the corners of the building (i.e., corner apartments, stairwells, laundry 

rooms), resulting in a detected stay point that fell outside the building footprint polygon, which 

could then be misclassified as outdoor. 

2.2.3.4. Missing GPS data imputation using home context 

Home residential locations detected via the stay-trip detection algorithm were then used 

to impute some of the missing records in the processed GPS data. More specifically, participants 
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self-reported their sleep and waking times prior to each study period to help configure suitable 

timing and frequencies for the EMA survey. This sleep and wake time data was used to divide 

each four-day study period into day (from waking to sleep time in a data collection day) and 

night (from sleep time in a data collection day to the waking time on the next day) windows. For 

night windows, identified visit-level home location was used to impute missing data (if ≥ 60 min 

of GPS logged data that was within ≤100 m of the home location). If this rule was not met, the 

median coordinates logged during the night were used to fill in any remaining missingness that 

night. If no GPS data was available during the night, then imputation was not attempted. As for 

day windows, this study filled in missing records with home coordinates when available if the 

day was identified as a home day (i.e., all EMA survey prompts within the day reported current 

physical context as either “Home-Indoor” or “Home-Outdoor”). The entire workflow of the 

missingness imputation process is documented in Appendix C. The imputed GPS records 

(N=306,915) were classified as “home-residential” and merged with processed epoch-level GPS 

data to produce a final time-activity pattern dataset that records location coordinates and contexts 

of each stay, its start and stop time, as well as method of classification (i.e., via algorithm or 

imputation). In addition, flags were created which labelled days with < 6 h of GPS data (post-

imputation) as invalid days. 

2.2.3.5. Trip mode detection 

A trip mode classification algorithm was also applied (Figure 2.3) to classify all trips into 

either a walking- or vehicle-based mode. Both distance-based trip speed (i.e., sum of Euclidean 

distances of consecutive GPS records in a trip divided by duration of time elapsed) and total 

distance traveled (i.e., sum of Euclidean distances of consecutive GPS records in a trip) were 

considered in the decision-making process. Previous studies have reported a walking speed range  
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Figure 2.3. Geoprocessing steps to detect trips and classify their modes based on mean and 
standard deviation of Global Positioning System (GPS) observations in trips. 

1 Trips start time was identified as the end of previous stay and trip end time was identified as the start of the next 
consecutive stay. 
2 Epoch-level distance-based speed (vtrip) was calculated by dividing the Euclidean distance traveled (dtrip) 
between two consecutive epochs with time elapsed (ttrip).  

 

of 1.00–1.8 m/s for women during pre- and post-pregnancy periods (Byrne et al. 2011; Gilleard 

2013; Loh et al. 2019). In this study, a relatively high threshold of 2 m/s (4.5 mph) was treated as 



  

 
 

27 

the theoretically possible maximum walking speed for women to account for GPS data noise in 

areas that might obstruct or interfere with GPS signals (e.g., neighborhoods with multi-level 

residences or abundant and dense tree canopies). Given similarities in average speed between a 

true walking scenario and a slow driving one that could occur during Los Angeles rush hours or 

when passing through areas with frequent traffic lights, a condition was added such that a trip 

required a standard deviation of speed that was smaller than 1 m/s to be classified as walking-

based. This criterion was based on observed patterns in the data showing that walking trips 

typically have a much smaller standard deviation in speed than slow driving trips comprising 

sudden acceleration, deceleration, and frequent stops. Furthermore, for a trip to be vehicle-based, 

it also needed to exceed the maximum possible distance a human can travel via walking (i.e., 3 

m/s x trip duration). Lastly, for a limited number of trips (N=99) that exhibited patterns with 

multiple modes (e.g., walking to the parking lot, driving, riding the metro and walking), the 

criteria was relaxed and only used the mean speed to determine the primary trip mode (i.e., 

vehicle-based: ≥2 m/s; walking-based: <2 m/s). For these trips, lower confidence was assigned to 

their detected trip modes so that they could be excluded for sensitivity analyses purposes. 

2.2.4. Statistical Analysis 

2.2.4.1. Descriptive analysis 

Mean, medians, proportions, or standard deviations for covariates and time-activity and 

daily mobility outcomes were calculated for the 1st and 3rd trimesters of pregnancy and the 4-6 

months postpartum periods. The number of stays were summarized by context and 

microenvironment and aggregated into day-level time-activity patterns (min/d at each spatial 

context and within indoor/outdoor microenvironments). Meanwhile, the number of trips were 

summarized by trip mode and aggregated into day-level mobility patterns (min/d and N/d in trip 
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of vehicular or pedestrian mode). Non-valid days (<6 h of GPS data) were eliminated to reduce 

potential biases of estimating day-level outcomes.  

2.2.4.2. Generalized mixed effects models  

To account for the interdependency of the nested data structure in the current study 

(Level 1-days nested within Level 2-persons), generalized linear mixed-effects models 

(GLMMs) with participant-level random intercepts were used. Additionally, negative binomial 

family functions were fitted because outcomes had over-dispersed distributions, which log-

transformed the outcome during analyses. Lastly, a zero-inflated portion was added to all models 

due to the presence of excessive zero values except for the model that examined min/d at home 

residential context. These zero-inflated models estimated a participant’s probability of having 

zero min/d at a given context (not visiting the context) or at a given trip mode (not performing 

the trip). 

2.2.4.3. Model building strategy 

For each outcome, GLMM models were first fitted to test whether the derived time-

activity and mobility patterns changed over time during pregnancy and postpartum (hereinafter 

referred to as the Base GLMM model). Then, individual sociodemographic, neighborhood, and 

additional temporal factors were further included to explore whether these factors can further 

explain these time-activity and mobility patterns.  This was accomplished by first entering all 

other covariates to construct the fully-adjusted model if the univariate analysis (one covariate at a 

time) reported a p<.1 (hereinafter referred to as the Fully-adjusted GLMM model). Lastly, 

covariates with reduced explanatory power (i.e., p-value became >.05 in the fully adjusted 

model) were dropped in the final model to ensure model parsimony (hereinafter referred to as the 

Final GLMM model). Following the recommended practice, covariates were kept the same for 
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the count and zero parts of each zero-inflated GLMM (Brooks et al. 2017). Additionally, the day-

level total GPS data collection hours were always included as a covariate to adjust for the 

varying amount of GPS data collected possibly due to individual device wearing behaviors or 

other factors. 

2.2.4.4. Model covariate selection 

A list of temporal factors, individual-level sociodemographic, and neighborhood-level 

characteristics were included as covariates in the models. Past studies have associated these 

covariates with time-activity patterns of pregnant women (e.g., Abatzoglou 2013; Blanchard et 

al. 2018; P. Dadvand et al. 2012; Hannam et al. 2013; Nethery, Brauer, and Janssen 2009; 

Nethery et al. 2008; Wu et al. 2013; Zhu et al. 2019). Temporal factors included weekend versus 

weekday (weekend=1), daily average temperature in degrees Celsius, and study period (1st 

trimester, 3rd trimester [reference group], and 4-6 months postpartum). The 3rd trimester was 

chosen as the reference group since most prior pregnancy studies examining the relationship 

between environmental exposures and maternal or birth outcomes usually characterize 

environmental exposure based on location at a single point in time late in pregnancy or at 

delivery (Porter et al. 2019; Banay et al. 2017; Pennington et al. 2017). Since the 3rd trimester is 

closest to infant delivery, this study contrasted changes in time-activity and mobility patterns 

over time relative to this commonly used assumption. Individual sociodemographic 

characteristics from MADRES questionnaires were included, including age, education (less than 

or equal to high school diploma), marital status (married/living together, 

single/divorced/separated/widowed, or declined to answer/missing response), birth country 

(foreign- versus US-born), parity (first born versus second or greater birth) as well as 

employment status at each period. Body Mass Index (BMI) categories were also calculated 
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(recoded as normal versus overweight/obese) based on height and weight measured during pre-

natal visits. Additionally, individual-level neighborhood cohesion and safety scores were 

included from questionnaires administered during pregnancy and postpartum (Sampson, 

Raudenbush, and Earls 1997). Neighborhood characteristics were assigned to participants’ 

residences based on the 2010 census block group boundary within which their home residences 

were situated. These included the National Walkability Index Score from the Environmental 

Protection Agency (EPA) EnviroAtlas and the Deprivation Index Score from the Neighborhood 

Atlas (Kind and Buckingham 2018; Pickard et al. 2015). A full list of covariates measures and 

corresponding data sources is documented in Appendix D. 

2.2.4.5. Sensitivity analysis 

Finally, sensitivity analyses were run by excluding days with <10 h or <16 h of GPS data 

to examine the influence of GPS completeness on observed associations, and by replacing study 

periods with binary (pregnancy versus postpartum) and continuous time (continuous week from 

conception to post-birth) variables, and by testing non-linear (quadratic) terms. The R 4.0.2 (R 

Core Team, 2020) and glmmTMB package (version 1.0.2.1) were used for generalized mixed-

effects modeling (Brooks et al. 2017). Exponentiated effect estimates which are interpreted on a 

multiplicative scale were reported for all models. Reversed odds ratios (i.e., odds to accumulate 

any minutes at a given time activity or mobility pattern outcome) of zero-inflated models were 

calculated for easier interpretation. 

2.3. Results 

2.3.1. Data Completeness 

A total of 65 participants were initially enrolled in the study, of which 62 provided at 

least one valid GPS observation day (≥6 h of data) across three study periods. Within these 62 
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participants, 35 had at least one valid day in all three study periods; 17 in two of the three 

periods; and 10 in one of the three periods. The final analytical sample comprised a total of 552 

valid days of GPS data from 62 participants across the 1st (N=205 person-days) and 3rd trimesters 

(N=180 person-days) of pregnancy and 4–6 months postpartum (N=167 person-days). Each 

participant provided an average of 8.9 (SD=3.00; Range: 3.00-12.00) valid GPS days across the 

three periods. The average number of hours of GPS observations collected on valid days was 

21.7 h (SD= 5.00; Range: 6.2-24.00). The average number of hours was highest in the 3rd 

trimester (Mean=22.3h; SD=4.4; Range: 6.5-24.00) followed by the 4-6 months postpartum 

period (Mean=21.8h; SD=4.7; Range: 7.00-24.00) and the 1st trimester (Mean=21.1; SD=5.6; 

Range: 6.2-24.00). Almost half of the valid person-days (49.3%) were weekend days across the 

three periods. 

2.3.2. Descriptive Statistics of Covariates 

Descriptive statistics for the participant- and day-level covariates are shown in Tables 

2.1. Participants’ mean age at study entry was 29 years (SD=6.1; Range: 18-45). All the 

participants were Hispanic, and more than half were born outside of the US (53.2%). About one-

third (32.3%) had some college or above education, and 80.6% were either married or living 

together with their partners at study entry. One in three (36.4%) was employed during the 1st 

trimester compared to 39.6% during the 3rd trimester, and 19.6% at 4-6 months postpartum. At 

recruitment, 25.8% were pregnant with their first child, 74.2% were overweight or obese 

according to their pre-pregnancy BMI. The recruited participants lived in neighborhoods with an 

average walkability index score of 14.4 (SD=2.00, Range: 9.3-19; on 1-20 scale; where 1=least 

walkable) and average deprivation index score of 6.5 (SD=1.7, Range: 2.00-9.00; on 1-10 scale; 

where 1=least deprived). The average neighborhood safety and cohesion score (on 1-5 scale; 
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where 1=least safe and cohesive) self-reported by women was 3.1 (SD=.7, Range: 1.00-4.4) at 

the 1st and 3rd (SD=.7; Range: 1.00-5.00) trimesters, and 3.3 (SD=.9, Range: 1.4-4.8) at 4-6 

months postpartum. 

 

Table 2.1. Descriptive statistics of participant characteristics at baseline (a) and 
person-day level temporally varying factors by 1st and 3rd trimesters, and 4-6 

months postpartum (b). 

(a) Baseline statistics 

 Overall 
(N=62 Participants) 

Age at consent (years)  

Mean (SD) 29 (6.1) 
Median [Min, Max] 28 [18, 45] 

Education  

High school or less 42 (67.7%) 
Some college/Graduate 20 (32.3%) 

Marital status  

Married/Living together 50 (80.6%) 
Single/Divorced/Separated/Widowed 10 (16.1%) 
Missing 2 (3.2%) 

Acculturation  

US-Born Hispanic 29 (46.8%) 
Foreign-Born Hispanic 33 (53.2%) 

Maternal parity  

First-born 16 (25.8%) 
Already had child 46 (74.2%) 

Pre-pregnancy BMI category  

Normal 16 (25.8%) 
Overweight/Obesity 46 (74.2%) 

Neighborhood Walkability Score  
Mean (SD) 14.4 (2.00) 
Median [Min, Max] 14 [9.3, 19] 

Neighborhood Deprivation Score  
Mean (SD) 6.5(1.7) 
Median [Min, Max] 7.00 [2.00, 9.00] 
Missing 2 (3.2%) 
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Table 2.1. (Cont.) 
 

(b) Temporally varying statistics 

 
1st Trimester 

(N=205 
person-days) 

3rd Trimester 
(N=180 

person-days) 

4-6 Months 
Postpartum 

(N=167 
person-days) 

Overall 
(N=552 

person-days) 

Valid GPS observation (h/day)     

Mean (SD) 21 (5.6) 22 (4.4) 22 (4.7) 22 (5.00) 

Median [Min, Max] 24 [6.2, 24] 24 [6.5, 24] 24 [7.00, 24] 24 [6.2, 24] 

Average Daily Temperature (°C)     

Mean (SD) 21 (4.2) 21 (4.4) 19 (4.4) 20 (4.4) 

Median [Min, Max] 21 [8.00, 31] 21 [9.00, 31] 20 [5.2, 28] 20 [5.2, 31] 

Missing 19 (9.3%) 0 (0%) 0 (0%) 19 (3.4%) 

Type of day     

Weekday 104 (50.7%) 91 (50.6%) 85 (50.9%) 280 (50.7%) 

Weekend 101 (49.3%) 89 (49.4%) 82 (49.1%) 272 (49.3%) 

 
1st Trimester 

(N=55 
Participants) 

3rd Trimester 
(N=48 

Participants) 

4-6 Months 
Postpartum 

(N=46 
Participants) 

Overall 
(N=149 

Participants) 

Employment status     

Unemployed 35 (63.6%) 28 (58.3%) 29 (63.0%) 92 (61.7%) 

Employed 20 (36.4%) 19 (39.6%) 9 (19.6%) 48 (32.2%) 

Missing 0 (0%) 1 (2.1%) 8 (17.4%) 9 (6.0%) 

Neighborhood Cohesion and Safety Score     

Mean (SD) 3.1 (.7) 3.1 (.7) 3.3 (.9) 3.1 (.8) 

Median [Min, Max] 3.00 [1.00, 4.4] 3.1 [1.00, 5.00] 3.2 [1.4, 4.8] 3.0 [1.00, 5.00] 

Missing 3 (5.5%) 0 (0%) 8 (17.4%) 11 (7.4%) 

 
Note: BMI = Body Mass Index, GPS = Global Positioning System. SD = Standard deviation. 

2.3.3. Descriptive Statistics for Time-Activity and Daily Mobility Patterns 

2.3.3.1. Time-Activity Patterns 

The descriptive statistics for derived time-activity patterns (N stays and min/day by 

context and indoor/outdoor microenvironment) are shown in Tables 2.2 and 2.3. Overall, 2,621 

stays were detected from 552 valid GPS person-days across three study periods (Table 2.2). The  



 
 

 
 

 

34 

Ta
bl

e 
2.

2.
 S

um
m

ar
y 

of
 to

ta
l n

um
be

r o
f v

isi
ts 

to
 m

ul
tip

le
 sp

at
ia

l c
on

te
xt

s a
nd

 in
do

or
/o

ut
do

or
 m

ic
ro

en
vi

ro
nm

en
ts 

an
d 

to
ta

l n
um

be
r o

f 
pe

de
str

ia
n 

an
d 

ve
hi

cu
la

r t
rip

s m
ad

e.
 

 
1s

t 
T

ri
m

es
te

r 
(N

st
ay

=9
47

; 
N
tr
ip

=6
82

) 
3r

d 
T

ri
m

es
te

r 
(N

St
ay

=9
14

; 
N
tr
ip

=6
92

) 

4-
6 

M
on

th
s 

P
os

tp
ar

tu
m

 
(N

St
ay

=7
60

; 
N
Tr
ip

=5
51

) 

O
ve

ra
ll 

(N
St
ay

=2
,6

21
; 

N
Tr
ip

=1
,9

25
) 

 
N

(%
) 

N
(%

) 
N

(%
) 

N
(%

) 

Sp
at

ia
l c

on
te

xt
s 

 
 

 
 

H
o
m

e 
re

si
d
en

ti
al

 
4
1
2
 (

4
3
.5

%
) 

3
6
3
 (

3
9
.7

%
) 

3
3
7
 (

4
4
.3

%
) 

1
,1

1
2
 (

4
2
.4

%
) 

N
o
n
-h

o
m

e 
re

si
d
en

ti
al

 
6
4
 (

6
.8

%
) 

6
0
 (

6
.6

%
) 

7
9
 (

1
0
.4

%
) 

2
0
3
 (

7
.7

%
) 

C
o
m

m
er

ci
al

 a
n
d
 

S
er

v
ic

es
 

2
8
1
 (

2
9
.7

%
) 

2
8
3
 (

3
1
.0

%
) 

1
9
3
 (

2
5
.4

%
) 

7
5
7
 (

2
8
.9

%
) 

In
d
u
st

ri
al

 a
n
d
 O

ff
ic

e 
S

p
ac

es
 

8
4
 (

8
.9

%
) 

1
0
5
 (

1
1
.5

%
) 

6
4
 (

8
.4

%
) 

2
5
3
 (

9
.7

%
) 

S
ch

o
o
ls

 a
n
d
 P

u
b
li

c 
F

ac
il

it
ie

s 
5
2
 (

5
.5

%
) 

6
1
 (

6
.7

%
) 

5
7
 (

7
.5

%
) 

1
7
0
 (

6
.5

%
) 

P
ar

k
s 

an
d
 O

p
en

 S
p
ac

es
 

2
2
 (

2
.3

%
) 

1
7
 (

1
.9

%
) 

1
2
 (

1
.6

%
) 

5
1
 (

1
.9

%
) 

O
th

er
 

3
2
 (

3
.4

%
) 

2
5
 (

2
.7

%
) 

1
8
 (

2
.4

%
) 

7
5
 (

2
.9

%
) 

In
do

or
/o

ut
do

or
 

m
ic

ro
en

vi
ro

nm
en

t 
 

 
 

 

H
o
m

e 
In

d
o
o
r 

3
6
3
 (

3
8
.3

%
) 

3
3
6
 (

3
6
.8

%
) 

3
0
2
 (

3
9
.7

%
) 

1
,0

0
1
 (

3
8
.2

%
) 

N
o
n
-H

o
m

e 
In

d
o
o
r 

2
2
0
 (

2
3
.2

%
) 

2
5
3
 (

2
7
.7

%
) 

1
6
8
 (

2
2
.1

%
) 

6
4
1
 (

2
4
.5

%
) 

H
o
m

e 
O

u
td

o
o
r 

4
9
 (

5
.2

%
) 

2
7
 (

3
.0

%
) 

3
5
 (

4
.6

%
) 

1
1
1
 (

4
.2

%
) 

N
o
n
-H

o
m

e 
O

u
td

o
o
r 

2
9
1
 (

3
0
.7

%
) 

2
8
8
 (

3
1
.5

%
) 

2
3
0
 (

3
0
.3

%
) 

8
0
9
 (

3
0
.9

%
) 

O
u
t 

o
f 

L
o
s 

A
n
g
el

es
 

C
o
u
n
ty

 
2
4
 (

2
.5

%
) 

1
0
 (

1
.1

%
) 

2
5
 (

3
.3

%
) 

5
9
 (

2
.3

%
) 

T
ri

p 
m

od
es

 
 

 
 

 

P
ed

es
tr

ia
n
 t

ri
p
s 

1
7
5
 (

2
5
.7

%
) 

1
8
5
 (

2
6
.7

%
) 

1
2
0
 (

2
1
.8

%
) 

4
8
0
 (

2
4
.9

%
) 

V
eh

ic
u
la

r 
tr

ip
s 

5
0
7
 (

7
4
.3

%
) 

5
0
7
 (

7
3
.3

%
) 

4
3
1
 (

7
8
.2

%
) 

1
,4

4
5
 (

7
5
.1

%
) 



 
 

 
 

35 

Ta
bl

e 
2.

3.
 D

ay
-le

ve
l s

um
m

ar
y 

of
 ti

m
e 

sp
en

t i
n 

sp
at

ia
l c

on
te

xt
s, 

in
do

or
/o

ut
do

or
 m

ic
ro

en
vi

ro
nm

en
ts,

 a
nd

 n
um

be
r o

f 
pe

de
str

ia
n/

ve
hi

cu
la

r t
rip

s m
ad

e.
 

 
1s
t  T

ri
m

es
te

r 
(N

=2
05

 p
er

so
n-

da
ys

) 
3r
d  

T
ri

m
es

te
r 

(N
=1

80
 p

er
so

n-
da

ys
) 

4-
6 

M
on

th
s 

P
os

tp
ar

tu
m

 
(N

=1
67

 p
er

so
n-

da
ys

) 

O
ve

ra
ll 

(N
=5

52
 p

er
so

n-
da

ys
) 

Sp
at

ia
l C

on
te

xt
s 

H
o
m

e 
R

es
id

en
ti

al
 (

h
/d

ay
) 

 
 

 
 

M
ea

n
 (

S
D

) 
1
6
.8

 (
6
.6

) 
1
7
.5

 (
6
.6

) 
1
7
.6

 (
6
.3

) 
1
7
.3

 (
6
.6

) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

1
8
.8

 [
0
, 
2
4
.0

0
] 

1
9
.5

 [
0
, 
2
4
.0

0
] 

1
9
.4

 [
0
, 
2
4
.0

0
] 

1
9
.2

 [
0
, 
2
4
.0

0
] 

M
is

si
n
g
 

2
 (

1
.0

%
) 

0
 (

0
%

) 
1
 (

.6
%

) 
3
 (

.5
%

) 

A
ll

 N
o
n
-H

o
m

e 
C

o
n
te

x
ts

 (
m

in
/d

ay
) 

 
 

 
 

M
ea

n
 (

S
D

) 
2
0
5
 (

3
2
4
) 

2
1
9
 (

3
2
8
) 

1
9
0
 (

2
9
5
) 

2
0
5
 (

3
1
6
) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

5
8
.0

0
 [

0
, 
1
4
4
0
] 

8
1
.4

 [
0
, 
1
4
4
0
] 

7
3
.2

 [
0
, 
1
4
4
0
] 

7
3
.2

 [
0
, 
1
4
4
0
] 

N
o
n
-H

o
m

e 
R

es
id

en
ti

al
 (

m
in

/d
ay

) 
 

 
 

 

M
ea

n
 (

S
D

) 
5
1
.9

 (
1
5
8
) 

4
0
.8

 (
1
3
9
) 

6
8
.7

 (
1
6
4
) 

5
3
.1

 (
1
5
4
) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

0
 [

0
, 
1
2
6
0
] 

0
 [

0
, 
1
0
4
0
] 

0
 [

0
, 
8
3
1
] 

0
 [

0
, 
1
2
6
0
] 

M
is

si
n
g
 

4
6
 (

2
2
.4

%
) 

2
6
 (

1
4
.4

%
) 

3
4
 (

2
0
.4

%
) 

1
0
6
 (

1
9
.2

%
) 

C
o
m

m
er

ci
al

 a
n
d
 S

er
v
ic

es
 (

m
in

/d
ay

) 
 

 
 

 

M
ea

n
 (

S
D

) 
6
8
.2

 (
1
0
9
) 

8
4
.2

 (
1
3
4
) 

4
7
.7

 (
6
8
.9

) 
6
7
.4

 (
1
0
9
) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

1
6
.2

 [
0
, 
5
6
1
] 

2
2
.2

 [
0
, 
6
1
9
] 

9
.5

0
 [

0
, 
3
4
9
] 

1
6
.2

 [
0
, 
6
1
9
] 

M
is

si
n
g
 

4
0
 (

1
9
.5

%
) 

2
5
 (

1
3
.9

%
) 

2
8
 (

1
6
.8

%
) 

9
3
 (

1
6
.8

%
) 

S
ch

o
o
ls

 a
n
d
 P

u
b
li

c 
F

ac
il

it
ie

s 
(m

in
/d

ay
) 

 
 

 
 

M
ea

n
 (

S
D

) 
2
1
.1

 (
7
1
.8

) 
2
6
.2

 (
7
0
.8

) 
2
3
.4

 (
6
6
.1

) 
2
3
.6

 (
6
9
.7

) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

0
 [

0
, 
4
8
0
] 

0
 [

0
, 
5
1
7
] 

0
 [

0
, 
5
2
1
] 

0
 [

0
, 
5
2
1
] 

M
is

si
n
g
 

4
9
 (

2
3
.9

%
) 

2
5
 (

1
3
.9

%
) 

3
2
 (

1
9
.2

%
) 

1
0
6
 (

1
9
.2

%
) 



 
 

 
 

36 

Ta
bl

e 
2.

3.
 (C

on
t.)

 

 
1s
t  T

ri
m

es
te

r 
(N

=2
05

 p
er

so
n-

da
ys

) 
3r
d  

T
ri

m
es

te
r 

(N
=1

80
 p

er
so

n-
da

ys
) 

4-
6 

M
on

th
s 

P
os

tp
ar

tu
m

 
(N

=1
67

 p
er

so
n-

da
ys

) 

O
ve

ra
ll 

(N
=5

52
 p

er
so

n-
da

ys
) 

In
d
u
st

ri
al

 a
n
d
 O

ff
ic

e 
S

p
ac

es
 (

m
in

/d
ay

) 
 

 
 

 

M
ea

n
 (

S
D

) 
1
0
3
 (

3
0
4
) 

9
3
.2

 (
2
6
9
) 

7
2
.5

 (
2
4
1
) 

9
0
.4

 (
2
7
4
) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

0
 [

0
, 
1
4
4
0
] 

0
 [

0
, 
1
4
4
0
] 

0
 [

0
, 
1
4
4
0
] 

0
 [

0
, 
1
4
4
0
] 

M
is

si
n
g
 

4
4
 (

2
1
.5

%
) 

2
5
 (

1
3
.9

%
) 

2
9
 (

1
7
.4

%
) 

9
8
 (

1
7
.8

%
) 

P
ar

k
s 

an
d
 O

p
en

 S
p
ac

es
 (

m
in

/d
ay

) 
 

 
 

 

M
ea

n
 (

S
D

) 
1
1
.8

 (
5
5
.9

) 
5
.5

7
 (

3
0
.1

) 
8
.8

6
 (

5
5
.4

) 
8
.7

3
 (

4
8
.3

) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

0
 [

0
, 
3
8
4
] 

0
 [

0
, 
2
7
5
] 

0
 [

0
, 
5
1
7
] 

0
 [

0
, 
5
1
7
] 

M
is

si
n
g
 

5
3
 (

2
5
.9

%
) 

2
9
 (

1
6
.1

%
) 

3
6
 (

2
1
.6

%
) 

1
1
8
 (

2
1
.4

%
) 

 

In
do

or
/o

ut
do

or
 m

ic
ro

en
vi

ro
nm

en
t 

H
o
m

e 
O

u
td

o
o
r 

(m
in

/d
ay

) 
 

 
 

 

M
ea

n
 (

S
D

) 
1
5
0
 (

3
8
9
) 

1
2
9
 (

3
8
9
) 

1
3
8
 (

3
9
1
) 

1
3
9
 (

3
8
9
) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

0
 [

0
, 
1
4
4
0
] 

0
 [

0
, 
1
4
4
0
] 

0
 [

0
, 
1
4
4
0
] 

0
 [

0
, 
1
4
4
0
] 

M
is

si
n
g
 

4
9
 (

2
3
.9

%
) 

2
6
 (

1
4
.4

%
) 

3
7
 (

2
2
.2

%
) 

1
1
2
 (

2
0
.3

%
) 

N
o
n
-H

o
m

e 
O

u
td

o
o
r 

(m
in

/d
ay

) 
 

 
 

 

M
ea

n
 (

S
D

) 
1
0
9
 (

2
4
8
) 

1
1
7
 (

2
7
2
) 

1
1
2
 (

2
5
3
) 

1
1
3
 (

2
5
7
) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

1
5
.5

 [
0
, 
1
4
4
0
] 

1
2
.0

0
 [

0
, 
1
4
4
0
] 

1
2
.0

0
 [

0
, 
1
4
4
0
] 

1
2
.3

 [
0
, 
1
4
4
0
] 

M
is

si
n
g
 

4
0
 (

1
9
.5

%
) 

2
3
 (

1
2
.8

%
) 

2
4
 (

1
4
.4

%
) 

8
7
 (

1
5
.8

%
) 

 

D
ai

ly
 M

ob
ili

ty
 

T
ri

p
 (

m
in

/d
ay

) 
 

 
 

 

M
ea

n
 (

S
D

) 
6
0
.2

 (
7
3
.3

) 
6
6
.6

 (
6
9
.4

) 
6
4
.7

 (
7
6
.6

) 
6
3
.7

 (
7
3
.0

0
) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

4
0
.0

0
 [

0
, 
3
8
7
] 

4
9
.6

 [
0
, 
3
6
3
] 

3
7
.8

 [
0
, 
3
5
1
] 

4
4
.2

 [
0
, 
3
8
7
] 



 
 

 
 

37 

Ta
bl

e 
2.

3.
 (C

on
t.)

 

 
1s
t  T

ri
m

es
te

r 
(N

=2
05

 p
er

so
n-

da
ys

) 
3r
d  

T
ri

m
es

te
r 

(N
=1

80
 p

er
so

n-
da

ys
) 

4-
6 

M
on

th
s 

P
os

tp
ar

tu
m

 
(N

=1
67

 p
er

so
n-

da
ys

) 

O
ve

ra
ll 

(N
=5

52
 p

er
so

n-
da

ys
) 

P
ed

es
tr

ia
n
-b

as
ed

 T
ri

p
 (

m
in

/d
ay

) 
 

 
 

 

M
ea

n
 (

S
D

) 
1
6
.2

 (
3
0
.8

) 
1
7
.9

 (
3
1
.7

) 
1
4
.9

 (
2
9
.8

) 
1
6
.4

 (
3
0
.8

) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

0
 [

0
, 
2
0
5
] 

0
 [

0
, 
1
8
6
] 

0
 [

0
, 
1
6
6
] 

0
 [

0
, 
2
0
5
] 

M
is

si
n
g
 

4
5
 (

2
2
.0

%
) 

2
3
 (

1
2
.8

%
) 

3
0
 (

1
8
.0

%
) 

9
8
 (

1
7
.8

%
) 

V
eh

ic
u
la

r-
b
as

ed
 T

ri
p
 (

m
in

/d
ay

) 
 

 
 

 

M
ea

n
 (

S
D

) 
5
7
.3

 (
6
7
.6

) 
5
8
.1

 (
6
3
.7

) 
6
0
.9

 (
7
2
.0

0
) 

5
8
.7

 (
6
7
.6

) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

3
6
.3

 [
0
, 
3
7
2
] 

4
1
.6

 [
0
, 
3
5
6
] 

3
5
.3

 [
0
, 
3
5
1
] 

3
9
.3

 [
0
, 
3
7
2
] 

M
is

si
n
g
 

3
5
 (

1
7
.1

%
) 

2
2
 (

1
2
.2

%
) 

2
3
 (

1
3
.8

%
) 

8
0
 (

1
4
.5

%
) 

T
ri

p
 (

N
/d

ay
) 

 
 

 
 

M
ea

n
 (

S
D

) 
3
.3

3
 (

3
.8

6
) 

3
.8

4
 (

3
.9

7
) 

3
.3

0
 (

3
.6

1
) 

3
.4

9
 (

3
.8

2
) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

2
.0

0
 [

0
, 
1
8
.0

0
] 

3
.0

0
 [

0
, 
1
7
.0

0
] 

2
.0

0
 [

0
, 
1
6
.0

0
] 

2
.0

0
 [

0
, 
1
8
.0

0
] 

P
ed

es
tr

ia
n
-b

as
ed

 T
ri

p
 (

N
/d

ay
) 

 
 

 
 

M
ea

n
 (

S
D

) 
1
.0

9
 (

1
.9

7
) 

1
.1

8
 (

1
.7

5
) 

.8
7
6
 (

1
.3

7
) 

1
.0

6
 (

1
.7

3
) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

0
 [

0
, 
1
3
.0

0
] 

0
 [

0
, 
8
.0

0
] 

0
 [

0
, 
6
.0

0
] 

0
 [

0
, 
1
3
.0

0
] 

M
is

si
n
g
 

4
5
 (

2
2
.0

%
) 

2
3
 (

1
2
.8

%
) 

3
0
 (

1
8
.0

%
) 

9
8
 (

1
7
.8

%
) 

V
eh

ic
u
la

r-
b
as

ed
 T

ri
p
 (

N
/d

ay
) 

 
 

 
 

M
ea

n
 (

S
D

) 
2
.9

8
 (

2
.9

7
) 

3
.2

1
 (

3
.3

2
) 

2
.9

9
 (

3
.3

1
) 

3
.0

6
 (

3
.1

9
) 

M
ed

ia
n
 [

M
in

, 
M

ax
] 

2
.0

0
 [

0
, 
1
2
.0

0
] 

2
.0

0
 [

0
, 
1
5
.0

0
] 

2
.0

0
 [

0
, 
1
5
.0

0
] 

2
.0

0
 [

0
, 
1
5
.0

0
] 

M
is

si
n
g
 

3
5
 (

1
7
.1

%
) 

2
2
 (

1
2
.2

%
) 

2
3
 (

1
3
.8

%
) 

8
0
 (

1
4
.5

%
) 

No
te

s:
 S

D
 =

 S
ta

nd
ar

d 
D

ev
ia

tio
n.

 
 



 

 
38 

1st trimester (N=947 stays) had larger numbers of different stays detected compared to the 3rd 

trimester (N=914 stays) and 4-6 months postpartum (N=760 stays). Among all stays, 42.4% 

(N=1,112) were at home, with an average duration of 17.3 h/day (SD=6.6 h/day). Commercial 

and services locations were the most popular destinations (28.9% of all stays; N=757 

stays; Mean=1.1 h/day; SD=1.8 h/day) among all non-home contexts, followed by non-home 

residential locations, industrial and office spaces, and schools and public facilities, each of which 

constituted 5~10% of all stays (Table 2.2). Lastly, women in this panel study rarely visited parks 

and open space (1.9% of all stays; N=51 stays; Mean=8.73 min/day; SD=48.3 min/day). 

In terms of descriptive trends across the three study periods, the number of visits to 

industrial and office spaces, and to commercial and services locations increased from the 1st 

trimester to the 3rd trimester but decreased at 4-6 months postpartum. However, women’s visits 

to non-home residential places increased at 4-6 months postpartum compared to the 3rd trimester 

(10.4 versus 6.6% of all stays). Additionally, women’s visits to parks and open space showed a 

decreasing trend from the 1st to the 3rd trimester of pregnancy and onto the 4-6 months 

postpartum (2.3, 1.9, and 1.6%, respectively of all stays in these time periods). 

Approximately one in three (35.1%) of stays detected across the three study periods occurred in 

outdoor microenvironments including locations outside of the home (e.g., porch, lawns, 

sidewalks) (4.2% of all stays; Mean=2.1 h/day; SD=3.4 h/d) and at non-home outdoor locations 

(e.g., parks, sports venues, sidewalks) (30.9% of all stays; Mean=1.9 h/day;SD=4.3 h/day). 

Overall, the 3rd trimester had the lowest fraction of stays (39.8%) at home (both indoor and 

outdoor) and the highest fraction of stays (27.7%) at non-home indoor microenvironments (Table 

2.3). 
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2.3.3.2. Daily Mobility Patterns 

The summary statistics for derived mobility patterns (N and min/d for trips, and N/d by 

trip mode) are reproduced in Tables 2.2 and 2.3. Overall, participants took 1,925 trips over the 

duration of the study spread across 552 person-days, one in four of these trips (24.9%) was 

pedestrian-based (N=489; Mean=16.4 min; SD=30.8 min). The number of trips made varied 

slightly between the 1st and 3rd trimesters (N=682 versus N=692) and decreased at 4-6 months 

postpartum (N=551). This pattern was replicated across all trip modes.  

Figure 2.4 shows the most popular trip origins and destinations by mode and purpose. For 

pedestrian-based trips (N=489), around 1 in 5 (21.7%, N=103) were between different 

commercial and services locations, followed by walking within the same commercial and 

services locations (14.5%; N=71). For vehicle-based trips (N=1445), about 2 in 5 

(37.8%; N=546) were between home and commercial and services locations, followed by 

commuting between different commercial and services locations (18.5%; N=268) and between 

home and non-home residential locations (9.0%, N=130). 

2.3.4. Base GLMM Results 

The base GLMM results examining whether day-level time-activity and mobility patterns 

varied across the three study periods are illustrated in Figure 2.5. The odds of visiting 

commercial and services locations were 58% lower at 4-6 months postpartum compared to the 

3rd trimester (OR=.42, 95%CI: .23–.76) (Figure 2.5). No other stay contexts (in terms of 

frequency or duration of time spent within them) were significantly different across the three 

time periods. These results did not change in sensitivity analyses using days with ≥10 h or ≥16 h 

of GPS data, binary (pregnancy versus postpartum) and continuous (week number from 

conception to post-birth) time. variables, and non-linear (quadratic) time terms. Moreover, the



  

40 

 

 

Fi
gu

re
 2

.4
. D

ist
rib

ut
io

ns
 o

f t
op

 fi
ve

 o
rig

in
-d

es
tin

at
io

n 
co

m
bi

na
tio

ns
 b

y 
pe

de
str

ia
n-

 a
nd

 v
eh

ic
le

-b
as

ed
 tr

ip
 m

od
es

. 



  
 

41 

 

Fi
gu

re
 2

.5
. B

as
e 

G
en

er
al

iz
ed

 M
ix

ed
-E

ffe
ct

s M
od

el
 re

su
lts

 o
f v

ar
ia

tio
ns

 in
 ti

m
e-

ac
tiv

ity
 a

nd
 d

ai
ly

 m
ob

ili
ty

 p
at

te
rn

s b
y 

1s
t a

nd
 3

rd
 

tri
m

es
te

rs
 o

f p
re

gn
an

cy
 a

nd
 4

-6
 m

on
th

s p
os

tp
ar

tu
m

. 

No
te

: I
RR

 =
 In

ci
de

nc
e 

Ra
te

 R
at

io
. O

R 
=

 O
dd

s R
at

io
. 

1  I
RR

 c
an

 b
e 

in
te

rp
re

te
d 

as
: i

f m
ot

he
rs

 v
isi

t a
 p

ar
tic

ul
ar

 c
on

te
xt

 o
r p

er
fo

rm
 tr

ip
s w

ith
 a

 p
ar

tic
ul

ar
 m

od
e,

 th
ei

r m
in

/d
 sp

en
t i

nc
re

as
e 

(if
 IR

R>
1)

 o
r d

ec
re

as
e 

(if
 IR

R<
1)

, c
om

pa
re

d 
to

 th
e 

re
fe

re
nc

e 
tim

e 
po

in
t (

i.e
., 

3r
d  t

rim
es

te
r).

 
2  O

R 
ca

n 
be

 in
te

rp
re

te
d 

as
: m

ot
he

rs
 in

 a
 ti

m
e 

po
in

t d
ec

re
as

e 
(if

 O
R<

1)
 o

r i
nc

re
as

e 
(if

 O
R>

1)
 th

e 
od

ds
 o

f v
isi

tin
g 

a 
pa

rti
cu

la
r c

on
te

xt
 o

r p
er

fo
rm

in
g 

tri
ps

 
w

ith
 a

 p
ar

tic
ul

ar
 m

od
e,

 c
om

pa
re

d 
to

 th
e 

re
fe

re
nc

e 
tim

e 
po

in
t (

i.e
., 

3r
d  t

rim
es

te
r).

 
 



  

 
 

 
 
 42 

odds of staying outdoors and time spent outdoors did not vary significantly across the three study 

periods (Figure 2.5). Lastly, in terms of mobility patterns, the odds of taking a vehicular trip 

were 56% lower at 4-6 months postpartum compared to the 3rd trimester at the day level 

(OR=.44, 95%CI: .21–.92) (Figure 2.5). These results did not change in sensitivity analyses 

restricting trips to those with ≥ 5% of epoch-level GPS data within trip segments detected. The 

odds of performing any trips overall or in pedestrian-mode did not vary by study period in these 

base models using min/d spent in trips or N/d trips taken. The full model results of base GLMM 

can be found in Appendices E and F. 

2.3.5. Final GLMM Results 

2.3.5.1. Three Study Periods 

The results of the final GLMM exploring whether individual sociodemographic, 

neighborhood, and other temporal factors such as weekdays vs weekend days additionally 

explained the women’s time-activity and daily mobility patterns are summarized in Tables 2.4, 

2.5, and 2.6. All significant results found in the base models examining variation over time 

remained in the fully adjusted models for odds of taking commercial and services locations, and 

for odds of performing any vehicle-based trip). Additionally, the final GLMM results showed 

that when women visited non-home residential locations in the 4-6 months postpartum period, 

their mean min/day spent there increased by 83% (Incidence Rate Ratio or IRR=1.83, 95%CI: 

1.03-3.25) compared to when they visited this same context in the 3rd trimester (see Table 2.4). 

2.3.5.2. Weekdays versus Weekends 

Other temporally varying factors including weekdays versus weekend days and daily 

temperature were not significantly associated with duration of time (min/day) spent at the home 
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Table 2.4. Zero-inflated Generalized Mixed-Effects Model (GLMM) results for time spent in 
five non-home spatial contexts adjusted for covariates. 

 Predictors 
Non-Home 
Residential 

(min/d) 

Commercial 
and Services 

(min/d) 

Industrial 
and Office 

Spaces 
(min/d) 

Schools and 
Public 

Facilities 
(min/d) 

Parks and 
Open Spaces 

(min/d) 

Count Model Incidence Rate Ratio (95%CI) 

Period: 1st Trimester 
1.14 

(.65 – 1.98) 

1.01 

(.79 – 1.30) 

1.37 

(.89 – 2.10) 

.81 

(.49 – 1.34) 

1.07 

(.37 – 3.11) 

Period: 4-6 Months 

Postpartum 

1.83 * 

(1.03 – 3.25) 

.88 

(.66 – 1.17) 

1.51 

(.96 – 2.36) 

.91 

(.56 – 1.46) 

.45 

(.16 – 1.31) 

Valid GPS 

observation (h/day) 

1.01 

(.94 – 1.09) 

1.07 ** 

(1.02 – 1.13) 

1.03 

(.97 – 1.09) 

1.05 

(.96 – 1.15) 

.95 

(.80 – 1.13) 

Type of day: Weekend 
1.64 * 

(1.05 – 2.56) 
   

3.02 ** 
(1.32 – 6.92) 

Average air 

temperature (°C) 

1.04 

(.99 – 1.10) 
    

Maternal parity: Already 

had child 
 .63 ** 

(.46 – .86) 
   

Employment status: 

Employed 
 1.43 ** 

(1.11 – 1.85) 

2.01 * 

(1.06 – 3.79) 

2.25 *** 

(1.40 – 3.64) 
 

Maternal age at consent  .99 

(.97 – 1.01) 
   

Neighborhood safety 

and 

cohesion score 

 .83 * 

(.71 – .97) 
   

Zero-Inflated Model Odds Ratio (95%CI) 

Period: 1st Trimester 
.95 

(.53 – 1.79) 

.60 

(.33 – 1.09) 

.63 

(.34 – 1.18) 

.88 

(.45 – 1.72) 

1.35 

(.50 – 3.85) 

Period: 4-6 Months 

Postpartum 

1.05 

(.59 – 2.00) 

.37 ** 

(.19 – .72) 

.63 

(.32 – 1.27) 

.96 

(.48 – 1.96) 

1.2 

(.40 – 3.70) 

Valid GPS 

observation (hay/day) 

.34 * 

(.12 – .97) 

.28 * 

(.10 – .85) 

.20 

(.04 – 1.01) 

.14 ** 

(.03 – .59) 

.22 

(.02 – 2.70) 

Type of day: Weekend 
.74 

(.45 – 1.22) 
   1.37 

(.59 – 3.23) 

Average air 

temperature (°C) 

1.00 

(1.00 – 1.06) 
    

Maternal parity: Already 
had child 

 .53 
(.18 – 1.59) 

   

Employment status: 

Employed 
 .62 

(.29 – 1.33) 

2.33 * 

(1.11 – 5.00) 

.61 

(.28 – 1.35) 
 

Maternal age at consent  1.10 * 

(1.01 – 1.19) 
   

Neighborhood safety 

and cohesion score 
 1.16 

(.77 – 1.82) 
   

*p<.05. **p<.01. ***p<.001. Exponentiated parameter estimates are shown. Reversed odds ratio (i.e., odds 
for an outcome to be non-zero) of zero-inflated models were calculated for easier interpretation. 
Note: BMI = Body Mass Index. GPS = Global Positioning System. 
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Table 2.5. Zero-inflated Generalized Mixed-Effects Model (GLMM) results for time spent in 
home and non-home contexts and microenvironments adjusted for covariates. 

Predictors 
Home 

Residence 
(h/day) 

Home Residence 
Excluding Sleep 
Hours (min/day) 

Home 
Residence 
Outdoor 
(min/day) 

All Non-Home 
Contexts 
(min/day) 

All Non-Home 
Contexts 
Outdoor 
(min/day) 

Count Model Incidence Rate Ratio (95%CI) 
Period: 1st 

Trimester 

.98 

(.93 – 1.05) 

.95 

(.85 – 1.06) 

.87 

(.74 – 1.02) 

1.18 

(.94 – 1.47) 

1.15 

(.84 – 1.57) 

Period: 4-6 

Months 

Postpartum 

1.00 

(.93 – 1.07) 

1.01 

(.90 – 1.13) 

.90 

(.75 – 1.10) 

1.08 

(.86 – 1.36) 

1.07 

(.78 – 1.47) 

Valid GPS 

observation 

(h/day) 

1.06 *** 

(1.05 – 1.07) 

1.15 *** 

(1.13 – 1.17) 

1.06 *** 

(1.04 – 1.08) 

1.05 ** 

(1.01 – 1.08) 

1.03 

(.98 – 1.07) 

Employment 

status: 

Employed 

.92 

(.84 – 1.01) 
  1.48 ** 

(1.10 – 1.99) 
 

Type of day: 

Weekend 
   1.06 

(.89 – 1.27) 
 

Maternal age at 

consent 
   1.00 

(.97 – 1.02) 

.99 

(.95 – 1.03) 

Zero-Inflated 
Model  Odds Ratio (95%CI) 

Period: 1st 

Trimester 
 1.14 

(.4 – 3.23) 

.56 

(.15 – 2.13) 

.71 

(.42 – 1.22) 

1.05 

(.62 – 1.82) 

Period: 4-6 

Months 

Postpartum 

 1.49 

(.53 – 4.35) 

1.02 

(.21 – 5.00) 

.83 

(.45 – 1.54) 

.72 

(.42 – 1.27) 

Valid GPS 

observation 

(h/day) 

 1.92 *** 

(1.67 – 2.38) 

.20 

(.02 – 1.85) 

1.19 *** 

(1.15 – 1.25) 

.23 * 

(.07 – .79) 

Employment 

status: 

Employed 

   .59 * 

(.38 – .93) 
 

Type of day: 

Weekend 
   1.89 

(1.00 – 3.70) 
 

Maternal age at 

consent 
   1.10 ** 

(1.11 – 1.18) 

1.10 ** 

(1.11 – 1.16) 

*p<.05. **p<.01. ***p<.001. Exponentiated parameter estimates are shown. Reversed odds ratio (i.e., odds 
for an outcome to be non-zero) of zero-inflated models were calculated for easier interpretation. Zero-inflated 
model was not applied to home residence related outcomes given that extremely rare cases of having zero 
min/day spent at home residence. 
Note: GPS = Global Positioning System. 
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Table 2.6. Zero-inflated Generalized Mixed-Effects Model (GLMM) results for time spent in 
pedestrian and vehicular trips and number of pedestrian and vehicular trips performed adjusted 

for covariates. 

 Predictors All Trip 
(min/d) 

Pedestrian-
based Trip 

(min/d) 

Vehicular-
based Trip 

(min/d) 

All Trip 
(N/d) 

Pedestrian-
based Trip 

(N/d) 

Vehicular-
based Trip 

(N/d) 

Count Model Incidence Rate Ratio (95%CI) 
Period: 1st 

Trimester 

1.03 

(.86 – 1.24) 

1.03 

(.75 – 1.41) 

1.05 

(.86 – 1.28) 

1.00 

(.85 – 1.18) 

1.04 

(.73 – 1.47) 

1.04 

(.88 – 1.23) 

Period: 4-6 Months 

Postpartum 

1.04 

(.87 – 1.25) 

.96 

(.69 – 1.32) 

1.17 

(.95 – 1.43) 

.90 

(.76 – 1.06) 

.86 

(.59 – 1.25) 

1.00 

(.84 – 1.20) 

Valid GPS 

observation (h/day) 

1.05 *** 

(1.02 – 1.08) 

1.02 

(.97 – 1.08) 

1.05 ** 

(1.02 – 1.09) 

1.04 ** 

(1.01 – 1.07) 

.97 

(.92 – 1.03) 

1.05 ** 

(1.02 – 1.08) 

Type of day: 

Weekend 

.96 

(.83 – 1.11) 
  .93 

(.82 – 1.06) 
  

Maternal age at 

consent 

1.01 

(.99 – 1.03) 

.99 

(.96 – 1.02) 

1.01 

(.99 – 1.03) 

1.03 * 

(1.00 – 1.05) 
 1.02 

(1.00 – 1.04) 

Education: Some 

college/Graduate 

1.08 

(.86 – 1.36) 
 1.05 

(.82 – 1.35) 
  1.13 

(.87 – 1.48) 

Neighborhood 

deprivation 

score 

    1.12 * 

(1.01 – 1.25) 
 

Neighborhood 

safety and 

cohesion score 

     .86 * 

(.76 – .97) 

Zero-Inflated 
Model Odds Ratio (95%CI) 

Period: 1st 

Trimester 

.76 

(.45 – 1.27) 

.74 

(.43 – 1.25) 

.79 

(.45 – 1.41) 

.75 

(.42 – 1.37) 

.51 

(.21 – 1.27) 

.71 

(.37 – 1.43) 

Period: 4-6 Months 

Postpartum 

.78 

(.45 – 1.35) 

.6 

(.34 – 1.03) 

.5 * 

(.28 – .92) 

.79 

(.42 – 1.49) 

.48 

(.18 – 1.28) 

.53 

(.24 – 1.18) 

Valid GPS 

observation (h/day) 

1.18 *** 

(1.11 – 1.23) 

.2 * 

(.05 – .86) 

.36 * 

(.14 – .94) 

1.18 *** 

(1.11 – 1.23) 

.21 

(.03 – 1.82) 

.31 

(.08 – 1.18) 

Type of day: 

Weekend 

.54 ** 

(.36 – .82) 
  .53 * 

(.33 – .87) 
  

Maternal age at 

consent 

1.08 ** 

(1.01 – 1.14) 

1.06 * 

(1.01 – 

1.11) 

1.10 ** 

(1.11 – 1.18) 

1.06 * 

(1.01 – 1.14) 
 1.09 * 

(1.01 – 1.16) 

Education: Some 

college/Graduate 

2.13 * 

(1.11 – 4.35) 
 3.33 ** 

(1.43 – 7.69) 
  3.33 * 

(1.25 – 9.09) 

Neighborhood 

deprivation 

score 

    .74 

(.56 – 1.01) 
 

Neighborhood 

cohesion and safety 
score 

     1.3 
(.83 – 2.13) 

*p<.05. **p<.01. ***p<.001. Exponentiated parameter estimates are shown. Reversed odds ratio (i.e., odds 
for an outcome to be non-zero) of zero-inflated models were calculated for easier interpretation. 
Note: GPS = Global Positioning System. 
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residence (when participants were there). Results remained unchanged in sensitivity analyses 

excluding days with <10 h or <16 h of GPS observations, or self-reported sleeping hours. As for 

non-home contexts, when women visited non-home residential locations or parks and open 

spaces during weekend days, they spent 64% (IRR=1.64, 95%CI: 1.05-2.56) and 202% 

(IRR=3.02, 95%CI: 1.32-6.92) more min/day at each context, respectively, as compared to 

weekdays. Additionally, during weekend days, the odds (OR=.48; 95%CI: .35–.82) of 

accumulating any minutes in trips decreased by 52%. 

2.3.5.3. Individual Sociodemographic and Residential Neighborhood Characteristics 

Other than weekdays vs weekend days, individual sociodemographic and residential 

neighborhood characteristics, including employment status, maternal education, and self-

reported neighborhood cohesion and safety scores, were also significantly associated with time-

activity (Table 2.4) and mobility (Table 2.6) patterns. Specifically, those employed spent on 

average 48% more min/d (IRR=1.48, 95%CI: 1.10-1.99) when they visited non-home contexts 

and had 133% higher odds (OR=2.33, 95%CI: 1.10-5.00) of visiting industrial and office spaces 

compared to non-employed counterparts. In addition, women who already had at least one child 

(IRR=.65; 95%CI: .45-.93) spent 35% fewer min/day visiting commercial and services locations 

compared to women experiencing their first pregnancy. 

In terms of mobility patterns, maternal education was significantly associated with longer 

duration of time spent in trips when they were taken. Specifically, women with post high school 

education had 223% greater odds (OR=3.33, 95%CI: 1.41-7.69) of accumulating minutes on 

vehicle-based trips and 113% greater odds (OR=2.13, 95%CI: 1.05-4.35) of accumulating 

minutes on all trips regardless of mode (Table 2.6) compared to women with high school 

diploma and below. Moreover, women living in safer neighborhoods (based on reported safety 
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and cohesion score) took 14% fewer vehicle-based trips per day (IRR=.86; 95%CI: .76-.97) 

overall. 

2.4. Discussion 

The overarching goal of this analysis was to examine how dynamic time-activity and 

mobility patterns vary for both the pregnant woman and the fetus, and how these might differ 

across levels of personal, socioeconomic, or neighborhood level disadvantage. In this work, a 

data processing and analysis pipeline was developed for highly resolved GPS data in a panel 

study of Hispanic pregnant women who were continuously monitored for 4 days during each of 

the 1st and 3rd trimesters of pregnancy and at 4-6 months postpartum. This study identified stays 

and trips and classified their spatial and indoor/outdoor microenvironmental contexts (for stays) 

and modes (for trips). Then whether time-activity and mobility patterns varied over time during 

pregnancy and the early postpartum period, and by individual sociodemographic, residential 

neighborhood, and other temporal factors were tested. This work also highlights the inadequacy 

of assuming individuals are stationary when assessing environmental exposures during 

pregnancy and their effects on maternal and child health. 

2.4.1. Time-Activity and Mobility Patterns of Pregnant Women 

To start, this study found that participants on average spent nearly 70% (17.3 h/day) of 

their time at their home residences during pregnancy and the early postpartum period, which 

matches several studies examining the time-activity and mobility patterns of pregnant women 

(Nethery, Brauer, and Janssen 2009; Ouidir et al. 2015; Wu et al. 2013). For instance, Nethery, 

Brauer, and Janssen (2009) reported a cohort of Canadian pregnant women spent 16.2 h/day 

at/near home during pregnancy while Zhu et al. (2019) reported a cohort of Chinese pregnant 

women spent 15 h/day at/near home. Moreover, although the finding of this study - this group of 
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Hispanic women rarely visited parks and open space could not be directly compared to other 

pregnancy studies among Hispanic women in the US, they indicate a potential public health 

concern since multiple studies have shown that exposure to greenness is associated with lower 

exposure to environmental hazards and decreased risk of adverse pregnancy outcomes (Dadvand 

et al. 2012; McEachan et al. 2016; Zhan et al. 2020). Past studies have indicated that minority 

and low SES populations have lower parks and open space availability (e.g., no park within 

walking distance) and quality (e.g., crime, lack of maintenance), which might help explain the 

low utilization of parks and open space in the cohort of this study. Consistently, because urban 

Los Angeles has limited parks and green infrastructure in general and higher quality parks and 

open space occur in the more expensive areas of the city, the low-income participants in this 

study may have had less access to parks and open space (Sister, Wolch, and Wilson 2010; 

Wolch, Wilson, and Fehrenbach 2005). The next study (Chapter 3) used GIS to measure 

greenness exposure and parks and open space access in participants’ residential neighborhoods, 

as well as interactions with individual health characteristics, to further understand the 

consequences that flow from this state-of-affairs. 

The daily mobility patterns of participants in this study differed from results reported by 

Wu et al. (2013) in the other GPS-based Southern California study that also examined mobility 

patterns of pregnant women (Wu et al. 2013). Specifically, participants of this study spent 1.7 

times more min/day on average in vehicle-based trips compared to the prior study. However, Wu 

et al. (2013) study participants were from different counties with a more diverse racial and ethnic 

composition and wider SES range compared to this study that focused on predominantly low 

income, Hispanic participants from Central, East, and South Los Angeles. A study by MacLeod 

et al. (2018) found low-income, pregnant women in another urban cohort in Los Angeles 
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reported significantly more time in vehicle-based trips in a cross-sectional survey, which might 

explain this discrepancy since low SES groups may have longer commuting times and make 

more frequent use of public transit than higher SES groups. 

2.4.2. Changes in Time-Activity and Mobility Patterns during Pregnancy and Postpartum 

Longitudinally, this study did not find women’s time spent at home differed significantly 

across pregnancy and early postpartum. This finding differs from the results of other studies 

examining time-activity patterns of women across pregnancy (Nethery, Brauer, and Janssen 

2009; Zhu et al. 2019). Nethery et al. (2009) reported that increasing weeks of pregnancy until 

the 3rd trimester were associated with increased time spent at home in a sample of 62 pregnant 

women living in Vancouver, BC, Canada. The authors hypothesized this might be due to the 

decrease in PA in later trimesters of pregnancy. However, this study focused on a group of 

Hispanic women that were primarily low SES. Consequently, they might not be able to afford or 

have time to engage in leisure activities due to increased home or work responsibilities 

(Kakinami et al. 2018). 

In terms of time spent in non-home contexts, this study found women’s odds of visiting 

commercial and services locations decreased at 4-6 months postpartum compared to the 3rd 

trimester of pregnancy. This change may be explained by increasing stays at home residence due 

to childcare responsibilities or the fact that women permanently or temporarily left their jobs at 

these times since the employment rate dropped from 39.6 to 19.6% between the 3rd trimester and 

the 4-6 months postpartum. This study did not find any difference between women’s time spent 

in commercial and services locations between the 1st and 3rd trimesters. However, a similar study 

in Shanghai, China reported women’s time spent working decreased by two hours in the 3rd 

trimester compared to the 1st trimester (Zhu et al. 2019). This study was able to disentangle 
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whether the purpose of visiting commercial and service locations was for work or fulfilling daily 

life needs such as visiting hospitals, schools, and supermarkets, which might explain why results 

of this study differed from the Shanghai study above. 

Regarding daily mobility patterns, my finding of no meaningful changes in time spent in 

vehicle- or pedestrian-based trips between the 1st and 3rd trimesters of pregnancy adds to the 

mixed results reported in the literature. Results of this study were consistent with the study by 

Nethery et al. (2009) that reported no longitudinal changes in time spent in transit across the 1st, 

2nd, and 3rd trimesters of pregnancy, but inconsistent with Zhu et al. (2019) who reported 

pregnant women’s time spent in vehicles increased between the 1st and 3rd trimester. However, 

the latter study was located in Shanghai, China, a city with an urban planning system that heavily 

incorporates pedestrian-oriented street networks and public transit systems in contrast to the Los 

Angeles metropolitan area, which may result in different travel behaviors. Until now, there are 

few studies that have examined daily mobility patterns of pregnant women, and more are needed 

to understand how mobility patterns change across pregnancy and postpartum periods. 

2.4.3. Additional Predictors of Time-Activity and Mobility Patterns 

Findings of this study that pregnant women’s time-activity and daily mobility patterns 

vary with additional temporal, individual sociodemographic, and residential neighborhood 

factors suggest that there may be highly variable patterns even among a primarily low-income, 

Hispanic population. This study found that those who were employed spent more time at 

industrial and office spaces during the week and more time at parks and open spaces during 

weekends. Participants with higher educational attainment were more likely to take vehicle-

based trips, a fact that was consistent with study results of Wu et al. (2013). This study also 

found that women living in safer neighborhoods performed fewer vehicle-based trips daily, 
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which might be explained by their inclination to take more walking trips given safer streets, 

although it did not find a statistically significant relationship between neighborhood safety and 

numbers and durations of pedestrian-based trips. 

2.4.4. Implications for Future Studies 

This study found pregnant and early postpartum women spent a substantial portion of 

their time at indoor locations and took several trips per day – approximately a quarter of which 

were pedestrian trips to visit a variety of destinations. These patterns also differed over the 

course of the pregnancy and the postpartum period. Findings of this study have important 

implications for future studies that aim to investigate the association between environmental 

exposures of pregnant women and maternal or child health outcomes. The residential-based 

approach used by most studies in the past may under- or over-estimate physical, built, and social 

environment exposures of interest (e.g., PM2.5, green space, crime). Consequently, the true 

relationships between environmental exposures and targeted health behaviors (i.e., PA) and 

outcomes (i.e., respiratory diseases) may be masked, especially when investigating acute or 

short-term dose-response relationships (e.g., daily, weekly, monthly). In addition, the variations 

in time-activity patterns across pregnancy and postpartum periods suggest the need for more 

longitudinal studies to complement cross-sectional studies. 

Kwan (2018) argues that spatial and temporal mismatches and uncertainties make it 

difficult to clarify the influence of contextual variables on health behaviors or outcomes. Given 

the need to prepare for childbirth, infant care, and other responsibilities during pregnancy and 

early postpartum, women’s day-to-day time-activity and daily mobility patterns may vary more 

than those of the general population (Varshavsky et al. 2020). As a result, future studies should 

move from “snapshot” to activity space-based approaches to assess the environmental exposures 
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of pregnant women (Yi et al. 2019). Mobile sensing technologies, such as GPS, can provide fine-

grained mobility trajectories that can be used to assess environmental exposures that reflect time-

activity patterns. As a result, these technologies can reduce the uncertainties in contextual 

exposures (i.e., the disparities between the true contextual and measured contextual units) (Chaix 

2018; Matthews and Yang 2013; Robertson and Feick 2018). Lastly, this study found that 

pregnant and early postpartum women’s time-activity and mobility patterns varied across 

weekend days versus weekdays, employment status, education attainment, and neighborhood 

cohesion and safety, which suggest that these might be important modifiers to account for in 

future exposure studies. 

2.4.5. Study Strengths and Limitations 

To the best of my knowledge, this is the first study that examines time-activity and daily 

mobility patterns of pregnant women across the pregnancy and early postpartum periods. A 

major strength is the application of GPS to repeatedly collect highly resolved geospatial location 

data across the 1st and 3rd trimesters of pregnancy and at 4-6 months postpartum. As a result, this 

study overcame recall biases inherent in self-reported time-activity or mobility surveys and 

provided insights into longitudinal changes in these patterns. Additionally, the study applies a 

kernel density-based algorithm to classify stay contexts and trip modes, achieving higher 

accuracy and better sensitivity than the point-by-point classification approach. Compared to 

computationally intensive methods, this study’s GPS processing and stay/trip detection workflow 

may offer a lower technical difficulty threshold for future studies that aim at utilizing mobile-

phone collected location-tracking data to generate time-activity patterns. Furthermore, this study 

collected and used highly time-resolved (10-s epoch) GPS data to detect stays and trips and 

classified spatial context, indoor/outdoor microenvironments, and trip modes in GIS. These fine-
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grained data and advanced GIS analytical tools helped us to examine the time-activity and 

mobility patterns during pregnancy and early postpartum at various temporal spacings. The 

longitudinal design used for this study allowed us to examine both the variations in time-activity 

patterns between women and the day-to-day variations for each woman. 

This study also has a few limitations. First, the GPS data collected by this study had some 

missingness. To mitigate its impacts on analyses, this study made efforts to impute GPS data 

using existing information and re-run the analysis with stricter thresholds of daily observation 

hours or excluding data collected during sleep hours. Results of this study remained largely 

unchanged. Additionally, missing data did not demonstrate diurnal patterns (i.e., it was roughly 

invariant throughout the day). However, there are other factors that may still potentially affect 

outcomes of this study. For instance, missingness patterns of GPS data may be correlated with 

spatial contexts (e.g., tall buildings, trees) that could obstruct receiver signals. Second, although 

this study tackled signal loss issue by flagging signal loss scenarios with confidence levels and 

excluded those with extremely low confidence, it still could not be sure that the locations 

recorded by the device during signal loss matched the true location. Third, this study could not 

distinguish a trip to and from work locations from other trips, which might inform the 

interpretation of results of time-activity patterns for certain respondents and the types of contexts 

in play. Fourth, this study had a relatively small sample size and only collected 4-day GPS data 

in two weekdays and two weekend days during each study period. Thus, the time-activity and 

mobility patterns detected from samples of this study may not capture some less frequent 

activities that occur on a weekly basis or on other days of the week, such as grocery shopping. 

Lastly, this study focused on a health disparity group of low-income, Hispanic women, a 

population that has been understudied and disproportionally exposed to various environmental 
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hazards. Thus, this study’s results may not generalize to pregnant women in other regions or SES 

or racial/ethnic groups; nevertheless, they shed light on an important population, and they may 

pave the way for future studies to examine pregnant women’s environmental exposures within 

their everyday activity spaces. 

2.5. Conclusions 

Pregnancy and early postpartum are critical periods for women’s health, and this study 

have shown that time-activity and mobility patterns of women will likely vary over this journey 

for many women. Time-activity and mobility patterns can also be used to directly determine 

environmental exposures that may affect both short- and long-term maternal and infant health 

outcomes. Therefore, future studies examining the impacts of environmental or contextual 

exposures on maternal or fetal health should consider the dynamics of these patterns because 

they may directly influence exposure measurement error and the ability to detect meaningful 

relationships.  
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Chapter 3 Assessing Dynamic Daily Exposures to Built-Environment 
Characteristics during Pregnancy and Early Postpartum using Smartphone 

Location Data 

Emerging research has associated BE characteristics (e.g., park access, walkability) with 

maternal and infant health during and after pregnancy (Porter et al. 2019; Thomson, Goodman, 

and Landry 2019; McEachan et al. 2016; Boll et al. 2020; Liao et al. 2019; Anabitarte et al. 

2020; Torres Toda et al. 2020). However, most studies have measured the BE exposure via static 

methods (i.e., residential location at one timepoint during pregnancy). These static methods may 

not capture pregnant women’s dynamic daily exposure encountered in activity spaces across the 

pregnancy and postpartum periods. This chapter evaluates BE exposure measurement error using 

static versus dynamic daily exposures using 552-days of smartphone location data from 62 

Hispanic pregnant women during the 1st and 3rd trimesters, and at 4-6 months postpartum. 

3.1. Related Work 

The impact of the BE on pregnant women’s health has attracted considerable attention 

over the past decade. Past research has associated exposure to BE characteristics such as shorter 

distance to parks and public transit stops and higher neighborhood walkability with greater PA 

outcomes in pregnant women (Porter et al. 2019; Thomson, Goodman, and Landry 2019). 

Additionally, studies have shown that greater exposure to urban nature (e.g., visual access, 

proximity, coverage) decreases pregnant women’s stress levels and depressive symptoms 

(McEachan et al. 2016; Boll et al. 2020). Furthermore, studies have linked higher levels of 

greenness exposure and park coverage to decreased maternal glucose levels, attenuated risks of 

gestational diabetes mellitus and weight gain, and higher infant birthweight (Liao et al. 2019; 

Anabitarte et al. 2020; Torres Toda et al. 2020). 
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However, most studies assess prenatal BE exposure at a single point in time and at the 

residential neighborhood level (i.e., in a circular buffer around the home location as determined 

by an address obtained at time of birth) (Banay et al. 2017). This “static” approach has several 

major limitations. Spatially, relying on residential address at a single point late in the pregnancy 

ignores residential mobility (or moving) across pregnancy and postpartum (Bell and Belanger 

2012; Chen et al. 2010; Hodgson et al. 2015). Also, static methods do not capture women’s 

dynamic BE exposures occurring outside the home in their activity spaces (e.g., walking trips, 

errands, other visited locations) which can also influence their health outcomes (Matthews and 

Yang 2013; Perez, Ruiz, and Berrigan 2019). Moreover, it does not consider changes in activities 

and behaviors as pregnancy progresses over time and into the postpartum period. These could 

dramatically vary due to preparations for childbirth, difficulty of physically moving around and 

increased fatigue later in pregnancy, and childcare responsibilities after birth (Varshavsky et al. 

2020). Further, within a particular period (e.g., 3rd trimester), day-to-day changes in BE exposure 

could result from household, occupational, and recreational activities (e.g., grocery shopping, 

commuting to work) which differ by days of the week. As a result, assessing exposures using 

static approaches may fail to capture the “true causally relevant” BE characteristics that exert 

contextual influence on pregnant women’s and infants’ health and could introduce exposure 

measurement error and potential bias (Robertson and Feick 2018; Yi et al. 2019). 

Increasingly, studies are starting to apply “dynamic” exposure assessment approaches 

(i.e., matching dynamic human movement with environmental features) to derive BE exposures 

(Zenk et al. 2011, 2018; Chaix et al. 2012, Jankowska et al. 2021). In these studies, highly 

resolved (e.g., every few seconds) GPS monitoring data are usually collected, based upon which 

individual activity spaces are constructed (e.g., activity locations one visits and paths one travels) 
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and integrated with BE layers (e.g., parks polygons, street centerlines) in GIS software to 

measure individual’s dynamic exposures at high spatiotemporal resolutions (e.g., total areas of 

parks in daily path areas) (Zenk et al. 2011; Yi et al. 2019). Consequently, these dynamic 

approaches may improve exposure assessment in pregnancy studies compared to residential-

based static approaches since they incorporate information about where and when individuals 

spend their time. However, very few studies have been able to assess dynamic BE exposures 

during pregnancy and postpartum on a large number of participants given the potentially higher 

burden of collecting personal, highly resolved geolocation data. Therefore, to understand 

whether quantified BE exposures and observed health relationships are sensitive to the choice of 

measurement method, it is important to evaluate the similarity (i.e., correlation) between static 

and dynamic exposure estimates. To date, few studies have tackled this topic, and none have 

focused on pregnant women to our knowledge. (Jankowska et al. 2017; Zhao, Kwan, and Zhou 

2018).   

In addition, there are several examples of health studies where static residential estimates 

are used to classify individuals into BE exposure groups (e.g., representing high- and low-

walkable neighborhoods using top and bottom quartiles of the residential walkability index 

score) (Van Dyck et al. 2010; Carlson et al. 2015). Especially for pregnancy studies, comparing 

dynamic exposure estimates to the typically used static residential approach might shed light on 

the potential for exposure measurement error and how this varies over time (e.g., pregnancy vs. 

postpartum) and human mobility patterns (i.e., spatial extent of human movement footprints).  

To fill these gaps, this study collected 4-day smartphone location data from a group of 

Hispanic, predominantly low-income women during the 1st and 3rd trimesters of pregnancy and at 

4-6 months postpartum, and characterized their daily dynamic and static BE exposures in this 
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critical life stage. The potential for exposure measurement error was then examined in relying on 

daily, static BE exposures (using the 3rd trimester residential location) compared to dynamic 

exposures within activity spaces in this environmental health disparities subpopulation in Los 

Angeles, CA. This study has the three following aims:  

1) To describe pregnant women’s dynamic daily BE exposure patterns during the 1st and 3rd 

trimesters of pregnancy and at 4-6 months postpartum; 

2) To assess correlations between various static and dynamic BE exposure measures; and 

3) To evaluate the potential extent and drivers of exposure measurement error in static vs. 

dynamic BE exposure measures. 

3.2. Methods 

3.2.1. Design and Overview 

Data for this study comes from the Real-Time and Personal Sampling sub-study of the 

MADRES Center. This study uses an intensive longitudinal, observational panel study design 

and examines the daily effects of environmental exposures and social stressors on maternal pre- 

and post-partum obesity-related biobehavioral responses. A total of 65 Hispanic, predominantly 

lower income mothers were drawn from the larger MADRES prospective cohort study between 

2016-2018. Participants were recruited from prenatal care providers serving predominantly 

medically-underserved populations in Los Angeles, California, including two non-profit 

community health clinics, one county hospital prenatal clinic, one private obstetrics and 

gynecology practice, and through self-referral from community meetings and local 

advertisements (O’Connor et al. 2019). To be eligible for this sub-study, a participant needed to 

be >18 years old with a singleton pregnancy and be at less than 30 weeks’ gestation at time of 

recruitment. In addition, participants who were HIV positive, had physical, mental, or cognitive 
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disabilities that prevented participation, or were currently incarcerated were excluded from the 

study (O’Connor et al. 2019). The USC Institutional Review Board approved all study 

procedures, and participants signed an informed consent before enrolling into the study. 

3.2.2. Data Collection 

3.2.2.1. Geolocation using GPS 

This study continuously collected GPS data from 65 study participants at 10-s intervals 

for four days (two weekdays and two weekend days) during the 1st and 3rd trimester and at 4-6 

months postpartum. To enable collecting highly resolved and encrypted GPS data collection, 

MADRES researchers designed a custom smartphone application (madresGPS app) for Android 

operating systems. The application on dedicated study smartphones (Samsung MotoG phone) 

were configured by study coordinators to record geographic coordinates and geolocation/motion 

metadata, which logged instantaneous GPS location and sensor data every 10 s from the 

smartphone’s multiple built-in location finding features (cell tower triangulation, Wi-Fi 

networks, and GPS) and motion sensors (O’Connor et al. 2019). Along with the timestamp, the 

application recorded metadata such as the number of satellites in use/view, geolocation accuracy, 

source of GPS, velocity (if GPS source), and network connection status (if network source) 

(O’Connor et al. 2019). 

3.2.2.2. Ecological Momentary Assessment (EMA) 

Participants self-reported physical context information in EMA surveys delivered through 

the MovisensXS application (Android), which was pre-installed on the same study phone used to 

collect GPS data. EMA surveys were designed to prompt at random times during each five pre-

specified sampling windows (i.e., wake-up to 10 a.m.; 11 a.m.to 1 p.m.; 2 p.m.to 4 p.m.; 5 p.m.to 
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7 p.m., and 8 p.m.to bedtime) within the same four-day GPS data collection windows during the 

three study periods. O’Connor et al. (2019) describes the EMA survey questions in more detail. 

3.2.3. Data Processing 

3.2.3.1. GPS Data Analysis 

The 10-s epoch GPS geolocation data was processed using a custom algorithm I 

developed and described in detail in Chapter 2 using SAS version 9.4 (SAS Institute Inc). 

Missing geolocation data was then imputed when participants were very likely to be at their 

home location during the day- or night-time. At night, typical sleep and wake time windows 

were used along with location before and during to determine whether participants were likely to 

be home and to fill in any gaps in the GPS data. During the day, confirmed EMA reports of 

being at “Home-Indoor” or “Home-Outdoor” all day were used to fill in gaps with the home 

location. Flags were then created for days with <6 hours of GPS data (post-imputation) as invalid 

days, after considering missing data patterns. 

3.2.3.2. Exposure Assessment 

Constructing Activity Spaces 

Daily activity spaces were constructed for each participant based on their geolocation 

trajectories via the route buffer (RB) and kernel density estimation (KDE) methods (Figure 3.1) 

using ArcGIS Pro 10.7.1 (Esri, 2021). The two methods complement one another and capture 

pregnant women’s daily exposure to BE characteristics, including those along women’s daily 

travel paths (via RB) and around activity locations where they spent the most time (via KDE). 
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Figure 3.1. An illustration of two activity space metrics – route buffer (RB) and kernel density 
estimation (KDE) applied in this study 

 

To construct buffers along routes, consecutive GPS points were joined into lines and 

buffered using a 250 m radius. This distance corresponds to the depth of several blocks in urban 

Los Angeles, CA. It was selected to approximate two hypothetical mechanisms on how BE 

characteristics could potentially influence health behaviors and outcomes, including viewshed 

(i.e., seeing a park when walking on a street) and awareness (i.e., knowing a recreational facility 

is located nearby) (Yi et al. 2019). Additionally, the geographical area of these route buffers was 

calculated to represent spatial extent of daily mobility and classified into low, medium, and high 

mobility days based on tertiles.  

Additionally, the KDE approach was applied to generate time-weighted activity grids 

using 50 by 50 m cells with a bandwidth of 250 m (to match the RB radius). Each grid was 



  

 
 

 
 
 62 

assigned a normalized time weight (range from 0 to 1) based on percentage of stay duration 

within a given day, with total weights adding up to 1. 

Defining Residential Neighborhoods 

To assess residential neighborhood exposures using the “static” approach, the home 

location was first determined based on where participants spent the most time in their 3rd 

trimester. This location was selected as most similar to the typically used approach in pregnancy 

studies (i.e., assessing exposure based on residential address provided on birth certificates or 

questionnaires after delivery and assuming it represents the entire prenatal period). Briefly, KDE 

was applied to identify the longest duration stay during the 3rd trimester as the home location, 

which was then used to derive 800 m residential network buffers (RNB) via the Service Area 

Analysis tool and StreetMap Premium product in ArcGIS Pro 10.7.1 (Esri, 2021). The network 

buffer better captures the area to which a pregnant woman could realistically travel from the 

home residence as compared to a circular buffer (James et al. 2014). An 800 m radius, which 

corresponds to a 5-10-minute walk, is recommended for populations with relatively restricted 

mobility (James et al. 2014; Frank et al. 2017). Additionally, a sensitivity analysis was 

performed using a larger radius (e.g., 1,600 m) and the resulting BE exposure estimates differed 

only slightly, so we chose to report 800m results only. 

Assessing Built Environment Exposures 

Eight BE measures were derived using the RNB, RB, and KDE methods, respectively. 

These included greenness (3 measures), park and public transit access (3 measures), street 

connectivity (1 measure), and walkability (1 measure) as follows: mean Normalized Difference 

Vegetation Index (NDVI; ranges from -1 to 1 with higher value represents higher greenness; the 

NDVI dataset was date-matched to corresponding residential buffers and activity spaces when 



  

 
 

 
 
 63 

calculating mean NDVI), percent green space along walkable roads, and percent tree cover along 

walkable roads, distance to the nearest park entrance, distance to the nearest public transit stop, 

total area of parks and open space, pedestrian-oriented intersection density, and walkability index 

score (ranges from 1 to 20 where higher scores represent more walkable), all of which have been 

reported by previous studies to be associated with various human activities and health outcomes, 

particularly among pregnant women (Banay et al. 2017; Besser and Dannenberg 2005, Jiang et 

al. 2016; Pickard et al. 2015; Porter et al. 2019; Pretty et al. 2005; Tsai, Davis, and Jackson 2019; 

Saelens et al. 2014). All BE measures, corresponding data sources, resolution, and processing 

steps and interpretation are shown in Table 3.1. 

RNB and RB exposures were calculated by summarizing values of the respective BE 

measures (e.g., mean NDVI, total areas of parks and open space) within boundaries of 

corresponding spatial units (i.e., 800 m residential network buffer, 250 m route buffer). KDE 

exposures were calculated by weighting grid-based values of the respective BE measures with 

time spent (e.g., multiplying walkability index score value of the grid by percentage of time 

spent to produce weighted walkability scores per grid, then taking the sum of weighted scores 

across all grids). Exposures were calculated using Eq 3.1 for the RNB or RB methods and Eq 3.2 

for the KDE methods as follows:  

!"#$%&'(!"#/!# = *(%-'(.% ∗ 0!1%)
%

%&'
 Eq 3.1 

!"#$%&'(()* = *(%-'(.% ∗ 0!1% ∗ 34%)
%

%&'
 Eq 3.2 
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Table 3.1. Built-environment (BE) measures, corresponding data sources, resolutions, and 
processing steps. 

Measures Data Sources Data Resolutions Processing Steps and Interpretation 

Mean 

NDVI 

(range 

from -1 to 

1) 

NASA MODIS 16-

Day L3 Global 

product1 

250 x 250 m raster 

grids 

The mean Normalized Difference Vegetation Index 

(NDVI) was used to represent overall vegetation levels 

within respective spatial units (i.e., residential 

neighborhood, activity space). NDVI values range from -

1 to 1, with negative values corresponding to areas with 

water surfaces, 0-.2 representing barren surfaces, .2-.5 

representing sparse vegetation, and >.5 representing 

dense vegetation. 

Percent 

green space 

along 

walkable 

roads (%) 

EPA EnviroAtlas 

Community Data 

Census block 

groups 

Green space areas were derived by combining areas of 

multiple land cover classes including water, trees and 

forest, grass and herbaceous cover, shrubs, agriculture, 

orchards, and woody and emergent wetlands. Sidewalk 

areas were derived by buffering NAVTEQ roads with a 

speed limit less than 55 miles per h (potentially walkable 

roads) by a width of 25 m on each side. The measure then 

was calculated by intersecting tree cover and sidewalk 

areas per city block. 

Percent 

tree cover 

along 

walkable 

roads (%) 

EPA EnviroAtlas 

Community Data 

Census block 

groups 

Tree cover areas were derived by combining areas of 

three land cover classes - trees, forests, and woody 

wetlands. Sidewalk areas were derived by buffering 

NAVTEQ roads with a speed limit less than 55 miles per 

h (potentially walkable roads) by a width of 8.5 m on 

each side. This measure then was calculated by 

intersecting tree cover and sidewalk areas per city block. 

Distance to 

the nearest 

park 

entrance 

(m) 

EPA EnviroAtlas 

Community Data 
Buffer zones 

This measure was derived by delineating approximate 

walking areas from a park entrance at any given location 

within the EnviroAtlas community boundary (i.e., Los 

Angeles County). 

Total parks 

and open 

space 

coverage 

(km2) 

California Protected 

Areas Database 

Parks and open 

space polygons 

This measure included 1) National/state/regional parks, 

forests, preserves, and wildlife areas; 2) large and small 

urban parks that are mainly open space (as opposed to 

recreational facility structures); 3) land trust preserves; 

and 4) Special district open space lands (watersheds, 

recreational areas, etc.) and other types of open space. 

Distance to 

the nearest 

public 

transit stop 

(m) 

EPA Smart Location 

Database 

Census block 

groups 

This measure was derived by measuring the minimum 

walking distance in meters between the 2010 population-

weighted census block groups (CBG) centroid (as used 

by SLD version 2.0) to the nearest transit stop of any 

route type. 
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Table 3.1 (Cont.) 

Measures Data Sources Data Resolutions Processing Steps and Interpretation 

Pedestrian-

oriented 

intersection 

density (m) 

EPA Smart Location 

Database 

Census block 

groups 

This measure was derived based on an analysis of 

NAVTEQ 2011 Streets data. All 3-way intersections 

were weighted by .6667 since they reduced street 

connectivity compared to intersections with 4 or more 

legs. 

Walkability 

index score 

(range 

from 1 to 

20) 

EPA Smart Location 

Database 

Census block 

groups 

A composite index score combining household and 

employment density, street intersection density, and 

distance to nearest transit stops. This measure represent 

different BE characteristics that are known to be 

supportive of walking. The index scores range from 1 to 

20, with higher values representing better walkability. 

1 The MODIS NDVI dataset was date-matched to corresponding activity spaces when calculating mean NDVI. 

Note: NASA = National Aeronautics and Space Administration. MODIS = Moderate Resolution Imaging 
Spectroradiometer. EPA = Environmental Protection Agency. 

 
 

where BECn is the exposure estimate for a BE measure in the nth spatial unit (e.g., census block 

group, grid) that intersects the RNB, RB, or KDE; Arean is the percentage of the area in the nth 

spatial unit that falls within the RNB, RN, or KDE; and TWn is the normalized time weights 

(range from 0 to 1) of the nth grid. 

3.2.4. Statistical Analysis 

Descriptive statistics were calculated for static (i.e., RNB) and dynamic (i.e., RB and 

KDE) BE exposures, respectively. Additionally, intraclass correlation coefficients (ICC) were 

calculated to estimate the proportion of day-to-day variability in the dynamic exposures that was 

between-participant (i.e., ICC%) compared to within-participant (i.e., 1-ICC%). Two-level (days 

nested within participants) linear mixed-effects random intercept only models were used to 

calculate the ICCs for the 8 dynamic BE measures. ICC value cut-offs of .40 and .75 were 

selected to indicate weak (ICC<.40), moderate (.40≤ICC<.75), or strong (ICC≥.75) within-
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person correlations (Zenk et al. 2018). Analyses were conducted in R 4.0.2 (R Foundation for 

Statistical Computing, 2021) using the lme4 package (version 27.1) (Bates et al. 2015). 

 Pearson’s correlation coefficients were used to examine similarity of BE exposures 

assessed using static versus dynamic methods (e.g., correlation between RNB and KDE mean 

NDVI), given the approximately normal distributions of BE measures. Moreover, Pearson 

correlation coefficients were calculated by study period (i.e., 1st trimester, 3rd trimester, and 4-6 

months postpartum) to investigate how well dynamic estimates correlate with static 3rd trimester 

estimates as an indication of potential for measurement error in relying solely on the latter. 

Furthermore, daily BE exposures were classified into four groups (quartiles) using KDE 

as the most dynamic method that is spatiotemporally matched to human movement and the 

percent of “misclassified” days that were assigned to a different group using the static RNB 

method was calculated as an indication of potential for exposure measurement error in the latter 

approach.  For example, if the KDE method classifies a day into the highest exposure (4th 

quartile) group but the RNB method classifies it into lower exposure groups (1st, 2nd, or 3rd 

quartile), it was labelled as a misclassified day. Sankey diagrams were then used to illustrate 

these relationships, where arrows represent flows from quartiles of KDE exposures (left, 

assumed “true” daily varying exposure) to quartiles of RNB exposure (right, static exposure), 

and the thickness of the lines flowing from left to right (representing percent of days) indicates 

the potential for exposure misclassification. In this study, whether potential exposure 

misclassification was sensitive to daily mobility was investigated by creating the same Sankey 

diagrams for low, medium, and high mobility days. Analyses were conducted in R 4.0.2 (R 

Foundation for Statistical Computing, 2021) and Sankey diagrams were created using the 

ggalluvial package (version 0.12.3) (Brunson 2020). 
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3.3. Results 

3.3.1. Data Completeness 

Across three study periods, 62 out of 65 participants who were initially enrolled in the 

study provided at least one valid GPS observation day (≥6 hours of data). Thirty-five out of 62 

participants had at least one valid day in all three study periods; 17 out of 62 in two of the three 

periods; and 10 out of 62 in just one of the three periods. The final analytical sample of this study 

comprised a total of 552 valid person-days of GPS data from 62 participants, with 205 person-

days during the 1st trimester, 180 person-days during the 3rd trimester, and 167 person-days at 4–

6 months postpartum. An average of 8.9 valid GPS days (SD=3.00; Range: 3.00-12.00) were 

provided by participants across the three periods. On average, 21.7 hours (SD= 5.00; Range: 6.2-

24.00) of GPS observations were collected on valid days. The number of hours was highest in 

the 3rd trimester (Mean=22.3 hours; SD=4.4; Range: 6.5-24.00) followed by the 4-6 months 

postpartum period (Mean=21.8 hours; SD=4.7; Range: 7.00-24.00) and then the 1st trimester 

(Mean=21.1 hours; SD=5.6; Range: 6.2-24.00). Almost half of the valid person-days (49.3%) 

were weekend days across the three periods. 

3.3.2. Daily BE Exposure Estimates during Pregnancy and Early Postpartum 

 Descriptive statistics for daily BE exposure estimates derived by the RNB, RB, and KDE 

methods are shown in Table 3.2. The median geographic extent was 2.49 km2 (IQR=11.20), 

which is equivalent in coverage to several city blocks (.5 to 1 mile long) in urban Los Angeles, 

CA. Depending upon the BE measure, exposure estimates can greatly vary across the three 

methods. In addition, the exposure estimates derived by the KDE method had the largest 

variability (i.e., IQR values) among the three methods. 
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Table 3.2. Descriptive statistics of daily built-environment (BE) exposure estimates for 
participants using the route buffer (RB), kernel density estimation (KDE), and residential 

network buffer (RNB) methods. 

 N=552 person-days from 62 participants 

Variables  Mean  SD  Median  IQR  Min  Max  

Geographic extent (km2) 

RB 250 m  7.96  11.94  2.49  11.20  .20  91.91  

Normalized Difference Vegetation Index (NDVI) (range from -1 to 1) 

RB 250 m  .18  .05  .18  .06  .06  .41  

KDE 250 m  .18  .05  .17  .06  .08  .41  

RNB 800 m  .18  .05  .18  .07  .10  .38  

% Green space along walkable routes 

RB 250 m  23.30  5.87  22.76  6.77  6.61  46.76  

KDE 250 m  23.28  8.30  21.87  10.32  1.70  46.27  

RNB 800 m  23.04  5.97  22.40  7.10  12.14  45.70  

% Tree cover along walkable routes 

RB 250 m  21.45  5.51  20.75  6.03  6.32  44.78  

KDE 250 m  22.58  8.16  21.99  10.77  1.74  50.37  

RNB 800 m  21.72  5.75  20.57  6.06  10.68  45.63  

Distance to the nearest park entrance (m) 

RB 250 m  877.97  397.02  791.82  421.93  294.97  2409.52  

KDE 250 m  812.31  455.44  668.94  411.95  51.67  2342.11  

RNB 800 m  789.29  414.09  660.04  302.91  400.38  2387.07  

Total parks and open space area (km2) 

RB 250 m  243.53  608.87  15.50  146.21  .00  4817.38  

KDE 250 m  .03  .10  .00  .01  .00  .93  

RNB 800 m  9.67  15.65  2.84  11.44  .00  77.68  

Distance to the nearest public transit (m) 

RB 250 m  280.02  103.27  275.38  144.08  1.94  532.25  

KDE 250 m  284.95  123.13  282.97  177.60  .03  1041.17  

RNB 800 m  268.94  105.79  265.49  135.86  81.28  645.76  

Pedestrian-oriented intersection density (# per mi2) 

RB 250 m  47.90  33.35  42.27  26.55  2.20  190.79  

KDE 250 m  51.81  40.78  41.73  38.92  .24  240.01  

RNB 800 m  57.60  44.70  46.76  32.24  3.00  222.66  

Walkability index score (range from 1 to 20) 

RB 250 m  14.93  1.50  14.96  2.02  10.29  18.43  

KDE 250 m  14.84  1.72  14.92  2.59  10.09  18.08  

RNB 800 m  14.94  1.43  15.17  1.89  11.59  18.11  
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In terms of KDE-based activity space neighborhood greenness, women on average were 

exposed to an NDVI value (range from -1 to 1) of .18 (SD=.05). This indicates their daily 

activity locations, on average, had barren surfaces or very sparse vegetation. In addition, the 

KDE-measured percent of green space and tree cover along walkable roads at their daily activity 

locations on average was 23.3% (SD=8.3) and 22.6% (SD=8.2), respectively. Both numbers were 

lower than the Los Angeles County average of 32.4% (% of green space along all walkable roads 

of Los Angeles County) and 28.1% (% of tree cover along all walkable roads of Los Angeles 

County). Mean exposure estimates of all greenness measures varied slightly for the same 

measure across the RNB, RB, and KDE methods. 

Turning next to park access, women’s KDE-measured mean daily distance from their 

daily activity locations to the nearest park entrance was 812 m (SD=455; corresponding to a 15-

20-minute walk). The estimates differed slightly with the RB or RNB approaches. The total 

estimated exposures to parks and open space area; however, varied tremendously. Women were 

exposed to an average of only 0.03 km2 parks and open space per day (about the size of a tiny 

neighborhood park in urban Los Angeles) using KDE, which was on average < 0.5% of exposure 

to parks and open space areas using RB and RNB. Women’s KDE-measured mean distance to 

the nearest public transit stop at daily activity locations was 285 m (SD=123; corresponding to 

<5-min walk). 

Lastly, regarding street connectivity and walkability, the KDE-measured mean number of 

pedestrian-oriented street intersections at daily activity locations women visited was about 52 

intersections per square mile (SD=41), and the mean walkability index score was 14.8 (SD=1.72; 

range from 1 to 20). These numbers were 34.7% and 1.5 scores higher than the LA County 
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average, respectively. Exposure estimates of these two measures varied slightly across the three 

methods. 

3.3.3. Within-person Correlations in Daily BE Exposures across Time 

 ICCs for KDE- and RB-derived day-level exposure estimates are presented in Table 3.3. 

ICC represents the within-person correlation between (day-level) exposure estimates for each BE 

variable. In other words, the higher the ICC value is, the larger portion of the variance in day-

level BE exposure would be explained by between-person (person-level) differences.  

According to Table 3, most BE exposures demonstrated strong within-person correlations 

(ICC>.75), which can be interpreted as >75% of differences in day-level exposures for a specific 

BE variable were driven by between-person differences. However, an exception was the Total 

Park and Open Space Area variable, which showed weak (ICCRB=.13) to moderate (ICCRB=.49) 

within-person correlations. Lastly, for each BE variable, its exposures derived using the RB 

method had overall lower ICC values than the KDE method (e.g., ICCKDE-NDVI > ICCRB-NDVI), 

suggesting weaker within-person correlations for RB-based day-level estimates. 

3.3.4. Correlations of BE Exposures across methods (Static versus Dynamic) 

Pearson correlation coefficients between exposure estimates of the same BE measure 

derived by static versus dynamic methods (e.g., RNB-based mean NDVI versus KDE-based 

mean NDVI) are summarized in Table 3.4. In general, stronger positive correlations were found 

between RNB and KDE exposure estimate pairs than between RNB and RB pairs. Moreover, the 

strength of correlations varied substantially by BE measure. 

Specifically, RNB estimates of total area of parks and open space were weakly positively 

correlated (r=.31, p<.01) with KDE estimates. The RNB and KDE exposure estimates for % 

green space and % tree cover along walkable roads were moderately positively correlated (r=.52,   
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Table 3.3. Intraclass-Correlation Coefficients (ICCs) of daily exposure estimates derived using 
the kernel density estimation (KDE) and route buffer (RB) methods. 

Variables  ICC (KDE) ICC (RB) 

Normalized Difference Vegetation Index  

(NDVI; range from -1 to 1) 
.79 .62 

% Green space along walkable roads  .82 .56 

% Tree cover along walkable roads  .87 .60 

Total parks and open space area (km2) .49 .13 

Distance to the nearest park entrance (m) .91 .63 

Distance to the nearest public transit stop (m) .76 .61 

Pedestrian-oriented intersection density (# per mi2) .90 .74 

Walkability index score (range from 1 to 20) .88 .64 

Note: ICC value cut-offs of .40 and .75 were selected to indicate weak (ICC<.40), moderate (.40≤ICC<.75), or 
strong (ICC≥0.75) within-person correlations. 
 

P<.01 and r=.55, p<.01, respectively). Lastly, the exposure estimates derived by RNB and KDE 

for the remainder of BE measures were strongly positively correlated (r>.7, p<.01). The 

correlation coefficients between RNB and KDE exposure estimates decreased slightly at 4-6 

months postpartum and decreased substantially during the 1st trimester compared to the 3rd 

trimester (Table 3.4). This same pattern is manifested in the distance to the nearest public transit 

stop measure (r=.61 between RNB versus KDE during the 1st trimester compared to r=.82 

between RNB versus KDE during the 3rd trimester). 

3.3.5. Impact of Daily Mobility on Potential for Exposure Misclassification using the Static 
Method 

Impact of daily mobility (i.e., low, medium, and high mobility days) on potential 

exposure misclassification using the “static” RNB method (at single 3rd trimester residential 

location) as compared to “dynamic” KDE method (at a daily level based on GPS tracks) is 

shown in Figures 3.2a-h. 
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Table 3.4. Pearson correlation coefficients between day-level static versus dynamic exposure 
estimates for the same built-environment (BE) variable during the 1st and 3rd trimesters and 4-6 

months postpartum periods. 

BE Variable Pairs  Pearson r 

 Overall 

(N=552 person-

days) 

The 1st trimester 

(N=205 person-days) 

The 3rd trimester 

(N=180 person-

days) 

4-6 months 

postpartum 

(N=167 person-days) 

Normalized Difference Vegetation Index (NDVI; range from -1 to 1) 

RNB ~ KDE  .82*  .84*  .71*  .88*  

RNB ~ RB  .73*  .78*  .58*  .78*  

% Green space along walkable routes  

RNB ~ KDE  .52*  .45*  .57*  .56*  

RNB ~ RB  .61*  .56*  .63*  .64*  

% Tree cover along walkable routes  

RNB ~ KDE  .55*  .48*  .62*  .59*  

RNB ~ RB  .67*  .66*  .69*  .67*  

Distance to the nearest park entrance (m)  

RNB ~ KDE  .89*  .9*  .9*  .88*  

RNB ~ RB  .75*  .81*  .74*  .71*  

Total parks and open spaces areas (km2)  

RNB ~ KDE  .31*  .29*  .4*  .3*  

RNB ~ RB  -.04  -.02  .01  -.11  

Distance to the nearest public transit stop (m)  

RNB ~ KDE  .74*  .61*  .82*  .85*  

RNB ~ RB  .65*  .66*  .58*  .72*  

Pedestrian-oriented intersection density (# per mi2)  

RNB ~ KDE  .79*  .81*  .79*  .76*  

RNB ~ RB  .69*  .63*  .7*  .73*  

Walkability index score (range from 1-20)  

RNB ~ KDE  .84*  .83*  .86*  .83*  

RNB ~ RB  .73*  .72*  .72*  .75*  

*p<.01. 

Note: KDE = Kernel Density Estimation. RB = Route Buffer. RNB = Residential Network Buffer. 
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According to these figures, impact of daily mobility on potential exposure 

misclassification was observed across all BE measures when relying on the 3rd trimester RNB 

method vs the dynamic KDE method, so that misclassification was largest in high mobility days. 

This was manifested for measures such as NDVI, distance to nearest park entrance, distance to 

public transit stop, and total area of parks and open space (Figures 3.2c, 3.2d, 3.2e, and 3.2f). 

However, this result was less consistent for percent green space along walkable roads, 

pedestrian-oriented intersection density, and walkability index score measures (Figures 3.2a, 

3.2g, and 3.2h) and reversed for mean percent tree cover along walkable roads measure (Figure 

3.2b). 

Notably, in the highest exposure group (4th quartile) of high mobility days, 49.6% and 

57.9% of person-days were misclassified into different groups by the RNB method for % green 

space along walkable roads and % tree cover along walkable roads measures (Figures 3.2a and 

3.2b). The percent of misclassification ranged from 25-35% for the highest exposure group in the 

remainder of BE measures. 

3.4. Discussion 

In this study, daily dynamic exposure to BE characteristics during the 1st and 3rd 

trimesters and at 4-6 months postpartum was described by analyzing highly resolved smartphone 

location data collected from a sample of 62 Hispanic pregnant women (across 552 observation 

days) in Los Angeles, CA. Additionally, a critical yet unaddressed research question was 

answered – how similar were pregnant women’s BE exposure derived by the residential-based 

static method applied by previous studies, to GPS-based dynamic exposure in their daily activity 

spaces? This study’s results have important implications for future studies interested in the 
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association between the BE exposure and maternal and infant health, especially in lower SES 

and racial/ethnic minority groups. The implications of findings are discussed below. 

3.4.1. Women’s Daily BE Exposures during Pregnancy and Early Postpartum 

Women in our sample were found to have daily activity spaces that were equivalent to 

several city blocks in Los Angeles (LA). Past studies have found lower SES groups have lower 

levels of mobility in LA compared to higher SES groups, which may explain the overall small 

daily spatial footprints in our predominantly low-income sample in this largely sprawling city 

(Kim and Kwan 2021; Giuliano 2005). Kim and Kwan (2021) found low income and female 

groups in Los Angeles had lower levels of daily mobility and were often “trapped” in their 

residential neighborhoods which have disproportionally high exposures to environmental hazards 

(e.g., traffic, air pollution). Therefore, the low mobility of the MADRES sample indicates 

residential BE exposure may have greater influences on their activities and health during 

pregnancy and early postpartum than their high SES counterparts, contrary to my original 

hypothesis. 

In this study, multiple measures were applied to capture different aspects of the greenness 

exposure, including park coverage and proximity, vegetations levels (i.e., NDVI value), and % 

green space and tree cover along walkable roads. Results showed women in this sample were 

found to be typically exposed to daily activity spaces featuring very low to low vegetation levels 

and minimal parks and open space. Wolch, Wilson, and Fehrenbach (2005) report low-SES areas 

and neighborhoods dominated by Latinos in Los Angeles have dramatically lower levels of park 

coverage compared to White-dominated areas, which may explain the overall low greenness 

exposure in this sample given the greater role of residential exposures in women’s total 

exposures. Interestingly, the women in sample of this study had convenient access to parks in 
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their daily activity spaces (i.e., the nearest park was on average only a 5-10 min walk), which did 

not lead to actual park use (Chapter 2 found they had very low visits to parks and open space). It 

is possible that women in the study sample have individual preferences to visit certain parks, 

which may or may not be the nearest park (Kaczynski and Mowen 2011). Moreover, park 

quality, amenities, and safety may be more important factors than distance to the closest park to 

determine park use behaviors, especially for low SES groups (Kaczynski, Potwarka, and Saelens 

2008).  

The women were exposed to activity spaces with very high proximity to public transit 

(typically <5-min walk to the nearest public transit stop) and higher than Los Angeles County 

average street connectivity and walkability. These findings indicate women overall may be 

exposed to a BE which better facilitates utilitarian walking (e.g., visits to corner groceries) and 

active transport (e.g., walking to transit stops) than recreational activities (e.g., exercise in a 

park). Nevertheless, the health impacts of daily exposures to high density areas as identified in 

this sample should be further examined since previous research has also reported that urban areas 

with concentrated activities may yield both health benefits and costs such as exposure to high 

levels of air pollution (Marshall, Brauer, and Frank 2009). 

3.4.2. Similarities of Exposure Estimates between Static and Dynamic Methods 

Overall, the results showed that the correlations between the static and KDE estimates 

were higher than those between the static and RB estimates. This is not surprising given the KDE 

method weights exposure based on the duration of the stay (i.e., time-weighted spatial averaging) 

and women on average spent a significant amount of time at home locations according to the 

results reported in Chapter 2, whereas the RB method is time-insensitive (i.e., spatial averaging) 

and weights the home location similarly to any other visited location. Despite the difference in 
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correlations between the static and the two dynamic methods, one method may be better at 

measuring some BE characteristics than the other. For instance, KDE may be better at capturing 

exposure that is time-sensitive in terms of the related health effects. For example, driving 

through a park may have minimal impact on women’s activities, compared to an encounter with 

an urban park during a leisure walk. 

However, among all BE characteristics measured, this study found stronger correlations 

between the static RNB and dynamic KDE estimates for those measures that required summaries 

within administrative boundaries (e.g., census block group level walkability) or raster surfaces 

(e.g., 250 m x 250 m NDVI grids) types of data inputs. For measures that relied on distinct 

features in space like lines (e.g., % tree cover along a street segment) or polygons (e.g., area of 

parks and open space), correlations were only low to moderate. This finding is in line with a 

previous study which also reported similarities in exposure estimates across different methods 

differed by data input types, with a focus on dynamic methods (Jankowska et al. 2021). 

Across the two pregnancy and the early postpartum periods, the results showed that the 

correlations of exposure estimates further decreased during the 1st trimester and at 4-6 months 

postpartum compared to the 3rd trimester. This may be partially caused by the residential 

mobility (10 of 62 women changed their place of residence during these periods). Additionally, 

this decrease may also be explained by changes in time-activity and mobility patterns across the 

three study periods, since women in this study spent less time at commercial and service 

locations and performed more vehicular trips during the 3rd trimester, according to the results 

presented in Chapter 2. 

Lastly, the ICC analysis results indicated most of variance in exposure estimates for a BE 

measure were due to between-participant differences (i.e., differences in person-mean exposure 
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estimates). This finding suggests that the static method may introduce larger exposure 

measurement errors when the research goal is to examine the day or within-day level association 

between the BE and maternal and infant health outcomes, compared to the person level. 

3.4.3. Exposure Misclassification Introduced by the Static Method to Due to Daily Mobility 

This study’s results showed exposure misclassification could potentially occur if the 

static methods were relied on to estimate exposure levels, especially for days when individuals 

are highly mobile. Exposure measurement error or misclassification can weaken statistical power 

to detect associations and potentially bias observed risk estimates in health studies (Zeger et al. 

2000). This concern is warranted by recent studies which have increasingly reported mixed 

results on associations between neighborhood green space and pregnant women’s activities and 

health outcomes (Anabitarte et al. 2020; Banay et al. 2017; Nichani et al. 2016; Porter et al. 

2019). 

Despite the overall dependence of exposure misclassification on daily mobility, the 

evidence for measures of street-level greenness exposure, street intersection density, and 

neighborhood walkability was less consistent. It may be that these measures have very low 

variability in women’s usual daily activity spaces. As a result, even if more activity locations 

were visited during high mobility days, the exposure estimates around these locations would only 

slightly differ from static estimates. This lack of variability may be further amplified by the fact 

that women in our sample had relatively small daily spatial footprints (a few urban blocks in LA, 

CA) and as a result, the differences in values between BE data in adjacent spatial units (e.g., 

walkability index score of US census block groups) would be further reduced. 
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3.4.4. Study Strengths and Limitations 

To the best of my knowledge, this is the first study that examines GPS-based dynamic 

exposures to BE characteristics of pregnant women across the pregnancy and early postpartum 

periods. A major strength is the estimation of daily exposure to neighborhood BE characteristics 

by repeatedly collecting highly resolved smartphone location data across the 1st and 3rd trimesters 

of pregnancy and at 4-6 months postpartum. Consequently, this work overcame the recall biases 

inherent in self-reported BE exposures and provides insights into longitudinal changes in these 

exposures. Additionally, the longitudinal design used for this study allows the examination of 

both the variations in BE exposures between the pregnant women and the day-to-day variations 

for each woman, which previous studies applying the static method could not do. Moreover, the 

study applies both spatial averaging (RB) and time-weighted spatial averaging (KDE) methods to 

capture women’s actual exposures to BE characteristics in daily activity spaces. As a result, the 

exposure estimates reported in this chapter may have less error than those derived by the static 

approach. Lastly, this study is among the first to examine similarities and differences between 

BE exposure derived by static and dynamic methods and, to the best of my knowledge, the first 

one that focuses on pregnant women (Zhao, Kwan, and Zhou 2018; Jankowska et al. 2021). The 

findings of low correlations between static and KDE neighborhood greenness measures have 

important implications for future studies examining the association between prenatal 

neighborhood greenness and maternal and infant health outcomes.  

This study also has a few limitations. First, the GPS data that was collected has some 

missingness. To mitigate its impacts on analyses, an effort was made to impute GPS data using 

existing information and ruled out the existence of diurnal patterns for the remaining missing 

segments (it was roughly invariant throughout the day). Despite these efforts, there are other 

factors that may still potentially bias this study’s exposure measurements. For instance, 
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missingness patterns of GPS data may be correlated with spatial context (e.g., tall buildings, 

trees) that could obstruct receiver signals. As a result, BE characteristics (e.g., proximity to 

public transit stops) in these spatial contexts may not be captured.  

Second, this study was subject to the uncertain geographic context problem (UGCoP), 

which refers to the uncertainties of environmental contexts that influence health behaviors and 

outcomes (Kwan 2012). Although the GPS-based dynamic method as applied in this study 

tackles UGCoP better than the static method by reducing the spatial mismatch between exposure 

and outcomes, it is limited in addressing other potential methodological issues such as the choice 

of spatial parameters (e.g., buffer sizes). In this study, a 250 m buffer was used to construct 

activity spaces given this distance considers multiple pathways on how the BE influences 

maternal activities and health. In addition, the correlation analyses were run a second time using 

exposure estimates derived with a 100 m buffer. Study results were largely unchanged and thus 

not reported. 

Third, exposure estimates derived by GPS-based methods were aggregated to the day 

level and daily exposures were computed as the averaged time-weighted exposure value within 

activity spaces. Other temporal unit (e.g., trip-level, minute-level) can be chosen if future studies 

are interested in finer grain within-day relationships between BE exposures and health behaviors. 

For example, one can examine the greenness exposures within a time window (e.g., 30-minute) 

preceding a walking episode to better understand the time-lagged effects of the greenness 

exposure on physical activity behaviors. Also, the BE datasets applied in this study to derive 

exposure estimates may be limited in variability, given the used aggregation method to produce 

them (e.g., distance to the nearest public transit stop was calculated as the minimum walking 

distance in meters between the 2010 population-weighted CBG centroid). Consequently, this 
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may in turn decrease the variability of BE exposure estimates derived and thereby reduce their 

statistical power to detect meaningful associations with health behaviors and outcomes of 

interest. 

Lastly, this work focused on a health disparity group of low-income, Hispanic women, a 

population that has been understudied and disproportionally exposed to various environmental 

hazards. Thus, the results may not be generalized to pregnant women in other regions or SES 

groups; nevertheless, they shed light on an important population, and they may pave the way for 

future studies to examine women’s BE exposures and health outcomes during pregnancy and 

postpartum. 

3.5. Conclusions 

Pregnancy and early postpartum are critical periods of exposure, and this study has 

shown that BE exposures will likely vary over this journey for many days, with potential 

implications on both short- and long-term maternal and child health. More importantly, this 

study have demonstrated that the residential-based static methods commonly used in prior 

studies can introduce exposure measurement error, the extent of which differs by type of BE 

measure studied. Therefore, future studies examining the impacts of the BE on maternal and 

infant health should consider the spatiotemporal movement patterns of the pregnant women in 

exposure measurements as they will directly influence the ability to detect meaningful 

relationships.
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Chapter 4 The Association between Built Environment Characteristics and 
Physical Activity during Pregnancy and Early Postpartum 

An increasing number of studies has examined the relationship of residential BE characteristics 

to pregnant women’s PA (Kershaw et al. 2021; Nichani et al. 2016; Porter et al. 2019; 

Richardsen et al. 2016). Yet, very little work has been done to understand this relationship at 

day-level using GPS-based dynamic BE exposures. Applying 4-day smartphone location and 

accelerometry-assessed movement data collected from a group of Hispanic, predominantly low-

income pregnant women during the 1st and 3rd trimesters, and at 4-6 months postpartum. This 

chapter examines the effects of women’s daily GPS-based greenness, parks and open space, and 

walkability exposures on their day-level MVPA outcomes.  

4.1. Related Work 

Pregnancy PA is an important risk factor for short- and long-term maternal and infant 

health outcomes. Past studies have associated physical inactivity with increased gestational 

weight gain and health conditions including diabetes, heart diseases, and stress and anxiety 

(Currie et al. 2014; Daley et al. 2007; Evenson et al. 2014). Evidence indicates Hispanic women 

had disproportionally high rates in pregnancy-related obesity risk and health outcomes and were 

overall less likely to meet the PA guidelines during pregnancy than non-Hispanic white 

population (Brawarsky et al. 2005; Chasan-Taber et al. 2008; Evenson and Wen 2010; Headen et 

al. 2012). Understanding the drivers of PA behaviors among Hispanic women is a critical step 

towards reducing disproportionate obesity risks and health consequences borne by this group. 

Increasingly, studies have begun to examine the impact of the BE on pregnant women’s 

PA. In this realm, studies have reported positive relationships of neighborhood greenness, parks 

and open space, street connectivity, and walkability on women’s PA outcomes during pregnancy 
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and postpartum (Kershaw et al. 2021; Nichani et al. 2016; Porter et al. 2019; Richardsen et al. 

2016). In addition, the evidence indicates that presence of sidewalks and access to parks and 

recreational facilities are associated with higher PA outcomes among Hispanic adults in the US 

(Cronan et al. 2008; Fields et al. 2013; Larsen et al. 2013; Mama et al. 2015). Nevertheless, to 

the best of my knowledge, no studies have focuses on the relationship between BE and PA 

during pregnancy in Hispanic and low-income women groups. 

Moreover, most aforementioned studies relied on one residential location and time point 

to estimate exposures to BE characteristics (most inferred from addresses provided on birth 

certificates or questionnaires after delivery). This “static” method does not capture women’s 

dynamic exposure to BE characteristics in non-home activity spaces (non-home activity 

locations, walking trips) and day-to-day changes in BE exposure resulting from household, 

occupational, and recreational activities (e.g., grocery shopping, commuting to work, visiting a 

park), and ignores residential mobility and dramatic variations in activities across the pregnancy 

and postpartum periods (Matthews and Yang 2013; Perez, Ruiz, and Berrigan 2019; Varshavsky 

et al. 2020). As a result of these limits, studies applying the static method may fail to capture the 

“true causally relevant” (Robertson and Feick 2018) BE characteristics that exert contextual 

influences on pregnant women’s PA and bias study results. Few studies have examined the day-

level BE-PA associations in pregnant women. 

Furthermore, temporal, individual, and neighborhood factors may modify the associations 

between day-level BE-PA associations in pregnant women. Some studies have reported positive 

associations between individual sociodemographic measures such as being employed, single 

parity, and low body mass index (BMI) and women’s PA during pregnancy and postpartum 

(Borodulin, Evenson, and Herring 2009; Hausenblas et al. 2011; Redmond, Dong, and Frazier 
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2015; Wit et al. 2015). Evidence provided by two studies also suggests that neighborhood social 

environment characteristics such as perceived safety and cohesion have positive effects on PA 

outcomes during pregnancy (Evenson et al. 2009; Perez et al. 2016). In addition, many studies 

have reported pregnant women’s PA behaviors differed by weekdays versus weekends, and 

pregnancy and postpartum periods (Berntsen et al. 2014; Borodulin, Evenson, and Herring 2009; 

da Silva et al. 2019; Jenum et al. 2013; Schmidt et al. 2006; Sinclair et al. 2019). As a result, 

examining the interactive effects of dynamic BE exposures and these potential moderators may 

help to understand the important nuances (i.e., at when, for pregnant women of what 

sociodemographic characteristics) in its associations with day-to-day PA behaviors. Yet, in this 

arena, studies remain very limited. 

To fill the three aforementioned gaps, the study described in this chapter applied 

smartphone GPS and accelerometry data collected from a group of Hispanic, predominantly low-

income women from MADRES personal and real-time data sampling study to answer the 

following research questions:  

1. Are women’s daily exposure to BE characteristics associated with their day-level PA 

outcomes during the 1st and 3rd trimesters of pregnancy and at 4-6 months postpartum? 

2. Do the BE exposure measurement methods applied (i.e., static and dynamic) influence the 

detection of the day-level associations between BE exposures and PA outcomes? 

3. Do the day-level associations between BE exposures and PA outcomes, if any, differ by 

temporal factors, individual sociodemographic, and neighborhood characteristics? 

This study hypothesized that the study population would have higher day-level PA 

outcomes during days when the women were exposed to areas with higher greenness, better park 

access, and higher walkability. Additionally, this study explored whether the detection of the 
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day-level associations between PA outcomes and BE exposures are influenced by the residential 

versus activity space methods applied to derive these exposures. Lastly, this study explored 

whether the day-level associations between BE exposures and PA outcomes are moderated by 

the pregnancy and postpartum periods, weekdays versus weekend days, maternal parity, pre-

pregnancy BMI categories, women’s employment status, and neighborhood deprivation, 

cohesion, and safety. 

4.2. Methods 

4.2.1. Study Design and Participants 

The data used for this study comes from the Real-Time and Personal Sampling sub-study 

conducted in the USC MADRES Center. This study uses an intensive longitudinal, observational 

panel study design and examines the daily effects of environmental exposures and social 

stressors on maternal pre- and post-partum obesity-related biobehavioral responses. A total of 65 

Hispanic, predominantly lower income mothers were drawn from the larger MADRES 

prospective cohort study, which recruited participants from prenatal care providers serving 

predominantly medically-underserved populations in Los Angeles, California, including two 

non-profit community health clinics, one county hospital prenatal clinic, one private obstetrics 

and gynecology practice, and through self-referral from community meetings and local 

advertisements (O’Connor et al. 2019). To be eligible for this sub-study, a participant needed to 

be >18 years old with a singleton pregnancy and be at less than 30 weeks’ gestation at time of 

recruitment. In addition, participants who were HIV positive, had physical, mental, or cognitive 

disabilities that prevented participation, or were currently incarcerated were excluded from the 

study (O’Connor et al. 2019). Recruitment of 65 women occurred on a rolling basis between 

2016 and 2018 and is described in further detail in O’Connor et al. (2019). The USC Institutional 
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Review Board approved all study procedures and participants signed an informed consent before 

enrolling into the study. 

4.2.2. BE Measures 

4.2.2.1. Location Information using GPS 

GPS data were continuously collected from 65 study participants at 10-s intervals for four 

days (two weekdays and two weekend days) during the 1st and 3rd trimester and at 4-6 months 

postpartum. To enable collecting highly resolved and encrypted GPS data collection, MADRES 

researchers designed a custom smartphone application (madresGPS app) for Android operating 

systems. Study coordinators configured the application on dedicated study smartphones 

(Samsung MotoG phone) to record geographic coordinates and geolocation/motion metadata 

(O’Connor et al. 2019). The application logged instantaneous GPS location and sensor data 

every 10 s from the smartphone’s multiple built-in location finding features (cell tower 

triangulation, Wi-Fi networks, and GPS) and motion sensors. Along with the timestamp, the 

application recorded metadata such as the number of satellites in use/view, geolocation accuracy, 

source of GPS, velocity (if GPS source), and network connection status (if network source). 

The 10-s epoch GPS location data was processed using a customized algorithm in SAS 

version 9.4 (SAS Institute Inc). The algorithm subsets GPS data to the 4-day designated 

monitoring period (during device set up and return), selects better quality data from one of the 

two GPS data sources (GPS/network), smooths extreme outliers, and aggregates data at the 10-s 

level. Missing GPS data was imputed using a customized imputation algorithm that identified 

participants’ time periods at home during nighttime using sleep and waking times they self-

reported prior to each study period to help the technology team configure suitable timing and 

frequencies for the EMA survey (O’Connor et al. 2019). The time periods spent at home were 
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identified when participants reported a home day (i.e., all EMA survey prompts within the day 

reported physical context as either “Home-Indoor” or “Home-outdoor”). The entire workflow of 

the missingness imputation process is discussed in Chapter 2. After GPS processing and 

imputation, flags were created which labelled days with <6 hours of GPS data (post-imputation) 

as invalid days, after considering missing data patterns. 

4.2.2.2. Delineation of Contextual Units 

Activity Space Metrics 

The processed and imputed GPS data was separated into person-day levels and daily 

activity spaces were constructed via both the RB and KDE methods (see Figure 3.1 in Chapter 3) 

using ArcGIS Pro 10.7.1 (Esri, 2021). The two methods complement one another and capture 

pregnant women’s daily exposure to BE characteristics along women’s daily travel paths (via 

RB) and around activity locations where they spent most of their time (via KDE).  

To construct RBs, consecutive GPS points were joined into lines and buffered using a 

250 m radius. This distance corresponds to several blocks in urban Los Angeles and was selected 

to approximate two hypothetical mechanisms on how BE characteristics could potentially 

influence health behaviors and outcomes (Yi et al. 2019): the viewshed (e.g., seeing a park when 

walking on a street) and their awareness (e.g., knowing a recreational facility is located nearby). 

Additionally, 250 m RBs were calculated and classified into three categories (low mobility: 

<33%, medium mobility: 33-66%, high mobility: >66% of sizes) to represent participants’ 

mobility during a given day. 

Additionally, a KDE approach was applied to generate time-weighted activity grids using 

50 by 50 m cells with a bandwidth of 250 m (to match the RB radius). Each grid was assigned a 
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normalized time weight (range from 0 to 1) based on the percentage of time staying put on a 

given day, with total weights adding up to 1. 

Home Residential Neighborhood 

To identify residential locations, a kernel-based stay-trip detection algorithm was applied 

to 4-day GPS data (per combinations of participants and three study periods) to identify activity 

locations visited and total time spent at each location (Thierry, Chaix, and Kestens 2013). For 

this study, the women’s activity location with the longest stay duration during the 3rd trimester 

was assigned as the residential location. This location was selected as most similar to one that 

was used in a typical approach (i.e., assessed exposures based on addresses provided on birth 

certificates or questionnaires after delivery and assumed these exposures represent the entire 

prenatal period). Details of the stay-trip detection and home identification were documented in 

Chapters 2 and 3, respectively. 

The identified 3rd trimester residential locations were then used to derive 800 m RNBs via 

the Service Area Analysis tool in ArcGIS Pro 10.7.1 (Esri, 2021). The network buffer better 

captures the area to which a pregnant woman could realistically travel from the home residence. 

A 800 m radius, which corresponds to a 5-10-min walk, is recommended for populations with 

relatively restricted mobility (James et al. 2014; Frank et al. 2017). Additionally, a sensitivity 

analysis was performed using a larger radius (e.g., 1,600 m) and the resulting BE exposure 

estimates differed only slightly. 

4.2.2.3. BE Measures 

Four BE measures capturing daily exposures to neighborhood greenness, parks and open 

space, and walkability were derived using the KDE, RB, and RNB methods, respectively. These 

measures included percent green space along walkable roads, distance to the nearest park 
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entrance, parks and open space exposure, and walkability index score, all of which have been 

reported by previous studies to be associated with various human activities and health outcomes, 

particularly among pregnant women (Banay et al. 2017; Besser and Dannenberg 2005; Jiang et 

al. 2016; Pickard et al. 2015; Porter et al. 2019; Pretty et al. 2005; Tsai, Davis, and Jackson 2019; 

Saelens et al. 2014;). All aforementioned BE measures along with data source, resolution, and 

processing steps and interpretation are summarized in Table 3.1 in the previous chapter. 

RNB and RB exposures were calculated by summarizing values of the respective BE 

measures (e.g., mean NDVI, total areas of parks and open space) within the boundaries of the 

corresponding spatial units (i.e., 800 m residential network buffer, 250 m route buffer). KDE 

exposures were calculated by weighting grid-based values of the respective BE measures with 

time spent (e.g., multiplying walkability index score value of the grid by percentage of time 

spent). Exposures were calculated using Eq. 3.1 for the RNB or RB methods and using Eq. 3.2 

for the KDE methods, as illustrated in Chapter 3.  

4.2.3. PA Outcomes 

A wGT3X-BT ActiGraph accelerometer was used to measure women’s PA during 

pregnancy and early postpartum. Women were instructed to wear the accelerometer for four 

consecutive days (two weekdays and two weekend days) during each study period. The 

accelerometer was attached with an adjustable belt and worn all the time on the right hip except 

when sleeping, bathing/showering, or swimming (O’Connor et al. 2019). Body movement data 

were collected by the accelerometer in activity count units for each 10-s epoch. Non-wear times 

were defined as >60 continuous min of zero activity counts and non-valid days were defined as 

<10 h of wearing time (Troiano et al. 2008), both of which were removed from the analyses. To 

be consistent with national surveillance data, MVPA, an intensity of PA that is sufficient to 
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reduce the risk of many adverse health outcomes (Piercy et al. 2018), was identified using the 

Freedson prediction equation above four metabolic equivalents of task (i.e., activities that 

accumulate metabolic rate ≥4 times of the resting metabolism, such as brisk walking, based on 

the Freedson prediction equation; Troiano et al. 2008; Bell et al. 2013; Harrison et al. 2011). 

Day-level PA outcome variable was created by summing total number of 10-s MVPA epochs 

occurred within an observation day and converted to a unit of minutes. 

4.2.4. Covariates 

Individual sociodemographics included enrollment age, education (recoded as some 

college or graduate degrees versus high school diploma or less), and maternal parity (recoded as 

first born versus second or greater birth), which were assessed in prenatal interviewer-

administered questionaries with the women (Bastain et al. 2019). Body Mass Index (BMI) 

categories (recoded as normal versus overweight versus obese) were also calculated based on 

height and weight measured during pre-natal visits, according to Center for Disease Control and 

Prevention guidelines (Bastain et al. 2019). Working status was collected via questionnaire 

during the 1st and 3rd trimester, and at 6 months postpartum (Bastain et al. 2019). Participants 

self-reported neighborhood cohesion and safety scores in questionnaires at the 2nd trimester 

(chosen to represent pregnancy) and for 6 months postpartum (Sampson, Raudenbush, and Earls 

1997), and the Areal Deprivation Index Score from the Neighborhood Atlas dataset produced by 

the University of Wisconsin-Madison was used to represent neighborhood-level SES of 

participants (Kind and Buckingham 2018). The score was assigned to participants’ residences 

based on the 2010 census block group in which their home residences were situated. Temporal 

factors included weekend versus weekday (weekend=1), daily average temperature in degrees 

Celsius, and study period (the 1st and 3rd trimester and 4-6 months postpartum). Daily 
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accelerometer wear time was also included to adjust for individual device-wearing behaviors. A 

full list of covariates measures and corresponding data sources is provided in Appendix D. 

4.2.5. Statistical Analysis 

4.2.5.1. Analytical Samples 

A total of 651 accelerometer-measurement days of PA were recorded by the 62 women. 

Among them, 210 non-valid days with <10 h of wear time were removed. Examination of 

predictors of non-valid day analyses showed that weekend days were more likely to be non-valid 

days; all other covariates did not predict valid versus non-valid days. Moreover, 94 data 

collection days were removed due to lack of daily BE measures data. These efforts resulted in a 

final data analysis sample of 350 days (NParticipant=55). 

4.2.5.2. Linear Mixed-Effects Models (LMMs) 

To account for the interdependency of the nested data structure in the current study 

(Level 1-days nested within Level 2-participants), LMMs with participant-level random 

intercepts were applied. To test the necessity of a multi-level model (i.e., within-participant 

clustering of day-level MVPA outcomes), ICCs was estimated using a LMM with only random 

intercepts (no covariates). Results indicate 41% (ICC=.41) of variation in the day-level MVPA 

minutes was between-participant and 59% was within-participant. This result justifies the use of 

a multilevel model (Bates et al. 2015). 

4.2.5.3. Model Building Strategy and Covariates 

All four BE measures were person-mean centered to disentangle the between-subject 

(person-level) and within-subject (day-level) effects (Curran and Bauer, 2011). Since the total 

parks and open space exposure variable contains a large proportion of zeros (about one third 
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across all observation days), it was recoded into a binary variable (1=had any parks and open 

space exposure in an observation day or 0 = no exposure). Additionally, the day-level MVPA 

outcome variable was log-transformed to ensure normality since the variable showed a right-

skewed distribution. For each set of four BE measures derived using two activity space methods 

(250 m KDE, 250 m RB), LMMs were fitted to test person- and day-level effects of each BE 

measure on day-level MVPA minutes.  

All models were adjusted for women’s baseline age, education, pregnancy and 

postpartum periods, and daily wear time. In addition, additional covariates were tested in 

separate univariate models and included in the final model if they reached a significance level of 

<.1. These additional covariates included maternal parity, employment status, pre-pregnancy 

BMI categories, daily averaged temperature (both linear and quadratic terms were tested to 

account for its potential non-linear relationships with daily PA outcomes), weekdays versus 

weekends, neighborhood safety and cohesion score, and neighborhood deprivation index score.  

Moreover, two-way interaction terms between day-level BE measures and 

aforementioned temporal factors, individual sociodemographics, and neighborhood covariates 

were entered separately into LMMs to test whether they moderated the associations between BE 

measures and day-level MVPA minutes. For each significant interaction (p<.05), predicted 

trajectories for MVPA min/d related to BE measures at a specific value of moderator (all 

categories if categorical; -1SD, mean, +1SD if continuous) were estimated and visualized, with 

the slope estimated and its statistical significance tested (i.e., whether an estimated slope of the 

day-level MVPA on a specific BE measure at a specific moderator value is different from zero). 
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4.2.5.4. Sensitivity Analyses 

Models were also run for sensitivity analyses by using BE measures derived using 

smaller buffers for two activity space methods (100 m RB, 100 m KDE) and the RNB method 

(800 m and 1,600 m RNB). In addition, three-level LMMs with random intercepts at person- and 

period-levels were run as sensitivity analyses to test whether the random effects of pregnancy 

and early postpartum periods would confound the associations between BE exposures and PA 

outcomes found in two-level LMMs. The R 4.0.2 (R Core Team, 2020) and lme4 package 

(version 1.1-27.1) were used for LMM (Bates et al. 2015), and the interaction package (version 

1.1.5) was used for simple slope analyses. Since the outcome variable was log-transformed, 

exponentiated effect estimates interpreted on a multiplicative scale were reported for all models. 

4.3. Results 

4.3.1. Descriptive Statistics 

The descriptive statistics for PA outcomes, BE predictors, and covariates of the study 

participants are summarized in Table 4.1. Participants’ mean age at study entry was 29.00 years 

(SD=6.1; range:18.3-45.4). All the participants were Hispanic. Over one-third (34.6%) had some 

college or above education. 36.2% were employed during the 1st trimester compared to 39.00% 

during the 3rd trimester, and 21.2% at 4-6 months postpartum. At recruitment, 29.1% were 

pregnant with their first child, 72.7% were overweight or obese according to their reported pre-

pregnancy BMI. The recruited participants lived in neighborhoods with an average deprivation 

index score (on a 1 to 10 scale; where 1=least deprived) of 6.3 (SD=1.8, Range:2.00-9.00). The 

average neighborhood safety and cohesion score (on a 1 to 5 scale; where 1=least safe and 

cohesive) self-reported by women was 3.00 (SD=.69, Range:1.00-4.4) during the 1st trimester, 
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3.1 during the 3rd trimester (SD=.81; Range:1.2-4.7), and 3.3 (SD=.9, Range:1.4-4.8) at 4-6 

months postpartum. 

The average MVPA min/d across all three study periods were 30.7 (SD=22.4), which was 

higher (p=.71) during the 3rd trimester (32.00 min/d; SD=20.4) than during the 1st trimester (30.8 

min/d; SD=23.5) and at 4-6 months postpartum (29.5 min/d; SD=23.1). Less than half of the 

data collection days were on weekends (45.4%), which had lower (p<.01) day-level MVPA (26.8 

min/d; SD=19.6) compared to weekdays (34.2 min/d; SD=24.2). The mean average daily 

temperature in Celsius was 19.92 °C (SD=4.4; Range:5.2-31.4). 

In terms of neighborhood greenness, women were exposed to walkable road networks 

with an average 23.3% green space coverage at daily activity locations visited (SD=8.3), which 

was lower than the Los Angeles County average of 32.4% (mean percent green space along all 

walkable roads in the County). The exposure estimates of the greenness exposure measure varied 

slightly using the RB method. As for parks and open space access, women’s mean distance from 

any point in the daily activity spaces to the nearest park entrance was 791 m (SD=399; 

corresponding to 15-20-minute walk). The estimates differed slightly with the RB method. 

Additionally, women were exposed to parks and open space in activity spaces in approximately 

three out of every four observation days (73.4%; 257 out of 350 days), according to the KDE 

method. This percentage was slightly smaller if measured by the RB method. Lastly, regarding 

walkability, the mean walkability index score was 15.00 (SD=1.7), which was 1.5 units higher 

than the Los Angeles County average. The walkability exposure estimates differed slightly 

between the two activity space methods. 
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Table 4.1. Descriptive statistics for physical activity (PA) outcomes, built-environment (BE) 
predictors, and covariates of the study participants. 

 
Overall  

(N=55 participants,  
N=350 person-days) 

1st Trimester  
(N=47 participants,  
N=133 person-days) 

3rd Trimester  
(N=41 participants,  
N=106 person-days) 

4-6 Months 
Postpartum  

(N=38 participants,  
N=112 person-

days) 
Variable Mean(SD) or n(%) 

Outcome 
Day-level MVPA 
minutes  30.73 (22.45) 30.76 (23.48) 31.99 (20.44) 29.48 (23.13) 

Predictors 
% Green space along walkable roads 

RB 23.21 (5.87) 23.73 (5.38) 23.26 (5.91) 22.54 (6.37) 
KDE 23.30 (8.27) 24.06 (8.47) 22.80 (7.65) 22.88 (8.58) 

Days with parks and open space exposure (yes/no) 
RB 254 (72.6%) 97 (72.9%) 81 (76.4%) 76 (68.5%) 
KDE 257 (73.4%) 99 (74.4%) 82 (77.4%) 76 (68.5%) 

Distance to the nearest park entrance (in m) 
RB 868.03 (342.07) 826.44 (323.96) 873.76 (328.80) 912.38 (371.49) 
KDE 790.80 (398.47) 748.10 (346.55) 807.72 (424.17) 825.79 (429.16) 

Walkability index score (range from 1 to 20) 
RB 15.09 (1.39) 15.05 (1.54) 15.24 (1.24) 14.98 (1.35) 
KDE 15.01 (1.68) 14.99 (1.78) 15.12 (1.58) 14.95 (1.64) 

Covariates 
Age  29.04 (6.14) - - - 
Education      

High school or less  36 (65.45%) - - - 
Some 
college/Graduate  19 (34.55%) - - - 

Parity      
Second or greater 
birth 39 (70.91%) - - - 

First-born  16 (29.09%) - - - 
Pre-pregnancy BMI 
categories      

Normal  15 (27.27%) - - - 
Overweight/Obesity
  40 (72.73%) - - - 

Employment status a     

Unemployed  – 30 (63.83%) 25 (60.98%) 26 (78.79%) 
Employed  – 17 (36.17%) 16 (39.02%) 7 (21.21%) 
Missing  – 0 0 5 
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Table 4.1. (Cont.) 
 

 

Overall  
(N=55 participants,  

N=350 person-
days) 

1st Trimester  
(N=47 participants,  

N=133 person-
days) 

3rd Trimester  
(N=41 participants,  

N=106 person-
days) 

4-6 Months 
Postpartum  

(N=38 
participants,  

N=112 person-
days) 

Variable Mean(SD) or n(%) 
Neighborhood cohesion 
and safety score (range 
from 1 to 5) a 

– 3.02 (.69) 3.07 (.77) 3.28 (.86) 

Missing  – 1 0 5 
Neighborhood 
deprivation index (range 
from 1 to 10)  

6.34 (1.78)    

Missing  2    
Daily accelerometer 
wearing hours  13.79 (2.63) 13.32 (1.82) 14.19 (3.03) 13.96 (2.95) 

Type of day      
Weekday  191 (54.57%) 76 (57.14%) 60 (56.60%) 55 (49.55%) 
Weekend  159 (45.43%) 57 (42.86%) 46 (43.40%) 56 (50.45%) 

Average daily 
temperature (°C)  19.92 (4.40) 20.37 (4.36) 20.41 (4.28) 18.95 (4.45) 

Missing  9 9 0 0 
a Summary statistic not available since the employment status variable is measured at each study period. 
Note:  KDE = Kernel Density Estimation. RB = route buffer.  

 

4.3.2. Predictors of Day-Level PA Outcomes in Pregnant Women 

LMM results examining within-subject (day-level) associations between BE measures 

derived using the 250 m KDE and RB methods and women’s day-level MVPA minutes are 

shown in Table 4.2. In both models, results showed that women engaged in more MVPA on 

weekdays versus weekend days. In addition, women engaged in more MVPA on days with 

higher averaged daily air temperatures and this relationship was linear. Education attainment was 

also associated with women’s MVPA min/d so that women who had college or graduate degrees 

engaged in less MVPA compared to those who had high school or less education. 
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Table 4.2. Between-subject (BS) and within-subject (WS) effects of exposures to built-
environment (BE) characteristics derived using the 250 m kernel density estimation (KDE) and 

250 m route buffer (RB) methods on daily moderate-to-vigorous physical activity (MVPA) 
outcomes. 

  Daily MVPA 
minutes(log-transformed) 

 250 m KDE model 250 RB model 

Predictors Estimates (95%CI)1 

(Intercept) 8.00*** (3.23 – 19.79) 8.62*** (3.43 – 21.66) 

% Green space along walkable roads (BS) 1.01 (.99 – 1.03) 1.03 (1.00 – 1.06) 

Distance to the nearest park entrance (BS) 1.01 (.98 – 1.05) 1.04 (1.00 – 1.10) 

Walkability index score (BS) 1.05 (.97 – 1.14) 1.18* (1.04 – 1.33) 

Daily parks and open space exposure (BS) 1.64 (1.00 – 2.70) 1.47 (.92 – 2.34) 

% Green space along walkable roads (WS) 1.00 (.98 – 1.02) 1.01 (.99 – 1.03) 

Distance to the nearest park entrance (WS) 1.00 (.94 – 1.05) .99 (.96 – 1.02) 

Walkability index score (WS) 1.01 (.89 – 1.15) 1.02 (.94 – 1.12) 

Daily parks and open space exposure (WS)2 1.21* (1.01 – 1.46) 1.22* (1.02 – 1.47) 

Maternal age .99 (.97 – 1.01) .99 (.96 – 1.01) 

Education: Some college/Graduate .68** (.52 – .89) .66** (.50 – .88) 

Pre-pregnancy BMI category: Overweight .93 (.69 – 1.25) .95 (.72 – 1.27) 

Pre-pregnancy BMI category: Obesity .69* (.51 – .92) .66** (.50 – .87) 

Average daily temperature (°C) 1.02* (1.00 – 1.04) 1.02* (1.00 – 1.04) 

Type of day: Weekend .81** (.71 – .93) .80** (.70 – .92) 

The 3rd trimester day .96 (.81 – 1.13) .95 (.80 – 1.12) 

4-6 months postpartum day .90 (.75 – 1.08) .91 (.76 – 1.08) 

Neighborhood cohesion and safety score (range from 1 to 
5) 

1.02 (.91 – 1.14) 1.03 (.92 – 1.15) 

Daily accelerometry wearing hours 1.09*** (1.06 – 1.13) 1.09*** (1.06 – 1.13) 

* p<.05   ** p<.01   *** p<.001 

1 Exponentiated effect estimates interpreting on a multiplicative scale were reported for all models 
2 The binary variable was not person-mean centered for the ease of interpretation. The person-mean centered 
versions of the variable were also tested, and results remained invariant. 

 

After controlling for all covariates, results showed (see Table 4.2 – 250 m KDE model) 

that the women engaged in more MVPA min/d (b=1.21; 95%CI:1.01-1.46; p<.05) on days they 

were exposed to parks and open space in their activity spaces. This result did not change in the 
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250 m RB model (see Table 4.2). In addition, women who were exposed to activity spaces with 

higher walkability score, on average compared to other women, engaged in more MVPA min/d 

(b=1.18; 95%CI:1.04-1.33; p<.05) in the 250 m RB model. Associations were not detected 

between other BE variables and women’s day-level MVPA outcomes. 

Sensitivity analyses that applied BE variables derived using the 100 m KDE and RB, and 

800 m and 1,600 m RNB methods were conducted. These results are summarized in Appendix 

G. In all models, both positive associations between daily parks and open space exposure and 

MVPA min/d and between daily walkability index score and MVPA min/d were no longer 

significant, although the associations still approached statistical significance (p<.1) in the 100 m 

KDE and 100 m RB models. In addition, the associations between BE measures derived using 

the 250 m KDE and RB and MVPA min/d via three-level LMMs with random intercepts at 

person- and period-level (i.e., 1st and 3rd trimesters and 4-6 months postpartum) were also tested, 

and the aforementioned significant results on positive associations between daily parks and open 

space exposures and MVPA min/d did not change. 

4.3.3. Moderators of Day-Level Associations between BE and PA  

The LMM results after adding two-way interactions between within-subject (day-level) 

BE measures and a list of temporal factors, individual sociodemographics, and neighborhood 

characteristics are visualized in Figure 4.1 and presented in table form in Appendix H. The 

simple slope analysis results for each significant interaction term are summarized in Table 4.3 as 

well. Overall, these results show the associations between daily BE exposures and MVPA min/d 

differed by weekdays versus weekends, late pregnancy versus two other periods, early 

postpartum versus two other periods, the average daily temperature, maternal parity numbers,  
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Figure 4.1. The significant interactions between built-environment (BE) characteristics and 
temporal factors, individual sociodemographics, and neighborhood characteristics in predicting 

day-level moderate-to-vigorous physical activity (MVPA) outcomes. 

Note: Timepoints include the 1st trimester, the 3rd trimester, and 4-6 months postpartum. 
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Figures 4.1. (Cont.) 
 

Note: Timepoints include the 1st trimester, the 3rd trimester, and 4-6 months postpartum. 
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Figures 4.1. (Cont.) 
 
Note: Three Timepoints = the 1st trimester, the 3rd trimester, and 4-6 months postpartum. 
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Table 4.3. Simple slope analyses results for significant two-way interactions between built-
environment (BE) exposures and temporal, individual, and neighborhood moderators in 

predicting daily moderate-to-vigorous physical activity (MVPA) outcomes. 

Interaction Terms  Estimates (95%CI)  

Activity space walkability x Daily averaged temperature (°C) 
Daily averaged temperature: Low (-1SD)  .93 (.82-1.04)  
Daily averaged temperature: Medium (Mean)  1.01 (.93-1.11)  
Daily averaged temperature: High (+1SD)  1.11 (1.00-1.23)*  

Activity space walkability x Weekends 
Weekend days  1.14 (1.01-1.28)*  
Weekdays  .91 (.79-1.04)  

Activity space walkability x The 3rd trimester 
The 3rd trimester days  .96 (.93-1.00)  
Non 3rd trimester days  1.06 (.99-1.14)  

Activity space walkability x 4-6 months postpartum 
The 4-6 months postpartum days  1.12 (.95-1.31)  
The 4-6 months postpartum days  .81 (.63-1.03)  

Activity space walkability x Pre-pregnancy Body Mass Index (BMI) category 
Pre-pregnancy BMI category: Overweight  .99 (.77-1.27)  
Pre-pregnancy BMI category: Obese  1.26 (1.02-1.56)*  
Pre-pregnancy BMI category: Normal  .85 (.64-1.13)  

Activity space walkability x Maternal parity 
Maternal parity: 1st born  1.18 (1.01-1.38)*  
Maternal parity: 2nd or greater birth  .95 (.86-1.06)  

Activity space park exposure x Neighborhood safety and cohesion 
Neighborhood cohesion and safety: Low (-1SD)  1.56 (1.20-2.03)***  
Neighborhood cohesion and safety: Medium (Mean)  1.27 (1.05-1.52)*  
Neighborhood cohesion and safety: High (+1SD)  1.03 (.81-1.30)  

Activity space walkability x Neighborhood safety and cohesion 
Neighborhood cohesion and safety: Low (-1SD)  1.16 (1.03-1.32)*  
Neighborhood cohesion and safety: Medium (Mean)  1.02 (.94-1.11)  
Neighborhood cohesion and safety: High (+1SD)  .89 (.78-1.02)  

Activity space park proximity x Neighborhood safety and cohesion 
Neighborhood cohesion and safety: Low (-1SD)  1.02 (.97-1.07)  
Neighborhood cohesion and safety: Medium (Mean)  .98 (.95-1.02)  
Neighborhood cohesion and safety: High (+1SD)  .95 (.90-.99)*  

* p<.05   ** p<.01   *** p<.001  
Note: CI = Confidence Interval  
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pre-pregnancy BMI categories, and participant-reported neighborhood cohesion and safety 

scores. 

In terms of temporal factors, Figures 4.1a-b show that the effects of activity space 

walkability on women’s MVPA min/d differed by the daily averaged temperature (b=1.02; 

95%CI:1.01 – 1.04; p<.01) and weekdays versus weekends (b=1.25; 95%CI: 1.04-1.51; p<.05). 

The simple slope analysis results (Table 4.3) show that women engaged in more MVPA when 

they were exposed to activity spaces with higher walkability index score than usual in weekends 

(b=1.11; 95%CI: 1.00-1.23; p<.05) and warmer days (b=1.14; 95%CI: 1.01-1.28; p<.05). 

Moreover, Figures 4.1c-d show how the effects of activity space park proximity on women’s 

MVPA differed by the 3rd trimester versus two other time points (b=1.10; 95%CI:1.01-1.20; 

p<.05) and the effects of activity space walkability on women’s MVPA differed by 4-6 months 

postpartum versus two other time points (b=.72; 95%CI:.54-.97; p<.05). However, none of the 

predicted slope values for each stratum reported in Table 4.3 was significant.  

Turning next to individual sociodemographics, the effects of activity space walkability on 

women’s MVPA differed by the first born versus second or greater birth (b=1.23; 95%CI:1.02-

1.49; p<.05), so that the women who had given birth to their first child engaged in more MVPA 

(b=1.18; 95%CI:1.01-1.38, p<.05; see Figure 4.1f and Table 4.3) on days when they were 

exposed to activity spaces with higher walkability. Additionally, the effects of activity space 

walkability (b=1.49; 95%CI:1.04-2.12; p<.05) on women’s MVPA differed with pre-pregnancy 

BMI categories. According to Figure 4.1e and Table 4.3., Women who were obese engaged in 

more MVPA on days when they were exposed to activity spaces with higher walkability index 

scores (b=1.26; 95%CI:1.02-1.56; p<.05) than usual. 



  

 
 

111 

Lastly, the results show that neighborhood cohesion and safety moderated the effects of 

BE measures on women’s MVPA for measures including park proximity, park coverage, and 

walkability. The predicted trajectories for MVPA min/d related to each measure were stratified 

by -1SD, mean, and +1SD of neighborhood cohesion and safety score (see Figures 4.1g-i), but 

the positive associations between women’s daily BE exposure and MVPA were only significant 

among low neighborhood cohesion and safety score groups. For example (see Figure 4.1h), 

women who reported their neighborhoods as less safe engaged in more MVPA (b=1.16; 

95%CI:1.03-1.32; p<.05) on days when they were exposed to activity spaces with higher 

walkability index scores than usual. Similar interpretations can be made for interaction effects as 

visualized in Figures 4.1g and 4.1i. 

4.4. Discussion 

This study used highly resolved smartphone location data collected from a sample of 55 

pregnant Hispanic women in urban Los Angeles to measure their dynamic daily exposures to BE 

characteristics during the 1st and 3rd trimesters and at 4-6 months postpartum and examined 

relationships of these exposure measures to women’s day-level accelerometer-assessed PA. This 

study also examined whether the static versus activity space exposure measurement methods 

applied influence the statistical power in detecting the day-level associations between BE 

exposures and PA outcomes. Lastly, the study explored the interactive effects of BE measures 

applied and the temporal-, and individual- and neighborhood-level moderators in predicting day-

level PA outcomes. The results provided evidence of within-day (day-level) associations 

between BE exposures and women’s PA outcomes during and after pregnancy, particularly for 

those of low SES or racial/ethnic minority groups. Finally, by applying GPS-based BE exposure 

assessment methods, this study was able to reduce the potential spatial misclassification biases 
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associated with prior studies, which measured BE exposures at residential locations at a single 

point in time (usually near giving birth). The significance of these results is discussed in more 

detail below. 

4.4.1. Day-Level Associations between BE and PA 

The positive daily association found between 250 m activity space-based (both KDE and 

RB) parks and open space exposure and pregnant women’ PA outcomes can be added to prior 

studies reporting mixed results. For example, Nichani et al. (2016) found the residential green 

space exposure was not associated with PA during pregnancy, while Richardsen et al. (2016) 

reported women who lived in neighborhoods with good access to recreational areas accumulated 

more MVPA compared to women who had limited access. In sensitivity analyses of this study, 

residential parks and open space exposure derived using the 800 m and 1,600 m residential 

(RNB) methods were not associated with women’s day-level MVPA outcomes during pregnancy 

and early postpartum. Thus, the discrepancy in results observed in different studies might be 

attributed to the static, residential-based green space exposure assessment approaches used both 

studies because these approaches might not capture women’s exposure in non-residential 

locations and therefore biased the study results. 

Additionally, daily associations between activity space parks and open space exposure 

and pregnant women’s MVPA were not found for models that applied 100 m KDE and RB BE 

measures. This suggests that the results are sensitive to the choice of activity space configuration 

parameters (i.e., buffer sizes). The choice of 100 m to represent the viewshed exposure along 

daily movement paths and the null association suggest roadside exposure alone did not influence 

pregnant women’s PA behaviors. In this realm, Kwan (2012) points to the existence of uncertain 

geographic context problem (UGCoP) in health studies, which refers to the uncertainties of 
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contextual exposures that exert influences on health behaviors or outcomes. Among the few 

studies that explored this issue, Laatikainen et al. (2018) studied 844 adults in Finland and found 

the association between BE exposure and their mental health and wellbeing differed by activity 

space method applied. In a study of 403 adults in Guangzhou, China, Zhao et al. (2018) 

demonstrated that the associations between the BE and obesity were significantly influenced by 

seven activity space definitions. This study further demonstrates the presence of UCGoP in 

associations between the relationships of BE exposures and PA outcomes. 

Moreover, given the multilevel modeling approach applied, the positive association found 

in the study (i.e., days with parks and open space exposure were associated with more daily 

MVPA) should be interpreted as the effect of women’s day-to-day variations in parks and open 

space exposure compared to their usual exposure on their daily PA outcomes. This is different 

from the large population-based studies (Nichani et al. 2016; Richardsen et al. 2016; Porter et al. 

2019) which focused on examining the influences of population-level differences in residential 

neighborhood park exposure (e.g., women with park access versus those without) on pregnant 

women’s PA outcomes. The evidence on the day-level relationship between BE exposure and PA 

outcomes of pregnant women is still limited, future studies need to continue exploring this 

relationship at the day-, within-day- or minute- level to further elucidate the different ways in 

which the temporality of environmental exposures might influence women’s PA behaviors 

during and after pregnancy. 

4.4.2. Differences in Day-Level BE-PA Associations by Temporal Factors 

This study also found that weekdays versus weekend days, and the pregnancy and early 

postpartum periods moderated the day-level association between BE exposures and MVPA 

outcomes in pregnant women. In terms of pregnancy and postpartum periods, the day-level 
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effects of activity space walkability on women’s MVPA differed by postpartum (i.e., 4-6 months 

postpartum) versus pregnancy, although predicted slopes for both periods were insignificant. 

According to the interaction plot, a trending positive association between daily activity space 

walkability and day-level MVPA was found during pregnancy periods. This finding was 

consistent with Porter et al. (2019), in which authors found the residential neighborhood 

walkability assessed by the environmental audit tool was associated with both overall and 

recreational PA during pregnancy. Moreover, the results reported in this chapter demonstrate the 

importance of having access to a walkable environment at non-home locations or along daily 

paths to promote pregnant women’ PA behaviors. 

However, these results also show an inverse association between walkability and 

women’s MVPA at 4-6 months postpartum, which was contrary to the original hypothesis 

specified for this study and the results of the aforementioned prior study. The walkability 

measure used in this chapter was directly adopted from the walkability index score created by the 

US Environmental Protection Agency (EPA), which includes components such as street 

intersection density and distance to the nearest public transit stop (Pickard et al. 2015). As a 

result, the walkability measure used in this chapter may be better at predicting the utilitarian type 

of PA than the recreational type. The result in Chapter 2 also reported that women in the 

MADRES sample performed less pedestrian-based trips at 4-6 months postpartum. As a result, 

the utilitarian PA in the MADRES sample may have significantly decreased at the postpartum 

period and consequently attenuated the predictive powers of that walkability measure that was 

used here. 

Interestingly, in another interaction analysis that compared the effects of activity space 

walkability on women’s MVPA at the late pregnancy (3rd trimester) versus two other timepoints, 
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the results showed positive associations between walkability and MVPA that was nearly 

significant during the 3rd trimester. This finding, together with the non-significant relationship 

between walkability and MVPA across two pregnancy trimesters reported in the prior paragraph, 

suggests activity space walkability may be especially critical for pregnant women to maintain PA 

during late pregnancy, when they tend to feel less comfortable being active in outdoor 

recreational places and have mobility (Evenson et al. 2009). 

The positive association reported between weekend activity space walkability and 

women’s MVPA may be due to women having more time and opportunities (e.g., family 

activities, events) to facilitate PA during weekend days (Evenson et al. 2004), which results in 

higher PA on these days. In addition, the finding that the positive association between activity 

space walkability and PA only existed during warmer days suggested BE itself, as a part of the 

physical environment, may not influence pregnant women’s PA alone, and therefore it is 

important to incorporate other time-varying physical environment factors such as weather and air 

pollution in the efforts of disentangling the influences of multiple environmental contextual 

factors on women’s PA during pregnancy and postpartum. 

4.4.3. Differences in Day-Level BE-PA Associations by Individual Sociodemographics and 
Neighborhood Characteristics 

The day-level association between BE exposure and women’s MVPA also differed by 

maternal parity number, pre-pregnancy BMI category, and women’s self-reported neighborhood 

cohesion and safety score. When it comes to daily activity space walkability, the results showed 

that its positive association with day-level MVPA was limited to those women who had given 

birth to their first child. It may be that women who had two or more children were involved in 

more care-giving activities than those who had their 1st born; as a result, their PA behaviors may 

be less susceptible to changes in BE characteristics (Borodulin, Evenson, and Herring 2009). 



  

 
 

116 

Additionally, Melzer et al. (2010) in a descriptive study reported a larger proportion of 

primiparous women were engaged in >30 min per day of MVPA than multiparous women, 

although the differences were not significant. Together, these factors may explain the null 

association between exposure to high walkability areas and PA outcomes among women who 

had two or more children in the current study. 

Additionally, the results in this study indicated that the associations between activity 

space walkability and daily MVPA were different for obese women versus normal weight 

groups, but not different for overweight women versus normal weight groups. Specially, 

exposures to activity spaces with higher walkability were associated with significantly higher 

day-level MVPA in obese women during pregnancy and early postpartum. A longitudinal study 

reported women who were obese before pregnancy had the largest decreases in PA during early 

pregnancy compared to one-year prior (Fell et al. 2009). In addition, a qualitative study that 

interviewed 14 overweight and obese pregnant women in UK reported the lack of sidewalks in 

local neighborhoods were one of the major obstacles for their PA behaviors (Weir et al. 2010). 

Together, these results suggest walkability as a BE feature could mitigate the negative impacts of 

being obese on women’s PA outcomes during pregnancy and postpartum. 

Moreover, the women’s self-reported neighborhood safety and cohesion score modified 

the positive effects of park proximity, exposure, and walkability on women’s PA outcomes. 

Specifically, all these relationships were only significant for women who lived in less safe and 

cohesive neighborhoods. Prior studies have reported a negative relationship between 

neighborhood safety and pregnant women’s PA (Evenson et al. 2009; Laraia et al. 2007). 

Therefore, it may be that the exposure to favorable BE features around non-home activity 



  

 
 

117 

locations and along travel routes create additional PA opportunities for those who were not 

active in their own neighborhoods given the safety concerns. 

4.4.4. Study Strengths and Limitations  

To the best of my knowledge, this is the first study that examines GPS-based dynamic 

exposures to BE characteristics and accelerometry-based PA in women during the pregnancy and 

early postpartum periods. A major strength is the estimation of GPS-derived activity space 

exposure to greenness, parks and open space, and walkability, and the objective assessment of 

PA outcomes by repeatedly collecting highly resolved smartphone location and accelerometry 

data across the 1st and 3rd trimesters of pregnancy and at 4-6 months postpartum. Consequently, 

the work overcame recall biases inherent in self-reported BE exposures and PA outcomes and 

provided insights into longitudinal changes in both exposures and outcomes. Additionally, the 

longitudinal design used for this study allows us to examine both the between-subject effects 

(variations in BE exposures between pregnant women) and the within-subject effects (day-to-day 

variations within women) of exposure to BE characteristics on pregnant women’s PA outcomes. 

The work reported in this chapter also applies spatial averaging (RB) and time-weighted spatial 

averaging (KDE) methods to capture women’s activity space exposures to BE characteristics and 

study the relationships of these dynamic exposure to pregnant women’s PA outcomes. As a 

result, this study was expected to reduce the spatial misclassification between BE exposures and 

PA outcomes and thereby mitigate the UGCoP, a common issue in residential-based studies. 

Finally, this study is among the first to examine the effects of person- and day-level BE exposure 

and its interactions with temporal factors, individual sociodemographics, and neighborhood 

characteristics in predicting PA outcomes of pregnant women, and, to the best of my knowledge, 

the first one to focus on a low-income Hispanic population. The findings of a positive association 
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between parks and open space exposures and walkability in daily activity spaces and women’s 

PA outcomes, as well as the moderating roles of weekdays versus weekends, pregnancy and 

postpartum periods, average daily temperature, maternal parity, pre-pregnancy BMI, and 

neighborhood cohesion and safety, can provide further guidance on formulating effective PA 

promotion strategies for pregnant women such as targeting at at-risk groups or days to improve 

maternal and infant health outcomes after pregnancy, particularly among understudied health 

disparity populations. 

This study also has a few limitations. First, in addition to the GPS missingness issue and 

its potential influences on BE exposures that was discussed in Chapter 3, the accelerometry data 

also had missingness issues (211 of 655 data collection days were invalid according to the ≥10 h 

of wearing threshold. To reduce the potential biases this may bring on the study results (i.e., 

missing not at random), individual and temporal covariates (e.g., weekend days) that 

significantly predicted the day-level validity of accelerometry data were controlled in the final 

statistical models, and the main results did not change. Despite this effort, there may exist other 

unknown factors that may also influence the day-level validity of accelerometry data and thereby 

bias the study results. Second, this study was unable to differentiate recreational PA (e.g., leisure 

walks in a park) from utilitarian PA (e.g., commuting walks to workplaces or for grocery 

shopping) using the accelerometer data collected. Without fully separating these two types of 

PA, the mismatch between the BE exposure and PA outcome may still occur, as different BE 

characteristics may be more related to a specific type of PA (Jankowska, Schipperijn, and Kerr 

2015; Sallis et al. 2012).  

Third, due to the cross-sectional nature of analyses in this study and the lack of 

information in the decision-making processes of individual PA scenarios, the results may be 
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subject to selective daily mobility bias, which refers to the circumstance that one is unsure 

whether an exposure (e.g., saw a park) led to women’s PA activity (e.g., a walking session) or 

the exposure (e.g., a park visit) is in fact part of a pre-planned activity (e.g., a family outdoor 

activity session). Future studies may mitigate this bias by excluding anchor points (places which 

people organize their daily activities such as home, work, grocery stores) from environmental 

exposure measurement so that the effects of novel exposures on behaviors can be uncovered 

(Chaix 2013). Third, this study did not measure the quality of parks and open space, which has 

been associated with park use behaviors of predominantly Hispanic communities and thus may 

mediate or moderate the associations explored in this study (Dolash et al., 2015). Future studies 

are recommended to measure other aspects of parks and open space accessibility measures (e.g., 

amenities, accessibility, maintenance) and examine how these additional measures influence 

pregnant women’s PA behaviors.  

Lastly, this study focused on a health disparity group of low-income, Hispanic women, a 

population that has been understudied and has disproportionally low PA outcomes compared to 

non-Hispanic white population. Thus, the study results may not be generalized to pregnant 

women in other regions or SES or racial/ethnic groups; nevertheless, it does shed light on BE-PA 

relationships in an important population, and it may pave the way for future studies to continue 

exploring this important relationship during pregnancy and postpartum. 

4.5. Conclusions 

Pregnancy and early postpartum are critical periods for women’s health. This study has 

shown that daily exposure to parks and open space, and walkable environments may affect 

women’s PA outcomes during pregnancy and early postpartum, which in turn would affect both 

short- and long-term maternal and infant health outcomes. More importantly, this study has 
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demonstrated that the choice of exposure assessment method may greatly influence the ability to 

detect meaningful relationship between BE exposures and PA outcomes in pregnant women. 

Consequently, future studies examining the impact of BE on pregnant women’s PA should 

consider their spatiotemporal movement patterns when measuring their daily exposures to BE 

characteristics, in order to reduce the spatial mismatch between exposures and outcomes. Lastly, 

this study found that the BE-PA relationships were stronger on weekends, during late pregnancy, 

and for those in low SES neighborhoods, which provided further guidance in formulating 

effective PA promotion strategies for increasing women’s PA across pregnancy and postpartum 

and decreasing PA-related health risks and outcomes. 
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Chapter 5 Conclusions 

Maternal obesity during and after pregnancy is a major risk factor for mothers’ short- and long-

term health outcomes such as diabetes, cancer, and cardiovascular diseases. Hispanic women of 

childbearing age have disproportionally high obesity risks and low PA levels in compared to 

non-Hispanic white population. In this dissertation research, through three dissertation studies, I 

examined daily mobility patterns (Chapter 2), dynamic BE exposures (Chapter 3), and the 

associations between BE exposures and PA outcomes (Chapter 4) in a group of predominantly 

Hispanic low-income women of childbearing age. Results of these studies further elucidate the 

influences of women’s daily mobility and BE exposures on PA behaviors in this understudied 

health disparity population. 

The three dissertation studies have important implications for future studies that intend to 

examine the environmental contextual influences on women’s PA behaviors during and after 

pregnancy, especially women of low SES and specific racial/ethnic groups. The first two 

sections of this chapter discuss this work’s main contributions to the existing literature and some 

directions for future research. The last section summarizes major takeaways from this work. 

5.1. Contributions and Connections 

To start, this research contributes to the existing literature through its appliance of 

cutting-edge exposure assessment methods. Leveraging highly resolved geolocation and 

accelerometry-assessed movement data from the MADRES real-time data collection and 

sampling study, this research was able to derive dynamic BE exposures through the application 

of advanced geospatial analytical methods such as KDE-based spatiotemporal clustering 

detection. These exposure metrics weighted the exposure values based on the duration a woman 

spent in each daily activity location and for each trip (time-weighted spatial averaging approach). 
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Consequently, it overcame the spatial misclassification bias in prior residential-based studies (as 

demonstrated by the correlation analysis results in Chapter 3) and captured the “true contextual 

unit” better than traditional activity space methods such as RB, which ignores temporal 

information. To my best knowledge, this is the first study that measures women’s dynamic daily 

exposures to BE characteristics using highly resolved smartphone location data, and the study 

results demonstrate the merit of incorporating spatiotemporal movement patterns into the 

environmental exposure assessment to reduce measurement error. 

With the application of both residential- and activity space-based exposure assessment 

methods, this dissertation study had a unique opportunity to investigate and mitigate important 

analytical problems that exist in studies that examine the effects of area-based environmental 

contextual variables on individual behaviors or outcomes, especially UCGoP. In Chapter 4, I 

examined the robustness of associations between daily exposure to greenness, parks and open 

space, and walkability and women’s day-level PA outcomes through applying BE exposure 

measures derived using the residential (RNB), spatial averaging (RB) and time-weighted spatial 

averaging (KDE) methods (with two different buffer sizes for each method). I found the 

association between park exposure and women’s PA outcomes only existed in measures derived 

using two activity space methods with 250 m buffers. This shows how the configuration choices 

embedded in different exposure measurement methods can greatly influence the model strength 

in detecting meaningful BE-PA relationships. This study, to my best of knowledge, is the first 

study that evaluates the magnitude of UGCoP in environmental contextual influences on PA 

outcomes. The three studies in this dissertation augment limited existing studies (Zhao, Kwan, 

and Zhou 2018; Delmelle et al. 2022; Laatikainen, Hasanzadeh, and Kyttä 2018) in showcasing 
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the sensitivity of study results to the geospatial methods that are applied in emerging activity 

space-based neighborhood health studies. 

Moreover, to my best knowledge, this dissertation is one of a handful of that has applied 

highly resolved smartphone geolocation and accelerometry-assessed movement data to examine 

the associations between daily mobility patterns, BE exposures, and PA outcomes in pregnant 

women, and the first one that focuses on low income, Hispanic women of childbearing age. 

Through three dissertation studies, I found pregnant women in my sample overall made few 

daily visits to parks and open space (chapter 2) and had little exposure to parks and open space in 

their daily activity spaces (Chapter 3), and these findings did not differ by pregnancy and early 

postpartum periods. The latter of the two studies therefore provides further evidence for the 

existence of an “ethno-racial” disparity in parks and green space access found by previous 

studies which either examined largely Hispanic communities in Los Angeles or Hispanic 

pregnant women in other US cities (Byrne 2012; Borodulin, Evenson, and Herring 2009; Derose 

et al. 2015).  

Furthermore, my finding of positive effects of activity space parks and open space 

exposure on women’s PA outcomes during and after pregnancy (Chapter 4) provides a silver 

lining and suggests a path forward for improving PA promotion strategies for pregnant women of 

low SES and specific ethnic/racial minority groups. Specifically, the negative impact of low park 

access in these women’s residential neighborhoods on their PA may be offset by increasing 

women’s awareness of and visits to parks and open space close to their frequently visited non-

home activity locations (e.g., workplaces, grocery stores). As a result, future PA interventions for 

pregnant women’s PA should take their daily non-home parks and open space exposure into 
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consideration to improve its efficacy, particularly if these interventions were targeting women of 

low SES or specific racial/ethnic minority groups. 

Lastly, my study also found women’s trip behaviors, daily exposures to urban form 

characteristics (e.g., walkability), and influences of urban form exposures on their PA outcomes 

to greatly vary by pregnancy and postpartum periods, and levels of neighborhood safety and 

cohesion. For example, women decreased their time spent at commercial and service locations 

and reduced the total number of vehicular-based trips at 4-6 months postpartum (Chapter 2). In 

the same chapter, lower neighborhood cohesion and safety score was associated with increased 

vehicular trips across pregnancy and postpartum.  In examining the day-level effects of BE 

exposures on PA outcomes, I found activity space walkability was only positively associated 

with women’s PA during the late pregnancy period and for women who reported their 

neighborhoods as less safe (Chapter 4). Consequently, this research complements two prior 

residential-based studies in demonstrating the pregnancy and early postpartum period may be a 

critical modifier in the relationships of BE exposures to women’s PA outcomes (Porter et al. 

2019; Richardsen et al. 2016). In addition, this research adds to the previous evidence by 

showing the importance of providing access to walkable environments for women of low SES 

and specific racial/ethnic minority groups in their daily activity spaces to increase their PA 

outcomes (Perez, Ruiz, and Berrigan 2019). Moreover, this dissertation research was able to 

examine day-level influences of BE exposure on pregnant women’s PA outcomes during and 

after pregnancy by disentangling between-subject (person-level) and within-subject (day-level) 

effects, which provides novel insights on the BE-PA association at a fine temporal granularity. 
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5.2. Limitations and Directions for Future Studies 

Despite the aforementioned merits, this research is limited in terms of its data, methods, 

analytical approaches, and generalizability. To start, the missingness in GPS and accelerometry 

data applied in this dissertation research may be a concern. I made multiple efforts to mitigate 

the potential impact of missingness on study outcomes. These efforts included imputing missing 

GPS data using participant-reported sleep/wake time and EMA-reported physical context 

(Chapter 2), exploring diurnal patterns of GPS data missingness (Chapter 2), performing 

sensitivity analyses using different cut-offs for labeling valid GPS and accelerometry observation 

days (Chapter 2, 3, and 4), and controlling variables (e.g., weekdays versus weekend days) that 

predicted invalid days (Chapter 4). However, other unaccounted data missingness scenarios may 

exist and possibly bias study results. For instance, the missingness of GPS data may be 

correlated with spatial context (e.g., tall buildings, trees) that could obstruct receiver signals. As 

a result, BE characteristics (e.g., proximity to public transit stops) in these spatial contexts were 

not captured and therefore day-level exposure results may be under- or over-estimated. Future 

studies are recommended to compare different advanced missing data imputation approaches, 

evaluate their imputation rates and accuracies, and chose the one that achieves the highest 

accuracies for their specific setting (Barnett and Onnela 2020).  

Further, given GPS and accelerometry data were collected using separate devices, the 

missingness from one or both data may greatly reduce the sample sizes and powers for the 

statistical models to detect associations between BE exposure and PA outcomes. Increasingly, 

studies have advocated an “all-in-one” approach such as applying Smartphones or Smartwatches 

to simultaneously collect geolocation and movement data as well as other self-reported 

psychosocial variables such as stress and affect (Straczkiewicz, James, and Onnela 2021; Gal et 
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al. 2018). This approach may be more promising in reducing the rates of data missingness than 

studies applying multiple sensors, although at a potential cost of data accuracy (Piccinini, 

Martinelli, and Carbonaro 2020). 

Besides the data missingness issue, more research is needed to continue improving the 

activity space-based exposure measurement method applied in this research. For example, the 

influences of environmental contextual factors on PA behaviors may vary by locations (home 

versus workplace), time of the day (daytime versus evening), and days of the week (weekdays 

versus weekends) (Kwan 2018; Koohsari et al. 2016). As a result, an adaptive buffer size 

approach which derives minute-level BE exposures based on buffer sizes corresponding to time 

of the day, weekdays versus weekend, and trip modes may be utilized to better capture BE 

exposures for women during and after pregnancy, given their drastic changes in time-activity and 

mobility patterns as shown in Chapter 2. In addition, recognizing traditional BE data (e.g., 

NDVI) is limited in capturing the pedestrian’s interactions with green features on the streets, in 

this research, additional greenness measures such as % green space and tree cover along 

walkable roads were derived to better capture these interactions. However, both measures still 

could not capture other crucial street design features such as crosswalks, lighting fixtures, and 

sidewalk maintenance that were associated with walking behaviors (Yin et al. 2015). Emerging 

studies have started to extract street-level BE features from Google Street View products via 

deep learning techniques (Yin et al. 2015; Yin 2017). Future studies should explore these novel 

approaches and strive to incorporate them when examining the influences of BE exposures on 

pregnant women’s PA behaviors. 

Besides its limitations in data and exposure assessment methods, this dissertation study 

remains subject to the selective daily mobility bias. This bias refers to the fact that an 
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unmeasured factor may have causal effects on both exposures and outcomes (Chaix et al. 2012; 

2013). For instance, a pregnant woman with a good knowledge of benefits of exercise may 

choose to visit a park to exercise. In this case, the measured effect of park access on her exercise 

outcomes will be spurious since they are both caused by her motivations to exercise. To mitigate 

the selective daily mobility bias, future studies should apply more advanced methods such as 

excluding locations where PA occurred from the exposure assessment or only measuring the 

exposure at or around anchor points (e.g., key locations where one organizes life activities such 

as home, work, and neighborhood grocery store), which can be extracted over longer periods 

(e.g., 12-months) of geolocation monitoring (Chaix et al. 2013; Perchoux et al. 2015, Zenk et al. 

2018). These methods should be explored by future studies aim to examine the association 

between GPS-based BE exposure and women’s PA behaviors across pregnancy and postpartum. 

Furthermore, the analyses in this research are still cross-sectional in nature, which limit 

the opportunities to infer causal relationships. Numerous studies have associated BE 

characteristics with PA outcomes, but the behavioral mechanisms from BE exposure to PA 

outcomes remain largely unknown (Travert, Annerstedt, and Daivadanam 2019). In this realm, 

future studies should consider applying context-sensitive (e.g., during or after a PA episode, 

during a walking session in the park) EMA survey tools to collect psychosocial information (e.g., 

perceived safety, stress, motivation, mood) as events unfold so that the connection between 

objectively-measured and perceived BE exposures and these psychosocial variables in 

determining PA behaviors can be further examined (Dunton 2018; Huang et al. 2016). 

Finally, when conducting this dissertation study, I leveraged the GPS and accelerometry 

data collected by the MADRES real-time and personal sampling study. This study focused on 

understanding the causes of excessive weight gain and retention such as environmental exposure 
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and social stressors among low-income Hispanic women to reduce the disproportionate burden 

of disease they bear; as a result, it only enrolled Hispanic women to limit between-group 

racial/ethnic differences in its design. Due to this unique study design, results of this dissertation 

study may not be generalized to pregnant women in other regions or SES or racial/ethnic group. 

However, given Hispanic and low-income women of childbearing age as a group forms a large 

and understudied group that has been disproportionally exposed to various environmental 

hazards, my explorations of associations between daily mobility, BE exposures, and PA 

outcomes may help to guide future studies for this important health disparity population or 

potentially other populations of similar sociodemographic characteristics. 

5.3. Major Takeaways 

In conclusion, this dissertation study used highly resolved smartphone location and 

accelerometry-assessed activity data collected from 62 Hispanic women of childbearing age in 

urban Los Angeles, CA, during pregnancy and the early postpartum period to investigate the 

associations among women’s daily mobility patterns (Chapter 2), dynamic built-environment 

(BE) exposures (Chapter 3), and PA outcomes (Chapter 4). The results of three empirical case 

studies revealed an exceedingly low parks and open space exposure for this group at their daily 

activity locations and along travel paths during and after pregnancy, which were associated with 

women’s lower day-to-day PA outcomes. In addition, important modifiers (e.g., late pregnancy, 

early postpartum, high pre-pregnancy BMI, low neighborhood safety) of women’s daily 

mobility, BE exposures, and their associations with PA outcomes were identified. Lastly, the 

second and third studies evaluated measurement error and bias resulting from applying 

traditional residential-based measures were evaluated and their implications on uncovering the 

relationships between BE exposures and PA outcomes were investigated. Future studies are 
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suggested to perform qualitative analyses of the BE features (e.g., parks) in which women’s PA 

was performed, mitigate selective daily mobility bias, and apply real-time surveying techniques 

such as EMA to elucidate psychosocial pathways from BE exposures to PA outcomes. Future PA 

promotion interventions for pregnancy women are recommended to target at-risk pregnancy and 

postpartum periods and sociodemographic groups to improve their efficacy, especially for those 

of low socioeconomic status and specific racial/ethnic minority groups.
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