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Abstract 

Most research literature on aggregate travel behavior and the built environment indicates that a 

dense, mixed-use, and transit-friendly settlement pattern generates lower automobile miles 

travelled than a traditional suburban development. By the same comparison, a substantial portion 

of research shows that any shift away from this ideal neo-urbanist community to more general 

urbanized areas exhibits only marginal – if any – influence upon travel behavior. Additionally, the 

commuter who must traverse such complex urban landscapes lacks information about the daily 

end-to-end costs associated with each practical mode of travel. This project’s GIS service package 

models the costs of driving versus transit, in minutes and dollars, for individual commutes from 

the perspective of a traveler. To sufficiently provide these spatial results, a network dataset was 

constructed for each travel mode – driving and multimodal transit – in the central metropolitan 

area of Washington D.C. The applied variables for driving included the cost of fuel per mile, 

travel time, parking time, and average parking fee. For bus, rail and pedestrian modes, the 

variables include average transit fares, walking, waiting and in-vehicle times, as well as these 

same inputs applied to any transfers. Commute times are summarized for each mode alongside 

corresponding dollar totals. For this cost conversion, annual income is extracted from location-

based probabilistic income in traveler demographic data provided by StreetLight Data, Inc. 

Through web services development this thesis investigates a new approach for web GIS to model 

travel-cost information for individual commutes. These interactive services facilitate several use 

cases for research and transportation management, particularly if applied to invoke a commuter’s 

quantitative and qualitative response to mode choice. Where uncertainty currently prevails in 

modeling travel behavior, such empirical mode-choice data volumes become quite valuable. 
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Chapter 1 Introduction 

In terms of cost, there is a fundamental realization to consider in the way that an individual views 

the impact of their daily commute. It is widely accepted that automobile transportation produces 

harmful greenhouse gases which contribute to air pollution, global warming, and climate change, 

as well as respiratory ailments (Centers for Disease Control and Prevention 2022). Yet the trends 

in automobile-driven fossil fuel consumption continue to increase each year (Energy Information 

Administration 2007). For the individual driver, inactivity in conjunction with long commutes 

increases the rate of cardiovascular illness and obesity, two of the leading causes of death in the 

United States (Hoehner et al. 2012). Before the onset of the COVID-19 pandemic in the US, fatal 

automobile accidents were listed among the top three leading causes of death (Centers for 

Disease Control and Prevention 2021). Socioeconomic research finds additional deleterious 

issues linking automobile dependency to the lack of municipal tax revenue, wasted federal 

subsidies (Calthorpe 1993), ageing infrastructure (Duany and Plater-Zyberk 1992), inner-city 

crime (Kushner 2005), job loss (Kuby, Barranda, and Upchurch 2004), classism and even racism 

(Hanson 2001). Despite some level of public awareness about these costly outcomes, on any 

given day most commuters in the US are not likely to be dissuaded from driving.  

Within a broader initiative to address this problem space, the goal of the Commute 

GeoCalculator is to provide web GIS services that calculate and visualize the “perceived” costs 

of individual commutes by transit and driving. For each travel mode, perceived costs are direct 

“out-of-pocket” expenses measured in minutes and dollars for the purpose of invoking a mode 

choice response from an application end user. However, while this purpose serves the long-term 

goal of the project, the immediate results generated by these services do not necessarily require a 
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mode choice response. Various applications in research and industry will benefit from the 

project’s automation of comparative travel costs, modeled over a chosen geography.  

As for the long-run goal of the project, economic feasibility forms the quantitative basis for 

the travel mode decision-making process via a public-facing application that would leverage 

these web services. The end results of this process, empirical mode choice data, are valuable to 

government organizations in forming transport policy, or perhaps useful to researchers in testing 

spatial analyses. Particularly where changes to the built environment promote the use of transit in 

a heterogenous settlement pattern, these empirical mode-choice data present a new opportunity 

toward intervention against automobile dependency.  

1.1. Project Motivation and Background  

New urbanism – often called smart growth – is an interdisciplinary planning movement 

dedicated to counteracting the costly effects of sprawl and automobile dependency by applying 

new policies to land-use and urban form, including transit-oriented developments (TODs) 

(Calthorpe 1993). Attraction to transit is a pervasive topic in the NU movement, and there is an 

enduring consensus among proponents that land-use and urban form policies continue to control, 

manage, and shape the travel behavior of individuals. However, after a multitude of various 

studies on this topic, it is generally unclear if these types of policy changes to the built 

environment necessarily translate into changes in travel behavior. The end goal and motivation 

of the project is to construct an effective response to research calling for application components 

that apply authoritative methods and user inputs to help reveal how policy changes impact the 

attraction of transit (Tallis 2014). 

The data on travel behavior in prior literature, such as vehicle hours, are typically 

aggregated geographically and applied to spatial analyses. Such efforts are referred to, here, as 
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aggregate studies. Inconclusiveness persists even where careful treatment is given to 

confounding variables and the classification of the built environment, in efforts to control for 

spurious correlations in heterogeneous settlement patterns (Higgins and Kanaroglou 2016). The 

challenges to establishing forward causality of the built environment to travel behavior have not 

eluded researchers. Quite to the contrary, multiple aspects of the built environment, population, 

economy, and regional effects have been realized and controlled by research scientists. But in the 

majority of case studies, the author finds vast urban geographies where forward causality 

remains inconclusive. At the core of the NU approach is the issue of whether the true effects 

from the built environment on travel demand are causal, associative or a mixture of both (Bhat 

and Eluru 2009). This distinction is centrally important to the intended future use of the project 

results as ground-truth data for testing travel behavior models. This aspiration of the project is 

examined more closely in Chapter 2 with four methodological problems that have been identified 

in travel behavior studies.  

The manner in which NU-related achievements and critiques have developed since the 

early 1990s provides the underlying foundation and impetus for the current project. The key 

finding from these urban studies is the opportunity for new developments in the approach to data 

heterogeneity and uncertainty in travel behavior. This is not to suggest that aggregate studies on 

travel behavior carry little value, but rather that there are disconnects between the research and 

what is on the minds of individual daily travelers. The motivation behind the Commute 

GeoCalculator is to facilitate the alleviation of these disconnects through a mutually beneficial 

exchange of services and information among commuters, researchers, and transportation 

authorities. 
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1.2. Project Overview 

The project creates middleware-as-a-service (MWAAS) that models the travel cost 

between origin X and destination Y of a user-defined commute, with the option of unlimited 

intermediate stops for analyzing a tour. The quantitative information provided to the user 

consists of peak and non-peak travel costs of driving and multimodal transit between origin and 

destination (OD) points. The intention is to enable a mapping application to assist individuals in 

their decision-making process regarding OD travel options. Based on OD locations, authoritative 

input parameters, and the economic principle of marginal utility, the web application translates 

time into dollar amounts for walking, waiting, transferring, driving, parking, and riding transit. 

Fuel costs and transit fares are added, where applicable. This spatialized translation reveals the 

perceived cost of each travel mode for a commuter. If these direct costs can be readily shown for 

any individual’s specific travel pattern, the author finds it likely that more constructive attention 

will be given to mode choice by the travelling public. Further, where these modeled travel costs 

are collected, a number of valuable insights unfold about the performance of urban policy on the 

transportation system, itself, and the travel behavior therein.  

Regarding ongoing efforts to hypothesize travel behavior, some probabilistic models used 

to classify elements of the built environment assume that population variables are unobserved. In 

such cases, these variables are often represented by clusters of other manifest variables, which 

may easily skew results. The absence of empirical population data is problematic for studies that 

seek to establish typologies of the built environment as a basis for modeling travel behavior 

(Higgins and Kanaroglou 2016). The Commute GeoCalculator developed herein is designed to 

support a web client that obtains end user responses to the travel cost returns from the service 

endpoints. User responses may indicate which travel mode is chosen for each individual 
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commute, and why it is chosen. VGI of quantitative and qualitative travel preference data across 

a growing population is the future goal of development for the current application. The project 

carries the potential to expose underlying factors that transcend the current limitations imposed 

by predetermined typologies of the built environment. Where applied, this exposure of travel 

mode efficiency may lead to better informed TDM (travel demand management) strategies or 

service improvements (Litman 2010). 

The application of marginal utility in travel behavior studies can be found in early research 

literature of the 1970s – the age of neotraditional environmentalism, predecessor of NU. Shunk 

and Bouchard (1970) point to the development of an independent decision variable based upon 

marginal “disutilities” of travel by competing modes as perceived by the traveler. Their study 

shows how a model that is basically more behavioristic in nature rather than simulative 

conceivably could be an approach to more effective modal-choice prediction procedures (Shunk 

and Bouchard 1970). The project closely considers this behavioral approach by providing a web-

based toolset designed for gathering direct feedback from a commuter’s point of view.  

1.3. Study Area 

The central metropolitan Washington D.C. area is ideal for the development of a scientific 

tool to assess and compare travel data, because mode choice is a pervasive characteristic of the 

geography. Local and regional bus and rail services are widely available throughout most of 

metropolitan area. Rail and road data are sufficient in this area for building the respective 

network datasets. Settlement patterns are heterogenous – from transit-oriented developments 

(TOD) to traditional suburban neighborhoods and commercial strips. The study area, shown in 

Figure 1, contains a diverse population, a wide range of employment densities, and a very active 

presence of urban planners and policy makers as it is anchored by the US Capitol complex. 
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Figure 1. Study Area – Central Metropolitan Washington D.C. 
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Furthermore, the Metropolitan Washington Council of Governments (MWCOG) has 

territorial jurisdiction within the NEC (Northeastern Corridor) rail network, which can facilitate 

future growth of the application onto the megaregional scale (Mitch 2021). All required data are 

contained within this boundary encompassing the District of Columbia (Washington, D.C.), 

which includes parcels of Arlington, Fairfax, Montgomery, and Prince George’s counties. All 

data in the study area are processed in the Web Mercator Auxiliary Sphere, WGS 1984 datum, 

but then published to the MWAAS as unprojected GCS in North American Datum (NAD) 1983. 

This transformation assists with uniform routing and enables any spatial reference in the service. 

1.4. Methodological Overview 

 Applying a two-tier architecture, the project provides commute cost information from at 

least one origin to one destination point defined by the service user. A substantial amount of data 

crunching occurs before the user or application visits the REST endpoint and enters parameters 

to plot commute events. These steps are detailed in Chapter 3, preceding software development 

in Chapter 4. The overall conceptual design of the MWAAS, its purpose and composition, is best 

understood through a brief examination of the elements in each tier – starting with the data tier.  

To enable the creation of both transit and driving route paths with associated costs across a 

typical seven-day week, a specific temporal scale is applied to the source data in Tier 1. For the 

project, fully processed traffic volumes and household income are averaged on weekends and 

weekday peak/non-peak times in 2019. Specifically, trip speed and traveler annual income are 

provisioned by StreetLight Data, Inc. (SL) in US-standard traffic analysis zones (TAZ). Through 

Tier-1 data automation, these metrics are linearized to street centerlines and integrated into the 

model. A cross-sectional view of all base metrics on one roadway segment is depicted in Table 1. 

Data sources and source formats are indicated in the summary columns near the top of this table, 
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while the rows present precisely how each attribute is organized on the project’s temporal scale. 

The column headings at the bottom of Table 1 convey which attributes are assigned as costs for 

determining path routing within a network dataset, and which attributes are path-dependent 

metrics assigned to variables after routing. 

   Table 1. Tier 1 Sample Data: Cross-Sectional View 

US Standard Traffic Analysis Zones US Census Streets 
Bus and Rail 

Stops 
 

Day Type: 

1. Weekday 
2. Weekend 

 

Day Part: 

0. All Day 
1. Early AM 
2. Peak AM 
3. Mid-Day 
4. Peak PM 
5. Late PM 

 

Data Period: 

2019 

StreetLight Traffic and Traveller Metrics 
(GPS and LBS) 

Employment 
Density 

GTFS Calibration 
Data 

 
AUTOS and 
TRANSIT 

AUTOS and 
TRANSIT 

AUTOS TRANSIT  

Trip Speed (mph) Traveller Income ($) 
Parking Penalty 

(mins) 
Transfer Wait 

(mins) 
 

19.3 90100 4 7  

24.5 68000 2 0  

14.2 118000 5 10  

16.8 79000 7 15  

12.5 113500 5 5  

28.4 72000 1 5  

Applied to Centerlines Applied to Network Datasets 

 

 
 

The applied modes are automobile, pedestrian, bus, and rail. Bicycle travel is planned for 

the next project phase. For the automobile mode, SL includes trip speed and traveler income on 

both car and truck movements, tracked via GPS, then measured against authoritative traffic 

counts. For transit modes, SL data includes the same variables by indices calculated from 

location-based services (LBS) (StreetLight 2022), and the project then applies transit schedules 

from the general transit feed specification (GTFS) data to geolocate transfer locations and to 

compute average transfer wait times for bus and rail. Pedestrian traffic indexes are applied to the 

model as is. Average parking penalties are calculated from US Census data on population density 

multiplied by the percentage of employment by county, with WMCOG authoritative coefficients 
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(in minutes) assigned to the resulting employment density measures. The extract, transform, and 

load (ETL) automation processes all time-based variables into the data model, and facilitates the 

manual build of both network datasets using Esri Network Analyst.  

In Tier 2, object-oriented code leverages the spatial data model and enhances the 

capabilities of a map service to deliver linear referencing functions for each categorized mode of 

travel – transit and driving. These enhanced capabilities are applied to individual user-defined 

commutes and include linear referencing with computation of the total travel cost for each travel 

mode. When an API call via REST (Representational State Transfer) network protocol is sent 

from a web client in a prospective Tier 3, or directly from an end user at the REST page, the 

logic module exploits the routing functions of each network dataset to provide path geometry for 

each travel mode on a commute. Almost simultaneously, Tier-2 code applies the path geometry 

to spatially extract travel speed, parking penalties, transit wait times, transit fares, and inferred 

traveler income. These are the operations of the “as is” state represented in Figure 2. 

 
         Figure 2. Tier 2 and 3 Cross-Sectional View 



10 
 

With these routed variables, the middleware computes the total cost of driving versus 

transit using authoritative coefficients and direct cost estimates for parking fees and fuel. In 

Figure 2, a hypothetical web client interacts with the Commute GeoCalculator web services 

created in the project. By design, the user or application invokes this entire process through the 

REST API of the logic modules by selecting a day type, day part, with other parameters and 

plotting origin X and destination Y points for a commute query. After this submittal, what the 

user receives back are each of the travel mode paths with dollar and minute cost values. Results 

at the REST page are returned in JSON or HTML format, readily usable by a web client (Fu 

2020), and the resulting path geometries are also written to the local application server as feature 

layer collection for visualization purposes outside of a web client. Alternatively, these results 

may be consumed by a scripted process, or through direct user interface by someone who is 

interested in experimenting with the services.  

1.5. User Requirements 

The intended users of the middleware services and data model are GIS application 

developers who intend to script a travel cost analysis or build a web client that extends travel 

cost information to the travelling public. Scientists who want to gather samples of mode-specific 

travel cost data in the service area will also benefit from the project’s services. However, the 

majority of user requirements are defined from the standpoint of the everyday commuter. 

Commute GeoCalculator enables a web client to more easily accommodate commuters who may 

have never used GIS software before. In this context, the key functions in the project’s 

middleware address temporal scale, performance, spatial cognition, and thus promote an 

attractive user experience. Transportation researchers, planning authorities, and policy makers 
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may also take interest in the resulting mode choice data, given that these user-driven data would 

be collected over time. 

The end goal for user requirements is two-fold in that the project hopes to directly support 

a web GIS that encourages people to use more sustainable travel modes than gas-powered 

automobiles, and it endeavors to collect data that policy makers and researchers can use to 

enhance their understanding of urban travel behavior. Accordingly, the commuting public are the 

intended end users of the project’s services operating behind a web application, while the 

intended beneficiaries include urban researchers as well as urbanites that benefit from improved 

decision-making. 

To that end, the middleware provides general travel cost estimates based on user-inputted 

start- and end- points of a planned trip. Plus, the desired time of day for each commute and any 

preferred spatial reference for the output must also be entered. When implemented in a web 

client, users should be prompted to share – as VGI – the mode and path of travel they choose for 

their trip, and why the mode was chosen. In the future workflow, this is the point at which the 

user will have the opportunity to make their location-specific views known to transportation 

researchers, planning authorities, and policy makers. By design, the intended application would 

allow only these authorized parties to access the web client for the purpose of viewing and later 

downloading volunteered commuter data. For the purposes of fulfilling review and 

demonstration of the project, the initial users shall be authorized students, faculty, and staff of 

the Spatial Sciences Institute at the University of Southern California. 

1.6. Thesis Overview 

The ensuing chapters detail the progression of project stages, following a review of related 

works and literature in Chapter 2. In Chapter 3, the criteria, requirements, and components of the 
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data tier are discussed in detail. From data acquisition through each data processing step built 

into ETL automation, this chapter provides sufficient information for replicating the 

application’s data model in Tier 1. Chapter 4 covers the same proposition for the development of 

Tier 2, including the purpose, function, and form of the system architecture – software, versions, 

and resources – as well as the database design and object-oriented code engineered by the author. 

Chapter 5 summarizes the overall project results, with a walk-through for using the finished 

application at the REST page. References to user help documents are provided as well as an in-

depth discussion of the pertinent use cases and test results. Chapter 6 provides a conclusion of 

the design choices and principles applied, as well as project limitations, development challenges, 

recommendations for future work, and the prospect of expanding Commute GeoCalculator to 

other geographic locations. 
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Chapter 2 Related Literature 

The review of related works begins with research on cost-based utilities in travel mode choice, 

followed by common methodological problems in travel behavior studies and research design 

principles that address such issues. Additionally, current regulations and policy trends in 

transportation management are assessed in this chapter, and a brief review of related applications 

is offered. In a comparison and contrast of related applications, the author refers to the spectrum 

of programs and software that leverage GIS to model or analyze travel behavior. Finally, all 

research findings are drawn together into a summary of insights that have influenced the design 

and development work of the project. 

2.1. Utility Theory and Costs of Travel 

In this project, utility theory is applied in the construction of additive cost equations to 

establish a fundamental basis of choice by individual travelers. Mode choice is an aspect of 

travel demand analysis that determines the number or percentages of trips between zones that are 

made by automobile and by transit. Whether one travel mode is preferred to another depends on 

how much utility, or satisfaction, it yields relative to its alternatives (Case and Fair 2004). 

Economic feasibility based on out-of-pocket costs, itself, may very well not be enough to guide 

the probable mode choice of most commuters in any given urban setting. However, it can be 

reasonably expected that most people who frequently commute would at least consider the 

economic feasibility of alternatives as a decision-making factor. This is a common inference in 

travel cost models. And with this in mind, the research approach to utility theory in this project 

presumes that the benefit of travel is defined solely as the destination, itself, to which all mode 

choices have access. Therefore, the benefit is set to zero and the utility of travel is defined only 
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by the cost of transportation, in an indirect mathematical relationship expressed as the following: 

         BT + CT = UT          (1) 

where BT = 0, as any benefit of transportation beyond just reaching the destination; CT is the cost 

of transportation, and UT is the utility of transportation. 

In this context of travel costs, there are a number of utility formulae for mode choice found 

in the scientific literature. Researchers, Koppelman and Bhat, contribute a disaggregate discrete-

choice model of high relevance to the project. The authors assert no direct benefits of a given 

travel mode, itself, beyond the destinations involved. Despite occasional mention of intrinsic 

benefits found in the travel mode preferences of certain population groups, the paper remains 

cost centric in its analysis. These subject matter experts do point out certain advantages of a 

disaggregate approach to modeling group behavior over an aggregate approach. Here, the 

aggregate approach is referred to as directly modeling the combined share of all or a segment of 

decision makers choosing each alternative as a function of grouped elements. The disaggregate 

approach recognizes that aggregate behavior is a result of numerous individual decisions based 

on available elements, and thus individual choice responses are modeled (Koppelman and Bhat 

2006). 

The aforementioned elements of travel behavior applied in Koppelman and Bhat (2006) 

include the following: (1) attributes of the travel alternatives, (2) utility biases due to excluded 

variables, (3) a characteristic variable of the traveler, and (4) interactions relating the traveler to 

their mode preference. The attributes of travel alternatives encompass aspects of the built 

environment – path length, travel cost, waiting and walking times, parking time, the level of 

mobility and service frequency, for example. Excluded variables may include socio-demographic 

factors at a different geographic scale, or qualitative data regarding safety, comfort, and 
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reliability of travel alternatives. Characteristic variables of the traveler often include household 

income, age, automobile ownership, and the purpose of a trip. Interactions between the traveler 

and their mode preference refers to network accessibility, employment or residential density, 

proximity to carpool lanes or other transportation facilities. These elements are also found in the 

equations issued by the National Capital Region Transportation Planning Board (NCRTPB) and 

adopted by MWCOG in calculating travel costs at the regional level (NCRTPB 2020). This basic 

construct is expressed as the following: 

Vi,t = V(St) + V(Xi) + V(St,Xi)        (2) 

where Vi,t is the systematic portion of utility in the alternative I for individual t; V(St) is the 

portion of utility associated with characteristics of the individual t; V(Xi) is the portion of utility 

in the alternative I associated with the built environment; and V(St,Xi) is the portion of the utility 

which results from interactions between attributes of alternative I and the characteristics of 

individual t. This additive cost model can produce a cost value associated with each travel mode 

– multimodal transit as well as automobile. A larger output value indicates a less convenient 

commute, whereas a smaller value reflects the opposite scenario. The difference between applied 

outputs assists in determining the level of convenience associated with each mode, again, in 

terms of cost. In particular, the inclusion of multiple characteristic variables of the traveler is 

shown to significantly reduce residual outcomes of uncertainty in the modeling process presented 

by Koppelman and Bhat (2006). Traveler and trip related data, relating specifically to the actual 

mode choice of the traveler, are generally obtained by surveying a sample of travelers from the 

population of interest. The most common of these travel surveys are household, workplace, and 

intercept surveys; each of which involve direct contact with travelers by the researcher. 
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Applicable to the above additive method is a family of multinomial equations, known as 

logit models. Logit models are multi-factor logistic regression, and these models are often 

implemented to analyze daily travel behavior in terms of relative probabilities of auto and transit 

alternatives used between predetermined attraction zones. In the most basic description, the 

utility function Ui is composed a deterministic part, aiXi, and a random part, Ei the unknown 

residuals (Bai, Li, and Sun 2017). The fundamental form is Ui = aiXi + Ei , where ai represents the 

set of weighted coefficients assigned to known costs Xi of a given travel mode: path length, 

waiting time, walking time, transfer time, parking time, traffic conditions, service frequency, and 

socioeconomic factors as well. In practice, a basic logit model is often expressed as: 

         n 
Ux   =  ∑  aiXi + Ei           (3) 

            i = 1  

where Ux is the utility of a given travel mode; Xn represents the total number of attributes; Xi is 

the attribute value of time, cost, or other factor; and ai  is the coefficient value for attribute i. 

With given value inputs, the Ux result for each mode applied to this equation is then fashioned 

into a proportion of exponentials equal to one (1), for the probability that a commuter will 

choose one mode over the other in a given travel scenario. For example, the probability of mode 

choice in auto P(A), applied from the above Ux result for automobile utility, UA, is: 

            eUA   
P(A)  =  -----------------------        (4) 

       eUA  +  eUT 

Conversely, then the Ux result for transit utility, UT, is the prerequisite for solving this example 

for P(A). This proportion may be solved for the probability of mode choice in transit by very 

simple algebra, P(T) = 1 – P(A). The example depicts only a basic logit model for mode choice. 
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 A substantial number of travel behavior studies apply advanced logit models for the 

purpose of traffic forecasting or predictive modeling. Among these methods is the trip-based 

approach grounded in the Four-Stage Model (FSM) that is often seen in commercial-off-the-shelf 

(COTS) traffic simulation software for performing trip generation, trip distribution, mode choice, 

and traffic assignment. Then, there is the tour-based approach, rooted in the Activity-Based 

Model (ABM) of travel demands. The latter of these two logit model applications is of acute 

interest to the project, because ABM is aligned with dynamic discrete choice modeling (DDCM) 

with explicit consideration of state dependence and expectation feedback. State dependence in 

this context refers to the position of the traveler in route on the transportation systems, and the 

conditions present – traffic, weather, vehicle access, time of day, etc. Expectation feedback is the 

expectation of the next trip’s mode choice, obviously during a tour. Empirical data for these two 

variables of ABM are relatively rare but may be captured through intercept surveys in route. 

Generally, however, these data are inferred through statistical methods (Hasnine and Habib 

2018).  

To build cost utility models for multimodal transit and driving, the qualifying elements 

found in research include a value of time parameter that is based on combined characteristics of 

the individual. Plus, in-vehicle travel time, walking time, transfer waiting time and fare costs 

apply to transit, while fuel cost per mile, driving time, parking time and parking fees apply to 

driving. Finally, a random part, Ei for non-deterministic residual factors improves the accuracy 

and reliability of a travel cost utility model. The overall aim asserted to cost-based utilities in the 

current project, is that any elements applied from research are also firmly rooted in authoritative 

methods applied within the region of interest. 
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2.2. Principles and Problems in Travel Behavior Research Design 

Many traffic and travel behavior studies include critical assessments of efforts to establish 

forward causality from the built environment to travel behavior. Where inconclusive or 

conflicting results are most often found in this research literature, four methodological problems 

are identified: (1) self-selection; (2) spatial autocorrelation; (3) inter-trip dependency; and (4) 

geographic scale. Across a range of methodological issues found in critical review, these four 

challenges stand out as the most impactful to proving forward causality and correlation of the 

built environment upon the travel behavior of commuters (Hong, Shen, and Zhang 2014). 

However, it is noteworthy to mention that through this process significant gaps in the treatment 

of disaggregate traveler data have also been discovered. The most notable example of this 

finding in existing literature is the lack of attention to behavioral changes in individuals who 

move to new environments, where work and leisure destinations are closer and transportation 

options are abundant. Most travel studies are cross-sectional rather than longitudinal, but 

researchers Hong, Shen, and Zhang (2014) identify this common scenario from the perspective 

of the traveler as a significant factor that should be manageable in non-longitudinal travel 

studies. 

Of the four most predominant methodological problems, self-selection occurs when 

households direct themselves into neighborhoods, either neo-urbanist or traditional suburban, 

based on their own VMT preferences. This dilemma erodes the randomness of observations due 

to unattended linkages between residential location choice and travel patterns. Some relatively 

recent research that is focused on this topic finds evidence of significant interplay between self-

selection and geographic scale. In this regard, an important empirical question concerns whether 

ZIP codes are delineated at an appropriate spatial scale for capturing behavioral processes. Too 
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large an area will dilute the effects of urban form, while too small an area will potentially omit 

important effects (Vance and Hedel 2007). Empirical evidence collected across a range of 

geographic scales indicates there is substantial scope for land use measures to influence mobility 

behavior, when the sampling frame is set to an area smaller than zip codes (Grazi, Van de Bergh, 

and Van Ommeren 2008; Vance and Hedel 2007). 

       The main criticism of spatial autocorrelation states that observations are no longer 

independent when nearby locations tend to have similar characteristics (Bhat and Eluru 2009; 

Hong, Shen, and Zhang 2014). This is noted as a common problem for linear regression based on 

non-zero spatial autocorrelation, whereby biased estimators can debase any inference of 

significance (LeSage 1997; Miller 1999). Multiple researchers refer to a simple hierarchical 

framework of empirical data sampling on both dependent and independent variables as a way of 

mitigating against this problem (Duncan and Jones 2000; Bhat and Zhao 2002; Bottai, Salvati, 

and Orsini 2006; Antipova, Wang, and Wilmont 2011; Chaix et al. 2005). In principle, scientific 

observations must be independent and random in any sampling phase. A hierarchical framework 

provides a convenient means of organizing geographic data samples by distinct characteristics, 

before applying these to variables in spatial analyses. 

The problem with inter-trip dependency is the fixation of trip-based models upon isolated 

trips without considering possible interdependency between trips that would comprise a 

complete tour (Hong, Shen, and Zhang 2014). As a result, conventional trip-based analysis is 

criticized as unsatisfactory for explaining the fundamental forces behind travel behavior (Krizek 

2003). Critical analysis suggests that the more stops involved with connected trips, the more 

people choose to use their automobiles.  
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Finally, the modifiable areal unit problem (MAUP) generates inconsistent results when 

data are measured at different geographic scales (Hong, Shen, and Zhang 2014). Goodchild 

(2011) puts forth an in-depth discussion of scale, in which geographic or spatial scale is 

emphasized as a representative fraction of some natural or social phenomena under analysis. He 

speaks to the process of decision-making, itself, by noting that data for any physical process 

should first be defined and tested free of any scale whatsoever, to the extent possible. Sorting 

through these aspects of a given analysis upfront during the decision-making process is 

imperative to correctly interpreting the results (Goodchild 2011). With travel cost results kept in 

disaggregate form, the author finds little reason to anticipate the MAUP in the long-term direct 

use of the project’s output data. However, Section 2.5 discusses how certain abstractions asserted 

within the two-part cost model do invoke errors that are related to the MAUP. 

2.3. MAP-21 Regulations and Policy Trends in Transportation Management 

Moving Ahead for Progress in the 21st Century Act (MAP-21) allocates federal dollars to 

the Federal Highway Administration (FHWA) and the Federal Transit Administration (FTA) to 

issue grants to state and local governments for the purpose of upgrading transportation network 

facilities. Public safety is the overarching justification upon which this legislation was passed in 

July of 2012. Under MAP-21, federal funding of multimodal projects in metropolitan areas, 

including fixed guideway rail, metro bus, pedestrian, and biking improvements, requires project 

justification based on “before and after studies” that meet local priorities and criteria set forth by 

the metropolitan planning organization (MPO). Funding for highway projects requires that all 

principle arterial roads connected to the project meet specific criteria to be designated on the 

national highway system (NHS). The MPOs also provide oversight for this set of criteria on 

highway projects. For each respective travel mode (automobile or transit), the MPO is expected 
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to enforce higher safety standards with all public and private operators seeking MAP-21 funding. 

Since MAP-21, related reports indicate that a significantly higher level of coordination is taking 

place between MPO’s and government officials for approval and funding of transportation 

initiatives. A substantial part of this relatively recent development is that reporting requirements 

have become more stringent with specific criteria mandated for GIS and public participation 

components on some projects (Kirk et al. 2012).  

The regulations under MAP-21 commenced with the charge to improve public safety, but 

there are additional project criteria set forth that pertain to locational accuracy, data quality, local 

priorities, and public participation in some cases. Many local and state transportation authorities 

have adopted public participatory GIS (PPGIS) and modernized portfolio and project 

management (MPPM) tools, respectively, to better operate in this relatively new coordination 

space (Kirk et al. 2012; Giuffrida et al. 2019). However, MPPM implementations typically lack 

the capability to interact with the public in a mutually beneficial capacity when it comes to 

empirical assessment of mode choice. PPGIS is shown to fill this capacity for local 

transportation initiatives, and there are other public participation strategies actively utilized by 

state and local authorities, such as public workshops, websites, and hearings where community 

feedback is acquired. After previous research on these outreach efforts, the author finds no 

evidence of a mechanism in place that allows the general public to readily compare the cost-

based utilities of their own Individual commute patterns and options. In short, the author finds a 

gap in these new policy trends wherein the commuting public could have a more effective toolset 

for engaging all stakeholders regarding local priorities in transportation.  
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2.4. Related Applications 

A number of sophisticated COTS software packages apply customizable travel-demand 

modeling techniques that combine transportation analysis and micro-simulation through GIS, 

including TransCAD, Emme4, Cube, PTV Vissum, and TranSIM. Some of these products even 

mitigate against the aforementioned methodical problems, but the respective business and 

technical reach of all such products are far out-of-scope for the criteria of the current project. 

First and foremost, each of these travel modeling software packages generate mode choice data 

from statistically modeled trip distribution and not from explicitly volunteered traveler inputs. 

Similar to the project, each of these products will work with static metrics as input, but the 

workflows do not diverge at network routing to collect empirical mode choice data. Instead, 

these platforms complete all prescribed FSM or ABM tasks to then provide an array of options 

for animated simulations on the network of interest. 

 Some of the more popular highway traffic and navigation applications offer trip routing for 

automobiles with the estimated travel times calculated from near real-time traffic feeds – Google 

Maps, Waze, and CoPilot GPS are leading examples (Sari et al. 2017). Google Maps offers 

routing by multiple alternative travel modes based on transit operator data, but one limitation 

worth noting is that each selected mode may only be routed on separate map views. There is no 

combined view of all selected travel modes on one map UI, at the time of this current research. 

Textual directions are optionally displayed with travel times between turns, as well as bus and 

train operator head signs at transfer points, plus street-view photographs are provided along 

pedestrian paths. All such features are presented on well-annotated vector tile maps or labelled 

satellite imagery. However, each mode must be submitted and viewed individually. Figure 3 
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illustrates this user experience (UX) in Google Maps, for a tourist in Las Vegas, Nevada who is 

evaluating travel alternatives between the airport and destination hotel.  

 
 Walking: 1hour 44 minutes   Transit: 30 minutes              Driving: 13 minutes 

  Figure 3. Google Maps Directions by Travel Mode 

In this example, the results do not include transit fares, parking time, fuel cost per mile, or 

any monetary value of time, because the application functions as a traveler information system 

without any concern for saving and measuring the results of many traversals. Waze and CoPilot 

GPS are designed to enhance travel planning and navigation only for driving, and they perform 

very well in that problem space. Waze in particular stands out in this traffic and navigation 

category, not only for its sheer performance in geolocating capabilities, but for the fact that it is 

also a sustainable VGI system. 

 To help further clarify the project’s position in the market of transportation apps, the author 

has identified a similar web GIS that relates to the project’s criteria more closely. The “Yay 

Transit!” application, developed by Melinda Morang and Patrick Stevens of Esri, provides 

several tools to study and simulate schedule-aware transit trips (Morang and Stevens 2013). 

However, just as the title suggests, this Esri-based application focuses solely on transit networks 

whereas this thesis project incorporates certain parallel functions for the roadway (driving) 
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network in the study area. As with the current project, Yay Transit! leverages the ArcGIS 

Network Analyst extension for several functions that engage users in transit information, 

including visualization of static GTFS data on a map. Their innovative toolset extends this 

capability onto real-time GTFS data, while the project’s application exposes only static travel 

data at peak and off-peak traffic intervals. The Yay Transit! application automatically selects 

each first available trip to the destination one can take when touring by transit, whereas Commute 

GeoCalculator takes a more general approach to travel scenarios by allowing the user to select 

peak and off-peak time intervals. In both applications, users who want to delay intermediate 

departures during a tour will create a new trip for each specific OD traversal along a commute. 

Other open-source web GIS are more flexible in this regard, but they tend to be associated 

with a particular city or region. One example is the “RabbitTransit” application, built on Google 

Maps Transit services, allows users to view travel duration of each intermediate trip available for 

any chosen itinerary through select counties in Pennsylvania (CPTA 2021). This application 

operates similarly to a transit tour booking site, even offering its own express bus service. All 

origins and destinations are geocoded at predetermined locations, which is an amenity under 

future consideration in the project. While these kinds of location-based web applications often 

provide comprehensive transit-user experiences, none have been found by the author to provide a 

simultaneous view of travel cost by automobile and transit as part of an interactive survey. The 

future Commute GeoCalculator web application is designed to collect mode choice VGI, using 

multimodal linear referencing capabilities. Its purpose more closely resembles that of scientific 

web GIS for performing schedule-aware simulations and analysis, such as “Yay Transit!”. 

However, the current project requires further development to fulfill its core purpose of empirical 

mode-choice data collection.  



25 
 

2.5. Summary of Insights Gained from Research 

Foundational aspects of the project emerge as a result of the literature review. The 

investigation of travel costs and utility theory provide all of the components and methodology 

needed to construct the additive travel cost equations for driving and transit in the project. And, 

beforehand, there was no consideration for a future VGI web component in the next stage of the 

project. Discovery of the four methodological problems identified in critical literature led to the 

first design change in the user interface (UI) whereby the user is asked to indicate which mode 

option they would choose, based on the results of their route inquiry. Research on policy trends 

and regulations in transportation reveal a potential process gap in the federal funding of large 

projects, wherein reporting requirements have become more stringent with specific criteria 

mandated for GIS data and public participation. As a result, the project aspires to resolve 

disconnects between transportation stakeholders in meeting those criteria more effectively. 

Finally, the brief survey of related applications and their usage shed light on new market space in 

which combined elements of travel planning, navigation and surveying would be a good fit. 

The additive cost approach found in the review of utility theory aligns well with the travel 

cost model issued by the NCRTPB. The deterministic elements articulated by Koppelman and 

Bhat can also be identified in the authoritative model: (1) attributes of the travel alternatives, (2) 

a characteristic variable of the traveler, and (3) interactions relating the traveler to their mode 

preference (Koppelman and Bhat 2006). The only element not included in travel cost utility by 

the regional authority is the non-deterministic utility bias due to excluded variables. In 

collaboration, MWCOG designed their set of travel cost utility equations. For transit travel: 

         Total Cost (in dollars) = pVT x [pW x (WT + W2T*) + pWa x (WaT + W2T*)   (5) 

         + pIV x (IVT + IVT2*)] + (Fare + Fare2*) 
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where pVT is equal to the value of time parameter for combined characteristics of the individual; 

pW is the walk Parameter; pWa equals the wait parameter; pIV is the in-vehicle parameter; WT 

is the walking time; WaT is equal to the waiting time; IVT equals the in-vehicle time; W2T* 

represents the walking time for transfer; Wa2T* is the waiting time for transfer; IVT2* equals 

the in-vehicle time for transfer; Fare is the fare cost; and Fare2 is the fare cost of transfer. For 

automobile travel: 

Total Cost (in dollars) = pVT x [DT + KT] + pCM x DD + KC   (6) 
 
where pVT is equal to the value of time parameter; pCM equals the cost per mile parameter; KC 

is the parking cost; DT is the drive time; KT represents the parking penalty time; and DD is the 

drive distance. 

Examination of the simple logit model reveals congruous elements in the deterministic 

portion of travel cost utility, and then a probabilistic error as the utility bias due to excluded 

variables. One important note regarding the treatment of the logit model exampled in this review 

is that the project takes an off ramp after solving the Ux result for each mode. The project does 

not take the next conventional step, to address the relative probabilities that one mode will be 

chosen over the other. That step does not suit the purpose of the application. In the basic logit 

model, the set of weighted coefficients in ai represent MWCOG parameters for walking (pW), 

waiting (pWa), in-vehicle time (pIV), and the value of time (pVT) per socio-economic 

characteristics of the individual, as well as the fuel cost per mile (pCM) for driving – all assigned 

to known costs Xi of a given travel mode: path length, waiting time, walking time, transfer time, 

parking time, driving distance, and driving time. This alignment in methodology establishes the 

modal cost equations used in this project and has become influential toward the prospect of a 
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long-range plan of expanding the application into other geographic regions. Chapter 4 discloses 

the additive cost equations used in this project, as well as each authoritative parameter applied. 

The self-selection dilemma illuminates the fact that the network-routing application could 

also be a survey tool for building a database of results generated by participating users. Self-

selection erodes the randomness of observations in travel modeling. In the project, future 

samples are treated as entirely random with commuter’s choice responses invoked by 

performance metrics of the built environment by traffic analysis zone. Per the findings in self-

selection research, this spatial scale which is smaller than a zip code and larger than a household 

is ideal for capturing correspondence of the built environment to the travel activity space.  

Spatial autocorrelation is criticized as rendering observations less independent when 

nearby values tend to have similar values. The project does not use indicators of spatial 

autocorrelation, and the project’s services promote the independence of observations through 

support of individual user sessions on a web application. The consumption of the service 

endpoints in a web application, however, eventually presents new opportunities for a wide range 

of spatial analyses on travel behavior in metropolitan Washington D.C. – including hot spot 

analysis and other indicators of spatial autocorrelation. The ability to capture the commuter’s 

experiences geographically in a database enables future researchers to gather independent and 

random samples from the traveling population. Furthermore, the problem with trip inter-

dependency and the critique of trip-based FSM brings forth the idea that individual OD trips 

could be chained together into a tour by the moderately savvy or well-informed user. Largely, 

this issue cannot be directly addressed within the initial release of the application, which is trip 

based. However, the OD routing tool does allocate transfer costs and at intermediate bus stops 

and rail stations, and the transit routing algorithm is multimodal – where the shortest cost path is 
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geolocated over pedestrian, bus, and rail modes. At a minimum, this accounts for some of the 

tour-based factors behind travel behavior. 

Then, the MAUP, as the fourth identified problem, draws attention to the pervasiveness of 

spatial scale as an amplifier of other methodological issues. As the research consistently points to 

the value of these data at a disaggregate spatial scale, it was decided in the project that the travel 

events would remain distinct when collected in their tables with no geographic aggregation. 

However, the project’s internal data processing of traffic metrics does invoke some level of 

ecological fallacy, a concept related to the MAUP. Travel times on linear segments are converted 

from travel speeds aggregated within standard US TAZ. These polygons are relatively small 

areas and are established by authoritative methods for estimating linear traffic characteristics 

therein. Nevertheless, this spatial translation is a simplification in the project’s data model that 

infers traffic activity on linear facilities using areal units. Section 6.2 discusses this project 

limitation in more detail. Furthermore, the parking penalty parameter does combine labor force 

percentage at the county level with population density by census block group. This may create 

moderate inconsistencies with parking penalties. The outcome is that county-level employment 

percentages act as a scalar factor against block-group population densities to nearly satisfy the 

regional standard. Yet, the author finds that the proportional differences in parking costs are still 

sufficient to inform the user where parking congestion restrains automobile path routing. Despite 

all potential anomalies in travel and parking times, at a reasonable level of data abstraction, this 

initial release of Commute GeoCalculator services still delivers representational patterns of 

general travel conditions.  

The reporting requirements of MAP-21 contribute other valuable insights for what is 

pertinent to the content of a potential public survey application that would use the project’s 
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services. The working concept within the current project is uniquely designed to assist in 

fulfillment of these requirements. Decidedly, such a web application would not present as a 

census-like survey but rather as an interactive toolset that is providing immediate benefits to the 

user. From the perspective of the transportation authority, only what is necessary and 

constructive about the user’s decision-making process should be included. Finally, the findings 

about ABM logit modeling, state dependence and expectation feedback only serve to enhance the 

interactive workflow design of commute routing tools with a survey component. Early in the 

project design phase, this context of dependence and expectation feedback introduced the 

prospect that the current project should eventually operate as a kind of intercept survey for 

gathering informed mode choice data on-the-fly, while the application user is commuting. 

The investigation of related applications assisted with targeting a position for Commute 

GeoCalculator in the transportation management space. Reviewing the most popular traffic and 

navigation applications brought forth the realization that no mainstream web or mobile GIS is 

providing users with a simultaneous view of travel alternatives with their respective costs in a 

complete state. The author believes this to be a gap in the market for travel information systems 

that the current project can potentially fill. A few of the region-specific, open-source applications 

provided insights for the user-driven workflow and where survey questions should be presented. 

First and fore-most, the commuter must approve the sharing of their data before any survey 

questions are asked. Given approval, the commuter-user experience should then be a balance of 

“give and take” with the initiatives of the transportation manager role. One receives the desired 

commute information, then one can give something back to a brief survey as a contribution. 
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Chapter 3 Data, Networks, and Databases 

As noted in Section 1.4, a substantial amount of data processing occurs before the service user 

visits the REST endpoints and enters their parameters to plot commute events for automobile, 

pedestrian, bus, and rail modes. Data acquisition to initiate and maintain the application requires 

a focused effort, to gather specific data sets with most release dates coordinated within a 

predetermined 18-month timeframe. Construction of the data tier begins with the creation of 

SDE (spatial database engine) connections for two primary enterprise geodatabases for the 

project, named “staging” and “static”, residing initially in the project’s sandbox environment that 

is later described in Section 6.2. 

 In this initial project phase, spatial source data are staged in a local file geodatabase while 

non-spatial data are setup in the “staging” remote database; all of which undergo remove-and-

replace manual loading. The metrics data model represents the cost data of each travel mode in 

the end result, composed of automobile and transit feature datasets housed within the “static” 

database. The commuters data model, planned for future development, will store users’ mode 

choice responses to the dynamic cost returns in a future “modular” database. These databases are 

designed for perpetual growth of the service area, and the data management procedures for 

loading source data are for the time-being manual. However, once all source data are loaded to 

the ”staging” database, ETL automation developed as part of this project handles nearly all data 

crunching – up to the last step requiring a manual build of two network datasets using the Esri 

Network Analyst extension. Network datasets are created from source features which include 

simple features (lines and points) and consist of edges and junctions that are transformations of 

the source features (Esri 2019). This workflow in Tier 1 is essential for refreshing the metrics 
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data model and making the data usable by the server object extension (SOE) in Tier 2. Figure 4 

summarizes this end-to-end construction process. 

 
Figure 4. Tier 1 Workflow 

3.1. Data Requirements 

The primary objective in Tier 1 is to provide a data model that, for any given commute, 

enables attributed route traversals that represent the average travel costs of transit versus driving 

at different times of a weekday or weekend. The secondary objective is to provide a storage 

database for the mode choice data returned in the responses from application users. A standalone 

procedure is implemented to create two spatial tables for the anonymous commuter profile and 

the routes included in each commute. To achieve these objectives, the data model integrates eight 
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categories of required source data: 1) roadway, pedestrian, bus and rail centerlines;  

2) bus and rail stop points; 3) bus and rail transfer wait times; 4) travel speeds for automobile, 

pedestrian, bus and rail modes; 5) traveler household income for automobile, pedestrian, bus and 

rail modes; 6) parking penalties based on employment densities in census block groups; 7) 

parking fees and transit fares estimated from transportation operators, and 8) authoritative 

coefficients for factoring fuel cost per mile, residual waiting and walking, as well as the 

traveler’s overall value of time. The strategy in applying these source data governs the 

requirements and is hinged upon the routing function of each network dataset.  

Transport facility centerlines must carry sufficient attributes in length, parking penalties, 

transfer wait times, and mode hierarchy to support routing that produces the most efficient path 

for each travel mode. These are input attributes required in each network dataset. By default, the 

Esri Network Analyst extension applies a shortest-path routing algorithm by length. From here, 

several options are available for adding travel impedance and preference to a network. Three 

such options are utilized in the network datasets – cost, restriction, and hierarchy attributes. 

Therein lies the requirement for the parking and transfer time costs, as well as the preference and 

hierarchical ranking for pedestrian, bus, and rail travel modes. 

The other side of the data strategy concerns what happens after each network path is solved 

and rendered into geometry. Quite simply, the application requires total cost attributes along with 

each path geometry. In addition to length, parking penalties and transfer times, the total costs in 

minutes and dollars require travel speeds, parking fees, and transit fares, as well as the 

authoritative coefficients and traveler household income to calculate the overall value of time. 

These additional attributes are spatially extracted from processed feature classes using the path 
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geometry before the necessary cost variables are calculated. The most important output 

calculated in Tier 2 is the total travel time based on individual segment lengths and speeds.  

3.2. Data Acquisition 

Complete trip speed and traveler annual income are particularly difficult to acquire from 

open-source data by peak and non-peak travel times. For this reason, SL was called upon to 

provide these critical metrics in the study area, and this request was fulfilled via provisioning of 

a one-year academic license to their StreetLight Data InSight® platform. The traffic analysis tool 

by SL provides an array of selectable, reusable zones by which various forms of traffic 

measurement may be obtained, as depicted in Figure 5. 

Figure 5. Setup, Analyses and Extraction of Traffic Metrics from SL Data InSight® 
 

This software allowed the author to analyze and extract the required travel speeds and 

inferred traveler income within each traffic analysis zone from March to April 2019 and October 

to November 2019 data to support pre-pandemic annual average traffic flows. As briefly 

presented in Section 1.4, Table 1, these traffic-related data are organized into six day parts for 

each day type – weekday or weekend. These include all-day averages (12am – 12am), early AM 
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(12am – 6am), peak AM (6am – 10am), mid-day (10am – 3pm), peak PM (3pm – 7pm), and late 

PM (7pm – 12am) travel periods. OpenStreetMap is the underlying source for the road network, 

rail lines, and pedestrian paths to which all travel metrics are locked then loaded to TAZ 

polygons. For the project, SL metrics are downloaded as tables of zonal data with associated 

shapefiles, and non-pass-through traffic flows by standard US TAZ polygons are specified. This 

means that traffic detections via cellular GPS and LBS are limited to trips which begin or end in 

each selected zone. Yet, the SL measurements of average travel times follow the full extent of 

each trip, across multiple selected zones. Therefore, SL average travel times are useless to the 

project because the commuting user of the Commute GeoCalculator specifies his or her own 

trips. However, the non-pass-through option in SL Data InSight® is utilized because it isolates 

average travel speeds and inferred traveler income to each individual zone (StreetLight 2022). 

These metrics provisioned in TAZ polygons establish an objective spatial unit by which user-

defined travel times and inferred incomes may be calculated in the application.  

There is an additional matter to settle with the robustness and accuracy of the transit travel 

indexes. In 2020, an FHWA-sponsored study was conducted by the Virginia Department of 

Transportation (VDOT) to determine guidelines for using SL indexes in transportation planning. 

While their literature review points to effective yearly OD travel patterns from SL indices in the 

WMCOG area, the researchers conclude that simply relying on these indexes will not produce 

robust and accurate results. Through stratified random sampling, they found that integrating 

authoritative data sources with SL indices effectively addresses this issue (Hong, Cetin, and Ma 

2020). For this reason, GTFS trips, stops, and stop-times tables were extracted from the study 

area in the Spring and Fall timeframes of year 2019. As reported by SL, this is sufficient to 

provide reasonable traffic averages that can represent the entire year. The results of this quality 
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control process are transfer locations, transfer times and the probabilistic error for travel times 

applied to the transit cost equation.   

         Table 2. Project Source Data 

Organization Source/Dataset 
Coefficient 

Weights 
Trip 

Variables 
Analysis 
Layers 

MWCOG MWCOG Model 
    

NCRTPB NCRTPB Model 
    

Transportation Research Board NCHRP Report 716 - Model D 
    

U.S. Census Bureau 2020 Pct Employment 
    

U.S. Census Bureau 2020 Population Density 
    

OpenMobility Data 2019 GTFS Calibration Data   
  

StreetLight Data, Inc. 2019 Transit Service Indexes   


  

StreetLight Data, Inc. 2019 Road Trip Volumes   


  

StreetLight Data, Inc. Traffic Analysis Zones     


U.S. Census Bureau 2019 TIGER/Line Road and Rail   
  

NCRTPB Data Clearinghouse 2022 Metro Rail Lines   
  

NCRTPB Data Clearinghouse 2022 Metro Rail Stations   
  

NCRTPB Data Clearinghouse 2022 Metro Bus Stops   
  

NCRTPB Data Clearinghouse 2019 Metro Bus Lines   
  

NCRTPB Data Clearinghouse 2022 Pedestrian Trail Network   
  

Esri ArcGIS Network Analyst     


 

 The parking penalty values depend on the population density in each census block group 

multiplied by the percentage of the civilian labor force (Table 4.). The block group polygons are 

acquired from Living Atlas data and selected by spatial intersection with the service area. 

Employment density is acquired from the US Census 2019 quarterly workforce indicator (QWI) 

dataset to calculate parking time penalties. Parking fees and transit fares are estimated from the 

websites of transportation authorities and operators, respectively. By different methods, all of 

these travel metrics are assigned to US Census Bureau TIGER/Line features as well as NCRTPB 

authoritative line and point features. Thus, each of these linear data are part of the full 
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acquisition, summarized above in Table 2. Once these data are acquired and formatted into tables 

and feature classes, the next concern is geoprocessing workflows via Python scripting. Here, Esri 

Modelbuilder in ArcGIS Pro is leveraged to diagram key geoprocessing tools and to 

conveniently export lengthy, complex function calls in Python that would otherwise consume 

additional hours of development time (Zandbergen 2013).  

3.3. Data Preparation     

 Tier-1 ETL automation integrates all source data into two models, each representing the 

form and function of driving or using transit. All data model inputs are projected into WGS 1984 

Web Mercator Auxiliary Sphere before any geoprocessing steps are applied. These steps are 

explained in sequential detail through this section following the data processing strategy, stated 

in Section 3.1, as an approach hinged upon the routing function. In short, the source data are first 

transformed into linear segments carrying parking penalties, transfer wait times, and the 

fundamental structure that will support the routing functions needed in the automobile and 

multimodal transit network datasets. Then, these same input segments are used to prepare linear 

trip speeds and traveler incomes that are to be spatially extracted by the geometry outputs of the 

routing functions in Tier 2.  

 The first ETL task is preparing the census block groups for assignment of employment 

densities to centerlines. Census block employment density is the first zonal attribute that is 

attributed to the centerline streets layer, the US Census TIGER/Line features, commonly used to 

build street networks (Butler 2008). Parking penalties are assigned to the transfer streets 

according to Table 3, wherein employment density is the population density in each block group 

multiplied by the percentage of employment in the associated county, as shown in Table 4.  
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Table 3. Parking Penalty Time (NCRTPB 2020) 

Employment Density 
Range (Emp/Block Group) 

Parking Penalty 
(Minutes) 

0 - 4,617 1 

4,618 - 6,631 2 

6,632 - 11,562 4 

11,563 - 32,985 6 

32,986 + 8 

      

Table 4. Percentage of the Civilian Labor Force in WMCOG (US Census 2020) 
 

County or District 
Percent Civilian Labor Force 

in Population (2020) 

Arlington County 77.00% 

District of Columbia, Washington 70.20% 

Fairfax County 70.20% 

Prince George's County 70.90% 

Montgomery County 70.50% 
 
 

 Figure 6 illustrates how census block groups are selected by these cyan-outlined polygons 

for a project service subarea, zone set 1. The next zone set of census blocks is added, which 

encompasses the remainder of the study area. TAZ polygons define the study area, and the 

incremental logic in the initial ETL procedures sets up the metrics data model for future growth. 

Here, zone set 1 is the initial subset of 50 TAZ polygons and zone set 2 is the collection of the 

450 remaining TAZ polygons that together cover the central metropolitan Washington D.C area. 

In the next geographic expansion of Commute GeoCalculator, the current study area will be 

designated as zone set 1 – to then be merged with the next zone set 2 of surrounding traffic 

analysis polygons, and so on. Additional zone sets will not necessarily need to be contiguous, 

and the source of traffic data may change over the application’s life cycle.
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Figure 6. Export of TAZ Dataset to ArcGIS Pro® and Spatial Selection of Census Block Groups 

 For transfer street stations, road centerlines are clipped and assigned employment densities 

by census block group, so that parking cost and penalty time can be assessed. The basic 

geoprocessing steps for transfer streets are shown in Figure 7. The parking penalty values depend 

on the population density of US Census block groups and the percent of the civilian labor force 

in year 2020. The author did not find this percentage of employment statistic at the block group 

level, but instead captured this data at the county level. The census block group polygons are 

clipped to the study area and attributed with the employment density field based on Table 3. 

Employment density is the population density in each census block multiplied by the percent of 

employment in the containing county:  

Employment Density =  Population Density x Percent In Civilian Workforce (7) 
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    Figure 7. Road Centerlines Clipped and Assigned Census Block Group Employment Density 

 
 

Next, SL metrics are written to each standardized TAZ, but in tabular fields that must be 

joined back to the originating polygons by a unique common zone name, as shown in Figure 8. 

This is done to enable spatial assignment of volumes and indexes to traversing roads, rails, 

walkways, and bus stops. For each day part, SL trip-speed and traveler-income ranges are 

provided in percentages of travelers per zone. To each road segment, ETL applies the total 

probability of average speeds per TAZ for each mode as exampled in Table 5. 

      Figure 8. TAZ Traffic Metrics Applied to Roads, Rails, and Pedestrian Paths 



40 
 

The Law of Total Probability simply states that if there are n number of events in an 

experiment, then the sum of the probabilities of those n events is always equal to 1. StreetLight 

proportions average speed and traveler income events by measured range, within each TAZ. To 

calculate average travel times for each segment in a TAZ, the forementioned Newtonian 

expression applies. Each unique road segment in these polygons has a distinct distance to be 

traversed. Hence, the average travel time for each segment is: travel time = distance / trip speed. 

Table 5. Total Probability of Average Speed per Traffic Analysis Zone – Example 
 

Peak AM Travel (1 Traffic Analysis Zone) Probability (P) 
Speed Interval 

(i) 
P(i) = Average Speed 

Trip_Speed_0_10_mph_percent 0.623 5 3.115 

Trip_Speed_10_20_mph_percent 0.161 15 2.415 

Trip_Speed_20_30_mph_percent 0.090 25 2.250 

Trip_Speed_30_40_mph_percent 0.065 35 2.275 

Trip_Speed_40_50_mph_percent 0.041 45 1.845 

Trip_Speed_50_60_mph_percent 0.017 55 0.935 

Trip_Speed_60_70_mph_percent 0.003 65 0.195 

Trip_Speed_70_above_mph_percent 0.000 75 0.000 

Total Probability of Average Speed:     13.03 mph 

       
   

Given the research findings on the use of SL metrics, by researchers cited in Section 3.2 

(Hong, Cetin, and Ma 2020), the project directly applies SL trip-based measurement of 

automobile traffic volumes, as they are based on actual counts taken by VDOT (StreetLight 

2022). Then, transit indexes for bus and rail traffic receive calibration by GTFS data from local 

agencies in the base year, 2019, so that feature location and transfer times may be improved for 

accuracy. The GTFS “stops” file anchors the index calibration process by its geographic 

coordinates with arrival and departure times for bus and rail. In Python ETL code, tabular GTFS 

durations for both travel time and stop times are sequenced and linearized to road and rail lines 

by two separate algorithms. The first method addresses locational accuracy and completeness of 
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bus stops and rail stations, as well as the bus routes that provide connections to rail service lines. 

The second method builds upon these results, to calculate the average transfer times applicable to 

each stop and time range. The program loops through each individual bus and rail route, one stop 

at a time, to query and compare GTFS arrival and departure times between service routes by 

each day-part range (early AM, peak AM, mid-day, peak PM, etc..). Using this approach, the 

program is able to calculate the average transfer wait times at each stop on the project’s temporal 

scale. Combined output of the two methods forms an intermediate lookup table of stop locations 

with average transfer wait times by day part, for bus and rail respectively. From the perspective 

of source GTFS data, the basic logic behind the calibration process is depicted in Figure 9. 

 
Figure 9. GTFS Calibration Logic 

 
 Each lookup table in the above process is used in the calculation of geolocated transfer 

times, including the all-day average which is applied as the cost evaluator for bus and rail routing 

in the multimodal network dataset. But these lookup tables serve an additional purpose outside of 

the transit network dataset and the routing parameters therein. They are used in the construction 

of attributed relationship classes that tie each stop to its linear segment of all transfer-time day 
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ranges, as well as all trip speeds and traveler incomes on the same temporal scale. The purpose 

of these relationship classes is performant and accurate retrieval of stop point and route segment 

data by the SOE. 

 Regarding transit fares, the GTFS providers provision website addresses where published 

rules on fares may be found. To the extent possible, these were manually processed from the 

transit operators in the cities of Alexandria, Arlington, and Woodbridge; counties of Fairfax, 

Montgomery, and Prince George; states of Virginia and Maryland, as well as WMATA metro 

transit authorities. Average fares are included in the bus and rail stop point feature classes, as per 

these providers. After the above steps are completed, route segmentation and the linearization of 

prepared data begins with highway centerlines because this is the predominant transport 

infrastructure in most urbanized areas. This is achieved using the Python arcpy intersect analysis 

tool on the US Census centerline feature class, itself, at a 0.003-mile tolerance (approximately 16 

feet). The resulting road intersection point features are then clipped by the TAZ polygons 

comprising the study area. From here, the intersection points of the study area are used to split 

the centerline features by the same tolerance, and those linear results are then clipped to the 

study area as well. The last step in this subprocess is to spatially join the TAZ zone identifier to 

each clipped segment. Instead of simply trying to apply a clip tool directly between raw 

centerlines and TAZ polygons, the applied method allows for clean segmentation without errors 

that is sufficient for building each travel-mode network and linearizing associated trip speeds and 

traveler incomes. 

 The automobile network inputs include the segmented highway centerlines, providing 

facility length and street connectivity, and the linear transfer street stations which supply the 

parking penalties in minutes. In the forthcoming network dataset, each of these inputs will be 
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assigned to a connectivity group with routing connections set to the endpoints of each line 

segment. US Census TIGER/Line highway features are segmented at roadway centerline 

intersections (Her and Yu 2021), and so at this point there is no need to take further steps in ETL 

for these automobile network inputs. However, the last section of this chapter presents the final 

results of data preparation which includes all content that is internal and external to each network 

dataset. 

 Segmentation for the multimodal network dataset builds directly upon the results of 

highway segmentation with a few additional steps that vary among pedestrian paths, bus routes, 

and rail lines. During this procedure, a hierarchical structure is established in merging these 

linear features with highway system features, and a corresponding hierarchy is assigned to each 

transit mode. A preset rank number identifies each transit mode preference, and thus configures 

the routing function to predetermine the portion of trips made by each transit mode – the transit 

mode split. This is a simplification to the data model that will be replaced by user-defined 

preferences in a future release, but it does facilitate production of a rational shortest-cost path for 

transit.  

 The creation of the hierarchical structure in the multimodal transit network dataset starts 

with a spatial union of pedestrian paths with the clipped highway network. The resulting 

pedestrian network represents every linear facility where a traveler may walk. From here, the 

next mode layer applied to the structure is bus routes. A spatial intersect between the pedestrian 

network and bus routes is used to create the bus network. In turn, a spatial intersect between the 

bus network and rail lines is used to create the rail network. The outcome includes three distinct 

sets of network inputs, in which all point and line data are ideal for configuring the connectivity 

groups that tie each mode of transit together into a multimodal system (Esri 2019). This system 
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architecture is constructed by ETL during data preparation stage and sets up the build of the 

multimodal network dataset.    

3.4. Network Datasets 

Although Esri ArcGIS Pro 2.9 and Python 3 are used in data analysis and the construction 

of the entire ETL automation, each network dataset is manually built using ArcGIS Desktop 10.9 

software. The network datasets are created with ArcDesktop software because this initial release 

of the logic tier depends upon ArcMap-based runtime services and the ArcObjects software 

development kit (SDK) for the .NET framework. To transition this linear referencing middleware 

over to an ArcGIS Pro build in an enterprise environment operating above ArcGIS Server 10.9.1, 

all SOE code will have to be updated to use the ArcGIS Pro Runtime API and ArcGIS Enterprise 

SDK in a future release. The reasoning behind this transitional design approach is based upon the 

ongoing pervasive use of the ArcDesktop platform across the transportation industry, particularly 

in the public sector. The author finds sufficient benefits to introducing this set of REST tools on 

a platform that is still widely used, so that subsequent publications may serve as reference for 

successfully migrating similar linear referencing tools. 

 In the project, the network datasets provide the vital function of routing. Configuring the 

automobile dataset is relatively simple compared to the multimodal transit dataset. In either case, 

the configuration components that provide realistic routing outcomes include the input vector 

data (points and lines), connectivity, and attributes. Once all data preparation is completed via 

ETL automation, specific input point and line source features are applied in the Network Analyst 

configuration wizard, as shown in Figures 10 and 11. It is important to reiterate that while all 

source data are processed in the Web Mercator Auxiliary Sphere, WGS 1984 datum, they are 

published to each respective data model as unprojected GCS in NAD 1983, and this applies to 
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each network dataset. Again, this is done to assist with uniform routing and to extend the option 

of any user-defined spatial reference at the service endpoints. 

 
Figure 10. Connectivity in the Automobile Network Dataset 

 

How network elements connect depends on which connectivity groups the elements are in. 

For example, two edges created from two distinct source feature classes can connect if they are 

in the same connectivity group. The edges will not connect unless they are joined by a junction 

that participates in both connectivity groups (Esri 2019). The automobile network and transfer 

street stations, as depicted in Figure 10, are set to connectivity by the endpoints of each edge. For 

the transit networks, separately defined connectivity groups keep the pedestrian, bus, and rail 

networks distinct yet connected at shared bus stops and rail stations. Each edge source is 

assigned to exactly one connectivity group, and each junction source can be assigned to one or 

more connectivity groups, as illustrated in Figure 11. 
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  Figure 11. Multimodal Transit Network Connectivity 
 

 For performant treatment of network attributes – instead of assigning the dozens of metric 

fields directly to the network datasets – the wait times, trip speeds and traveler incomes are 

transposed from the rows of day types and day parts into fields of measurement within layers 

outside of the network datasets. The MWCOG authoritative model parameters and coefficient 

weights are also supplied outside of the network datasets, within the SOE code to satisfy the cost 

equations presented in the previous chapter, Section 2.5 (NCRTPB 2020). The parameters which 

are configured within each network dataset are as follows. As shown for driving in Figure 12, a 

default cost attribute is designated to the roadway length and a second cost attribute is assigned a 

field evaluator upon the “transfer streets stations” layer for the parking penalty time (KT). This is 

also observed as the impedance value for driving. 
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     Figure 12. Cost Attributes in the Automobile Network Dataset 

 
 In the transit network dataset configuration, the default cost attribute is also assigned to the 

facility length and three additional cost attributes are configured for the different types of transfer 

times that impede travel. Bus and rail transfer times are set to field evaluators on the linear bus 

and rail networks, respectively. Then, the bus-to-rail transfer time is wired up to the “transit 

transfer stations” point layer, from GTFS data, representing all bus stops and rail stations on 

service lines that provide transfer between both transit modes. The common field that these cost 

attributes utilize is the average all-day wait time field, present in each of the above-mentioned 

layers. This configuration of attributes in the transit network dataset is depicted in Figure 13. The 

author finds that applying the multiple other wait time fields, by day type and day part, is not 

necessary for guiding the routing function in this initial release of the project. Instead, this 

additional parameterization of transfer wait times is performed after routing has solved the path 
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and all resulting costs are being assessed. It is this post-routing step that, in turn, satisfies the 

walking time for transfer (W2T*), waiting time for transfer (Wa2T*), and in-vehicle time for 

transfer (IVT2*) in the applied cost equation. 

  
Figure 13. Cost Attributes in the Multimodal Transit Network Dataset 

From here, the multimodal transit dataset receives two additional types of network 

attributes – restriction and hierarchy. There are three restrictions that specify the level of 

preference for each transit mode at bus stops, rail stops, and transfer stations connecting rail and 

bus lines. Here, rail stops are granted “high preference”, transfer stations are “medium 
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preference”, and bus stops are set to “low preference”. The single hierarchy network attribute 

compliments this configuration by ranking each transit network centerline in ascending order, 

from the pedestrian mode to rail travel.  

Cost, restriction, and hierarchy attributes assist the Esri Network Analyst shortest cost-path 

algorithm in navigating across the connectivity of all three networks in a realistic manner. Of 

course, the assumptions built into these attributes simplify the travel model, but only to the 

extent that an economically rational path is found. The path geometry is then applied on the 

project’s temporal scale to spatially extract transfer times at appropriate junctions, centerline trip 

speeds, and traveler incomes as needed. This design approach reduces the complexity of the 

network datasets and improves overall performance in computing total costs.  

3.5. Databases 

Previous sections describe the manual and automated procedures that construct the data tier 

of the application. The “staging” database serves as storage of all manually inputted tabular data, 

in a spatial format that is suitable for geoprocessing. The “static” database contains the end 

results in the two-part metrics data model organized into automobile and multimodal transit 

feature datasets. These separate feature datasets are containers of each respective model part, and 

they are required for each network dataset build. The routing configuration for each travel mode 

resides inside of each network dataset with cost fields that are pertinent to independently solving 

the shortest-cost path. The Network Analyst software extension creates edges and connecting 

junctions from the input data and configuration for each network dataset.  

For the automobile mode, edges are created from the highway network feature class and 

junctions from the endpoints of each segment therein. For multimodal transit, edges are 

constructed from pedestrian, bus, and rail network feature classes, and the junctions are 
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generated according to the configuration of rail stations, bus stops, and the interconnecting 

transfer stations. All remaining cost variables, which depend on the solved path geometry, reside 

outside of the network dataset. The logical diagram in Figure 14 summarizes the complete data 

model, residing in the “static” database, as designed by the author. 

 
Figure 14. Tier 1: Metrics Data Model 

 

Contents of feature datasets must be spatial, and non-spatial tables may not be 

implemented directly. For example, the bus and rail lookup tables forementioned in the previous 

section are entered as parameters into one of the tools provided by Esri in the “arcpy” Python 

library for building relationship classes. This arcpy tool, or function, is called 
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“TableToRelationshipClass_management()” and this step is performed using a non-spatial 

lookup table as input and a relationship class as output, for the transit feature dataset. The GTFS-

based relationship classes are built within the feature datasets, but outside of the network 

datasets. Physical relationships can be implemented between feature classes applied in a network 

dataset with those used externally (Butler 2008). The geographical data that are pertinent to the 

shortest-cost path are implemented within each network dataset, and the metrics associated with 

the subsequent costs of traversing that path are installed outside of the network dataset. Two 

relationship classes link transit stops to the route segments they service, for both bus and rail 

modes, so that the SOE may quickly locate an intermodal transfer and the costs associated with 

that transfer.  

There is a significant difference in relationship ontology between calibrating pre- and post-

routing elements of travel data. In the project, the automobile data model does not exemplify this 

difference as well as the transit data model because only the latter involves physical 

relationships. Positional accuracy and transfer wait times of connected transit services are all pre-

routing concerns. The logic by which GTFS-based relationships are applied to calibrate these 

transit pre-routing elements is described in Section 3.3 and Figure 10. From a commuter’s 

perspective, once the most efficient path is drawn for transit and driving, the post-routing 

concern becomes: “Then how much is this route going to cost?” This is where physical 

relationships come into the picture, outside of the network dataset and for multi-modal transit. 

 Attributed relationship classes, with many-to-many cardinality, provide a high-

performance and high-accuracy alternative to spatial querying of complex transit networks. Data 

anomalies caused by combining disparate data sources are circumvented by establishing a 

coordinate-based unique identifier for each point event (Jetlund and Neuhäuser 2022), in this 
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case transit stops, and then spatially relating those points to linear trip metrics using distinct 

natural keys created from the metrics data itself. That is, a unique point “GeoID” is created by 

concatenating latitude and longitude values in comma-delimited format. The GeoID is then 

spatially related via background geoprocessing to a distinct temporal collection of linear trip 

speeds and traveler incomes by a surrogate key field, called the “MetricKey”. This relational 

structure is created over the entire extent of the link-point multimodal network, to assist the SOE 

with correctly interpreting traversals among the three transit networks. 
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Chapter 4 Application Development 

Today’s busy users expect performance when exerting focus upon the content and functionality 

of a web application or web service. In this project, back-end geoprocessing in the data tier 

supports higher performance at each REST service endpoint. This overall development approach 

provides for a “thin” web client that can potentially operate on a wide range of devices. 

Furthermore, with respect to scalability of this service-oriented middleware, the decision to 

leverage higher-level service components of cloud computing instead of out-of-the-box Esri 

geoprocessing services has enabled support for elastic and on-demand provisioning of networked 

resources (Issarny et al. 2011). The Commute GeoCalculator has a maturity path leading to 

creation of a scalable and computationally intensive, but thin, web client. This chapter explains 

the application development steps for a two-tier performant MWAAS toolset, comprising the 

project’s current web GIS, while taking a brief look at how a third-tier web user interface fits 

into the long-range plan. 

In Tier 1, the ETL workflow (or automation) is developed in Python 3, but manual data 

acquisition was required in order to streamline code development time. Data transformation 

comprises most of the scripting work, yet the data load modules do handle the build of 

relationship class structures between the spatial tables to complete both driving and transit data 

models within two local file geodatabases. An additional load module was added to cleanly 

overwrite these model results in the remote Microsoft (MS) SQL Server geodatabase. Data 

results of Tier-1 ETL are registered through an SDE connection to ArcGIS Data Store. The 

primary map service that facilitates the SOE recognizes this registration as the data source. For 

the overall project infrastructure, Figure 15 is a summarized view of the current state with added 

elements of the future state. 
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Figure 15. Commute GeoCalculator Infrastructure Diagram 

 

4.1. Configuring the Application Environments 

Tier 1 and Tier 2, as shown in the general diagram of Figure 15, are implemented in two 

separate locations, one for initial development and demonstration purposes and the other for 

future development and production deployment. For initial development, a sandbox environment 

was provisioned by information technology partners at the Texas Department of Transportation. 

For ongoing development and production, dual environments are planned for construction under 

contractual agreement with Amazon Web Services. All environments leverage AWS Cloud 

Builder for the creation of the “desktop” server and the ArcGIS Server “application” host, both 

configured as EC2 M4.2xlarge machine instance (AMI), with 4 CPU Cores, 16 - 32 GB of 

random-access memory (RAM), and at least 50 GB of disk storage space to handle the backend 

ETL workflow. Additionally, each location receives a relational database service (RDS) instance, 

running SQL Server 2019, for storing and managing all ingress source data as well as “staging” 

and “static” geodatabases. To complete this environment, the only additional step required of the 
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author was to install the PyCharm 2020 community-edition IDE on the “desktop” ArcGIS host 

machine so that pre-deployment updates to the ETL could be completed.  

Multiple setup steps were required to complete the initial development environment, 

starting with the desktop installation of ArcGIS Pro 2.9.1 with an advanced Network Analyst 

license and procurement of an Amazon Web Services (AWS) cloud server instance with MS 

Windows Server and Esri ArcGIS Enterprise 10.7.1 platform components. Specifically, ArcGIS 

Server and Web Adapter services were installed on one Amazon EC2 instance, as the application 

host server. Then, the ArcGIS Data Store service was installed alongside the MS SQL 

Server2016 database management system on a separate EC2 database server. Two SDE 

connections were then created for storing source data in a “staging” database and published 

results in a “static” database, as mentioned in Chapter 3. 

On the ArcGIS Server host machine, the MS Remote Debugger 12.0 service was also 

installed to provide a service runtime connection between the SOE and the MS Visual Studio 

2017 integrated development environment (IDE) on the author’s local desktop PC for code 

debugging. Several additional steps were needed on this local desktop IDE in order to allow all 

networked resources required by the SOE to function properly. These steps included desktop 

installation of the MS Visual C++ 2015–2019 Redistributable (x86 and x64) files, as well as the 

.NET Framework 4.5, ArcObjects SDK for .NET, and ArcGIS Runtime SDK. These are the core 

C# code modules with acquired libraries and assemblies for the project. 

4.2. Developing the Route Analysis Layers 

A critical function of the SOE is the linear routing capability that it invokes, particularly 

where it must solve a plotted path across separate but connected transit networks. For example, 

the route solver may determine that a commuter’s optimal transit route traverses across a 



56 
 

sidewalk to a bus line that leads to a metro train line, then exiting at another pedestrian path 

leading up to the destination point. Connected polyline and point data in the multimodal transit 

network dataset makes this traversal possible. The same is generally true of the point and 

centerline data configured in the automobile network dataset, but there is only one travel network 

connected to one cost layer in this case.  

A route analysis layer is created from the edge grid layer, the network dataset, then 

exposed during publishing of the map service to enable the Network Analyst extension to 

perform the on-demand routing functions. In the map document, each network dataset is 

removed after the route analysis layer is created, and all other layers and tables in the data model 

remain during publishing. All contents are published to ArcGIS Server as a map service, then the 

“.soe” build file is uploaded and appended to the map service in ArcGIS Server Manager. The 

SOE exploits the capabilities of Network Analyst using the route analysis layer, then spatially 

extracts cost attributes in both automobile and transit data models. While the underlying map 

service gains access to the physical data in the “static” geodatabase via the SDE connections, the 

core SOE modules filter and compute the travel costs on this data through a sequence of 

interfacing map server objects provided in the ArcGIS Runtime and ArcObjects SDK. The 

following subsections describe the ensuing logic applied to each data model, utilizing the 

analysis layers as well as the additional interface capabilities, to manifest realistic representations 

of travel based on user input. 

4.2.1. Automobile Route Analysis Layer 

 With roadway length as the default cost attribute, the route solver algorithm for automobile 

travel will redirect the output traversal toward the shortest path at any junction surrounded by 

conflicting cost attributes (Esri 2019). For the automobile route analysis layer, the only cost 
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attribute that can present such a conflict is the parking penalty time in the transfer street stations 

layer. Roadway traffic is not applied for determining path routing in this initial release, although 

it is very common in transportation network analyses. The main reason behind this decision is 

that average travel speed as a static traffic metric does not constitute a usable independent cost 

variable for routing. Average travel speed is implemented only as a route-dependent cost 

variable. The parking penalty is applied as the independent cost variable for routing because its 

values are not expected to change as frequently as roadway traffic flows.  

 The transfer street station features closely follow the automobile network centerlines and 

are connected by junctions at segment endpoints. This network attribute provides suitable 

impedance for modeling general driving conditions in this initial stage of the project. The route 

path is the output product of the route analysis layer, and once it has been solved, the SOE 

applies its linear shape to extract route-dependent cost values based on specific criteria. Since the 

parking penalty is also a route-dependent cost variable and occurs at the end of an automobile 

trip, its value is gleaned from the last transfer street segment intersecting the trip path by a 55-

foot tolerance. Tour-based travel is planned for a future phase of the project, wherein parking 

penalties will be extracted at every intermediate destination point defined by the service user. 

This future capability forms the basis for the layer name, “transfer street stations”, as the traveler 

would be expected to transfer to a different mode after parking, namely walking or biking.  

4.2.2. Transit Route Analysis Layer  

The facility length is also defined as the default cost attribute for the multimodal transit 

route analysis layer. And, in comparison to the automobile counterpart, travel speed is not 

applied as an input for routing. However, in contrast, this shortest-path route solver has 

substantially more work to perform in order to successfully traverse three interconnected transit 
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networks with differing criteria for impedance. Following the discussion of network datasets in 

Chapter 3, the elements of the transit route analysis layer include: pedestrian, bus, and rail 

networks; bus stops, transfer stops, and rail stations, all spatially integrated by connectivity 

groups and configured with cost, restriction, and hierarchy attributes. 

The ensuing steps of route analysis read and compare the cost, restriction, and hierarchy of 

surrounding approaches to determine the most favorable direction toward the destination point. 

As shown in Section 3.4, Figure 13, the preference restriction is assigned to each transit stop 

type. Stepping onto a bus or changing busses at a bus stop is set to the “low preference” 

restriction. But walking onto a bus at a transfer stop means that bus route services one or more 

rail stations, and this junction has a restriction of “medium preference”. The restriction set to rail 

stations is “high preference” and the route solver will navigate in favor of rail service until the 

rail stations are geographically out of range from the shortest path or the transfer cost becomes 

too high compared to surrounding options. 

The transfer cost attribute is assigned to the following transfer cost variables: 

“BusToBusTransfer”, “BusToRailTransfer”, and “RailToRailTransfer”. In each case, the field 

evaluator is assigned to all-day average transfer wait times from each transit stop. It’s important 

to note that the multimodal transit network applies one and only one edge between any two 

transit stops. This design cannot physically represent the multiple bus routes or train routes that 

traverse each edge. So, how does the route solver know where one transit vehicle route ends and 

another one begins? How does it know where a transfer is optimal and where it is not? Both 

answers are provided by the transfer cost variables. The key factor, here, is that the lowest 

average transfer time is traversed at each bus stop, transfer stop, and rail station. This data 

construct is the product of GTFS calibration in Tier 1.  
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4.3. Developing the Server Object Extension 

Tier 2 is composed of spatially enabled web services published through the ArcGIS REST 

API via the SOE, for activating routing capabilities and consuming the data. These services are 

written in code modules using the C# programming language on the MS .NET Framework. The 

ArcMap-based runtime API and the ArcObjects SDK for the .NET framework build and package 

these custom modules into a file that is uploaded to the primary map service. Esri documentation 

states that ArcGIS Server 10.9.1 does have ArcMap runtime services, on which most .NET SOE 

development patterns back to version 10.5.1 are fully supported (Esri 2022). The cited 

documentation, here, also provides steps for migrating ArcMap-based map services or image 

services to use the ArcGIS Pro runtime. For quick reference, one of the early steps in this process 

is transitioning the .NET ArcObjects-based SOE to be built with the ArcGIS Enterprise SDK. 

Without the burden of having to perform data preparation tasks, the SOE needs only to 

expose routed variables for immediate computation. In turn, this simplifies the required tasks in a 

web client, essentially to sequencing calls to the service endpoints and providing the user 

interface (UI) with an effective user experience (UX). However, developing SOE middleware to 

perform its required steps should not be dismissed as easy or trivial. At a minimum, the effort 

requires some experience with object-oriented coding in an advanced IDE. It is best practice to 

maintain a template SOE solution with core modules updated to the latest code libraries and 

reference assemblies for the development platform. This strategy allows the developer to keep 

existing projects up-to-date and portable to supported web platforms, while new projects can be 

initiated without having to start from scratch every time. The author leverages this strategy in the 

current project and a brief description of the template solution, given the namespace title of 
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“LRSLocator”, follows in this section. The project’s SOE template code, referenced in the 

ensuing discussion, is provided in the Appendix.  

In addition to the setup steps detailed at the end of Section 4.1, the development 

workstation requires Internet Information Services (IIS) installed, and ideally the latest version. 

Once the Visual C# .NET web application project is created in the workstation’s 

“inetpub\wwwroot” directory, a few core “.cs” modules stored with the solution file must be 

created with several key functions. To begin, under the “properties” subdirectory of the 

“LRSLocator” project, an “AssemblyInfo.cs” module provides general information about the 

solution that may optionally be set as visible to standard Component Object Model (COM) 

elements on the web. More importantly, the file which exposes the project’s functions to COM 

elements is the first module to reside in the main directory of the project, called 

“ComReleaser.cs”. Its job is to manage the release and disposal of “LRSLocator” content as 

binary software components. 

Next in the main directory is the “RESTContext.cs” module which declares all entities to 

be shared over the ArcGIS REST API. These include global solution variables for basic inputs 

and outputs (IO), as well as interface objects that represent all map server elements, network 

datasets, feature classes, relationship classes, and field names used in the project. To handle 

incoming requests to a specific REST resource or operation, a simple interface module called 

“IRESTHandler.cs” answers requests with return values in either JavaScript Object Notation 

(JSON), string, or byte format. To further assist the solution with encoding responses and 

handling errors in the JSON format, a “JSONHelper.cs” module is also added.  

With the above web interface modules in place, the functional framework of Commute 

GeoCalculator is constructed in the much larger “LRSLocator.cs” file, the main module. This is 
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where the project’s specific attributes and behaviors are declared and executed, wherein nearly 

everything is treated as an interface object or a REST operation. The globally unique identifier 

(GUID) is a 16-byte unique label for the project, which must be generated and then specified 

under the namespace and above the “ServerObjectExtension” declaration. From here, every 

variable and method forming the backbone of the project are written as private objects within a 

public class that inherits specific interfaces, all nested within the “LRSLocator” namespace.  

All entities of the “RESTContext.cs” module are referenced in the main module, and every 

ArcObjects interface member used in the solution is declared. Furthermore, in this main module 

the schema for each REST page is declared, along with functions that control IO properties and 

the interface with any element in the registered “static” geodatabase. Here, the SOE 

communicates with the database server, essentially taking the map service as an input argument. 

Because the project utilizes routing capabilities of the Network Analyst software package, the 

main module applies very specific conditions within the geodatabase interface to distinguish 

between M-aware feature classes, relationship classes, tables, network datasets, and the analysis 

layer parts therein. 

Finally, the implementation code modules leverage all attributes, behaviors, and interfaces 

of the main module to deliver the advanced functions of the middleware that meet project 

objectives. Regarding the use of routing capabilities, “RouteFromInputPoint.cs” mimics the 

actions of a desktop (or ArcGIS Pro) user who directly invokes the functions of the Network 

Analyst extension. This is also the module that writes out each solved path to any reachable 

machine on the current domain. The implementation code that applies the cost equations for 

driving and transit calls these functions of “RouteFromInputPoint.cs”. Any number of 

implementation modules may be created in the SOE template to fulfill project requirements. 
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4.4. Computation of Travel Costs 

The other vital function of the SOE is computation of the travel costs, using the linear 

shapes generated during routing. As stated in Section 4.2.1., the SOE applies the solved path to 

extract route-dependent cost values based on specific criteria. This section delves into these 

criteria to explain how usable variables are gleaned from each data model and applied to the 

travel cost equations. In this procedure, parameters (p) are coefficients specified by the regional 

transportation authority, while all other variables change value per each commute. All time and 

distance data, including those applied to travel costs, are expressed in minutes and miles at a 

precision of 0.1 minutes and 0.001 miles. The equation output provides a cost value associated 

with each travel mode path – transit and automobile. Both cost equation sets include inferred 

traveler income extracted at the trip origin, then factored into the “value of time” parameter. In 

Table 6, the monetary value of time is translated from minutes of total travel time, based on 

household income. 

Table 6. Value of Time by Purpose of Travel and Income (NCRTPB 2020) 

Household 
Income 

Midpoint of 
Household 

Income 

Hourly Rate per 
Worker 

Time Valuation  
(Minutes per Dollar) 

Work Trips 
(75% Value 

of Time) 

Non-work 
(50% Value 

of Time) 

$ 0 - $50,000 $25,000 $9.23 8.7 13 

$50,001 - 
$100,000 

$75,000 $27.70 2.9 4.3 

$100,001 - 
$150,000 

$125,000 $46.17 1.7 2.6 

$150,001 + $175,000 $64.64 1.2 1.9 
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4.4.1. Automobile Travel Costs 

 The overall approach to cost computation is to apply authoritative parameters and 

estimates to additive equation sets derived from research, while using spatially extracted 

attributes as the variables. Link drive time, below, is the average driving time over one segment 

of the highway network, based on the input mean speed from traffic metrics divided by the 

length of segment within a given TAZ. Link mean speed, µSL, is provided by the automobile trip 

speed table by day type (weekday or weekend) and day part (early AM, peak AM, mid-day, peak 

PM, and late PM). The service user specifies one day type and one day part per each request for 

a commute calculation. Spatial intersection tools from the ArcObjects interface language make it 

possible to take path-specific measurements from the layers in the automobile data model. The 

total cost in minutes, TA, is the summation of all link travel times along the routed path, plus the 

parking penalty which is taken from the “transfer streets stations” layer at the destination point. 

The cost equation set for driving is as follows: 

               n 

 Total Cost (in minutes), TA = ∑ (DL /µSL) d + KT     (8) 
              d= 1 

where (DL /µSL)d is the link drive time composed of DL, the link distance, and µSL, the link mean 

speed. KT is equal to the parking penalty time, and n is the number of road links. 

Total Cost (in dollars), CA = (pVT x TA) + (pCM x DT) + KC    (9) 

where pVT represents the value of time parameter, as per Table 6; pCM is equal to the cost per 

mile parameter; DT is the total drive distance; and KC is given as the estimated parking fee. The 

total cost in dollars, CA, is the income-driven value of time parameter multiple by TA and then 

added to the product of fuel cost per mile and total distance, plus the estimated parking fee. 

Roadway fuel cost (for the pCM parameter) is derived from the national-level model applied in 
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the NCHRP Report 716 at $0.21 per mile, then adjusted by the current inflation rate. The parking 

fee, KC, (in dollars) is extracted from the same layer at the same user-defined destination point 

where the parking penalty (in minutes) is assessed. In compliance with the regional authority, the 

parking cost is estimated within the “transfer streets stations” layer by the following equation:  

Estimated Parking Fee, KC = 2.1724 x ln(employment density) – 15.533  (10) 

Specifically, the shown natural logarithm function is calculated by the Python math library, as 

math.log(x, [base e]), where x is the block group employment density. 

4.4.2. Multi-modal Transit Travel Costs 

 For the travel cost computation of multi-modal transit, the overall approach to use 

authoritative estimates in research-based equation sets is fundamentally the same as described for 

automobile driving costs. Similar to the auto driving cost equations, the attributes of travel time 

for multi-modal transit are calculated over the facility links traversing each TAZ in which trip 

metrics are linearized by day type and day part. The interface and format of inputs and outputs at 

the REST endpoint are the same as used for the driving mode. What is quite different is the 

algorithm that captures and processes the larger number of variables used as inputs to solve the 

transit equation set. On one hand, pedestrian trip speed is simply read over all links that intersect 

the route path, which is the way that driving trip speed is collected. On the other hand, bus and 

rail modes require careful tracking of the specific service line utilized, from the first point of 

entry to the last. The cost equation set for transit is as follows: 

       w                   x       
   Total Cost (in minutes), TM  = [∑ (PL /µSL) p + WaT] + [∑ (BL /µSL) b + W2Tb] (11) 

               p = 1      b = 1  
       y 
             + [∑ (RL /µSL) r + W2Tr] + Wa2T* 
           r = 1 
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where (PL /µSL) p is link walk time; (BL /µSL) b is link bus time; (RL /µSL) r is link rail time. 

Here, each numerator and denominator replicates the quotient of link distance over mean speed 

used in the automobile cost equation. WaT represents the wait time, W2Tb the bus transfer time, 

W2Tr the rail transfer time, and Wa2T* the intermodal transfer wait time between bus and rail. 

Total Cost (in dollars), CM = [pVT x TM]+ (F + F2T*)     (12)  

where pVT is the value of time parameter; F is equal to the fare cost of the initial bus or rail 

route, and F2T* is the fare cost of any ensuing transfer. Transit fares (F, F2T*) and intermodal 

transfer wait times (Wa2T*) between bus and rail are gathered and processed within separate 

server objects. That is, these variables are aggregated outside of the dictionaries containing 

values for the link travel time attributes. Fare costs are applied to the linearized metrics based 

upon the average fares of each transit operator, and then exposed after network paths are solved. 

And the parameters are constants assigned to the region according to NCRTPB specifications. 

Finally, the sum of intermodal transfer times are added to the transit equation (11) for the time-

based cost, just before it is solved. Once equation (11) is fully executed, then the sum all fares 

are added to the product of total time expenditure (TM) and the value of time parameter (pVT) to 

solve equation (12). Section 5.2 further explains how these cost variables are extracted and 

processed in the multimodal transit model. 
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Chapter 5 Results 

The proprietary traffic metrics and open-source content used to build the multi-network data 

models and enterprise web services in this project were initially unusable for such an application. 

Source travel speed and traveler income were provided as percentages over a set interval of 

movements detected within each traffic analysis zone. In order to model general travel 

conditions, this range of values had to be dissolved and linearized into the average trip speed and 

traveler income along facilities in each zone. The location of parking penalties for driving and 

transfer times for transit are not values that are readily available on an open-source data portal, 

nor from any online content provider. Rail and bus polyline layers from the regional authority do 

not contain distinct linear features for each individual route traversing the system, much less the 

route segments with average transfer times.  

 At the source, multiple rail and bus head signs are grouped into one route identifier field 

for every line segment and transit stop table. GTFS data were required to fully itemize and 

accurately position each transit stop, yet GTFS stop identifiers are not common with NCRTPB 

identifiers for bus and rail stops. Furthermore, all linear data provisioned by the regional 

authorities and the US Census Bureau contain no M-values in their shape fields that would 

enable routing, and a significant portion of features are disjoint at intersections. With all of the 

challenges in the data resolved in Tier-1 geoprocessing, Tier-2 results are dual routable network 

datasets that model driving and transit paths by estimated parking times, transfer wait times, 

distance, and preset hierarchical preferences. Each path geometry is provided in well-known text 

(WKT) format on the REST page. Also, every path is written to the workstation server in a 

feature layer collection that can expose each individual route analysis layer to most map viewers, 

including ArcGIS Pro. 



67 
 

The results on each REST page also include all user-entry parameters and cost outputs, in 

decimal units of minutes and dollars. Depictions of these results are presented in Sections 5.1 

and 5.2. To commence the cost calculation, the only inputs needed are beginning and ending 

latitude and longitude in decimal degrees, and the pre-defined string literal for identifying the 

time of day (day part), weekday or weekend (day type). Over one hundred distinct coordinate 

pairs were tested at the REST page in the study area; ninety-two of these cases returned valid 

values. The following sections describe the full context of actual results, through an investigation 

of one of the successful travel cost samples. 

Table 7. Time of Day Input Parameter 

Day Part Description Weekday Entry Value Weekend Entry Value 

All-Day Average 1:AllDayAvg:Weekday 7:AllDayAvg:Weekend 
Early AM (12am – 6am) 2:EarlyAM:Weekday 8:EarlyAM:Weekend 
Peak AM (6am – 10am) 3:PeakAM:Weekday 9:PeakAM:Weekend 
Mid-Day (10am – 3pm) 4:MidDay:Weekday 10:MidDay:Weekend 
Peak PM (3pm – 7pm) 5:PeakPM:Weekday 11:PeakPM:Weekend 
Late PM (7pm – 12am)  6:LatePM:Weekday 12:LatePM:Weekend 

 

5.1. Automobile Cost Model and Service 

The rules of the road for basic routing on a highway network are relatively straight-forward 

when there is only one centerline file with no modeling of turns, elevation, service areas, or 

complex rules for impedance. The only impedance built into the project’s highway network is 

the parking penalty that is based on census employment density. This routing cost for driving and 

street connectivity can and will redirect the route solver away from what may appear to be the 

shortest distance between origin and destination. The forementioned trip sample for driving is 

visualized in Section 5.3. Figure 16 shows the attribute values on the REST page.  
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Figure 16. Trip Sample - Automobile Travel Cost Return 

 With segment endpoints of the transfer street stations created directly from the highway 

centerlines, the default edge connectivity enables the network route solver to redirect paths 

cleanly in the direction of lower parking penalties. After routing, a sequence of methods in the 

SOE use the geometry of the solved path to capture all segments which carry the penalty values. 

From this isolated subset, the destination point feature is then applied in a spatial intersect to 

extract one distinct record containing the whole number of minutes required on average to park. 

The same path geometry is also used to extract each link drive time that is plugged into the cost 

equation with given coefficients to calculate the totals shown in Figure 16. 
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5.2. Multimodal Transit Cost Model and Service 

For the same trip sample, the multimodal transit costs at the REST page are depicted in 

Figure 17. Instead of segment endpoints used as the connecting junctions between these 

networks by default, bus stops, transfer stops, and rail stations serve this purpose in the transit 

route analysis layer. As pointed out in the previous chapter, the modal split is preconfigured by 

the elements in the transit network dataset. 

 

Figure 17. Trip Sample – Multimodal Transit Travel Cost Return 



70 
 

 In most user-defined scenarios, the subsequent route analysis layer begins its routing task 

by reading restriction and hierarchy values in the pedestrian network features that surround the 

trip origin point. Of course, it is possible that an origin point may be specified within five feet of 

a bus stop, transfer stop, or rail station, in which case the cost, restriction, and hierarchy of the 

respective network would be processed first. But in the most prominent case, it is important to 

understand that the pedestrian network does not have an independent cost attribute for routing. 

Transfer wait time is the independent cost variable in the transit route analysis layer and walking 

simply does not impose a transfer waiting period in any practical situation. However, the 

pedestrian hierarchal ranking is the lowest of all networks, at a value of “3”, and thus the route 

solver expeditiously navigates away from walking to the nearest junction having the most 

favorable attribute values and position on the shortest path toward the destination. Taking a bus 

ranks as “2”, and riding a train is ranks highest at a value of “1”. 

 In Chapter 3, Figure 14 illustrates the relationships that bind arrival and departure times to 

every route for bus and rail modes. These relationships are important to Tier-1 preparation of 

transfer times within the attributes of transit stop points and links. The transit route tracking 

algorithm in the SOE collects the route identifier from first service line encountered, and then 

checks whether it persists across every subsequent stop which has a non-zero transfer time (an 

opportunity to transfer). If the next link in the direction of travel does not have the expected route 

identifier in its attribute table, then the transfer time at the associated stop is added to a dictionary 

object in code, along with record of the link that is providing the trip speed at the location. Also, 

the next route identifier is assigned to the route tracking variable, and the process repeats along 

the solved route path for bus routes and rail service lines exclusively. As a result, trip speeds and 
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transfer times are organized by link and travel mode, for orderly insertion as variables into the 

multimodal cost equations. 

5.3. Routed Automobile and Transit Travel Costs 

Through the SOE, both automobile and transit cost models have their own API for 

computing individual trip samples with only lat-long coordinate pairs and the time-of-day 

parameter as required inputs. Each of these REST endpoints (pages) contain an optional input 

parameter for the EPSG number of the desired spatial reference. By default, SOE computation is 

performed on the model data in unprojected geographic coordinates on NAD 1983, even though 

the data undergo ETL projected in WGS 1984 Web Mercator Auxiliary Sphere with shapes 

preserved. Given the consistency in geoprocessing these data under a world projection well-

suited for a web platform, the conversion back to geographic coordinates during SOE publishing 

allows the object libraries to apply geometric features to most any projection specified by a web 

client. It’s a technique utilized in multi-level linear referencing systems (MLRS) that apply a 

network data construct known as a linear datum to handle practically any projection on the data 

(Butler 2008). 

In the previous section, the trip sample exemplifies how much more complex the 

multimodal transit network is compared to the basic highway network. The multimodal transit 

network inherently requires more rules for analysis. For example, the route solver will continue 

charting along an assumed bus route on the transit route analysis layer where a bus stop carries a 

transfer time of zero. If there happens to be another bus route intersecting that bus stop point, it is 

ignored because GTFS data hold no record of both bus lines servicing that particular stop. Figure 

18 shows the geometry paths for the scenario submitted at each REST page in Figure 16 and 17. 
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This particular case involves a transfer from rail to a bus route via a rail station well before the 

destination point, that is otherwise closer to a different rail station.  

 

Figure 18. Transit and Automobile Cost Path Outputs in ArcGIS Pro® 

 
Here, the path solution accepts a lower transfer cost from the “BusToRailTransfer” value 

that is read from the transfer stop at the exact location of “Rail Station 2”. In theory, this also 

means that the bus transfer times along the remaining path to the destination are lower than the 

impedance measured from taking the route through “Rail Station 3”. The thin orange line is the 

local rail line. By comparison, another noteworthy outcome in the above depicted example is the 

path solved for automobile travel. It is forementioned that the parking penalty is applied as the 

independent cost variable for automobile routing because its values are not expected to change 

very frequently. There is another reason that parking time is applied to routing, which is 
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illustrated in Figure 18. Longer parking times indicate higher employment density by census 

block group, which suggests more heavily congested activity centers (NCRTPB 2020). Thus, the 

automobile route solver negotiates around such areas of higher parking penalties, with respect to 

the shortest physical path. Recall that route length is the default cost variable for both travel 

modes, and the additional elements assigned to each route analysis layer refine the results.  
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Chapter 6 Conclusions 

 A rigorous research and development effort has driven completion of this initial phase of the 

project, with authoritative source data provided by open data portals and traffic content from the 

SL Data InSight® platform. The initial analysis and data capture of traffic metrics was made 

possible through academic licensing by SL Data, Inc. SL content and analysis software is 

available to the project under a free one-year academic license with 500 traffic analysis zones, 

the approximate extent of central metropolitan Washington D.C. Instead of committing the entire 

project to open-source content and technologies, the decision was made to opt for long-term 

support and scalability made more practical by proprietary providers. This was deemed 

necessary for the future expansion of the service area into broader geographies, and for the 

implementation of a web client and more advanced functions.  

6.1. Application Utility 

The middleware provisioned in the project is designed as a tool for exposing probable 

travel cost paths, given general conditions over the built environment on which the data model is 

implemented. The system is functional over heterogenous urban development patterns in terms 

of street connectivity, transit accessibility, system mobility, service frequency, and the various 

costs of traversing the system at peak and off-peak traffic intervals. Tier-1 background 

geoprocessing scripts provide a repeatable process for integrating disparate geographic data in 

modeling multimodal travel. Subsequently, with these data now usable in an accessible model 

set, the Commute GeoCalculator travel-cost web services are well suited for hosting in a 

standard enterprise-level IT environment or research lab. From this solution, multiple possible 

use case scenarios exist for the scientific research community as well as for the transportation 

industry. 
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Transportation web and mobile applications that are purposed for quantifying multimodal 

travel would readily benefit from consumption of the project’s REST services. As forementioned 

in Section 2.4, Google Maps utilizes live traffic feeds with routing functions in some service 

areas, but each selected travel mode may only be routed on separate map views. There is no 

combined view of all selected travel modes on one map UI, which is a limitation for the traveling 

user of Google Maps. Because the project web services leverage performant methods for 

operation on enterprise-level infrastructure, it is conceivable that a competitor application could 

utilize the project’s middleware to address this gap in map UI design and to geographically 

extend coverage of estimated travel costs with updateable traffic metrics. Public-facing routing 

applications present the most immediate possibility for general usage in commercial industry. 

A second possible use case that would serve both industry and scientific research is the 

installation of Commute GeoCalculator services in high-volume data generation processes. A 

scripted process could submit a predefined list of random and independent coordinate pairs with 

day parts (time ranges), as OD inputs at the service endpoints, to then write the returned trip cost 

information to a database. Transit agencies that are interested in analyzing the network 

performance of their route plans would benefit from this utilization. This use case also applies to 

data preparation for conventional inferential statistics, often seen in spatial analyses. Albeit the 

linearized data in the project’s model are geared more toward network analysis, methods for 

spatial analysis of linear traffic patterns are found in transportation research (Haixiang, Yang, 

and Yonghui 2010; Bhat and Zhao 2002). The author finds that such methods would also be 

applicable to spatial analyses of multimodal travel cost patterns, whereby Commute 

GeoCalculator services would serve as a viable resource for the preparation of these data. 
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Thirdly, by applying the project’s services in a web client to invoke mode-choice responses 

directly from the commuting public, the researcher or transportation manager could create a 

powerful VGI application. A practical scenario, aforementioned in the project overview and 

Section 2.3, is a VGI deployment that allows the general public to readily compare the cost-

based utilities of their own individual commute patterns and options in order to provide input as 

participating stakeholders in local transportation improvements and TDM strategies. Perhaps an 

even more effective deployment would be a travel routing application that is open indefinitely to 

the commuting public for general use. Considerably more VGI content could be collected, but 

not without some incentive to travelers for participating.  

6.2. Limitations and Costs of Development 

While the Commute GeoCalculator services are designed for scalability, the initial release 

is a proof of concept with significant usage limitations. For the purposes of the project as a thesis 

work, the initial users shall be authorized students, faculty, and staff of the Spatial Sciences 

Institute at the University of Southern California. At each REST page, users may replicate the 

steps which a web client would apply, by entering OD points using XY coordinates in decimal 

degrees. To accommodate, a scripted utility is provided that randomly extracts and organizes lat-

long coordinates from the endpoints of highway segments in the study area, so that initial users 

have the means to test the application. On May 20, 2023, these functions and documentation are 

planned for release at https://github.com/modomotiv/sandboxpage.github.io/index.html, where 

the future release of the Commute GeoCalculator website is also scheduled for release at a later 

date. 

In the current project, the computation of travel costs for multimodal transit has a few 

notable simplifications that limit usage. The first of these is explained in Section 5.2., the 
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preconfigured modal split, which makes the transit cost service too inflexible for use in a travel 

web application. This rigidity in the network dataset configuration stems from the use of average 

transfer times at each transit stop and along each bus and rail route line. With points and lines as 

simple features, it is quite difficult to build a complete network representation of all available 

transfer times for all bus and rail routes. Therefore, a higher order structure of point and line 

features is part of future development plans, wherein GTFS calibration can more effectively 

articulate among individual transfer times and their specific operator routes. 

The most limiting simplification imposed on the transit data model, which led to the use of 

average transfer times, is the lack of travel direction with respect to bus and rail modes. Even 

though GTFS data include a directional indicator of arrival and departure times with positional 

offset, the higher orders of point and line structure that are required for directional transit 

segments (Butler 2008) are not built into the current model. The primary reason behind this 

design decision is the generalization imposed by assigning the traffic indices from TAZ polygons 

to each contained transit segment. The direction of travel is lost in the organization of traffic 

metrics during this process. Nevertheless, the US standard TAZ features, which are typically 

larger than a city block but smaller than a census block group, do provide a valid characteristic 

unit of measurement for general traffic conditions. Hence, a low to moderate level of ecological 

fallacy is accepted in the construction of the current model, and future advancement of the model 

will address this issue. Whether it is a change in content provider or a different data analysis to 

extract these metrics, the traffic on linear facilities cannot continue to be inferred from polygon 

data if the application is to advance toward meeting its long-term objectives. 

One final noteworthy curtailment in the transit cost model involves bus and rail fares, 

which are weekday and weekend averages for each transit operator with no accounting for 
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dynamic pricing. Fluctuations in demand, particularly for local train routes (NCRTPB 2020), 

drive significant intra-day changes on fares. Instead of tracking operator rules for dynamic 

pricing, fares are manually extracted from each operator’s reported website then averaged for 

one day of ridership and hard coded into each route. At service runtime, fares are enforced one 

time in the cost calculation for bus and rail, independently. For the computation of total transit 

cost on individual commutes, this omission of dynamic pricing can be impactful to the accuracy 

of results. To a lesser extent, variable pricing on parking fees may also impose inaccuracies in 

the total driving costs of some commutes. Yet such parking data may prove to be challenging to 

acquire. Therefore, more comprehensive treatment of transit operator rules is the focus of future 

improvements to the assessment of direct charges from transportation service providers. 

Initial project expenses were incurred by the acquisition of Windows Server and ArcGIS 

Enterprise software packages that run in an authorized AWS sandbox environment provisioned 

by GIS technology partners at the Texas Department of Transportation, plus the application fee 

for the one-year academic license from SL Data, Inc. Fortunately, this license application was 

accepted, thereby avoiding the substantial cost of purchasing the 500-zone traffic content used in 

the project. Minor expenses included presentation images procured from Almay, Inc., and some 

minimal leave of absence from currently contracted work to finish the project. One of the near-

term future costs of the project will be the subscription fee to host all application functions 

herein, plus the planned web client, from a secured GitHub repository. Hosting fees for a startup 

website are relatively inexpensive in the short run, as long as the user demand is low. A more 

substantial cost in labor is expected for the near-future SOE migration away from ArcMap 

runtime services and ArcObjects SDK, onto the ArcGIS Pro runtime API and Enterprise SDK. 
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6.3. Future Improvements 

Numerous important enhancements are planned for future release phases of the project, 

including steps to address the key limitations discussed in Section 6.2. However, the foremost 

initiative in the future improvement plan is a web client in a third tier. The overarching concept 

is that through a transactional web user interface, the user receives requested commute cost 

information while given the opportunity to share minimal and anonymous mode choice feedback 

about each travel query. Through the UI elements of a presentation tier – choosing OD locations, 

identifying routes and landmarks, sequencing multiple destinations, and specifying the time 

schedule for travel – substantial spatial cognition (Montello and Sas 2006) is required of the user. 

The first user requirement is spatially intuitive plotting of all OD points on the map UI, including 

any intermediate stops that would constitute a tour. A critical feature, here, will be street address 

geocoding, so that the end user is not confined to only plotting OD locations by XY coordinates 

on the map UI. And, with these enhancements, the addition of the bicycle mode will be an 

important feature as well. 

The second requirement, here, is a collaborative and brief exchange of information through 

the end user workflow. This dialog commences only after the user has plotted their points to 

create the shortest-distance transit and driving paths. Time and cost results are forthcoming as 

soon as the user provides information about the time and purpose of travel, as well as household 

income on a strictly voluntary basis. There are disaggregate mode choice factors which are not 

included in the equations, such as traveler’s comfort and sense of security or safety. These 

qualitative factors are based on users’ experiences and will be shareable in the web client. 

Given the requested cost values, the user may opt in to anonymously share VGI about 

which mode would be selected for their trip or tour and the reasons behind it. Alternatively, the 
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user may decline to do so and continue to use the system without any part of their session being 

saved. At the end of this workflow, the web client will call a feature service that is hosted in the 

logical tier to capture and timestamp any volunteered results in the commuter geodatabase. These 

results include the user’s anonymous profile, travel preferences, cost attributes, path geometry, as 

well as which alternative was chosen and, again, the reasons behind the choice.  

The initial web user interface will not necessarily be designed to operate on mobile devices 

in the next planned release, but mobile capability is crucial for the application’s intended 

maturity path. In the first rollout, the web application will have an internal public user account 

that only tracks each session, not the individual user. Limited functions will be available for 

retrieving the traveler’s volunteered results in the commuter geodatabase. The extent of 

preliminary capabilities will permit a transport manager role to access and download mode 

choice data in Excel tables and a corresponding shapefile. 

In conclusion, the Commute GeoCalculator program is designed for automated data 

sampling and comparison of multimodal travel costs, with the development potential to become 

an empirical data sampling tool for travel mode choice. A fundamental aspect of travel behavior 

is mode choice. If travel mode choice can be sampled randomly and independently from the field 

directly with respect to the built environment, then new opportunities arise for improving studies 

of travel behavior in the space of flows (Pieri and Nelson 1999). Through scientific application 

of such technology, perhaps more effective interventions in transportation are possible. 

Regardless of the project’s current constraints, the results serve as a viable proof of concept that 

web GIS services can be created from available resources to present an alternative approach 

toward researching travel behavior. 
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Appendix 
Commute GeoCalculator SOE Template 

 

Module 1: AssemblyInfo.cs 

using System.Reflection; 

using System.Runtime.CompilerServices; 

using System.Runtime.InteropServices; 

 
[assembly: AssemblyTitle("LRSLocator")] 

[assembly: AssemblyDescription("LRSLocator for 10.4.1")] 

[assembly: AssemblyConfiguration("")] 

[assembly: AssemblyCompany("")] 

[assembly: AssemblyProduct("LRSLocator")] 

[assembly: AssemblyCopyright("Copyright ©  2023")] 

[assembly: AssemblyTrademark("")] 

[assembly: AssemblyCulture("")] 
 

// Setting ComVisible to false makes the types in this assembly not visible  
[assembly: ComVisible(false)] 

// The following GUID is for the ID of the typelib if this project is exposed to COM 
[assembly: Guid("dd8a0333-fa32-4d30-9e27-31b2d0b0a89c")]   

[assembly: AssemblyVersion("2.0.73.0")] 
[assembly: AssemblyFileVersion("2.0.73.0")] 

[assembly: ESRI.ArcGIS.SOESupport.AddInPackage("LRSLocator", "6469e3e3-890a-
4e56-8992-5b5b5fac3d32", 
    Author = "314882", 
    Company = "", 
    Date = "1/7/2023 1:32:30 AM", 
    Description = "", 
    TargetProduct = "Server", 
    TargetVersion = "10.4", 
    Version = "1.9")] 
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Module 2: ComReleaser.cs 

 using System; 
using System.Collections; 
using System.Runtime.InteropServices; 
 
namespace LRSLocator 
{ 
    [Serializable] 
    public class ComReleaser : IDisposable 
    { 
        // Fields 
        private ArrayList _array = ArrayList.Synchronized(new ArrayList()); 

        // Methods 
        public void Dispose() 
        { 
            this.Dispose(true); 
            GC.SuppressFinalize(this); 
        } 

        protected virtual void Dispose(bool disposing) 
        { 
            int count = this._array.Count; 
            for (int i = 0; i < count; i++) 
            { 
                if ((this._array[i] != null) && Marshal.IsComObject(this._array[i])) 
                { 
                    while (Marshal.ReleaseComObject(this._array[i]) > 0) 
                    { 

                    } 
                } 
            } 

            if (disposing) 
            { 
                this._array = null; 
            } 
        } 

        ~ComReleaser() 
        { 
            this.Dispose(false); 
        } 
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Module 2: ComReleaser.cs (continued) 

        public void ManageLifetime(object o) 
        { 
            this._array.Add(o); 
        } 

        public static void ReleaseCOMObject(object o) 
        { 
            if ((o != null) && Marshal.IsComObject(o)) 
            { 
                while (Marshal.ReleaseComObject(o) > 0) 
                { 

                } 
            } 
        } 
    } 
} 

 
Module 3 Summarized: RESTContext.cs 
 
 using System.Collections.Specialized; 

using ESRI.ArcGIS.Carto; 
using ESRI.ArcGIS.Geodatabase; 
using ESRI.ArcGIS.SOESupport; 
using System.Collections.Generic; 
 
namespace LRSLocator 
{ 

    public class RESTContext 
    { 
        // REST request 
        public NameValueCollection BoundVariables; 
        public JsonObject OperationInput; // operations only 
        public string OutputFormat; 
        public string RequestProperties; // in JSON format 
 
        // REST response 
        public string ResponseProperties; 

        // SOE properties 
        public ServerLogger Logger; 
        public IMapServer3 MapServer; 
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Module 3 Summarized: RESTContext.cs (continued) 
 

        // Auto Layer Properties 
        public IFeatureClass HighwayFeatureClass; 
        public IFeatureClass LrsTransferStreetsFeatureClass; 
        public IFeatureClass LrsAutoTripMetricFeatureClass; 
        public IFeatureClass LrsAutoTravMetricFeatureClass; 
 
        // Transit Layer Properties 
        public IFeatureClass RailwayFeatureClass; 
        public IFeatureClass RailStationFeatureClass; 
        public IFeatureClass LrsRailTripMetricFeatureClass; 
        public IFeatureClass LrsRailTravMetricFeatureClass; 
        public IFeatureClass BuslineFeatureClass; 
        public IFeatureClass BusStopFeatureClass; 
        public IFeatureClass TransferStationFeatureClass; 
        public IFeatureClass LrsBusTripMetricFeatureClass; 
        public IFeatureClass LrsBusTravMetricFeatureClass; 
        public IFeatureClass WalkwayFeatureClass; 
        public IFeatureClass LrsWalkTripMetricFeatureClass; 
        public IFeatureClass LrsWalkTravMetricFeatureClass; 
 
        // Auto Field Properties – Weekend Metrics Fields (WE) Excluded 
        public string HighwayFeatureClass_RIDField; 
        public string HighwayFeatureClass_FDFOField; 
        public string HighwayFeatureClass_TDFOField; 
        public string LrsTransferStreetsFeatureClass_RIDField; 
        public string LrsTransferStreetsFeatureClass_ParkPenaltyField; 
        public string LrsAutoTripMetricFeatureClass_RIDField; 
        public string LrsAutoTripMetricFeatureClass_FDFOField; 
        public string LrsAutoTripMetricFeatureClass_TDFOField; 
        public string LrsAutoTripMetricFeatureClass_WDAllDayAASField; 
        public string LrsAutoTripMetricFeatureClass_WDEarlyAMAASField; 
        public string LrsAutoTripMetricFeatureClass_WDPeakAMAASField; 
        public string LrsAutoTripMetricFeatureClass_WDMidDayAASField; 
        public string LrsAutoTripMetricFeatureClass_WDPeakPMAASField; 
        public string LrsAutoTripMetricFeatureClass_WDLatePMAASField;         
        public string LrsAutoTravMetricFeatureClass_RIDField; 
        public string LrsAutoTravMetricFeatureClass_FDFOField; 
        public string LrsAutoTravMetricFeatureClass_TDFOField; 
        public string LrsAutoTravMetricFeatureClass_WDAllDayAAIField; 
        public string LrsAutoTravMetricFeatureClass_WDEarlyAMAAIField; 
        public string LrsAutoTravMetricFeatureClass_WDPeakAMAAIField; 
        public string LrsAutoTravMetricFeatureClass_WDMidDayAAIField; 
        public string LrsAutoTravMetricFeatureClass_WDPeakPMAAIField; 
        public string LrsAutoTravMetricFeatureClass_WDLatePMAAIField; 
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Module 3 Summarized: RESTContext.cs (continued) 
         
        // Transit Field Properties – Weekend Metrics Fields (WE) Excluded 
        public string RailwayFeatureClass_RIDField; 
        public string RailwayFeatureClass_FDFOField; 
        public string RailwayFeatureClass_TDFOField; 
        public string RailStationFeatureClass_GeoID; 
        public string RailStationFeatureClass_RIDField; 
        public string RailStationFeatureClass_WDAllDayWaitField; 
        public string RailStationFeatureClass_WDEarlyAMWaitField; 
        public string RailStationFeatureClass_WDPeakAMWaitField; 
        public string RailStationFeatureClass_WDMidDayWaitField; 
        public string RailStationFeatureClass_WDPeakPMWaitField; 
        public string RailStationFeatureClass_WDLatePMWaitField;         
        public string LrsRailTripMetricFeatureClass_MetricKey; 
        public string LrsRailTripMetricFeatureClass_RIDField; 
        public string LrsRailTripMetricFeatureClass_FDFOField; 
        public string LrsRailTripMetricFeatureClass_TDFOField; 
        public string LrsRailTripMetricFeatureClass_WDAllDayAASField; 
        public string LrsRailTripMetricFeatureClass_WDEarlyAMAASField; 
        public string LrsRailTripMetricFeatureClass_WDPeakAMAASField; 
        public string LrsRailTripMetricFeatureClass_WDMidDayAASField; 
        public string LrsRailTripMetricFeatureClass_WDPeakPMAASField; 
        public string LrsRailTripMetricFeatureClass_WDLatePMAASField;         
        public string LrsRailTravMetricFeatureClass_RIDField; 
        public string LrsRailTravMetricFeatureClass_FDFOField; 
        public string LrsRailTravMetricFeatureClass_TDFOField; 
        public string LrsRailTravMetricFeatureClass_WDAllDayAAIField; 
        public string LrsRailTravMetricFeatureClass_WDEarlyAMAAIField; 
        public string LrsRailTravMetricFeatureClass_WDPeakAMAAIField; 
        public string LrsRailTravMetricFeatureClass_WDMidDayAAIField; 
        public string LrsRailTravMetricFeatureClass_WDPeakPMAAIField; 
        public string LrsRailTravMetricFeatureClass_WDLatePMAAIField;         
        public string BuslineFeatureClass_RIDField; 
        public string BuslineFeatureClass_FDFOField; 
        public string BuslineFeatureClass_TDFOField; 
        public string BuslineFeatureClass_WDAllDayWaitField; 
        public string BuslineFeatureClass_WDEarlyAMWaitField; 
        public string BuslineFeatureClass_WDPeakAMWaitField; 
        public string BuslineFeatureClass_WDMidDayWaitField; 
        public string BuslineFeatureClass_WDPeakPMWaitField; 
        public string BuslineFeatureClass_WDLatePMWaitField; 
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Module 3 Summarized: RESTContext.cs (continued) 
 

        public string BusStopFeatureClass_GeoID; 
        public string BusStopFeatureClass_RIDField; 
        public string TransferStationFeatureClass_RIDField; 
        public string TransferStationFeatureClass_WDAllDayWaitField; 
        public string TransferStationFeatureClass_WDEarlyAMWaitField; 
        public string TransferStationFeatureClass_WDPeakAMWaitField; 
        public string TransferStationFeatureClass_WDMidDayWaitField; 
        public string TransferStationFeatureClass_WDPeakPMWaitField; 
        public string TransferStationFeatureClass_WDLatePMWaitField;         
        public string LrsBusTripMetricFeatureClass_MetricKey; 
        public string LrsBusTripMetricFeatureClass_RIDField; 
        public string LrsBusTripMetricFeatureClass_FDFOField; 
        public string LrsBusTripMetricFeatureClass_TDFOField; 
        public string LrsBusTripMetricFeatureClass_WDAllDayAASField; 
        public string LrsBusTripMetricFeatureClass_WDEarlyAMAASField; 
        public string LrsBusTripMetricFeatureClass_WDPeakAMAASField; 
        public string LrsBusTripMetricFeatureClass_WDMidDayAASField; 
        public string LrsBusTripMetricFeatureClass_WDPeakPMAASField; 
        public string LrsBusTripMetricFeatureClass_WDLatePMAASField;         
        public string LrsBusTravMetricFeatureClass_RIDField; 
        public string LrsBusTravMetricFeatureClass_FDFOField; 
        public string LrsBusTravMetricFeatureClass_TDFOField; 
        public string LrsBusTravMetricFeatureClass_WDAllDayAAIField; 
        public string LrsBusTravMetricFeatureClass_WDEarlyAMAAIField; 
        public string LrsBusTravMetricFeatureClass_WDPeakAMAAIField; 
        public string LrsBusTravMetricFeatureClass_WDMidDayAAIField; 
        public string LrsBusTravMetricFeatureClass_WDPeakPMAAIField; 
        public string LrsBusTravMetricFeatureClass_WDLatePMAAIField;         
        public string WalkwayFeatureClass_RIDField; 
        public string WalkwayFeatureClass_FDFOField; 
        public string WalkwayFeatureClass_TDFOField; 
        public string LrsWalkTripMetricFeatureClass_RIDField; 
        public string LrsWalkTripMetricFeatureClass_FDFOField; 
        public string LrsWalkTripMetricFeatureClass_TDFOField; 
        public string LrsWalkTripMetricFeatureClass_WDAllDayAASField; 
        public string LrsWalkTripMetricFeatureClass_WDEarlyAMAASField; 
        public string LrsWalkTripMetricFeatureClass_WDPeakAMAASField; 
        public string LrsWalkTripMetricFeatureClass_WDMidDayAASField; 
        public string LrsWalkTripMetricFeatureClass_WDPeakPMAASField; 
        public string LrsWalkTripMetricFeatureClass_WDLatePMAASField; 
        public string LrsWalkTravMetricFeatureClass_RIDField; 
        public string LrsWalkTravMetricFeatureClass_FDFOField; 
        public string LrsWalkTravMetricFeatureClass_TDFOField;         
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Module 3 Summarized: RESTContext.cs (continued) 
 
        public double SearchTolerance; 
        public IFeatureClass NARoutes; 
 
        // Relationship Class Fields 
        public string RailStopToTripLnRelationshipClass_GeoID; 
        public string RailStopToTripLnRelationshipClass_MetricKey; 
        public string BusStopToTripLnRelationshipClass_GeoID; 
        public string BusStopToTripLnRelationshipClass_MetricKey; 
 
        //--- Auto Network Dataset Elements --------------- 
        public IFeatureClass lrsAutoNetworkPath; 
        public IFeatureClass NetworkCGCAutoJunctions;         
        public INetworkDataset NetworkCGCAuto; 
        public string NetworkCGC_AutoNDName; 
         
        //--- Transit Network Dataset Elements ------------- 
        public IFeatureClass lrsTransitNetworkPath; 
        public IFeatureClass NetworkCGCTransitJunctions;         
        public INetworkDataset NetworkCGCTransit; 
        public string NetworkCGC_TransitNDName; 
 
        //-- Relationship Classes -- 
        public IRelationshipClass RailStopToTripLnRelationshipClass; 
        public IRelationshipClass BusStopToTripLnRelationshipClass; 
         
        //-- map server elements ------------------------ 
        public IFeatureWorkspace LrsFeatureWorkspace; 
        public List<string> FtrsNames; 
        public int NbrOfnonMfts; 
        public int NbrFtrs; 
        public int AllLayerCount; 
        public int HasMcount; 
        public List<string> ListHasMFtrs; 
        public List<ITable> SaTables; 
        public List<IRelationshipClass2> RelClasses; 
        public IMapLayerInfos MapLayerInfos 

        { 

            get { return MapServer.GetServerInfo(MapServer.DefaultMapName).MapLayerInfos; } 

        } 

    } 

} 
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Module 4: IRESTHandler.cs 

 namespace LRSLocator 

{ 
    /// <summary> 
    /// Interface that handles incoming Rest requests 
    /// </summary> 
    interface IRESTHandler 
    { 
        /// <summary> 
        /// Handles a request to a specific REST resource or operation. 
        /// The return value can be JsonObject, string, or byte[]. 
        /// </summary> 
        object HandleRequest(RESTContext context); 
    } 
} 
 
 

Module 5: JSONHelper.cs 

using System.Collections.Generic; 
using System.Text; 
using ESRI.ArcGIS.SOESupport; 
 
namespace LRSLocator 
{ 
    /// <summary> 
    /// Json Helper Methods 
    /// </summary> 
    public static class JSONHelper 
    { 
        public static JsonObject BuildErrorObject(int code, string message, List<string> 
details = null) 
        { 
            JsonObject errorObj = new JsonObject(); 
            errorObj.AddLong("code", code); 
            errorObj.AddString("message", message); 
            if (details == null) 
            { 
                errorObj.AddArray("details", new object[0]); 
            } 
            else 
            { 
                errorObj.AddArray("details", details.ToArray()); 
            } 
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Module 5: JSONHelper.cs (continued) 

   
            JsonObject outer = new JsonObject(); 
            outer.AddJsonObject("error", errorObj); 
            return outer; 
        } 
 
        public static byte[] BuildErrorObjectAsBytes(int code, string message, List<string> 
details = null) 
        { 
            return EncodeResponse(BuildErrorObject(code, message, details)); 
        } 
 
        public static byte[] EncodeResponse(object response) 
        { 
            // Handle various output data types 
            string strRetval = null; 
            if (response is byte[]) 
            { 
                return (byte[])response; 
            } 
            else if (response is JsonObject) 
            { 
                strRetval = ((JsonObject)response).ToJson(); 
            } 
            else if (response != null) 
            { 
                strRetval = response.ToString(); 
            } 
            else 
            { 
                strRetval = "{}"; 
            } 
            return Encoding.UTF8.GetBytes(strRetval); 
        } 
    } 
} 
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Module 6 Summarized: LRSLocator.cs 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Collections.Specialized; 
using System.Runtime.InteropServices; 
using ESRI.ArcGIS.esriSystem; 
using ESRI.ArcGIS.Server; 
using ESRI.ArcGIS.Geometry; 
using ESRI.ArcGIS.Geodatabase; 
using ESRI.ArcGIS.Carto; 
using ESRI.ArcGIS.SOESupport; 
using ESRI.ArcGIS.DataSourcesGDB; 
 
// Auto and Transit - Commute GeoCalculator 
 
namespace LRSLocator 
{ 
    [ComVisible(true)] 
    [Guid("3F3E38DE-3351-4807-B1DB-9897B42DEA90")]   
    [ClassInterface(ClassInterfaceType.None)] 
    [ServerObjectExtension("MapServer",//use "MapServer" if SOE extends a Map  
    service and "ImageServer" if it extends an Image service. 
        AllCapabilities = "", 
        DefaultCapabilities = "", 
        Description = "CGC LRS Locator", 
        DisplayName = "LRSLocator", 
        Properties = "", 
        SupportsREST = true, 
        SupportsSOAP = false)] 
    public class LRSLocator : IServerObjectExtension, IObjectConstruct, 
IRESTRequestHandler 
    { 
        private string soe_name; 
        private IPropertySet configProps; 
        private IServerObjectHelper serverObjectHelper; 
        private ServerLogger logger; 
        private IRESTRequestHandler reqHandler; 
        // Auto Field Names ------------------------------------------------------------ 
        private string _highwayFeatureClass_RIDFieldName = "LINEARID"; 
        private string _highwayFeatureClass_FDFOFieldName = "FROM_M"; 
        private string _highwayFeatureClass_TDFOFieldName = "TO_M"; 
        private string _lrsTransferStreets_RIDFieldName = "LINEARID"; 
        private string _lrsTransferStreets_ParkPenaltyFieldName=“Parking_Penalty_Mins"; 
        private string _lrsAutoTripMetrics_RIDFieldName = "LINEARID"; 
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Module 6 Summarized: LRSLocator.cs (continued) 

        private string _lrsAutoTripMetrics_FDFOFieldName = "FROM_M"; 
        private string _lrsAutoTripMetrics_TDFOFieldName = "TO_M";         
        private string _lrsAutoTripMetrics_AllDayAvgSpeed_WkDay = 
 "WkDay_AllDay_AAS"; 
        private string _lrsAutoTripMetrics_EarlyAMAvgSpeed_WkDay = 
 "WkDay_EarlyAM_AAS"; 
        private string _lrsAutoTripMetrics_PeakAMAvgSpeed_WkDay = 
 "WkDay_PeakAM_AAS"; 
        private string _lrsAutoTripMetrics_MidDayAvgSpeed_WkDay = 
 "WkDay_MidDay_AAS"; 
        private string _lrsAutoTripMetrics_PeakPMAvgSpeed_WkDay = 
 "WkDay_PeakPM_AAS"; 
        private string _lrsAutoTripMetrics_LatePMAvgSpeed_WkDay = 
 "WkDay_LatePM_AAS"; 
        private string _lrsAutoTravMetrics_RIDFieldName = "LINEARID"; 
        private string _lrsAutoTravMetrics_FDFOFieldName = "FROM_M"; 
        private string _lrsAutoTravMetrics_TDFOFieldName = "TO_M"; 
        // private string _lrsAutoTravMetrics_ZoneName = "ZONE_NAME"; 
        private string _lrsAutoTravMetrics_AllDayAvgInc_WkDay = 
 "WkDay_AllDay_AAI"; 
        private string _lrsAutoTravMetrics_EarlyAMAvgInc_WkDay = 
 "WkDay_EarlyAM_AAI"; 
        private string _lrsAutoTravMetrics_PeakAMAvgInc_WkDay = 
 "WkDay_PeakAM_AAI"; 
        private string _lrsAutoTravMetrics_MidDayAvgInc_WkDay = 
 "WkDay_MidDay_AAI"; 
        private string _lrsAutoTravMetrics_PeakPMAvgInc_WkDay = 
 "WkDay_PeakPM_AAI"; 
        private string _lrsAutoTravMetrics_LatePMAvgInc_WkDay = 
 "WkDay_LatePM_AAI";         
        // -------------------------------------------------------------------------------- 
        // Transit Field Names ------------------------------------------------------------ 
        private string _railwayFeatureClass_RIDFieldName = "LINEARID"; 
        private string _railwayFeatureClass_FDFOFieldName = "FROM_M"; 
        private string _railwayFeatureClass_TDFOFieldName = "TO_M"; 
        private string _railstationFeatureClass_GeoID = "GeoID"; 
        private string _railstationFeatureClass_RIDFieldName = "Station_Name"; 
        private string _railstationFeatureClass_AllDayWait_WkDay = 
 "Avg_AllDay_WaitTime_WD"; 
        private string _railstationFeatureClass_EarlyAMWait_WkDay = 
 "Avg_EarlyAM_WaitTime_WD"; 
        private string _railstationFeatureClass_PeakAMWait_WkDay = 
 "Avg_PeakAM_WaitTime_WD"; 
        private string _railstationFeatureClass_MidDayWait_WkDay = 
 "Avg_MidDay_WaitTime_WD"; 
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Module 6 Summarized: LRSLocator.cs (continued) 

        private string _railstationFeatureClass_PeakPMWait_WkDay = 
 "Avg_PeakPM_WaitTime_WD"; 
        private string _railstationFeatureClass_LatePMWait_WkDay = 
 "Avg_LatePM_WaitTime_WD";         
        private string _lrsRailTripMetrics_MetricKey = "MetricKey"; 
        private string _lrsRailTripMetrics_RIDFieldName = "LINEARID"; 
        private string _lrsRailTripMetrics_FDFOFieldName = "FROM_M"; 
        private string _lrsRailTripMetrics_TDFOFieldName = "TO_M"; 
        private string _lrsRailTripMetrics_AllDayAvgSpeed_WkDay = 
 "WkDay_AllDay_AAS"; 
        private string _lrsRailTripMetrics_EarlyAMAvgSpeed_WkDay = 
 "WkDay_EarlyAM_AAS"; 
        private string _lrsRailTripMetrics_PeakAMAvgSpeed_WkDay = 
 "WkDay_PeakAM_AAS"; 
        private string _lrsRailTripMetrics_MidDayAvgSpeed_WkDay = 
 "WkDay_MidDay_AAS"; 
        private string _lrsRailTripMetrics_PeakPMAvgSpeed_WkDay = 
 "WkDay_PeakPM_AAS"; 
        private string _lrsRailTripMetrics_LatePMAvgSpeed_WkDay = 
 "WkDay_LatePM_AAS";         
        private string _lrsRailTravMetrics_RIDFieldName = "LINEARID"; 
        private string _lrsRailTravMetrics_FDFOFieldName = "FROM_M"; 
        private string _lrsRailTravMetrics_TDFOFieldName = "TO_M"; 
        private string _lrsRailTravMetrics_AllDayAvgInc_WkDay = 
 "WkDay_AllDay_AAI"; 
        private string _lrsRailTravMetrics_EarlyAMAvgInc_WkDay = 
 "WkDay_EarlyAM_AAI"; 
        private string _lrsRailTravMetrics_PeakAMAvgInc_WkDay = 
 "WkDay_PeakAM_AAI"; 
        private string _lrsRailTravMetrics_MidDayAvgInc_WkDay = 
 "WkDay_MidDay_AAI"; 
        private string _lrsRailTravMetrics_PeakPMAvgInc_WkDay = 
 "WkDay_PeakPM_AAI"; 
        private string _lrsRailTravMetrics_LatePMAvgInc_WkDay = 
 "WkDay_LatePM_AAI";         
        private string _buslineFeatureClass_RIDFieldName = "BusRouteID1"; 
        private string _buslineFeatureClass_FDFOFieldName = "FROM_M"; 
        private string _buslineFeatureClass_TDFOFieldName = "TO_M"; 
        private string _buslineFeatureClass_AllDayWait_WkDay = 
 "Avg_AllDay_WaitTime_WD"; 
        private string _buslineFeatureClass_EarlyAMWait_WkDay = 
 "Avg_EarlyAM_WaitTime_WD"; 
        private string _buslineFeatureClass_PeakAMWait_WkDay = 
 "Avg_PeakAM_WaitTime_WD"; 
 



97 
 

Module 6 Summarized: LRSLocator.cs (continued) 

        private string _buslineFeatureClass_MidDayWait_WkDay = 
 "Avg_MidDay_WaitTime_WD"; 
        private string _buslineFeatureClass_PeakPMWait_WkDay = 
 "Avg_PeakPM_WaitTime_WD"; 
        private string _buslineFeatureClass_LatePMWait_WkDay = 
 "Avg_LatePM_WaitTime_WD";         
        private string _busstopFeatureClass_GeoID = "GeoID"; 
        private string _busstopFeatureClass_RIDFieldName = "BusRouteID1"; 
        private string _transferstationFeatureClass_RIDFieldName = "BusRouteID1"; 
        private string _transferstationFeatureClass_AllDayWait_WkDay = 
 "Avg_AllDay_WaitTime_WD"; 
        private string _transferstationFeatureClass_EarlyAMWait_WkDay = 
 "Avg_EarlyAM_WaitTime_WD"; 
        private string _transferstationFeatureClass_PeakAMWait_WkDay = 
 "Avg_PeakAM_WaitTime_WD"; 
        private string _transferstationFeatureClass_MidDayWait_WkDay = 
 "Avg_MidDay_WaitTime_WD"; 
        private string _transferstationFeatureClass_PeakPMWait_WkDay = 
 "Avg_PeakPM_WaitTime_WD"; 
        private string _transferstationFeatureClass_LatePMWait_WkDay = 
 "Avg_LatePM_WaitTime_WD"; 
        private string _lrsBusTripMetrics_MetricKey = "MetricKey"; 
        private string _lrsBusTripMetrics_RIDFieldName = "BusRouteID1"; 
        private string _lrsBusTripMetrics_FDFOFieldName = "FROM_M"; 
        private string _lrsBusTripMetrics_TDFOFieldName = "TO_M"; 
        private string _lrsBusTripMetrics_AllDayAvgSpeed_WkDay = 
 "WkDay_AllDay_AAS"; 
        private string _lrsBusTripMetrics_EarlyAMAvgSpeed_WkDay = 
 "WkDay_EarlyAM_AAS"; 
        private string _lrsBusTripMetrics_PeakAMAvgSpeed_WkDay = 
 "WkDay_PeakAM_AAS"; 
        private string _lrsBusTripMetrics_MidDayAvgSpeed_WkDay = 
 "WkDay_MidDay_AAS"; 
        private string _lrsBusTripMetrics_PeakPMAvgSpeed_WkDay = 
 "WkDay_PeakPM_AAS"; 
        private string _lrsBusTripMetrics_LatePMAvgSpeed_WkDay = 
 "WkDay_LatePM_AAS";         
        private string _lrsBusTravMetrics_RIDFieldName = "BusRouteID1"; 
        private string _lrsBusTravMetrics_FDFOFieldName = "FROM_M"; 
        private string _lrsBusTravMetrics_TDFOFieldName = "TO_M"; 
        private string _lrsBusTravMetrics_AllDayAvgInc_WkDay = 
 "WkDay_AllDay_AAI"; 
        private string _lrsBusTravMetrics_EarlyAMAvgInc_WkDay = 
 "WkDay_EarlyAM_AAI"; 
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Module 6 Summarized: LRSLocator.cs (continued) 

        private string _lrsBusTravMetrics_PeakAMAvgInc_WkDay = 
 "WkDay_PeakAM_AAI"; 
        private string _lrsBusTravMetrics_MidDayAvgInc_WkDay = 
 "WkDay_MidDay_AAI"; 
        private string _lrsBusTravMetrics_PeakPMAvgInc_WkDay = 
 "WkDay_PeakPM_AAI"; 
        private string _lrsBusTravMetrics_LatePMAvgInc_WkDay = 
 "WkDay_LatePM_AAI";         
        private string _walkwayFeatureClass_RIDFieldName = "RouteID"; 
        private string _walkwayFeatureClass_FDFOFieldName = "FROM_M"; 
        private string _walkwayFeatureClass_TDFOFieldName = "TO_M"; 
        private string _lrsWalkTripMetrics_RIDFieldName = "RouteID"; 
        private string _lrsWalkTripMetrics_FDFOFieldName = "FROM_M"; 
        private string _lrsWalkTripMetrics_TDFOFieldName = "TO_M"; 
        private string _lrsWalkTripMetrics_AllDayAvgSpeed_WkDay = 
 "WkDay_AllDay_AAS"; 
        private string _lrsWalkTripMetrics_EarlyAMAvgSpeed_WkDay = 
 "WkDay_EarlyAM_AAS"; 
        private string _lrsWalkTripMetrics_PeakAMAvgSpeed_WkDay = 
 "WkDay_PeakAM_AAS"; 
        private string _lrsWalkTripMetrics_MidDayAvgSpeed_WkDay = 
 "WkDay_MidDay_AAS"; 
        private string _lrsWalkTripMetrics_PeakPMAvgSpeed_WkDay = 
 "WkDay_PeakPM_AAS"; 
        private string _lrsWalkTripMetrics_LatePMAvgSpeed_WkDay = 
 "WkDay_LatePM_AAS";         
        private string _lrsWalkTravMetrics_RIDFieldName = "RouteID"; 
        private string _lrsWalkTravMetrics_FDFOFieldName = "FROM_M"; 
        private string _lrsWalkTravMetrics_TDFOFieldName = "TO_M"; 
        private string _lrsWalkTravMetrics_AllDayAvgInc_WkDay = 
 "WkDay_AllDay_AAI"; 
        private string _lrsWalkTravMetrics_EarlyAMAvgInc_WkDay = 
 "WkDay_EarlyAM_AAI"; 
        private string _lrsWalkTravMetrics_PeakAMAvgInc_WkDay = 
 "WkDay_PeakAM_AAI"; 
        private string _lrsWalkTravMetrics_MidDayAvgInc_WkDay = 
 "WkDay_MidDay_AAI"; 
        private string _lrsWalkTravMetrics_PeakPMAvgInc_WkDay = 
 "WkDay_PeakPM_AAI"; 
        private string _lrsWalkTravMetrics_LatePMAvgInc_WkDay = 
 "WkDay_LatePM_AAI";  
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Module 6 Summarized: LRSLocator.cs (continued)         

        //---- Relationship Class Field Names ----------------------------------------- 
        private string _busStopToTripLnRelationshipClass_GeoID = "GeoID"; 
        private string _busStopToTripLnRelationshipClass_MetricKey = "MetricKey"; 
        private string _railStopToTripLnRelationshipClass_GeoID = "GeoID"; 
        private string _railStopToTripLnRelationshipClass_MetricKey = "MetricKey"; 
        // --- Network Dataset Names --------------------------------------------------- 
        private string _cgcAutoND_NetworkName = "AutoNetwork_ND"; 
        private string _cgcTransitND_NetworkName = "TransitNetwork_ND"; 
        private double _searchTolerance = 0.00015;  // version 2.0, this is approx. 55 feet 
 
        private IFeatureClass _naRoutes = null; 
 
        //-- auto data model feature classes ----------------------------- 
        private IFeatureClass _highwayFeatureClass = null; 
        private IFeatureClass _lrsAutoTripMetrics = null; 
        private IFeatureClass _lrsAutoTravMetrics = null; 
        private IFeatureClass _lrsTransferStreets = null; 
        private IFeatureClass _lrsAutoNetworkPath = null; 
        private IFeatureClass _cgcAutoNetJunctions = null; 
 
        //-- transit data model feature classes ----------------------------- 
        private IFeatureClass _railwayFeatureClass = null; 
        private IFeatureClass _railstationFeatureClass = null; 
        private IFeatureClass _lrsRailTripMetrics = null; 
        private IFeatureClass _lrsRailTravMetrics = null; 
        private IFeatureClass _buslineFeatureClass = null; 
        private IFeatureClass _busstopFeatureClass = null; 
        private IFeatureClass _transferstationFeatureClass = null; 
        private IFeatureClass _lrsBusTripMetrics = null; 
        private IFeatureClass _lrsBusTravMetrics = null; 
        private IFeatureClass _walkwayFeatureClass = null; 
        private IFeatureClass _lrsWalkTripMetrics = null; 
        private IFeatureClass _lrsWalkTravMetrics = null; 
        private IFeatureClass _lrsTransitNetworkPath = null; 
        private IFeatureClass _cgcTransitNetJunctions = null; 
 
        //-- map server objects ------------------------------------------ 
        private IMapServer3 _mapserver = null; 
        private IMapServerDataAccess _dataAccess; 
        private IFeatureWorkspace _gdWorkspace = null; 
        private INetworkDataset _cgcAutoND = null; 
        private INetworkDataset _cgcTransitND = null; 
        private IRelationshipClass _busStopToTripLnRelationshipClass = null; 
        private IRelationshipClass _railStopToTripLnRelationshipClass = null; 
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Module 6 Summarized: LRSLocator.cs (continued) 

        private List<string> _ftrsNames = null; 
        private int _nbrFtrs = 0; 
        private int _nbrOfnonMfts = 0; 
        private int _allLayerCount = 0; 
        private int _hasMcount = 0; 
        private List<string> _listHasMFtrs = null; 
 
        private int _saTblCount = 0; 
        private List<string> _saTblNames = null; 
        private IStandaloneTableInfos _tableInfos = null; 
        private List<ITable> _saTables = null; 
        private List<IRelationshipClass2> _relCls = null;         
 
        public LRSLocator() 
        { 
            soe_name = this.GetType().Name; 
            logger = new ServerLogger(); 
            reqHandler = new SoeRestImpl(soe_name, CreateRestSchema()) as 
 IRESTRequestHandler; 
        } 
 
        #region IServerObjectExtension Members 
 
        public void Init(IServerObjectHelper pSOH) 
        { 
            serverObjectHelper = pSOH; 
            IMapServer3 mapServer = serverObjectHelper.ServerObject as IMapServer3; 
            IMapServerObjects3 mapServerObjects = mapServer as IMapServerObjects3; 
 
            IMapServerDataAccess dataAccess = (IMapServerDataAccess)mapServer; 
            this._mapserver = mapServer; 
            this._dataAccess = dataAccess; 
            initiateFeatures(mapServer); 
        } 
 
        public void Shutdown() 
        { 
            soe_name = null; 
            serverObjectHelper = null; 
            logger = null; 
        } 
 
        #endregion 
 
 



101 
 

Module 6 Summarized: LRSLocator.cs (continued) 

        #region IObjectConstruct Members 
        public void Construct(IPropertySet props) 
        { 
            configProps = props; 
        } 
        #endregion 
        #region IRESTRequestHandler Members 
        public string GetSchema() 
        { 
            return reqHandler.GetSchema(); 
        } 
 
        public byte[] HandleRESTRequest(string Capabilities, string resourceName, string 
operationName, string operationInput, string outputFormat, string requestProperties, out 
string responseProperties) 
        { 
            return reqHandler.HandleRESTRequest(Capabilities, resourceName, 
operationName, operationInput, outputFormat, requestProperties, out 
responseProperties); 
        } 
        #endregion 
        private RestResource CreateRestSchema() 
        { 
            RestResource rootRes = new RestResource(soe_name, false, RootResHandler);        
 
            RestOperation getAutoCostFromLatLongOperation = new 
RestOperation("Driving Cost From LatLong", 
                              new string[] { "Begin_Longitude", "Begin_Latitude", 
"End_Longitude", "End_Latitude", "Time_Of_Day", "Spatial_Reference" }, 
                              new string[] { "json" }, 
                              HandleOp_getAutoCostFromLatLongHandlerOperation); 
 
            RestOperation getTransitCostFromLatLongOperation = new 
RestOperation("Transit Cost From LatLong", 
                              new string[] { "Begin_Longitude", "Begin_Latitude", 
"End_Longitude", "End_Latitude", "Time_Of_Day", "Spatial_Reference" }, 
                              new string[] { "json" }, 
                              HandleOp_getTransitCostFromLatLongHandlerOperation); 
 
            rootRes.operations.Add(getAutoCostFromLatLongOperation); 
            rootRes.operations.Add(getTransitCostFromLatLongOperation); 
            return rootRes; 
        } 
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Module 6 Summarized: LRSLocator.cs (continued) 
 
         private byte[] 
HandleOp_getAutoCostFromLatLongHandlerOperation(NameValueCollection 
boundVariables, JsonObject operationInput, string outputFormat, string 
requestProperties, out string responseProperties) 

        { 
            return HandleOperation(new GetAutoCostFromLatLongHandler(), 
boundVariables, operationInput, outputFormat, requestProperties, out 
responseProperties); 
        } 
 
        private byte[] 
HandleOp_getTransitCostFromLatLongHandlerOperation(NameValueCollection 
boundVariables, JsonObject operationInput, string outputFormat, string 
requestProperties, out string responseProperties) 
        { 
            return HandleOperation(new GetTransitCostFromLatLongHandler(), 
boundVariables, operationInput, outputFormat, requestProperties, out 
responseProperties); 
        } 
        //---------------------------------------------------------------------------------------------------- 
        private byte[] RootResHandler(NameValueCollection boundVariables, string 
outputFormat, string requestProperties, out string responseProperties) 
        { 
            responseProperties = null; 
 
            JsonObject result = new JsonObject(); 
            return Encoding.UTF8.GetBytes(result.ToJson()); 
        }         
 
        /// A generic internal handler for all REST operations. 
        /// The REST operation delegate methods should call this method to benefit  
        /// from uniform request processing, response formatting, and exception handling. 
 
        private byte[] HandleOperation(IRESTHandler handler, 
                                       NameValueCollection boundVariables, 
                                       JsonObject operationInput, 
                                       string outputFormat, 
                                       string requestProperties, 
                                       out string responseProperties) 
        { 
            RESTContext context = CreateContext(boundVariables, operationInput, 
outputFormat, requestProperties); 
            return HandleHelper(handler, context, out responseProperties); 
        } 
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Module 6 Summarized: LRSLocator.cs (continued) 
 
        /// A generic internal handler for all REST resources. 
        /// The REST resource delegate methods should call this method to benefit  
        /// from uniform request processing, response formatting, and exception handling. 
 
        private byte[] HandleResource(IRESTHandler handler, 
                                      NameValueCollection boundVariables, 
                                      string outputFormat, 
                                      string requestProperties, 
                                      out string responseProperties) 
        { 
            RESTContext context = CreateContext(boundVariables, null, outputFormat, 
requestProperties); 
            return HandleHelper(handler, context, out responseProperties); 
        } 
 
        private RESTContext CreateContext(NameValueCollection boundVariables, 
                                     JsonObject operationInput, 
                                     string outputFormat, 
                                     string requestProperties) 
        { 
            RESTContext context = new RESTContext(); 
            context.BoundVariables = boundVariables; 
            context.OperationInput = operationInput; 
            context.OutputFormat = outputFormat; 
            context.RequestProperties = requestProperties; 
            context.NARoutes = this._naRoutes; 
 
            context.SearchTolerance = _searchTolerance; 
            context.LrsFeatureWorkspace = this._gdWorkspace; 
 
            //-------- Auto network analysis layer ------------------------------------------------------ 
            context.NetworkCGCAuto = this._cgcAutoND; 
            //-------- Auto network dataset (edges) ---------------------------------------------------- 
            context.NetworkCGC_AutoNDName = this._cgcAutoND_NetworkName; 
            //---------- Auto network junctions ---------------------------------------------------------             
            context.NetworkCGCAutoJunctions = this._cgcAutoNetJunctions; 
            //--------- Auto solved network path ------------------------------------------------------- 
            context.lrsAutoNetworkPath = this._lrsAutoNetworkPath; 
            //------------------------------------------------------------------------------------------------- 
            //-------- Transit network analysis layer --------------------------------------------------- 
            context.NetworkCGCTransit = this._cgcTransitND; 
            //-------- Transit network dataset (edges) -------------------------------------------------- 
            context.NetworkCGC_TransitNDName = this._cgcTransitND_NetworkName; 
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Module 6 Summarized: LRSLocator.cs (continued) 
 
            //---------- Transit network junctions -------------------------------------------------------             
            context.NetworkCGCTransitJunctions = this._cgcTransitNetJunctions; 
            //--------- Transit solved network path ----------------------------------------------------- 
            context.lrsTransitNetworkPath = this._lrsTransitNetworkPath; 
            //------------------------------------------------------------------------------------------------- 
            //-- Relationship Classes -------------------------------------------------------------------- 
            context.BusStopToTripLnRelationshipClass = 
 this._busStopToTripLnRelationshipClass; 
            context.RailStopToTripLnRelationshipClass = 
 this._railStopToTripLnRelationshipClass; 
 
            // -- Auto Network Feature Classes 
            context.HighwayFeatureClass = this._highwayFeatureClass; 
            context.LrsAutoTripMetricFeatureClass = this._lrsAutoTripMetrics; 
            context.LrsAutoTravMetricFeatureClass = this._lrsAutoTravMetrics; 
            context.LrsTransferStreetsFeatureClass = this._lrsTransferStreets; 
            
            // -- Auto Network layer fields 
            context.HighwayFeatureClass_RIDField = 
 this._highwayFeatureClass_RIDFieldName; 
            context.HighwayFeatureClass_FDFOField = 
 this._highwayFeatureClass_FDFOFieldName; 
            context.HighwayFeatureClass_TDFOField = 
 this._highwayFeatureClass_TDFOFieldName; 
 
            // -- Transfer Streets Parking Penalty fields 
            context.LrsTransferStreetsFeatureClass_RIDField = 
 this._lrsTransferStreets_RIDFieldName; 
            context.LrsTransferStreetsFeatureClass_ParkPenaltyField = 
 this._lrsTransferStreets_ParkPenaltyFieldName; 
 
            // -- Auto Trip Speed fields – Weekend Fields (WE) Excluded 
            context.LrsAutoTripMetricFeatureClass_RIDField = 
 this._lrsAutoTripMetrics_RIDFieldName; 
            context.LrsAutoTripMetricFeatureClass_FDFOField = 
 this._lrsAutoTripMetrics_FDFOFieldName; 
            context.LrsAutoTripMetricFeatureClass_TDFOField = 
 this._lrsAutoTripMetrics_TDFOFieldName; 
            context.LrsAutoTripMetricFeatureClass_WDAllDayAASField = 
 this._lrsAutoTripMetrics_AllDayAvgSpeed_WkDay; 
            context.LrsAutoTripMetricFeatureClass_WDEarlyAMAASField = 
 this._lrsAutoTripMetrics_EarlyAMAvgSpeed_WkDay; 
            context.LrsAutoTripMetricFeatureClass_WDPeakAMAASField = 
 this._lrsAutoTripMetrics_PeakAMAvgSpeed_WkDay; 
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Module 6 Summarized: LRSLocator.cs (continued) 
 
            context.LrsAutoTripMetricFeatureClass_WDMidDayAASField = 
 this._lrsAutoTripMetrics_MidDayAvgSpeed_WkDay; 
            context.LrsAutoTripMetricFeatureClass_WDPeakPMAASField = 
 this._lrsAutoTripMetrics_PeakPMAvgSpeed_WkDay; 
            context.LrsAutoTripMetricFeatureClass_WDLatePMAASField = 
 this._lrsAutoTripMetrics_LatePMAvgSpeed_WkDay; 
             
            // -- Auto Traveller Income fields – Weekend Fields (WE) Excluded 
            context.LrsAutoTravMetricFeatureClass_RIDField = 
 this._lrsAutoTravMetrics_RIDFieldName; 
            context.LrsAutoTravMetricFeatureClass_FDFOField = 
 this._lrsAutoTravMetrics_FDFOFieldName; 
            context.LrsAutoTravMetricFeatureClass_TDFOField = 
 this._lrsAutoTravMetrics_TDFOFieldName; 
            context.LrsAutoTravMetricFeatureClass_WDAllDayAAIField = 
 this._lrsAutoTravMetrics_AllDayAvgInc_WkDay; 
            context.LrsAutoTravMetricFeatureClass_WDEarlyAMAAIField = 
 this._lrsAutoTravMetrics_EarlyAMAvgInc_WkDay; 
            context.LrsAutoTravMetricFeatureClass_WDPeakAMAAIField = 
 this._lrsAutoTravMetrics_PeakAMAvgInc_WkDay; 
            context.LrsAutoTravMetricFeatureClass_WDMidDayAAIField = 
 this._lrsAutoTravMetrics_MidDayAvgInc_WkDay; 
            context.LrsAutoTravMetricFeatureClass_WDPeakPMAAIField = 
 this._lrsAutoTravMetrics_PeakPMAvgInc_WkDay; 
            context.LrsAutoTravMetricFeatureClass_WDLatePMAAIField = 
 this._lrsAutoTravMetrics_LatePMAvgInc_WkDay; 
             
            // -- Transit Network Feature Classes 
            context.RailwayFeatureClass = this._railwayFeatureClass; 
            context.RailStationFeatureClass = this._railstationFeatureClass; 
            context.LrsRailTripMetricFeatureClass = this._lrsRailTripMetrics; 
            context.LrsRailTravMetricFeatureClass = this._lrsRailTravMetrics; 
            context.BuslineFeatureClass = this._buslineFeatureClass; 
            context.BusStopFeatureClass = this._busstopFeatureClass; 
            context.TransferStationFeatureClass = this._transferstationFeatureClass; 
            context.LrsBusTripMetricFeatureClass = this._lrsBusTripMetrics; 
            context.LrsBusTravMetricFeatureClass = this._lrsBusTravMetrics;             
            context.WalkwayFeatureClass = this._walkwayFeatureClass; 
            context.LrsWalkTripMetricFeatureClass = this._lrsWalkTripMetrics; 
            context.LrsWalkTravMetricFeatureClass = this._lrsWalkTravMetrics; 
 
            // -- Transit Network layer fields 
            context.RailwayFeatureClass_RIDField = 
 this._railwayFeatureClass_RIDFieldName; 
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            context.RailwayFeatureClass_FDFOField = 
 this._railwayFeatureClass_FDFOFieldName; 
            context.RailwayFeatureClass_TDFOField = 
 this._railwayFeatureClass_TDFOFieldName; 
            context.BuslineFeatureClass_RIDField = 
 this._buslineFeatureClass_RIDFieldName; 
            context.BuslineFeatureClass_FDFOField = 
 this._buslineFeatureClass_FDFOFieldName; 
            context.BuslineFeatureClass_TDFOField = 
 this._buslineFeatureClass_TDFOFieldName; 
            context.WalkwayFeatureClass_RIDField = 
 this._walkwayFeatureClass_RIDFieldName; 
            context.WalkwayFeatureClass_FDFOField = 
 this._walkwayFeatureClass_FDFOFieldName; 
            context.WalkwayFeatureClass_TDFOField = 
 this._walkwayFeatureClass_TDFOFieldName; 
 
            // -- Transit Transfer Wait Time fields – Weekend Fields (WE) Excluded            
            context.RailStationFeatureClass_WDAllDayWaitField = 
 this._railstationFeatureClass_AllDayWait_WkDay; 
            context.RailStationFeatureClass_WDEarlyAMWaitField = 
 this._railstationFeatureClass_EarlyAMWait_WkDay; 
            context.RailStationFeatureClass_WDPeakAMWaitField = 
 this._railstationFeatureClass_PeakAMWait_WkDay; 
            context.RailStationFeatureClass_WDMidDayWaitField = 
 this._railstationFeatureClass_MidDayWait_WkDay; 
            context.RailStationFeatureClass_WDPeakPMWaitField = 
 this._railstationFeatureClass_PeakPMWait_WkDay; 
            context.RailStationFeatureClass_WDLatePMWaitField = 
 this._railstationFeatureClass_LatePMWait_WkDay;             
            context.BuslineFeatureClass_WDAllDayWaitField = 
 this._buslineFeatureClass_AllDayWait_WkDay; 
            context.BuslineFeatureClass_WDEarlyAMWaitField = 
 this._buslineFeatureClass_EarlyAMWait_WkDay; 
            context.BuslineFeatureClass_WDPeakAMWaitField = 
 this._buslineFeatureClass_PeakAMWait_WkDay; 
            context.BuslineFeatureClass_WDMidDayWaitField = 
 this._buslineFeatureClass_MidDayWait_WkDay; 
            context.BuslineFeatureClass_WDPeakPMWaitField = 
 this._buslineFeatureClass_PeakPMWait_WkDay; 
            context.BuslineFeatureClass_WDLatePMWaitField = 
 this._buslineFeatureClass_LatePMWait_WkDay; 
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            context.TransferStationFeatureClass_RIDField = 
 this._transferstationFeatureClass_RIDFieldName; 
            context.TransferStationFeatureClass_WDAllDayWaitField = 
 this._transferstationFeatureClass_AllDayWait_WkDay; 
            context.TransferStationFeatureClass_WDEarlyAMWaitField = 
 this._transferstationFeatureClass_EarlyAMWait_WkDay; 
            context.TransferStationFeatureClass_WDPeakAMWaitField = 
 this._transferstationFeatureClass_PeakAMWait_WkDay; 
            context.TransferStationFeatureClass_WDMidDayWaitField = 
 this._transferstationFeatureClass_MidDayWait_WkDay; 
            context.TransferStationFeatureClass_WDPeakPMWaitField = 
 this._transferstationFeatureClass_PeakPMWait_WkDay; 
            context.TransferStationFeatureClass_WDLatePMWaitField = 
 this._transferstationFeatureClass_LatePMWait_WkDay; 
             
            // == Transit Trip Speed fields – Weekend Fields (WE) Excluded 
            context.RailStationFeatureClass_GeoID = this._railstationFeatureClass_GeoID; 
            context.RailStationFeatureClass_RIDField = 
 this._railstationFeatureClass_RIDFieldName; 
            context.LrsRailTripMetricFeatureClass_MetricKey = 
 this._lrsRailTripMetrics_MetricKey; 
            context.LrsRailTripMetricFeatureClass_RIDField = 
 this._lrsRailTripMetrics_RIDFieldName; 
            context.LrsRailTripMetricFeatureClass_FDFOField = 
 this._lrsRailTripMetrics_FDFOFieldName; 
            context.LrsRailTripMetricFeatureClass_TDFOField = 
 this._lrsRailTripMetrics_TDFOFieldName; 
            context.LrsRailTripMetricFeatureClass_WDAllDayAASField = 
 this._lrsRailTripMetrics_AllDayAvgSpeed_WkDay; 
            context.LrsRailTripMetricFeatureClass_WDEarlyAMAASField = 
 this._lrsRailTripMetrics_EarlyAMAvgSpeed_WkDay; 
            context.LrsRailTripMetricFeatureClass_WDPeakAMAASField = 
 this._lrsRailTripMetrics_PeakAMAvgSpeed_WkDay; 
            context.LrsRailTripMetricFeatureClass_WDMidDayAASField = 
 this._lrsRailTripMetrics_MidDayAvgSpeed_WkDay; 
            context.LrsRailTripMetricFeatureClass_WDPeakPMAASField = 
 this._lrsRailTripMetrics_PeakPMAvgSpeed_WkDay; 
            context.LrsRailTripMetricFeatureClass_WDLatePMAASField = 
 this._lrsRailTripMetrics_LatePMAvgSpeed_WkDay; 
             
            context.BusStopFeatureClass_GeoID = this._busstopFeatureClass_GeoID; 
            context.BusStopFeatureClass_RIDField = 
 this._busstopFeatureClass_RIDFieldName; 
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            context.LrsBusTripMetricFeatureClass_MetricKey = 
 this._lrsBusTripMetrics_MetricKey; 
            context.LrsBusTripMetricFeatureClass_RIDField = 
 this._lrsBusTripMetrics_RIDFieldName; 
            context.LrsBusTripMetricFeatureClass_FDFOField = 
 this._lrsBusTripMetrics_FDFOFieldName; 
            context.LrsBusTripMetricFeatureClass_TDFOField = 
 this._lrsBusTripMetrics_TDFOFieldName; 
            context.LrsBusTripMetricFeatureClass_WDAllDayAASField = 
 this._lrsBusTripMetrics_AllDayAvgSpeed_WkDay; 
            context.LrsBusTripMetricFeatureClass_WDEarlyAMAASField = 
 this._lrsBusTripMetrics_EarlyAMAvgSpeed_WkDay; 
            context.LrsBusTripMetricFeatureClass_WDPeakAMAASField = 
 this._lrsBusTripMetrics_PeakAMAvgSpeed_WkDay; 
            context.LrsBusTripMetricFeatureClass_WDMidDayAASField = 
 this._lrsBusTripMetrics_MidDayAvgSpeed_WkDay; 
            context.LrsBusTripMetricFeatureClass_WDPeakPMAASField = 
 this._lrsBusTripMetrics_PeakPMAvgSpeed_WkDay; 
            context.LrsBusTripMetricFeatureClass_WDLatePMAASField = 
 this._lrsBusTripMetrics_LatePMAvgSpeed_WkDay;             
            context.LrsWalkTripMetricFeatureClass_RIDField = 
 this._lrsWalkTripMetrics_RIDFieldName; 
            context.LrsWalkTripMetricFeatureClass_FDFOField = 
 this._lrsWalkTripMetrics_FDFOFieldName; 
            context.LrsWalkTripMetricFeatureClass_TDFOField = 
 this._lrsWalkTripMetrics_TDFOFieldName; 
            context.LrsWalkTripMetricFeatureClass_WDAllDayAASField = 
 this._lrsWalkTripMetrics_AllDayAvgSpeed_WkDay; 
            context.LrsWalkTripMetricFeatureClass_WDEarlyAMAASField = 
 this._lrsWalkTripMetrics_EarlyAMAvgSpeed_WkDay; 
            context.LrsWalkTripMetricFeatureClass_WDPeakAMAASField = 
 this._lrsWalkTripMetrics_PeakAMAvgSpeed_WkDay; 
            context.LrsWalkTripMetricFeatureClass_WDMidDayAASField = 
 this._lrsWalkTripMetrics_MidDayAvgSpeed_WkDay; 
            context.LrsWalkTripMetricFeatureClass_WDPeakPMAASField = 
 this._lrsWalkTripMetrics_PeakPMAvgSpeed_WkDay; 
            context.LrsWalkTripMetricFeatureClass_WDLatePMAASField = 
 this._lrsWalkTripMetrics_LatePMAvgSpeed_WkDay; 
             
            // -- Trnasit Traveler Income fields – Weekend Fields (WE) Excluded 
            context.LrsRailTravMetricFeatureClass_RIDField = 
 this._lrsRailTravMetrics_RIDFieldName; 
            context.LrsRailTravMetricFeatureClass_FDFOField = 
 this._lrsRailTravMetrics_FDFOFieldName; 
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            context.LrsRailTravMetricFeatureClass_TDFOField = 
 this._lrsRailTravMetrics_TDFOFieldName; 
            context.LrsRailTravMetricFeatureClass_WDAllDayAAIField = 
 this._lrsRailTravMetrics_AllDayAvgInc_WkDay; 
            context.LrsRailTravMetricFeatureClass_WDEarlyAMAAIField = 
 this._lrsRailTravMetrics_EarlyAMAvgInc_WkDay; 
            context.LrsRailTravMetricFeatureClass_WDPeakAMAAIField = 
 this._lrsRailTravMetrics_PeakAMAvgInc_WkDay; 
            context.LrsRailTravMetricFeatureClass_WDMidDayAAIField = 
 this._lrsRailTravMetrics_MidDayAvgInc_WkDay; 
            context.LrsRailTravMetricFeatureClass_WDPeakPMAAIField = 
 this._lrsRailTravMetrics_PeakPMAvgInc_WkDay; 
            context.LrsRailTravMetricFeatureClass_WDLatePMAAIField = 
 this._lrsRailTravMetrics_LatePMAvgInc_WkDay;             
            context.LrsBusTravMetricFeatureClass_RIDField = 
 this._lrsBusTravMetrics_RIDFieldName; 
            context.LrsBusTravMetricFeatureClass_FDFOField = 
 this._lrsBusTravMetrics_FDFOFieldName; 
            context.LrsBusTravMetricFeatureClass_TDFOField = 
 this._lrsBusTravMetrics_TDFOFieldName; 
            context.LrsBusTravMetricFeatureClass_WDAllDayAAIField = 
 this._lrsBusTravMetrics_AllDayAvgInc_WkDay; 
            context.LrsBusTravMetricFeatureClass_WDEarlyAMAAIField = 
 this._lrsBusTravMetrics_EarlyAMAvgInc_WkDay; 
            context.LrsBusTravMetricFeatureClass_WDPeakAMAAIField = 
 this._lrsBusTravMetrics_PeakAMAvgInc_WkDay; 
            context.LrsBusTravMetricFeatureClass_WDMidDayAAIField = 
 this._lrsBusTravMetrics_MidDayAvgInc_WkDay; 
            context.LrsBusTravMetricFeatureClass_WDPeakPMAAIField = 
 this._lrsBusTravMetrics_PeakPMAvgInc_WkDay; 
            context.LrsBusTravMetricFeatureClass_WDLatePMAAIField = 
 this._lrsBusTravMetrics_LatePMAvgInc_WkDay; 
            context.LrsWalkTravMetricFeatureClass_RIDField = 
 this._lrsWalkTravMetrics_RIDFieldName; 
            context.LrsWalkTravMetricFeatureClass_FDFOField = 
 this._lrsWalkTravMetrics_FDFOFieldName; 
            context.LrsWalkTravMetricFeatureClass_TDFOField = 
 this._lrsWalkTravMetrics_TDFOFieldName; 
            context.LrsWalkTravMetricFeatureClass_WDAllDayAAIField = 
 this._lrsWalkTravMetrics_AllDayAvgInc_WkDay; 
            context.LrsWalkTravMetricFeatureClass_WDEarlyAMAAIField = 
 this._lrsWalkTravMetrics_EarlyAMAvgInc_WkDay; 
            context.LrsWalkTravMetricFeatureClass_WDPeakAMAAIField = 
 this._lrsWalkTravMetrics_PeakAMAvgInc_WkDay; 
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            context.LrsWalkTravMetricFeatureClass_WDMidDayAAIField = 
 this._lrsWalkTravMetrics_MidDayAvgInc_WkDay; 
            context.LrsWalkTravMetricFeatureClass_WDPeakPMAAIField = 
 this._lrsWalkTravMetrics_PeakPMAvgInc_WkDay; 
            context.LrsWalkTravMetricFeatureClass_WDLatePMAAIField = 
 this._lrsWalkTravMetrics_LatePMAvgInc_WkDay; 
             
            // -- Relationship Class Fields  
   context.RailStopToTripLnRelationshipClass_GeoID = 
 this._railStopToTripLnRelationshipClass_GeoID; 
            context.RailStopToTripLnRelationshipClass_MetricKey = 
 this._railStopToTripLnRelationshipClass_MetricKey; 
            context.BusStopToTripLnRelationshipClass_GeoID = 
 this._busStopToTripLnRelationshipClass_GeoID; 
            context.BusStopToTripLnRelationshipClass_MetricKey = 
 this._busStopToTripLnRelationshipClass_MetricKey;             
             
            context.NbrOfnonMfts = this._nbrOfnonMfts; 
            context.NbrFtrs = this._nbrFtrs; 
            context.FtrsNames = this._ftrsNames; 
            context.AllLayerCount = this._allLayerCount; 
            context.HasMcount = this._hasMcount; 
            context.ListHasMFtrs = this._listHasMFtrs; 
            context.SaTables = this._saTables; 
            context.RelClasses = this._relCls; 
 
            context.MapServer = this._mapserver; 
             
            return context; 
        } 
 
        /// A generic internal handler for all REST resources and operations.        
        private byte[] HandleHelper(IRESTHandler handler, RESTContext context, out 
string responseProperties) 
        { 
            object response = null; 
            try 
            { 
                response = handler.HandleRequest(context); 
                responseProperties = context.ResponseProperties; 
            } 
            catch (Exception e) 
            { 
                response = null; // JsonBuilder.BuildErrorObject(500, e.Message); 
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                responseProperties = null; 
                Console.WriteLine(e.Message); 
                // throw e; 
            } 
            return JSONHelper.EncodeResponse(response); 
        } 
 
        private void initiateFeatures(IMapServer3 mapServer) 
        { 
            IMapServerDataAccess dataAccess = (IMapServerDataAccess)mapServer; 
            IMapServerInfo msInfo = 
 mapServer.GetServerInfo(mapServer.DefaultMapName); 
 
            IMapLayerInfos layerInfos = msInfo.MapLayerInfos; 
            this._mapserver = mapServer; 
            this._dataAccess = dataAccess; 
 
            //--Checkpoint ------------------------------------------------- 
            int layerCount = layerInfos.Count; 
            int featureLyrCount = 0; 
            List<string> fcNames = new List<string>(); 
            int nonMFtrsCount = 0; 
            int hasMCount = 0; 
            int allLayersCount = layerCount; 
            List<string> saTblNames = new List<string>(); 
            List<string> listOfMftrs = new List<string>(); 
            //---------------------------------------------------------------- 
 
            for (int j = 0; j < layerCount; j++) 
            { 
                IMapLayerInfo layerInfo = layerInfos.get_Element(j); 
 
                if (layerInfo.IsFeatureLayer) 
                { 
                    featureLyrCount++; 
 
                    IFeatureClass featureClass = 
(IFeatureClass)dataAccess.GetDataSource(mapServer.DefaultMapName, layerInfo.ID); 
                    IGeometryDef geometryDef = 
featureClass.Fields.get_Field(featureClass.FindField(featureClass.ShapeFieldName)).Ge
ometryDef; 
 
                    fcNames.Add(featureClass.AliasName); 
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                    if (featureClass != null) 
                    {                         
                        if (geometryDef.HasM) 
                        { 
                            hasMCount++; 
                            listOfMftrs.Add(featureClass.AliasName); 
 
                            if (featureClass.AliasName ==   
 "SANDBOX_STATIC.GIS.Auto_TAZ_Network")  //1 
                            { 
                                // Use this as Route FeatureClass 
                                this._highwayFeatureClass = featureClass; 
                            } 
                            else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.AutoTripMetrics") //2 
                            { 
                                this._lrsAutoTripMetrics = featureClass; 
                            } 
                            else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.AutoTravMetrics") //3 
                            { 
                                this._lrsAutoTravMetrics = featureClass; 
                            } 
                            else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.Rail_TAZ_Network") //4 
                            { 
                                this._railwayFeatureClass = featureClass; 
                            } 
                            else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.RailTripMetrics") //5 
                            { 
                                this._lrsRailTripMetrics = featureClass; 
                            } 
                            else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.RailTravellerMetrics") //6 
                            { 
                                this._lrsRailTravMetrics = featureClass; 
                            } 
                            else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.Bus_TAZ_Network") //7 
                            { 
                                this._buslineFeatureClass = featureClass; 
                            } 
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                            else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.BusTripMetrics") //8 
                            { 
                                this._lrsBusTripMetrics = featureClass; 
                            } 
                            else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.BusTravellerMetrics") //9 
                            { 
                                this._lrsBusTravMetrics = featureClass; 
                            } 
                            else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.Ped_TAZ_Network") //10 
                            { 
                                this._walkwayFeatureClass = featureClass; 
                            } 
                            else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.PedTripMetrics") //11 
                            { 
                                this._lrsWalkTripMetrics = featureClass; 
                            } 
                            else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.PedTravellerMetrics") //12 
                            { 
                                this._lrsWalkTravMetrics = featureClass; 
                            } 
                            else 
                            { 
                                this._naRoutes = featureClass; 
                            } 
                            //System.Diagnostics.Debugger.Break(); 
                        } 
                        else 
                        { 
                            if ((featureClass.AliasName != "Stops") || (featureClass.AliasName != 
"Barriers") || (featureClass.AliasName != "PolylineBarriers") || (featureClass.AliasName 
!= "PolygonBarriers")) 
                            { 
                                if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.Transfer_Street_Stations") //13 
                                { 
                                    nonMFtrsCount++; 
                                    this._lrsTransferStreets = featureClass; 
                                } 
 



114 
 

Module 6 Summarized: LRSLocator.cs (continued) 
 

                                if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.Rail_TAZ_Stations") //14 
                                { 
                                    nonMFtrsCount++; 
                                    this._railstationFeatureClass = featureClass; 
                                } 
                                if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.Bus_TAZ_Stops") //15 
                                { 
                                    nonMFtrsCount++; 
                                    this._busstopFeatureClass = featureClass; 
                                } 
                                if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.Transit_Transfer_Stations") //16 
                                { 
                                    nonMFtrsCount++; 
                                    this._transferstationFeatureClass = featureClass; 
                                } 
                                else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.AutoNetwork_ND_Junctions") //17 
                                { 
                                    nonMFtrsCount++; 
                                    this._cgcAutoNetJunctions = featureClass; 
                                } 
                                else if (featureClass.AliasName == 
 "SANDBOX_STATIC.GIS.TransitNetwork_ND_Junctions") //18 
                                { 
                                    nonMFtrsCount++; 
                                    this._cgcTransitNetJunctions = featureClass; 
                                } 
                                else 
                                { 
                                    this._naRoutes = featureClass; 
                                } 
                            } 
                        } 
 
                    }// end if Feature 
                } 
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                if (layerInfo.Name == "RouteAuto") 
                { 
                    INetworkDataset nwkAutoDataset = 
(INetworkDataset)dataAccess.GetDataSource(mapServer.DefaultMapName, 
layerInfo.ID); 
                    this._cgcAutoND = nwkAutoDataset; 
                } 
                else if (layerInfo.Name == "RouteTransit") 
                { 
                    INetworkDataset nwkTransitDataset = 
(INetworkDataset)dataAccess.GetDataSource(mapServer.DefaultMapName, 
layerInfo.ID); 
                    this._cgcTransitND = nwkTransitDataset; 
                } 
                this._nbrFtrs = featureLyrCount; 
                this._ftrsNames = fcNames; 
                this._nbrOfnonMfts = nonMFtrsCount; 
                this._hasMcount = hasMCount; 
                this._allLayerCount = allLayersCount; 
                this._listHasMFtrs = listOfMftrs; 
            } 
            IMapServerObjects3 msObj = (IMapServerObjects3)mapServer; 
            //get map server info 
            IMapServerInfo3 msInfo3 = (IMapServerInfo3)msInfo; 
            IStandaloneTableInfos tableInfos = msInfo3.StandaloneTableInfos; 
            this._tableInfos = tableInfos; 
 
            //get any standalone table info collection              
            List<ITable> saTables = new List<ITable>(); 
            List<IRelationshipClass2> relClasses = new List<IRelationshipClass2>(); 
            ITable table = null; 
            IRelationshipClass2 relCl = null; 
            if (tableInfos != null) 
            { 
                int tableCount = tableInfos.Count; 
                int? tableID = null; 
                for (int j = 0; j < tableCount; j++) 
                { 
                    IStandaloneTableInfo tableInfo = tableInfos.get_Element(j); 
                    //tableInfo.Name = ""; 
                    saTblNames.Add(tableInfo.Name); 
                    tableID = tableInfo.ID; 
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                    if (tableID != null) 
                    { 
                        table = msObj.get_StandaloneTable(mapServer.DefaultMapName, 
Convert.ToInt16(tableID)); 
                        saTables.Add(table); 
                        relCl = (IRelationshipClass2)table; 
                        relClasses.Add(relCl); 
                    } 
                } 
            } 
            this._saTables = saTables; 
            int standAloneTablesCount = tableInfos.Count; 
            this._saTblCount = tableInfos.Count; ; 
            this._saTblNames = saTblNames; 
            this._relCls = relClasses; 
        } 
    } 
} 
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using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using System.Runtime.Serialization; 
using ESRI.ArcGIS.Geometry; 
using ESRI.ArcGIS.Geodatabase; 
using ESRI.ArcGIS.esriSystem; 
using ESRI.ArcGIS.SOESupport; 
using ESRI.ArcGIS.SystemUI; 
using ESRI.ArcGIS.Display; 
using ESRI.ArcGIS.Server; 
using ESRI.ArcGIS.Output; 
using ESRI.ArcGIS.GISClient; 
using ESRI.ArcGIS.DataSourcesFile; 
using ESRI.ArcGIS.DataSourcesGDB; 
using ESRI.ArcGIS.DataSourcesOleDB; 
using ESRI.ArcGIS.DataSourcesRaster; 
using ESRI.ArcGIS.GeoDatabaseDistributed; 
using ESRI.ArcGIS.Carto; 
using ESRI.ArcGIS.Geoprocessing; 
using ESRI.ArcGIS.NetworkAnalyst; 
 
namespace LRSLocator 
{ 
    class RouteFromInputPoints 
    { 
        [DataMember(Order = 0, Name = "network_path")] 
        public IFeature network_path { get; set; } 
 
        public void SimpleRouteSetupSolveAndSaveWorkflow(INetworkDataset 
netDataset, List<IPoint> inputPoints, RESTContext _context) 
        { 
            IFeatureWorkspace imFtWorkspace = 
(IFeatureWorkspace)CreateInMemoryWorkspace(); 
            IFeatureClass wayPointFC = CreateFeatureClassFromPoints(imFtWorkspace, 
inputPoints); 
 
            //var networkDataset = _context.networkTxdot,  as the input parameter for the 
class method, getting the object from the RESTContext/Context Object Model-COM. 
            var networkDataset = netDataset; 
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            var deNetworkDataset = ((IDatasetComponent)networkDataset).DataElement as 
IDENetworkDataset; 
 
            // Set up your solver 
            var routeSolver = new NARouteSolverClass() as INASolver; 
            INASolverSettings naSolverSettings = routeSolver as INASolverSettings; 
 
            // Set up your context by creating it, then binding it to a network dataset. 
            var context = routeSolver.CreateContext(deNetworkDataset, "Path from points 
Context") as INAContext; 
            var contextEdit = context as INAContextEdit; 
            IGPMessages gpMessages = new GPMessagesClass(); 
            contextEdit.Bind(networkDataset, gpMessages); 
 
            // Load new stops using the input feature class and a NAClassLoader. 
            var inputStopsFClass = wayPointFC; 
            var cursor = inputStopsFClass.Search(null, false) as ICursor; 
            var classLoader = new NAClassLoaderClass() as INAClassLoader; 
            classLoader.NAClass = context.NAClasses.get_ItemByName("Stops") as 
INAClass; 
            classLoader.Locator = context.Locator; 
            int rowsInCursor = 0; 
            int rowsLocated = 0; 
            classLoader.Load(cursor, null, ref rowsInCursor, ref rowsLocated); 
 
            // Solve the route using current settings            
            // And check the GPMessages after a successful solve to see if there are any 
warning or informational messages.       
 
            try 
            { 
                bool IsPartialSolution = routeSolver.Solve(context, gpMessages, null); 
            } 
            catch (Exception e) 
            { 
                string ex = e.ToString(); 
                Console.WriteLine(e.ToString()); 
            } 
 
            // Get the FeatureClass containing the route results. 
            // Iterate over the route class features' attribute values to examine the results. 
            var routesClass = context.NAClasses.get_ItemByName("Routes") as 
IFeatureClass; 
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            IFeature resultFC = null; 
            IFeatureCursor pFeatureCursor = routesClass.Search(null, false); 
            IFeature pFeature; 
            int num1 = 0; 
            while ((pFeature = pFeatureCursor.NextFeature()) != null) 
            { 
                resultFC = pFeature; 
                num1++; 
            } 
             
            this.network_path = resultFC; 
 
            //--SAVE THE NETWORK PATH TO LOCAL DRIVE FOR VISUAL 
 INTERPRETATION OF THE RESULT----             
            string outputFilePath = @"\\<full machine 
name>\\D$\Projects\CGCLocator\Output\AutoRte.lyr";             
            //---------------------------------------------------------------------------------- 
            try 
            { 
                INALayer3 naLayer = routeSolver.CreateLayer(context) as INALayer3; 
                ILayerFile layerfile = new LayerFileClass(); 
                layerfile.New(outputFilePath); 
                layerfile.ReplaceContents(naLayer as ILayer); 
                layerfile.Save(); 
                layerfile.Close(); 
            } 
            catch (Exception e) 
            { 
                string ex = e.ToString(); 
                Console.WriteLine(e.Message); 
            } 
        } 
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        private IWorkspace CreateInMemoryWorkspace() 
        { 
            try 
            { 
                // Create an in-memory workspace factory. 
                IWorkspaceFactory workspaceFactory = new InMemoryWorkspaceFactory() 
as IWorkspaceFactory; 
 
                // Create a new in-memory workspace. This returns a name object. 
                IWorkspaceName workspaceName = workspaceFactory.Create(string.Empty, 
"MyWorkspace", null, 0); 
                IName name = (IName)workspaceName; 
 
                // Open the workspace through the name object. 
                IWorkspace workspace = (IWorkspace)name.Open(); 
 
                return workspace; 
            } 
 
            catch (Exception e) 
            { 
                Console.WriteLine(e.Message); 
                throw e; 
            } 
        } 
        //---------------------------------------------------------------------------------------------------- 
        public static IFeatureClass CreateFeatureClassFromPoints(IFeatureWorkspace 
featWorkspace, List<IPoint> inputPts) 
        { 
            String fcName = "StopPoints"; 
 
            IFieldsEdit ptFieldsEdit = new FieldsClass(); 
            IFieldEdit ptField = new FieldClass(); 
 
            IPoint pt = inputPts[0]; 
            ISpatialReference ptSR = pt.SpatialReference; 
 
 
            ptField = new FieldClass(); 
            ptField.Type_2 = esriFieldType.esriFieldTypeOID; 
            ptField.Name_2 = "OBJECTID"; 
            ptField.AliasName_2 = "OBJECTID"; 
            ptFieldsEdit.AddField(ptField); 
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            IGeometryDefEdit ptGeomDef; 
            ptGeomDef = new GeometryDefClass(); 
            ptGeomDef.GeometryType_2 = esriGeometryType.esriGeometryPoint; 
            ptGeomDef.SpatialReference_2 = ptSR; 
            ptGeomDef.HasZ_2 = false; 
 
            ptField = new FieldClass(); 
            ptField.Name_2 = "SHAPE"; 
            ptField.AliasName_2 = "SHAPE"; 
            ptField.Type_2 = esriFieldType.esriFieldTypeGeometry; 
            ptField.GeometryDef_2 = ptGeomDef; 
            ptFieldsEdit.AddField(ptField); 
 
            ptField = new FieldClass(); 
            ptField.Name_2 = "stopOrder"; 
            ptField.AliasName_2 = "stopOrder"; 
            ptField.Type_2 = esriFieldType.esriFieldTypeInteger; 
            ptFieldsEdit.AddField(ptField); 
 
            IFeatureClass ptFC = featWorkspace.CreateFeatureClass(fcName, ptFieldsEdit, 
null, null, esriFeatureType.esriFTSimple, "SHAPE", ""); 
 
            // Add data to Feature class setting the "stopOrder" field with position order of 
respecively to the position in the list 
            int position = 0; 
            int ptIdx; 
            foreach (IPoint pnt in inputPts) 
            { 
                position++; 
                IFeature stopFeature = ptFC.CreateFeature(); 
                stopFeature.Shape = pnt; 
                ptIdx = stopFeature.Fields.FindField("stopOrder"); 
                stopFeature.set_Value(ptIdx, position); 
                stopFeature.Store(); 
            } 
            return ptFC; 
        } 
    } 
} 

 
 


