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Abstract 

Disruptions like accidents or closures on metropolitan freeways have the potential to 

increase traffic congestion on surface streets. Through spatiotemporal analysis, this project 

evaluates associations between traffic congestion spikes on arterial streets with freeway 

incidents. The unexpected increase of traffic on city streets from freeway overflow was expected 

to not only create severe gridlock negating the expected benefit for the motorist avoiding 

freeway delays, but also cause undue stress for local traffic normally on those streets. This thesis 

takes the initial steps in spatiotemporal analysis to assess how strong the associations are 

between incidents on the freeway and increased arterial traffic. Data preparation models from 

Alteryx are used in ESRI’s ArcGIS Pro to provide a contextually rich multi-dimensional 

representation of sensor location, time and traffic speeds near freeway incident locations. This 

enables an intuitive way to recognize potential associations between speed data collection points. 

The use cases analyzed by this study were predicated on a long-duration traffic accident for 

which medical services were required. The results show that almost no clear association can be 

made for incidents of this magnitude. Using data about these effects and more severe use cases 

like complete freeway closures in concert with the visualization techniques presented, additional 

studies can be built to support determination of whether or not more significant disruptions may 

have clear associations. From that point, mitigation options can be designed to reroute traffic 

through techniques like optimizing traffic lights and active traffic rerouting. 
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Chapter 1 Introduction 

Analysis of historical and current traffic information can predict the patterns that develop over 

time under normal conditions. This thesis explores whether the association between freeway 

incidents and increased arterial congestion can be measured using spatiotemporal analysis and 

presents visual representations to show relationships. Through spatial modeling of incidents, like 

accidents or road closures, and the subsequent traffic patterns that typically develop, road 

network modeling of discrete freeway events can identify areas where related increases in 

congestion on arterials develops. 

1.1. What is Currently Used 

The natural use for knowing the relationship between freeways and arterials would be to 

minimize travel times for travelers. Active manipulation of traffic flow through automated traffic 

systems used by large cities like Los Angeles already provides some relief. The arterial street 

traffic lights are controlled by the Los Angeles Department of Transportation Automated Traffic 

Surveillance and Control (ATSAC) system. ATSAC controls a network of over 4600 traffic 

lights, hundreds of video cameras, and 40,000 traffic loop sensors across over 460 square miles 

in the Los Angeles region (LADOT, n.d.). The ATSAC system depends on years of prior traffic 

data for its algorithms which are used to schedule traffic light timing to provide fluid traffic flow 

throughout the different times of day. Additionally, traffic management operators have the ability 

to override the programmed schedule to manually respond to backups if needed. In lieu of 

scheduled or manually controlled algorithms, the incorporation of expected effects on arterials 

following a freeway incident would theoretically allow the traffic light control system to actively 

minimize congestion on local streets through signage and traffic light manipulation. Using 
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predictions about how traffic patterns develop allows proactive actions to be taken and may have 

a positive effect on the increased congestion in the affected areas. 

1.2. Other Traffic Analysis Approaches 

Google provides a future travel time estimation in its maps service, but it is unclear as to 

the method used to calculate the times (Bell 2016). While Google and Waze algorithms are 

proprietary, research indicates that they model their predictions on historical averages on road 

segments and appear to provide time-phased results provided the road segments have enough 

data points in enough time intervals (Waze 2017). Both Google Maps and Waze services allow 

for input of desired departure or arrival time and displays a range of times that it could take to 

travel along the desired route. Often this travel time prediction results in a quite wide time 

uncertainty. This large uncertainty is likely based on the confidence of the prediction algorithm 

and its inability to consider events outside of normal traffic flow conditions to narrow the 

distribution of the predictions. 

1.3. Benefits of the Results 

Often, an unexpected increase of traffic from a freeway onto city streets can cause severe 

gridlock. This effect negates the expected benefit for the motorist who chooses to leave the 

freeway for a faster route, but also causes undue delays for traffic already on those local streets. 

With predictive data from an expansion of this analysis, it is possible that traffic lights can be 

optimized to account for the rerouted traffic. An assumption of direction of traffic flow can be 

made since the expected or intended route is predictable based on the direction of the freeway 

traffic being disrupted. This optimization has the potential to minimize surface street congestion 

providing benefit for local traffic as well as traffic that has deviated from the freeway. 
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1.4. Research Goals 

With the ability to quantify the effects of traffic from a freeway using arterials to avoid 

delays, an intelligent traffic system (ITS) would be able to proactively adjust timing and 

directional control at key intersections that feed freeway on- and off-ramps as well as the 

connected streets along possible routes. As a first step towards that goal, this project shows the 

net effects which a disruption to the normal freeway flow has on the local streets. Various 

unplanned disruptions like an accident or temporary closure of the freeway may cause ripple 

effects on the roads with little warning. Normal daily traffic patterns due to commuting, or 

planned events like construction or special events may be predictable to a certain extent. Based 

on historical data of traffic speeds before and after discrete freeway disruptions, this paper 

explores visualizations of how traffic responds to incidents and identifies the magnitude and 

breadth of impacts that traffic leaving the freeway has on arterials in an area of Los Angeles. 

The study proposes a process which takes raw speed data for a period of time and 

processes that data to provide a rendering of sensor locations with a time-speed representation of 

the underlying data. This process provides an effective means of visualizing speeds over time, 

geospatial relationships between various traffic data collection points and a means to assess how 

traffic responds to various incidents along the freeway. A three-dimensional map which includes 

contextual cues like elevation variations or labeling for distant points of interest as well as the 

coordinate driven data collection points is overlaid with a vertical representation of the analyzed 

data to allow for a simplified visual reference for how the data is potentially related. Subsequent 

studies can manipulate the process and visualization methods to adapt to a wide range of 

applications for spatiotemporal visualization. 
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Chapter 2 Related Work 

Visualization is a necessary component of how we interpret traffic data. It is also a means of 

interacting with it. Whether it is traffic data on a map for commuting, routing for emergency 

services, or planning logistic movements of commercial goods, traffic data nearly always has a 

time component which is important addition to the dimension of space. Interactivity solves many 

of the challenges of the added time dimension.  Using time sliders or animated maps allows the 

data to be shown sequentially, but they do not easily portray the changes and interpret the data 

across wider periods of time. Furthermore, a means to provide interaction with the data 

visualization is often absent, requiring a method for static representation. This study provides a 

method for achieving that. 

Predictions are often an important part of traffic data interpretation. Existing literature for 

traffic prediction is divided into three primary areas: traditional geospatial analysis, machine 

learning, and hybrid methods. Until the last decade or so, the primary method for traffic 

modeling was based on traditional statistical and regression calculations for providing 

predictions. As the computing power for highly parallel processing became feasible, another 

genre of studies has emerged which uses machine learning to obtain high confidence results for 

traffic flow predictions. A third approach combines both traditional and machine learning 

techniques for traffic analysis to provide the best of both worlds: current geospatial analysis 

techniques plus modern insight to traffic analysis through machine learning. This thesis focuses 

on the association between freeway and arterial congestion through traditional methods, but the 

machine learning processes are germane since they provide context to how more advanced 

techniques can be employed and combined for extended analysis and a simplified method to 

visualize that analysis. 
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2.1. Visualization Methods for Traffic 

Much of the existing work of multidimensional visualization in recent years is linked to 

the concepts present by Leland Wilkinson in The Grammar of Graphics (2005). Wilkinson 

proposes that proper visualizations contain specific components which interact to produce 

representations that serve the purpose of the study or analysis. These components are data, 

transformation, elements, scale, guide and coordinates. By specific choices in the selection of 

each of the components, complicated graphics can be achieved which represent multi-

dimensional data that answers specific questions or reveals underlying trends. While the 

structure of the preparation of this data can vary, if the rules and best practices presented are 

followed, sensible, informative representations are possible. 

Wickham (2010) builds on Wilkinson’s work through the introduction of scalable 

dimensions. By using methods to achieve multidimensional data graphics through the use of 

coordinates, size, shapes, colors, facets and groupings, he provides a methodology to focus the 

analyst or reader on the important aspects of the data for their consumption. 

Many statistical software packages like Matlab, SPSS, Tableau and others provide 

mechanisms to render data in three-dimensional space, but they often lack the ability to provide 

the context that this method provides with a synchronized map background. Pastizzo et. al (2002)  

created their own data visualization application called Multi-Dimensional Data Viewer (MDDV) 

which enhances the user interface from existing applications for manipulating the visualization, 

but still falls short of what a dedicated geospatial analysis can provide using a geographic 

information system program like ESRI’s ArcGIS. 

The methods and layered effects of these works help to provide a roadmap to achieving 

effective visualization. The data preparation required was automated and modeled to provide a 

streamlined process to allow for changing parameters for this study’s product. 
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2.2. Traffic Spatial Predictive Analysis 

The challenge of traffic prediction has been studied in transportation and urban planning 

since the 1930’s (Albright 1991). The benefits of an effective process for managing and 

controlling urban traffic extend from economic benefits to livability and desirability for residents 

who live or work in major metropolitan areas. The typical traffic patterns that result from daily 

commuting, seasonal weather, or tourism can be disrupted in a number of ways. Accidents, 

construction, special events, or significant natural phenomena can all cause a change to normal 

flow. The nature of traffic flow presents spatiotemporal relationships that are often tough to 

correlate using traditional mathematical processes. Many studies focus on a particular segment of 

roads or on homogenous types of roads (e.g. interstates only, or arterial streets only) (Chow 

2013; Yang 2010) and do not spatially or temporally consider the effect of these roads on other 

nearby roads in a different category. Even in studies which claim spatiotemporal predictions, 

these predictions often only refer to upstream and downstream effects (roadways before and after 

the study point) on the same road segment. 

2.3. Traditional Methodology 

Spatial algorithms like ordinary least squares, k-nearest neighbors, and a random forest 

are common in many geospatial analysis projects to determine spatial relationships (Ma et al. 

2017). However, they fail to incorporate the essential multidimensional (including temporal) 

aspects needed for a correlation of traffic flow. It is important to note that these basic spatial 

techniques as well as the mathematical models in this section are critical foundational tools that 

can be combined with other techniques for effective predictions. 

The autoregressive integrated moving average (ARIMA) model is one of the most used 

processes for traffic prediction (Williams, Durvasula, and Brown 1998). The ARIMA model is a 

parametric-based linear-regressive model that is effective in classifying time-series data. The 
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ARIMA process takes pre-selected time-series information, makes time-difference calculations 

recursively and extends existing data with a averaged regressive prediction (Williams and Hoel 

2003). It is effective for traffic flow predictions on a specific road segment based on past flow 

conditions but fails to consider nearby road networks and their combined effects.  

A Bayesian or hidden Markov model (HMM) can provide predictable results from a 

pseudorandom process like traffic flow. A Bayesian model provides insight into models with a 

number of unknown parameters through the use of probability assessments as a causal 

relationship. Similarly, a Markov model is a type of Bayesian model that takes the current 

behavior, or state, from a set of known parameters and uses that to predict how the model will 

react to new data assuming the new states are not necessarily causal (Ghahramani 2001). Using 

state transitions from an author-defined set of traffic states, Qi and Ishak (2014) provide 

estimates of future traffic conditions based on mean and contrast statistics over a given highway 

segment. The mean provides an assessment of the propensity of normal traffic observations to 

speed and volume. With this baseline, the HMM can be used to provide more insight through 

contrast as a second-order effect. Contrast is the measurement of the variability of traffic 

disturbances. Higher contrast indicators show more volatility and disturbances in the expected 

traffic flow. This can be caused by drivers switching lanes often or more frequent changes in 

flow above the baseline observation. 

Zhang, Zhang, and Haghani (2014) combine several traditional analysis methods for 

short-term predictions. Spectral analysis, ARIMA, and a statistical volatility model provide 

pattern recognition from six radar detectors along a highway (US 290) in Houston, Texas. This 

multi-level approach achieves commendable results in classifying traffic in three categories: 

periodic trends, deterministic flow, and traffic volatility. In future studies, the measure of 
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volatility could provide useful information to the freeway/surface street boundary interaction and 

the likelihood and extent that overflow traffic affects arterial congestion. 

In the Zhang et al. (2014) study, volatility of traffic is modeled to allow for a quantitative 

assessment of how variable the estimations of traffic flow can be, accounting for rate of change 

of the supplied traffic parameters. This estimation shows that in rapidly changing conditions, the 

estimates have less confidence and conclusions based on the estimate should be tempered with 

that knowledge. Through incorporation of a Glosten Jagannathan and Runkle (GJR) Generalized 

Auto Regressive Conditional Heteroskedasticity (GARCH) with the ARIMA process, the 

volatility of particular estimates can be measured acknowledging the asymmetric nature of traffic 

flow volatility. Whereas GARCH is optimized for single step predictions, GJR-GARCH allows 

for a threshold measurement for multi-step time predictions of the GARCH process (Monfared 

and Enke 2014). 

One technique which is effective for smoothing variations in raw traffic data is Kalman 

filtering. In a general sense, Kalman filtering is commonly used to smooth various data inputs, 

eliminating anomalies in the data stream. Since a Kalman filter only relies on the previous state 

to make an update to its prediction for the next state, Kalman filters are widely used in real-time 

processes. A series of weights associated with inputs are updated with each state prediction thus 

providing a smoothing effect on changes from state to state and the ability to account for outlier 

data inputs. As such, an adaptive Kalman filter assumes non-gaussian distributions when 

determining what subsequent data will look like. With a recursive loop in the filter, real-time 

data can be implemented with less concern about significant changes in weighting of inputs due 

to very high or very low parameter values. This can be applied to traffic flow studies focused on 

prediction by effectively limiting the effects of outlier data on the overall average. In their study, 

Guo et al. (2014) utilize a modified ARIMA process smoothed with an adaptive Kalman filter to 
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create a traffic flow model. The use of an adaptive Kalman filter would provide a normalized 

traffic flow pattern that serves as a baseline for a prediction based on a localized disturbance. 

2.4. Basic Neural Networks 

The increase in computing power and technology associated with the widespread ability 

to produce neural network models that can be implemented has allowed expanded exploration in 

the area of machine learning for traffic prediction (Gebresilassie 2017). Initial traffic prediction 

machine learning models were simple, low-dimensional networks which only provided marginal 

improvements over traditional methods. As studies explored combinations of neural network 

architectures and new neural network implementations, the prediction confidence values 

increased and the ability to fine-tune solutions for particular use cases has become possible. The 

challenge of relating arterial and freeway networks has yet to be effectively shown in reviews of 

existing literature. 

A recursive or a back-propagation (BP) neural network is essential to creating predictions 

based on time-phased inputs. As the complexity of these types of neural networks increases, so 

does the flexibility and confidence of predictions. As a BP network adjusts its weights to a 

particular system, the ability to generalize and tolerate errors can be optimized (Liu et al. 2010). 

Most of the successful neural network implementations below use some method of iteration in 

the solution. 

As a feed-forward neural network, the Radial Bias Function (RBF) neural network 

provides some basic capabilities for continuous data with a predictable accuracy. The local 

details for a short-term prediction are demonstrated by in the conference proceedings from Zhu, 

Cao, and Fan (2013). An RBF’s hidden layers allow for the incorporation of non-linear elements 

such as those from a heterogenous road network. The hidden layers are then weighted linearly to 

provide accuracy across the temporal horizon of the data. Zhu et al. also apply a swarm (or 
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flocking) transform to the output of the RBF which approximates the tendency of traffic to group 

itself. 

One approach closely related to the problem explored in this study is the use of 

Convolutional Neural Network (CNN). A basic CNN is highly optimized for image recognition 

and works well on rasterized input. This method incorporates a representation of a wide area 

traffic pattern as an image and then combines several “images” together to form the input to the 

CNN (Ma et al. 2017). By creating a matrix of values with the x-axis as time and the y-axis as 

space (or the position on a road segment), each value (m) at mxy represents the average speed. 

Transforming this into a raster image allows a CNN to recognize spatiotemporal correlations of 

each element in the matrix. A series of images was used to train the CNN and weight the 

relationships between matrix elements. In the Ma study, only one channel (speed as the relevant 

variable) was used, though more complex images with more variables could be used in the image 

generation at the cost of processing complexity in the CNN. This process leverages the image 

processing capabilities of a CNN and also provides spatiotemporal correlations across the study 

area. This proves to be especially useful when different types of roads are being studied. 

2.5. Hybrid Modeling 

The combination of data preparation and analysis using an amalgamation of traditional 

regression techniques and machine learning processes shows promise in several studies. The 

combination of basic building blocks in various ways builds on the proven techniques in 

traditional traffic flow analysis with the added advantage or deeper correlations only possible 

with machine learning. Combining methods can produce results with specific output 

characteristics useful in both long and short-term predictions. 

One study uses a multi-task regression layer (MTL) in advance of a deep belief network 

(DBN) for its predictions (Huang et al. 2014). In this manner, the MTL produces results that 
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effectively provide “supervised learning” results without the need for manual interaction. Using 

these results, the DBN then operates in an unsupervised learning mode which it excels in doing. 

Internal hidden processing in a DBN assesses the contrast between time-phased inputs and 

essentially provides change detection which can then be interpreted into short-term predictions. 

Dai’s DeepTrend method is a deep hierarchical network which combines a fully 

connected network for data extraction, and then feeds a long short-term memory (LSTM) 

network for prediction (Dai et al. 2017). The study focuses on the temporal relationships in 

traffic patterns, so the techniques would need to be adjusted to incorporate the spatial 

relationships needed in this thesis.  

An LSTM is a very effective means to provide temporal awareness in a neural network 

and can be combined with a CNN in specific ways to bring both spatial and temporal predictions 

to the output sets. One drawback of a neural network without recursive memory is that change in 

state is presented to the next layer without regards to time. An LSTM manages the change in 

gradient through maintaining a memory of previous states and applying that change at an 

appropriate rate. With a cascading network of LSTMs and CNNs, time-phased spatially distinct 

inputs can initially be processed by the CNN for spatial relationships and then fed to two LSTM 

networks for time predictions (Yu et al. 2017). A process like this will help to connect the 

arterial congestion effects to the disruptions being observed on the freeway. 

Zhao et al. provide a substantial use case of LSTMs for long-term (greater than 15 

minutes) predictions. In contrast with Yu et al., this method uses a recurrent neural network 

(RNN) to achieve initial time-series weightings that the LSTM uses for correlation with an 

origin-destination matrix for the spatial element (Zhao et al. 2017). Since this thesis focused on 

traditional methods for short-term neighborhood effects, the application of Zhao’s LSTM method 
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is limited, but it addresses some challenges that a combined solution can help to mitigate in 

future studies. 

A study of a Korean city’s surface streets employed a combination of a gaussian mixture 

model (GMM) and an artificial neural network. This approach considers the effects of weather 

and road structure on congestion to provide an ITS with predictions based on current state 

changes (Oh, Kim, and Hong 2015). This approach is an effective one since it addresses the 

details of how various lane configurations can be affected by weather and construction projects 

but falls short of considering the effects of accidents. A variation on this approach is useful in 

designing a neural network solution for making predictions based on disruptions in nominal 

traffic flow. The GMM incorporates data which has several data types, like traffic, and combines 

the gaussian distributions for targeted variables into a cluster of predictions. 

The ability to combine the concepts implemented in related work into a coherent strategy 

for traffic congestion visualization and future work in prediction is essential for success. The 

various combinations of techniques and tools used as well as the grammar framework discussed 

in paragraph 2.1 provide the building blocks for any analysis to meet its research objectives. In 

this case, the grammar and examples presented for multi-dimensional data visualization have 

been adapted to provide a geospatial representation of location, time and speed reports in a 

manner which provide insight into the association between freeway and arterial congestion. 
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Chapter 3 Methods 

As seen in Chapter 2, there is a wide range of approaches to producing viable results for traffic 

predictions and associations. To limit the complexity of this project and provide a building block 

for future studies, variations on traditional spatial analysis were used. Machine learning will be 

reserved for future work. The key difference with this analysis compared to many existing 

studies is that the relationship between freeways and arterial streets is explored and any 

associations are visualized. The data required, and methods used are very similar for traditional 

and machine learning, but this analysis focuses on visualization techniques as a basis for 

showing how the speeds of the different road types change during a set time period and how 

connected roads affect each other. 

3.1. Data Description 

Since this thesis is focused on specific road segments and their attributes which are 

compared to changes over time and an average baseline, the data used was drawn from sources 

which provide flow and speed data for the roadways in the study area. Supporting data like the 

National Highway System data help to provide context which enables visual and mathematical 

analysis of the segment data. Table 1 describes the data used in this thesis. 
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Table 1. Data Descriptions 

Source Dataset Availability Scale Spatial Precision Temporal Precision Accuracy 
HERE.com Traffic Flow Via 

agreement 
Filtered for 
Study Area 

Road segment specific 
data specified by 

international standards 
(TMC), GPS accuracy 
is used in collection 

Sampled at 
approximately 1 
minute intervals 

Traffic Message 
Channel (TMC) 

open standard using 
approximated 

WGS84 coordinates 
CA Highway 

Patrol 
Incident 

Data  
Open 

Source 
Statewide CHP Incident data is 

approximated by 
standardized locations 
along a road segment 

with Lat/Long 
reference 

Periodic reporting 
based on incident 

Research indicates 
that most incidents 
are reported within 
5 minutes of event. 

CalTrans Interstate 
Traffic Flow 

(Backup / 
Validation) 

Open 
Source 

District 7 
(LA and 
Ventura 

Counties), 
Filtered for 
Study Area 

CalTrans Flow data is 
collected by sensors at 
standardized locations 
along a road segment 

with Lat/Long 
reference 

30-sec and 5-min 
sampling 

GPS derived point 
sources for flow 

data 

US Dept of 
Transportation 

National 
Highway 
System 

Open 
Source 

National Static Not Applicable Various accuracy 
based on input 
mechanisms 
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3.2. Research Design 

As a spatiotemporal problem, traffic analysis needs to be particularly sensitive to the 

requirements to show how both time and distance affect traffic. Since roads are often bi-

directional, or closely spaced with opposite directional flow, it is essential for a geospatial 

analysis to distinguish variations between road network direction and sensor data gathering 

results. The traffic speed data in this study clearly delineated direction, which allowed for 

specific routes to be analyzed properly. A directionally specific network dataset for the arterials 

and freeways in the study area was matched to the sensor data. 

This thesis followed the methods for spatial analysis research as outlined in Montello and 

Sutton (2013). The selection of traffic flow data consisted of a single week chosen to create a 

baseline for normal traffic flow and several days of traffic in which an incident occurred. The 

data was collected at approximately one-minute intervals. The baseline data was analyzed and 

aggregated to provide a representation of nominal traffic flow for the morning rush hour (0600-

1000). This sample set allows the assessment of the daily variation in traffic speeds for arterial 

city streets and highways. The incident days’ data was compared to weekly average to determine 

if speed changes on freeway and arterials were associated. Selection of days with freeway 

incidents in the study area allowed for specific analysis of how a “non-standard” day is affected 

by an incident. Since workday traffic patterns are different compared to weekend traffic, this 

study only included weekday traffic in its analysis. 
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Figure 1: Study Area Overview 

The traffic study area extends from mid-city Los Angeles to the Marina Del Rey area 

(Figure 1). This study area presented several options where the freeways (I-10W and I-405S) are 

often the fastest outside of rush hour times, but the arterial streets are viable options during peak 

traffic periods. Portions of Interstates 10 and 405 are included in the study. Within the study 

area, arterial roads were selected based on likelihood that they would be used as an alternative to 

freeway travel. Arterial roads included in the analysis were Venice Blvd., Washington Blvd., 

Adams Blvd., Jefferson Blvd., National Blvd., La Brea Ave., La Cienega Blvd., Fairfax Ave., 

Robertson Blvd., Sepulveda Blvd., Sawtelle Blvd., Palms Blvd., Culver Blvd., and Overland 

Ave. These are the primary arterials that can be used as alternate routes to freeway travel and 
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present logical alternatives with several options for travelers heading west. Other streets in the 

area were not represented in the modeling to simplify the variables associated with smaller side 

streets, even though personal routing systems like Waze or Apple Maps may use these smaller 

arterials as options. The sampled streets were used to provide the model with a directed graph for 

analysis. The traffic network nodes consist of attribute data for position and connections. Each 

edge in the spatially directed graph has length, free flow speed and directional attributes. In 

addition to the static spatially representative graph, a time-spatial graph was created containing 

the various states (current speed, variation from baseline, location and time series) for each 

network edge between the spatial node definitions. 

The traffic flow samples for analysis were chosen to identify and show the effects of 

incidents like accidents or closures. Data from 15 minutes before and 45 minutes after an 

incident provides enough data to assess potential associations during the onset of each discrete 

incident and the aftermath of the incident. Using speed data from HERE.com and incident data 

from California Highway Patrol (CHP) reports, the freeways and arterials between mid-town LA 

and Marina Del Rey were examined to determine the relationship of interstate incidents to 

decreases in city traffic speeds. For each CHP incident report, the speed data was analyzed to 

ensure that the accuracy of the reported incident time corresponded with observed changes in 

traffic speed, particularly on the freeway.  

An initial concern with the CHP incident data that delays in report timing compared to 

actual incident may affect the results by causing mis-correlations in timing has been mitigated 

with several sample analyses. Results show a correlation of reporting and resultant flow/speed 

changes within approximately five minutes of the reported time. 

As suggested in various related works in Chapter 2, traffic speed, time, and differences 

from average speed were the primary variables considered. Traffic speeds allowed for empirical 



18 
 

determination of how much traffic the interstate can withstand even with a partial blockage of 

lanes before significant impacts on surface streets. As a further study, calculation of volatility 

would help to assess how quickly the situation on the freeway (and also on local streets) can 

change both in a positive as well as negative way. A measure of volatility will allow for future 

calculations of specific risk/benefit assessments for rerouted vehicles to help freeway travelers 

answer the question: “Is it worth taking a detour?” 

3.3. Study Parameters 

The study area encompasses a box with the Northeast corner in the Mid-city area of Los 

Angeles (34.0477415°N 118.3297119°W), and a Southwest Corner near Marina Del Rey, Los 

Angeles (34.0043824°N 118.4415229°W) as shown in Figure 1. 

Two years of CHP incident data was examined for incidents during morning rush hour 

(0600-1000) along I-10 West. Ten incidents were initially reviewed which had potential to 

provide good case studies. After georeferencing this set of incident data and analyzing the time 

frame which traffic would be affected, the list was refined to five. These selected incidents fall 

within the rush hour timeframe (0600-1000) and range from 0651 to 0850 local time and are 

categorized by CHP with codes 1179 (Traffic Collision) and 1141 (Ambulance Enroute). The 

reported durations of the selected incidents range between 100 and 252 minutes indicating that 

the disruption was severe. See Figure 2for a map of the incidents notated with date and time and 

the sensor collection locations. Days of selected incidents were: April 17, 2017, July 17, 2017, 

July 21, 2017, November 16, 2017 and May 31, 2018. 
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Figure 2: Selected Incidents 

The speed data was collected for the 0600-1000 time range covering days with freeway 

incident reports that could affect arterial congestion. The data was presented as raw XML data 

from HERE.com and was filtered to the road segments in the study area. Baseline speed averages 

were calculated for each minute on each road segment from the week of April 16, 2018. This 

week was chosen because there were no significant incidents on the I-10 West or on the arterials 

in the study area which would impact a calculation of average speeds for each of the road 

segments during the morning rush hour. 

Road network information was stored in a Neo4J database for directed graph analysis, 

Alteryx data stores for calculations and comparisons, and an ArcGIS geodatabase for 

spatiotemporal visualization. Graphical speed analysis in Alteryx and a series of ArcGIS Pro 
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spatiotemporal time-space cube visualizations provided the necessary tools for the determination 

of association between incidents and arterial road speeds. Since no predictions were made in this 

study, predictive tools like GJR-GARCH and ARIMA were not implemented; however, the data 

can provide inputs for these processes if future predictive studies are started. 

Analysis of data for spatiotemporal correlation of traffic speeds resulting from freeway 

incidents through time-space visualization provides an effective method for the complicated 

interactions between physically separated freeways (due to limited access freeway exit structure) 

and arterial connectedness once travelers have left the freeway. 

3.4.  Data Preparation 

Raw data for road segment speeds was presented to the Alteryx analysis program in a 

large set of XML data covering an area beyond the extent of the study area. Data files were 

sequentially parsed to include only the road segments in the study area. Data was then joined 

with static road segment data from the National Highway System database and Here.com road 

segment definitions. Figure 3 shows a portion of the model for the initial data file iterations and 

XML data extraction. 

 

Figure 3: Alteryx model for iteratively parsing XML files with raw sensor data. 
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Segment averages were calculated from the raw data to provide a flat, single row per 

minute, reference for each sensor reading to ease manipulation. Final data fields are shown in 

Table 2. Times were rounded to the nearest minute to normalize the sensor data since raw data 

was sampled at different second intervals within each minute.  

Table 2: Description of Flow Data After Preparation Used in Analysis 

 
 

Line charts included in the analysis for each incident show the Speed Uncapped (labeled 

as measured speed in the figures) and the Baseline Average Speed for each road segment during 

the time period shown. The uncapped speed is the actual speed measured by the sensors. A 

separate data element from the raw data limited the reported speed capped to the speed limit of 

the road segment; this artificially limited speed was not used in the analysis. The average speed 

is the calculated value from the reference week as comparison. Figure 4 shows the model used 

for combining sensor data with the reference week and calculating the difference. Each record 

contains the actual data and the reference data to allow ArcGIS Pro to use in the time-space cube 

analysis tool. 
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Figure 4: Alteryx model for joining reference data and calculating difference with raw sensor 
data. 

The raw data provided free-flow speed for road segments as well. Free flow speed was 

used to compare how slow the general traffic flow was for that time of day. In ideal traffic 

conditions (e.g. late night or very low congestion), uncapped speeds were at, or above, the free-

flow speeds. Extraction of speed data within timeframe before (15 minutes) and after (45 

minutes) incident was done to show localized impacts to traffic speed. 

Initially, ten incidents were considered for comparison from the CHP Incident database 

from the section of I-10 West in the study area. Following spatial and time analysis, the list was 

pared to five specific incidents which could potentially have had the greatest impact on arterial 

congestion. Incident data was georeferenced and imported to ArcGIS Pro for processing. Figure 

2 shows the location of the selected incidents relative to the speed collection locations. 

Selected road segments were also georeferenced, simplified to straight lines, and 

categorized to show which segments had sensor data, and which did not, as shown in Figure 5. 

Road segments with sensors are labeled in the figure. The relatively low number of sensor 

locations (27) of the selected road segments (93) may have contributed to results with fewer 

associations. This potential drawback was mitigated by the selection of incidents which took 
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place before or after a high density of arterial sensors near the intersection of Washington Blvd 

and I-10 in the center of the study area. 

 

Figure 5: Selected Road Segments and Sensor Locations 

The methodology and data preparation produced a streamlined model to ingest raw data 

and create a visualization of traffic speed variations across a designated time period. This model 

can be utilized for any set of data for any time period. In the final step, manipulation of the 

ArcGIS Pro time-space cube is a manual process providing the analyst with a means to best 

represent the particular dataset provided and create a customized visualization for effective 

understanding of any sensor location-traffic speed relationships over time. 
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Chapter 4 Results 

The results of this study show that there is not a significant association between increased arterial 

traffic as a result of a major incident on nearby freeways for incidents lasting one and a half to 

three hours which did not result in a freeway closure. While one incident (April 17, 2017) shows 

a higher possible association than the others, the overall analysis does not support the hypothesis 

that an increase in arterial congestion can be observed as a result of an incident on the freeway. 

The following sections will describe the analysis for two incidents and data resulting in the 

unsupported hypothesis. The three remaining incidents are discussed in the appendices. 

4.1. Time Series Speed Analysis Representation 

The raw XML data was parsed and then prepared to include the various attributes and 

calculated data needed. Free-flow speed for each segment was recorded, the baseline average 

speed was calculated (averaged from the week of April 16, 2018), and the percent difference 

between these numbers and the measured speed was calculated to enable a time-series 

comparison of speed data for measured segments. This data is represented in the following 

sections. Only chart data showing pertinent trends and variations from averages are shown. 

The first figure in each section is a time-space speed representation of the overall incident 

area. Figure 6 is a sample graphic created using the ArcGIS Pro time-space cube analysis tool. 

The column of traffic speed data was averaged into two-minute results to allow for simplified 

presentation and positioned over the sensor which collected the data. Column data points (circles 

in the stack) show percent difference from baseline average speed at each sensor location for a 

one-hour period. The legend shows the color divisions for the speed data. Size of the circle 

increases the further below average based on the reported speed. The semi-transparent gray 

circles represent differences from the average which are much higher than expected (greater than 
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133%) and are therefore considered outliers. The circles are stacked in time. The earliest time is 

at the bottom. The column starts 15 minutes prior to the incident for the date and time noted on 

the chart. The top of the column is 45 minutes after the incident. Each graphic was then oriented 

in three dimensional space to provide clear observation of the important time-speed columns for 

comparison. 

 

Figure 6: Sample ArcGIS Pro Time-space cube analysis tool output. 3-D orientation to enhance 
readability and highlight possible association between data stacks. 

The second figure in each section is a satellite image showing the incident area and 

several of the sensor locations and analyzed road segments. This provides contextual information 

about the area and the street layout. The extent of each image was selected to provide the ability 

to analyze the way that vehicles exiting the freeway will enter the arterial network. 
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The final figures are line graphs for some of the sensors for the date of the incident. 

These graphs were output and annotated from Alteryx as part of the data preparation modeling. 

The particular graphs were selected to show data which was pertinent to the analysis discussion. 

Similar to the time-space speed column representation, the horizontal axis is the time axis and 

begins 15 minutes prior to the incident and extends to 45 minutes after the incident. The vertical 

axis is the speed in miles per hour. Two series of data are shown in the chart.  The green lines are 

the actual sensor readings for that day (Speed Uncapped in the data description [Table 1]). The 

blue lines represent the average speeds expected on a normal workday as calculated from the 

reference week. The incident time is marked by a vertical red line for reference. The 

alphanumeric code (e.g. 106N0575) is the unique identifier for a particular sensor known as the 

Traffic Message Channel (TMC). A textual description of its location is annotated at the top of 

each graph. 

Two analyses are presented in the main body of this study. The selected incidents show 

scenarios where the best indicators for associations can be shown. The first has weak 

associations, but not clear causality. The second shows an ambiguous data representation which 

could indicate inaccurate incident data but could also show early indications of arterial as a result 

of the freeway incident. The details of these scenarios are discussed in their respective sections. 

Three additional incidents are described in the appendices. The incidents in the appendices 

demonstrate either, or both, a lack of association as well as unexpected behavior of the traffic, 

geographically, before and after the incident location. 
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4.2. Incident on April 17, 2017 

This incident took place near the La Brea exit on I-10W at 0837 and had a duration of 

100 minutes as reported by California Highway Patrol. Figure 7 shows much higher than average 

speeds along I-10W at locations 1400m ahead (sensor 106N05076), 700m after (sensor 

106N0575) and 2km after (sensor 106N05074) the incident location, before the time of the 

incident and for nearly 30 minutes following the reported incident time.  

 

Figure 7: April 17, 2017 Incident Overview 
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The satellite imagery in Figure 8 shows a separated lane structure for vehicles exiting 

onto South La Brea Ave. and potentially passing the collection stations on Washington Blvd. 

Depending on the actual lane where the incident occurred, there could be different results for 

overall restriction of traffic movement in this area since the bypass or main freeway lanes could 

provide a way to avoid the accident without leaving the freeway. 

 

Figure 8: April 17, 2017 Incident Area Imagery 
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At 30 minutes following the reported incident, both 106N5075 and 106N5076 show a 

drastic reduction in speed (Figure 9 and Figure 10), but the trend is slowing beginning at the 

incident time. 

 

Figure 9: April 17, 2017 106N0575: Free-flow speed=63mph 

 

 

Figure 10: April 17, 2017 106N0576: Free-flow speed=63mph 

I-10 at Washington Blvd/Exit 7B
106N05075:

Incident at 0837
Duration 100 min Date: April 17, 2017

I-10 at La Brea Ave/Exit 8
106N05076:

Incident at 0837
Duration 100 min Date: April 17, 2017
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While Washington Blvd (106P12507) and its westward continuation (106P12508) 

initially show above average speeds, they also show a slowdown well below average about 30 

minutes after the incident (Figure 11 and Figure 12).  

 

Figure 11: April 17, 2017 106P12507: Free-flow speed=31mph 

 

 

Figure 12: April 17, 2017 106P12508: Free-flow speed=24mph 

Washington Blvd at Hauser Blvd
106P12507:

Incident at 0837
Duration 100 min Date: April 17, 2017

Washington Blvd at Apple St/I-10/Rosa Parks Fwy
106P12508:

Incident at 0837
Duration 100 min Date: April 17, 2017
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If the assumption is made that incident did not fully develop into increased congestion 

until 15-20 minutes after the reported time, it is possible that a weak association could exist in 

the noted road segments. The timing of the slowdowns on Washington Blvd. are consistent with 

the incident causing slowdowns on the freeway and more than normal amounts of traffic 

potentially self-redirecting to Washington Blvd. westbound via La Brea northbound as an 

alternate route to the west. The data does not indicate a specific causal effect as a result of the 

slowdown, but the data is consistent with higher than average volume on Washington Blvd. 

which would result in lower than average speeds at a time consistent with how long it would take 

for the traffic to flow to the sensor locations on Washington. 106P12508 (the more western 

sensor on Washington Blvd.) shows below average speeds earlier than the sensor at the 

intersection of Washington and La Brea to the north of the incident location (106P12507). This 

discrepancy weakens the argument for causality since driving distance and other potential factors 

in the traffic flow on Washington could be affecting speeds for different reasons. 
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4.3. Incident on July 21, 2017 

This incident is reported to have taken place just west of the La Cienega interchange on I-

10W at 0850 and had a duration of 106 minutes as reported by California Highway Patrol. Figure 

13 shows above-average speeds along I-10W before and for nearly 30 minutes following the 

reported incident time.  

 

Figure 13: July 21, 2017 Incident Overview 
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Figure 14 shows a complicated picture of how vehicles can exit the freeway. Two nearby 

opportunities for leaving the freeway serve Washington Blvd and Fairfax Ave. about 1.4km prior 

to the incident location with a nearer exit for Venice Blvd. and La Cienega Blvd at 1km prior to 

the reported incident location. Due to the multiple arterials being fed and the subsequently larger 

number of routing possibilities for vehicles to take as an alternative to the freeway, this could 

have caused the ambiguous results noted for the July 21 incident. 

 

Figure 14: July 21, 2017 Incident Area Imagery 

 

At 30 minutes following the reported incident time, both 106N05072 (leftmost column, 

with red on the top half, graphed in Figure 15) and 106N05073 (third from left column, with a 

red top, graphed in Figure 16) show a dramatic reduction in speed 15 and 30 minutes 
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respectively after the incident. Since the location of 106N05072 is further down the freeway 

from the reported incident location, it is suspected that the actual incident may have occurred at a 

location west of the reported position since a natural pattern would be for 106N05072 to 

positively diverge from average speeds due to a backup or slowdown prior to the sensor location 

and traffic flowing smoothly after the incident and 106N05073 to slow down earlier. The dotted 

green arrows show the expected behavior for these locations. In this graphic, a dramatic 

slowdown several minutes after the incident at 106N05072 is mirrored several minutes later at 

the previous sensor. This would be normal if the incident happened further west on the freeway 

from 106N05072.  

 

Figure 15: July 21, 2017 106N05072: Free-flow speed=65mph. Expected speed behavior is 
noted with the dotted green arrow. 

 

I-10 at Robertson Blvd/Exit 6
106N05072:

Incident at 0850
Duration 106 min Date: July 21, 2017
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Figure 16: July 21, 2017 106N05073: Free-flow speed=65mph. Expected speed behavior is 
noted with the dotted green arrow. 

In the overview graphic for this incident, the second column from the left is 106N06482 

(La Cienega Blvd, Figure 17) and shows mostly higher than average speeds during the period 

following the incident. The exit from I-10W for that road segment is well before the I-10W 

sensor, 106N05073. This could be an indication of a delayed effect of less traffic exiting the 

freeway than normal resulting in higher than average speeds on that segment of La Cienega. The 

fourth column from the left (which has red at the top) is Washington Blvd. (106P12511, Figure 

18). The data points in this column show a potential association, but the timing and lack of 

similar effects on nearby sensors make it an unlikely resultant effect of the incident.  

 

I-10 at La Cienega Blvd
106N05073:

Incident at 0850
Duration 106 min Date: July 21, 2017



36 
 

 

Figure 17: July 21, 2017 106N06482: Free-flow speed=26mph 

 

 

Figure 18: July 21, 2017 106P12511: Free-flow speed=25mph 

  

S La Cienega Blvd at I-10
106N06482:

Incident at 0850
Duration 106 min Date: July 21, 2017

Washington Blvd at National Blvd
106P12511:

Incident at 0850
Duration 106 min Date: July 21, 2017
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Chapter 5 Conclusion 

The hypothesis for this study was that arterial traffic would be distinctly affected by significant 

slowdowns on the freeway. As seen in Chapter 4, this could not be expressly demonstrated. 

Several possibilities exist in why this may be the case. The overall summary of results, 

explanation of the challenges experienced with the study, and future work possibilities will assist 

researchers to reference this work in developing more robust research plans to confirm or refute 

these findings. 

5.1. Summary of Results 

With the exception of a weak potential association in the April 17, 2017 incident (Section 

4.2), the incidents analyzed did not show any particular relationships with the variations in traffic 

flow on the arterials from expected behaviors. Inertia could play a key role in the explanation of 

these results. The inertia, in this case, is commuters becoming accustomed to a particular route 

and the expected traffic conditions along that route and thereby resisting choosing an alternate 

route. In the case of the study area, free-flow speeds of 65mph or higher on the freeways provide 

incentive to remain on the freeway.  
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Even in rush hour periods like this study examined, the average freeway speeds were near free-

flow speeds until around 0730. After 0730, the speed normally drops to the 20-40 mph range 

(Figure 19). Since commuters are typically travelling at the same periods every day, the patterns 

become inherent in their expectations. A difference of 10 mph below the expected speed may not 

be enough of an inconvenience to prompt the commuter to seek an alternative route. Short of a 

complete closure, it is possible that if the traffic on the freeway continues to move, however 

slowly, there will not be enough traffic choosing to leave the freeway to materially affect the 

arterials. 

 

Figure 19: Typical Pattern for Freeways from 0600-1000. This graph is from I-10W at 
Washington Blvd. Free flow speed: 63 mph. MinuteAvgCF denotes average continuous flow 

(CF) for each minute. 

  

106N05075
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Arterials showed a wider difference in daily patterns. Each arterial has a unique signature 

for average speeds during the study time period, but the general pattern for all arterials is a 

gradual slowdown until 0800 and slow recovery beginning around 0900 (Figure 20). 

Furthermore, the range of the changes in arterial speeds during the study period hover within 5-

10 mph of the mean for the time period providing even less incentive for using those routes in 

lieu of the freeway. 

 

Figure 20: Typical Pattern for Arterials from 0600-1000. This graph is from La Cienega near the 
I-10 intersection. Free flow speed: 26 mph. MinuteAvgCF denotes average continuous flow (CF) 

for each minute. 

Time and distance also play a role in the decision to leave the freeway. This study looked 

at arterials which provided a relatively direct route for commuters whose destination was south 

of I-10 along the I-405 corridor. If the perceived savings in time to use the arterials did not 

outweigh the cost of enduring the slower traffic along the freeway, then even commuters with 

enough situational awareness of alternate routes would not be tempted to leave the freeway. The 

proliferation of tools like Waze would assist commuters in making that decision and have more 

comprehensive information available for individual commuter routing needs. 

106N06482
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5.2. Challenges Experienced 

Of primary concern during the data exploration phase of this research was the 

development of best methods for parsing and filtering the raw data. Over 2000 individual XML 

files with varying timeframes and data elements were used to provide the study with the required 

data. Computer storage and processing power was insufficient for a complete concatenation and 

XML parsing of the data prior to filtering. Additionally, due to network accessibility restrictions 

and file size limitations, it was not feasible to import the bulk files directly into a relational 

database system. A workflow was developed to iterate through files and append filtered data by 

date and time-range to a composite file with a manageable size. 

Sensor location data was a second concern. While the 27 sensors from the selected road 

network were enough to analyze many of the eastern intersections in the study area, there were 

some notable gaps in coverage which could have provided additional data points in the analysis. 

Additional sensors on Venice Blvd near the I-10W intersection would have helped to provide a 

direct comparison to the ones on Washington Blvd. Sensors along this roadway would have 

allowed redundant verification of the behaviors seen on two nearby parallel streets. 

Visualization of temporal data is often difficult using a static method like a chart or 

graph. The ability to show an interactive animation or graphic provides easier understanding of 

the data presented. In this study, many spatiotemporal representations were evaluated, but a time-

space cube visualization using ArcGIS Pro provided the most clarity by manipulating the tool 

parameters to show just the sensor locations and their data and orienting the perspective to best 

show geographic relationships as well as the temporal variations. 

5.3. Improvements for Future Work 

Even speeds significantly below average did not appear to provide enough impetus for 

commuters to leave the highway. Complete freeway closure may cause the expected effect but 
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was not studied in this analysis. During a research interview, it was learned that early results of a 

study at USC of broad neighborhood effects from a freeway closure using machine learning 

show similar outcomes (Yan 2018). That study uses road closures as the freeway incident input 

and compares a wide array of traffic light sensor loop data as flow information for training data 

in various neural networks. At the time of the interview, various machine learning methods had 

been tried, but predictive confidence values were still extremely low. From an analysis 

standpoint, this could confirm the weak association relationships like those experienced in this 

thesis. 

Possible improvements to this study include selecting a time of day where average speeds 

were not already significantly below free-flow speeds. During the morning rush-hour, since 

speeds are already low, slowdowns would be easily overlooked. This could be further improved 

by selecting incidents which resulted in complete closure of the freeway or choosing more 

stringent criteria for incidents with clear indications of a severe impact on the freeway. 

An alternative to selecting just severe incidents would be to provide the analysis model 

with a range of incidents from minor slowdowns to complete closures. With this wide range of 

incident types, it would be possible to determine if there is a “tipping point” when arterial traffic 

is clearly affected by freeway disruptions. As shown in this study, the criteria of a long duration 

traffic collision with medical services required did not seem to reach that tipping point. 

Additional sensor data to create a more complete sensor network would help to more 

clearly show any correlations between sensors along the same roadway as well as along nearby 

streets. With an expanded network, the overall association of impacts could be better assessed 

since more intersections would be covered.  Additionally, it would allow direct comparisons 

between nearby streets to support findings. 

Study the past, if you would divine the future. - Confucius 
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Appendices 

The following appendices show the analysis of the three incidents not covered in the main body 

of the thesis. The incidents have a distinct lack of association and show speed data which is 

counter to the expected results of an incident at a certain location. In these cases, it did not 

appear that the data was simply not supporting the expected hypothesis, but that the data 

presented as incident data was incorrect. As discussed in the analysis below, in normal incidents, 

there are clear correlations for the speeds of traffic on the freeway itself, and these incidents do 

not support that. 

A1. Incident on July 17, 2017 

This incident took place east of the La Brea exit on I-10W at 0651 and had a duration of 

119 minutes as reported by California Highway Patrol. Figure 21 shows near average speeds 

along I-10W before and for nearly 30 minutes following the reported incident time. At that time, 

both 106N5075 and 106N5076 show a slight reduction in speed. During this time of the 

morning, the average speeds along I-10W are near the free-flow speeds of 65mph until about 

0715 when overall speeds drop on an average day. 106N5076 shows a faster drop than normal to 

just above 50% of the average speed for that time of day. The arterial streets in the area do not 

show any significant timing correlation with the incident. This could be a result of most arterial 

sensors being positioned after the location of the incident. A sensor on Washington Blvd 

(106P12509, which contains a long string of orange circles in the center of the figure) does not 

provide any significant supporting information since it mirrors the behavior of the average 

speeds and nearby road segments do not show similar slowdowns. 
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Figure 21: July 17, 2017 Incident Overview 

106P12509 
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Figure 22: July 17, 2017 Incident Area Imagery 
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Figure 23: July 17, 2017 106N05075: Free-flow speed=63mph 

 

Figure 24: July 17, 2017 106N5076: Free-flow speed=63mph 

I-10 at Washington Blvd/Exit 7B
106N05075:

Incident at 0651
Duration 119 min Date: July 17, 2017

I-10 at La Brea Ave/Exit 8
106N05076:

Incident at 0651
Duration 119 min Date: July 17, 2017
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Figure 25: July 17, 2017 106P12509: Free-flow speed=22mph 

A2. Incident on November 16, 2017 

This incident is reported to take place near the overpass of Robertson Blvd. on I-10W at 

0758 and has the longest reported duration of the study at 252 minutes per California Highway 

Patrol. Figure 26 shows the least potential association of any incident. The freeway sensors on 

either side of the reported incident site both show a slight dip below average around the incident 

time, but a high rate percentage increase in speeds above average following the incident. To 

support the hypothesis, it would be reasonable to assume that traffic on the freeway would slow 

following an incident especially one which has a long duration and an ambulance was called to 

the scene. This is not the case with the November 16 incident. 

Washington Blvd at S Fairfax Ave/I-10/Rosa Parks Fwy
106P12509:

Incident at 0651
Duration 119 min Date: July 17, 2017



50 
 

 

Figure 26: November 16, 2017 Incident Overview 

106P12512 
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Figure 27: November 16, 2017 Incident Area Imagery 

A3. Incident on May 31, 2018 

This incident took place at the same reported location as the one on November 16, 2017 

(A2. Incident on November 16, 2017) on I-10W at 0847 and had a duration of 100 minutes as 

reported by California Highway Patrol. In this case, the freeway traffic is reacting generally as 

expected: the speeds are converging from well above average to near (but still above) average 

(106N05071 and 106N05072 in Figure 28) following the incident time. Figure 30 and Figure 31 

show this trend. Likewise, 106N06482 (a short segment of La Cienega Blvd which is fed directly 

from an exit from I-10W) begins a rapid drop from well-above average a few minutes before the 

incident. This does not appear to be caused by freeway traffic reacting to the incident since the 
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freeway speeds remain well above average during the drop. Despite this, none of the arterials 

accessible from the freeway eastward of the incident show any significant association with the 

drops in speed along the freeway. 

 

Figure 28: May 31, 2018 Incident Overview 

106N06482 

106N05072 
106N05073 

106P12512 

106P12511 
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Figure 29: May 31, 2018 Incident Area Imagery 
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Figure 30: May 31, 2018 106N05071: Free-flow speed=65mph 

 

Figure 31: May 31, 2018 106N05072: Free-flow speed=65mph 

I-10 at National Blvd/Exit 5
106N05071:

Incident at 0847
Duration 100 min Date: May 31, 2018

I-10 at Robertson Blvd/Exit 6
106N05072:

Incident at 0847
Duration 100 min Date: May 31, 2018
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Figure 32: May 31, 2018 106N06482: Free-flow speed=26mph 

 

S La Cienega Blvd at I-10
106N06482:

Incident at 0847
Duration 100 min Date: May 31, 2018


