
 

 

 

 

 

 

 

 

 

 

Surface Rupture Detection with Support Vector Machine Classification: 

 

Case Study from Ridgecrest, CA 

 

 

 

by 

 

 

 

Jordan M. Cooper 

 

 

 

 

 

A Thesis Presented to the 

FACULTY OF THE USC DORNSIFE COLLEGE OF LETTERS, ARTS AND SCIENCES 

University of Southern California 

In Partial Fulfillment of the 

Requirements for the Degree 

MASTER OF SCIENCE 

(GEOGRAPHIC INFORMATION SCIENCE AND TECHNOLOGY) 

 

 

 

August 2021 

 

 

 

 

 

 

 

 

Copyright © 2021        Jordan M Cooper 



 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my beautiful wife and daughter  

 



iii 

Acknowledgements 

Thank you to my advisor Dr. Fleming for his support, advice, and understanding throughout this 

thesis. Also, thank you to my committee members for their recommendations, which helped 

make this thesis project better. Additional thank you to Dr. Vos and the staff at the USC SSI for 

their assistance and support during a trying time. The USGS and the various teams that collected 

the data used in this thesis should also be thanked. 

 

  



iv 

Table of Contents 

Dedication ....................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

List of Tables .................................................................................................................................. v 

List of Figures ................................................................................................................................ vi 

Abbreviations ................................................................................................................................ vii 

Abstract ........................................................................................................................................ viii 

Chapter 1 Introduction .................................................................................................................... 1 

1.1. Surface Rupture Mapping ...................................................................................................2 

1.2. Classification of Remotely Sensed UAV Imagery .............................................................3 

1.3. Study Area ..........................................................................................................................4 

Chapter 2 Related Work.................................................................................................................. 7 

2.1. Background .........................................................................................................................7 

2.2. Linear Feature Detection.....................................................................................................8 

2.3. Supervised Image Classification .........................................................................................9 

2.4. Aerial Geologic Studies ....................................................................................................10 

Chapter 3 Methods ........................................................................................................................ 13 

3.1. Data Preparation................................................................................................................13 

3.2. Classification.....................................................................................................................19 

3.3. Spatial Analysis ................................................................................................................20 

Chapter 4 Analysis ........................................................................................................................ 23 

4.1. Test Results .......................................................................................................................23 

4.2. Overall Results ..................................................................................................................33 

Chapter 5 Discussion .................................................................................................................... 41 

5.1. Future Work ......................................................................................................................42 

References ..................................................................................................................................... 45 

Appendix A: Test Run 2 Raster, Classification, and Error Matrix ............................................... 48 

Appendix B: Test Run 3 Raster, Classification, and Error Matrix ............................................... 50 

Appendix C: Test Run 5 Raster, Classification, and Error Matrix ............................................... 52 



v 

 

List of Tables 
 

Table 1 Data Metadata .................................................................................................................. 13 

Table 2 Test Run 1 Error Matrix................................................................................................... 27 

Table 3 Test Run 4 Error Matrix................................................................................................... 32 

Table 4 All Test Runs Error Matrix .............................................................................................. 39 

Table 5 Test Run 2 Error Matrix................................................................................................... 49 

Table 6 Test Run 3 Error Matrix................................................................................................... 51 

Table 7 Test Run 5 Error Matrix................................................................................................... 53 

  



vi 

List of Figures 

Figure 1 Ground View of Surface Rupture ..................................................................................... 2 

Figure 2 Study Location.................................................................................................................. 4 

Figure 3 Study Location.................................................................................................................. 5 

Figure 4 Methods Flowchart  ........................................................................................................ 13 

Figure 5 Original Raster with Verified Surface Rupture Locations  ............................................ 15 

Figure 6 Raster Quality Report Sample ........................................................................................ 17 

Figure 7 Test Run 1 Testing Pool ................................................................................................. 25 

Figure 8 Test Run 1 Classification Results ................................................................................... 26 

Figure 9 Test Run 1 Classified Rupture ........................................................................................ 27 

Figure 10 Test Run 4 Testing Pool ............................................................................................... 30 

Figure 11 Test Run 4 Classification Results ................................................................................. 31 

Figure 12 Test Run 4 Classified Rupture  ..................................................................................... 32 

Figure 13 Results of All 5 Test Runs ............................................................................................ 35 

Figure 14 Results of All 5 Test Runs With Verified Surface Rupture Locations......................... 36 

Figure 15 Closeup of Classified Rupture Example....................................................................... 37 

Figure 16 Closeup of Classified Rupture Example with Verified Surface Rupture Locations  ... 38 

 

 

  



vii 

Abbreviations 

GIS Geographic information system 

GISci Geographic information science 

SSI Spatial Sciences Institute 

TIFF  Tagged Image File Format 

UAV  Unmanned Aerial Vehicle 

UAS  Unmanned Autonomous System 

USGS  United States Geological Survey 

USC University of Southern California



viii 

Abstract 

One possible costly outcome of large earthquakes is breakages in the ground surface, known as 

surface ruptures. Surface ruptures can cause damage to human infrastructure as well as harm 

humans. Detailed field studies that trace these structures take substantial time and effort because 

they affect large regions, but this is reducible by collecting remote sensed imagery performing 

supervised classification on the imagery with a GIS. For this study, unmanned aerial vehicles 

(UAV) imagery from the Ridgecrest area in California was analyzed using the support vector 

machine (SVM) classification method to attempt surface rupture detection in desert terrain. The 

imagery covers a small area, so a K-Folds analysis method was used to attain statistically 

significant results. This involved splitting the imagery into 5 random pools of 30-meter by 30-

meter squares before running the classification. The results of each classification were analyzed 

by generating confusion matrices and visual inspection. An average of the five confusion 

matrices was used for a final analysis. While this method did classify larger segments (> 0.5-

meter-wide) of surface rupture that was in the image, it missed most of the smaller surface 

rupture segments (< 0.5-meter-wide). In addition, the technique misclassified parts of the 

imagery as surface rupture, especially around the vegetation, road paths, and amongst a rock 

field in the south-east corner. Further testing should be done with this method, including using it 

on imagery with different land-cover. Based on the results of the further testing it may be ready 

to try in practice scenarios for real-life earthquake disasters.  
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Chapter 1  Introduction 

One of the natural disasters that cause the most significant damage to human-made 

structures and loss of life is earthquakes. From 2009 to 2019, 27,193 deaths were attributable to 

earthquakes, 47.7% of the 56,967 recorded natural disaster deaths occurred worldwide during 

that period (CRED 2020). During that same period earthquake also caused 44.6 billion U.S. 

dollars in economic losses. While earthquakes can cause damage in various ways, the most 

damaging source is surface ruptures (Jin and Kim 2020). Surface ruptures are cracks in the 

ground that can be anywhere from a few meters in length to several kilometers and can have 

vertical offset up to six meters. The ruptures are associated with large earthquakes greater than 

6.0 Mw. The San Fernando Earthquake in 1971 led to the Alquist-Priolo Earthquake Fault 

Zoning Act in California, which prevents building occupied structures on active faults that can 

cause surface ruptures. Surface ruptures were observable following earthquakes worldwide, such 

as in the 1999 Chi-Chi, Taiwan earthquake, and the 2003 Bam, Iran earthquake. These 

earthquakes caused damage to many buildings and had high fatality rates, with 2000 people who 

died in Chi-Chi and at least 25000 died in Bam. Much of the destruction was associated with 

surface ruptures. 

In this thesis, remote sensed imagery was classified, mapping the potential location of 

surface ruptures in imagery from a study site near Ridgecrest, California.  This site experienced 

an earthquake sequence that involved over 100,000 total earthquakes larger than 0.5 Mw. 

Amongst all of these the earthquakes that were the most powerful were a 6.4 Mw on July 4th, 

2019 and a 7.1 Mw on July 5th, 2019. While different satellite and aerial systems for collecting 

remote sensed imagery exist, this thesis only used imagery from high spatial resolution cameras 

mounted on unmanned aerial vehicles (UAV). The raster imagery used came from a collection of 
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imagery captured at two approximately 500-meter by 500-meter sites over six days between July 

7th, 2019 and September 27th, 2019. The imagery, captured on July 11th, of a segment of the 

surface rupture produced by the 7.1 Mw earthquake was used because of the data's good quality. 

This thesis aims to classify the imagery to differentiate between surface ruptures and the 

surrounding area. With a real-world application in mind for this project, the methods used were 

selected for ease of use. Also, the methods should be able to analyze raster imagery and find 

surface ruptures following large earthquakes to aid rescue crews and repair teams, as well as 

policymakers. 

1.1. Surface Rupture Mapping 

 Surface ruptures are cracks in the ground that are usually formed from earthquakes 6.0 

Mw or greater in strength (see Figure 1). The ruptures are either primary ruptures, where the 

earthquake fault extends to the surface, or secondary, where the earthquake fractures the surface 

outside the earthquake fault plane. The creation of the ruptures can cause damage to utilities, 

transportation infrastructure, and buildings with people in them. Rapid mapping of these 

ruptures, along with infrastructure plans, would allow for quick response to earthquakes like the 

2019 Ridgecrest Earthquake sequence. 

 

 
 

Figure 1 Surface Rupture located near the maximum displacement from the Mw 7.1 earthquake 

(Image Source: Jet Propulsion Laboratory, October 17, 2019). 
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The 2019 Ridgecrest Earthquake sequence generated two sets of surface ruptures when 

the two largest earthquakes occurred, a 7.1 Mw mainshock and a 6.4 Mw foreshock. When 

investigating the earthquakes, researchers used various methods, including satellite imagery, 

aerial imagery, and field investigations.  From their studies, the researchers established the 

different characteristics of the ruptures generated from the two earthquakes. The 7.1 Mw 

displacement was right lateral with up to 7.0 m of movement though displacement was mainly in 

the range of 1.2-1.7 m. 66% of the displacement occurred around the earthquake's epicenter over 

a 12 km section of the surface rupture. The 6.4 Mw was left lateral with up to 1.6 m of 

movement on an individual strand, though most movement was in the range of 0.3-0.5 m.   

1.2. Classification of Remotely Sensed UAV Imagery 

Methods used during this thesis were based on a methodology previously used to classify 

ground cracks in a coal mining area using UAV imagery (Zhang et. al. 2020). Traditionally 

classification is performed by a researcher going through each image and marking the location of 

the object of interest; in this case, it is surface ruptures. This can be a time-intensive endeavor. 

With the advent of faster and more powerful computers, that task is simplified with automatic 

classification methods, both supervised and unsupervised. During this project a supervised 

method, SVM classification, was used in ArcGIS Pro. The software used training data to teach 

the software the optical properties of the surface ruptures to classify it from the imagery that was 

provided. An explanation of A further explanation on the classification methods is found in 

Chapter 3. 

In a GIS, Support Vector Machine algorithm is a supervised machine learning 

methodology that is used to classify raster imagery. Classes are defined based on hyperplanes 

that define the boundaries of the classes. A hyperplane in geometry is a subspace that has one 
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less dimension than the surrounding space, splitting the surrounding dimension into two parts 

(See Figure 2). In machine learning, hyperplanes are the boundaries that separate different 

classes. The hyperplane is plotted to fit between the groups of data points for the different classes 

defined in the training data. Hyperplanes can usually fit several different orientations, but the one 

that is selected fits between the closest data points on both sides in such a way that they will have 

the greatest possible distance or margin from those data points (See Figure 2).  

 

 
 

Figure 2 Datasets x and o separated by a hyperplane. Dashed lines represent the maximum 

margins. Bold X and O’s are data points used to find the margins. 

 

1.3. Study Area 

The study area is a part of the Eastern California Shear Zone in the Ridgecrest-Trona 

region of California. The site is located in the north-west corner of San Bernardino County, 

approximately 200 kilometers north-east of Los Angeles, CA and about 234 kilometers south-
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west of Las Vegas, NV (See Figure 3). Four mountain ranges are found in the region: the Cosos 

in the north, the Sierra Nevada Range in the west, the Argus Range in the east, and the El Paso 

Mountains in the south. In addition, five fault systems can be found in this region: the Owens 

Valley fault zone, Panamint Valley fault zone, Garlock fault zone, Blackwater fault zone, and 

San Andreas fault zone. Researchers are interested in this area because of the complicated 

interaction occurring between the faults, especially the San Andreas and Garlock, both faults 

which can produce large earthquakes. This area has limited vegetation and a small human 

presence, making it easy to observe surface changes. Ridgecrest is the most populous city in the 

area, with 27,616. Also, in the vicinity is the United States Navy's China Lake research facility, 

where most of the damage occurred. Researchers had limited access to investigate, so not much 

data exists from that area. 

 

 

Figure 3 Location of the study site in north-west San Bernardino County. 
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The following chapter is a summary of research relevant to this thesis, starting with 

background information on the site and location. This includes an exploration of field data and 

remote sensed data collected from the Ridgecrest 2019 earthquake swarm. A detailed description 

of what data has been collected and analyzed is necessary to show how this project fits into the 

literature. Following is a look at the use of remote sensing and image classification of linear 

features. This is looked at to see what other potential methods are available for surface rupture 

detection. A short and broad look at supervised image classification comes next. Finally, the 

usage of aerial studies related to the detection of geologic features is presented. The rest of this 

thesis will be the following: methods used in this project, the results of the project, and the 

analyst of the results. 
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Chapter 2 Related Work 

This report, like all research, benefits from a look at the related body of work that has 

been done in the past. To start, a look at the research that has been done related to the surface 

ruptures and surface damage that occurred at Ridgecrest and other seismic events. After this, 

linear feature detection is investigated. Following that will be a general look at supervised 

classification methods with more in-depth coverage of support vector machine classification. 

Finally, the last section of the chapter covers papers that used methods for the detection of linear 

geologic features.  

2.1. Background 

The 2019 Ridgecrest earthquake swarm created a rare opportunity for researchers to 

study surface ruptures with high-resolution equipment. Image data that was produced was 

extensive, including Aerial LIDAR from airplanes, High-resolution multi-spectral imagery from 

UAV's, and various forms of satellite imagery, both public and commercial. Each of these 

capture methods produced imagery that contain various optical properties of the study area. This 

makes it possible to classify the imagery through a GIS with different methodology.  

Prior research into detecting damage from earthquakes through remote sensing means has 

been concentrated on satellite imagery and airplane mounted cameras. These images have been 

used to study the destruction of buildings and infrastructure following several major earthquakes 

such as the 1999 Chichi, Taiwan Earthquake, the 2003 Bam, Iran Earthquake, and the 2010 Haiti 

Earthquake (Dong and Shan 2013 and Fielding 2005). A common methodology that has been 

used to detect such damage has been change detection, which is a technique that involves a 

comparison of a before and after image. Early change detection algorithms would go through a 

pixel-by-pixel comparison, while modern algorithms usually perform an object-oriented 
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comparison. This technique is helpful for detecting significant changes such as when a building 

collapses, or a road becomes offset, but it is poor at discerning small changes such as surface 

ruptures. In addition, it is not helpful for situations in which there is not a before image or the 

before image is too much older than the after image. Based on this fact, new techniques that can 

rely on a single image are needed to detect surface ruptures and other seismic damage.  

2.2. Linear Feature Detection 

Remote sensing imagery has existed since the 1950s since the first satellites were sent 

into orbit by Russia and the United States. Following that time, the resolution of the imagery and 

the types of imagery collected advanced, leading to the ability to automatically detect objects in 

the 1970s.  One of the early uses for the synthesis of remote sensing and automatic detection 

methods was the detection of roads and highways, objects that are sufficiently large enough to be 

detectable in the imagery of the time (Quackenbush 2004). Since the early days, the spatial 

resolution has continued to advance, allowing for smaller objects to be observed with greater 

accuracy.  

In the utility industry, it has become commonplace to see linear object detection used. For 

example, in the electrical industry, remote sensing has been used to map out the locations of 

electrical towers and corridors in the early days. As new image capture methods have evolved, 

the applications have changed for the industry, with uses in the mid-2010s aimed at monitoring 

full grid status and fire safety along electrical corridors (Matikainen et. al. 2016). Methods used 

include airborne laser scanning synthetic aperture radar (SAR) images, optical satellite and aerial 

images, thermal images, airborne laser scanner (ALS) data, land-based mobile mapping data, and 

unmanned aerial vehicle (UAV) data capture (Matikainen et. al. 2016 and Guo et. al. 2016). All 
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these various tools have been brought together to create complete 3-D views of the electrical 

grid. 

Another field that has benefited from linear object detection has been civil engineering. 

Within civil engineering, there has been an increase in studies related to crack detection in 

concrete (Mohan and Poobal 2018). These techniques are of particular interest to this thesis since 

the goal of this thesis is to detect cracks in a different scenario. Cracks, in our situation, are 

surface ruptures that should have similarities to those found in concrete, such as being linear and 

darker colored than the surrounding material.  

Methods from industry are applicable to detect other linear features like surface ruptures 

but with one caveat. First, the algorithms used for detecting and monitoring these features have 

set rules which cannot be applied to ruptures. Pipelines, electric corridors, and roads have rules 

that are common, such as a line ends in a node or a water pipeline should connect to other lines. 

Surface ruptures also have rules that are as well established for where they occur. Many factors 

affect where surface ruptures arise, such as the geometry of local faults, soil and rock properties, 

and the strength of the earthquake that created it. Therefore, rules-based algorithms are not as 

useful for the detection of not just surface ruptures but other geologic lineaments as well. 

2.3. Supervised Image Classification 

Supervised classification methods are methods that involve a user creating training data 

with samples of the classifications that are of interest in remote sensed imagery. Supervised 

classification methods having a higher initial set up than unsupervised and can be more time-

consuming, but it allows for some ground truthing to be incorporated into the classification 

process. Traditionally classification was done by pixel-based methods, but object-based methods 
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have gained popularity (Lei Ma et. al. 2016). This method groups pixels together using 

segmentation and classifies those segments based on what object the system predicts it to be.  

 Different object-based methods exist that are applicable to different scenarios, such as 

classifying different environments like urban, forest, or agricultural areas (Tehrany, Pradhan, and 

Jebuv 2013 and Duro, Franklin, and Dube 2012). Assorted methods are also best suited for work 

with rasters captured by various imaging systems like multi-spectral data or hyperspectral 

images. Amongst the many supervised classification techniques, Random Forest, K-Nearest 

Neighbor, and SVM are considered to have the highest level of accuracies and are the most used 

because of it (Thanh Noi and Kappas 2017). Amongst these three classification methods, the 

overall accuracy and results of their classification was similar if they had sufficiently large 

training sample size, around 0.25% of the research area. When below this value, SVM has been 

found to be the least affected by the size of the training data. SVM was selected for this reason, 

since the rupture lines are narrow areas of pixels in the rasters that are smaller than 0.25% of the 

area. Because the SVM classification is a core component of this thesis it is discussed in the 

following subsection. 

2.4. Aerial Geologic Studies 

Remote sensing has been a boon to the earth sciences since the first satellite images were 

captured, changing the way research is done. Since the early days of geologic field studies, 

research was done in person. Mapping of geologic features would be done this way; faults and 

folds could be found as what was seen in the field was drawn on the map. This changed with the 

development of one of the earliest forms of air travel, hot air balloons. A field mapper could go 

up and see the geology from a bird's eye view. As more advanced forms of air travel developed 
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and better cameras, more of the earth could be studied this way. The airplane, the rocket, and 

satellite, and now the UAV have all added to the available imagery of the earth's geology. 

Studies of earthquake faults have used various remote sensing imagery to tease out the 

structure of faults. This has included standard methods such as LIDAR and SAR, but also less 

common field research tools such as UAVs that can detect changes in gravity anomalies or 

magnetic field changes in the subsurface.  These specialized systems tend to be costly, so 

researchers use other cheaper methods such as InSAR. InSAR imagery is used to detect 

deformation that occurs following major seismic events. InSAR is one of the tools that has been 

used to create an image of the structure of the faults at depth. Surface ruptures occur along with 

earthquake faults, so understanding what is happening at depth helps researchers develop a 

complete image of what occurs at the surface, and the opposite is true too. For the Ridgecrest 

Earthquake Swarm, InSAR was a significant tool that was used along with surface rupture 

studies to find the geometry of the faults as well as the slip that occurred on them (Ross et. al. 

2019) 

Surface exposures of other linear geologic features have been detected as well, such as 

fault scarps. Research was performed in Slovenia to detect hard to observe fault scarps that were 

located in a forested area. To do this, researchers used a vegetation removal algorithm to remove 

trees in order to get a clear look at the topography. From there, they were able to visually inspect 

the topographic imagery and find fault scarps (Cunningham et. al. 2006). DEMs and DSMs have 

been a common tool for locating faults, such as when DEMS and satellite imagery were used to 

locate earthquake faults in the Black Forest, Germany (Meixner et. al. 2017). In another study, 

researchers used a LIDAR data collection to detect fault scarps in Northern California (Sare, 

Hilley, and DeLong 2019). This study used DEMs they generated in combination with template 
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matching algorithms to potentially detect segments of fault in the northern San Andreas Fault 

system. All of these examples show the importance of remote sensed imagery for detecting fault 

structures. A further consideration shows that combining it with various detection techniques 

creates powerful tools for finding fault exposures and other lineaments in hard-to-reach areas 

such as these.  

UAV’s have been used to collect imagery in several different areas of research in both 

the social sciences and the physical sciences. One area that is seeing increased usage as of 2020 

is geologic studies. A significant component of geology is field research which is often done in 

demote, hard-to-reach areas. To study some of these sites’ airplanes would be flown over to 

collect images of the site. Since then, though, UAVs have started to gain usage because of 

several advantages they have.  UAVs are cheaper to fly than aircraft and can be used to image 

the same area over a small timespan. They are also able to reach areas that are hard to get to or 

hazardous to travel through, such as in a volcanic area or a landslide area. Another reason is that 

they can collect a high-resolution image normal to the surface and cover a larger area than a 

person on foot. The last reason is that cameras on some UAVs can be changed out, with each 

camera being able to collect imagery in different wavelengths, which can then be used to study 

various features.    
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Chapter 3 Methods 

This study is composed of three general steps for the methods used: Data Integration, 

Image Classification, and Spatial Data Analysis. The first step, Data Preparation, looks at what 

data is used and what changes need to be made prior to classification. In the second step, (3.2) 

Image Classification, the imagery will be classified by SVM, a supervised technique that is 

readily available in ESRI's ArcPro 2.1. The last step, Spatial Data Analysis, (3.3) will involve an 

explanation of error matrices for the classification results and how it is used for the analysis. An 

overview of the steps can be seen in figure 4 below. 

 
 

Figure 4 Flowchart of the steps involved in the methods used. 

3.1. Data Preparation 

 This section covers: (3.1.1) the selection of the datasets for classification, (3.1.2) 

processing of the data to make it into a usable format, and (3.1.3) preparing it for creating 

training data for the object classification. 
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3.1.1. Data Selection 

This thesis used two different files (see Table 1 below). The first data set is the UAV 

imagery that was downloaded from Geo-Gateway.org for a study site that covers an area of 

approximately 0.275 km2 (Figure 5 below). This imagery contains a segment of surface rupture 

from the 7.1 Mw that is observable with the naked eye in the image, as well as several smaller 

strands that are harder to locate. Additional imagery was collected at this site on six other days, 

but due to time and data storage constraints, they were not used for this project. The second 

dataset is a line feature file of the surface ruptures produced by the United States Geologic 

Survey. In this data set, the data is generalized and considered preliminary.  

Table 1 Data Metadata 

 

Data Name File 

Type 

Source Scale Precision Accuracy File 

Size 

Surface 

Rupture 

Lines 

Surface_Rupture 

Ridgecrest 

_Prov_Rel_1 

.kml/.shp USGS Unknown Unknown < 10 m 32 

MB 

Drone 

Imagery 

 

SVRL2019 

0711C_ 

dsm_2cm 

.laz/.las https://archive. 

Geo-gateway. 

org:3000/ 

main.html 

Multiscale .5 m to 

1.72 m 

2 cm 1.5 

GB 
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Figure 5 High resolution imagery of the study site with confirmed surface ruptures marked. 

Raster from Donnelan et al and lines from DuRoss et al. 
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Several remote sensed datasets related to the study site were found to be readily 

available; these datasets were collected with various electromagnetic spectra and methods. It was 

deemed acceptable for this project to use only one type of remote sensed data to simplify the 

project. In this case, a UAV imagery file that covered approximately 500 meters of the surface 

rupture from the Mw 7.1 earthquake. The UAV imagery has a high spatial resolution, with 

resolution approximately at 2 cm and an average ground sample distance of 1.68 cm.  This 

dataset was taken on July 11th, seven days after the earthquake swarm began and five days after 

the Mw 7.1 mainshock occurred. The UAV imagery data is available in two different formats, a 

raw point cloud and a derivative digital surface model (DSM). Both file types have the same 

accuracy and spatial resolution, but the DSM files were selected for the classification in this 

project. The DSM file is preferred because it is a derivative of the point cloud that does not need 

further processing prior to classification. In addition, the DSM is a smaller file, which is a benefit 

when data storage is limited.  

 The UAV DSM imagery is composed of pixels that contain latitude and longitude data 

along with the three-color bands that contain the optical properties for the image. In addition, the 

surface elevation is also available in each pixel, which, along with the latitude and longitude 

data, is based on the coordinates collected at GPS stations. Donnellan et al. collected the imagery 

with a Parrot Anafi model UAV. The Anafi comes equipped with a 21-megapixel camera that 

took the imagery in a forward-facing direction, 20 degrees up from the nadir. The height of the 

flights was held at 45 m above ground level. Flights for the Mw 7.1 surface rupture segment 

were performed in the early afternoon for each of the flight days except one which was 

conducted in the morning. Like other common UAV’s the Anafi has a limited flight time, up to 

approximately 25 minutes, that can cover only a small area.  



17 

 

 Donnelan et al. (2020) used Pix4Dmapper software to create the orthomosaic and digital 

surface model raster from the imagery that the UAV collected (Figure 6 below). Pix4Dmapper 

created a quality report that contains information that is important to review when working with 

any data. The UAV collected 2432 images in total but only 2049 were used to create the DSM. 

The imagery was georeferenced using 11 ground control points with a RMS error of 0.016 m. 

That is a small RMS error meaning relative to the ground control points the imagery is accurately 

georeferenced. Figures showing the flight pattern can also be found in the quality report. These 

show how often the same location was visited. More in-depth accuracy measures can be found in 

the quality report. 

 

 

Figure 6 Sample of pages from quality report generated by Pix4Dmapper 
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 The line file was originally a kml file the USGS released with the outline of the 

preliminary locations of the ruptures. Even though the line work is considered preliminary, it still 

has a high level of accuracy and has been validated in the field by the USGS. The file was 

imported into ArcGIS to use in the project as a a form of validation for the results of the 

classification. It was also visually compared to the raster imagery and found to match up closely.  

3.1.2. Raster Format 

 High-resolution imagery, such as what was used in this project, is usually large, often 

reaching sizes greater than one gigabyte. The files were compressed to compensate for that and 

make the files easier to transfer or download. In the case of the UAV imagery that was used in 

this project, it was compressed with the laz compression format. The laz format is a standard 

compression format used to compress las files. The las file format is a raster format for LIDAR 

and high-resolution imagery. Las files contain 3-dimensional point cloud information, with each 

point containing x, y, and z data as well as the optical information at that point. The data was 

uncompressed in ArcGIS Pro with the Convert Las tool. All parameters in the tool were left as is. 

This tool converted the laz file to a las file. ArcGIS Pro displays LAS files as dots, so to make 

this usable, this format was then further processed with the LAS Dataset To Raster tool. Most of 

the parameters were left as is except for the sampling value, which was defined as .02 m and the 

file format selected was TIFF. TIFF is a common file format for rasters that ArcGIS Pro can 

export natively. 

3.1.3. Data Preparation 

The raster covered a small section of the overall surface rupture system in the area, 0.5 

km of the 50 km of surface ruptures produced by the Mw 7.1 earthquake. This limited coverage 

of the site made it necessary to use a K-folds cross-validation method to ensure a statistically 
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significant number of tests were done. K-fold cross-validation is explained below in Section 3.3.  

The DSM file was split up into 30 meters by 30 meters grid using the Raster Split tool to 

generate the files that were used for the cross-validation. This yielded 274 separate raster files. 

30-meters by 30-meters was chosen because it kept the number of the split rasters within a range 

that was not too many that it would be time-consuming to work with but also not too few that a 

statistical significance could not be reached. 

3.2. Classification 

A four-step process was used to perform the classification. First step was the 

segmentation of the data. This is a technique that the GIS performs to create a new raster where 

the pixels from the original raster are grouped together based on similar characteristics. The 

second step was the creation of training data for each of the training groups in the Training 

Sample Manager in ArcGIS Pro. When selecting training data, polygons were created that 

overlay the pixels in the imagery that represent the three categories of classification, "rupture," 

"no rupture," and "vegetation." In initial tests, additional categories were attempted for the 

classification schema, but these seemed to muddle the output and made each classification run 

several hours longer. Visual inspections of the results showed a decreased performance of the 

classification. The third step is to use the Train Support Vector Machine Classifier tool. This tool 

creates an Esri classifier definition file (ecd), which is a type of file that contains the attributes of 

the training results such as the hyperplane coordinates. The recommended max sample per class 

setting of 1000 was found to be acceptable for this tool. To confirm this, various values for this 

setting were tried on a small test area before the project was attempted. It was found that an 

increase in number of sampling beyond 1000 did not produce a noticeable change in 

classification but significantly increased the processing time for the tool. The final step was to 
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use the ecd file in the Classify Raster tool with the test samples. In this project, the tool uses the 

training data to find whether a pixel belongs to the "rupture," "no rupture," or "vegetation" 

category. This generated the final classified rasters that were then analyzed. 

3.3. Spatial Analysis 

The goal of this part of the thesis is to check the accuracy of the classification outputs 

created by the methods used. To check for the accuracy quantitatively, error matrices were 

created for each test run. Error matrices are table outputs that are created when one compares a 

dataset with expected values to the classified dataset. Prior to an error matrix being created in 

ArcGIS, random sample points are made using the Create Accuracy Assessment Points tool. This 

generates points that contain the classified value at that location and requires the user to input the 

expected value. These values are used in the calculation of the error matrix. 

The error matrix table contains information on the results of the accuracy assessment 

points as well as the producer accuracy, user accuracy, total accuracy, and kappa coefficient. 

Producer accuracy is how likely is what is found in the original raster will be found in the 

classified image. This is tied to errors of omission (Equation 1 below), which are those values 

that were omitted by the classifier, so in this case, any surface rupture pixels that are missing. 

User accuracy, on the other hand, is how likely what is found in the map matches with what is 

observable in the field. This is tied to the errors of commission (Equation 2 below), which are 

those values that were improperly classified as the classification of interest; in this case, it is 

those pixels that are classified as "surface rupture" when they should have been "not surface 

rupture" or "vegetation". Total accuracy is the overall accuracy of the classification, but it is an 

average across all the classes. Because it is an average, one does not see if any individual classes 

are more or less accurate than the other classes. This is why user accuracy and producer accuracy 
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are critical to check for each class. The last statistical measure looked at is the kappa coefficient. 

Kappa is a measure of likeliness that results are due to the classification software or random 

chance. Kappa is a value from -1 to 1, with a value closer to 0, meaning that the results are 

random and a value closer to 1, indicating the results are due to the classification. The coefficient 

is calculated by comparing the actual results to expected results (Equation 3 below).   

 

Equation 1: Producer Accuracy = 100% - Omission Error 

Equation 2: User Accuracy = 100% - Commission Error 

Equation 3: Kappa Coeffiecent = (Actual Results - Predicted Results) / (1 – Predicted Results) 

 

For this project, we are primarily interested in the correct classification of surface 

ruptures from the imagery, but the overall accuracy of the classification of vegetation and non-

rupture surfaces is also investigated. Both the errors of commission and errors of omission were 

looked at to check the accuracy to quantify how well the overall methodology worked. Five error 

matrices were created, once for each of the 5-Fold cross validation runs. The Producer Accuracy 

and User Accuracy from the five runs were then averaged out to find the resulting accuracy of 

the method. Kappa coefficient is also looked at to check whether the results are due to the 

classification algorithm or just a random result. 

Usually when testing a classification method, such as SVM, it is necessary to run several 

different tests to remove any potential biases that would occur in a single test run. This is not 

possible with a small data set so the K-folds cross-validation is used instead. K-folds cross-

validation is a validation technique that is useful when working with a small data set, since it less 

likely to be affected by biases (James 2017). When using K-folds the researcher randomly splits 
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the data into equal sized pools. The training data creation and classification is ran a number of 

times equal to the number of pools. Each of these test runs will use a pool as a test group while 

the rest will be used for training data. After a pool has been used a new pool is selected and the 

last pool joins the training data. When all the data has been used once, the results are averaged 

out creating the final assessment. As stated before, the averaged out results should limit the 

effect of biases found in any one testing pool. 

Typical K-fold cross validation is done with somewhere from 5 to 10 test groups. In the 

case of this thesis a 5-fold cross-validation method was used to cross-validate the data. This 

means that every test was composed of a randomly selected mix of images, with 80% being used 

to generate the ecd training files and 20% being used to test the training files and create the 

classified rasters for validation. To do this, the split images were assigned a number, and those 

numbers were randomly selected to make each test pool. Every image only participated in one 

test pool.  
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Chapter 4 Analysis 

Chapter 4 is separated into two sections. The first of the sections is the results for two of 

the five test runs, which will be presented and analyzed (Section 4.1). The second section is the 

evaluation of the overall results for the entire data set. (Section 4.2). 

4.1. Test Results 

The first four test runs were composed of 69 of the 30-meter by 30-meter rasters that 

were split off from the original raster by the Split Raster tool. The fifth test run was composed of 

68 raster portions. Features found throughout the original raster were observed to be distributed 

between all five test runs. All the figures for this section can be found in Appendix A except for 

the figures for Test Run 1 (4.1.1.) and Test Run 4 (4.1.2). Error matrices for Test Runs 2, 3, and 

5 can be found in Appendix B. In each test run, the typical components of the original raster 

were found throughout the group on split rasters. These components include the desert surface, 

paths, dry streambeds, paved roads, rocks, and shrubs. In addition, some discoloration can be 

found in the sections of the imagery towards the edges of the image. This discoloration shows up 

as a blue tint on the eastern and western sections and orange in the northern section. There is also 

a minor blue tint in the southern part of the map that is not as prevalent as the discoloration in the 

other edges. It is relevant to be aware of the discoloration around the edges since that changes the 

properties of the raster cells at those locations. When creating the training polygons, those 

sections were avoided to prevent issues with placing the boundaries between the classes in the 

training file. 

Results from two of the five test runs are covered in this section (4.1.1 – 4.1.2.). These 

two test runs were selected to represent the range of results where one consists of a poor result 

and one that represents a good result. For each test run, the classified raster was visually 
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inspected prior to the creation of the error matrix. Observations from those inspections are 

discussed first. Second, a small discussion of the results of the error matrix will follow.  

 

4.1.1. Poor Test Results - Test Run 1  

Portions of the original raster that were used in the first test can be seen below in Figure 

7. For this test run, one of the crucial parts of the raster is the small segment of the main surface 

rupture that can be found in the center of the study site, which is circled in figures 7 and 8, and a 

larger version is in Figure 9.  The rupture can be seen in the lower-left square as a line in the 

desert surface with some dark soil around it in figure 9. In figure 9, there is a section of pink that 

traces that same area, showing that the classification method did capture the main surface rupture 

in that area. A large area appears to be captured, which includes disturbed soils around the 

surface rupture as well as the rupture itself. Similarly, this can be seen in the square north-west 

of those, providing additional evidence that the main surface rupture is detectable by the SVM 

classification method. On the other hand, it does not appear to capture the thinner segments that 

are present. It also seems to misclassify the paths and stream beds as "rupture." Much of the 

shrubbery and non-surface rupture areas appear to be adequately classified, with obvious 

exceptions being the aforementioned paths and streams, as well as the edges of the study area, 

the rock field in the south-east corner, and the road to the north. 
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Figure 7 Randomized 30x30m rasters used for Test Run 1. Circled area shown in closer detail in 

Figure 9. 
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Figure 8 Classified Results of Test Run 1, classified with SVM classifier. Circled area shown in 

closer detail in Figure 9. 
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Figure 9 Comparison of the main surface rupture observed in the original raster (A) and the 

classified raster (B) for Test Run 1. 

 

 The confusion matrix shows that the classification of Test Run 1 was a mixed result 

(Table 2). The "no rupture" classification had a user accuracy of 96.7%, which means that only a 

small amount of the other classes was classified as "no rupture." When looking at the producer 

accuracy for the same class, one sees that many of the "rupture" cells were included, this in 

combination with the small number of "vegetation" misclassification caused a drop in the 

accuracy to 68.3%. "rupture" cells counted for only a small number of the total cells in the 

classification, so any errors have a substantial effect on the accuracy. This is why the user 

accuracy is at only 6.8% for the "rupture” class, with 105 "no rupture" and 17 "vegetation" cells 

being classified as “rupture” versus only nine cells being correctly classified as "rupture." The 

surface ruptures are narrow lines that limit the available cells to classify. Producer accuracy is 

also affected by this fact, so even though it resulted in a 90.0%, it needs to be carefully 

B A 
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considered when analyzing the results. The final class, "vegetation," had good results, with a 

producer accuracy of 76.9% and user accuracy of 83.8%. "Vegetation" is distinct from the desert 

surface, with the dark coloration of the vegetation being easy to distinguish from the light colors 

of the desert. This helped in the consistent classification, though the edges of the vegetation 

would blend with the desert surface immediately next to it, which is likely why the results were 

average. Overall, the total accuracy was 70.6%, which was dragged down by the "rupture" user 

accuracy results, as well as the producer accuracy results for "no rupture." Finally, the Kappa 

coefficient can be looked at, which was .454. Kappa coefficients do not have exact breakdowns 

for what each coefficient value means, though the fact that it is closer to zero means that the 

results were only slightly better than random chance. All of these results point to Test Run 1 not 

being successful at capturing the surface rupture in a way that is meaningful, especially for a user 

of the map. 

Table 2. Confusion Matrix (or Error Matrix) for Test Run 1 

Class Value No Rupture Rupture Vegetation Total User Accuracy Kappa 

No Rupture 261 1 8 270 96.7% 
 

Rupture 105 9 17 131 6.9% 
 

Vegetation 16 0 83 99 83.8% 
 

Total 382 10 108 500 
  

Producer 

Accuracy 

68.3% 90.0% 76.9% 
 

70.6% 
 

Kappa 
     

0.454 

 

4.1.2. Good Test Results - Test Run 4 

Test Run 4 is composed of the portions of the original raster found below in Figure 10. 

This test run, like all the test runs, has segments of the surface ruptures in various portions of the 

map. A segment of the primary surface rupture is circled below in both the original raster in 
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figure 10 and in the classified raster seen in Figure 11. A larger version of the surface rupture is 

found in figure 12. The fault is a dark line that cuts diagonally from north-west to south-east 

across both image portions.  In the matching classified image, the surface rupture is clearly 

captured. There are small pockets of the “rupture” class also seen in the image along the paths, 

but they do not stand out as much as the classified surface rupture. The SVM classification was 

even able to capture the separate strands of the rupture in the upper left square. Test Run 4 

appears to have been the best classification of all the tests, with not just the main surface rupture 

classified but parts of the smaller ruptures as well. Like the other test runs, there was distortion 

along the edges of the raster from the color tint, which caused widespread misclassification in 

those areas. In addition, there was misclassification in the rock field area in the south-east. 
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Figure 10 Randomized 30x30m rasters used for Test Run 4. Circled area shown in closer detail 

in Figure 12. 
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Figure 11 Classified Results of Test Run 4, classified with SVM classifier. Circled area shown in 

closer detail in Figure 12. 
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Figure 12 Comparison of the main surface rupture observed in the original raster (A) and the 

classified raster (B) for Test Run 4. 

 

For the classification of Test Run 4, the error matrix had primarily good results (Table 3). 

The "no rupture" class had a user accuracy of 98.9% and a producer accuracy of 89.6%, making 

it the most accurately classified class in any of the tests. A small number of the "rupture" class 

was thrown into both, which is expected since surface rupture is formed in the desert surface. 

The training data used may have had a small amount of "rupture" pixels mixed in with "no 

rupture," and vice versa as well. "Rupture" class results were okay at 18.8% for the user 

accuracy, better than any of the other test runs. The producer accuracy was lower than the other 

classes, though, at 69.2%. As previously stated, the results for the "Rupture" class need to be 

carefully considered since the surface rupture is a small portion of the study site. “Vegetation” 

was also highly accurate, with user accuracy of 82.5% and a producer accuracy of 83.3%. All 

these results led to a good total accuracy of 87.8%. This is higher than any of the other test runs, 

which in combination with the visual inspection of the classified raster, shows that this was a 

successful test run. The final part of the confusion matrix to look at is the Kappa coefficient. Test 

B A 
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Run 4 has the highest kappa coefficient of all test runs at 0.7. The score is close to 1, which 

means that the classification results were not likely caused by random chance. Unlike Test Run 

1, all of the results for Test Run 4 show that with good training data, large surface ruptures can 

be captured with the SVM classification method. 

Table 3. Confusion Matrix (or Error Matrix) for Test Run 4 

Class Value No Rupture Rupture Vegetation Total User Accuracy Kappa 

No Rupture 344 3 1 348 98.9% 
 

Rupture 23 9 16 48 18.8% 
 

Vegetation 17 1 85 103 82.5% 
 

Total 384 13 102 499 
  

Producer 

Accuracy 

89.6% 69.2% 83.3% 
 

87.8% 
 

Kappa 
     

0.7 

 

4.2. Overall Results 

This part is similar to the previous sections, but it is a look at the overall results across all 

five test runs. This includes a look at a map with the combined results, as well as averages of the 

results of the five confusion matrix results, except for the kappa coefficient.  

The results from all five test runs were brought together, as shown in Figure 13 below, to 

get a better understanding of how effective the classification method is. Underneath is Figure 14, 

which is Figure 13 with the addition of the linework from the USGS for comparison purposes. 

There are several features that stand out when first looking over the complete picture. One 

observation is that the road and paths in the original raster are traced out accurately in the image. 

The paths stand out because of the lack of "vegetation" found in them, while the "no rupture" 

class usually has "vegetation" dispersed throughout. This shows that the methodology used was 

able to differentiate "vegetation" and "no rupture." Another observation is the misclassification 
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that occurred along the edges of the raster. This highlights the effect of the discoloration in the 

original raster image. That discoloration has caused the cells in those areas to have the wrong 

optical properties, so the classification placed them in a different class based on how the training 

data was binned. In the south-east corner, there is also a large section of “vegetation," which is a 

group of misclassified cells that should have been "no rupture." That area is a rock field that has 

optical properties that are different from any other part of the raster. This could be corrected in 

future runs of the methodology by creating an additional class, though this will increase 

processing time. It is also important to point out the large areas of the raster that are classified as 

"rupture" that should be placed into another class. Those are from Test Runs 1 and 2 and appear 

to have occurred because of the training data that was used. This is based on the fact that all of 

the settings and methods stayed the same between the tests, but a more significant amount of 

training data was used for the last three test runs.  
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Figure 13 Classified Results of all 5 Test Runs. Close up of area in square in Figure 15 and 16 

below. 
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Figure 14 Classified Results of all 5 Test Runs with surface rupture lines. Close up of area in 

square in Figure 15 and 16. 
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Finally, the success of the method at classifying the surface ruptures needs to be 

examined. Figures 15 and 16, found below, show a sample of the classification of the rupture and 

the rupture lines laid over it.  Looking at the image, one can see that the main rupture is well 

classified and easily distinguishable from any other features in the image. It is even possible to 

observe individual branches of the rupture. When the image is magnified further, some smaller 

surface ruptures are also observable though not to the same degree. Groups of "rupture" pixels 

form linear patterns along those lines, but there are breaks along the linear patterns, showing that 

it is not capturing the entire rupture. Overall, all the methodology appears to work though the 

results would be better if the first two test runs were replaced with test runs like the latter three.   

 

 
 

Figure 15 Close up of surface rupture segment. 
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Figure 16 Close up of surface rupture segment with ground truthed surface rupture lines from 

USGS. 
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Creating an average of the results of all the confusion matrices reveals the overall success 

of the classification though some issues are found (Table 4). The "No rupture" class had a user 

accuracy of 97.0% and 77.0%, which shows that the classification method was highly effective 

at detecting and classifying the class. This was the largest class across the entire raster, as 

evidenced by the number of sampling points correctly classified in the confusion matrix. The 

results are trustworthy based on this fact. The second-largest class was “vegetation," which also 

had good results, with a user accuracy of 78.0% and a producer accuracy of 75.6%. When 

comparing the results of the classifications and the original raster, it can be seen how well the 

SVM classification is able to differentiate between the classes. That is expected since the optical 

properties are highly distinct between the two. The next class to look at is the “rupture” class, the 

smallest class by a large degree. Only 47 sample points out of 2496 were classified correctly as 

"rupture," so the results may be skewed because of this small sample size. User accuracy for this 

class is exceptionally low at 10.0%, which would typically point to the method failing at 

detecting the "rupture" cells, though this may not be true. It is likely that the results are 

influenced by the poor results from Test 1 and Test 2, as well as the low number of sample points 

in the confusion matrix. Producer accuracy is close in value to the other classes at 77.1%. Like 

the individual test runs, this result needs to be carefully considered based on the low sampling.  

The averaged total accuracy for all the tests is at 76.7%, which is a good result, but it does not 

reflect the poor outcome of the "rupture" user accuracy. Results for the kappa coefficient were 

not included since it cannot be averaged from the results of the five matrices.   
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Table 4. Confusion Matrix (or Error Matrix) for Combined Test Runs 

 

Class Value Not Rupture Rupture Vegetation Total User Accuracy 

Not Rupture 1463 11 33 1508  97.0% 

Rupture 324 47 98 469 10.0% 

Vegetation 112 2 405 519 78.0% 

Total 1899 61 536 2496 
 

Producer Acc. 77.0% 77.1% 75.6% 
 

76.7% 
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Chapter 5 Discussion 

The results of this project showed that the proposed methodology is only partially 

applicable, as is, to this research site. In order to assess this, the classification results from each 

test were compared to a dataset with the known locations of the surface ruptures. SVM was able 

to capture the primary section of fault rupture but failed to capture the smaller strands of the 

ruptures. In addition, it misclassified some of the paths and streams, or at least the edges, and the 

areas around bushes as rupture. It is not clear why this is, but the areas around bushes likely have 

similar optical properties to the soil disturbed by the surface rupture. This may be because the 

shrubs are casting a shadow, or they may keep the soil moister, or it could be the decay of 

material from the bushes. These are all possibilities but finding the cause is beyond the scope of 

this project. Paths and streams were most likely misclassified because they share some 

similarities with the ruptures. The ruptures probably share some level of linearity with them, as 

well as similar coloration, likely caused by the fact that in these cases, the soil has been 

disturbed, which reveals lower soils. 

It is important to note that the training data used seems to have a substantial effect on the 

results of this project. The first two test runs did not seem to get as accurate of a classification of 

the main surface rupture as the last three test runs. While everything was kept consistent between 

the five tests, the only difference was the number of training sample polygons used for training 

the classifier. If Test Runs 1 and 2 had the same volume of training data, the resultant combined 

user accuracy would have been higher. From this, one can infer that an overabundance of 

training samples does not hurt classification in this case.  

 If this method had worked, it would have been a boon to response teams following 

earthquakes and possibly other hazards. Despite it appearing to not work fully as intended, 
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similar methods, such as those used by Zhang et al, have worked before. This shows that the 

method has potential that should be further researched. Anything that can accelerate the detection 

of hazardous areas that rescue and repair crews can target following a natural disaster is essential 

to help save people. 

5.1. Future Work   

5.1.1 Additional Data Sets 

As mentioned previously, when the software was classifying the imagery, parts of the 

study area were misclassified. This is because the optical properties the classification tool is 

detecting are similar between the rupture and regions around the paths and bushes. One solution 

for dealing with this is the inclusion of other datasets that cover different parts of the 

electromagnetic spectrum. The best type of imagery dataset that may help with this is 

hyperspectral imagery. While the multi-spectral imagery used in this study is composed of three 

bands, hyperspectral imagery is usually composed of over one hundred bands. Each band is 

composed of a small segment of the light spectrum. With hundreds of small bands, the software 

would be able to bin a smaller range of values for the rupture classification and likely decrease 

the number of misclassified pixels. A possible way to analyze the additional raster imagery is to 

use Empirical mode decomposition (Adu-Gyamfi et. al. 2011). This method takes the imagery of 

various resolutions and breaks them apart into smaller band components that represent unique 

differences between the imagery. Those smaller components can be recombined or filtered to 

bring out linear features. 

5.1.2 Methods Outside of ArcGIS 

ArcGIS is limited in the number of tools that are natively available for classification. 

There are other methods that may be better suited for extracting the fault ruptures from imagery, 
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such as those covered in Mohan and Poobal’s (2018) review on crack detection in concrete. 

These methods should be applicable since the properties of the concrete cracks should be like 

those of fault ruptures. Both are linear features, usually not straight, and considerably darker than 

the surrounding surface.  

Some, if not all, of the methods that were used can be done in the Python programing 

language with readily available libraries. ArcGIS already includes a python compiler and its own 

python library. Python can be used to integrate ArcGIS functions with some of these various 

libraries, such as those used for machine learning, like TensorFlow or Pytorch. Bringing python 

into this would open up a large number of new methods for performing this research. 

5.1.3 Computational Performance Increase 

Data storage and time became issues when performing this project. This entire project 

was performed on a virtual desktop that has limited storage and can only be accessed for 5 hours 

at a time. These factors constrained the processed that could be performed to only those that fit 

into that time frame and the allotted storage. If these limits were not in place, additional testing 

on the imagery for the Mw 6.4 or performing the methods on the imagery from the six other days 

could have been performed. This would have added to this project, creating more statistically 

significant results to the project, but the space needed was far more than was available. So, in the 

future, it would help to perform this on a desktop computer which can be left on for processes to 

be completed and data issues are easier to manage. There were 14 total UAV images from the 

two sites across the seven days that were available. A model could be created to run the steps 

that were performed on the image used for this thesis without interruption. The only human input 

needed would be the initial creation of the training data. 
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5.1.4 Additional Scenarios 

 Methods used in this project need to be tested in other locales besides a desert area like 

Ridgecrest, CA. Imagery collected from other types of terrain will have different spectral 

properties than those in the imagery used in this project. One type of terrain it would be 

beneficial to test in is urban and suburban areas. These areas have more buildings, more 

underground utilities, and higher populations. Being able to quickly locate areas that have been 

damaged will help save lives. A forested area would also be an area to consider testing in. The 

tree cover makes it hard to observe the ground surface in this sort of environment, but it is 

possible to capture imagery of it with a LiDAR system. These terrains, and other settings, have 

their own qualities that can hinder the observation of the fault ruptures. Working out how to deal 

with these hindrances ahead of time is a criterion for applying this methodology to the real 

world.  

Testing it in a real-world scenario, or at least a simulation of one, would also be 

insightful. One of the usages for this method is to use it for directing safety crews to the location 

of the damage but to make sure it assists them with their duties; testing needs to be performed. 

The simulation can include different situations, such as locating damaged roads, utilities, or 

buildings and any individuals hurt by those hazards. It could be integrated into a dashboard that 

can find the rupture and be used to estimate damage costs, track first responders, keep track of 

hospital loads, or any other piece of information that policymakers, first responders, and other 

members of government need. 
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Appendix A: Test Run 2 Raster, Classification, and Error Matrix 

 
 



49 

 

 
 

Class Value No Rupture Rupture Vegetation Total User Accuracy Kappa 

No Rupture 227 3 8 238 95.4% 
 

Rupture 136 13 27 176 7.4% 
 

Vegetation 16 0 70 86 81.4% 
 

Total 380 16 104 500 
  

Producer 

Accuracy 

59.7% 81.3% 67.3% 
 

62% 
 

Kappa 
     

0.358 
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Appendix B: Test Run 3 Raster, Classification, and Error Matrix 
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Class Value No Rupture Rupture Vegetation Total User Accuracy Kappa 

No Rupture 322 1 10 333 96.7% 
 

Rupture 40 6 19 65 9.1% 
 

Vegetation 30 1 70 101 69.3% 
 

Total 392 8 99 499 
  

Producer 

Accuracy 

82.4% 66.7% 70.7% 
 

79.8% 
 

Kappa 
     

0.531 
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Appendix C: Test Run 5 Raster, Classification, and Error Matrix 
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Class Value No Rupture Rupture Vegetation Total User Accuracy Kappa 

No Rupture 309 4 6 319 96.6% 
 

Rupture 20 10 19 49 20.0% 
 

Vegetation 33 0 97 130 74.6% 
 

Total 362 14 122 500 
  

Producer 

Accuracy 

85.1% 71.4% 78.9% 
 

83.5% 
 

Kappa 
     

0.645 

 


