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Abstract 

GIS Capabilities are rapidly expanding into the web and cloud environments, but there is little 

research on the capabilities and performance of 3D web GIS exploitation systems. To evaluate 

current 3D GIS capabilities and performance within the web, Esri ArcGIS Enterprise Portal, 

Cesium JS, and Hexagon Geospatial Luciad RIA were all configured on a cloud-based Amazon 

EC2 instance to host and serve 3D tile datasets that implement adaptive tiled data structures. 

Using two different source point cloud datasets, a high-resolution photogrammetric dataset, and a 

lower resolution lidar dataset, resource loading time and resource memory was tested within each 

system with increasing overall tileset sizes and with three different levels of zoom. The results 

show that while Cesium JS is quickest, Esri ArcGIS Enterprise Portal performs similar and with 

more detailed visualizations for both datasets. Hexagon Geospatial Luciad RIA performed 

slower than the other two systems, but possesses the most photorealistic and detailed rendering 

of the systems. Performance differences between the servers can be seen in the level of library 

compression and number of libraries imported into the page. Cesium JS is generally quickest, but 

most compressed and lightweight server. The larger detail and loading time in Esri ArcGIS 

Enterprise and Hexagon Geospatial Luciad RIA can be traced to smaller levels of compression 

and more library imports to enhance detail of 3D data rendering. Overall tileset size and spatial 

resolution of data did not significantly impact performance while zoom level did significantly 

impact performance. Generally, higher resolution of zoom required more resources and loading 

time. Results indicated that difference visualization systems are best suited for different 

applications. Cesium JS would likely be most suited for complex analytic operations, while 

Hexagon Geospatial Luciad RIA would be best for detailed single scene visualization.  
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Chapter 1  Introduction 

The ongoing migration to web and cloud technologies is occurring due to the larger amounts of 

space, users, and interoperability between systems that is available in the cloud (Collins 2019). It 

is also becoming more commonplace for companies to collect geographic data, in both imagery 

space and in 3D space due to increased accessibility of unmanned aerial systems (UAS) 

(Whitehead and Hugenholtz 2014). 2D data is more widely utilized and possesses good support 

in desktop, cloud, and web software, while 3D data is still being adopted and integrated into each 

of these software platforms. Because of the more recent availability of web and cloud-based GIS 

systems, there is much less research utilizing these systems than traditional desktop GIS systems. 

There is even less documentation on open source implementations of web and cloud-based GIS 

systems which are more intricate to assemble due to the large amount of programming 

knowledge that is required to create an open source web GIS system. The induction of open 

source Cesium 3D Tiles as the standard data structure for streaming massive 3D datasets on the 

web is shifting attention within the geospatial community from commercial software and 

proprietary data structures to more open and accessible software and data structure formats 

(Chen et al. 2018; Farkas 2017; Krämer and Gutbell 2015). As open source data formats and 

software become more common, there are several options available to create web GIS systems 

which can store and investigate large amounts of 3D data. This study evaluates three different 

web GIS exploitation systems and provides information on their overall performance and 

capabilities. The systems evaluated in this study are Esri ArcGIS Enterprise Portal, Hexagon 

Geospatial Luciad RIA, and Cesium JS. Performance and capability analysis between the 

different exploitation systems indicate that the level of compression used for JavaScript files, and 

the amount of library content loaded most significantly impact performance between servers. 
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1.1. General Objective 

This research study aims to fill in academic gaps in comparative analysis of 3D web GIS 

data types and 3D web GIS platforms. The availability of large computing resources made 

accessible by cloud services is permitting easy access to visualization of large 3D geographic 

datasets. Previously, 3D point cloud study has been limited by the computing power of a desktop 

system, but with evolving capabilities in high performance and cloud computing there are now 

many evolving capabilities for 3D geographic data (Cura et al. 2017; Guan et al. 2013; Huang et 

al. 2013; Li et al. 2016). Because of the interoperability of the web and its ease of integration 

with cloud technologies, many 3D data structures are now being provided in more optimized 

web-based tile formats. The introduction of 3D Tiles and Esri i3s marks community adoption 

and use of 3D web streaming formats for 3D data; however, these data structure standards have 

been implemented fairly recently and there is very little academic study providing technical 

information on the potential applications, limitations, and performance of these new data types. 

Additionally, there are several web GIS platforms which integrate these standards which have 

not been assessed quantitatively against each other. This study analyzes performance and 

capability differences between 3D GIS streaming data types and exploitation systems, 

identifying how fundamental differences in how they process and visualize data are responsible 

for these differences.  

1.2. General Methodology 

This results from this research provide performance metrics and core 3D service 

capabilities for each data type and each web GIS system tested. Three different exploitation 

systems were tested which include Esri ArcGIS Enterprise Portal, Hexagon Geospatial Luciad 

RIA, and Cesium JS. These systems have received attention within the larger industry 
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community and are ideal systems to test due to their support of 3D GIS data. The OGC has 

standardized both Esri i3s and Cesium 3D Tiles as data structure standards for large web-based 

3D GIS datasets (Open Geospatial Consortium 2019; Open Geospatial Consortium n.d.). Due to 

their standardization by the OGC, Cesium 3D Tiles and Esri i3s data structures were the primary 

web-based data structures evaluated in the study. Both data structures are optimized for the web 

and for tile-based services which attempt to enhance performance of visualization by limiting the 

amount of data which is rendered on client devices based on zoom level in the virtual globe 

engines. Through their use of tiling, these data structures allow client devices to work with 

datasets which are very large. 

To provide a controlled computing environment for gathering of performance metrics, all 

the exploitation systems (Esri ArcGIS Enterprise Portal, Hexagon Geospatial Luciad RIA, and 

Cesium JS) were installed and configured on a virtual Amazon Elastic Compute Cloud (EC2) 

instance. All source data and processed data was stored on the virtual EC2 instance to ensure that 

all server resources originated from the same computing environment. Despite its virtualization, 

EC2 instances permit dedicated storage volumes to store the operating system, and data of the 

EC2. A 700 GB dedicated storage volume was attached to the EC2 to keep all software and data 

resources on the same data storage volume. Testing was also performed on the same client 

device over a consistent network connection to limit potential error in testing. Using a controlled 

server environment and client environment ensured that performance results could be directly 

compared to each other. 

 To understand how the exploitation systems handled different sizes of data, and different 

types of data, one high-resolution photogrammetric dataset, and one lower resolution lidar 

dataset were processed into Cesium 3D Tiles and Esri i3s at increasing tileset sizes. Each dataset 
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was processed into 1GB, 5GB, 10GB, 25GB, and 50GB tileset sizes to understand performance 

differences of each server framework for small and large datasets. Additionally, two datasets, a 

photogrammetric and a lidar dataset were used as the source datasets to understand the effect of 

lower and higher spatial resolution on the performance of the server. Both source datasets were 

processed into Esri i3s and Cesium 3D Tiles to observe any differences in performance that may 

have derived from data structure type. Processing of data from two different collection methods 

and therefore variant spatial resolution, and in two different data structures, and for five total 

tileset sizes allowed gathering of metrics from each server for a variety of input data conditions. 

Performance metrics were calculated in several different manners. Using GtMetrix, an 

industry standard website analysis toolset, each exploitation system was evaluated for its basic 

performance in loading a 3D tiled dataset of 1GB (GtMetrix). GtMetrix calculates a website’s 

Google Page Score, Yahoo YSlow Score, Fully Loaded Time, and retrieves the network 

waterfall which shows all network requests and resource loading times made by the page. The 

scores from Google Page Score, and Yahoo YSlow illustrate an A-F ranking on the webpage 

performance. The waterfall information provides more quantitative information from which the 

Google Page Score and Yahoo YSlow are based off of. In addition to the snapshot of 

performance information provided by GtMetrix, for each dataset, at each memory size, in each 

exploitation system, the resource loading time and the total memory of resources used were 

calculated for multiple zoom levels. These two attributes (resource loading time, and total 

resource memory) can be compared across each test to understand overall performance 

differences between each test. Due to the nature of tile datasets, tiles are sent to the client based 

off of the zoom level in the exploitation system. Therefore, multiple zoom levels were necessary 

to test in order to observe the performance metrics of each exploitation system for different sized 
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tiles. To observe effects on performance for different zoom levels, performance metrics were 

calculated for the full extent of the dataset, at a medium zoom level, and at a detailed zoom level. 

The results provide useful information on the overall performance, complexity, and functionality 

of each system based on tileset size, zoom level, and data type. 

The methodologies section will provide important setup instructions and configurations 

for each server architecture which can be used as a development guide. Each software is setup in 

a different way to be made accessible for use on the web. It is important to understand the 

configuration of each exploitation system to further understand differences in the performances 

between them.  The results of this research are largely useful to developers, as well as to 3D 

point cloud researchers and corporations that use 3D GIS data. In addition to providing 

instructions for setting up each exploitation system in the methodology section, the results 

provide the core performance metrics and essential capabilities and limitations of each system. 

Additionally, some basic user experience results were also included to account for differences in 

the exploitation systems that could not be quantitatively analyzed. Both user experience and 

performance are important within software development since applications likely have different 

standards in terms of speed and user experience. Therefore, in the results both quantitative 

performance metrics and qualitive user experience results are discussed. This research is 

centrally focused on the scientific research and industry developer communities to assess the 

current state of 3D web service technology. Developers and scientists can utilize the architecture 

guide to simply create basic 3D exploitation systems which are capable of visualization of large 

3D datasets or to develop and assist progression of new tools and software for 3D geographic 

data analysis. These systems are relatively light and there is little support for complex operations. 
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Building more analytic tools within these systems would help push the boundaries of 3D web 

GIS capabilities. 

1.3. Motivation 

3D GIS datasets are becoming more common and it is important to note the capabilities 

of current 3D web GIS systems. There are several options for exploitation systems which involve 

commercial and open source options. The largest difference between open source and 

commercial software platforms are the level of programming required to setup the system, the 

amount of customization that can be programmed into the system, and the auxiliary tools that are 

available. Because of the support for i3s and 3D tiles, and to have a distribution of commercial 

and open source web GIS systems, Esri ArcGIS Enterprise Portal, Hexagon Geospatial Luciad 

RIA, and Cesium JS were chosen as the testing systems in this study. Both Esri ArcGIS 

Enterprise Portal and Hexagon Geospatial Luciad RIA are commercial options to web GIS. 

Cesium JS is completely open source and available as a content delivery network. However, all 

of these tools require some level or programming to be operational. Therefore, it is important to 

note that managing and operating a 3D web GIS requires knowledge of JavaScript, and 

HTML/CSS in order to properly configure and optimize systems. 

 Esri ArcGIS Enterprise Portal is a commercial web-based GIS platform which is 

completely operational out of the box and includes ability for customization with a developer’s 

license (Esri n.d.a). Web applications can be created through the Portal website, or with a 

JavaScript application which references layers stored within the ArcGIS Portal. Storage within 

Esri ArcGIS Enterprise Portal can be managed through ArcGIS Server which allows users to 

configure data stores that point to locations of either local or remote databases. Once a data store 

is registered, data uploaded into the store can be served and even analyzed with some basic GIS 
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tools within their web system. Esri ArcGIS Enterprise Portal is also the only system which serves 

i3s data. Due to its support of i3s, Esri ArcGIS Enterprise Portal was chosen as an exploitation 

system to test. A testing application for i3s was built using data stored within the Esri ArcGIS 

Enterprise Portal ecosystem, and a web application built using the Esri ArcGIS JavaScript API. 

Hexagon Geospatial Luciad RIA provides a commercial web GIS software development 

kit which can be used to build 3D web GIS applications. Hexagon Geospatial Luciad RIA has 

minimal setup and comes packaged with a variety of different applications that can be used as 

source code to build more complex applications (Hexagon Geospatial n.d.). The Hexagon 

Geospatial Luciad RIA is essential a sophisticated API which can be used to build complex 2D 

and 3D GIS web applications. A sample application was built using Hexagon Geospatial Luciad 

RIA to serve the test tile datasets. The sample application creates a simple virtual globe which 

serves the test 3D tile datasets. More complex applications could be developed with Hexagon 

Geospatial Luciad RIA, but the minimal components necessary to serve a 3D dataset were used 

in this study. 

Open source solutions most often integrate a back-end database, which can be stored 

locally or within the cloud, and a web mapping or virtual globe library to build a functional UI 

(Cesium). These solutions require usually require the most extensive programming to build up to 

a point where data storage and visualization are achieved. The Cesium JS library has recently 

been published as a content delivery network and users can now build Cesium JS applications 

with very few lines of code. Additional analytical tools can be programmed in using the Cesium 

API or through pure JavaScript. In order to test Cesium JS, a testing application was created with 

CesiumJS which serves 3D Tile data on a virtual globe. The application was served with a basic 

node.js express server. 
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Cesium JS, Hexagon Geospatial Luciad RIA, and Esri ArcGIS Enterprise Portal have 

been selected as testing platforms essentially due to their large support for 3D geographic data. 

Cesium JS is an open source virtual globe library which can be turned into a 3D web application 

with a small degree of JavaScript programming. As OGC has accepted Cesium 3D Tiles as a 

community standard for massive streaming of 3D geographic data, Cesium JS is an 

unquestionable platform to test since its native data type is 3D tiles. Hexagon Geospatial Luciad 

RIA browser boasts it can render at least 100GB of Cesium 3D Tile data and with its support for 

3D tiles it is an ideal software to be tested alongside Cesium JS (Coghe 2018). Esri ArcGIS 

Enterprise Portal is the last software that will be tested. Developed by Esri, the commercial 

leader in the GIS industry and the creator of the i3s data format, ArcGIS Enterprise Portal is 

another system that must be tested. Each of these platforms can be implementable configured for 

use in an integrated web and cloud environment and support large amounts of 3D GIS data, and 

therefore make ideal candidates to be tested in this study. 

1.4. Potential Applications 

The lack of academic information on recent innovations in web GIS data structures and 

server technology is the core motivation of this study. Advances in 3D data structures are 

shifting 3D GIS into the web and the cloud and therefore 3D Tiles and i3s are the datasets which 

are focused on in this study. More optimized web-based 3D data structures implement more 

efficient use of resources than large point cloud files, which have been an industry standard 3D 

GIS data format for many years. Due to their support of i3s and 3D Tiles, Cesium JS, Esri 

ArcGIS Enterprise Portal, and Hexagon Geospatial Luciad RIA are used as the exploitation 

systems to test performance and capabilities in this study. Integrated web and cloud GIS systems 

appears to provide the computing environment and data formats necessary to stream massive 3D 
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GIS datasets which are difficult to work with in traditional desktop GIS software. Quantitative 

analysis of the performance of these exploitation systems provides valuable information on the 

capabilities that can be expected from each web GIS visualization engine. The results of this 

study illustrate foundational information on the performance and limitations of these web 

systems. The results of this study indicate that each system is likely suitable for different types of 

work and that there are many areas for further development and growth for 3D web GIS. It 

appears that these systems excel in rendering large 3D datasets, but additional tools and 

development is necessary to produce more analytic capabilities within these systems.  
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Chapter 2 Related Works 

Strategies for managing 3D geographic data are becoming more common, largely due to the 

changes in 3D GIS data structures, and the increasing accessibility of cloud technologies. The 

following chapter will outline the computing and data structure issues with 3D data in desktop 

GIS environments and the ongoing progression of 3D web GIS to more optimized web systems 

and data structures. Researchers have successfully exploited 3D GIS data in desktop systems, but 

applications and studies are sparse due to the complexity of working with point cloud data. The 

computing challenges created by large point cloud files have incentivized investigations of new 

3D geographic data structures and new methods to manage and analyze 3D geographic data. The 

most common solutions have been adaptations to 3D geographic data structures and integration 

of 3D geographic data with either high performance or cloud computing platforms. Thus, in 

addition to discussion of recent advances in 3D geographic data structures, this chapter will also 

examine the current ‘state of the art’ in 3D web GIS systems. 

2.1. Introduction to Point Clouds 

The industry standard las file format commonly used to store 3D light detection and 

ranging (lidar) and photogrammetric data, is a binary ‘point cloud’ data structure that is difficult 

to analyze. Point clouds often contain 3D geographic and attribute information of millions of 

points within a single binary file. Even with the reduction of data size from storing the data in a 

compressed binary format, point cloud files still end up being very large. Because point cloud 

data is stored in binary, it is also a complex data structure to render, and therefore requires 

specialized software to interpret the data. The large size and complexity of point cloud files has 

created many issues in storage, processing, visualization, and exploitation of the underlying 3D 

point data (Auer and Zipf 2018; Richter and Döllner 2014). The point cloud file has served as the 
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prevalent data structure for high fidelity 3D geographic data but possesses evident limitations 

due to its large size. 

Although point cloud data has posed computing challenges, researchers have been able to 

successfully exploit point cloud data. Point cloud data has received attention from a diverse 

community of researchers, with interests in both the urban and the natural environment. Lidar 

point cloud data has several acquisition methods including aerial and mobile scanners (Esri 

n.d.c). Aerial lidar has proven to be an effective source of data to create realistic high-resolution 

3D city models which are advancing initiatives to virtualize large cities (Jayaraj and Ramiya 

2018). In a similar respect, the high resolution provided by 3D lidar point cloud data, has 

progressed the field of autonomous vehicle study. Mobile lidar is becoming an industry standard 

implementation in autonomous vehicle design and researchers have analyzed mobile lidar point 

cloud data to improve data registration, and object identification and segmentation algorithms for 

autonomous vehicles (Daraeihajitooei 2018; Józsa et al. 2013). Within the natural environment, 

scientists have shown that point cloud data can be used to predict wetland locations using known 

locations of wetlands and to accurately determine individual tree sizes (Leonard et al. 2012; 

Liew et al. 2018;). Ostensibly, point cloud data has served as an enabler to many areas of 

ongoing science including studies in 3D cities, autonomous vehicles, and ecology. 

Point cloud data continues to push research forward in many novel and innovative 

applications. A groundbreaking study involving an international team of Maya archaeologists has 

pushed the boundaries of point cloud study by using lidar point cloud data as a reconnaissance 

asset to identify and map 61,480 new Maya structures which were previously unknown (Canuto 

et al. 2018).  The new capabilities provided by lidar to map entire areas in 3D is completely 

transforming the field of Maya archaeology. The use of lidar as a reconnaissance asset is further 
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demonstrated by researchers at the Massachusetts Institute of Technology Lincoln Laboratory 

who have used aerial lidar data in several disaster episodes including Hurricanes Harvey, Irma, 

Maria, and Florence to assist emergency management teams. The high resolution of the sensor 

permits mapping of flood zones, and identification of infrastructure damage and debris which has 

been used by the Federal Emergency Management Agency to inform emergency response and 

recovery operations (Foy 2018; National Research Council 2014). Point cloud data is continually 

evolving capabilities and practices of research teams and institutions that acquire it. 

2.2. Point Cloud Data Limitations 

Because of the complexity of point cloud data management, there is only a small number 

of standard tools available in most available GIS software. In comparison to the number of 

standard tools and capabilities available for manipulation and analysis of 2D geographic data, the 

tools and capabilities available for 3D geographic data are very minimum. Most of the tools 

available for 3D data include basic data management and manipulation tools for 3D geographic 

data such as tiling, changing coordinate systems, conversion to another data type, etc. In this 

regard, many researchers create tools to extend the capabilities and applications of point cloud 

data. For example, immersion specialists have integrated point clouds into virtual reality space 

and built a basic toolset for interacting with the data. The technology the researchers created is 

largely developmental and has not been implemented on large scales (Kreylos et al. 2008). 

Another group of researchers’ setup a sophisticated point cloud server, which can be used to 

quickly compress, query, and extract points from point cloud data. Although the server is 

configured with open frameworks and detailed methodology, the server appears difficult to 

replicate (Cura et al. 2017). Point cloud data is even being collected by indoor photogrammetry 

for modeling of indoor building environments. There is adequate software available for 
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reconstruction of indoor environments into 3D point clouds, but like other areas of point cloud 

science, there are only a few tools available to work with the collected data (Wang and Cho 

2015). Many researchers are able to work with point cloud data and have created tools to provide 

new capabilities to point cloud data; however, most of these tools require extensive setup and 

configuration. 

    Another potential limitation of point cloud data is the presence or quality of attribute 

information available in the dataset. One of the defining factors of the point cloud data structure 

is the presence of classification fields, which can be used to annotate points as a number of 

different features. Since point clouds have largely been acquired by aerial collection, many of the 

classification fields involve features relating to the external environment. Examples of point 

cloud class fields include vegetation, buildings, water, rail, roads, tower, bridge, etc. (Esri n.d.b). 

In the wetland study, researchers were able to classify their point cloud data by using the known 

vector boundaries of wetland areas (Leonard et al. 2012). Many applications of point cloud data 

depend on classification information to be useful, and often classification must be derived using 

information from another dataset or with an automated ground or surface classification 

algorithm. Without additional GIS data to inform classification methods, automated filtering 

algorithms for point clouds are relatively lackluster (Meng et al. 2010). Because accurate 

classification of point cloud data relies on large amounts of corresponding data, it can be difficult 

to create attribute information for unclassified point clouds. The classification information of 

point cloud data is important to research, and the ability to exploit point cloud data is largely 

dependent on the classification information available in a point cloud or that can be attributed to 

the point cloud through other data sources. Thus, the quality of classification information defines 

the extent to which the point cloud data can be analyzed for scientific phenomenon.  
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The utility of point cloud data and enhanced point cloud analytical tools is apparent in 

multiple disciplines including archaeology, ecology, city planning, and hazard management. 

Volumetric data from point clouds is assisting hazard workers with determining volume of fill 

needed to fix roads damaged by disasters and locations of flood zones and infrastructure damage. 

Archaeology researchers are able to virtualize sites, and even discover new ruins with point 

cloud data. Ecologists can precisely measure individual tree size and volume, and city planners 

can investigate city environments including existing and potential buildings, inside and outside. 

Overall, there are vast applications for point cloud data, despite its limitations in computing, 

software tools, and overall data quality. Researchers have been able to work around the 

limitations of point cloud data to create novel systems and methods which have advanced 

research in several disciplines.  

2.3. Data Structures 

To alleviate the computational issues of point cloud data, researchers have investigated 

new ways to structure 3D geographic data. There have been relatively two different approaches 

towards restructuring point cloud data, data aggregation and conversion to ‘level of detail’ data 

structure. Data aggregation results in an overall reduction of data precision. ‘Voxelization’ is a 

common form of point cloud aggregation that bins points into larger 3D ‘voxel’ structures (Marx 

et al. 2019). Although voxelization is an aggregative approach that reduces resolution of the 

underlying data, it greatly reduces the overhead computational cost and makes distributed 

computing much simpler (Boerner et al. 2017). In applications where the data resolution can be 

reduced, voxelization presents a powerful method which simplifies the point cloud data structure 

and greatly reduces the amount of computational resources required to render the dataset.  
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Another approach to make point cloud data more accessible is the level of detail data 

structure. The level of detail data structure is an optimized tree structure which tiles data into 

small tiles which are accessible in a hierarchical tree. The data structure results in a composition 

of files which only render at run time dependent on the level of zoom in the client system. This 

data structure essentially partitions the point cloud into smaller elements and only renders 

portions of the point cloud that correspond with the map region and level of zoom at which the 

user is at. The level of detail data structure approach allows the resolution of the point cloud to 

be maintained, while greatly reducing the overhead computational cost of rendering (Richter and 

Döllner 2010). Implementing a tree-like data structure greatly reduces the overhead cost of 

rendering point clouds, but due to its file-based structure is often not compatible across other 

systems (Cura et al. 2017). Transforming point cloud data into a tree like level of detail structure 

is a sophisticated process that optimizes point cloud rendering speed; however, lacks 

interoperability and integration across systems due to its file-based structure. 

In efforts to increase rendering capabilities of point cloud data researchers have 

investigated new data structures for point cloud data. Both voxels and level of detail data 

structures provide ways to reduce the computational costs of point cloud data but present some 

new minor technical concerns. 

2.4. Shift to High Performance and Cloud Computing 

Another approach to mitigate computational cost of point cloud data is through high-

performance or distributed cloud computing. High-performance computing utilizes clusters of 

computation resources to store and analyze data. Due to the increased computing capacity 

rendered by additional computational nodes, high-performance computing provides solutions for 

much quicker data analysis than on a desktop system. When compared to desktop capabilities, 
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high-performance distributed file systems have shown much greater performance for analyzing 

large stacks of lidar point cloud data (Guan et al. 2013). Several studies attest to the large 

increase in performance and capabilities that can be achieved by using distributing computing 

clusters to work with point cloud data. In one study, researchers compared 3D data management 

performance in PostGre SQL and in Hadoop, running off a distributed file system, and Hadoop 

greatly out-performed PostGre SQL (Li 2016). Another group of researchers was able to create a 

point cloud change detection system in a distributed computing environment using Apache Spark 

to manage the large stacks of 3D data (Liu et al. 2016). The ability of the researchers to setup a 

change detection system on a distributed cluster shows that distributed computing enables the 

ability to work with several large 3D datasets. On most desktop-based systems, point cloud study 

is limited to single scene visualization and exploitation, and therefore distributed computing 

provides the ability to extend potential point cloud applications by permitting investigation of 

multiple point cloud datasets. High-performance distributed computing environments provides 

the ability to greatly speed up management and analysis of point cloud data. 

Distributed computing provides a quicker way to analyze point cloud data, but this 

requires the possession of a high-performance computing cluster. For some developers, this may 

not be an issue, but distributed computing is largely only accessible to those working with large 

amounts of computational resources. Cloud based infrastructure is a derivative of distributed 

computing; however, cloud services can be bought, and users do not need to possess the physical 

computing environment. Cloud computing platforms have been compared to high performance 

computing clusters, and it has been demonstrated that due to communication latency between 

servers in the virtualized cloud environment that high performance computing is quicker 

(Jackson et al. 2010). Even though cloud environments are not as quick as high-performance 
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computing environments, they offer a distributed computing environment which is much more 

efficient and scalable than desktop GIS. Cloud services provide many developers a bridge into 

distributed computing by providing the ability to run high-performance services without owning 

any actual infrastructure.  

2.5. Shift to Web GIS and 3D Data Streaming 

Due to the interoperability of web-based technology and its ability to work with cloud 

technologies, web is becoming a more common platform for GIS tools and applications. Web 

applications utilize JavaScript which is an interpreted language that can generally be read by any 

browser. The standard interpretation and data transfer protocols of web makes data transferable 

and easily accessible across systems in web environments. Web systems can also link to cloud 

databases and therefore the increased performance and capabilities brought from cloud platforms 

can be integrated into web applications. The integration of web clients and back end databases 

provides a robust and powerful computing environment, which is rapidly being developed to 

increase 3D GIS capabilities. Recently, the OGC accepted Cesium 3D Tiles as a community 

standard for streaming massive 3D geographic datasets across the web (Open Geospatial 

Consortium 2019). Cesium 3D Tiles are a web based json level of detail data structure which are 

optimized for use in the cloud to stream massive 3D geographic datasets through the web 

(Cesium 2015). The introduction of 3D tiles, and other web streaming data types in the OGC is 

signaling a shift from desktop GIS to web GIS for intensive 3D GIS applications. 

    There are several commercial and open source web GIS platforms which can be used to ingest 

and work with 3D geographic data, but there is little study on the capabilities of these systems. 

There are two important studies performed which attempt to analyze performance and 

capabilities differences between web GIS data types, and web GIS front end frameworks. In the 
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first study, researchers conducted a capabilities assessment between GeoJSON, JSON, CZML, 

and Cesium 3D Tiles data types for their use in service of four-dimensional (4D) data. The 

researchers point out that Cesium 3D Tiles are the only data structure capable of rendering large 

amounts of data, but it does not support temporal visualization or attribute selection. The other 

data types provide some enhanced abilities in low data volumes, but in terms of high data 

volume, Cesium 3D Tiles were the only data type that did not crash or cause out of memory 

issues in testing (Murshed et al. 2018). The other relevant study indicates that there is no existing 

research comparing 3D web GIS frameworks, and then attempts to perform a qualitative study 

on available 3D web GIS frameworks. The researchers compare Cesium JS, three.js, and 

X3DOM.js. In the analysis it is evident that three.js and X3DOM.js can be used to render 3D 

geospatial data, but due to its extensive geospatial support and data management that Cesium JS 

is the most well supported platform for 3D geospatial web application development (Krämer and 

Gutbell 2015). This study illuminates the issue that there is little academic study pertaining to 

capabilities and performance of 3D web GIS frameworks. These two studies provide preliminary 

analysis of 3D web GIS data types and frameworks. 

    3D web GIS is a rapidly evolving area of industry and there is a general lack of academic 

literature evaluating the new data types and GIS systems that are being developed for the web 

GIS environment. Cesium 3D Tiles has recently been adopted by the OGC as the standard for 

streaming massive 3D geographic data. Esri i3c is also an OGC standard, but a web standard for 

‘large amounts of heterogeneously distributed 3D geographic information (OGC n.d.).’ The 

OGC standard definitions for Cesium 3D Tiles and Esri i3s are fairly similar, and there are no 

studies which implement and compare these two data types. With a lack of technical information 

about the rendering speeds and visualization results of these data types, it is unclear what 
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similarities and differences there are between these 3D data types. There is also a fundamental 

lack of academic literature comparing the web services frameworks used to visualize these data 

structures. In ‘A Case Study on 3D geospatial applications in the web using state of the art 

webGL frameworks,’ the researchers do a good job of comparing the available open source 

frameworks for 3D web GIS (i.e. Cesium Js, three.js, and X3DOM.js), but the researchers 

neglect to analyze commercial web GIS platforms. There are several commercial providers 

which provide essentially fully operational web GIS systems, including Esri and Hexagon 

Geospatial. In the realm of 3D geographic data, there is a large amount of research on desktop 

computing and distributed computing, but relatively no comparative research on the software 

systems and data structures which are currently being made available for 3D web GIS. 

    The following literature analysis reveals the current novel ways in which point cloud data is 

being investigated and highlights the shift from desktop GIS to integrated web and cloud GIS. 

Scientists have found many successes in exploiting point cloud data, and hopefully the 

applications for 3D GIS only continue to grow as web and cloud GIS becomes more accessible. 

Distributed and cloud computing show evident rendering improvements for point cloud data. 

These platforms provide access to more computing power, which enables investigation of 

multiple scenes. The use of the cloud, especially, is propelling 3D geographic study and shifting 

it into the web. The web is a highly interoperable environment which can be backed up on the 

server side by the computing power of cloud databases. With the ability to link front end clients 

with back end cloud databases, the power of distributed computing can be made accessible to 

larger communities of developers. Because of the increasing accessibility to integrated web and 

cloud systems, 3D data structures have shifted from large point clouds into adaptive web-based 

level of detail structures which permit streaming of massive 3D datasets inside web clients. The 
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data types and standards for streaming 3D geographic data are fairly new and therefore there is 

little study on the data types themselves or the platforms that render and visualize this data. It is 

therefore the intent of this study to provide a formal comparative analysis of web-based 3D GIS 

data structures and 3D web GIS systems in order to provide a foundational performance and 

capabilities assessment of these new technologies.  
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Chapter 3 Data and Methods 

In this study, a comparative analysis of both open source and commercial 3D web streaming data 

types, and 3D web GIS systems was conducted. In the study, web service frameworks which 

include Cesium JS, Hexagon Geospatial Luciad RIA, and Esri ArcGIS Enterprise Portal were 

setup on a cloud-based Amazon EC2 instance. Two different 3D data types, Esri i3s and Cesium 

3D Tiles, were processed from las data and stored on the same EC2 instance in increasing total 

tileset sizes. Datasets were processed into five different sizes (1GB, 5GB, 10GB, 25GB, and 

50GB) to test server for performance differences for low and high data load. Two different 

source dataset types, a high-resolution photogrammetric dataset and a lower resolution lidar 

dataset were processed into Esri i3s and Cesium 3D Tiles in order to observer difference in 

server performance that may be due to spatial resolution of underlying data. Each server was 

tested for general performance with metrics collected through GtMetrix based on each sites 

ability to serve a 1GB tile dataset. The figures generated by GtMetrix include Google page score, 

YSlow Score, Fully Loaded Time, and the network waterfall which contains every http request, 

resource loaded, and resource load time performed by the client. GtMetrix is a commonly used 

software suite to analyze website performance in industry. Additionally, each 3D dataset, for 

every overall tileset size (1GB, 5GB, 10GB, 25GB, and 50GB) were assessed for resource 

memory and loading time in each exploitation system at three different zoom levels. These tests 

ostensibly illustrate performance difference of each server with different dataset sizes and zoom 

levels. Qualitative user experience information is also briefly discussed based on the visual 

outputs that were produced from each system. The performance tests provide rigorous metrics on 

the speed and resources used by each server, and the qualitative results briefly discuss the 
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visualization differences between the server frameworks. These tests and user experience results 

highlight the essential differences between the server frameworks and data types. 

3.1. Project Design 

To standardize the computing environment for each 3D web GIS exploitation system, all 

the exploitation systems were setup on the same Amazon EC2 cloud instance. It has been noted 

in the literature, that due to changing nature of the hardware underneath the virtualized cloud 

instance, and minor changes in local network bandwidth that cloud performance will influx small 

changes over its use (Yue et al. 2013). To consider the changes brought about by the shifting 

hardware underneath the virtualized cloud instance and for minor changes in internet bandwidth, 

each test was repeated five times and then mean of each test was taken to standardize the 

changes brought about by the shifting virtualized hardware and internet bandwidth. With the 

tests run multiple times, and with all the server software and data on the same virtual system, the 

computing environment of the study can be considered controlled (Yue et al. 2013). 

All the data was stored on the EC2 instance along with the software to run each 3D web 

GIS exploitation system. Figure 1 depicts the architectural setup of the computing environment. 

The source data within the EC2 virtual machine consisted of point cloud data of 1GB, 5GB, 

10GB, 25GB, and 50GB from each source dataset (the singular lidar dataset, and the singular 

photogrammetric datasets). Each of these datasets were converted into Esri i3s and Cesium 3D 

Tiles and these processed datasets were also stored on the EC2 virtual machine. Thus, for every 

source dataset, there is a Cesium 3D tileset and an Esri i3c dataset which had been processed 

from the source dataset. Thus, there were a total of 10 source point cloud datasets stored on the 

server, and 20 processed datasets, 10 in i3s, and 10 in 3D Tiles. A dedicated storage volume of 

700GB was attached to the EC2 virtual machine so that all the datasets could fit on the server. 
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Placing both the server software and all the data within the same virtual machine allowed access 

of all datasets to client applications and also a controlled environment for running the server. 

 

Figure 1. Cloud Environment Configuration 

The tests performed in this study are shaped from previous cloud computing studies. In a 

comparison between Map-Reduce and SQL for large data, researchers first tested a singular 

average query time between the two databases, and then they scaled up the number of queries 

and analyzed the differences in query load time (Jiang et al. 2009). Another study used open 

source software to measure CPU performance, and network bandwidth during cloud transactions 

(Huang et al. 2013) This study implements a hybrid approach. Each dataset was first tested on its 

overall rendering and resource load time for a singular dataset like in the map reduce study. 

Other metrics were gathered through GtMetrix of this singular transaction. GtMetrix is being 

used instead of CPU performance and bandwidth since this is a web application instead of a 
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desktop application. GtMetrix provides performance metrics which report on the performance of 

web servers. These metrics include Google Page Score, Yahoo YSlow Score, Fully Loaded 

Time, and the network waterfall of http request and resources used. Fully Loaded Time and the 

network waterfall are metrics that can be quantitatively analyzed, while Google Page Score and 

Yahoo YSlow score are more arbitrary figures that rate the overall performance of the website. 

All these metrics provided a baseline mark of the overall server performance. Next, several tests 

were run on each exploitation system, for each dataset, where the data set increased in size from 

1GB to 50 GB. In these tests, resource loading time and resource memory was recorded. These 

tests were also performed at three different zoom levels: the extent of the dataset, at a medium 

zoom level, and at a high zoom level.  Esri i3s was tested in Esri ArcGIS Enterprise Portal, and 

Cesium 3D Tiles were tested within Cesium JS and Hexagon Geospatial Luciad RIA. It is 

important to run the singular transaction test in addition to the increasing load test (with the 

increase in dataset size), because some systems are noted to perform slower with small datasets 

and quicker comparatively with larger data (Jiang et al. 2009). The test of multiple zoom levels 

was also added to account for changes based on the zoom level. It was identified in preliminary 

testing that at the full extent only the tileset metadata, and a very low-resolution version of the 

whole dataset is loaded, while at higher zooms more intricate tiles that reflect the point data are 

loaded into the application. Because different types of tiles are loaded at different zoom levels, it 

is important to test each server at various zoom levels. These tests provide an evaluation of the 

overall server performance for a singular transaction, for increasing data size, for variant zoom 

level, and for variant spatial resolution of data. 

In addition to the quantitative results, a basic qualitative discussion of the visualizations 

produced by each system was also recorded. The quantitative results provide empirical evidence 
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of the speed of each framework; however, this discounts the visualization product which is 

output for display in each system. Therefore, it is useful to also include the basic data 

visualizations within each platform to illustrate core difference in data rendering. 

3.2. Datasets 

Two different datasets, a dataset collected with lidar, and a dataset collected through 

photogrammetry were selected as source data for the study to understand effects of spatial 

resolution on the performance of the exploitation systems. Photogrammetry is collected through 

matching of point from high-resolution imagery and usually possesses a much more dense and 

high spatial resolution than lidar data. Lidar data is collected more systematically, and points are 

sparser than in photogrammetric datasets. Table 1 shows information of the spatial resolution and 

extents of the datasets utilized in this study. 

Table 1: Testing Datasets 

Dataset Spatial Resolution Spatial Extent Points Source 

USC Photogrammetry Data 4.50cm 0.37sqkm 2,337,671,969 USC ICT 

NOAA Lidar Data 42.00cm 1,657.42 sqkm 1,920,458,367 NOAA 

 

Datasets have been acquired from two different sources. The NOAA dataset was acquired 

from the NOAA data viewer (OCM 2015). This is an open source repository of las data provided 

by NOAA in order to analyze damage to New York City after Hurricane Sandy. To download 

the tiled las NOAA data, a text file with all the file urls was acquired from the NOAA site, and 

then a python script was created to fetch and download the las files found at each url into a folder 

on the local system. The USC photogrammetric dataset was acquired from the USC Institute of 

Creative Technologies. This dataset was re-projected by USC ICT staff from a local coordinate 
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system into a geographic coordinate system and then copied from a remote server onto an 

external hard drive. Since the study employs testing the dataset at 1GB, 5GB, 10GB, 25GB, and 

50GB sizes, each dataset was portioned into several different memory chunks that reflected the 

1GB,5GB, 10GB, 25GB, and 50GB memory chunks that were needed to perform the increasing 

data load test. 

Each dataset had to undergo processing into i3s and Cesium 3D Tiles format for ingestion 

and analysis within the web environment. The general data pre-processing chain is outlined 

below in Figure 2. Esri ArcGIS Enterprise ships out with an installation of ArcGIS Pro. 

 

Figure 2: Data Conversion Methods 

Within ArcGIS Pro is a tool which converts a folder of las files into an Esri i3s data type. Each 

dataset was converted from las to i3s using the ArcGIS Pro Create Point Cloud Scene Layer 

Package Tool. Once each dataset was processed into i3s, the Share Package Tool was used in 

ArcGIS Pro to upload the package to the ArcGIS Enterprise Portal which was setup on the EC2 
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instance. Configuration of the software and datastore for ArcGIS Enterprise Portal will be 

delineated in the next section. Once the package was uploaded into the Portal ecosystem, the 

Publish tool on the Portal website was used to publish the 3D package as a scene service. It is 

necessary to publish the Portal object as a hosted scene service so that it can be used as an 

operational layer in web applications. Without publishing the layer as a hosted scene service, the 

layer is only available for downloading in the Portal ecosystem. In this step, it was noted that 

publication of a 50GB scene service layers consistently resulted in errors, and therefore no 

testing was able to be conducted for i3s at tileset size of 50GB. The error is not specific but 

suggests that Portal does not support tilesets of this size.  

In order to create 3D tile services, Hexagon Geospatial Luciad Fusion was used to 

process all las datasets into 3D Tiles and to setup a datastore to serve them to the Hexagon 

Geospatial Luciad RIA and Cesium JS applications that were developed on the server. Luciad 

Fusion is a server software which possess processing and service capabilities. Cesium Ion can 

also be used to process las files into 3D Tiles, but Luciad Fusion was simply chosen since a 

license was already acquired with Luciad RIA for the Luciad Fusion software. With Luciad 

Fusion, all datasets were able to be processed into 3D Tiles and to be made accessible via http 

requests to the client applications. All data processing was performed on the EC2 instance. All 

processed data services for both i3s and 3D Tiles were setup on the EC2 instance. Using ArcGIS 

Enterprise Portal, services were setup for the i3s datasets, and with Luciad Fusion services were 

setup for the 3D Tile data. 

3.3. Virtual Server Design 

All server software for the exploitation systems was setup on an Amazon EC2 on demand 

m4.2xlarge instance. The m4.2xlarge EC2 possess 8 CPU cores, 32 GB of memory, and high 
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network performance. It possesses more than enough computing power necessary to run a server 

capable of handling large 3D tile datasets. The m4 is a memory intensive server. This server 

instance was chosen since it has both high compute and memory resources. No GPU is needed 

on the server side since all 3D graphics are handled on the client device. The server needs high 

memory and CPU to run most effectively. A 700GB dedicated storage volume was added to host 

all source data, processed data, and software on the same virtual instance. The dedicated volume 

is a solid-state drive which also helps boost performance since there are no moving parts in the 

hard drive. 

 To setup the EC2 with ArcGIS Enterprise both Esri Cloud Builder and Amazon AWS 

Cloud Formation tools were attempted for instantiation of an Amazon EC2 with an Amazon 

Machine Image that contained Esri ArcGIS Enterprise; however, both tools failed. Because of 

this, creation of the EC2 was a very manual process. The EC2 builder within the Amazon AWS 

Management Console was used to select an m4.2xlarge EC2 instance with a 700GB storage 

volume. Next, an Esri ArcGIS Enterprise Amazon Machine Image was selected as the operating 

system to load onto the EC2 instance. Both Cesium JS and Hexagon Geospatial are libraries that 

can be downloaded and setup on the EC2; however, an Esri ArcGIS Enterprise Amazon Machine 

Image is necessary to setup ArcGIS Enterprise Portal since it is baked into the operating system 

of the EC2 instance. After the Esri Enterprise Amazon Machine Image was chosen, the EC2 

production process started. 

 After the EC2 had been initialized, several configurations were required to setup the 

machine to act as a web server. The domain kevinmercythesis.com was purchased form Google 

Domains, and then using sslforfree was setup for secured http traffic. Setting up a secured http 

(https) connection was required to obtain a ssl certification for the domain 
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kevinmercythesis.com. A ssl cert is required to run Esri ArcGIS Enterprise, and therefore the 

domain purchase and generation of a ssl cert to allow https traffic on the domain was required to 

setup Esri ArcGIS Enterprise. Once the ssl certification was obtained, web site forwarding was 

setup on the domain to point the domain site to the Amazon EC2 instance. To do this, an elastic 

IP address was created for the virtual amazon instance so that it would always possess the same 

public IP address. The elastic IP address created within the Amazon AWS Management Console 

was set as the forwarding address for the kevinmercythesis.com domain. Next, using an Amazon 

Cloud Formation template provided by Esri, a Virtual Private Cloud was created within for the 

EC2 Elastic IP address and attached to it. The IP address within the virtualized hardware does 

not match its external IP address and therefore a Virtual Private Cloud and an Elastic IP Address 

are required to allow proper trafficking of web applications from the EC2 instance to a secured 

external domain. 

Next, a new user was created to allow the ArcGIS Enterprise Entity to make changes to 

the Amazon EC2 instance, and several changes were implemented within the Windows Firewall 

and the Amazon EC2 Security Groups to allow access of specific ports within the EC2 system to 

the outside web. With the purchase of a domain and a ssl cert, a webpage domain was setup 

which could receive web traffic from the EC2 instance. To correctly point the EC2 instance to 

the purchased domain, first creation of an elastic IP was initiated. Then a virtual private cloud 

was created and attached to the elastic IP address. Lastly, ports were opened within the windows 

firewall manage and within the Amazon security group for the EC2 instance to allow access of 

certain ports to the external web. These configurations established the frameworks necessary to 

run the web applications outside of the server and to begin setup of Esri ArcGIS Enterprise on 

the EC2 instance.  
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3.4. Comparative Program Architecture 

Each 3D GIS exploitation platform possesses different software architectures and system 

configurations. Both Esri ArcGIS Enterprise and Hexagon Geospatial Luciad RIA are 

commercial software suites that must be licensed for use, while Cesium JS is an open source 

software package which requires no licensing and can be used simply by importing it as a 

content delivery network into a JavaScript web application. Because it is open source and 

requires no licensing, Cesium JS is the lightest and simplest to configure for use. Cesium JS can 

simply be imported within a JavaScript application by including these two lines of code within 

an html file. The two lines of JavaScript code import the main Cesium “library” and 

<script src="https://cesium.com/downloads/cesiumjs/releases/1.66/Build/Cesium/Cesium.js"></scr
ipt> 

<link href="https://cesium.com/downloads/cesiumjs/releases/1.66/Build/Cesium/Widgets/widgets.c
ss" rel="stylesheet"> 

Code 1: Cesium Import Script (Cesium n.d.) 

the main library for the Cesium.js widgets. These two files are minified (or compressed) 

JavaScript files which handle API calls for all Cesium.js elements (i.e. the virtual globe, data 

sources on the globe, and all functions that are available in the API to programmatically interact 

with the globe module). Because of its library compression, and small number of library imports 

(only two modules), Cesium.js is a lightweight addition to a JavaScript application. Due to their 

licensing requirements and more extensive use of libraries, Esri ArcGIS Enterprise and Hexagon 

Geospatial Luciad RIA are more bulky applications than CesiumJS. 

 Esri ArcGIS Enterprise and Hexagon Geospatial Luciad RIA are both commercial 

software suites, but possess vastly different setups. Esri ArcGIS Enterprise requires a specialized 

Amazon Machine Image, where Esri ArcGIS Enterprise resources are basically baked into the 

operating system of the cloud instance. This is a vastly different configuration then either 
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Cesium JS or Hexagon Geospatial. Cesium JS and Hexagon Geospatial can be run in either 

cloud-based or non-cloud-based environments. Esri ArcGIS Enterprise requires a cloud-based 

virtual machine, and gets directly installed as core components to the cloud virtual machine. Esri 

ArcGIS Enterprise uses an array of applications to setup an environment which possesses a front-

end website, a backend GIS server, and various other GIS data processing or management 

applications. Esri ArcGIS Enterprise is a sophisticated software suite that is geared towards 

hosting enterprise GIS resources for 2D and 3D data. In addition to providing the ability to host 

web services for 2D and 3D data, Esri ArcGIS Enterprise can also be used to create web 

applications, host web applications, and perform various geoprocessing computations. Esri 

ArcGIS Enterprise is a full-scale web GIS implementation. Because it implements many more 

functions and capabilities than Cesium JS or Hexagon Geospatial RIA, it is a much larger 

installation than either of these exploitation frameworks. 

 Hexagon Geospatial Luciad RIA, is essential a composition of JavaScript libraries which 

can be used for 2D and 3D web GIS. The focus of Hexagon Geospatial Luciad RIA is more on 

3D data, but it possesses libraries for serving and interacting with 2D data sources as well. The 

Hexagon Geospatial Luciad RIA suite is also more of a developmental suite than a production 

software like Esri ArcGIS Enterprise. Hexagon Geospatial Luciad RIA comes packaged as a 

collection of JavaScript libraries. Creating a Luciad RIA application involves addition of core 

libraries which have been created for many general GIS functions, and then customization of 

those functions to create an application which meets the needs of the user. Examples of basic 

library functions include creating a view with a 3D virtual globe, adding a 2D raster to the globe, 

adding a 3D tileset to the globe, etc. These basic functions can essentially be imported into a new 

application and then customized to serve the user requirements. Hexagon Geospatial Luciad RIA 
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resembles the architecture of Cesium JS more, but is much bulkier since it is a collection of 

libraries and not a singular library like Cesium JS. 

 Esri ArcGIS Enterprise is a collection of applications which function harmoniously to 

setup data service, hosting, and complex geoprocessing operations on a cloud instance. Cesium 

JS is a content delivery network, a single library, that allows users to create and interact with 

virtual globes and 3D data. And Hexagon Geospatial Luciad RIA is a composition of many 

JavaScript libraries which can be configured for working with 2D or 3D geospatial data and web 

maps or virtual globe interfaces. 

3.5. Esri ArcGIS Enterprise Configuration 

To instantiate an Amazon EC2 instance with the Esri ArcGIS Enterprise, Esri Cloud 

Formation templates were used. The “Create an Amazon VPC” cloud formation template and 

“Single-machine deployment” from the Esri Cloud Formation Templates site were used for 

Portal creation (Esri n.d.4). Originally the Esri Cloud Builder tool was attempted to create the 

EC2 with the ArcGIS AMI, but after a couple failed attempts, the Cloud Formation templates 

were used instead. With the “Create an Amazon VPC,” a virtual private cloud was successfully 

created. There were issues experienced in using the “Single-machine deployment” template, in 

the first attempt. To get around the errors from the “Single-machine deployment” template, the 

rollback resources on error option in Cloud Formation was turned off and then the template was 

rerun. Once the Cloud Formation template reached an error in the second trial, the created EC2 

instance was still available and used to finish software setup. The EC2 was then logged into and 

configurations to the ArcGIS Server Site, ArcGIS web adopters, ArcGIS Portal, and data store 

wizard were conducted manually to finish installation and configuration of Esri ArcGIS 

Enterprise.  
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While the Cloud Formation Template ran, several resources and configurations for 

ArcGIS Enterprise were configured successfully. An Amazon EC2 with the Esri Enterprise 

software and a 700GB solid state drive was created successfully. The Portal software was also 

licensed correctly, and the ssl cert for https trafficking was installed. A virtual private cloud and 

elastic IP address were also created, allowing access of the EC2’s public IP address to http, and 

https traffic.  Manuel modifications required to finish setup included configuration of the ArcGIS 

Server site, ArcGIS web adaptors, ArcGIS Portal site, and the ArcGIS data store wizard, which 

are described below.  

After instantiation and modification of elastic IP address, virtual private cloud, security 

groups, and users, several manual processes were conducted to properly setup ArcGIS Server 

and ArcGIS Enterprise so that ArcGIS Enterprise Portal could be used to create hosted feature 

services on the Amazon EC2 instance. First, the ArcGIS Server Authentication Manager was run 

in order to license ArcGIS Server. During this process a user called siteadmin was created which 

had permissions over ArcGIS Server resources on the Amazon EC2 instance. During Amazon 

Machine Image Instantiation, a user was already created for Esri ArcGIS Enterprise Portal. Next 

the Esri Web Adapter for Portal and Esri Web Adapter for Server were used to register the 

ArcGIS Enterprise Portal to the site https://kevinmercytheis.com/portal and the ArcGIS Server to 

https://kevinmercythesis.com/server. These web adopters also co-registered the ArcGIS Server 

and ArcGIS Portal software so that ArcGIS Server could be set as the hosting site for the Esri 

ArcGIS Portal. To initiate this change, the ArcGIS server site was selected as the federated 

server for the ArcGIS Portal site, and then this server was selected as the hosting server for the 

ArcGIS Portal. These changes were required in order to enable publishing hosted feature layers 

with the Portal site. Without federating the ArcGIS Server site and setting it as the hosting 

https://kevinmercytheis.com/portal
https://kevinmercythesis.com/server
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server, there is no way to publish scene services as operational web layers. The ArcGIS Server 

site and the ArcGIS Portal site were setup on the same instance so that the computing 

environment for the hosted Esri i3s layers would be the same computing environment as the 

Luciad Fusion 3D Tiles. After federation of the ArcGIS Server site, and the ArcGIS Portal site, 

the ArcGIS Portal could be accessed and used to publish operational scene service layers using 

the Amazon EC2 as the hosting server. 

Once the Amazon EC2 instance was properly configured with ArcGIS Server and 

ArcGIS Portal sites, all the processed i3s data were published using the ArcGIS Portal site. As 

indicated earlier, the Portal site had issues publishing the 50GB scene layer packages and 

therefore they were omitted from testing. 

Lastly, a web application was created out of port 3002 on the Amazon EC2 instance in 

order to create an application which served the 3D scene service layers for testing. Using node.js 

and npm, a basic npm express web server was used to open up port 3002 and attach the Esri 

JavaScript code to it. Node.js with npm had to be installed on the Amazon EC2 to run the web 

server out of port 3002. Using the Esri JavaScript API, an index.html file was created which 

created a web application that pulls an Esri globe and plots a scene service layer on it. Additional 

programming within the application was used through the study to customize the zoom level of 

the application and the dataset that was hosted from it. Throughout testing the zoom level of the 

application, and the rendered Scene Service Layer were modified to test the application for all 

specified tests. For each test conducted, the resource memory and the resource loading time were 

tested five times and the average of the tests was stored as the result. 
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3.6. Hexagon Geospatial Luciad Fusion Setup 

Hexagon Geospatial Luciad Fusion license and software were obtained from a remote 

server. Setup of Hexagon Geospatial Luciad Fusion was much more straightforward than Esri 

ArcGIS Server and Portal. Once the Fusion files were transferred to the Amazon EC2 instance, a 

setup program was run which setup Fusion on the EC2 instance. Once the software was installed, 

the Fusion application was initiated. The Fusion application opened a console, a management 

portal, and started web services of the software on port 8081. A Fusion admin user was created 

and then processing of las data into 3D Tiles began. To process the 3D tiles, the tiles to process 

were selected and then a tool popped up to initiate creation of a 3D Tile service from those 

source tile. A service title, abstract, and data type were required for input. In this dialog, the data 

type is set as OGC 3D Tiles and a name was chosen for each service. Upon clicking the submit 

button, the software begins processing the source data into 3D Tiles, and when it is finished it 

sets up an entry point url from port 8081 which can be used by web applications to access the tile 

data. All source datasets were processed into 3D tiles in this fashion. The Luciad Fusion software 

created 3D tilesets of each dataset, and service urls on the Amazon EC2 that could be used by the 

Cesium JS and Luciad RIA web applications. 

3.7. Hexagon Geospatial Luciad RIA 

Similarly, to Hexagon Geospatial Luciad Fusion, license files and software were obtained 

from a remote server and then brought onto the EC2 instance. Setup of Luciad RIA was fairly 

simple. Most of the technical work in setting up Luciad RIA was in the programming of a 

JavaScript application to have Luciad RIA create a virtual globe and then display a 3D tile 

dataset. To license the Luciad RIA API, the license file is simply placed in a specific directory 

within the Luciad RIA file structure. Luciad RIA comes with a sample Jetty server that can be 
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used to run Luciad applications out of port 8072. The sample server was used to run the RIA web 

application. 

In order to create a Luciad RIA application, extensive customization from Luciad RIA 

sample applications was performed to create an application that simply created a 3D web GL 

virtual globe and then displayed a 3D tileset on it. A Luciad RIA sample application called 

firstsample was copied and renamed. Then its contents were modified to create a basic virtual 

globe interface. In order to generate a 3D tileset within the globe, another sample application 

called Data Types was used to program the 3D Tile display on the virtual globe. The Data Types 

application had a component called OGCLoader which was code to load a 3D tileset from a url 

and colorize it. This module was added into the ongoing Luciad RIA application. Another 

function, called addLayer was also taken from the Data Type application and then placed in the 

ongoing Luciad RIA application. With the OGCLoader module and the addLayer function, the 

ongoing Luciad RIA application could now be used to create a virtual globe, add a 3D tileset to 

it, and zoom to that location. Code was later found in order to customize zoom and navigation of 

the virtual globe. With all these components, a Luciad RIA application was created that could be 

used to zoom to different levels of a 3D tileset on a virtual globe. This application was then run 

from port 8072 using the Luciad RIA simple server and used to run all the performance tests. 

3.8. Cesium JS Setup 

Cesium JS is available as a content delivery network in JavaScript since it is open source. 

Therefore, no licensing is required to create a Cesium JS application. A basic program was 

created which retrieves the Cesium JS content delivery network and then creates a basic virtual 

globe interface which can be used to visualize 3D Tiles. A Cesium ion account is required in 

order to add a basemap and layers to the virtual globe. A Cesium ion account is free and provides 
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a developer token that must be placed within the Cesium JS Application for it to run correctly. 

An ion account was created and then the key was placed in the application along with the code to 

create a Cesium virtual globe, and to add a tileset to it. With these customizations, a web 

application developed with Cesium JS was synthesized that could render a virtual globe and 3D 

tilesets. Additional programming could be added in to change the zoom level of the viewer as 

well. Similarly to the Esri ArcGIS Application that was setup with node.js and npm express to 

run out of port 3002, an npm express server was developed to run the Cesium web application 

out of port 3001 on the Amazon EC2 instance. 

3.9. Testing and Results 

After setting up all the software, three web applications were created which could be used 

to test each exploitation system. All Esri i3s datasets were published within the Esri ArcGIS 

Portal and available as scene services (i.e. 

https://kevinmercythesis.com/server/rest/services/Hosted/USC_TwentyFive_SLPK_Hosted/Scen

eServer). All 3D Tiles data had been processed with Luciad Fusion and made available as 

services out of port 8081 ( i.e. http://kevinmercythesis.com:8081/ogc/tiles/noaa5gb/tileset.json). 

The Esri JavaScript API testing application was running out of 

http://kevinmercythesis.com:3002. The Cesium JS Application was running out of 

http://kevinmercythesis.com:3001. The Luciad RIA application was running out of 

http://kevinmercythesis.com:8072/web/samples/webapp/index.html. With all the i3s and 3D tile 

services running, and the testing web application setup on accessible ports, testing was able to be 

conducted for each server framework. First, each web application was configured to host a 1GB 

dataset and then the url of the application was placed in the GtMetrix tool in order to run tests for 

Google Page Score, Yahoo YSlow, Total Page Load, and to synthesize the network waterfall. 

https://kevinmercythesis.com/server/rest/services/Hosted/USC_TwentyFive_SLPK_Hosted/SceneServer
https://kevinmercythesis.com/server/rest/services/Hosted/USC_TwentyFive_SLPK_Hosted/SceneServer
http://kevinmercythesis.com:8081/ogc/tiles/noaa5gb/tileset.json
http://kevinmercythesis.com:3002/
http://kevinmercythesis.com:3001/
http://kevinmercythesis.com:8072/web/samples/webapp/index.html
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The reports from GtMetrix from each web application with a 1GB dataset were saved, and then 

testing of resource loading time and memory for variant dataset, tileset size, and zoom level were 

performed. For each exploitation system, first the photogrammetric dataset was tested at each 

memory size (1GB, 5GB, 10GB, 25GB, and 50GB) and at three zoom levels (dataset extent, 

medium zoom level, and high zoom level). For every test, the test was performed five times, due 

to the virtualization of the cloud hardware, and then the mean of the test was stored in a master 

sheet. Once all tests had been performed for the photogrammetric dataset, the same workflow 

was followed for the lidar dataset. While the testing was ongoing screenshots were captured of 

the visualizations that were rendered by each dataset at various zoom levels.  
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Chapter 4 Results 

Reports from GtMetrix and from the increasing data load tests demonstrate that generally 

Cesium JS and Esri ArcGIS Enterprise Portal are quicker and use less memory than Hexagon 

Geospatial Luciad RIA. From simply the GtMetrix results it is difficult to determine if Cesium 

JS or Esri ArcGIS Enterprise are quicker. Cesium JS obtains a higher Yahoo YSlow score then 

Esri ArcGIS Enterprise; however, Esri ArcGIS Enterprise has a higher Google Page Score than 

Cesium JS. From the loading tests, it appears that for both datasets Cesium JS had the lowest 

loading time, but with larger datasets the difference in load time between Cesium JS and Esri 

ArcGIS Enterprise are basically negligible. For the most part, Cesium JS always uses the least 

memory, but at high zoom levels with lidar data Esri ArcGIS Enterprise used the least memory, 

but its load time was still slightly slower. In all cases, Hexagon Geospatial Luciad RIA was the 

slowest and uses the most memory. Although Hexagon Geospatial Luciad RIA was much slower 

and used more memory, it had the most photorealistic visualization compared to the other 

platforms. Even though Cesium JS for the most part was always quickest and lightest, it also 

rendered with much less visual detail than Hexagon Geospatial Luciad RIA, and Esri ArcGIS 

Enterprise. It does not appear overall tile set size influenced performance, as resource loading 

time and memory were generally consistent across tilesets. Resource loading time and memory 

used appeared more dependent on zoom level. At higher zoom levels, generally more time and 

resources were used. Dataset spatial resolution also did not seem to effect performance. Loading 

time and resources used were fairly consistent between the high-resolution photogrammetric 

dataset and the lidar dataset. 
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4.1. GtMetrix Results 

Results from GtMetrix show that Cesium JS and Esri ArcGIS Enterprise server 

frameworks were generally quicker and used less memory than Hexagon Geospatial Luciad RIA. 

Figures 3 and 4 depict the results from GtMetrix for Cesium JS and Esri ArcGIS Enterprise. 

 

Figure 3: Cesium JS GtMetrix Results 
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Figure 4: Esri ArcGIS Enterprise GtMetrix Results 

 GtMetrix ranked Cesium JS with a higher YSlow score of 83% compared to a 73% score 

for Esri ArcGIS Enterprise, but ArcGIS Enterprise was ranked with a higher Google Page Speed 

Score of 66% compared to a 62% for Cesium JS. The Google Page Speed scores were similar. 

Empirically, Cesium JS had a higher fully loaded time of 10.2s, and total page size of 2.15, but a 

much smaller number of requests. Cesium JS only made 54 http requests compared to 107 for 

Esri ArcGIS Enterprise. Both the applications lacked browser caching, which is one of the 

critical issues with their generally low Google Page Score rankings. In their most minimal setup, 

Cesium JS and Esri ArcGIS Enterprise appear to perform very similar in overall ranked 

performance. Fully loaded time and page size from GtMetix suggest Esri ArcGIS Enterprise to 

be smaller and more lightweight then Cesium JS. Both servers appear to be slow overall though. 
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Implementing more browser side caching for both of these servers would likely greatly lower 

their load time and page size, and thereby increase their Google Page Score and Yahoo YSlow 

scores. 

 The GtMetrix results for Hexagon Geospatial Luciad RIA show it to be slower and using 

much more memory then Cesium JS or Esri ArcGIS Enterprise. Figure 5 shows the results of the 

Hexagon Geospatial Luciad RIA GtMetrix results. 

 

Figure 5: Hexagon Geospatial Luciad RIA GtMetrix Results 

 GtMetrix ranked Hexagon Geospatial Luciad RIA with a 0% Google Page Score and a 

56% for Yahoo YSlow. The Google Page Score was 0% due to the lack of compression utilized 

with the application. Both Cesium JS and Esri ArcGIS Enterprise implement compression. The 

lack of compression may be because Hexagon Geospatial Luciad RIA is largely a development 



43 

 

library and the application is more developmental facing than production facing. Nonetheless, it 

appears that most of the extra time and resources used by Luciad RIA came from its large 

amount of library loading. 699 http request are made, which were mostly components within the 

Luciad RIA development library. The large overhead to call RIA components is likely one of the 

reasons Luciad RIA took longer to load and used more memory. Luciad RIA used significantly 

more memory, 12.3 MB, compared to 2.15 MB for Cesium JS, and 1.11 MB for Esri ArcGIS 

Enterprise, and more time 29.5 s compared to 10.2 s for Cesium JS, and 4.1 s for Esri ArcGIS 

Enterprise. Luciad RIA also did not implement browser caching. All three of these exploitation 

systems may have better performance with implementation of browser side caching. 

4.2. Increasing Loading Tests 

4.2.1. Resource Loading Time for Photogrammetric Data 

For both photogrammetric datasets and the lidar datasets, it appears Cesium JS performed 

the quickest, and Hexagon Geospatial Luciad the slowest. At large tileset sizes, the difference 

between Cesium JS and Esri ArcGIS Enterprise is almost negligible. Figures 6 – 8 display the 

results from the resource loading time tests for photogrammetric data. 
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Figure 6: Resource Loading Time for Photogrammetric Dataset at Full Extent 

 

Figure 7: Resource Loading Time for Photogrammetric Dataset at Medium Zoom 
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Figure 8: Resource Loading Time for Photogrammetric Dataset at High Zoom 

 At the full extent of the dataset, there is an anomalous result for the 1GB 

photogrammetric test of the Hexagon Geospatial Luciad RIA software. Since this data point is at 

the full extent, the quick load time may be due to a smaller number of library requests since tiles 

are not necessarily being in at this extent. Further testing is required though. Nonetheless, 

besides this data point, Hexagon Geospatial Luciad RIA consistently takes more than 10s to load 

resource at all zoom levels for all tileset sizes. Cesium JS generally loaded in just under 2s for all 

tileset sizes at all zoom levels. And Esri ArcGIS Enterprise took just above 2s seconds for all 

tilesets at all zoom levels. The resource time between Cesium JS and Esri ArcGIS Enterprise 

appear very similar. 

4.2.2. Resource Memory for Photogrammetric Data 

 Tests for resource memory show that resource memory increased as zoom level 

increased. Hexagon Geospatial Luciad RIA was still slowest, and Cesium JS still used slightly 

less memory than Esri ArcGIS Enterprise. Tileset size did not seem to impact the resource sizes. 
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Figure 8 – 10 depict results of Resource Memory at the three zoom levels for the 

photogrammetric dataset. 

 

Figure 9: Resource Memory for Photogrammetric Dataset at Full Extent 

 

Figure 10: Resource Memory for Photogrammetric Dataset at Medium Zoom 
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Figure 11: Resource Memory for Photogrammetric Dataset at High Zoom 

 As zoom increased Esri ArcGIS Enterprise and Cesium JS became very similar. At low 

level zoom, Cesium JS used very little resources, but as the zoom increased the memory used 

between Cesium JS and Esri ArcGIS Enterprise almost leveled out. Cesium JS still used the least 

memory; however, there is almost no difference in memory used between Cesium JS and Esri 

ArcGIS Enterprise at high zoom levels. 

 It is very curious the large rise in memory used for Hexagon Geospatial at the Medium 

Zoom levels across tileset size, since generally at the other zoom levels there is less variation in 

resources used across tileset size. The trend may arise much quickly in this zoom level compared 

to the other zoom levels, in that the location of the zoom may be in proximity to tiles which are 

existent in only the larger tilesets; therefore, causing a large increase in client memory usage. 

The trend may not be apparent at the full extent since generally a low resolution of the extent is 

loaded in the full extent of the dataset, and maybe the location in the high zoom loads tiles which 

are existent in each of the tilesets, and therefore no additional tiles are required to be loaded as 
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the tileset size increases. The reason for the trend requires further testing in order to be 

completely understood.  

4.2.3. Resource Loading Time for Lidar Data 

Resource loading time for lidar data at three zoom levels for each tileset size appeared 

very similar to the results from the photogrammetric data. Resource loading times were still very 

similar, around 10s for Hexagon Geospatial Luciad RIA, 2s for Cesium JS, and around 2s for 

Esri ArcGIS Enterprise. 

 

Figure 12: Resource Loading Time for Lidar Dataset at Full Extent 
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Figure 13: Resource Loading Time for Lidar Dataset at Medium Zoom 

 

Figure 14: Resource Loading Time for Lidar Dataset at High Zoom 
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Esri ArcGIS Enterprise actually used less memory (about 10 MB less) (Figure 14; Figure 15). It 

is curious though, despite using less memory, in overall load time Cesium JS was still quicker. 

 

Figure 15: Resource Memory for Lidar Dataset at Full Extent 

 

Figure 16: Resource Memory for Lidar Dataset at Medium Zoom 
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Figure 17: Resource Memory for Lidar Dataset at High Zoom 

4.3. Qualitative Results 

Although Cesium JS in most all cases had the quickest loading time and least memory 

used. It also produced the least detail in visualization compared to the outputs from Esri ArcGIS 

Enterprise and Hexagon Geospatial Luciad RIA. Figure 16 shows a screenshot of the Cesium JS  

 

Figure 18: Cesium JS Zoomed in to Photogrammetric Dataset 
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system at a high zoom level. The points are so sparse that it is difficult to visually see much that 

is going on within the scene. In terms of loading time and memory Cesium JS appears more 

performant, but in its performance is a reduction in visualization within the client-side 

visualization application. 

 Hexagon Geospatial Luciad RIA performed much slower and used much more resources 

than the other platforms. However, its detail was much greater and more photorealistic than the 

other two exploitation systems. Figure 17 illustrates the photorealistic detail of the Luciad RIA  

 

Figure 19: Photorealistic Output from Hexagon Geospatial Luciad RIA Application 

platform. The larger use of resources is likely attributed to larger time spent generating color on 

top of the 3D tile points, and in loading the extensive libraries that Luciad RIA implements. 

 Despite showing slightly quicker load times and slightly less memory in the loading test, 

Esri ArcGIS Enterprise implemented much more visual detail than Cesium JS. Figure 18 depicts  
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Figure 20: Detail difference in Cesium JS and Esri ArcGIS Enterprise. Cesium JS (top), ArcGIS 

Enterprise (bottom) 

the visual differences between Cesium JS and Esri ArcGIS Enterprise in rendering the same 

scene. In a quantitative sense Cesium JS was slightly quicker than Esri ArcGIS Enterprise, but in 

a visual sense Esri ArcGIS Enterprise provided more detail. 
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Chapter 5 Discussions and Conclusions 

 The design of this study was constructed in order to understand the manners in which 

performance changes for adaptive web-based 3D geographic data structures at increasing tile set 

size, and zoom level. Adaptive web-based 3D geographic data structures implement a tile-based 

structure which changes resources loaded in the client application based on zoom level of the 

client device. Most past research with 3D data has been focused in the desktop environment with 

large point cloud files, with limited study on 3D web GIS capabilities and exploitation systems. 

3D Web GIS capabilities are definitively growing, and this can be seen by the creation of 

adaptive web-based 3D geographic data structures. It was anticipated in the design of this study 

that overall tileset size would have a large impact on the performance of the exploitation 

systems; however, due to the tile structure of the datasets, there were very small changes in 

performance based on tileset size. It is likely performance does not vary greatly across tileset 

sizes since the browser is never fully loading the tileset and only specific tiles based on zoom 

level of the client. The biggest differences were observed instead with zoom level, and 

exploitation framework. The results from this study provide interesting insights into the behavior 

of adaptive web-based tile data structures and overall 3D web GIS capabilities. These web based 

systems and data types appear ideal for single scene visualization of very large 3D datasets, but 

much more extensive programming and customization is required to produce more analytic 

functionalities from these systems. 

5.1. Performance Results  

5.1.1. Qualitative and Quantitative Differences 

 The quantitative and qualitative results demonstrate general performance and 

visualization differences between each of the exploitation systems for loading various zoom 
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levels of the tiled data. The performance results indicate that each system is likely suitable for 

different types of applications. Although the rendering time of Hexagon Geospatial Luciad RIA 

was slower compared to the other applications, it would be suitable for use in applications where 

single scene visualization is the most important element of the application. With its slow 

rendering time, it is likely unsuitable for applications which are more complex and analytic in 

nature. In these cases, Cesium JS and Esri ArcGIS Enterprise are more suitable choices for use. 

Both Esri ArcGIS Enterprise and Cesium JS had quick loading times. Cesium JS may be 

ostensibly the quickest framework from the loading tests; however, in cases where speed and 

detail of data matter, Esri ArcGIS Enterprise would be a more likely choice. 

 This study has investigated performance of loading various tileset sizes at various zoom 

levels within three different exploitation systems. The exploitation systems used in the study are 

web-based frameworks which are generally lightweight, and were configured with the most basic 

settings for this study. To optimize these systems, it would be necessary to implement browser 

side caching for each of the frameworks. As shown by GtMetrix, each of these platforms could 

benefit from browser side caching. Additionally, by using the base installment of these 

applications, single scene visualization was the core service investigated. With these exploitation 

systems setups, it would be interesting to build more complex analytic operations, or tools which 

integrate data from more than one scene. This study is limited in its performance analysis of only 

single scene load and visualization within each of the exploitation systems. 

 Each test was performed at increasing memory sizes, since it was thought that large 

tilesets would be much less performant in the systems than smaller tilesets. Within almost every 

test, there was very little change in performance across overall tileset size. These results indicate 

that the web and using level of detail data structures may be a quick way to perform analytic 



56 

 

transactions. The i3s and 3D tile datasets have demonstrated to be very adaptive within each of 

the exploitation systems and further research would be useful to investigate the performance of 

more analytical transactions with these data structures. 

5.1.2. Relations of Server Architecture and Performance Results 

It appears that most performance differences between the three frameworks can be 

explained from the differences in library imports. In the GtMetrix results, Hexagon Geospatial 

Luciad RIA was ranked lowest in Google Page Score and Yahoo YSlow score due to its lack of 

compression and JavaScript miniaturization (Figure 5). In Cesium JS, the application is imported 

as a content delivery network which is a collection of two minified JavaScript files. These two 

compressed files load all the contents of the Cesium library into the application. Cesium JS also 

only creates 54 http requests to load in all components of the web page, while Hexagon 

Geospatial Luciad RIA create 699 http requests (Figure 3; Figure 5). Most of these additional 

http requests in Hexagon Geospatial Luciad RIA are calls to libraries within the Hexagon 

Geospatial Luciad RIA folder. The high number of library calls is responsible for the additional 

loading time and resources used by Hexagon Geospatial Luciad RIA. These libraries are also not 

compressed or minified like the Cesium JS files that are loaded in. Because Hexagon Geospatial 

Luciad RIA imports a vast number of libraries, it requires additional load time and resources 

compared to Cesium JS and Esri ArcGIS Enterprise.  

Cesium JS and Esri ArcGIS Enterprise possess similar performance, with Cesium slightly 

outperforming Esri ArcGIS Enterprise. This performance difference can also be seen in the 

number of http requests and level of compression between the two servers. Cesium JS is 100% 

compressed, while Esri ArcGIS Enterprise scripts are only 75% compressed. Esri ArcGIS 

Enterprise created 107 http requests compared to only 54 by Cesium JS (Figure 3; Figure 4). 
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Cesium JS is the most compressed and lightweight library and therefore it is generally quickest 

of the three exploitation systems.  

It should be noted that the number of http requests and therefore number of libraries 

imported appears to relate directly to the loading time and resources used in the page, but that 

capabilities within the page also shift greatly depending on library content available in the 

webpage. Hexagon Geospatial Luciad RIA may load slowest, and use the most library content, 

but it possesses the most photorealistic rendering of the data. The high-quality rendering of the 

data, can be traced to use of more extensive and sophisticated 3D color ramp libraries used by 

Hexagon Geospatial Luciad RIA to create a unique color map of the 3D Tile data. Similarly, Esri 

ArcGIS Enterprise performed slightly slower than Cesium JS, but its ability to color points was 

more advanced than Cesium JS. It is likely that additional library calls in Esri ArcGIS Enterprise 

provided more scripts for tile color rendering. Cesium JS may be the quickest, but it has the 

smallest number of library imports, and therefore the most minimal functionality available for 

coloration and display.  

5.2. Summary 

 There are several useful ways in which researchers have been able to work with 3D point 

cloud data, and it is likely that development of more complex data structures and web GIS 

systems would assist in creation of more standardized tools and analytic capabilities for 3D point 

cloud data investigation. As documented, 3D geographic data has been useful by archaeologists 

to find new Maya sites, and by scientists to extract precise measurements of tree size and canopy 

(Canuto et al. 2018, Liew et al 2018). 3D data possesses more analytic value than 2D data since 

it can be used to provide volumetric properties that are not available with strictly 2D data. The 

issue with 3D data is its bulky data structure size. This makes it difficult to render and work with 
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at large scales. To combat this, researchers have investigated data structure and computing 

resource changes. It has been demonstrated that adaptive level of detail data structures greatly 

increases performance of 3D data, and that through use of larger computing resources, either 

through the cloud or distributing computing clusters, that tools can be setup to analyze large 

point cloud scenes and also more than one point cloud scenes (Cura et al. 2017; Liu et al. 2016). 

Fairly recently new data structure standards have been adopted by the OGC for streaming 3D 

geographic data which are more adaptive, and web based. Although distributed computing 

provides the quickest platform, the integrated web and cloud environment provides the most 

accessible, scalable, and interoperable environment. Cloud resources can be purchased and easily 

scaled up to handle more and more data. Because of this, relatively new tools and systems have 

been constructed which are web-based and use adaptive tile-based data structures. 

 There has been limited study in the 3D web GIS environment. A group of researchers 

tested several different web data types and found 3D tiles the only capable candidate to render 

very large datasets. They note that visualization of large datasets was only possible with 3D tiles, 

but that it had limited analytic functionality (Murshed et al. 2018). With the adoption of 3D Tiles 

and i3s as OGC community standards for streaming massive datasets in the web it is important to 

understand their potential uses, and limitations. As it stands, there is limited study on the 

performance and capabilities of these data types, or even the platforms which can be used in the 

web to render them. This study was designed using an integrated web and cloud environment 

(due to its scalability for large datasets) and with focus on 3D web-based data types in hopes of 

identifying capabilities and understanding performance and limitations of these data structures. 

In order to test i3s and Cesium 3D Tiles in the web, Esri ArcGIS Enterprise, Hexagon Geospatial 

Luciad RIA, and Cesium JS were selected as server frameworks to render and serve 3D datasets. 
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Esri ArcGIS Enterprise was selected since it can host i3s data. The Esri ArcGIS Portal 

atmosphere can be used to publish 3D scene servers and to run 3D web applications which serve 

3D data. Cesium JS was selected since it natively uses 3D Tiles and can also be used to create 

web applications which serve 3D Tile data. Hexagon Geospatial Luciad RIA was also selected 

since it can also be used to visualize 3D Tiles. These three systems were mainly chosen for their 

support of adaptive web-based data structures and their ability to author web applications which 

are capable of serving large 3D datasets in an integrated web and cloud environment.  

 It was the original intention to observe unique differences within the i3s and 3D Tile data 

structures, but each exploitation system only supported one type of 3D data, and therefore direct 

performance comparison between i3s and 3D Tiles was unable to be understood. The resulting 

tests provided useful information on the performances of the three exploitation systems tested, 

their limitations in 3D GIS capabilities, and some interesting insights in their potential 

applications with further development.   

 Although these results are useful, they still only provide a limited view of 3D web GIS 

performance. This study essentially quantified performance for single scene visualization of 3D 

geographic data with several different exploitation systems. Further research would continue to 

investigate performance using multiple scenes at once and for more analytical operations. It 

appears that in terms of rendering, using a browser and adaptive web-based data structures 

provide the foundation to visualize almost limitless amounts of tile data. The only ecosystem 

which could not render 50GB was Esri ArcGIS Enterprise Portal. Both Cesium JS and Hexagon 

Geospatial Luciad RIA were able to render scenes with 50GB tileset sizes, and with almost no 

performance changes compared to tilesets of smaller sizes. Although capabilities for analysis in 

the integrated web and cloud environment are minimal currently, this environment provides an 
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ideal computing environment which is scalable and interoperable across devices. The next step in 

optimizing and enhancing 3D GIS capabilities would be further development of 3D tools using 

these data structures and exploitation systems. Each exploitation system tested is relatively 

lightweight and capable of visualization, but there are very little additional tools or capabilities 

available for 3D GIS in the web at this point. 

5.3. Moving Past Single Scene Visualization 

There is certainty many potential applications for extending the capacity of 3D 

geographic data analysis in the web, but the creation of a more standardized web toolset is 

necessary. As shown in the results of this study, performance for at least visualization of 3D 

point cloud data in the web is fairly standard across increasing tileset sizes since the web 

applications works with adaptive level of detail data structures. Even the spatial resolution of the 

data appears to have minimal impact on the performance of rendering tiles. Both the high-

resolution photogrammetric data and lidar data possessed similar loading times. The integrated 

cloud and web environment with implementation of adaptive tile data structures appears to 

provide an environment could be scaled up for more complex computing operations. 

These exploitation systems currently support mainly single scene visualization of 3D 

datasets, but it would be possible to develop on top of them to create more complex tools. As 

previously described in Chapter 2, researchers have already developed some novel cloud-based 

systems which permit visualization, editing, and classification of point cloud data (Cura et al. 

2017). The issue is that these are carefully constructed systems with unique customizations that 

are built for a specific purpose. The research conducted by Cura et al. 2017 demonstrates that 

adaptive 3D data structures can be used to make quick and scalable analytic tools for point 

clouds, but these tools have not been developed at scale (Cura et al. 2017). The three exploitation 
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systems investigated in this study all provide a way to visualize adaptive data and could maybe 

be used as entry points to develop more complex tools and capabilities. 

The most useful applications for 3D geographic data study appear to include change 

detection and change monitoring applications. Satellite imagery is used frequently in change 

detection study, and with integration of 3D change detection, many industries including natural 

resources, defense, and local government could benefit. 3D data provides the ability to quantify 

volumetric change which cannot be done with 2D imagery. With the correct computing 

environment, change detection algorithms could be setup and ran with 3D data. It would be 

interesting to develop these algorithms within the integrated web and cloud environment and to 

compare their performance within the exploitation systems. The integrated web and cloud 

environment appears to be a good place that change detection for 3D data could be setup, the 

tools just do not exist to do it now. Visualization appears to be the most useful 3D GIS capability 

in the web. Although 3D visualization is useful, 3D web GIS would greatly increase in 

capabilities with development of more analytic tools, like 3D change detection. 

Visualization is an important component to geographic data investigation, but often it is 

the production of analytical products which are the most useful capabilities to GIS systems. 

Desktop GIS systems possess many analytical tools which help researchers analyze and process 

various forms of vector and raster 2D data. With the exploitation frameworks provided by 

Cesium JS, Esri ArcGIS Enterprise, and Hexagon Geospatial Luciad RIA, 3D visualization of 

massive datasets is the primary capability, but more complex applications could be setup to 

perform change detection operations or other analytic transactions. Testing the performance of 

change detection for large point cloud datasets in the integrated cloud and web environment 

would be a very useful piece of research. 
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The next step in further evaluating 3D web GIS capabilities would be through the 

comparison of large data processing and analytic operations in the browser implementing both 

tiled data and point cloud data. Tiling data appears to assist the browser in being able to visualize 

large datasets since the dataset is tiled and only specific tiles are rendered based on zoom level. It 

would be interesting to test 3D data processing in the integrated cloud and web environment in 

addition to just basic visualization. There are desktop programming languages like C++ that will 

always function more efficiently than interpreted languages like JavaScript that are used in the 

web environment. However, in the integrated web and cloud environment programs may have 

access to more hardware resources and parallelization that may make processing and analysis in 

the web more efficient than in the desktop environment. It would therefore be interesting to note 

if analysis in the cloud is quicker with adaptive datasets or the source dataset since the 

transaction is performed on every item within the dataset. Further study of 3D GIS systems 

should integrate processing and analysis of 3D data with variant data structures using an 

integrated web and cloud environment. 

5.4. Limitations and Areas of Future Research 

A large difficulty in this study was setting up a computing environment that could be 

used to empirically test all datasets against each other. In order to standardize the computing 

environment all software and data was setup on an Amazon EC2 instance. One of research areas 

that was attempted to be covered which was missed was the direct comparison in performance 

between Esri i3s and Cesium 3D Tiles. None of the exploitation systems took in both Esri i3s 

and Cesium Tiles and therefore the two data structures could not be empirically analyzed against 

each other. The server frameworks Esri ArcGIS Enterprise Portal and Cesium JS in their 

rendering of a 3D dataset can be compared, but the objective difference due to data structure 
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cannot be extracted. It appears from observing the two server frameworks that the data structures 

act very similar. The overall performance between Esri ArcGIS Enterprise and Cesium JS was 

generally similar across all tests. Hopefully one of the platforms will eventually support multiple 

data types, but as it stands now each platform implements a unique data 3D structure. In the 

future, if any of the systems were made capable to ingest both data types, these data types could 

be empirically compared. Therefore, the results from this study largely indicate differences in 

how each exploitation system handles that data structure, but not the data structure itself. 

Additionally, each server framework was setup in its most basic distribution. In further 

iterations of this research, it would be necessary to learn more about each framework and to 

implement more advanced coloring and caching options. In these tests the default behavior was 

implemented. Each server can be reprogrammed to display different color panels, and it is likely 

that browser and server-side caching could be enabled. These configurations would also likely 

impact performance and in future study would be areas that should be tested. 

In order to truly understand performance, a more complex zoom test would also be 

performed. In this study, three different zoom levels were selected, but it would be interesting to 

test a wider array of zoom levels at each ‘pixel’ within the dataset. Performing a more robust test 

would illustrate at which zoom levels and spatial resolutions the performance changes. 

Performing the loading tests at multiple zoom levels provided valuable feedback in how to the 

browser handles the tiled datasets at different zoom levels, but these tests could be made more 

complex and improved to understand even more about the server.  

5.5. Insights 

The results from this study ultimately reveal the capabilities available in current 3D web 

GIS technology. From the quantitative and qualitative results, it appears each platform is suitable 
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for a different range of applications. For example, Hexagon Geospatial Luciad RIA would 

probably be best in an application where researchers show a 3D model, like an archaeological 

site, since it is most photorealistic out of the exploitation systems. Cesium JS or Esri ArcGIS 

Enterprise Portal would likely be suited for more complex analytical operations like change 

detection analysis where high fidelity visualization is not primary concern. The performance of 

these platforms are very similar and they are likely both suitable for complex operations. 

These exploitation systems all show good promise of being able to effectively handle 

large datasets. They are currently limited to mostly basic single scene visualization but 

developing them with an integrated web and cloud environment may provide the ability to 

develop more complex and analytic tools for 3D GIS data. The cloud provides an accessible 

environment that is interoperable across devices and using tile-based data structures has shown 

promise in large scale visualization of 3D data. The results from this research help demonstrate 

the current capabilities and limitations of 3D web GIS, and hopefully further research will 

continue to enhance the capabilities of 3D web GIS. This research ultimately provides a snapshot 

in time of current technology, and as technology continues to develop rapidly the capabilities and 

performance of these systems will undoubtfully change. 

Much more complex analysis and tool development is required in order to further analyze 

these systems. This research provided a joint qualitative and quantitative investigations into 3D 

web GIS and it provides a valuable baseline of data in which more in depth analytical testing and 

tool development could be based off in the future. 
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