

COMPARATIVE 3D GEOGRAPHIC WEB SERVER DEVELOPMENT:

VISUALIZING POINT CLOUDS IN THE WEB

by

Kevin Mercy

A Thesis Presented to the

FACULTY OF THE USC DORNSIFE COLLEGE OF LETTERS, ARTS AND SCIENCES

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

(GEOGRAPHIC INFORMATION SCIENCE AND TECHNOLOGY)

August 2020

Copyright 2020 Kevin Mercy

ii

Acknowledgements

I would like to thank Dr. Andrew Marx and Dr. Steven Fleming for direction and advising of this

thesis. I would also like to thank my thesis committee, Dr. Swift and Dr. Chiang for their

valuable inputs and assistance in shaping the study.

iii

Table of Contents

Acknowledgements ... ii

List of Tables .. v

List of Figures .. vi

Abbreviations .. vii

Abstract .. viii

Chapter 1 Introduction .. 1

1.1. General Objective ...2

1.2. General Methodology ...2

1.3. Motivation ...6

1.4. Potential Applications ...8

Chapter 2 Related Works .. 10

2.1. Introduction to Point Clouds ...10

2.2. Point Cloud Data Limitations ...12

2.3. Data Structures ..14

2.4. Shift to High Performance and Cloud Computing ..15

2.5. Shift to Web GIS and 3D Data Streaming ..17

Chapter 3 Data and Methods... 21

3.1. Project Design ...22

3.2. Datasets ...25

3.3. Virtual Server Design ...27

3.4. Comparative Program Architecture ..30

3.5. Esri ArcGIS Enterprise Configuration ..32

3.6. Hexagon Geospatial Luciad Fusion Setup ..35

3.7. Hexagon Geospatial Luciad RIA ..35

iv

3.8. Cesium JS Setup ...36

3.9. Testing and Results ...37

Chapter 4 Results .. 39

4.1. GtMetrix Results ...40

4.2. Increasing Loading Tests ..43

4.2.1. Resource Loading Time for Photogrammetric Data ..43

4.2.2. Resource Memory for Photogrammetric Data ...45

4.2.3. Resource Loading Time for Lidar Data ...48

4.2.4. Resource Memory for Lidar Data ..49

4.3. Qualitative Results ..51

Chapter 5 Discussions and Conclusions ... 54

5.1. Performance Results ...54

5.1.1. Qualitative and Quantitative Differences ...54

5.1.2. Relations of Server Architecture and Performance Results56

5.2. Summary ...57

5.3. Moving Past Single Scene Visualization ..60

5.4. Limitations and Areas of Future Research ..62

5.5. Insights ..63

References ... 65

v

List of Tables

Table 1 Testing Datastes ... 25

vi

List of Figures

Figure 1 Cloud Environment Configuration ... 23

Figure 2 Data Conversion Methods .. 26

Figure 3 Cesium JS GtMetrix Results .. 40

Figure 4 Esri ArcGIS Enterprise GtMetrix Results .. 41

Figure 5 Hexagon Geospatial Luciad RIA GtMetrix Results ... 42

Figure 6 Resource Loading Time for Photogrammetric Dataset at Full Extent 44

Figure 7 Resource Loading Time for Photogrammetric Dataset at Medium Zoom 44

Figure 8 Resource Loading Time for Photogrammetric Dataset at High Zoom 45

Figure 9 Resource Memory for Photogrammetric Dataset at Full Extent 46

Figure 10 Resource Memory for Photogrammetric Dataset at Medium Zoom 46

Figure 11 Resource Memory for Photogrammetric Dataset at High Zoom 47

Figure 12 Resource Loading Time for Lidar Dataset at Full Extent .. 48

Figure 13 Resource Loading Time for Lidar Dataset at Medium Zoom 49

Figure 14 Resource Loading Time for Lidar Dataset at High Zoom .. 49

Figure 15 Resource Memory for Lidar Dataset at Full Extent ... 50

Figure 16 Resource Memory for Lidar Dataset at Medium Zoom ... 50

Figure 17 Resource Memory for Lidar Dataset at High Zoom ... 51

Figure 18 Cesium JS Zoomed in to Photogrammetric Dataset ... 51

Figure 19 Photorealistic Output from Hexagon Geospatial Luciad RIA Application 52

Figure 20 Detail difference in Cesium JS and Esri ArcGIS Enterprise .. 53

vii

Abbreviations

API Application Programming Interface

EC2 Elastic Compute Cloud

GB Gigabyte

GIS Geographic Information System

ICT Institute of Creative Technologies

Lidar Light detection and ranging

MB Megabyte

NOAA National Oceanic and Atmospheric Administration

OGC Open Geospatial Consortium

QML Query Markup Language

S3 Simple Storage Solution

UI User Interface

USC University of Southern California

2D Two-Dimensional

3D Three-Dimensional

4D Four-Dimensional

viii

Abstract

GIS Capabilities are rapidly expanding into the web and cloud environments, but there is little

research on the capabilities and performance of 3D web GIS exploitation systems. To evaluate

current 3D GIS capabilities and performance within the web, Esri ArcGIS Enterprise Portal,

Cesium JS, and Hexagon Geospatial Luciad RIA were all configured on a cloud-based Amazon

EC2 instance to host and serve 3D tile datasets that implement adaptive tiled data structures.

Using two different source point cloud datasets, a high-resolution photogrammetric dataset, and a

lower resolution lidar dataset, resource loading time and resource memory was tested within each

system with increasing overall tileset sizes and with three different levels of zoom. The results

show that while Cesium JS is quickest, Esri ArcGIS Enterprise Portal performs similar and with

more detailed visualizations for both datasets. Hexagon Geospatial Luciad RIA performed

slower than the other two systems, but possesses the most photorealistic and detailed rendering

of the systems. Performance differences between the servers can be seen in the level of library

compression and number of libraries imported into the page. Cesium JS is generally quickest, but

most compressed and lightweight server. The larger detail and loading time in Esri ArcGIS

Enterprise and Hexagon Geospatial Luciad RIA can be traced to smaller levels of compression

and more library imports to enhance detail of 3D data rendering. Overall tileset size and spatial

resolution of data did not significantly impact performance while zoom level did significantly

impact performance. Generally, higher resolution of zoom required more resources and loading

time. Results indicated that difference visualization systems are best suited for different

applications. Cesium JS would likely be most suited for complex analytic operations, while

Hexagon Geospatial Luciad RIA would be best for detailed single scene visualization.

1

Chapter 1 Introduction

The ongoing migration to web and cloud technologies is occurring due to the larger amounts of

space, users, and interoperability between systems that is available in the cloud (Collins 2019). It

is also becoming more commonplace for companies to collect geographic data, in both imagery

space and in 3D space due to increased accessibility of unmanned aerial systems (UAS)

(Whitehead and Hugenholtz 2014). 2D data is more widely utilized and possesses good support

in desktop, cloud, and web software, while 3D data is still being adopted and integrated into each

of these software platforms. Because of the more recent availability of web and cloud-based GIS

systems, there is much less research utilizing these systems than traditional desktop GIS systems.

There is even less documentation on open source implementations of web and cloud-based GIS

systems which are more intricate to assemble due to the large amount of programming

knowledge that is required to create an open source web GIS system. The induction of open

source Cesium 3D Tiles as the standard data structure for streaming massive 3D datasets on the

web is shifting attention within the geospatial community from commercial software and

proprietary data structures to more open and accessible software and data structure formats

(Chen et al. 2018; Farkas 2017; Krämer and Gutbell 2015). As open source data formats and

software become more common, there are several options available to create web GIS systems

which can store and investigate large amounts of 3D data. This study evaluates three different

web GIS exploitation systems and provides information on their overall performance and

capabilities. The systems evaluated in this study are Esri ArcGIS Enterprise Portal, Hexagon

Geospatial Luciad RIA, and Cesium JS. Performance and capability analysis between the

different exploitation systems indicate that the level of compression used for JavaScript files, and

the amount of library content loaded most significantly impact performance between servers.

2

1.1. General Objective

This research study aims to fill in academic gaps in comparative analysis of 3D web GIS

data types and 3D web GIS platforms. The availability of large computing resources made

accessible by cloud services is permitting easy access to visualization of large 3D geographic

datasets. Previously, 3D point cloud study has been limited by the computing power of a desktop

system, but with evolving capabilities in high performance and cloud computing there are now

many evolving capabilities for 3D geographic data (Cura et al. 2017; Guan et al. 2013; Huang et

al. 2013; Li et al. 2016). Because of the interoperability of the web and its ease of integration

with cloud technologies, many 3D data structures are now being provided in more optimized

web-based tile formats. The introduction of 3D Tiles and Esri i3s marks community adoption

and use of 3D web streaming formats for 3D data; however, these data structure standards have

been implemented fairly recently and there is very little academic study providing technical

information on the potential applications, limitations, and performance of these new data types.

Additionally, there are several web GIS platforms which integrate these standards which have

not been assessed quantitatively against each other. This study analyzes performance and

capability differences between 3D GIS streaming data types and exploitation systems,

identifying how fundamental differences in how they process and visualize data are responsible

for these differences.

1.2. General Methodology

This results from this research provide performance metrics and core 3D service

capabilities for each data type and each web GIS system tested. Three different exploitation

systems were tested which include Esri ArcGIS Enterprise Portal, Hexagon Geospatial Luciad

RIA, and Cesium JS. These systems have received attention within the larger industry

3

community and are ideal systems to test due to their support of 3D GIS data. The OGC has

standardized both Esri i3s and Cesium 3D Tiles as data structure standards for large web-based

3D GIS datasets (Open Geospatial Consortium 2019; Open Geospatial Consortium n.d.). Due to

their standardization by the OGC, Cesium 3D Tiles and Esri i3s data structures were the primary

web-based data structures evaluated in the study. Both data structures are optimized for the web

and for tile-based services which attempt to enhance performance of visualization by limiting the

amount of data which is rendered on client devices based on zoom level in the virtual globe

engines. Through their use of tiling, these data structures allow client devices to work with

datasets which are very large.

To provide a controlled computing environment for gathering of performance metrics, all

the exploitation systems (Esri ArcGIS Enterprise Portal, Hexagon Geospatial Luciad RIA, and

Cesium JS) were installed and configured on a virtual Amazon Elastic Compute Cloud (EC2)

instance. All source data and processed data was stored on the virtual EC2 instance to ensure that

all server resources originated from the same computing environment. Despite its virtualization,

EC2 instances permit dedicated storage volumes to store the operating system, and data of the

EC2. A 700 GB dedicated storage volume was attached to the EC2 to keep all software and data

resources on the same data storage volume. Testing was also performed on the same client

device over a consistent network connection to limit potential error in testing. Using a controlled

server environment and client environment ensured that performance results could be directly

compared to each other.

 To understand how the exploitation systems handled different sizes of data, and different

types of data, one high-resolution photogrammetric dataset, and one lower resolution lidar

dataset were processed into Cesium 3D Tiles and Esri i3s at increasing tileset sizes. Each dataset

4

was processed into 1GB, 5GB, 10GB, 25GB, and 50GB tileset sizes to understand performance

differences of each server framework for small and large datasets. Additionally, two datasets, a

photogrammetric and a lidar dataset were used as the source datasets to understand the effect of

lower and higher spatial resolution on the performance of the server. Both source datasets were

processed into Esri i3s and Cesium 3D Tiles to observe any differences in performance that may

have derived from data structure type. Processing of data from two different collection methods

and therefore variant spatial resolution, and in two different data structures, and for five total

tileset sizes allowed gathering of metrics from each server for a variety of input data conditions.

Performance metrics were calculated in several different manners. Using GtMetrix, an

industry standard website analysis toolset, each exploitation system was evaluated for its basic

performance in loading a 3D tiled dataset of 1GB (GtMetrix). GtMetrix calculates a websiteôs

Google Page Score, Yahoo YSlow Score, Fully Loaded Time, and retrieves the network

waterfall which shows all network requests and resource loading times made by the page. The

scores from Google Page Score, and Yahoo YSlow illustrate an A-F ranking on the webpage

performance. The waterfall information provides more quantitative information from which the

Google Page Score and Yahoo YSlow are based off of. In addition to the snapshot of

performance information provided by GtMetrix, for each dataset, at each memory size, in each

exploitation system, the resource loading time and the total memory of resources used were

calculated for multiple zoom levels. These two attributes (resource loading time, and total

resource memory) can be compared across each test to understand overall performance

differences between each test. Due to the nature of tile datasets, tiles are sent to the client based

off of the zoom level in the exploitation system. Therefore, multiple zoom levels were necessary

to test in order to observe the performance metrics of each exploitation system for different sized

5

tiles. To observe effects on performance for different zoom levels, performance metrics were

calculated for the full extent of the dataset, at a medium zoom level, and at a detailed zoom level.

The results provide useful information on the overall performance, complexity, and functionality

of each system based on tileset size, zoom level, and data type.

The methodologies section will provide important setup instructions and configurations

for each server architecture which can be used as a development guide. Each software is setup in

a different way to be made accessible for use on the web. It is important to understand the

configuration of each exploitation system to further understand differences in the performances

between them. The results of this research are largely useful to developers, as well as to 3D

point cloud researchers and corporations that use 3D GIS data. In addition to providing

instructions for setting up each exploitation system in the methodology section, the results

provide the core performance metrics and essential capabilities and limitations of each system.

Additionally, some basic user experience results were also included to account for differences in

the exploitation systems that could not be quantitatively analyzed. Both user experience and

performance are important within software development since applications likely have different

standards in terms of speed and user experience. Therefore, in the results both quantitative

performance metrics and qualitive user experience results are discussed. This research is

centrally focused on the scientific research and industry developer communities to assess the

current state of 3D web service technology. Developers and scientists can utilize the architecture

guide to simply create basic 3D exploitation systems which are capable of visualization of large

3D datasets or to develop and assist progression of new tools and software for 3D geographic

data analysis. These systems are relatively light and there is little support for complex operations.

6

Building more analytic tools within these systems would help push the boundaries of 3D web

GIS capabilities.

1.3. Motivation

3D GIS datasets are becoming more common and it is important to note the capabilities

of current 3D web GIS systems. There are several options for exploitation systems which involve

commercial and open source options. The largest difference between open source and

commercial software platforms are the level of programming required to setup the system, the

amount of customization that can be programmed into the system, and the auxiliary tools that are

available. Because of the support for i3s and 3D tiles, and to have a distribution of commercial

and open source web GIS systems, Esri ArcGIS Enterprise Portal, Hexagon Geospatial Luciad

RIA, and Cesium JS were chosen as the testing systems in this study. Both Esri ArcGIS

Enterprise Portal and Hexagon Geospatial Luciad RIA are commercial options to web GIS.

Cesium JS is completely open source and available as a content delivery network. However, all

of these tools require some level or programming to be operational. Therefore, it is important to

note that managing and operating a 3D web GIS requires knowledge of JavaScript, and

HTML/CSS in order to properly configure and optimize systems.

 Esri ArcGIS Enterprise Portal is a commercial web-based GIS platform which is

completely operational out of the box and includes ability for customization with a developerôs

license (Esri n.d.a). Web applications can be created through the Portal website, or with a

JavaScript application which references layers stored within the ArcGIS Portal. Storage within

Esri ArcGIS Enterprise Portal can be managed through ArcGIS Server which allows users to

configure data stores that point to locations of either local or remote databases. Once a data store

is registered, data uploaded into the store can be served and even analyzed with some basic GIS

7

tools within their web system. Esri ArcGIS Enterprise Portal is also the only system which serves

i3s data. Due to its support of i3s, Esri ArcGIS Enterprise Portal was chosen as an exploitation

system to test. A testing application for i3s was built using data stored within the Esri ArcGIS

Enterprise Portal ecosystem, and a web application built using the Esri ArcGIS JavaScript API.

Hexagon Geospatial Luciad RIA provides a commercial web GIS software development

kit which can be used to build 3D web GIS applications. Hexagon Geospatial Luciad RIA has

minimal setup and comes packaged with a variety of different applications that can be used as

source code to build more complex applications (Hexagon Geospatial n.d.). The Hexagon

Geospatial Luciad RIA is essential a sophisticated API which can be used to build complex 2D

and 3D GIS web applications. A sample application was built using Hexagon Geospatial Luciad

RIA to serve the test tile datasets. The sample application creates a simple virtual globe which

serves the test 3D tile datasets. More complex applications could be developed with Hexagon

Geospatial Luciad RIA, but the minimal components necessary to serve a 3D dataset were used

in this study.

Open source solutions most often integrate a back-end database, which can be stored

locally or within the cloud, and a web mapping or virtual globe library to build a functional UI

(Cesium). These solutions require usually require the most extensive programming to build up to

a point where data storage and visualization are achieved. The Cesium JS library has recently

been published as a content delivery network and users can now build Cesium JS applications

with very few lines of code. Additional analytical tools can be programmed in using the Cesium

API or through pure JavaScript. In order to test Cesium JS, a testing application was created with

CesiumJS which serves 3D Tile data on a virtual globe. The application was served with a basic

node.js express server.

8

Cesium JS, Hexagon Geospatial Luciad RIA, and Esri ArcGIS Enterprise Portal have

been selected as testing platforms essentially due to their large support for 3D geographic data.

Cesium JS is an open source virtual globe library which can be turned into a 3D web application

with a small degree of JavaScript programming. As OGC has accepted Cesium 3D Tiles as a

community standard for massive streaming of 3D geographic data, Cesium JS is an

unquestionable platform to test since its native data type is 3D tiles. Hexagon Geospatial Luciad

RIA browser boasts it can render at least 100GB of Cesium 3D Tile data and with its support for

3D tiles it is an ideal software to be tested alongside Cesium JS (Coghe 2018). Esri ArcGIS

Enterprise Portal is the last software that will be tested. Developed by Esri, the commercial

leader in the GIS industry and the creator of the i3s data format, ArcGIS Enterprise Portal is

another system that must be tested. Each of these platforms can be implementable configured for

use in an integrated web and cloud environment and support large amounts of 3D GIS data, and

therefore make ideal candidates to be tested in this study.

1.4. Potential Applications

The lack of academic information on recent innovations in web GIS data structures and

server technology is the core motivation of this study. Advances in 3D data structures are

shifting 3D GIS into the web and the cloud and therefore 3D Tiles and i3s are the datasets which

are focused on in this study. More optimized web-based 3D data structures implement more

efficient use of resources than large point cloud files, which have been an industry standard 3D

GIS data format for many years. Due to their support of i3s and 3D Tiles, Cesium JS, Esri

ArcGIS Enterprise Portal, and Hexagon Geospatial Luciad RIA are used as the exploitation

systems to test performance and capabilities in this study. Integrated web and cloud GIS systems

appears to provide the computing environment and data formats necessary to stream massive 3D

9

GIS datasets which are difficult to work with in traditional desktop GIS software. Quantitative

analysis of the performance of these exploitation systems provides valuable information on the

capabilities that can be expected from each web GIS visualization engine. The results of this

study illustrate foundational information on the performance and limitations of these web

systems. The results of this study indicate that each system is likely suitable for different types of

work and that there are many areas for further development and growth for 3D web GIS. It

appears that these systems excel in rendering large 3D datasets, but additional tools and

development is necessary to produce more analytic capabilities within these systems.

10

Chapter 2 Related Works

Strategies for managing 3D geographic data are becoming more common, largely due to the

changes in 3D GIS data structures, and the increasing accessibility of cloud technologies. The

following chapter will outline the computing and data structure issues with 3D data in desktop

GIS environments and the ongoing progression of 3D web GIS to more optimized web systems

and data structures. Researchers have successfully exploited 3D GIS data in desktop systems, but

applications and studies are sparse due to the complexity of working with point cloud data. The

computing challenges created by large point cloud files have incentivized investigations of new

3D geographic data structures and new methods to manage and analyze 3D geographic data. The

most common solutions have been adaptations to 3D geographic data structures and integration

of 3D geographic data with either high performance or cloud computing platforms. Thus, in

addition to discussion of recent advances in 3D geographic data structures, this chapter will also

examine the current óstate of the artô in 3D web GIS systems.

2.1. Introduction to Point Clouds

The industry standard las file format commonly used to store 3D light detection and

ranging (lidar) and photogrammetric data, is a binary ópoint cloudô data structure that is difficult

to analyze. Point clouds often contain 3D geographic and attribute information of millions of

points within a single binary file. Even with the reduction of data size from storing the data in a

compressed binary format, point cloud files still end up being very large. Because point cloud

data is stored in binary, it is also a complex data structure to render, and therefore requires

specialized software to interpret the data. The large size and complexity of point cloud files has

created many issues in storage, processing, visualization, and exploitation of the underlying 3D

point data (Auer and Zipf 2018; Richter and Döllner 2014). The point cloud file has served as the

11

prevalent data structure for high fidelity 3D geographic data but possesses evident limitations

due to its large size.

Although point cloud data has posed computing challenges, researchers have been able to

successfully exploit point cloud data. Point cloud data has received attention from a diverse

community of researchers, with interests in both the urban and the natural environment. Lidar

point cloud data has several acquisition methods including aerial and mobile scanners (Esri

n.d.c). Aerial lidar has proven to be an effective source of data to create realistic high-resolution

3D city models which are advancing initiatives to virtualize large cities (Jayaraj and Ramiya

2018). In a similar respect, the high resolution provided by 3D lidar point cloud data, has

progressed the field of autonomous vehicle study. Mobile lidar is becoming an industry standard

implementation in autonomous vehicle design and researchers have analyzed mobile lidar point

cloud data to improve data registration, and object identification and segmentation algorithms for

autonomous vehicles (Daraeihajitooei 2018; Józsa et al. 2013). Within the natural environment,

scientists have shown that point cloud data can be used to predict wetland locations using known

locations of wetlands and to accurately determine individual tree sizes (Leonard et al. 2012;

Liew et al. 2018;). Ostensibly, point cloud data has served as an enabler to many areas of

ongoing science including studies in 3D cities, autonomous vehicles, and ecology.

Point cloud data continues to push research forward in many novel and innovative

applications. A groundbreaking study involving an international team of Maya archaeologists has

pushed the boundaries of point cloud study by using lidar point cloud data as a reconnaissance

asset to identify and map 61,480 new Maya structures which were previously unknown (Canuto

et al. 2018). The new capabilities provided by lidar to map entire areas in 3D is completely

transforming the field of Maya archaeology. The use of lidar as a reconnaissance asset is further

12

demonstrated by researchers at the Massachusetts Institute of Technology Lincoln Laboratory

who have used aerial lidar data in several disaster episodes including Hurricanes Harvey, Irma,

Maria, and Florence to assist emergency management teams. The high resolution of the sensor

permits mapping of flood zones, and identification of infrastructure damage and debris which has

been used by the Federal Emergency Management Agency to inform emergency response and

recovery operations (Foy 2018; National Research Council 2014). Point cloud data is continually

evolving capabilities and practices of research teams and institutions that acquire it.

2.2. Point Cloud Data Limitations

Because of the complexity of point cloud data management, there is only a small number

of standard tools available in most available GIS software. In comparison to the number of

standard tools and capabilities available for manipulation and analysis of 2D geographic data, the

tools and capabilities available for 3D geographic data are very minimum. Most of the tools

available for 3D data include basic data management and manipulation tools for 3D geographic

data such as tiling, changing coordinate systems, conversion to another data type, etc. In this

regard, many researchers create tools to extend the capabilities and applications of point cloud

data. For example, immersion specialists have integrated point clouds into virtual reality space

and built a basic toolset for interacting with the data. The technology the researchers created is

largely developmental and has not been implemented on large scales (Kreylos et al. 2008).

Another group of researchersô setup a sophisticated point cloud server, which can be used to

quickly compress, query, and extract points from point cloud data. Although the server is

configured with open frameworks and detailed methodology, the server appears difficult to

replicate (Cura et al. 2017). Point cloud data is even being collected by indoor photogrammetry

for modeling of indoor building environments. There is adequate software available for

13

reconstruction of indoor environments into 3D point clouds, but like other areas of point cloud

science, there are only a few tools available to work with the collected data (Wang and Cho

2015). Many researchers are able to work with point cloud data and have created tools to provide

new capabilities to point cloud data; however, most of these tools require extensive setup and

configuration.

 Another potential limitation of point cloud data is the presence or quality of attribute

information available in the dataset. One of the defining factors of the point cloud data structure

is the presence of classification fields, which can be used to annotate points as a number of

different features. Since point clouds have largely been acquired by aerial collection, many of the

classification fields involve features relating to the external environment. Examples of point

cloud class fields include vegetation, buildings, water, rail, roads, tower, bridge, etc. (Esri n.d.b).

In the wetland study, researchers were able to classify their point cloud data by using the known

vector boundaries of wetland areas (Leonard et al. 2012). Many applications of point cloud data

depend on classification information to be useful, and often classification must be derived using

information from another dataset or with an automated ground or surface classification

algorithm. Without additional GIS data to inform classification methods, automated filtering

algorithms for point clouds are relatively lackluster (Meng et al. 2010). Because accurate

classification of point cloud data relies on large amounts of corresponding data, it can be difficult

to create attribute information for unclassified point clouds. The classification information of

point cloud data is important to research, and the ability to exploit point cloud data is largely

dependent on the classification information available in a point cloud or that can be attributed to

the point cloud through other data sources. Thus, the quality of classification information defines

the extent to which the point cloud data can be analyzed for scientific phenomenon.

14

The utility of point cloud data and enhanced point cloud analytical tools is apparent in

multiple disciplines including archaeology, ecology, city planning, and hazard management.

Volumetric data from point clouds is assisting hazard workers with determining volume of fill

needed to fix roads damaged by disasters and locations of flood zones and infrastructure damage.

Archaeology researchers are able to virtualize sites, and even discover new ruins with point

cloud data. Ecologists can precisely measure individual tree size and volume, and city planners

can investigate city environments including existing and potential buildings, inside and outside.

Overall, there are vast applications for point cloud data, despite its limitations in computing,

software tools, and overall data quality. Researchers have been able to work around the

limitations of point cloud data to create novel systems and methods which have advanced

research in several disciplines.

2.3. Data Structures

To alleviate the computational issues of point cloud data, researchers have investigated

new ways to structure 3D geographic data. There have been relatively two different approaches

towards restructuring point cloud data, data aggregation and conversion to ólevel of detailô data

structure. Data aggregation results in an overall reduction of data precision. óVoxelizationô is a

common form of point cloud aggregation that bins points into larger 3D óvoxelô structures (Marx

et al. 2019). Although voxelization is an aggregative approach that reduces resolution of the

underlying data, it greatly reduces the overhead computational cost and makes distributed

computing much simpler (Boerner et al. 2017). In applications where the data resolution can be

reduced, voxelization presents a powerful method which simplifies the point cloud data structure

and greatly reduces the amount of computational resources required to render the dataset.

15

Another approach to make point cloud data more accessible is the level of detail data

structure. The level of detail data structure is an optimized tree structure which tiles data into

small tiles which are accessible in a hierarchical tree. The data structure results in a composition

of files which only render at run time dependent on the level of zoom in the client system. This

data structure essentially partitions the point cloud into smaller elements and only renders

portions of the point cloud that correspond with the map region and level of zoom at which the

user is at. The level of detail data structure approach allows the resolution of the point cloud to

be maintained, while greatly reducing the overhead computational cost of rendering (Richter and

Döllner 2010). Implementing a tree-like data structure greatly reduces the overhead cost of

rendering point clouds, but due to its file-based structure is often not compatible across other

systems (Cura et al. 2017). Transforming point cloud data into a tree like level of detail structure

is a sophisticated process that optimizes point cloud rendering speed; however, lacks

interoperability and integration across systems due to its file-based structure.

In efforts to increase rendering capabilities of point cloud data researchers have

investigated new data structures for point cloud data. Both voxels and level of detail data

structures provide ways to reduce the computational costs of point cloud data but present some

new minor technical concerns.

2.4. Shift to High Performance and Cloud Computing

Another approach to mitigate computational cost of point cloud data is through high-

performance or distributed cloud computing. High-performance computing utilizes clusters of

computation resources to store and analyze data. Due to the increased computing capacity

rendered by additional computational nodes, high-performance computing provides solutions for

much quicker data analysis than on a desktop system. When compared to desktop capabilities,

16

high-performance distributed file systems have shown much greater performance for analyzing

large stacks of lidar point cloud data (Guan et al. 2013). Several studies attest to the large

increase in performance and capabilities that can be achieved by using distributing computing

clusters to work with point cloud data. In one study, researchers compared 3D data management

performance in PostGre SQL and in Hadoop, running off a distributed file system, and Hadoop

greatly out-performed PostGre SQL (Li 2016). Another group of researchers was able to create a

point cloud change detection system in a distributed computing environment using Apache Spark

to manage the large stacks of 3D data (Liu et al. 2016). The ability of the researchers to setup a

change detection system on a distributed cluster shows that distributed computing enables the

ability to work with several large 3D datasets. On most desktop-based systems, point cloud study

is limited to single scene visualization and exploitation, and therefore distributed computing

provides the ability to extend potential point cloud applications by permitting investigation of

multiple point cloud datasets. High-performance distributed computing environments provides

the ability to greatly speed up management and analysis of point cloud data.

Distributed computing provides a quicker way to analyze point cloud data, but this

requires the possession of a high-performance computing cluster. For some developers, this may

not be an issue, but distributed computing is largely only accessible to those working with large

amounts of computational resources. Cloud based infrastructure is a derivative of distributed

computing; however, cloud services can be bought, and users do not need to possess the physical

computing environment. Cloud computing platforms have been compared to high performance

computing clusters, and it has been demonstrated that due to communication latency between

servers in the virtualized cloud environment that high performance computing is quicker

(Jackson et al. 2010). Even though cloud environments are not as quick as high-performance

17

computing environments, they offer a distributed computing environment which is much more

efficient and scalable than desktop GIS. Cloud services provide many developers a bridge into

distributed computing by providing the ability to run high-performance services without owning

any actual infrastructure.

2.5. Shift to Web GIS and 3D Data Streaming

Due to the interoperability of web-based technology and its ability to work with cloud

technologies, web is becoming a more common platform for GIS tools and applications. Web

applications utilize JavaScript which is an interpreted language that can generally be read by any

browser. The standard interpretation and data transfer protocols of web makes data transferable

and easily accessible across systems in web environments. Web systems can also link to cloud

databases and therefore the increased performance and capabilities brought from cloud platforms

can be integrated into web applications. The integration of web clients and back end databases

provides a robust and powerful computing environment, which is rapidly being developed to

increase 3D GIS capabilities. Recently, the OGC accepted Cesium 3D Tiles as a community

standard for streaming massive 3D geographic datasets across the web (Open Geospatial

Consortium 2019). Cesium 3D Tiles are a web based json level of detail data structure which are

optimized for use in the cloud to stream massive 3D geographic datasets through the web

(Cesium 2015). The introduction of 3D tiles, and other web streaming data types in the OGC is

signaling a shift from desktop GIS to web GIS for intensive 3D GIS applications.

 There are several commercial and open source web GIS platforms which can be used to ingest

and work with 3D geographic data, but there is little study on the capabilities of these systems.

There are two important studies performed which attempt to analyze performance and

capabilities differences between web GIS data types, and web GIS front end frameworks. In the

18

first study, researchers conducted a capabilities assessment between GeoJSON, JSON, CZML,

and Cesium 3D Tiles data types for their use in service of four-dimensional (4D) data. The

researchers point out that Cesium 3D Tiles are the only data structure capable of rendering large

amounts of data, but it does not support temporal visualization or attribute selection. The other

data types provide some enhanced abilities in low data volumes, but in terms of high data

volume, Cesium 3D Tiles were the only data type that did not crash or cause out of memory

issues in testing (Murshed et al. 2018). The other relevant study indicates that there is no existing

research comparing 3D web GIS frameworks, and then attempts to perform a qualitative study

on available 3D web GIS frameworks. The researchers compare Cesium JS, three.js, and

X3DOM.js. In the analysis it is evident that three.js and X3DOM.js can be used to render 3D

geospatial data, but due to its extensive geospatial support and data management that Cesium JS

is the most well supported platform for 3D geospatial web application development (Krämer and

Gutbell 2015). This study illuminates the issue that there is little academic study pertaining to

capabilities and performance of 3D web GIS frameworks. These two studies provide preliminary

analysis of 3D web GIS data types and frameworks.

 3D web GIS is a rapidly evolving area of industry and there is a general lack of academic

literature evaluating the new data types and GIS systems that are being developed for the web

GIS environment. Cesium 3D Tiles has recently been adopted by the OGC as the standard for

streaming massive 3D geographic data. Esri i3c is also an OGC standard, but a web standard for

ólarge amounts of heterogeneously distributed 3D geographic information (OGC n.d.).ô The

OGC standard definitions for Cesium 3D Tiles and Esri i3s are fairly similar, and there are no

studies which implement and compare these two data types. With a lack of technical information

about the rendering speeds and visualization results of these data types, it is unclear what

19

similarities and differences there are between these 3D data types. There is also a fundamental

lack of academic literature comparing the web services frameworks used to visualize these data

structures. In óA Case Study on 3D geospatial applications in the web using state of the art

webGL frameworks,ô the researchers do a good job of comparing the available open source

frameworks for 3D web GIS (i.e. Cesium Js, three.js, and X3DOM.js), but the researchers

neglect to analyze commercial web GIS platforms. There are several commercial providers

which provide essentially fully operational web GIS systems, including Esri and Hexagon

Geospatial. In the realm of 3D geographic data, there is a large amount of research on desktop

computing and distributed computing, but relatively no comparative research on the software

systems and data structures which are currently being made available for 3D web GIS.

 The following literature analysis reveals the current novel ways in which point cloud data is

being investigated and highlights the shift from desktop GIS to integrated web and cloud GIS.

Scientists have found many successes in exploiting point cloud data, and hopefully the

applications for 3D GIS only continue to grow as web and cloud GIS becomes more accessible.

Distributed and cloud computing show evident rendering improvements for point cloud data.

These platforms provide access to more computing power, which enables investigation of

multiple scenes. The use of the cloud, especially, is propelling 3D geographic study and shifting

it into the web. The web is a highly interoperable environment which can be backed up on the

server side by the computing power of cloud databases. With the ability to link front end clients

with back end cloud databases, the power of distributed computing can be made accessible to

larger communities of developers. Because of the increasing accessibility to integrated web and

cloud systems, 3D data structures have shifted from large point clouds into adaptive web-based

level of detail structures which permit streaming of massive 3D datasets inside web clients. The

20

data types and standards for streaming 3D geographic data are fairly new and therefore there is

little study on the data types themselves or the platforms that render and visualize this data. It is

therefore the intent of this study to provide a formal comparative analysis of web-based 3D GIS

data structures and 3D web GIS systems in order to provide a foundational performance and

capabilities assessment of these new technologies.

21

Chapter 3 Data and Methods

In this study, a comparative analysis of both open source and commercial 3D web streaming data

types, and 3D web GIS systems was conducted. In the study, web service frameworks which

include Cesium JS, Hexagon Geospatial Luciad RIA, and Esri ArcGIS Enterprise Portal were

setup on a cloud-based Amazon EC2 instance. Two different 3D data types, Esri i3s and Cesium

3D Tiles, were processed from las data and stored on the same EC2 instance in increasing total

tileset sizes. Datasets were processed into five different sizes (1GB, 5GB, 10GB, 25GB, and

50GB) to test server for performance differences for low and high data load. Two different

source dataset types, a high-resolution photogrammetric dataset and a lower resolution lidar

dataset were processed into Esri i3s and Cesium 3D Tiles in order to observer difference in

server performance that may be due to spatial resolution of underlying data. Each server was

tested for general performance with metrics collected through GtMetrix based on each sites

ability to serve a 1GB tile dataset. The figures generated by GtMetrix include Google page score,

YSlow Score, Fully Loaded Time, and the network waterfall which contains every http request,

resource loaded, and resource load time performed by the client. GtMetrix is a commonly used

software suite to analyze website performance in industry. Additionally, each 3D dataset, for

every overall tileset size (1GB, 5GB, 10GB, 25GB, and 50GB) were assessed for resource

memory and loading time in each exploitation system at three different zoom levels. These tests

ostensibly illustrate performance difference of each server with different dataset sizes and zoom

levels. Qualitative user experience information is also briefly discussed based on the visual

outputs that were produced from each system. The performance tests provide rigorous metrics on

the speed and resources used by each server, and the qualitative results briefly discuss the

22

visualization differences between the server frameworks. These tests and user experience results

highlight the essential differences between the server frameworks and data types.

3.1. Project Design

To standardize the computing environment for each 3D web GIS exploitation system, all

the exploitation systems were setup on the same Amazon EC2 cloud instance. It has been noted

in the literature, that due to changing nature of the hardware underneath the virtualized cloud

instance, and minor changes in local network bandwidth that cloud performance will influx small

changes over its use (Yue et al. 2013). To consider the changes brought about by the shifting

hardware underneath the virtualized cloud instance and for minor changes in internet bandwidth,

each test was repeated five times and then mean of each test was taken to standardize the

changes brought about by the shifting virtualized hardware and internet bandwidth. With the

tests run multiple times, and with all the server software and data on the same virtual system, the

computing environment of the study can be considered controlled (Yue et al. 2013).

All the data was stored on the EC2 instance along with the software to run each 3D web

GIS exploitation system. Figure 1 depicts the architectural setup of the computing environment.

The source data within the EC2 virtual machine consisted of point cloud data of 1GB, 5GB,

10GB, 25GB, and 50GB from each source dataset (the singular lidar dataset, and the singular

photogrammetric datasets). Each of these datasets were converted into Esri i3s and Cesium 3D

Tiles and these processed datasets were also stored on the EC2 virtual machine. Thus, for every

source dataset, there is a Cesium 3D tileset and an Esri i3c dataset which had been processed

from the source dataset. Thus, there were a total of 10 source point cloud datasets stored on the

server, and 20 processed datasets, 10 in i3s, and 10 in 3D Tiles. A dedicated storage volume of

700GB was attached to the EC2 virtual machine so that all the datasets could fit on the server.

23

Placing both the server software and all the data within the same virtual machine allowed access

of all datasets to client applications and also a controlled environment for running the server.

Figure 1. Cloud Environment Configuration

The tests performed in this study are shaped from previous cloud computing studies. In a

comparison between Map-Reduce and SQL for large data, researchers first tested a singular

average query time between the two databases, and then they scaled up the number of queries

and analyzed the differences in query load time (Jiang et al. 2009). Another study used open

source software to measure CPU performance, and network bandwidth during cloud transactions

(Huang et al. 2013) This study implements a hybrid approach. Each dataset was first tested on its

overall rendering and resource load time for a singular dataset like in the map reduce study.

Other metrics were gathered through GtMetrix of this singular transaction. GtMetrix is being

used instead of CPU performance and bandwidth since this is a web application instead of a

24

desktop application. GtMetrix provides performance metrics which report on the performance of

web servers. These metrics include Google Page Score, Yahoo YSlow Score, Fully Loaded

Time, and the network waterfall of http request and resources used. Fully Loaded Time and the

network waterfall are metrics that can be quantitatively analyzed, while Google Page Score and

Yahoo YSlow score are more arbitrary figures that rate the overall performance of the website.

All these metrics provided a baseline mark of the overall server performance. Next, several tests

were run on each exploitation system, for each dataset, where the data set increased in size from

1GB to 50 GB. In these tests, resource loading time and resource memory was recorded. These

tests were also performed at three different zoom levels: the extent of the dataset, at a medium

zoom level, and at a high zoom level. Esri i3s was tested in Esri ArcGIS Enterprise Portal, and

Cesium 3D Tiles were tested within Cesium JS and Hexagon Geospatial Luciad RIA. It is

important to run the singular transaction test in addition to the increasing load test (with the

increase in dataset size), because some systems are noted to perform slower with small datasets

and quicker comparatively with larger data (Jiang et al. 2009). The test of multiple zoom levels

was also added to account for changes based on the zoom level. It was identified in preliminary

testing that at the full extent only the tileset metadata, and a very low-resolution version of the

whole dataset is loaded, while at higher zooms more intricate tiles that reflect the point data are

loaded into the application. Because different types of tiles are loaded at different zoom levels, it

is important to test each server at various zoom levels. These tests provide an evaluation of the

overall server performance for a singular transaction, for increasing data size, for variant zoom

level, and for variant spatial resolution of data.

In addition to the quantitative results, a basic qualitative discussion of the visualizations

produced by each system was also recorded. The quantitative results provide empirical evidence

25

of the speed of each framework; however, this discounts the visualization product which is

output for display in each system. Therefore, it is useful to also include the basic data

visualizations within each platform to illustrate core difference in data rendering.

3.2. Datasets

Two different datasets, a dataset collected with lidar, and a dataset collected through

photogrammetry were selected as source data for the study to understand effects of spatial

resolution on the performance of the exploitation systems. Photogrammetry is collected through

matching of point from high-resolution imagery and usually possesses a much more dense and

high spatial resolution than lidar data. Lidar data is collected more systematically, and points are

sparser than in photogrammetric datasets. Table 1 shows information of the spatial resolution and

extents of the datasets utilized in this study.

Table 1: Testing Datasets

Dataset Spatial Resolution Spatial Extent Points Source

USC Photogrammetry Data 4.50cm 0.37sqkm 2,337,671,969 USC ICT

NOAA Lidar Data 42.00cm 1,657.42 sqkm 1,920,458,367 NOAA

Datasets have been acquired from two different sources. The NOAA dataset was acquired

from the NOAA data viewer (OCM 2015). This is an open source repository of las data provided

by NOAA in order to analyze damage to New York City after Hurricane Sandy. To download

the tiled las NOAA data, a text file with all the file urls was acquired from the NOAA site, and

then a python script was created to fetch and download the las files found at each url into a folder

on the local system. The USC photogrammetric dataset was acquired from the USC Institute of

Creative Technologies. This dataset was re-projected by USC ICT staff from a local coordinate

26

system into a geographic coordinate system and then copied from a remote server onto an

external hard drive. Since the study employs testing the dataset at 1GB, 5GB, 10GB, 25GB, and

50GB sizes, each dataset was portioned into several different memory chunks that reflected the

1GB,5GB, 10GB, 25GB, and 50GB memory chunks that were needed to perform the increasing

data load test.

Each dataset had to undergo processing into i3s and Cesium 3D Tiles format for ingestion

and analysis within the web environment. The general data pre-processing chain is outlined

below in Figure 2. Esri ArcGIS Enterprise ships out with an installation of ArcGIS Pro.

Figure 2: Data Conversion Methods

Within ArcGIS Pro is a tool which converts a folder of las files into an Esri i3s data type. Each

dataset was converted from las to i3s using the ArcGIS Pro Create Point Cloud Scene Layer

Package Tool. Once each dataset was processed into i3s, the Share Package Tool was used in

ArcGIS Pro to upload the package to the ArcGIS Enterprise Portal which was setup on the EC2

27

instance. Configuration of the software and datastore for ArcGIS Enterprise Portal will be

delineated in the next section. Once the package was uploaded into the Portal ecosystem, the

Publish tool on the Portal website was used to publish the 3D package as a scene service. It is

necessary to publish the Portal object as a hosted scene service so that it can be used as an

operational layer in web applications. Without publishing the layer as a hosted scene service, the

layer is only available for downloading in the Portal ecosystem. In this step, it was noted that

publication of a 50GB scene service layers consistently resulted in errors, and therefore no

testing was able to be conducted for i3s at tileset size of 50GB. The error is not specific but

suggests that Portal does not support tilesets of this size.

In order to create 3D tile services, Hexagon Geospatial Luciad Fusion was used to

process all las datasets into 3D Tiles and to setup a datastore to serve them to the Hexagon

Geospatial Luciad RIA and Cesium JS applications that were developed on the server. Luciad

Fusion is a server software which possess processing and service capabilities. Cesium Ion can

also be used to process las files into 3D Tiles, but Luciad Fusion was simply chosen since a

license was already acquired with Luciad RIA for the Luciad Fusion software. With Luciad

Fusion, all datasets were able to be processed into 3D Tiles and to be made accessible via http

requests to the client applications. All data processing was performed on the EC2 instance. All

processed data services for both i3s and 3D Tiles were setup on the EC2 instance. Using ArcGIS

Enterprise Portal, services were setup for the i3s datasets, and with Luciad Fusion services were

setup for the 3D Tile data.

3.3. Virtual Server Design

All server software for the exploitation systems was setup on an Amazon EC2 on demand

m4.2xlarge instance. The m4.2xlarge EC2 possess 8 CPU cores, 32 GB of memory, and high

28

network performance. It possesses more than enough computing power necessary to run a server

capable of handling large 3D tile datasets. The m4 is a memory intensive server. This server

instance was chosen since it has both high compute and memory resources. No GPU is needed

on the server side since all 3D graphics are handled on the client device. The server needs high

memory and CPU to run most effectively. A 700GB dedicated storage volume was added to host

all source data, processed data, and software on the same virtual instance. The dedicated volume

is a solid-state drive which also helps boost performance since there are no moving parts in the

hard drive.

 To setup the EC2 with ArcGIS Enterprise both Esri Cloud Builder and Amazon AWS

Cloud Formation tools were attempted for instantiation of an Amazon EC2 with an Amazon

Machine Image that contained Esri ArcGIS Enterprise; however, both tools failed. Because of

this, creation of the EC2 was a very manual process. The EC2 builder within the Amazon AWS

Management Console was used to select an m4.2xlarge EC2 instance with a 700GB storage

volume. Next, an Esri ArcGIS Enterprise Amazon Machine Image was selected as the operating

system to load onto the EC2 instance. Both Cesium JS and Hexagon Geospatial are libraries that

can be downloaded and setup on the EC2; however, an Esri ArcGIS Enterprise Amazon Machine

Image is necessary to setup ArcGIS Enterprise Portal since it is baked into the operating system

of the EC2 instance. After the Esri Enterprise Amazon Machine Image was chosen, the EC2

production process started.

 After the EC2 had been initialized, several configurations were required to setup the

machine to act as a web server. The domain kevinmercythesis.com was purchased form Google

Domains, and then using sslforfree was setup for secured http traffic. Setting up a secured http

(https) connection was required to obtain a ssl certification for the domain

29

kevinmercythesis.com. A ssl cert is required to run Esri ArcGIS Enterprise, and therefore the

domain purchase and generation of a ssl cert to allow https traffic on the domain was required to

setup Esri ArcGIS Enterprise. Once the ssl certification was obtained, web site forwarding was

setup on the domain to point the domain site to the Amazon EC2 instance. To do this, an elastic

IP address was created for the virtual amazon instance so that it would always possess the same

public IP address. The elastic IP address created within the Amazon AWS Management Console

was set as the forwarding address for the kevinmercythesis.com domain. Next, using an Amazon

Cloud Formation template provided by Esri, a Virtual Private Cloud was created within for the

EC2 Elastic IP address and attached to it. The IP address within the virtualized hardware does

not match its external IP address and therefore a Virtual Private Cloud and an Elastic IP Address

are required to allow proper trafficking of web applications from the EC2 instance to a secured

external domain.

Next, a new user was created to allow the ArcGIS Enterprise Entity to make changes to

the Amazon EC2 instance, and several changes were implemented within the Windows Firewall

and the Amazon EC2 Security Groups to allow access of specific ports within the EC2 system to

the outside web. With the purchase of a domain and a ssl cert, a webpage domain was setup

which could receive web traffic from the EC2 instance. To correctly point the EC2 instance to

the purchased domain, first creation of an elastic IP was initiated. Then a virtual private cloud

was created and attached to the elastic IP address. Lastly, ports were opened within the windows

firewall manage and within the Amazon security group for the EC2 instance to allow access of

certain ports to the external web. These configurations established the frameworks necessary to

run the web applications outside of the server and to begin setup of Esri ArcGIS Enterprise on

the EC2 instance.

30

3.4. Comparative Program Architecture

Each 3D GIS exploitation platform possesses different software architectures and system

configurations. Both Esri ArcGIS Enterprise and Hexagon Geospatial Luciad RIA are

commercial software suites that must be licensed for use, while Cesium JS is an open source

software package which requires no licensing and can be used simply by importing it as a

content delivery network into a JavaScript web application. Because it is open source and

requires no licensing, Cesium JS is the lightest and simplest to configure for use. Cesium JS can

simply be imported within a JavaScript application by including these two lines of code within

an html file. The two lines of JavaScript code import the main Cesium ñlibraryò and

<script src= "h ttps://cesium.com/downloads/cesiumjs/releases/1.66/Build/Cesium/Cesium.js" ></scr
ipt>

<link href= "https://cesium.com/downloads/cesiumjs/releases/1.66/Build/Cesium/Widgets/widgets.c
ss" rel= "stylesheet" >

Code 1: Cesium Import Script (Cesium n.d.)

the main library for the Cesium.js widgets. These two files are minified (or compressed)

JavaScript files which handle API calls for all Cesium.js elements (i.e. the virtual globe, data

sources on the globe, and all functions that are available in the API to programmatically interact

with the globe module). Because of its library compression, and small number of library imports

(only two modules), Cesium.js is a lightweight addition to a JavaScript application. Due to their

licensing requirements and more extensive use of libraries, Esri ArcGIS Enterprise and Hexagon

Geospatial Luciad RIA are more bulky applications than CesiumJS.

 Esri ArcGIS Enterprise and Hexagon Geospatial Luciad RIA are both commercial

software suites, but possess vastly different setups. Esri ArcGIS Enterprise requires a specialized

Amazon Machine Image, where Esri ArcGIS Enterprise resources are basically baked into the

operating system of the cloud instance. This is a vastly different configuration then either

31

Cesium JS or Hexagon Geospatial. Cesium JS and Hexagon Geospatial can be run in either

cloud-based or non-cloud-based environments. Esri ArcGIS Enterprise requires a cloud-based

virtual machine, and gets directly installed as core components to the cloud virtual machine. Esri

ArcGIS Enterprise uses an array of applications to setup an environment which possesses a front-

end website, a backend GIS server, and various other GIS data processing or management

applications. Esri ArcGIS Enterprise is a sophisticated software suite that is geared towards

hosting enterprise GIS resources for 2D and 3D data. In addition to providing the ability to host

web services for 2D and 3D data, Esri ArcGIS Enterprise can also be used to create web

applications, host web applications, and perform various geoprocessing computations. Esri

ArcGIS Enterprise is a full -scale web GIS implementation. Because it implements many more

functions and capabilities than Cesium JS or Hexagon Geospatial RIA, it is a much larger

installation than either of these exploitation frameworks.

 Hexagon Geospatial Luciad RIA, is essential a composition of JavaScript libraries which

can be used for 2D and 3D web GIS. The focus of Hexagon Geospatial Luciad RIA is more on

3D data, but it possesses libraries for serving and interacting with 2D data sources as well. The

Hexagon Geospatial Luciad RIA suite is also more of a developmental suite than a production

software like Esri ArcGIS Enterprise. Hexagon Geospatial Luciad RIA comes packaged as a

collection of JavaScript libraries. Creating a Luciad RIA application involves addition of core

libraries which have been created for many general GIS functions, and then customization of

those functions to create an application which meets the needs of the user. Examples of basic

library functions include creating a view with a 3D virtual globe, adding a 2D raster to the globe,

adding a 3D tileset to the globe, etc. These basic functions can essentially be imported into a new

application and then customized to serve the user requirements. Hexagon Geospatial Luciad RIA

32

resembles the architecture of Cesium JS more, but is much bulkier since it is a collection of

libraries and not a singular library like Cesium JS.

 Esri ArcGIS Enterprise is a collection of applications which function harmoniously to

setup data service, hosting, and complex geoprocessing operations on a cloud instance. Cesium

JS is a content delivery network, a single library, that allows users to create and interact with

virtual globes and 3D data. And Hexagon Geospatial Luciad RIA is a composition of many

JavaScript libraries which can be configured for working with 2D or 3D geospatial data and web

maps or virtual globe interfaces.

3.5. Esri ArcGIS Enterprise Configuration

To instantiate an Amazon EC2 instance with the Esri ArcGIS Enterprise, Esri Cloud

Formation templates were used. The ñCreate an Amazon VPCò cloud formation template and

ñSingle-machine deploymentò from the Esri Cloud Formation Templates site were used for

Portal creation (Esri n.d.4). Originally the Esri Cloud Builder tool was attempted to create the

EC2 with the ArcGIS AMI, but after a couple failed attempts, the Cloud Formation templates

were used instead. With the ñCreate an Amazon VPC,ò a virtual private cloud was successfully

created. There were issues experienced in using the ñSingle-machine deploymentò template, in

the first attempt. To get around the errors from the ñSingle-machine deploymentò template, the

rollback resources on error option in Cloud Formation was turned off and then the template was

rerun. Once the Cloud Formation template reached an error in the second trial, the created EC2

instance was still available and used to finish software setup. The EC2 was then logged into and

configurations to the ArcGIS Server Site, ArcGIS web adopters, ArcGIS Portal, and data store

wizard were conducted manually to finish installation and configuration of Esri ArcGIS

Enterprise.

33

While the Cloud Formation Template ran, several resources and configurations for

ArcGIS Enterprise were configured successfully. An Amazon EC2 with the Esri Enterprise

software and a 700GB solid state drive was created successfully. The Portal software was also

licensed correctly, and the ssl cert for https trafficking was installed. A virtual private cloud and

elastic IP address were also created, allowing access of the EC2ôs public IP address to http, and

https traffic. Manuel modifications required to finish setup included configuration of the ArcGIS

Server site, ArcGIS web adaptors, ArcGIS Portal site, and the ArcGIS data store wizard, which

are described below.

After instantiation and modification of elastic IP address, virtual private cloud, security

groups, and users, several manual processes were conducted to properly setup ArcGIS Server

and ArcGIS Enterprise so that ArcGIS Enterprise Portal could be used to create hosted feature

services on the Amazon EC2 instance. First, the ArcGIS Server Authentication Manager was run

in order to license ArcGIS Server. During this process a user called siteadmin was created which

had permissions over ArcGIS Server resources on the Amazon EC2 instance. During Amazon

Machine Image Instantiation, a user was already created for Esri ArcGIS Enterprise Portal. Next

the Esri Web Adapter for Portal and Esri Web Adapter for Server were used to register the

ArcGIS Enterprise Portal to the site https://kevinmercytheis.com/portal and the ArcGIS Server to

https://kevinmercythesis.com/server. These web adopters also co-registered the ArcGIS Server

and ArcGIS Portal software so that ArcGIS Server could be set as the hosting site for the Esri

ArcGIS Portal. To initiate this change, the ArcGIS server site was selected as the federated

server for the ArcGIS Portal site, and then this server was selected as the hosting server for the

ArcGIS Portal. These changes were required in order to enable publishing hosted feature layers

with the Portal site. Without federating the ArcGIS Server site and setting it as the hosting

https://kevinmercytheis.com/portal
https://kevinmercythesis.com/server

34

server, there is no way to publish scene services as operational web layers. The ArcGIS Server

site and the ArcGIS Portal site were setup on the same instance so that the computing

environment for the hosted Esri i3s layers would be the same computing environment as the

Luciad Fusion 3D Tiles. After federation of the ArcGIS Server site, and the ArcGIS Portal site,

the ArcGIS Portal could be accessed and used to publish operational scene service layers using

the Amazon EC2 as the hosting server.

Once the Amazon EC2 instance was properly configured with ArcGIS Server and

ArcGIS Portal sites, all the processed i3s data were published using the ArcGIS Portal site. As

indicated earlier, the Portal site had issues publishing the 50GB scene layer packages and

therefore they were omitted from testing.

Lastly, a web application was created out of port 3002 on the Amazon EC2 instance in

order to create an application which served the 3D scene service layers for testing. Using node.js

and npm, a basic npm express web server was used to open up port 3002 and attach the Esri

JavaScript code to it. Node.js with npm had to be installed on the Amazon EC2 to run the web

server out of port 3002. Using the Esri JavaScript API, an index.html file was created which

created a web application that pulls an Esri globe and plots a scene service layer on it. Additional

programming within the application was used through the study to customize the zoom level of

the application and the dataset that was hosted from it. Throughout testing the zoom level of the

application, and the rendered Scene Service Layer were modified to test the application for all

specified tests. For each test conducted, the resource memory and the resource loading time were

tested five times and the average of the tests was stored as the result.

35

3.6. Hexagon Geospatial Luciad Fusion Setup

Hexagon Geospatial Luciad Fusion license and software were obtained from a remote

server. Setup of Hexagon Geospatial Luciad Fusion was much more straightforward than Esri

ArcGIS Server and Portal. Once the Fusion files were transferred to the Amazon EC2 instance, a

setup program was run which setup Fusion on the EC2 instance. Once the software was installed,

the Fusion application was initiated. The Fusion application opened a console, a management

portal, and started web services of the software on port 8081. A Fusion admin user was created

and then processing of las data into 3D Tiles began. To process the 3D tiles, the tiles to process

were selected and then a tool popped up to initiate creation of a 3D Tile service from those

source tile. A service title, abstract, and data type were required for input. In this dialog, the data

type is set as OGC 3D Tiles and a name was chosen for each service. Upon clicking the submit

button, the software begins processing the source data into 3D Tiles, and when it is finished it

sets up an entry point url from port 8081 which can be used by web applications to access the tile

data. All source datasets were processed into 3D tiles in this fashion. The Luciad Fusion software

created 3D tilesets of each dataset, and service urls on the Amazon EC2 that could be used by the

Cesium JS and Luciad RIA web applications.

3.7. Hexagon Geospatial Luciad RIA

Similarly, to Hexagon Geospatial Luciad Fusion, license files and software were obtained

from a remote server and then brought onto the EC2 instance. Setup of Luciad RIA was fairly

simple. Most of the technical work in setting up Luciad RIA was in the programming of a

JavaScript application to have Luciad RIA create a virtual globe and then display a 3D tile

dataset. To license the Luciad RIA API, the license file is simply placed in a specific directory

within the Luciad RIA file structure. Luciad RIA comes with a sample Jetty server that can be

36

used to run Luciad applications out of port 8072. The sample server was used to run the RIA web

application.

In order to create a Luciad RIA application, extensive customization from Luciad RIA

sample applications was performed to create an application that simply created a 3D web GL

virtual globe and then displayed a 3D tileset on it. A Luciad RIA sample application called

firstsample was copied and renamed. Then its contents were modified to create a basic virtual

globe interface. In order to generate a 3D tileset within the globe, another sample application

called Data Types was used to program the 3D Tile display on the virtual globe. The Data Types

application had a component called OGCLoader which was code to load a 3D tileset from a url

and colorize it. This module was added into the ongoing Luciad RIA application. Another

function, called addLayer was also taken from the Data Type application and then placed in the

ongoing Luciad RIA application. With the OGCLoader module and the addLayer function, the

ongoing Luciad RIA application could now be used to create a virtual globe, add a 3D tileset to

it, and zoom to that location. Code was later found in order to customize zoom and navigation of

the virtual globe. With all these components, a Luciad RIA application was created that could be

used to zoom to different levels of a 3D tileset on a virtual globe. This application was then run

from port 8072 using the Luciad RIA simple server and used to run all the performance tests.

3.8. Cesium JS Setup

Cesium JS is available as a content delivery network in JavaScript since it is open source.

Therefore, no licensing is required to create a Cesium JS application. A basic program was

created which retrieves the Cesium JS content delivery network and then creates a basic virtual

globe interface which can be used to visualize 3D Tiles. A Cesium ion account is required in

order to add a basemap and layers to the virtual globe. A Cesium ion account is free and provides

37

a developer token that must be placed within the Cesium JS Application for it to run correctly.

An ion account was created and then the key was placed in the application along with the code to

create a Cesium virtual globe, and to add a tileset to it. With these customizations, a web

application developed with Cesium JS was synthesized that could render a virtual globe and 3D

tilesets. Additional programming could be added in to change the zoom level of the viewer as

well. Similarly to the Esri ArcGIS Application that was setup with node.js and npm express to

run out of port 3002, an npm express server was developed to run the Cesium web application

out of port 3001 on the Amazon EC2 instance.

3.9. Testing and Results

After setting up all the software, three web applications were created which could be used

to test each exploitation system. All Esri i3s datasets were published within the Esri ArcGIS

Portal and available as scene services (i.e.

https://kevinmercythesis.com/server/rest/services/Hosted/USC_TwentyFive_SLPK_Hosted/Scen

eServer). All 3D Tiles data had been processed with Luciad Fusion and made available as

services out of port 8081 (i.e. http://kevinmercythesis.com:8081/ogc/tiles/noaa5gb/tileset.json).

The Esri JavaScript API testing application was running out of

http://kevinmercythesis.com:3002. The Cesium JS Application was running out of

http://kevinmercythesis.com:3001. The Luciad RIA application was running out of

http://kevinmercythesis.com:8072/web/samples/webapp/index.html. With all the i3s and 3D tile

services running, and the testing web application setup on accessible ports, testing was able to be

conducted for each server framework. First, each web application was configured to host a 1GB

dataset and then the url of the application was placed in the GtMetrix tool in order to run tests for

Google Page Score, Yahoo YSlow, Total Page Load, and to synthesize the network waterfall.

https://kevinmercythesis.com/server/rest/services/Hosted/USC_TwentyFive_SLPK_Hosted/SceneServer
https://kevinmercythesis.com/server/rest/services/Hosted/USC_TwentyFive_SLPK_Hosted/SceneServer
http://kevinmercythesis.com:8081/ogc/tiles/noaa5gb/tileset.json
http://kevinmercythesis.com:3002/
http://kevinmercythesis.com:3001/
http://kevinmercythesis.com:8072/web/samples/webapp/index.html

38

The reports from GtMetrix from each web application with a 1GB dataset were saved, and then

testing of resource loading time and memory for variant dataset, tileset size, and zoom level were

performed. For each exploitation system, first the photogrammetric dataset was tested at each

memory size (1GB, 5GB, 10GB, 25GB, and 50GB) and at three zoom levels (dataset extent,

medium zoom level, and high zoom level). For every test, the test was performed five times, due

to the virtualization of the cloud hardware, and then the mean of the test was stored in a master

sheet. Once all tests had been performed for the photogrammetric dataset, the same workflow

was followed for the lidar dataset. While the testing was ongoing screenshots were captured of

the visualizations that were rendered by each dataset at various zoom levels.

39

Chapter 4 Results

Reports from GtMetrix and from the increasing data load tests demonstrate that generally

Cesium JS and Esri ArcGIS Enterprise Portal are quicker and use less memory than Hexagon

Geospatial Luciad RIA. From simply the GtMetrix results it is difficult to determine if Cesium

JS or Esri ArcGIS Enterprise are quicker. Cesium JS obtains a higher Yahoo YSlow score then

Esri ArcGIS Enterprise; however, Esri ArcGIS Enterprise has a higher Google Page Score than

Cesium JS. From the loading tests, it appears that for both datasets Cesium JS had the lowest

loading time, but with larger datasets the difference in load time between Cesium JS and Esri

ArcGIS Enterprise are basically negligible. For the most part, Cesium JS always uses the least

memory, but at high zoom levels with lidar data Esri ArcGIS Enterprise used the least memory,

but its load time was still slightly slower. In all cases, Hexagon Geospatial Luciad RIA was the

slowest and uses the most memory. Although Hexagon Geospatial Luciad RIA was much slower

and used more memory, it had the most photorealistic visualization compared to the other

platforms. Even though Cesium JS for the most part was always quickest and lightest, it also

rendered with much less visual detail than Hexagon Geospatial Luciad RIA, and Esri ArcGIS

Enterprise. It does not appear overall tile set size influenced performance, as resource loading

time and memory were generally consistent across tilesets. Resource loading time and memory

used appeared more dependent on zoom level. At higher zoom levels, generally more time and

resources were used. Dataset spatial resolution also did not seem to effect performance. Loading

time and resources used were fairly consistent between the high-resolution photogrammetric

dataset and the lidar dataset.

40

4.1. GtMetrix Results

Results from GtMetrix show that Cesium JS and Esri ArcGIS Enterprise server

frameworks were generally quicker and used less memory than Hexagon Geospatial Luciad RIA.

Figures 3 and 4 depict the results from GtMetrix for Cesium JS and Esri ArcGIS Enterprise.

Figure 3: Cesium JS GtMetrix Results

41

Figure 4: Esri ArcGIS Enterprise GtMetrix Results

 GtMetrix ranked Cesium JS with a higher YSlow score of 83% compared to a 73% score

for Esri ArcGIS Enterprise, but ArcGIS Enterprise was ranked with a higher Google Page Speed

Score of 66% compared to a 62% for Cesium JS. The Google Page Speed scores were similar.

Empirically, Cesium JS had a higher fully loaded time of 10.2s, and total page size of 2.15, but a

much smaller number of requests. Cesium JS only made 54 http requests compared to 107 for

Esri ArcGIS Enterprise. Both the applications lacked browser caching, which is one of the

critical issues with their generally low Google Page Score rankings. In their most minimal setup,

Cesium JS and Esri ArcGIS Enterprise appear to perform very similar in overall ranked

performance. Fully loaded time and page size from GtMetix suggest Esri ArcGIS Enterprise to

be smaller and more lightweight then Cesium JS. Both servers appear to be slow overall though.

42

Implementing more browser side caching for both of these servers would likely greatly lower

their load time and page size, and thereby increase their Google Page Score and Yahoo YSlow

scores.

 The GtMetrix results for Hexagon Geospatial Luciad RIA show it to be slower and using

much more memory then Cesium JS or Esri ArcGIS Enterprise. Figure 5 shows the results of the

Hexagon Geospatial Luciad RIA GtMetrix results.

Figure 5: Hexagon Geospatial Luciad RIA GtMetrix Results

 GtMetrix ranked Hexagon Geospatial Luciad RIA with a 0% Google Page Score and a

56% for Yahoo YSlow. The Google Page Score was 0% due to the lack of compression utilized

with the application. Both Cesium JS and Esri ArcGIS Enterprise implement compression. The

lack of compression may be because Hexagon Geospatial Luciad RIA is largely a development

43

library and the application is more developmental facing than production facing. Nonetheless, it

appears that most of the extra time and resources used by Luciad RIA came from its large

amount of library loading. 699 http request are made, which were mostly components within the

Luciad RIA development library. The large overhead to call RIA components is likely one of the

reasons Luciad RIA took longer to load and used more memory. Luciad RIA used significantly

more memory, 12.3 MB, compared to 2.15 MB for Cesium JS, and 1.11 MB for Esri ArcGIS

Enterprise, and more time 29.5 s compared to 10.2 s for Cesium JS, and 4.1 s for Esri ArcGIS

Enterprise. Luciad RIA also did not implement browser caching. All three of these exploitation

systems may have better performance with implementation of browser side caching.

4.2. Increasing Loading Tests

4.2.1. Resource Loading Time for Photogrammetric Data

For both photogrammetric datasets and the lidar datasets, it appears Cesium JS performed

the quickest, and Hexagon Geospatial Luciad the slowest. At large tileset sizes, the difference

between Cesium JS and Esri ArcGIS Enterprise is almost negligible. Figures 6 ï 8 display the

results from the resource loading time tests for photogrammetric data.

44

Figure 6: Resource Loading Time for Photogrammetric Dataset at Full Extent

Figure 7: Resource Loading Time for Photogrammetric Dataset at Medium Zoom

0

2

4

6

8

10

12

0 10 20 30 40 50 60

R
e

s
o

u
rc

e
 L

o
a

d
in

g
 T

im
e

 (
s
)

Tileset Size (GB)

Esri

Luciad

Cesium

0

2

4

6

8

10

12

0 10 20 30 40 50 60

R
e

s
o

u
rc

e
 L

o
a

d
in

g
 T

im
e

 (
s
)

Tileset Size (GB)

Esri

Luciad

Cesium

45

Figure 8: Resource Loading Time for Photogrammetric Dataset at High Zoom

 At the full extent of the dataset, there is an anomalous result for the 1GB

photogrammetric test of the Hexagon Geospatial Luciad RIA software. Since this data point is at

the full extent, the quick load time may be due to a smaller number of library requests since tiles

are not necessarily being in at this extent. Further testing is required though. Nonetheless,

besides this data point, Hexagon Geospatial Luciad RIA consistently takes more than 10s to load

resource at all zoom levels for all tileset sizes. Cesium JS generally loaded in just under 2s for all

tileset sizes at all zoom levels. And Esri ArcGIS Enterprise took just above 2s seconds for all

tilesets at all zoom levels. The resource time between Cesium JS and Esri ArcGIS Enterprise

appear very similar.

4.2.2. Resource Memory for Photogrammetric Data

 Tests for resource memory show that resource memory increased as zoom level

increased. Hexagon Geospatial Luciad RIA was still slowest, and Cesium JS still used slightly

less memory than Esri ArcGIS Enterprise. Tileset size did not seem to impact the resource sizes.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

R
e

s
o

u
rc

e
 L

o
a

d
in

g
 T

im
e

 (
s
)

Tileset Size (GB)

Esri

Luciad

Cesium

46

Figure 8 ï 10 depict results of Resource Memory at the three zoom levels for the

photogrammetric dataset.

Figure 9: Resource Memory for Photogrammetric Dataset at Full Extent

Figure 10: Resource Memory for Photogrammetric Dataset at Medium Zoom

0

5

10

15

20

25

30

0 10 20 30 40 50 60

M
e

m
o

ry
 u

s
e

d
 i
n
 C

lie
n
t

(M
B

)

Tilset Size (GB)

Esri

Luciad

Cesium

0

10

20

30

40

50

60

0 10 20 30 40 50 60

M
e

m
o

ry
 U

s
e

d
 i
n
 C

lie
n
t

(M
B

)

Tileset Size (GB)

Esri

Luciad

Cesium

47

Figure 11: Resource Memory for Photogrammetric Dataset at High Zoom

 As zoom increased Esri ArcGIS Enterprise and Cesium JS became very similar. At low

level zoom, Cesium JS used very little resources, but as the zoom increased the memory used

between Cesium JS and Esri ArcGIS Enterprise almost leveled out. Cesium JS still used the least

memory; however, there is almost no difference in memory used between Cesium JS and Esri

ArcGIS Enterprise at high zoom levels.

 It is very curious the large rise in memory used for Hexagon Geospatial at the Medium

Zoom levels across tileset size, since generally at the other zoom levels there is less variation in

resources used across tileset size. The trend may arise much quickly in this zoom level compared

to the other zoom levels, in that the location of the zoom may be in proximity to tiles which are

existent in only the larger tilesets; therefore, causing a large increase in client memory usage.

The trend may not be apparent at the full extent since generally a low resolution of the extent is

loaded in the full extent of the dataset, and maybe the location in the high zoom loads tiles which

are existent in each of the tilesets, and therefore no additional tiles are required to be loaded as

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

M
e

m
o

ry
 U

s
e

d
 i
n
 C

lie
n
t

(M
B

)

Tileset Size (GB)

Esri

Luciad

Cesium

48

the tileset size increases. The reason for the trend requires further testing in order to be

completely understood.

4.2.3. Resource Loading Time for Lidar Data

Resource loading time for lidar data at three zoom levels for each tileset size appeared

very similar to the results from the photogrammetric data. Resource loading times were still very

similar, around 10s for Hexagon Geospatial Luciad RIA, 2s for Cesium JS, and around 2s for

Esri ArcGIS Enterprise.

Figure 12: Resource Loading Time for Lidar Dataset at Full Extent

0

2

4

6

8

10

12

0 10 20 30 40 50 60

R
e

s
o

u
rc

e
 L

o
a

d
in

g
 T

im
e

 (
s
)

Tileset Size (GB)

Esri

Luciad

Cesium

49

Figure 13: Resource Loading Time for Lidar Dataset at Medium Zoom

Figure 14: Resource Loading Time for Lidar Dataset at High Zoom

4.2.4. Resource Memory for Lidar Data

The resource memory results show some slight variation from the other tests. Instead of

Cesium JS using the smallest resources in each case, at Medium Zoom resource memory

between Cesium JS and Esri ArcGIS Enterprise were almost identical. And at high zoom level,

0

2

4

6

8

10

12

0 10 20 30 40 50 60

R
e

s
o

u
rc

e
 L

o
a

d
in

g
 T

im
e

 (
s
)

Tileset Size (GB)

Esri

Luciad

Cesium

0

2

4

6

8

10

12

0 10 20 30 40 50 60

R
e

s
o

u
rc

e
 L

o
a

d
in

g
 T

im
e

 (
s
)

Tileset Size (GB)

Esri

Luciad

Cesium

50

Esri ArcGIS Enterprise actually used less memory (about 10 MB less) (Figure 14; Figure 15). It

is curious though, despite using less memory, in overall load time Cesium JS was still quicker.

Figure 15: Resource Memory for Lidar Dataset at Full Extent

Figure 16: Resource Memory for Lidar Dataset at Medium Zoom

0

5

10

15

20

25

30

0 10 20 30 40 50 60

M
e

m
o

ry
 u

s
e

d
 i
n
 C

lie
n
t

(M
B

)

Tilset Size (GB)

Esri

Luciad

Cesium

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

M
e

m
o

ry
 U

s
e

d
 i
n
 C

lie
n
t

(M
B

)

Tileset Size (GB)

Esri

Luciad

Cesium

51

Figure 17: Resource Memory for Lidar Dataset at High Zoom

4.3. Qualitative Results

Although Cesium JS in most all cases had the quickest loading time and least memory

used. It also produced the least detail in visualization compared to the outputs from Esri ArcGIS

Enterprise and Hexagon Geospatial Luciad RIA. Figure 16 shows a screenshot of the Cesium JS

Figure 18: Cesium JS Zoomed in to Photogrammetric Dataset

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

M
e

m
o

ry
 U

s
e

d
 i
n
 C

lie
n
t

(M
B

)

Tileset Size (GB)

Esri

Luciad

Cesium

52

system at a high zoom level. The points are so sparse that it is difficult to visually see much that

is going on within the scene. In terms of loading time and memory Cesium JS appears more

performant, but in its performance is a reduction in visualization within the client-side

visualization application.

 Hexagon Geospatial Luciad RIA performed much slower and used much more resources

than the other platforms. However, its detail was much greater and more photorealistic than the

other two exploitation systems. Figure 17 illustrates the photorealistic detail of the Luciad RIA

Figure 19: Photorealistic Output from Hexagon Geospatial Luciad RIA Application

platform. The larger use of resources is likely attributed to larger time spent generating color on

top of the 3D tile points, and in loading the extensive libraries that Luciad RIA implements.

 Despite showing slightly quicker load times and slightly less memory in the loading test,

Esri ArcGIS Enterprise implemented much more visual detail than Cesium JS. Figure 18 depicts

