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Abstract

Most research literature on aggregate travel behavior and the built environment indicates that a
dense, mixed-use, and transit-friendly settlement pattern generates lower automobile miles
travelled than a traditional suburban development. By the same comparison, a substantial portion
of research shows that any shift away from this ideal neo-urbanist community to more general
urbanized areas exhibits only marginal — if any — influence upon travel behavior. Additionally, the
commuter who must traverse such complex urban landscapes lacks information about the daily
end-to-end costs associated with each practical mode of travel. This project’s GIS service package
models the costs of driving versus transit, in minutes and dollars, for individual commutes from
the perspective of a traveler. To sufficiently provide these spatial results, a network dataset was
constructed for each travel mode — driving and multimodal transit — in the central metropolitan
area of Washington D.C. The applied variables for driving included the cost of fuel per mile,
travel time, parking time, and average parking fee. For bus, rail and pedestrian modes, the
variables include average transit fares, walking, waiting and in-vehicle times, as well as these
same inputs applied to any transfers. Commute times are summarized for each mode alongside
corresponding dollar totals. For this cost conversion, annual income is extracted from location-
based probabilistic income in traveler demographic data provided by StreetLight Data, Inc.
Through web services development this thesis investigates a new approach for web GIS to model
travel-cost information for individual commutes. These interactive services facilitate several use
cases for research and transportation management, particularly if applied to invoke a commuter’s
quantitative and qualitative response to mode choice. Where uncertainty currently prevails in

modeling travel behavior, such empirical mode-choice data volumes become quite valuable.



Chapter 1 Introduction

In terms of cost, there is a fundamental realization to consider in the way that an individual views
the impact of their daily commute. It is widely accepted that automobile transportation produces
harmful greenhouse gases which contribute to air pollution, global warming, and climate change,
as well as respiratory ailments (Centers for Disease Control and Prevention 2022). Yet the trends
in automobile-driven fossil fuel consumption continue to increase each year (Energy Information
Administration 2007). For the individual driver, inactivity in conjunction with long commutes
increases the rate of cardiovascular illness and obesity, two of the leading causes of death in the
United States (Hoehner et al. 2012). Before the onset of the COVID-19 pandemic in the US, fatal
automobile accidents were listed among the top three leading causes of death (Centers for
Disease Control and Prevention 2021). Socioeconomic research finds additional deleterious
issues linking automobile dependency to the lack of municipal tax revenue, wasted federal
subsidies (Calthorpe 1993), ageing infrastructure (Duany and Plater-Zyberk 1992), inner-city
crime (Kushner 2005), job loss (Kuby, Barranda, and Upchurch 2004), classism and even racism
(Hanson 2001). Despite some level of public awareness about these costly outcomes, on any
given day most commuters in the US are not likely to be dissuaded from driving.

Within a broader initiative to address this problem space, the goal of the Commute
GeoCalculator is to provide web GIS services that calculate and visualize the “perceived” costs
of individual commutes by transit and driving. For each travel mode, perceived costs are direct
“out-of-pocket” expenses measured in minutes and dollars for the purpose of invoking a mode
choice response from an application end user. However, while this purpose serves the long-term

goal of the project, the immediate results generated by these services do not necessarily require a



mode choice response. Various applications in research and industry will benefit from the
project’s automation of comparative travel costs, modeled over a chosen geography.

As for the long-run goal of the project, economic feasibility forms the quantitative basis for
the travel mode decision-making process via a public-facing application that would leverage
these web services. The end results of this process, empirical mode choice data, are valuable to
government organizations in forming transport policy, or perhaps useful to researchers in testing
spatial analyses. Particularly where changes to the built environment promote the use of transit in
a heterogenous settlement pattern, these empirical mode-choice data present a new opportunity

toward intervention against automobile dependency.

1.1. Project Motivation and Background

New urbanism — often called smart growth — is an interdisciplinary planning movement
dedicated to counteracting the costly effects of sprawl and automobile dependency by applying
new policies to land-use and urban form, including transit-oriented developments (TODs)
(Calthorpe 1993). Attraction to transit is a pervasive topic in the NU movement, and there is an
enduring consensus among proponents that land-use and urban form policies continue to control,
manage, and shape the travel behavior of individuals. However, after a multitude of various
studies on this topic, it is generally unclear if these types of policy changes to the built
environment necessarily translate into changes in travel behavior. The end goal and motivation
of the project is to construct an effective response to research calling for application components
that apply authoritative methods and user inputs to help reveal how policy changes impact the
attraction of transit (Tallis 2014).

The data on travel behavior in prior literature, such as vehicle hours, are typically

aggregated geographically and applied to spatial analyses. Such efforts are referred to, here, as



aggregate studies. Inconclusiveness persists even where careful treatment is given to
confounding variables and the classification of the built environment, in efforts to control for
spurious correlations in heterogeneous settlement patterns (Higgins and Kanaroglou 2016). The
challenges to establishing forward causality of the built environment to travel behavior have not
eluded researchers. Quite to the contrary, multiple aspects of the built environment, population,
economy, and regional effects have been realized and controlled by research scientists. But in the
majority of case studies, the author finds vast urban geographies where forward causality
remains inconclusive. At the core of the NU approach is the issue of whether the true effects
from the built environment on travel demand are causal, associative or a mixture of both (Bhat
and Eluru 2009). This distinction is centrally important to the intended future use of the project
results as ground-truth data for testing travel behavior models. This aspiration of the project is
examined more closely in Chapter 2 with four methodological problems that have been identified
in travel behavior studies.

The manner in which NU-related achievements and critiques have developed since the
early 1990s provides the underlying foundation and impetus for the current project. The key
finding from these urban studies is the opportunity for new developments in the approach to data
heterogeneity and uncertainty in travel behavior. This is not to suggest that aggregate studies on
travel behavior carry little value, but rather that there are disconnects between the research and
what is on the minds of individual daily travelers. The motivation behind the Commute
GeoCalculator is to facilitate the alleviation of these disconnects through a mutually beneficial
exchange of services and information among commuters, researchers, and transportation

authorities.



1.2. Project Overview

The project creates middleware-as-a-service (MWAAS) that models the travel cost
between origin X and destination Y of a user-defined commute, with the option of unlimited
intermediate stops for analyzing a tour. The quantitative information provided to the user
consists of peak and non-peak travel costs of driving and multimodal transit between origin and
destination (OD) points. The intention is to enable a mapping application to assist individuals in
their decision-making process regarding OD travel options. Based on OD locations, authoritative
input parameters, and the economic principle of marginal utility, the web application translates
time into dollar amounts for walking, waiting, transferring, driving, parking, and riding transit.
Fuel costs and transit fares are added, where applicable. This spatialized translation reveals the
perceived cost of each travel mode for a commuter. If these direct costs can be readily shown for
any individual’s specific travel pattern, the author finds it likely that more constructive attention
will be given to mode choice by the travelling public. Further, where these modeled travel costs
are collected, a number of valuable insights unfold about the performance of urban policy on the
transportation system, itself, and the travel behavior therein.

Regarding ongoing efforts to hypothesize travel behavior, some probabilistic models used
to classify elements of the built environment assume that population variables are unobserved. In
such cases, these variables are often represented by clusters of other manifest variables, which
may easily skew results. The absence of empirical population data is problematic for studies that
seek to establish typologies of the built environment as a basis for modeling travel behavior
(Higgins and Kanaroglou 2016). The Commute GeoCalculator developed herein is designed to
support a web client that obtains end user responses to the travel cost returns from the service

endpoints. User responses may indicate which travel mode is chosen for each individual



commute, and why it is chosen. VGI of quantitative and qualitative travel preference data across
a growing population is the future goal of development for the current application. The project
carries the potential to expose underlying factors that transcend the current limitations imposed
by predetermined typologies of the built environment. Where applied, this exposure of travel
mode efficiency may lead to better informed TDM (travel demand management) strategies or
service improvements (Litman 2010).

The application of marginal utility in travel behavior studies can be found in early research
literature of the 1970s — the age of neotraditional environmentalism, predecessor of NU. Shunk
and Bouchard (1970) point to the development of an independent decision variable based upon
marginal “disutilities” of travel by competing modes as perceived by the traveler. Their study
shows how a model that is basically more behavioristic in nature rather than simulative
conceivably could be an approach to more effective modal-choice prediction procedures (Shunk
and Bouchard 1970). The project closely considers this behavioral approach by providing a web-

based toolset designed for gathering direct feedback from a commuter’s point of view.

1.3. Study Area

The central metropolitan Washington D.C. area is ideal for the development of a scientific
tool to assess and compare travel data, because mode choice is a pervasive characteristic of the
geography. Local and regional bus and rail services are widely available throughout most of
metropolitan area. Rail and road data are sufficient in this area for building the respective
network datasets. Settlement patterns are heterogenous — from transit-oriented developments
(TOD) to traditional suburban neighborhoods and commercial strips. The study area, shown in
Figure 1, contains a diverse population, a wide range of employment densities, and a very active

presence of urban planners and policy makers as it is anchored by the US Capitol complex.
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Furthermore, the Metropolitan Washington Council of Governments (MWCOG) has
territorial jurisdiction within the NEC (Northeastern Corridor) rail network, which can facilitate
future growth of the application onto the megaregional scale (Mitch 2021). All required data are
contained within this boundary encompassing the District of Columbia (Washington, D.C.),
which includes parcels of Arlington, Fairfax, Montgomery, and Prince George’s counties. All
data in the study area are processed in the Web Mercator Auxiliary Sphere, WGS 1984 datum,
but then published to the MWAAS as unprojected GCS in North American Datum (NAD) 1983.

This transformation assists with uniform routing and enables any spatial reference in the service.

1.4. Methodological Overview

Applying a two-tier architecture, the project provides commute cost information from at
least one origin to one destination point defined by the service user. A substantial amount of data
crunching occurs before the user or application visits the REST endpoint and enters parameters
to plot commute events. These steps are detailed in Chapter 3, preceding software development
in Chapter 4. The overall conceptual design of the MWAAS, its purpose and composition, is best
understood through a brief examination of the elements in each tier — starting with the data tier.

To enable the creation of both transit and driving route paths with associated costs across a
typical seven-day week, a specific temporal scale is applied to the source data in Tier 1. For the
project, fully processed traffic volumes and household income are averaged on weekends and
weekday peak/non-peak times in 2019. Specifically, trip speed and traveler annual income are
provisioned by StreetLight Data, Inc. (SL) in US-standard traffic analysis zones (TAZ). Through
Tier-1 data automation, these metrics are linearized to street centerlines and integrated into the
model. A cross-sectional view of all base metrics on one roadway segment is depicted in Table 1.

Data sources and source formats are indicated in the summary columns near the top of this table,



while the rows present precisely how each attribute is organized on the project’s temporal scale.
The column headings at the bottom of Table 1 convey which attributes are assigned as costs for
determining path routing within a network dataset, and which attributes are path-dependent
metrics assigned to variables after routing.

Table 1. Tier 1 Sample Data: Cross-Sectional View

US Standard Traffic Analysis Zones US Census Streets Busseilg(;SRall
StreetLight Traffic and Traveller Metrics Employment GTFS Calibration
Day Type: (GPS and LBS) Density Data
1. Weekday AUTOS and AUTOS and
2. Weekend TRANSIT TRANSIT AUTOS TRANSIT
Trip Speed (mph) Traveller Income ($) Parkl(%igsnalty Trar(lrsrfielis\;]alt

Day Part:
0. All Day 19.3 90100 4 7
1. Barly AM 24.5 68000 2 0
2. Peak AM 14.2 118000 5 10
3. Mid-Day 16.8 79000 7 15
4. Peak PM 12.5 113500 5 5
5. Late PM 28.4 72000 1 S
Data Period: Applied to Centerlines Applied to Network Datasets
2019

The applied modes are automobile, pedestrian, bus, and rail. Bicycle travel is planned for
the next project phase. For the automobile mode, SL includes trip speed and traveler income on
both car and truck movements, tracked via GPS, then measured against authoritative traffic
counts. For transit modes, SL data includes the same variables by indices calculated from
location-based services (LBS) (StreetLight 2022), and the project then applies transit schedules
from the general transit feed specification (GTFS) data to geolocate transfer locations and to
compute average transfer wait times for bus and rail. Pedestrian traffic indexes are applied to the
model as is. Average parking penalties are calculated from US Census data on population density

multiplied by the percentage of employment by county, with WMCOG authoritative coefficients



(in minutes) assigned to the resulting employment density measures. The extract, transform, and
load (ETL) automation processes all time-based variables into the data model, and facilitates the
manual build of both network datasets using Esri Network Analyst.

In Tier 2, object-oriented code leverages the spatial data model and enhances the
capabilities of a map service to deliver linear referencing functions for each categorized mode of
travel — transit and driving. These enhanced capabilities are applied to individual user-defined
commutes and include linear referencing with computation of the total travel cost for each travel
mode. When an API call via REST (Representational State Transfer) network protocol is sent
from a web client in a prospective Tier 3, or directly from an end user at the REST page, the
logic module exploits the routing functions of each network dataset to provide path geometry for
each travel mode on a commute. Almost simultaneously, Tier-2 code applies the path geometry
to spatially extract travel speed, parking penalties, transit wait times, transit fares, and inferred

traveler income. These are the operations of the “as is” state represented in Figure 2.

TIER 2: Logic Module TIER 3: Presentation Module
Input

Computation / Network Routing via Map Services

ey : Select Day Type:
s Driving 1: Weekday (M - Th)
=== Transit /I_ 2: Weekend (Sa — Su)
1 Woekday (M — Th) <

: Weekday - Select Day Part:
2: Weekend (Sa - Su) \| 0: All Day (12am-12am)

ArcGls | 1: Early AM (12am-6am)

Day Part: REST |2: Peak AM (Bam-10am)
0: All Day (12am-12am) API 3: Mid-Day (10am-3pm)
1: Early AM (12am-6am) 4: Peak PM (3pm-7pm)
2. Peak AM (6am-10am) 5: Late PM (7pm-12am)
3: Mid-Day (10am-3pm)
4: Peak PM (3pm-7pm) c:g)uhigaéeling for work?

5: Late PM (7pm-12am)

== Driving: 135 min $5.88
Consent to disclose income? _r,r,,":,% ggxi: §2.75

All spatial melrics and regional parameters are YesQ No@ Which option wil
applied to cost equations, based upon entries Plot origin and destination choose??p;g ‘ Jus
. - Y
made to the published REST endpoints. points for your trip: & why? OT'an:f
“AS IS” State

FUTURE State

Figure 2. Tier 2 and 3 Cross-Sectional View



With these routed variables, the middleware computes the total cost of driving versus
transit using authoritative coefficients and direct cost estimates for parking fees and fuel. In
Figure 2, a hypothetical web client interacts with the Commute GeoCalculator web services
created in the project. By design, the user or application invokes this entire process through the
REST API of the logic modules by selecting a day type, day part, with other parameters and
plotting origin X and destination Y points for a commute query. After this submittal, what the
user receives back are each of the travel mode paths with dollar and minute cost values. Results
at the REST page are returned in JSON or HTML format, readily usable by a web client (Fu
2020), and the resulting path geometries are also written to the local application server as feature
layer collection for visualization purposes outside of a web client. Alternatively, these results
may be consumed by a scripted process, or through direct user interface by someone who is

interested in experimenting with the services.

1.5. User Requirements

The intended users of the middleware services and data model are GIS application
developers who intend to script a travel cost analysis or build a web client that extends travel
cost information to the travelling public. Scientists who want to gather samples of mode-specific
travel cost data in the service area will also benefit from the project’s services. However, the
majority of user requirements are defined from the standpoint of the everyday commuter.
Commute GeoCalculator enables a web client to more easily accommodate commuters who may
have never used GIS software before. In this context, the key functions in the project’s
middleware address temporal scale, performance, spatial cognition, and thus promote an

attractive user experience. Transportation researchers, planning authorities, and policy makers

10



may also take interest in the resulting mode choice data, given that these user-driven data would
be collected over time.

The end goal for user requirements is two-fold in that the project hopes to directly support
a web GIS that encourages people to use more sustainable travel modes than gas-powered
automobiles, and it endeavors to collect data that policy makers and researchers can use to
enhance their understanding of urban travel behavior. Accordingly, the commuting public are the
intended end users of the project’s services operating behind a web application, while the
intended beneficiaries include urban researchers as well as urbanites that benefit from improved
decision-making.

To that end, the middleware provides general travel cost estimates based on user-inputted
start- and end- points of a planned trip. Plus, the desired time of day for each commute and any
preferred spatial reference for the output must also be entered. When implemented in a web
client, users should be prompted to share — as VGI — the mode and path of travel they choose for
their trip, and why the mode was chosen. In the future workflow, this is the point at which the
user will have the opportunity to make their location-specific views known to transportation
researchers, planning authorities, and policy makers. By design, the intended application would
allow only these authorized parties to access the web client for the purpose of viewing and later
downloading volunteered commuter data. For the purposes of fulfilling review and
demonstration of the project, the initial users shall be authorized students, faculty, and staff of

the Spatial Sciences Institute at the University of Southern California.

1.6. Thesis Overview
The ensuing chapters detail the progression of project stages, following a review of related

works and literature in Chapter 2. In Chapter 3, the criteria, requirements, and components of the

11



data tier are discussed in detail. From data acquisition through each data processing step built
into ETL automation, this chapter provides sufficient information for replicating the
application’s data model in Tier 1. Chapter 4 covers the same proposition for the development of
Tier 2, including the purpose, function, and form of the system architecture — software, versions,
and resources — as well as the database design and object-oriented code engineered by the author.
Chapter 5 summarizes the overall project results, with a walk-through for using the finished
application at the REST page. References to user help documents are provided as well as an in-
depth discussion of the pertinent use cases and test results. Chapter 6 provides a conclusion of
the design choices and principles applied, as well as project limitations, development challenges,
recommendations for future work, and the prospect of expanding Commute GeoCalculator to

other geographic locations.
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Chapter 2 Related Literature

The review of related works begins with research on cost-based utilities in travel mode choice,
followed by common methodological problems in travel behavior studies and research design
principles that address such issues. Additionally, current regulations and policy trends in
transportation management are assessed in this chapter, and a brief review of related applications
is offered. In a comparison and contrast of related applications, the author refers to the spectrum
of programs and software that leverage GIS to model or analyze travel behavior. Finally, all
research findings are drawn together into a summary of insights that have influenced the design

and development work of the project.

2.1. Utility Theory and Costs of Travel

In this project, utility theory is applied in the construction of additive cost equations to
establish a fundamental basis of choice by individual travelers. Mode choice is an aspect of
travel demand analysis that determines the number or percentages of trips between zones that are
made by automobile and by transit. Whether one travel mode is preferred to another depends on
how much utility, or satisfaction, it yields relative to its alternatives (Case and Fair 2004).
Economic feasibility based on out-of-pocket costs, itself, may very well not be enough to guide
the probable mode choice of most commuters in any given urban setting. However, it can be
reasonably expected that most people who frequently commute would at least consider the
economic feasibility of alternatives as a decision-making factor. This is a common inference in
travel cost models. And with this in mind, the research approach to utility theory in this project
presumes that the benefit of travel is defined solely as the destination, itself, to which all mode

choices have access. Therefore, the benefit is set to zero and the utility of travel is defined only
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by the cost of transportation, in an indirect mathematical relationship expressed as the following:

Br+Cr=Ur (1)
where Bt = 0, as any benefit of transportation beyond just reaching the destination; Cr is the cost
of transportation, and Ur is the utility of transportation.

In this context of travel costs, there are a number of utility formulae for mode choice found
in the scientific literature. Researchers, Koppelman and Bhat, contribute a disaggregate discrete-
choice model of high relevance to the project. The authors assert no direct benefits of a given
travel mode, itself, beyond the destinations involved. Despite occasional mention of intrinsic
benefits found in the travel mode preferences of certain population groups, the paper remains
cost centric in its analysis. These subject matter experts do point out certain advantages of a
disaggregate approach to modeling group behavior over an aggregate approach. Here, the
aggregate approach is referred to as directly modeling the combined share of all or a segment of
decision makers choosing each alternative as a function of grouped elements. The disaggregate
approach recognizes that aggregate behavior is a result of numerous individual decisions based
on available elements, and thus individual choice responses are modeled (Koppelman and Bhat
2006).

The aforementioned elements of travel behavior applied in Koppelman and Bhat (2006)
include the following: (1) attributes of the travel alternatives, (2) utility biases due to excluded
variables, (3) a characteristic variable of the traveler, and (4) interactions relating the traveler to
their mode preference. The attributes of travel alternatives encompass aspects of the built
environment — path length, travel cost, waiting and walking times, parking time, the level of
mobility and service frequency, for example. Excluded variables may include socio-demographic

factors at a different geographic scale, or qualitative data regarding safety, comfort, and
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reliability of travel alternatives. Characteristic variables of the traveler often include household
income, age, automobile ownership, and the purpose of a trip. Interactions between the traveler
and their mode preference refers to network accessibility, employment or residential density,
proximity to carpool lanes or other transportation facilities. These elements are also found in the
equations issued by the National Capital Region Transportation Planning Board (NCRTPB) and
adopted by MWCOG in calculating travel costs at the regional level (NCRTPB 2020). This basic
construct is expressed as the following:

Vi = V(Sy) + V(X)) + V(S1,X)) )
where Vi, is the systematic portion of utility in the alternative / for individual #; V(S;) is the
portion of utility associated with characteristics of the individual #; V(X;) is the portion of utility
in the alternative / associated with the built environment; and V(S,X;) is the portion of the utility
which results from interactions between attributes of alternative / and the characteristics of
individual ¢. This additive cost model can produce a cost value associated with each travel mode
— multimodal transit as well as automobile. A larger output value indicates a less convenient
commute, whereas a smaller value reflects the opposite scenario. The difference between applied
outputs assists in determining the level of convenience associated with each mode, again, in
terms of cost. In particular, the inclusion of multiple characteristic variables of the traveler is
shown to significantly reduce residual outcomes of uncertainty in the modeling process presented
by Koppelman and Bhat (2006). Traveler and trip related data, relating specifically to the actual
mode choice of the traveler, are generally obtained by surveying a sample of travelers from the
population of interest. The most common of these travel surveys are household, workplace, and

intercept surveys; each of which involve direct contact with travelers by the researcher.
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Applicable to the above additive method is a family of multinomial equations, known as
logit models. Logit models are multi-factor logistic regression, and these models are often
implemented to analyze daily travel behavior in terms of relative probabilities of auto and transit
alternatives used between predetermined attraction zones. In the most basic description, the
utility function U; is composed a deterministic part, ;X;, and a random part, €, the unknown
residuals (Bai, Li, and Sun 2017). The fundamental form is U;= a;X; + £, where a; represents the
set of weighted coefficients assigned to known costs X; of a given travel mode: path length,
waiting time, walking time, transfer time, parking time, traffic conditions, service frequency, and

socioeconomic factors as well. In practice, a basic logit model is often expressed as:

n

U = > aXi+ &, 3)

i=1
where U, is the utility of a given travel mode; X, represents the total number of attributes; X;is
the attribute value of time, cost, or other factor; and a; is the coefficient value for attribute i.
With given value inputs, the U, result for each mode applied to this equation is then fashioned
into a proportion of exponentials equal to one (1), for the probability that a commuter will
choose one mode over the other in a given travel scenario. For example, the probability of mode
choice in auto P(A4), applied from the above U, result for automobile utility, Uy, is:

eUA

P(4) = 4)

Ui, JUr

Conversely, then the U, result for transit utility, Uz, is the prerequisite for solving this example
for P(4). This proportion may be solved for the probability of mode choice in transit by very

simple algebra, P(T) = 1 — P(4). The example depicts only a basic logit model for mode choice.
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A substantial number of travel behavior studies apply advanced logit models for the
purpose of traffic forecasting or predictive modeling. Among these methods is the trip-based
approach grounded in the Four-Stage Model (FSM) that is often seen in commercial-off-the-shelf
(COTYS) traffic simulation software for performing trip generation, trip distribution, mode choice,
and traffic assignment. Then, there is the tour-based approach, rooted in the Activity-Based
Model (ABM) of travel demands. The latter of these two logit model applications is of acute
interest to the project, because ABM is aligned with dynamic discrete choice modeling (DDCM)
with explicit consideration of state dependence and expectation feedback. State dependence in
this context refers to the position of the traveler in route on the transportation systems, and the
conditions present — traffic, weather, vehicle access, time of day, etc. Expectation feedback is the
expectation of the next trip’s mode choice, obviously during a tour. Empirical data for these two
variables of ABM are relatively rare but may be captured through intercept surveys in route.
Generally, however, these data are inferred through statistical methods (Hasnine and Habib
2018).

To build cost utility models for multimodal transit and driving, the qualifying elements
found in research include a value of time parameter that is based on combined characteristics of
the individual. Plus, in-vehicle travel time, walking time, transfer waiting time and fare costs
apply to transit, while fuel cost per mile, driving time, parking time and parking fees apply to
driving. Finally, a random part, €, for non-deterministic residual factors improves the accuracy
and reliability of a travel cost utility model. The overall aim asserted to cost-based utilities in the
current project, is that any elements applied from research are also firmly rooted in authoritative

methods applied within the region of interest.
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2.2. Principles and Problems in Travel Behavior Research Design

Many traffic and travel behavior studies include critical assessments of efforts to establish
forward causality from the built environment to travel behavior. Where inconclusive or
conflicting results are most often found in this research literature, four methodological problems
are identified: (1) self-selection; (2) spatial autocorrelation; (3) inter-trip dependency; and (4)
geographic scale. Across a range of methodological issues found in critical review, these four
challenges stand out as the most impactful to proving forward causality and correlation of the
built environment upon the travel behavior of commuters (Hong, Shen, and Zhang 2014).
However, it is noteworthy to mention that through this process significant gaps in the treatment
of disaggregate traveler data have also been discovered. The most notable example of this
finding in existing literature is the lack of attention to behavioral changes in individuals who
move to new environments, where work and leisure destinations are closer and transportation
options are abundant. Most travel studies are cross-sectional rather than longitudinal, but
researchers Hong, Shen, and Zhang (2014) identify this common scenario from the perspective
of the traveler as a significant factor that should be manageable in non-longitudinal travel
studies.

Of the four most predominant methodological problems, self-selection occurs when
households direct themselves into neighborhoods, either neo-urbanist or traditional suburban,
based on their own VMT preferences. This dilemma erodes the randomness of observations due
to unattended linkages between residential location choice and travel patterns. Some relatively
recent research that is focused on this topic finds evidence of significant interplay between self-
selection and geographic scale. In this regard, an important empirical question concerns whether

ZIP codes are delineated at an appropriate spatial scale for capturing behavioral processes. Too
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large an area will dilute the effects of urban form, while too small an area will potentially omit
important effects (Vance and Hedel 2007). Empirical evidence collected across a range of
geographic scales indicates there is substantial scope for land use measures to influence mobility
behavior, when the sampling frame is set to an area smaller than zip codes (Grazi, Van de Bergh,
and Van Ommeren 2008; Vance and Hedel 2007).

The main criticism of spatial autocorrelation states that observations are no longer
independent when nearby locations tend to have similar characteristics (Bhat and Eluru 2009;
Hong, Shen, and Zhang 2014). This is noted as a common problem for linear regression based on
non-zero spatial autocorrelation, whereby biased estimators can debase any inference of
significance (LeSage 1997; Miller 1999). Multiple researchers refer to a simple hierarchical
framework of empirical data sampling on both dependent and independent variables as a way of
mitigating against this problem (Duncan and Jones 2000; Bhat and Zhao 2002; Bottai, Salvati,
and Orsini 2006; Antipova, Wang, and Wilmont 2011; Chaix et al. 2005). In principle, scientific
observations must be independent and random in any sampling phase. A hierarchical framework
provides a convenient means of organizing geographic data samples by distinct characteristics,
before applying these to variables in spatial analyses.

The problem with inter-trip dependency is the fixation of trip-based models upon isolated
trips without considering possible interdependency between trips that would comprise a
complete tour (Hong, Shen, and Zhang 2014). As a result, conventional trip-based analysis is
criticized as unsatisfactory for explaining the fundamental forces behind travel behavior (Krizek
2003). Critical analysis suggests that the more stops involved with connected trips, the more

people choose to use their automobiles.
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Finally, the modifiable areal unit problem (MAUP) generates inconsistent results when
data are measured at different geographic scales (Hong, Shen, and Zhang 2014). Goodchild
(2011) puts forth an in-depth discussion of scale, in which geographic or spatial scale is
emphasized as a representative fraction of some natural or social phenomena under analysis. He
speaks to the process of decision-making, itself, by noting that data for any physical process
should first be defined and tested free of any scale whatsoever, to the extent possible. Sorting
through these aspects of a given analysis upfront during the decision-making process is
imperative to correctly interpreting the results (Goodchild 2011). With travel cost results kept in
disaggregate form, the author finds little reason to anticipate the MAUP in the long-term direct
use of the project’s output data. However, Section 2.5 discusses how certain abstractions asserted

within the two-part cost model do invoke errors that are related to the MAUP.

2.3. MAP-21 Regulations and Policy Trends in Transportation Management

Moving Ahead for Progress in the 21 Century Act (MAP-21) allocates federal dollars to
the Federal Highway Administration (FHWA) and the Federal Transit Administration (FTA) to
issue grants to state and local governments for the purpose of upgrading transportation network
facilities. Public safety is the overarching justification upon which this legislation was passed in
July of 2012. Under MAP-21, federal funding of multimodal projects in metropolitan areas,
including fixed guideway rail, metro bus, pedestrian, and biking improvements, requires project
justification based on “before and after studies” that meet local priorities and criteria set forth by
the metropolitan planning organization (MPO). Funding for highway projects requires that all
principle arterial roads connected to the project meet specific criteria to be designated on the
national highway system (NHS). The MPOs also provide oversight for this set of criteria on

highway projects. For each respective travel mode (automobile or transit), the MPO is expected
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to enforce higher safety standards with all public and private operators seeking MAP-21 funding.
Since MAP-21, related reports indicate that a significantly higher level of coordination is taking
place between MPO’s and government officials for approval and funding of transportation
initiatives. A substantial part of this relatively recent development is that reporting requirements
have become more stringent with specific criteria mandated for GIS and public participation
components on some projects (Kirk et al. 2012).

The regulations under MAP-21 commenced with the charge to improve public safety, but
there are additional project criteria set forth that pertain to locational accuracy, data quality, local
priorities, and public participation in some cases. Many local and state transportation authorities
have adopted public participatory GIS (PPGIS) and modernized portfolio and project
management (MPPM) tools, respectively, to better operate in this relatively new coordination
space (Kirk et al. 2012; Giuffrida et al. 2019). However, MPPM implementations typically lack
the capability to interact with the public in a mutually beneficial capacity when it comes to
empirical assessment of mode choice. PPGIS is shown to fill this capacity for local
transportation initiatives, and there are other public participation strategies actively utilized by
state and local authorities, such as public workshops, websites, and hearings where community
feedback is acquired. After previous research on these outreach efforts, the author finds no
evidence of a mechanism in place that allows the general public to readily compare the cost-
based utilities of their own Individual commute patterns and options. In short, the author finds a
gap in these new policy trends wherein the commuting public could have a more effective toolset

for engaging all stakeholders regarding local priorities in transportation.
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2.4. Related Applications

A number of sophisticated COTS software packages apply customizable travel-demand
modeling techniques that combine transportation analysis and micro-simulation through GIS,
including TransCAD, Emme4, Cube, PTV Vissum, and TranSIM. Some of these products even
mitigate against the aforementioned methodical problems, but the respective business and
technical reach of all such products are far out-of-scope for the criteria of the current project.
First and foremost, each of these travel modeling software packages generate mode choice data
from statistically modeled trip distribution and not from explicitly volunteered traveler inputs.
Similar to the project, each of these products will work with static metrics as input, but the
workflows do not diverge at network routing to collect empirical mode choice data. Instead,
these platforms complete all prescribed FSM or ABM tasks to then provide an array of options
for animated simulations on the network of interest.

Some of the more popular highway traffic and navigation applications offer trip routing for
automobiles with the estimated travel times calculated from near real-time traffic feeds — Google
Maps, Waze, and CoPilot GPS are leading examples (Sari et al. 2017). Google Maps offers
routing by multiple alternative travel modes based on transit operator data, but one limitation
worth noting is that each selected mode may only be routed on separate map views. There is no
combined view of all selected travel modes on one map UI, at the time of this current research.
Textual directions are optionally displayed with travel times between turns, as well as bus and
train operator head signs at transfer points, plus street-view photographs are provided along
pedestrian paths. All such features are presented on well-annotated vector tile maps or labelled

satellite imagery. However, each mode must be submitted and viewed individually. Figure 3
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illustrates this user experience (UX) in Google Maps, for a tourist in Las Vegas, Nevada who is

evaluating travel alternatives between the airport and destination hotel.
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Figure 3. Google Maps Directions by Travel Mode

In this example, the results do not include transit fares, parking time, fuel cost per mile, or
any monetary value of time, because the application functions as a traveler information system
without any concern for saving and measuring the results of many traversals. Waze and CoPilot
GPS are designed to enhance travel planning and navigation only for driving, and they perform
very well in that problem space. Waze in particular stands out in this traffic and navigation
category, not only for its sheer performance in geolocating capabilities, but for the fact that it is
also a sustainable VGI system.

To help further clarify the project’s position in the market of transportation apps, the author
has identified a similar web GIS that relates to the project’s criteria more closely. The “Yay

',’

Transit!” application, developed by Melinda Morang and Patrick Stevens of Esri, provides
several tools to study and simulate schedule-aware transit trips (Morang and Stevens 2013).

However, just as the title suggests, this Esri-based application focuses solely on transit networks

whereas this thesis project incorporates certain parallel functions for the roadway (driving)
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network in the study area. As with the current project, Yay Transit! leverages the ArcGIS
Network Analyst extension for several functions that engage users in transit information,
including visualization of static GTFS data on a map. Their innovative toolset extends this
capability onto real-time GTFS data, while the project’s application exposes only static travel
data at peak and off-peak traffic intervals. The Yay Transit! application automatically selects
each first available trip to the destination one can take when touring by transit, whereas Commute
GeoCalculator takes a more general approach to travel scenarios by allowing the user to select
peak and off-peak time intervals. In both applications, users who want to delay intermediate
departures during a tour will create a new trip for each specific OD traversal along a commute.
Other open-source web GIS are more flexible in this regard, but they tend to be associated
with a particular city or region. One example is the “RabbitTransit” application, built on Google
Maps Transit services, allows users to view travel duration of each intermediate trip available for
any chosen itinerary through select counties in Pennsylvania (CPTA 2021). This application
operates similarly to a transit tour booking site, even offering its own express bus service. All
origins and destinations are geocoded at predetermined locations, which is an amenity under
future consideration in the project. While these kinds of location-based web applications often
provide comprehensive transit-user experiences, none have been found by the author to provide a
simultaneous view of travel cost by automobile and transit as part of an interactive survey. The
future Commute GeoCalculator web application is designed to collect mode choice VGI, using
multimodal linear referencing capabilities. Its purpose more closely resembles that of scientific
web GIS for performing schedule-aware simulations and analysis, such as “Yay Transit!”.
However, the current project requires further development to fulfill its core purpose of empirical

mode-choice data collection.
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2.5. Summary of Insights Gained from Research

Foundational aspects of the project emerge as a result of the literature review. The
investigation of travel costs and utility theory provide all of the components and methodology
needed to construct the additive travel cost equations for driving and transit in the project. And,
beforehand, there was no consideration for a future VGI web component in the next stage of the
project. Discovery of the four methodological problems identified in critical literature led to the
first design change in the user interface (UI) whereby the user is asked to indicate which mode
option they would choose, based on the results of their route inquiry. Research on policy trends
and regulations in transportation reveal a potential process gap in the federal funding of large
projects, wherein reporting requirements have become more stringent with specific criteria
mandated for GIS data and public participation. As a result, the project aspires to resolve
disconnects between transportation stakeholders in meeting those criteria more effectively.
Finally, the brief survey of related applications and their usage shed light on new market space in
which combined elements of travel planning, navigation and surveying would be a good fit.

The additive cost approach found in the review of utility theory aligns well with the travel
cost model issued by the NCRTPB. The deterministic elements articulated by Koppelman and
Bhat can also be identified in the authoritative model: (1) attributes of the travel alternatives, (2)
a characteristic variable of the traveler, and (3) interactions relating the traveler to their mode
preference (Koppelman and Bhat 2006). The only element not included in travel cost utility by
the regional authority is the non-deterministic utility bias due to excluded variables. In
collaboration, MWCOG designed their set of travel cost utility equations. For transit travel:

Total Cost (in dollars) =pVT x [pW x (WT + W2T*) + pWa x (WaT + W2T%*) (%)

+pIV x (IVT + IVT2%*)] + (Fare + Fare2*)
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where pVT is equal to the value of time parameter for combined characteristics of the individual;
pW is the walk Parameter; pWa equals the wait parameter; pIV is the in-vehicle parameter; WT
is the walking time; WaT is equal to the waiting time; IVT equals the in-vehicle time; W2T*
represents the walking time for transfer; Wa2T* is the waiting time for transfer; [IVT2* equals
the in-vehicle time for transfer; Fare is the fare cost; and Fare2 is the fare cost of transfer. For
automobile travel:

Total Cost (in dollars) = pVT x [DT + KT] + pCM x DD + KC (6)
where pVT is equal to the value of time parameter; pCM equals the cost per mile parameter; KC
is the parking cost; DT is the drive time; KT represents the parking penalty time; and DD is the
drive distance.

Examination of the simple logit model reveals congruous elements in the deterministic
portion of travel cost utility, and then a probabilistic error as the utility bias due to excluded
variables. One important note regarding the treatment of the logit model exampled in this review
is that the project takes an off ramp after solving the U, result for each mode. The project does
not take the next conventional step, to address the relative probabilities that one mode will be
chosen over the other. That step does not suit the purpose of the application. In the basic logit
model, the set of weighted coefficients in a; represent MWCOG parameters for walking (pW),
waiting (pWa), in-vehicle time (pIV), and the value of time (pVT) per socio-economic
characteristics of the individual, as well as the fuel cost per mile (pCM) for driving — all assigned
to known costs X; of a given travel mode: path length, waiting time, walking time, transfer time,
parking time, driving distance, and driving time. This alignment in methodology establishes the

modal cost equations used in this project and has become influential toward the prospect of a
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long-range plan of expanding the application into other geographic regions. Chapter 4 discloses
the additive cost equations used in this project, as well as each authoritative parameter applied.
The self-selection dilemma illuminates the fact that the network-routing application could
also be a survey tool for building a database of results generated by participating users. Self-
selection erodes the randomness of observations in travel modeling. In the project, future
samples are treated as entirely random with commuter’s choice responses invoked by
performance metrics of the built environment by traffic analysis zone. Per the findings in self-
selection research, this spatial scale which is smaller than a zip code and larger than a household
is ideal for capturing correspondence of the built environment to the travel activity space.
Spatial autocorrelation is criticized as rendering observations less independent when
nearby values tend to have similar values. The project does not use indicators of spatial
autocorrelation, and the project’s services promote the independence of observations through
support of individual user sessions on a web application. The consumption of the service
endpoints in a web application, however, eventually presents new opportunities for a wide range
of spatial analyses on travel behavior in metropolitan Washington D.C. — including hot spot
analysis and other indicators of spatial autocorrelation. The ability to capture the commuter’s
experiences geographically in a database enables future researchers to gather independent and
random samples from the traveling population. Furthermore, the problem with trip inter-
dependency and the critique of trip-based FSM brings forth the idea that individual OD trips
could be chained together into a tour by the moderately savvy or well-informed user. Largely,
this 1ssue cannot be directly addressed within the initial release of the application, which is trip
based. However, the OD routing tool does allocate transfer costs and at intermediate bus stops

and rail stations, and the transit routing algorithm is multimodal — where the shortest cost path is
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geolocated over pedestrian, bus, and rail modes. At a minimum, this accounts for some of the
tour-based factors behind travel behavior.

Then, the MAUP, as the fourth identified problem, draws attention to the pervasiveness of
spatial scale as an amplifier of other methodological issues. As the research consistently points to
the value of these data at a disaggregate spatial scale, it was decided in the project that the travel
events would remain distinct when collected in their tables with no geographic aggregation.
However, the project’s internal data processing of traffic metrics does invoke some level of
ecological fallacy, a concept related to the MAUP. Travel times on linear segments are converted
from travel speeds aggregated within standard US TAZ. These polygons are relatively small
areas and are established by authoritative methods for estimating linear traffic characteristics
therein. Nevertheless, this spatial translation is a simplification in the project’s data model that
infers traffic activity on linear facilities using areal units. Section 6.2 discusses this project
limitation in more detail. Furthermore, the parking penalty parameter does combine labor force
percentage at the county level with population density by census block group. This may create
moderate inconsistencies with parking penalties. The outcome is that county-level employment
percentages act as a scalar factor against block-group population densities to nearly satisfy the
regional standard. Yet, the author finds that the proportional differences in parking costs are still
sufficient to inform the user where parking congestion restrains automobile path routing. Despite
all potential anomalies in travel and parking times, at a reasonable level of data abstraction, this
initial release of Commute GeoCalculator services still delivers representational patterns of
general travel conditions.

The reporting requirements of MAP-21 contribute other valuable insights for what is

pertinent to the content of a potential public survey application that would use the project’s
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services. The working concept within the current project is uniquely designed to assist in
fulfillment of these requirements. Decidedly, such a web application would not present as a
census-like survey but rather as an interactive toolset that is providing immediate benefits to the
user. From the perspective of the transportation authority, only what is necessary and
constructive about the user’s decision-making process should be included. Finally, the findings
about ABM logit modeling, state dependence and expectation feedback only serve to enhance the
interactive workflow design of commute routing tools with a survey component. Early in the
project design phase, this context of dependence and expectation feedback introduced the
prospect that the current project should eventually operate as a kind of intercept survey for
gathering informed mode choice data on-the-fly, while the application user is commuting.

The investigation of related applications assisted with targeting a position for Commute
GeoCalculator in the transportation management space. Reviewing the most popular traffic and
navigation applications brought forth the realization that no mainstream web or mobile GIS is
providing users with a simultaneous view of travel alternatives with their respective costs in a
complete state. The author believes this to be a gap in the market for travel information systems
that the current project can potentially fill. A few of the region-specific, open-source applications
provided insights for the user-driven workflow and where survey questions should be presented.
First and fore-most, the commuter must approve the sharing of their data before any survey
questions are asked. Given approval, the commuter-user experience should then be a balance of
“give and take” with the initiatives of the transportation manager role. One receives the desired

commute information, then one can give something back to a brief survey as a contribution.
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Chapter 3 Data, Networks, and Databases

As noted in Section 1.4, a substantial amount of data processing occurs before the service user
visits the REST endpoints and enters their parameters to plot commute events for automobile,
pedestrian, bus, and rail modes. Data acquisition to initiate and maintain the application requires
a focused effort, to gather specific data sets with most release dates coordinated within a
predetermined 18-month timeframe. Construction of the data tier begins with the creation of
SDE (spatial database engine) connections for two primary enterprise geodatabases for the
project, named “‘staging” and “static”, residing initially in the project’s sandbox environment that
is later described in Section 6.2.

In this initial project phase, spatial source data are staged in a local file geodatabase while
non-spatial data are setup in the “staging” remote database; all of which undergo remove-and-
replace manual loading. The metrics data model represents the cost data of each travel mode in
the end result, composed of automobile and transit feature datasets housed within the “static”
database. The commuters data model, planned for future development, will store users’ mode
choice responses to the dynamic cost returns in a future “modular” database. These databases are
designed for perpetual growth of the service area, and the data management procedures for
loading source data are for the time-being manual. However, once all source data are loaded to
the “’staging” database, ETL automation developed as part of this project handles nearly all data
crunching — up to the last step requiring a manual build of two network datasets using the Esri
Network Analyst extension. Network datasets are created from source features which include
simple features (lines and points) and consist of edges and junctions that are transformations of

the source features (Esri 2019). This workflow in Tier 1 is essential for refreshing the metrics
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data model and making the data usable by the server object extension (SOE) in Tier 2. Figure 4

summarizes this end-to-end construction process.
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Figure 4. Tier 1 Workflow

3.1. Data Requirements

The primary objective in Tier 1 is to provide a data model that, for any given commute,

enables attributed route traversals that represent the average travel costs of transit versus driving

at different times of a weekday or weekend. The secondary objective is to provide a storage

database for the mode choice data returned in the responses from application users. A standalone

procedure is implemented to create two spatial tables for the anonymous commuter profile and

the routes included in each commute. To achieve these objectives, the data model integrates eight
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categories of required source data: 1) roadway, pedestrian, bus and rail centerlines;

2) bus and rail stop points; 3) bus and rail transfer wait times; 4) travel speeds for automobile,
pedestrian, bus and rail modes; 5) traveler household income for automobile, pedestrian, bus and
rail modes; 6) parking penalties based on employment densities in census block groups; 7)
parking fees and transit fares estimated from transportation operators, and 8) authoritative
coefficients for factoring fuel cost per mile, residual waiting and walking, as well as the
traveler’s overall value of time. The strategy in applying these source data governs the
requirements and is hinged upon the routing function of each network dataset.

Transport facility centerlines must carry sufficient attributes in length, parking penalties,
transfer wait times, and mode hierarchy to support routing that produces the most efficient path
for each travel mode. These are input attributes required in each network dataset. By default, the
Esri Network Analyst extension applies a shortest-path routing algorithm by length. From here,
several options are available for adding travel impedance and preference to a network. Three
such options are utilized in the network datasets — cost, restriction, and hierarchy attributes.
Therein lies the requirement for the parking and transfer time costs, as well as the preference and
hierarchical ranking for pedestrian, bus, and rail travel modes.

The other side of the data strategy concerns what happens after each network path is solved
and rendered into geometry. Quite simply, the application requires total cost attributes along with
each path geometry. In addition to length, parking penalties and transfer times, the total costs in
minutes and dollars require travel speeds, parking fees, and transit fares, as well as the
authoritative coefficients and traveler household income to calculate the overall value of time.

These additional attributes are spatially extracted from processed feature classes using the path
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geometry before the necessary cost variables are calculated. The most important output

calculated in Tier 2 is the total travel time based on individual segment lengths and speeds.

3.2. Data Acquisition

Complete trip speed and traveler annual income are particularly difficult to acquire from
open-source data by peak and non-peak travel times. For this reason, SL was called upon to
provide these critical metrics in the study area, and this request was fulfilled via provisioning of
a one-year academic license to their StreetLight Data InSight® platform. The traffic analysis tool
by SL provides an array of selectable, reusable zones by which various forms of traffic

measurement may be obtained, as depicted in Figure 5.

Create New Analysis vity #  Unique Zones Available  450/500

Basic Info  Time Periods  Zones |- Ad

= Trip Attributes

me, Education, Race, and Family Status. The

Figure 5. Setup, Analyses and Extraction of Traffic Metrics from SL Data InSight®

This software allowed the author to analyze and extract the required travel speeds and
inferred traveler income within each traffic analysis zone from March to April 2019 and October
to November 2019 data to support pre-pandemic annual average traffic flows. As briefly
presented in Section 1.4, Table 1, these traffic-related data are organized into six day parts for

each day type — weekday or weekend. These include all-day averages (12am — 12am), early AM
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(12am — 6am), peak AM (6am — 10am), mid-day (10am — 3pm), peak PM (3pm — 7pm), and late
PM (7pm — 12am) travel periods. OpenStreetMap is the underlying source for the road network,
rail lines, and pedestrian paths to which all travel metrics are locked then loaded to TAZ
polygons. For the project, SL metrics are downloaded as tables of zonal data with associated
shapefiles, and non-pass-through traffic flows by standard US TAZ polygons are specified. This
means that traffic detections via cellular GPS and LBS are limited to trips which begin or end in
each selected zone. Yet, the SL measurements of average travel times follow the full extent of
each trip, across multiple selected zones. Therefore, SL average travel times are useless to the
project because the commuting user of the Commute GeoCalculator specifies his or her own
trips. However, the non-pass-through option in SL Data InSight® is utilized because it isolates
average travel speeds and inferred traveler income to each individual zone (StreetLight 2022).
These metrics provisioned in TAZ polygons establish an objective spatial unit by which user-
defined travel times and inferred incomes may be calculated in the application.

There is an additional matter to settle with the robustness and accuracy of the transit travel
indexes. In 2020, an FHWA-sponsored study was conducted by the Virginia Department of
Transportation (VDOT) to determine guidelines for using SL indexes in transportation planning.
While their literature review points to effective yearly OD travel patterns from SL indices in the
WMCOG area, the researchers conclude that simply relying on these indexes will not produce
robust and accurate results. Through stratified random sampling, they found that integrating
authoritative data sources with SL indices effectively addresses this issue (Hong, Cetin, and Ma
2020). For this reason, GTFS trips, stops, and stop-times tables were extracted from the study
area in the Spring and Fall timeframes of year 2019. As reported by SL, this is sufficient to

provide reasonable traffic averages that can represent the entire year. The results of this quality
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control process are transfer locations, transfer times and the probabilistic error for travel times

applied to the transit cost equation.

Table 2. Project Source Data

Organization Source/Dataset C{);ggfsm VaFrfir;tljles A]?;;erés
MWCOG MWCOG Model bt
NCRTPB NCRTPB Model e
Transportation Research Board | NCHRP Report 716 - Model D ®
U.S. Census Bureau 2020 Pct Employment ®
U.S. Census Bureau 2020 Population Density ®
OpenMobility Data 2019 GTFS Calibration Data
StreetLight Data, Inc. 2019 Transit Service Indexes
StreetLight Data, Inc. 2019 Road Trip Volumes
StreetLight Data, Inc. Traffic Analysis Zones e
U.S. Census Bureau 2019 TIGER/Line Road and Rail °
NCRTPB Data Clearinghouse 2022 Metro Rail Lines e
NCRTPB Data Clearinghouse 2022 Metro Rail Stations °
NCRTPB Data Clearinghouse 2022 Metro Bus Stops e
NCRTPB Data Clearinghouse 2019 Metro Bus Lines e
NCRTPB Data Clearinghouse 2022 Pedestrian Trail Network ®
Esri ArcGIS Network Analyst ®

The parking penalty values depend on the population density in each census block group

multiplied by the percentage of the civilian labor force (Table 4.). The block group polygons are

acquired from Living Atlas data and selected by spatial intersection with the service area.

Employment density is acquired from the US Census 2019 quarterly workforce indicator (QWI)

dataset to calculate parking time penalties. Parking fees and transit fares are estimated from the

websites of transportation authorities and operators, respectively. By different methods, all of

these travel metrics are assigned to US Census Bureau TIGER/Line features as well as NCRTPB

authoritative line and point features. Thus, each of these linear data are part of the full
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acquisition, summarized above in Table 2. Once these data are acquired and formatted into tables
and feature classes, the next concern is geoprocessing workflows via Python scripting. Here, Esri
Modelbuilder in ArcGIS Pro is leveraged to diagram key geoprocessing tools and to
conveniently export lengthy, complex function calls in Python that would otherwise consume

additional hours of development time (Zandbergen 2013).

3.3. Data Preparation

Tier-1 ETL automation integrates all source data into two models, each representing the
form and function of driving or using transit. All data model inputs are projected into WGS 1984
Web Mercator Auxiliary Sphere before any geoprocessing steps are applied. These steps are
explained in sequential detail through this section following the data processing strategy, stated
in Section 3.1, as an approach hinged upon the routing function. In short, the source data are first
transformed into linear segments carrying parking penalties, transfer wait times, and the
fundamental structure that will support the routing functions needed in the automobile and
multimodal transit network datasets. Then, these same input segments are used to prepare linear
trip speeds and traveler incomes that are to be spatially extracted by the geometry outputs of the
routing functions in Tier 2.

The first ETL task is preparing the census block groups for assignment of employment
densities to centerlines. Census block employment density is the first zonal attribute that is
attributed to the centerline streets layer, the US Census TIGER/Line features, commonly used to
build street networks (Butler 2008). Parking penalties are assigned to the transfer streets
according to Table 3, wherein employment density is the population density in each block group

multiplied by the percentage of employment in the associated county, as shown in Table 4.
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Table 3. Parking Penalty Time (NCRTPB 2020)

Employment Density
Range (Emp/Block Group)

Parking Penalty
(Minutes)

0-4,617

1

4,618 - 6,631

6,632 - 11,562

11,563 - 32,985

32,986 +

[c B Ro NS E )

Table 4. Percentage of the Civilian Labor Force in WMCOG (US Census 2020)

County or District Percpnt CiViqun Labor Force
in Population (2020)
Arlington County 77.00%
District of Columbia, Washington 70.20%
Fairfax County 70.20%
Prince George's County 70.90%
Montgomery County 70.50%

Figure 6 illustrates how census block groups are selected by these cyan-outlined polygons

for a project service subarea, zone set 1. The next zone set of census blocks is added, which

encompasses the remainder of the study area. TAZ polygons define the study area, and the

incremental logic in the initial ETL procedures sets up the metrics data model for future growth.

Here, zone set 1 is the initial subset of 50 TAZ polygons and zone set 2 is the collection of the

450 remaining TAZ polygons that together cover the central metropolitan Washington D.C area.

In the next geographic expansion of Commute GeoCalculator, the current study area will be
designated as zone set 1 — to then be merged with the next zone set 2 of surrounding traffic

analysis polygons, and so on. Additional zone sets will not necessarily need to be contiguous,

and the source of traffic data may change over the application’s life cycle.
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Figure 6. Export of TAZ Dataset to ArcGIS Pro® and Spatial Selection of Census Block Groups

For transfer street stations, road centerlines are clipped and assigned employment densities
by census block group, so that parking cost and penalty time can be assessed. The basic
geoprocessing steps for transfer streets are shown in Figure 7. The parking penalty values depend
on the population density of US Census block groups and the percent of the civilian labor force
in year 2020. The author did not find this percentage of employment statistic at the block group
level, but instead captured this data at the county level. The census block group polygons are
clipped to the study area and attributed with the employment density field based on Table 3.
Employment density is the population density in each census block multiplied by the percent of

employment in the containing county:

Employment Density = Population Density x Percent In Civilian Workforce (7)
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Next, SL metrics are written to each standardized TAZ, but in tabular fields that must be
joined back to the originating polygons by a unique common zone name, as shown in Figure 8.
This is done to enable spatial assignment of volumes and indexes to traversing roads, rails,
walkways, and bus stops. For each day part, SL trip-speed and traveler-income ranges are
provided in percentages of travelers per zone. To each road segment, ETL applies the total

probability of average speeds per TAZ for each mode as exampled in Table 5.
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Figure 8. TAZ Traffic Metrics Applied to Roads, Rails, and Pedestrian Paths
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The Law of Total Probability simply states that if there are » number of events in an

experiment, then the sum of the probabilities of those n events is always equal to 1. StreetLight

proportions average speed and traveler income events by measured range, within each TAZ. To

calculate average travel times for each segment in a TAZ, the forementioned Newtonian

expression applies. Each unique road segment in these polygons has a distinct distance to be

traversed. Hence, the average travel time for each segment is: travel time = distance / trip speed.

Table 5. Total Probability of Average Speed per Traffic Analysis Zone — Example

Peak AM Travel (1 Traffic Analysis Zone) | Probability (P) Speed(ISlterval P(i) = Average Speed
Trip_Speed 0 10 mph percent 0.623 5 3.115
Trip Speed 10 20 mph percent 0.161 15 2.415
Trip Speed 20 30 mph percent 0.090 25 2.250
Trip Speed 30 40 mph percent 0.065 35 2.275
Trip Speed 40 50 mph percent 0.041 45 1.845
Trip_Speed 50 60 mph percent 0.017 55 0.935
Trip Speed 60 70 mph percent 0.003 65 0.195
Trip Speed 70 above mph percent 0.000 75 0.000
Total Probability of Average Speed: 13.03 mph

Given the research findings on the use of SL metrics, by researchers cited in Section 3.2

(Hong, Cetin, and Ma 2020), the project directly applies SL trip-based measurement of

automobile traffic volumes, as they are based on actual counts taken by VDOT (StreetLight

2022). Then, transit indexes for bus and rail traffic receive calibration by GTFS data from local

agencies in the base year, 2019, so that feature location and transfer times may be improved for

accuracy. The GTFS “stops” file anchors the index calibration process by its geographic

coordinates with arrival and departure times for bus and rail. In Python ETL code, tabular GTFS

durations for both travel time and stop times are sequenced and linearized to road and rail lines

by two separate algorithms. The first method addresses locational accuracy and completeness of
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bus stops and rail stations, as well as the bus routes that provide connections to rail service lines.
The second method builds upon these results, to calculate the average transfer times applicable to
each stop and time range. The program loops through each individual bus and rail route, one stop
at a time, to query and compare GTFS arrival and departure times between service routes by
each day-part range (early AM, peak AM, mid-day, peak PM, etc..). Using this approach, the
program is able to calculate the average transfer wait times at each stop on the project’s temporal
scale. Combined output of the two methods forms an intermediate lookup table of stop locations
with average transfer wait times by day part, for bus and rail respectively. From the perspective

of source GTFS data, the basic logic behind the calibration process is depicted in Figure 9.
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Figure 9. GTFS Calibration Logic

Each lookup table in the above process is used in the calculation of geolocated transfer
times, including the all-day average which is applied as the cost evaluator for bus and rail routing
in the multimodal network dataset. But these lookup tables serve an additional purpose outside of
the transit network dataset and the routing parameters therein. They are used in the construction

of attributed relationship classes that tie each stop to its linear segment of all transfer-time day
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ranges, as well as all trip speeds and traveler incomes on the same temporal scale. The purpose
of these relationship classes is performant and accurate retrieval of stop point and route segment
data by the SOE.

Regarding transit fares, the GTFS providers provision website addresses where published
rules on fares may be found. To the extent possible, these were manually processed from the
transit operators in the cities of Alexandria, Arlington, and Woodbridge; counties of Fairfax,
Montgomery, and Prince George; states of Virginia and Maryland, as well as WMATA metro
transit authorities. Average fares are included in the bus and rail stop point feature classes, as per
these providers. After the above steps are completed, route segmentation and the linearization of
prepared data begins with highway centerlines because this is the predominant transport
infrastructure in most urbanized areas. This is achieved using the Python arcpy intersect analysis
tool on the US Census centerline feature class, itself, at a 0.003-mile tolerance (approximately 16
feet). The resulting road intersection point features are then clipped by the TAZ polygons
comprising the study area. From here, the intersection points of the study area are used to split
the centerline features by the same tolerance, and those linear results are then clipped to the
study area as well. The last step in this subprocess is to spatially join the TAZ zone identifier to
each clipped segment. Instead of simply trying to apply a clip tool directly between raw
centerlines and TAZ polygons, the applied method allows for clean segmentation without errors
that is sufficient for building each travel-mode network and linearizing associated trip speeds and
traveler incomes.

The automobile network inputs include the segmented highway centerlines, providing
facility length and street connectivity, and the linear transfer street stations which supply the

parking penalties in minutes. In the forthcoming network dataset, each of these inputs will be
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assigned to a connectivity group with routing connections set to the endpoints of each line
segment. US Census TIGER/Line highway features are segmented at roadway centerline
intersections (Her and Yu 2021), and so at this point there is no need to take further steps in ETL
for these automobile network inputs. However, the last section of this chapter presents the final
results of data preparation which includes all content that is internal and external to each network
dataset.

Segmentation for the multimodal network dataset builds directly upon the results of
highway segmentation with a few additional steps that vary among pedestrian paths, bus routes,
and rail lines. During this procedure, a hierarchical structure is established in merging these
linear features with highway system features, and a corresponding hierarchy is assigned to each
transit mode. A preset rank number identifies each transit mode preference, and thus configures
the routing function to predetermine the portion of trips made by each transit mode — the transit
mode split. This is a simplification to the data model that will be replaced by user-defined
preferences in a future release, but it does facilitate production of a rational shortest-cost path for
transit.

The creation of the hierarchical structure in the multimodal transit network dataset starts
with a spatial union of pedestrian paths with the clipped highway network. The resulting
pedestrian network represents every linear facility where a traveler may walk. From here, the
next mode layer applied to the structure is bus routes. A spatial intersect between the pedestrian
network and bus routes is used to create the bus network. In turn, a spatial intersect between the
bus network and rail lines is used to create the rail network. The outcome includes three distinct
sets of network inputs, in which all point and line data are ideal for configuring the connectivity

groups that tie each mode of transit together into a multimodal system (Esri 2019). This system
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architecture is constructed by ETL during data preparation stage and sets up the build of the

multimodal network dataset.

3.4. Network Datasets

Although Esri ArcGIS Pro 2.9 and Python 3 are used in data analysis and the construction
of the entire ETL automation, each network dataset is manually built using ArcGIS Desktop 10.9
software. The network datasets are created with ArcDesktop software because this initial release
of the logic tier depends upon ArcMap-based runtime services and the ArcObjects software
development kit (SDK) for the .NET framework. To transition this linear referencing middleware
over to an ArcGIS Pro build in an enterprise environment operating above ArcGIS Server 10.9.1,
all SOE code will have to be updated to use the ArcGIS Pro Runtime API and ArcGIS Enterprise
SDK in a future release. The reasoning behind this transitional design approach is based upon the
ongoing pervasive use of the ArcDesktop platform across the transportation industry, particularly
in the public sector. The author finds sufficient benefits to introducing this set of REST tools on
a platform that is still widely used, so that subsequent publications may serve as reference for
successfully migrating similar linear referencing tools.

In the project, the network datasets provide the vital function of routing. Configuring the
automobile dataset is relatively simple compared to the multimodal transit dataset. In either case,
the configuration components that provide realistic routing outcomes include the input vector
data (points and lines), connectivity, and attributes. Once all data preparation is completed via
ETL automation, specific input point and line source features are applied in the Network Analyst
configuration wizard, as shown in Figures 10 and 11. It is important to reiterate that while all
source data are processed in the Web Mercator Auxiliary Sphere, WGS 1984 datum, they are

published to each respective data model as unprojected GCS in NAD 1983, and this applies to
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each network dataset. Again, this is done to assist with uniform routing and to extend the option

of any user-defined spatial reference at the service endpoints.
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Figure 10. Connectivity in the Automobile Network Dataset

How network elements connect depends on which connectivity groups the elements are in.
For example, two edges created from two distinct source feature classes can connect if they are
in the same connectivity group. The edges will not connect unless they are joined by a junction
that participates in both connectivity groups (Esri 2019). The automobile network and transfer
street stations, as depicted in Figure 10, are set to connectivity by the endpoints of each edge. For
the transit networks, separately defined connectivity groups keep the pedestrian, bus, and rail
networks distinct yet connected at shared bus stops and rail stations. Each edge source is
assigned to exactly one connectivity group, and each junction source can be assigned to one or

more connectivity groups, as illustrated in Figure 11.
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Figure 11. Multimodal Transit Network Connectivity

For performant treatment of network attributes — instead of assigning the dozens of metric
fields directly to the network datasets — the wait times, trip speeds and traveler incomes are
transposed from the rows of day types and day parts into fields of measurement within layers
outside of the network datasets. The MWCOG authoritative model parameters and coefficient
weights are also supplied outside of the network datasets, within the SOE code to satisfy the cost
equations presented in the previous chapter, Section 2.5 (NCRTPB 2020). The parameters which
are configured within each network dataset are as follows. As shown for driving in Figure 12, a
default cost attribute is designated to the roadway length and a second cost attribute is assigned a
field evaluator upon the “transfer streets stations” layer for the parking penalty time (KT). This is

also observed as the impedance value for driving.
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Figure 12. Cost Attributes in the Automobile Network Dataset

In the transit network dataset configuration, the default cost attribute is also assigned to the
facility length and three additional cost attributes are configured for the different types of transfer
times that impede travel. Bus and rail transfer times are set to field evaluators on the linear bus
and rail networks, respectively. Then, the bus-to-rail transfer time is wired up to the “transit
transfer stations” point layer, from GTFS data, representing all bus stops and rail stations on
service lines that provide transfer between both transit modes. The common field that these cost
attributes utilize is the average all-day wait time field, present in each of the above-mentioned
layers. This configuration of attributes in the transit network dataset is depicted in Figure 13. The
author finds that applying the multiple other wait time fields, by day type and day part, is not
necessary for guiding the routing function in this initial release of the project. Instead, this

additional parameterization of transfer wait times is performed after routing has solved the path
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and all resulting costs are being assessed. It is this post-routing step that, in turn, satisfies the

walking time for transfer (W2T*), waiting time for transfer (Wa2T*), and in-vehicle time for

transfer (IVT2*) in the applied cost equation.
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Figure 13. Cost Attributes in the Multimodal Transit Network Dataset

From here, the multimodal transit dataset receives two additional types of network

attributes — restriction and hierarchy. There are three restrictions that specify the level of

preference for each transit mode at bus stops, rail stops, and transfer stations connecting rail and

bus lines. Here, rail stops are granted “high preference”, transfer stations are “medium
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preference”, and bus stops are set to “low preference”. The single hierarchy network attribute
compliments this configuration by ranking each transit network centerline in ascending order,
from the pedestrian mode to rail travel.

Cost, restriction, and hierarchy attributes assist the Esri Network Analyst shortest cost-path
algorithm in navigating across the connectivity of all three networks in a realistic manner. Of
course, the assumptions built into these attributes simplify the travel model, but only to the
extent that an economically rational path is found. The path geometry is then applied on the
project’s temporal scale to spatially extract transfer times at appropriate junctions, centerline trip
speeds, and traveler incomes as needed. This design approach reduces the complexity of the

network datasets and improves overall performance in computing total costs.

3.5. Databases

Previous sections describe the manual and automated procedures that construct the data tier
of the application. The “staging” database serves as storage of all manually inputted tabular data,
in a spatial format that is suitable for geoprocessing. The “static” database contains the end
results in the two-part metrics data model organized into automobile and multimodal transit
feature datasets. These separate feature datasets are containers of each respective model part, and
they are required for each network dataset build. The routing configuration for each travel mode
resides inside of each network dataset with cost fields that are pertinent to independently solving
the shortest-cost path. The Network Analyst software extension creates edges and connecting
junctions from the input data and configuration for each network dataset.

For the automobile mode, edges are created from the highway network feature class and
junctions from the endpoints of each segment therein. For multimodal transit, edges are

constructed from pedestrian, bus, and rail network feature classes, and the junctions are
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generated according to the configuration of rail stations, bus stops, and the interconnecting
transfer stations. All remaining cost variables, which depend on the solved path geometry, reside
outside of the network dataset. The logical diagram in Figure 14 summarizes the complete data

model, residing in the “static” database, as designed by the author.
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Figure 14. Tier 1: Metrics Data Model
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Contents of feature datasets must be spatial, and non-spatial tables may not be
implemented directly. For example, the bus and rail lookup tables forementioned in the previous
section are entered as parameters into one of the tools provided by Esri in the “arcpy” Python

library for building relationship classes. This arcpy tool, or function, is called
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“TableToRelationshipClass management()” and this step is performed using a non-spatial
lookup table as input and a relationship class as output, for the transit feature dataset. The GTFS-
based relationship classes are built within the feature datasets, but outside of the network
datasets. Physical relationships can be implemented between feature classes applied in a network
dataset with those used externally (Butler 2008). The geographical data that are pertinent to the
shortest-cost path are implemented within each network dataset, and the metrics associated with
the subsequent costs of traversing that path are installed outside of the network dataset. Two
relationship classes link transit stops to the route segments they service, for both bus and rail
modes, so that the SOE may quickly locate an intermodal transfer and the costs associated with
that transfer.

There is a significant difference in relationship ontology between calibrating pre- and post-
routing elements of travel data. In the project, the automobile data model does not exemplify this
difference as well as the transit data model because only the latter involves physical
relationships. Positional accuracy and transfer wait times of connected transit services are all pre-
routing concerns. The logic by which GTFS-based relationships are applied to calibrate these
transit pre-routing elements is described in Section 3.3 and Figure 10. From a commuter’s
perspective, once the most efficient path is drawn for transit and driving, the post-routing
concern becomes: “Then how much is this route going to cost?” This is where physical
relationships come into the picture, outside of the network dataset and for multi-modal transit.

Attributed relationship classes, with many-to-many cardinality, provide a high-
performance and high-accuracy alternative to spatial querying of complex transit networks. Data
anomalies caused by combining disparate data sources are circumvented by establishing a

coordinate-based unique identifier for each point event (Jetlund and Neuhéuser 2022), in this
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case transit stops, and then spatially relating those points to linear trip metrics using distinct
natural keys created from the metrics data itself. That is, a unique point “GeolD” is created by
concatenating latitude and longitude values in comma-delimited format. The GeolD is then
spatially related via background geoprocessing to a distinct temporal collection of linear trip
speeds and traveler incomes by a surrogate key field, called the “MetricKey”. This relational
structure is created over the entire extent of the link-point multimodal network, to assist the SOE

with correctly interpreting traversals among the three transit networks.
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Chapter 4 Application Development

Today’s busy users expect performance when exerting focus upon the content and functionality
of a web application or web service. In this project, back-end geoprocessing in the data tier
supports higher performance at each REST service endpoint. This overall development approach
provides for a “thin” web client that can potentially operate on a wide range of devices.
Furthermore, with respect to scalability of this service-oriented middleware, the decision to
leverage higher-level service components of cloud computing instead of out-of-the-box Esri
geoprocessing services has enabled support for elastic and on-demand provisioning of networked
resources (Issarny et al. 2011). The Commute GeoCalculator has a maturity path leading to
creation of a scalable and computationally intensive, but thin, web client. This chapter explains
the application development steps for a two-tier performant MWAAS toolset, comprising the
project’s current web GIS, while taking a brief look at how a third-tier web user interface fits
into the long-range plan.

In Tier 1, the ETL workflow (or automation) is developed in Python 3, but manual data
acquisition was required in order to streamline code development time. Data transformation
comprises most of the scripting work, yet the data load modules do handle the build of
relationship class structures between the spatial tables to complete both driving and transit data
models within two local file geodatabases. An additional load module was added to cleanly
overwrite these model results in the remote Microsoft (MS) SQL Server geodatabase. Data
results of Tier-1 ETL are registered through an SDE connection to ArcGIS Data Store. The
primary map service that facilitates the SOE recognizes this registration as the data source. For
the overall project infrastructure, Figure 15 is a summarized view of the current state with added

elements of the future state.
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Figure 15. Commute GeoCalculator Infrastructure Diagram

4.1. Configuring the Application Environments

Tier 1 and Tier 2, as shown in the general diagram of Figure 15, are implemented in two
separate locations, one for initial development and demonstration purposes and the other for
future development and production deployment. For initial development, a sandbox environment
was provisioned by information technology partners at the Texas Department of Transportation.
For ongoing development and production, dual environments are planned for construction under
contractual agreement with Amazon Web Services. All environments leverage AWS Cloud
Builder for the creation of the “desktop” server and the ArcGIS Server “application” host, both
configured as EC2 M4.2xlarge machine instance (AMI), with 4 CPU Cores, 16 - 32 GB of
random-access memory (RAM), and at least 50 GB of disk storage space to handle the backend
ETL workflow. Additionally, each location receives a relational database service (RDS) instance,
running SQL Server 2019, for storing and managing all ingress source data as well as “staging”

and “static” geodatabases. To complete this environment, the only additional step required of the
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author was to install the PyCharm 2020 community-edition IDE on the “desktop” ArcGIS host
machine so that pre-deployment updates to the ETL could be completed.

Multiple setup steps were required to complete the initial development environment,
starting with the desktop installation of ArcGIS Pro 2.9.1 with an advanced Network Analyst
license and procurement of an Amazon Web Services (AWS) cloud server instance with MS
Windows Server and Esri ArcGIS Enterprise 10.7.1 platform components. Specifically, ArcGIS
Server and Web Adapter services were installed on one Amazon EC2 instance, as the application
host server. Then, the ArcGIS Data Store service was installed alongside the MS SQL
Server2016 database management system on a separate EC2 database server. Two SDE
connections were then created for storing source data in a “staging” database and published
results in a “static” database, as mentioned in Chapter 3.

On the ArcGIS Server host machine, the MS Remote Debugger 12.0 service was also
installed to provide a service runtime connection between the SOE and the MS Visual Studio
2017 integrated development environment (IDE) on the author’s local desktop PC for code
debugging. Several additional steps were needed on this local desktop IDE in order to allow all
networked resources required by the SOE to function properly. These steps included desktop
installation of the MS Visual C++ 2015-2019 Redistributable (x86 and x64) files, as well as the
NET Framework 4.5, ArcObjects SDK for .NET, and ArcGIS Runtime SDK. These are the core

C# code modules with acquired libraries and assemblies for the project.

4.2. Developing the Route Analysis Layers

A critical function of the SOE is the linear routing capability that it invokes, particularly
where it must solve a plotted path across separate but connected transit networks. For example,

the route solver may determine that a commuter’s optimal transit route traverses across a
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sidewalk to a bus line that leads to a metro train line, then exiting at another pedestrian path
leading up to the destination point. Connected polyline and point data in the multimodal transit
network dataset makes this traversal possible. The same is generally true of the point and
centerline data configured in the automobile network dataset, but there is only one travel network
connected to one cost layer in this case.

A route analysis layer is created from the edge grid layer, the network dataset, then
exposed during publishing of the map service to enable the Network Analyst extension to
perform the on-demand routing functions. In the map document, each network dataset is
removed after the route analysis layer is created, and all other layers and tables in the data model
remain during publishing. All contents are published to ArcGIS Server as a map service, then the
“.soe” build file is uploaded and appended to the map service in ArcGIS Server Manager. The
SOE exploits the capabilities of Network Analyst using the route analysis layer, then spatially
extracts cost attributes in both automobile and transit data models. While the underlying map
service gains access to the physical data in the “static” geodatabase via the SDE connections, the
core SOE modules filter and compute the travel costs on this data through a sequence of
interfacing map server objects provided in the ArcGIS Runtime and ArcObjects SDK. The
following subsections describe the ensuing logic applied to each data model, utilizing the
analysis layers as well as the additional interface capabilities, to manifest realistic representations

of travel based on user input.

4.2.1. Automobile Route Analysis Layer
With roadway length as the default cost attribute, the route solver algorithm for automobile
travel will redirect the output traversal toward the shortest path at any junction surrounded by

conflicting cost attributes (Esri 2019). For the automobile route analysis layer, the only cost

56



attribute that can present such a conflict is the parking penalty time in the transfer street stations
layer. Roadway traffic is not applied for determining path routing in this initial release, although
it is very common in transportation network analyses. The main reason behind this decision is
that average travel speed as a static traffic metric does not constitute a usable independent cost
variable for routing. Average travel speed is implemented only as a route-dependent cost
variable. The parking penalty is applied as the independent cost variable for routing because its
values are not expected to change as frequently as roadway traffic flows.

The transfer street station features closely follow the automobile network centerlines and
are connected by junctions at segment endpoints. This network attribute provides suitable
impedance for modeling general driving conditions in this initial stage of the project. The route
path is the output product of the route analysis layer, and once it has been solved, the SOE
applies its linear shape to extract route-dependent cost values based on specific criteria. Since the
parking penalty is also a route-dependent cost variable and occurs at the end of an automobile
trip, its value is gleaned from the last transfer street segment intersecting the trip path by a 55-
foot tolerance. Tour-based travel is planned for a future phase of the project, wherein parking
penalties will be extracted at every intermediate destination point defined by the service user.
This future capability forms the basis for the layer name, “transfer street stations”, as the traveler

would be expected to transfer to a different mode after parking, namely walking or biking.

4.2.2. Transit Route Analysis Layer

The facility length is also defined as the default cost attribute for the multimodal transit
route analysis layer. And, in comparison to the automobile counterpart, travel speed is not
applied as an input for routing. However, in contrast, this shortest-path route solver has

substantially more work to perform in order to successfully traverse three interconnected transit
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networks with differing criteria for impedance. Following the discussion of network datasets in
Chapter 3, the elements of the transit route analysis layer include: pedestrian, bus, and rail
networks; bus stops, transfer stops, and rail stations, all spatially integrated by connectivity
groups and configured with cost, restriction, and hierarchy attributes.

The ensuing steps of route analysis read and compare the cost, restriction, and hierarchy of
surrounding approaches to determine the most favorable direction toward the destination point.
As shown in Section 3.4, Figure 13, the preference restriction is assigned to each transit stop
type. Stepping onto a bus or changing busses at a bus stop is set to the “low preference”
restriction. But walking onto a bus at a transfer stop means that bus route services one or more
rail stations, and this junction has a restriction of “medium preference”. The restriction set to rail
stations is “high preference” and the route solver will navigate in favor of rail service until the
rail stations are geographically out of range from the shortest path or the transfer cost becomes
too high compared to surrounding options.

The transfer cost attribute is assigned to the following transfer cost variables:
“BusToBusTransfer”, “BusToRailTransfer”, and “RailToRailTransfer”. In each case, the field
evaluator is assigned to all-day average transfer wait times from each transit stop. It’s important
to note that the multimodal transit network applies one and only one edge between any two
transit stops. This design cannot physically represent the multiple bus routes or train routes that
traverse each edge. So, how does the route solver know where one transit vehicle route ends and
another one begins? How does it know where a transfer is optimal and where it is not? Both
answers are provided by the transfer cost variables. The key factor, here, is that the lowest
average transfer time is traversed at each bus stop, transfer stop, and rail station. This data

construct is the product of GTFS calibration in Tier 1.
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4.3. Developing the Server Object Extension

Tier 2 is composed of spatially enabled web services published through the ArcGIS REST
API via the SOE, for activating routing capabilities and consuming the data. These services are
written in code modules using the C# programming language on the MS .NET Framework. The
ArcMap-based runtime API and the ArcObjects SDK for the .NET framework build and package
these custom modules into a file that is uploaded to the primary map service. Esri documentation
states that ArcGIS Server 10.9.1 does have ArcMap runtime services, on which most .NET SOE
development patterns back to version 10.5.1 are fully supported (Esri 2022). The cited
documentation, here, also provides steps for migrating ArcMap-based map services or image
services to use the ArcGIS Pro runtime. For quick reference, one of the early steps in this process
is transitioning the .NET ArcObjects-based SOE to be built with the ArcGIS Enterprise SDK.

Without the burden of having to perform data preparation tasks, the SOE needs only to
expose routed variables for immediate computation. In turn, this simplifies the required tasks in a
web client, essentially to sequencing calls to the service endpoints and providing the user
interface (UI) with an effective user experience (UX). However, developing SOE middleware to
perform its required steps should not be dismissed as easy or trivial. At a minimum, the effort
requires some experience with object-oriented coding in an advanced IDE. It is best practice to
maintain a template SOE solution with core modules updated to the latest code libraries and
reference assemblies for the development platform. This strategy allows the developer to keep
existing projects up-to-date and portable to supported web platforms, while new projects can be
initiated without having to start from scratch every time. The author leverages this strategy in the

current project and a brief description of the template solution, given the namespace title of
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“LRSLocator”, follows in this section. The project’s SOE template code, referenced in the
ensuing discussion, is provided in the Appendix.

In addition to the setup steps detailed at the end of Section 4.1, the development
workstation requires Internet Information Services (IIS) installed, and ideally the latest version.
Once the Visual C# .NET web application project is created in the workstation’s
“inetpub\wwwroot” directory, a few core “.cs” modules stored with the solution file must be
created with several key functions. To begin, under the “properties” subdirectory of the
“LRSLocator” project, an “AssemblyInfo.cs” module provides general information about the
solution that may optionally be set as visible to standard Component Object Model (COM)
elements on the web. More importantly, the file which exposes the project’s functions to COM
elements is the first module to reside in the main directory of the project, called
“ComReleaser.cs”. Its job is to manage the release and disposal of “LRSLocator” content as
binary software components.

Next in the main directory is the “RESTContext.cs” module which declares all entities to
be shared over the ArcGIS REST API. These include global solution variables for basic inputs
and outputs (I0), as well as interface objects that represent all map server elements, network
datasets, feature classes, relationship classes, and field names used in the project. To handle
incoming requests to a specific REST resource or operation, a simple interface module called
“IRESTHandler.cs” answers requests with return values in either JavaScript Object Notation
(JSON), string, or byte format. To further assist the solution with encoding responses and
handling errors in the JSON format, a “JSONHelper.cs” module is also added.

With the above web interface modules in place, the functional framework of Commute

GeoCalculator is constructed in the much larger “LRSLocator.cs” file, the main module. This is
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where the project’s specific attributes and behaviors are declared and executed, wherein nearly
everything is treated as an interface object or a REST operation. The globally unique identifier
(GUID) is a 16-byte unique label for the project, which must be generated and then specified
under the namespace and above the “ServerObjectExtension” declaration. From here, every
variable and method forming the backbone of the project are written as private objects within a
public class that inherits specific interfaces, all nested within the “LRSLocator” namespace.

All entities of the “RESTContext.cs” module are referenced in the main module, and every
ArcObjects interface member used in the solution is declared. Furthermore, in this main module
the schema for each REST page is declared, along with functions that control 10 properties and
the interface with any element in the registered “static” geodatabase. Here, the SOE
communicates with the database server, essentially taking the map service as an input argument.
Because the project utilizes routing capabilities of the Network Analyst software package, the
main module applies very specific conditions within the geodatabase interface to distinguish
between M-aware feature classes, relationship classes, tables, network datasets, and the analysis
layer parts therein.

Finally, the implementation code modules leverage all attributes, behaviors, and interfaces
of the main module to deliver the advanced functions of the middleware that meet project
objectives. Regarding the use of routing capabilities, “RouteFromInputPoint.cs” mimics the
actions of a desktop (or ArcGIS Pro) user who directly invokes the functions of the Network
Analyst extension. This is also the module that writes out each solved path to any reachable
machine on the current domain. The implementation code that applies the cost equations for
driving and transit calls these functions of “RouteFromInputPoint.cs”. Any number of

implementation modules may be created in the SOE template to fulfill project requirements.
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4.4. Computation of Travel Costs

The other vital function of the SOE is computation of the travel costs, using the linear
shapes generated during routing. As stated in Section 4.2.1., the SOE applies the solved path to
extract route-dependent cost values based on specific criteria. This section delves into these
criteria to explain how usable variables are gleaned from each data model and applied to the
travel cost equations. In this procedure, parameters (p) are coefficients specified by the regional
transportation authority, while all other variables change value per each commute. All time and
distance data, including those applied to travel costs, are expressed in minutes and miles at a
precision of 0.1 minutes and 0.001 miles. The equation output provides a cost value associated
with each travel mode path — transit and automobile. Both cost equation sets include inferred
traveler income extracted at the trip origin, then factored into the “value of time” parameter. In
Table 6, the monetary value of time is translated from minutes of total travel time, based on
household income.

Table 6. Value of Time by Purpose of Travel and Income (NCRTPB 2020)

Time Valuation
idpoi Minutes per Dollar
Household 1\I/§1dp01}1£1tlcc)1f Hourly Rate per ( P )
Income ;) Useno Worker Work Trips Non-work
neome (75% Value | (50% Value
of Time) of Time)
$ 0 -$50,000 $25,000 $9.23 8.7 13
$50,001 -
$100,000 $75,000 $27.70 29 4.3
$100,001 -
$150,000 $125,000 $46.17 1.7 2.6
$150,001 + $175,000 $64.64 1.2 1.9
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4.4.1. Automobile Travel Costs

The overall approach to cost computation is to apply authoritative parameters and
estimates to additive equation sets derived from research, while using spatially extracted
attributes as the variables. Link drive time, below, is the average driving time over one segment
of the highway network, based on the input mean speed from traffic metrics divided by the
length of segment within a given TAZ. Link mean speed, uS;, is provided by the automobile trip
speed table by day type (weekday or weekend) and day part (early AM, peak AM, mid-day, peak
PM, and late PM). The service user specifies one day type and one day part per each request for
a commute calculation. Spatial intersection tools from the ArcObjects interface language make it
possible to take path-specific measurements from the layers in the automobile data model. The
total cost in minutes, T4, is the summation of all link travel times along the routed path, plus the
parking penalty which is taken from the “transfer streets stations” layer at the destination point.
The cost equation set for driving is as follows:

n

Total Cost (in minutes), T4 = Z (Dr /uSt) g+ KT (8)
d=1

where (Dz /uSr)4 is the link drive time composed of D;, the link distance, and ¢S, the link mean
speed. KT is equal to the parking penalty time, and n is the number of road links.

Total Cost (in dollars), C4 = (pVT x T4) + (pCM x D7) + KC 9)
where pVT represents the value of time parameter, as per Table 6; pCM is equal to the cost per
mile parameter; Dr is the total drive distance; and KC is given as the estimated parking fee. The
total cost in dollars, Cg4, is the income-driven value of time parameter multiple by T4 and then
added to the product of fuel cost per mile and total distance, plus the estimated parking fee.

Roadway fuel cost (for the pCM parameter) is derived from the national-level model applied in
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the NCHRP Report 716 at $0.21 per mile, then adjusted by the current inflation rate. The parking
fee, KC, (in dollars) is extracted from the same layer at the same user-defined destination point
where the parking penalty (in minutes) is assessed. In compliance with the regional authority, the
parking cost is estimated within the “transfer streets stations” layer by the following equation:
Estimated Parking Fee, KC =2.1724 x In(employment density) — 15.533 (10)
Specifically, the shown natural logarithm function is calculated by the Python math library, as

math.log(x, [base e]), where x is the block group employment density.

4.4.2. Multi-modal Transit Travel Costs

For the travel cost computation of multi-modal transit, the overall approach to use
authoritative estimates in research-based equation sets is fundamentally the same as described for
automobile driving costs. Similar to the auto driving cost equations, the attributes of travel time
for multi-modal transit are calculated over the facility links traversing each TAZ in which trip
metrics are linearized by day type and day part. The interface and format of inputs and outputs at
the REST endpoint are the same as used for the driving mode. What is quite different is the
algorithm that captures and processes the larger number of variables used as inputs to solve the
transit equation set. On one hand, pedestrian trip speed is simply read over all links that intersect
the route path, which is the way that driving trip speed is collected. On the other hand, bus and
rail modes require careful tracking of the specific service line utilized, from the first point of

entry to the last. The cost equation set for transit is as follows:

w X
Total Cost (in minutes), Tyr = [ (Pr/uSL) p + WaT] + [, (BL /uSr) p + W2Tp]  (11)
p=1 b=1

y
+ Y. (Re /uSr) + W2T,] + Wa2T*

r=1

64



where (P./uSr) p is link walk time; (B /uSr) p is link bus time; (Rz /uSr) r is link rail time.
Here, each numerator and denominator replicates the quotient of link distance over mean speed
used in the automobile cost equation. WaT represents the wait time, W2Tp the bus transfer time,
W2T; the rail transfer time, and Wa2T#* the intermodal transfer wait time between bus and rail.
Total Cost (in dollars), Cyy = [pVT x Tu]+ (F + F2T*) (12)
where pVT is the value of time parameter; F is equal to the fare cost of the initial bus or rail
route, and F2T* is the fare cost of any ensuing transfer. Transit fares (F, F2T*) and intermodal
transfer wait times (Wa2T*) between bus and rail are gathered and processed within separate
server objects. That is, these variables are aggregated outside of the dictionaries containing
values for the link travel time attributes. Fare costs are applied to the linearized metrics based
upon the average fares of each transit operator, and then exposed after network paths are solved.
And the parameters are constants assigned to the region according to NCRTPB specifications.
Finally, the sum of intermodal transfer times are added to the transit equation (11) for the time-
based cost, just before it is solved. Once equation (11) is fully executed, then the sum all fares
are added to the product of total time expenditure (Tss) and the value of time parameter (pVT) to
solve equation (12). Section 5.2 further explains how these cost variables are extracted and

processed in the multimodal transit model.
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Chapter 5 Results

The proprietary traffic metrics and open-source content used to build the multi-network data
models and enterprise web services in this project were initially unusable for such an application.
Source travel speed and traveler income were provided as percentages over a set interval of
movements detected within each traffic analysis zone. In order to model general travel
conditions, this range of values had to be dissolved and linearized into the average trip speed and
traveler income along facilities in each zone. The location of parking penalties for driving and
transfer times for transit are not values that are readily available on an open-source data portal,
nor from any online content provider. Rail and bus polyline layers from the regional authority do
not contain distinct linear features for each individual route traversing the system, much less the
route segments with average transfer times.

At the source, multiple rail and bus head signs are grouped into one route identifier field
for every line segment and transit stop table. GTFS data were required to fully itemize and
accurately position each transit stop, yet GTFS stop identifiers are not common with NCRTPB
identifiers for bus and rail stops. Furthermore, all linear data provisioned by the regional
authorities and the US Census Bureau contain no M-values in their shape fields that would
enable routing, and a significant portion of features are disjoint at intersections. With all of the
challenges in the data resolved in Tier-1 geoprocessing, Tier-2 results are dual routable network
datasets that model driving and transit paths by estimated parking times, transfer wait times,
distance, and preset hierarchical preferences. Each path geometry is provided in well-known text
(WKT) format on the REST page. Also, every path is written to the workstation server in a
feature layer collection that can expose each individual route analysis layer to most map viewers,

including ArcGIS Pro.
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The results on each REST page also include all user-entry parameters and cost outputs, in
decimal units of minutes and dollars. Depictions of these results are presented in Sections 5.1
and 5.2. To commence the cost calculation, the only inputs needed are beginning and ending
latitude and longitude in decimal degrees, and the pre-defined string literal for identifying the
time of day (day part), weekday or weekend (day type). Over one hundred distinct coordinate
pairs were tested at the REST page in the study area; ninety-two of these cases returned valid
values. The following sections describe the full context of actual results, through an investigation
of one of the successful travel cost samples.

Table 7. Time of Day Input Parameter

Day Part Description

Weekday Entry Value

Weekend Entry Value

All-Day Average

1:AllDayAvg:Weekday

7:AllDayAvg:Weekend

Early AM (12am — 6am)

2:EarlyAM:Weekday

8:EarlyAM:Weekend

Peak AM (6am — 10am)

3:PeakAM:Weekday

9:PeakAM:Weekend

Mid-Day (10am — 3pm)

4:MidDay:Weekday

10:MidDay:Weekend

Peak PM (3pm — 7pm)

5:PeakPM:Weekday

11:PeakPM:Weekend

Late PM (7pm — 12am)

6:LatePM:Weekday

12:LatePM:Weekend

5.1. Automobile Cost Model and Service

The rules of the road for basic routing on a highway network are relatively straight-forward
when there is only one centerline file with no modeling of turns, elevation, service areas, or
complex rules for impedance. The only impedance built into the project’s highway network is
the parking penalty that is based on census employment density. This routing cost for driving and
street connectivity can and will redirect the route solver away from what may appear to be the
shortest distance between origin and destination. The forementioned trip sample for driving is

visualized in Section 5.3. Figure 16 shows the attribute values on the REST page.
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@ Get Polyline From LatLong( LRS/! X +

< C @ https://gisserver.usc.edu:6443/arcgis/rest/services/LRS/LRS_SOE_DW/MapServer/exts/LRSLocator/Get%20Polyline%20From%20LatLong?Begin_Longitude

ArcGIS REST Services Directory
Home > services > LRS > LRS SOE DW (MapServer) > LRSLocator

Driving Cost From LatLong( LRS/LRS_SOE_DW )

Begin_Longitude -77.0212524

P
Begin_Latitude 38.93769961

“
End_Longitude -77.03465116

Y
End_Latitude 38.92865751

Y
Time_Of Day 3:PeakAM: Weekday

z
Spatial_Reference

%

Format (f) [htm v |

‘ Get Polyline From LatLong (GET) H Get Polyline From LatLong (POST) ‘

Total Miles: 2.242
Total Minutes: 11.12
Total Dollars: 9.54

Output Spatial Reference: 4269
Geometry:

Polyline:

Path 0: [-77.021252413555546,38.937699614145565,0.105122331], [-77.021243567889912,38.937004686648821,0.1197000010345234624606 ],
[-77.01892473503530301,38.937277062200443285,0.12974543440211921], ...64 more...

Spatial Reference: 4269

Figure 16. Trip Sample - Automobile Travel Cost Return

With segment endpoints of the transfer street stations created directly from the highway
centerlines, the default edge connectivity enables the network route solver to redirect paths
cleanly in the direction of lower parking penalties. After routing, a sequence of methods in the
SOE use the geometry of the solved path to capture all segments which carry the penalty values.
From this isolated subset, the destination point feature is then applied in a spatial intersect to
extract one distinct record containing the whole number of minutes required on average to park.
The same path geometry is also used to extract each link drive time that is plugged into the cost

equation with given coefficients to calculate the totals shown in Figure 16.
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5.2. Multimodal Transit Cost Model and Service

For the same trip sample, the multimodal transit costs at the REST page are depicted in
Figure 17. Instead of segment endpoints used as the connecting junctions between these
networks by default, bus stops, transfer stops, and rail stations serve this purpose in the transit
route analysis layer. As pointed out in the previous chapter, the modal split is preconfigured by

the elements in the transit network dataset.

@ Get Polyline From Latlong(LRS/ X

&= C @ hitps://gisserver.usc.edu:6443/arcgis/rest/services/LRS/LRS_SOE_DW/MapServer/exts/LRSLocator/Get%20Polyline%20From%20LatLong?Begin_Longitudd

ArcGIS REST Services Directory
Home > services > LRS > LRS SOE DW (MapServer) > LRSLocator

Transit Cost From LatLong( LRS/LRS_SOE_DW )

Begin_Longitude -77.0212524

4
Begin_Latitude 38.93769961

4
End_Longitude -77.03465116

4%
End_Latitude 38.92865751

%
Time_Of _Day 3:PeakAM: Weekday

4
Spatial_Reference

4
MultiType Routing

4

Format (f) [ html v |

‘ Get Polyline From LatLong (GET) ] ‘ Get Polyline From LatLong (POST) ‘

Total Miles: 1.179
Total Minutes: 9.16
Total Dollars: 8.15
Output Spatial Reference: 4269
Geometry:
Polyline:
Path 0: [-77.021252413555546,38.937699614145565,0.105122331], [-77.0232472000728884,38.93759858564279302,0.121427499090021354 ],
[-77.024264923892910791,38.9362627926102447,0.269741136602881751 ], ...59 more...
Spatial Reference: 4269

Figure 17. Trip Sample — Multimodal Transit Travel Cost Return
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In most user-defined scenarios, the subsequent route analysis layer begins its routing task
by reading restriction and hierarchy values in the pedestrian network features that surround the
trip origin point. Of course, it is possible that an origin point may be specified within five feet of
a bus stop, transfer stop, or rail station, in which case the cost, restriction, and hierarchy of the
respective network would be processed first. But in the most prominent case, it is important to
understand that the pedestrian network does not have an independent cost attribute for routing.
Transfer wait time is the independent cost variable in the transit route analysis layer and walking
simply does not impose a transfer waiting period in any practical situation. However, the
pedestrian hierarchal ranking is the lowest of all networks, at a value of “3”, and thus the route
solver expeditiously navigates away from walking to the nearest junction having the most
favorable attribute values and position on the shortest path toward the destination. Taking a bus
ranks as “2”, and riding a train is ranks highest at a value of “1”.

In Chapter 3, Figure 14 illustrates the relationships that bind arrival and departure times to
every route for bus and rail modes. These relationships are important to Tier-1 preparation of
transfer times within the attributes of transit stop points and links. The transit route tracking
algorithm in the SOE collects the route identifier from first service line encountered, and then
checks whether it persists across every subsequent stop which has a non-zero transfer time (an
opportunity to transfer). If the next link in the direction of travel does not have the expected route
identifier in its attribute table, then the transfer time at the associated stop is added to a dictionary
object in code, along with record of the link that is providing the trip speed at the location. Also,
the next route identifier is assigned to the route tracking variable, and the process repeats along

the solved route path for bus routes and rail service lines exclusively. As a result, trip speeds and
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transfer times are organized by link and travel mode, for orderly insertion as variables into the

multimodal cost equations.

5.3. Routed Automobile and Transit Travel Costs

Through the SOE, both automobile and transit cost models have their own API for
computing individual trip samples with only lat-long coordinate pairs and the time-of-day
parameter as required inputs. Each of these REST endpoints (pages) contain an optional input
parameter for the EPSG number of the desired spatial reference. By default, SOE computation is
performed on the model data in unprojected geographic coordinates on NAD 1983, even though
the data undergo ETL projected in WGS 1984 Web Mercator Auxiliary Sphere with shapes
preserved. Given the consistency in geoprocessing these data under a world projection well-
suited for a web platform, the conversion back to geographic coordinates during SOE publishing
allows the object libraries to apply geometric features to most any projection specified by a web
client. It’s a technique utilized in multi-level linear referencing systems (MLRS) that apply a
network data construct known as a /inear datum to handle practically any projection on the data
(Butler 2008).

In the previous section, the trip sample exemplifies how much more complex the
multimodal transit network is compared to the basic highway network. The multimodal transit
network inherently requires more rules for analysis. For example, the route solver will continue
charting along an assumed bus route on the transit route analysis layer where a bus stop carries a
transfer time of zero. If there happens to be another bus route intersecting that bus stop point, it is
ignored because GTFS data hold no record of both bus lines servicing that particular stop. Figure

18 shows the geometry paths for the scenario submitted at each REST page in Figure 16 and 17.
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This particular case involves a transfer from rail to a bus route via a rail station well before the

destination point, that is otherwise closer to a different rail station.

[*$+ & Crestwood
I 5iat :

¥

Rail-to-Rail Transfer
12.33 minutes

Rail-to-Bus Transfer
2.46 minutes

Figure 18. Transit and Automobile Cost Path Outputs in ArcGIS Pro®

Here, the path solution accepts a lower transfer cost from the “BusToRailTransfer” value
that is read from the transfer stop at the exact location of “Rail Station 2”. In theory, this also
means that the bus transfer times along the remaining path to the destination are lower than the
impedance measured from taking the route through “Rail Station 3”. The thin orange line is the
local rail line. By comparison, another noteworthy outcome in the above depicted example is the
path solved for automobile travel. It is forementioned that the parking penalty is applied as the
independent cost variable for automobile routing because its values are not expected to change

very frequently. There is another reason that parking time is applied to routing, which is
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illustrated in Figure 18. Longer parking times indicate higher employment density by census
block group, which suggests more heavily congested activity centers (NCRTPB 2020). Thus, the
automobile route solver negotiates around such areas of higher parking penalties, with respect to
the shortest physical path. Recall that route length is the default cost variable for both travel

modes, and the additional elements assigned to each route analysis layer refine the results.
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Chapter 6 Conclusions

A rigorous research and development effort has driven completion of this initial phase of the
project, with authoritative source data provided by open data portals and traffic content from the
SL Data InSight® platform. The initial analysis and data capture of traffic metrics was made
possible through academic licensing by SL Data, Inc. SL content and analysis software is
available to the project under a free one-year academic license with 500 traffic analysis zones,
the approximate extent of central metropolitan Washington D.C. Instead of committing the entire
project to open-source content and technologies, the decision was made to opt for long-term
support and scalability made more practical by proprietary providers. This was deemed
necessary for the future expansion of the service area into broader geographies, and for the

implementation of a web client and more advanced functions.

6.1. Application Utility

The middleware provisioned in the project is designed as a tool for exposing probable
travel cost paths, given general conditions over the built environment on which the data model is
implemented. The system is functional over heterogenous urban development patterns in terms
of street connectivity, transit accessibility, system mobility, service frequency, and the various
costs of traversing the system at peak and off-peak traffic intervals. Tier-1 background
geoprocessing scripts provide a repeatable process for integrating disparate geographic data in
modeling multimodal travel. Subsequently, with these data now usable in an accessible model
set, the Commute GeoCalculator travel-cost web services are well suited for hosting in a
standard enterprise-level IT environment or research lab. From this solution, multiple possible
use case scenarios exist for the scientific research community as well as for the transportation

industry.
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Transportation web and mobile applications that are purposed for quantifying multimodal
travel would readily benefit from consumption of the project’s REST services. As forementioned
in Section 2.4, Google Maps utilizes live traffic feeds with routing functions in some service
areas, but each selected travel mode may only be routed on separate map views. There is no
combined view of all selected travel modes on one map UI, which is a limitation for the traveling
user of Google Maps. Because the project web services leverage performant methods for
operation on enterprise-level infrastructure, it is conceivable that a competitor application could
utilize the project’s middleware to address this gap in map Ul design and to geographically
extend coverage of estimated travel costs with updateable traffic metrics. Public-facing routing
applications present the most immediate possibility for general usage in commercial industry.

A second possible use case that would serve both industry and scientific research is the
installation of Commute GeoCalculator services in high-volume data generation processes. A
scripted process could submit a predefined list of random and independent coordinate pairs with
day parts (time ranges), as OD inputs at the service endpoints, to then write the returned trip cost
information to a database. Transit agencies that are interested in analyzing the network
performance of their route plans would benefit from this utilization. This use case also applies to
data preparation for conventional inferential statistics, often seen in spatial analyses. Albeit the
linearized data in the project’s model are geared more toward network analysis, methods for
spatial analysis of linear traffic patterns are found in transportation research (Haixiang, Yang,
and Yonghui 2010; Bhat and Zhao 2002). The author finds that such methods would also be
applicable to spatial analyses of multimodal travel cost patterns, whereby Commute

GeoCalculator services would serve as a viable resource for the preparation of these data.
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Thirdly, by applying the project’s services in a web client to invoke mode-choice responses
directly from the commuting public, the researcher or transportation manager could create a
powerful VGI application. A practical scenario, aforementioned in the project overview and
Section 2.3, is a VGI deployment that allows the general public to readily compare the cost-
based utilities of their own individual commute patterns and options in order to provide input as
participating stakeholders in local transportation improvements and TDM strategies. Perhaps an
even more effective deployment would be a travel routing application that is open indefinitely to
the commuting public for general use. Considerably more VGI content could be collected, but

not without some incentive to travelers for participating.

6.2. Limitations and Costs of Development

While the Commute GeoCalculator services are designed for scalability, the initial release
is a proof of concept with significant usage limitations. For the purposes of the project as a thesis
work, the initial users shall be authorized students, faculty, and staff of the Spatial Sciences
Institute at the University of Southern California. At each REST page, users may replicate the
steps which a web client would apply, by entering OD points using XY coordinates in decimal
degrees. To accommodate, a scripted utility is provided that randomly extracts and organizes lat-
long coordinates from the endpoints of highway segments in the study area, so that initial users
have the means to test the application. On May 20, 2023, these functions and documentation are
planned for release at https://github.com/modomotiv/sandboxpage.github.io/index.html, where
the future release of the Commute GeoCalculator website is also scheduled for release at a later
date.

In the current project, the computation of travel costs for multimodal transit has a few

notable simplifications that limit usage. The first of these is explained in Section 5.2., the
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preconfigured modal split, which makes the transit cost service too inflexible for use in a travel
web application. This rigidity in the network dataset configuration stems from the use of average
transfer times at each transit stop and along each bus and rail route line. With points and lines as
simple features, it is quite difficult to build a complete network representation of all available
transfer times for all bus and rail routes. Therefore, a higher order structure of point and line
features is part of future development plans, wherein GTFS calibration can more effectively
articulate among individual transfer times and their specific operator routes.

The most limiting simplification imposed on the transit data model, which led to the use of
average transfer times, is the lack of travel direction with respect to bus and rail modes. Even
though GTFS data include a directional indicator of arrival and departure times with positional
offset, the higher orders of point and line structure that are required for directional transit
segments (Butler 2008) are not built into the current model. The primary reason behind this
design decision is the generalization imposed by assigning the traffic indices from TAZ polygons
to each contained transit segment. The direction of travel is lost in the organization of traffic
metrics during this process. Nevertheless, the US standard TAZ features, which are typically
larger than a city block but smaller than a census block group, do provide a valid characteristic
unit of measurement for general traffic conditions. Hence, a low to moderate level of ecological
fallacy is accepted in the construction of the current model, and future advancement of the model
will address this issue. Whether it is a change in content provider or a different data analysis to
extract these metrics, the traffic on linear facilities cannot continue to be inferred from polygon
data if the application is to advance toward meeting its long-term objectives.

One final noteworthy curtailment in the transit cost model involves bus and rail fares,

which are weekday and weekend averages for each transit operator with no accounting for
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dynamic pricing. Fluctuations in demand, particularly for local train routes (NCRTPB 2020),
drive significant intra-day changes on fares. Instead of tracking operator rules for dynamic
pricing, fares are manually extracted from each operator’s reported website then averaged for
one day of ridership and hard coded into each route. At service runtime, fares are enforced one
time in the cost calculation for bus and rail, independently. For the computation of total transit
cost on individual commutes, this omission of dynamic pricing can be impactful to the accuracy
of results. To a lesser extent, variable pricing on parking fees may also impose inaccuracies in
the total driving costs of some commutes. Yet such parking data may prove to be challenging to
acquire. Therefore, more comprehensive treatment of transit operator rules is the focus of future
improvements to the assessment of direct charges from transportation service providers.

Initial project expenses were incurred by the acquisition of Windows Server and ArcGIS
Enterprise software packages that run in an authorized AWS sandbox environment provisioned
by GIS technology partners at the Texas Department of Transportation, plus the application fee
for the one-year academic license from SL Data, Inc. Fortunately, this license application was
accepted, thereby avoiding the substantial cost of purchasing the 500-zone traffic content used in
the project. Minor expenses included presentation images procured from Almay, Inc., and some
minimal leave of absence from currently contracted work to finish the project. One of the near-
term future costs of the project will be the subscription fee to host all application functions
herein, plus the planned web client, from a secured GitHub repository. Hosting fees for a startup
website are relatively inexpensive in the short run, as long as the user demand is low. A more
substantial cost in labor is expected for the near-future SOE migration away from ArcMap

runtime services and ArcObjects SDK, onto the ArcGIS Pro runtime API and Enterprise SDK.
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6.3. Future Improvements

Numerous important enhancements are planned for future release phases of the project,
including steps to address the key limitations discussed in Section 6.2. However, the foremost
initiative in the future improvement plan is a web client in a third tier. The overarching concept
is that through a transactional web user interface, the user receives requested commute cost
information while given the opportunity to share minimal and anonymous mode choice feedback
about each travel query. Through the Ul elements of a presentation tier — choosing OD locations,
identifying routes and landmarks, sequencing multiple destinations, and specifying the time
schedule for travel — substantial spatial cognition (Montello and Sas 2006) is required of the user.
The first user requirement is spatially intuitive plotting of all OD points on the map UI, including
any intermediate stops that would constitute a tour. A critical feature, here, will be street address
geocoding, so that the end user is not confined to only plotting OD locations by XY coordinates
on the map Ul. And, with these enhancements, the addition of the bicycle mode will be an
important feature as well.

The second requirement, here, is a collaborative and brief exchange of information through
the end user workflow. This dialog commences only after the user has plotted their points to
create the shortest-distance transit and driving paths. Time and cost results are forthcoming as
soon as the user provides information about the time and purpose of travel, as well as household
income on a strictly voluntary basis. There are disaggregate mode choice factors which are not
included in the equations, such as traveler’s comfort and sense of security or safety. These
qualitative factors are based on users’ experiences and will be shareable in the web client.

Given the requested cost values, the user may opt in to anonymously share VGI about

which mode would be selected for their trip or tour and the reasons behind it. Alternatively, the
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user may decline to do so and continue to use the system without any part of their session being
saved. At the end of this workflow, the web client will call a feature service that is hosted in the
logical tier to capture and timestamp any volunteered results in the commuter geodatabase. These
results include the user’s anonymous profile, travel preferences, cost attributes, path geometry, as
well as which alternative was chosen and, again, the reasons behind the choice.

The initial web user interface will not necessarily be designed to operate on mobile devices
in the next planned release, but mobile capability is crucial for the application’s intended
maturity path. In the first rollout, the web application will have an internal public user account
that only tracks each session, not the individual user. Limited functions will be available for
retrieving the traveler’s volunteered results in the commuter geodatabase. The extent of
preliminary capabilities will permit a transport manager role to access and download mode
choice data in Excel tables and a corresponding shapefile.

In conclusion, the Commute GeoCalculator program is designed for automated data
sampling and comparison of multimodal travel costs, with the development potential to become
an empirical data sampling tool for travel mode choice. A fundamental aspect of travel behavior
is mode choice. If travel mode choice can be sampled randomly and independently from the field
directly with respect to the built environment, then new opportunities arise for improving studies
of travel behavior in the space of flows (Pieri and Nelson 1999). Through scientific application
of such technology, perhaps more effective interventions in transportation are possible.
Regardless of the project’s current constraints, the results serve as a viable proof of concept that
web GIS services can be created from available resources to present an alternative approach

toward researching travel behavior.
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Appendix
Commute GeoCalculator SOE Template

Module I: Assemblylnfo.cs

using System.Reflection;

using System.Runtime.CompilerServices;

using System.Runtime.InteropServices;

[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:

[assembly:

AssemblyTitle("LRSLocator")]
AssemblyDescription("LRSLocator for 10.4.1")]
AssemblyConfiguration("")]
AssemblyCompany("")]
AssemblyProduct("LRSLocator")]
AssemblyCopyright("Copyright © 2023")]
AssemblyTrademark("")]

AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible

[assembly:

ComVisible(false)]

// ' The following GUID is for the ID of the typelib if this project is exposed to COM

[assembly:

[assembly:
[assembly:

[assembly:

Guid("dd8a0333-fa32-4d30-9¢27-31b2d0b0a89c")]

AssemblyVersion("2.0.73.0")]
AssemblyFileVersion("2.0.73.0")]

ESRI.ArcGIS.SOESupport. AddInPackage("LRSLocator", "6469e¢3e3-890a-

4e56-8992-5b5b5fac3d32",
Author = "314882",

Company ="",
Date ="1/7/2023 1:32:30 AM",

nn

Description ="",
TargetProduct = "Server",
TargetVersion = "10.4",
Version ="1.9")]
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Module 2: ComReleaser.cs

using System;
using System.Collections;
using System.Runtime.InteropServices;

namespace LRSLocator

{

[Serializable]
public class ComReleaser : IDisposable

{
// Fields

private ArrayList array = ArrayList.Synchronized(new ArrayList());

/I Methods
public void Dispose()
{

this.Dispose(true);
GC.SuppressFinalize(this);
}

protected virtual void Dispose(bool disposing)

{

int count = this._array.Count;
for (int i = 0; 1 < count; i++)
{
if ((this._array[i] != null) && Marshal.[sComObject(this. array[i]))

{
while (Marshal.ReleaseComObject(this. array[i]) > 0)

{

b
}
}

if (disposing)
{

this. array = null;
}
h

~ComReleaser()

{
this.Dispose(false);
}



Module 2: ComReleaser.cs (continued)

public void ManageLifetime(object 0)

{
this. array.Add(o);

}

public static void ReleaseCOMODbject(object 0)
{
if ((o !=null) && Marshal.IsComObject(0))

{
while (Marshal.ReleaseComObject(o) > 0)

Module 3 Summarized: RESTContext.cs

using System.Collections.Specialized,;
using ESRI.ArcGIS.Carto;

using ESRI.ArcGIS.Geodatabase;
using ESRI. ArcGIS.SOESupport;
using System.Collections.Generic;

namespace LRSLocator

{

public class RESTContext

{
// REST request

public NameValueCollection BoundVariables;
public JsonObject Operationlnput; // operations only
public string OutputFormat;

public string RequestProperties; // in JSON format

// REST response
public string ResponseProperties;

/I SOE properties
public ServerLogger Logger;
public IMapServer3 MapServer;
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Module 3 Summarized: RESTContext.cs (continued)

/I Auto Layer Properties

public [FeatureClass HighwayFeatureClass;

public [FeatureClass LrsTransferStreetsFeatureClass;
public [FeatureClass LrsAutoTripMetricFeatureClass;
public [FeatureClass LrsAutoTravMetricFeatureClass;

// Transit Layer Properties

public [FeatureClass RailwayFeatureClass;

public [FeatureClass RailStationFeatureClass;

public [FeatureClass LrsRailTripMetricFeatureClass;
public [FeatureClass LrsRailTravMetricFeatureClass;
public [FeatureClass BuslineFeatureClass;

public [FeatureClass BusStopFeatureClass;

public [FeatureClass TransferStationFeatureClass;
public [FeatureClass LrsBusTripMetricFeatureClass;
public [FeatureClass LrsBusTravMetricFeatureClass;
public [FeatureClass WalkwayFeatureClass;

public [FeatureClass LrsWalkTripMetricFeatureClass;
public [FeatureClass LrsWalkTravMetricFeatureClass;

/I Auto Field Properties — Weekend Metrics Fields (WE) Excluded
public string HighwayFeatureClassRIDField;

public string HighwayFeatureClass FDFOField,

public string HighwayFeatureClass TDFOField;

public string LrsTransferStreetsFeatureClass RIDField;

public string LrsTransferStreetsFeatureClass ParkPenaltyField,
public string LrsAutoTripMetricFeatureClass  RIDField;

public string LrsAutoTripMetricFeatureClass FDFOField;

public string LrsAutoTripMetricFeatureClass TDFOField;

public string LrsAutoTripMetricFeatureClass WDAIIDayAASField;
public string LrsAutoTripMetricFeatureClass WDEarlyAMA ASField;
public string LrsAutoTripMetricFeatureClass WDPeakAMA ASField;
public string LrsAutoTripMetricFeatureClass WDMidDayA ASField;
public string LrsAutoTripMetricFeatureClass WDPeakPMAASField;
public string LrsAutoTripMetricFeatureClass WDLatePMAASField;
public string LrsAutoTravMetricFeatureClass RIDField,

public string LrsAutoTravMetricFeatureClass FDFOField;

public string LrsAutoTravMetricFeatureClass TDFOField;

public string LrsAutoTravMetricFeatureClass WDAIlIDayA AlField;
public string LrsAutoTravMetricFeatureClass WDEarlyAMAAIField;
public string LrsAutoTravMetricFeatureClass WDPeakAMA AlField;
public string LrsAutoTravMetricFeatureClass WDMidDayAAlField,
public string LrsAutoTravMetricFeatureClass WDPeakPMA AlField;
public string LrsAutoTravMetricFeatureClass WDLatePMAAlField;
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Module 3 Summarized: RESTContext.cs (continued)

// Transit Field Properties — Weekend Metrics Fields (WE) Excluded
public string RailwayFeatureClass RIDField;

public string RailwayFeatureClass FDFOField;

public string RailwayFeatureClass TDFOField;

public string RailStationFeatureClass GeolD;

public string RailStationFeatureClass RIDField;

public string RailStationFeatureClass WDAIlIDayWaitField;

public string RailStationFeatureClass WDEarlyAMWaitField;
public string RailStationFeatureClass WDPeakAMWaitField;

public string RailStationFeatureClass WDMidDayWaitField;

public string RailStationFeatureClass WDPeakPMWaitField;

public string RailStationFeatureClass WDLatePMWaitField;

public string LrsRailTripMetricFeatureClass MetricKey;

public string LrsRailTripMetricFeatureClass RIDField;

public string LrsRailTripMetricFeatureClass FDFOField;

public string LrsRailTripMetricFeatureClass TDFOField;

public string LrsRailTripMetricFeatureClass WDAIIDayA ASField;
public string LrsRailTripMetricFeatureClass WDEarlyAMAASField,
public string LrsRailTripMetricFeatureClass WDPeakAMA ASField;
public string LrsRailTripMetricFeatureClass WDMidDayA ASField;
public string LrsRailTripMetricFeatureClass WDPeakPM A ASField,
public string LrsRailTripMetricFeatureClass WDLatePMAASField;
public string LrsRailTravMetricFeatureClass  RIDField;

public string LrsRailTravMetricFeatureClass FDFOField;

public string LrsRailTravMetricFeatureClass TDFOField;

public string LrsRailTravMetricFeatureClass WDAIlIDayA AlField;
public string LrsRailTravMetricFeatureClass WDEarlyAMA AlField;
public string LrsRailTravMetricFeatureClass WDPeakAMA AlField;
public string LrsRailTravMetricFeatureClass WDMidDayA AlField;
public string LrsRailTravMetricFeatureClass WDPeakPMAAIField;
public string LrsRailTravMetricFeatureClass WDLatePMAAlField;
public string BuslineFeatureClass RIDField;

public string BuslineFeatureClass FDFOField;

public string BuslineFeatureClass TDFOField;

public string BuslineFeatureClass WDAIIDayWaitField;

public string BuslineFeatureClass WDEarlyAMWaitField,

public string BuslineFeatureClass WDPeakAMWaitField,

public string BuslineFeatureClass WDMidDayWaitField;

public string BuslineFeatureClass WDPeakPM WaitField;

public string BuslineFeatureClass WDLatePMWaitField;

89



Module 3 Summarized: RESTContext.cs (continued)

public string BusStopFeatureClass GeolD;

public string BusStopFeatureClass RIDField;

public string TransferStationFeatureClass RIDField;

public string TransferStationFeatureClass WDAIIDayWaitField;
public string TransferStationFeatureClass WDEarlyAMWaitField;
public string TransferStationFeatureClass WDPeakAM W aitField;
public string TransferStationFeatureClass WDMidDayWaitField;
public string TransferStationFeatureClass WDPeakPMWaitField;
public string TransferStationFeatureClass WDLatePMWaitField;
public string LrsBusTripMetricFeatureClass MetricKey;

public string LrsBusTripMetricFeatureClass RIDField;

public string LrsBusTripMetricFeatureClass FDFOField;

public string LrsBusTripMetricFeatureClass TDFOField;

public string LrsBusTripMetricFeatureClass WDAIIDayA ASField;
public string LrsBusTripMetricFeatureClass WDEarlyAMAASField,
public string LrsBusTripMetricFeatureClass WDPeakAMA ASField,
public string LrsBusTripMetricFeatureClass WDMidDayA ASField;
public string LrsBusTripMetricFeatureClass WDPeakPMA ASField;
public string LrsBusTripMetricFeatureClass WDLatePMA ASField;
public string LrsBusTravMetricFeatureClass RIDField,

public string LrsBusTravMetricFeatureClass FDFOField;

public string LrsBusTravMetricFeatureClass TDFOField;

public string LrsBusTravMetricFeatureClass WDAIlIDayAAlField,
public string LrsBusTravMetricFeatureClass WDEarlyAMAAlField;
public string LrsBusTravMetricFeatureClass WDPeakAMA AlField;
public string LrsBusTravMetricFeatureClass WDMidDayAAlField,
public string LrsBusTravMetricFeatureClass WDPeakPMA AlField;
public string LrsBusTravMetricFeatureClass WDLatePMAAlField;
public string WalkwayFeatureClass RIDField;

public string WalkwayFeatureClass FDFOField;

public string WalkwayFeatureClass TDFOField;

public string LrsWalkTripMetricFeatureClass RIDField;

public string LrsWalkTripMetricFeatureClass FDFOField;

public string LrsWalkTripMetricFeatureClass TDFOField;

public string LrsWalkTripMetricFeatureClass WDAIIDayAASField;
public string LrsWalkTripMetricFeatureClass WDEarlyAMA ASField;
public string LrsWalkTripMetricFeatureClass WDPeakAMA ASField;
public string LrsWalkTripMetricFeatureClass WDMidDayAASField;
public string LrsWalkTripMetricFeatureClass WDPeakPMA ASField;
public string LrsWalkTripMetricFeatureClass WDLatePMAASField;
public string LrsWalkTravMetricFeatureClass RIDField;

public string LrsWalkTravMetricFeatureClass FDFOField;

public string LrsWalkTravMetricFeatureClass TDFOField;
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Module 3 Summarized: RESTContext.cs (continued)

public double SearchTolerance;
public [FeatureClass NARoutes;

// Relationship Class Fields

public string RailStopToTripLnRelationshipClass GeolD;
public string RailStopToTripLnRelationshipClass MetricKey;
public string BusStopToTripLnRelationshipClass GeolD;
public string BusStopToTripLnRelationshipClass MetricKey;

//--- Auto Network Dataset Elements ---------------
public [FeatureClass IrsAutoNetworkPath;

public [FeatureClass NetworkCGCAutoJunctions;
public INetworkDataset NetworkCGCAuto;
public string NetworkCGC_AutoNDName;

//--- Transit Network Dataset Elements -------------
public [FeatureClass IrsTransitNetworkPath;

public [FeatureClass NetworkCGCTransitJunctions;
public INetworkDataset NetworkCGCTransit;
public string NetworkCGC_TransitNDName;

//-- Relationship Classes --
public IRelationshipClass RailStopToTripLnRelationshipClass;
public IRelationshipClass BusStopToTripLnRelationshipClass;

//-- map server elements e

public [FeatureWorkspace LrsFeatureWorkspace;
public List<string> FtrsNames;

public int NbrOfhonMfts;

public int NbrFtrs;

public int AllLayerCount;

public int HasMcount;

public List<string> ListHasMFtrs;

public List<ITable> SaTables;

public List<IRelationshipClass2> RelClasses;
public IMapLayerInfos MapLayerInfos

{
get { return MapServer.GetServerInfo(MapServer.DefaultMapName).MapLayerInfos; }

}
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Module 4: IRESTHandler.cs

namespace LRSLocator

{

//l <summary>
/// Interface that handles incoming Rest requests
/Il </summary>
interface IRESTHandler
{
/// <summary>
/// Handles a request to a specific REST resource or operation.
//l ' The return value can be JsonObject, string, or byte[].
/Il </summary>
object HandleRequest(RESTContext context);

Module 5: JSONHelper.cs

using System.Collections.Generic;
using System.Text;
using ESRI.ArcGIS.SOESupport;

namespace LRSLocator
{
//l <summary>
/Il Json Helper Methods
/Il </summary>
public static class JSONHelper
{
public static JsonObject BuildErrorObject(int code, string message, List<string>
details = null)
{
JsonObject errorObj = new JsonObject();
errorObj.AddLong("code", code);
errorObj.AddString("message", message);
if (details == null)
{
errorObj.AddArray("details", new object[0]);

}

else

{
errorObj.AddArray("details", details. ToArray());

}
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Module 5: JSONHelper.cs (continued)

JsonObject outer = new JsonObject();
outer.AddJsonObject("error", errorObj);
return outer;

}

public static byte[] BuildErrorObjectAsBytes(int code, string message, List<string>
details = null)

{

return EncodeResponse(BuildErrorObject(code, message, details));

}

public static byte[] EncodeResponse(object response)

{

// Handle various output data types
string strRetval = null;

if (response is byte[])
{
return (byte[])response;
}
else if (response is JsonObject)
{
strRetval = ((JsonObject)response). ToJson();
}
else if (response != null)
{
strRetval = response.ToString();
}
else
{
strRetval =" {}";
}
return Encoding. UTF8.GetBytes(strRetval);
}
b
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Module 6 Summarized: LRSLocator.cs

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Collections.Specialized;
using System.Runtime.InteropServices;
using ESRI.ArcGIS.esriSystem,;

using ESRI.ArcGIS.Server;

using ESRI. ArcGIS.Geometry;

using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.Carto;

using ESRI.ArcGIS.SOESupport;
using ESRI.ArcGIS.DataSourcesGDB;

// Auto and Transit - Commute GeoCalculator

namespace LRSLocator
{
[ComVisible(true)]
[Guid("3F3E38DE-3351-4807-B1DB-9897B42DEA90")]
[ClassInterface(ClassInterfaceType.None)]
[ServerObjectExtension("MapServer",//use "MapServer" if SOE extends a Map
service and "ImageServer" if it extends an Image service.
AllCapabilities ="",
DefaultCapabilities = "",
Description = "CGC LRS Locator",
DisplayName = "LRSLocator",
Properties ="",
SupportsREST = true,
SupportsSOAP = false)]
public class LRSLocator : IServerObjectExtension, IObjectConstruct,
IRESTRequestHandler
{
private string soe_name;
private [PropertySet configProps;
private IServerObjectHelper serverObjectHelper;
private ServerLogger logger;
private IRESTRequestHandler reqHandler;
/I Auto Field Names ---
private string highwayFeatureClass RIDFieldName = "LINEARID";
private string highwayFeatureClass FDFOFieldName = "FROM_M";
private string highwayFeatureClass TDFOFieldName ="TO M";
private string _IrsTransferStreets RIDFieldName = "LINEARID";
private string _lrsTransferStreets ParkPenaltyFieldName="Parking Penalty Mins";
private string lrsAutoTripMetrics RIDFieldName = "LINEARID";
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Module 6 Summarized: LRSLocator.cs (continued)

private string lrsAutoTripMetrics FDFOFieldName = "FROM_M";

private string _lrsAutoTripMetrics TDFOFieldName ="TO M";

private string lrsAutoTripMetrics  AllDayAvgSpeed WkDay =
"WkDay AllDay AAS";

private string IrsAutoTripMetrics EarlyAMAvgSpeed WkDay =
"WkDay EarlyAM_AAS";

private string lrsAutoTripMetrics PeakAMAvgSpeed WkDay =
"WkDay PeakAM AAS";

private string lrsAutoTripMetrics MidDayAvgSpeed WkDay =
"WkDay MidDay AAS";

private string lrsAutoTripMetrics PeakPMAvgSpeed WkDay =
"WkDay PeakPM AAS";

private string lrsAutoTripMetrics LatePMAvgSpeed WkDay =
"WkDay LatePM_ AAS";

private string IrsAutoTravMetrics RIDFieldName = "LINEARID";

private string _lrsAutoTravMetrics FDFOFieldName = "FROM_M";

private string _lrsAutoTravMetrics. TDFOFieldName ="TO M";

// private string _lrsAutoTravMetrics ZoneName = "ZONE NAME";

private string _lrsAutoTravMetrics  AllDayAvginc WkDay =
"WkDay AllDay AAI";

private string _lrsAutoTravMetrics EarlyAMAvgInc WkDay =
"WkDay EarlyAM_ AAI";

private string _lrsAutoTravMetrics PeakAMAvgInc WkDay =
"WkDay PeakAM AAI";

private string _IrsAutoTravMetrics MidDayAvgInc WkDay =
"WkDay MidDay AAI";

private string IrsAutoTravMetrics PeakPMAvginc WkDay =
"WkDay PeakPM AAI";

private string _lrsAutoTravMetrics LatePMAvginc WkDay =
"WkDay LatePM_ AAI";

// - --- -

// Transit Field Names

private string railwayFeatureClass RIDFieldName = "LINEARID";

private string _railwayFeatureClass FDFOFieldName = "FROM_M";

private string railwayFeatureClass TDFOFieldName ="TO M";

private string _railstationFeatureClass_GeolD = "GeolD";

private string _railstationFeatureClass RIDFieldName = "Station Name";

private string _railstationFeatureClass AllDayWait WkDay =
"Avg AllDay WaitTime WD";

private string _railstationFeatureClass EarlyAMWait WkDay =
"Avg EarlyAM WaitTime WD";

private string _railstationFeatureClass PeakAMWait WkDay =
"Avg PeakAM WaitTime WD";

private string _railstationFeatureClass MidDayWait WkDay =
"Avg MidDay WaitTime WD";
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Module 6 Summarized: LRSLocator.cs (continued)

private string _railstationFeatureClass PeakPMWait WkDay =
"Avg PeakPM WaitTime WD";

private string _railstationFeatureClass LatePMWait WkDay =
"Avg LatePM WaitTime WD";

private string _IrsRailTripMetrics MetricKey = "MetricKey";

private string _lrsRailTripMetrics RIDFieldName = "LINEARID";

private string _IrsRailTripMetrics FDFOFieldName = "FROM_M";

private string _lrsRailTripMetrics TDFOFieldName ="TO M";

private string IrsRailTripMetrics AllDayAvgSpeed WkDay =
"WkDay AllDay AAS";

private string _IrsRailTripMetrics EarlyAMAvgSpeed WkDay =
"WkDay EarlyAM_AAS";

private string _IrsRailTripMetrics PeakAMAvgSpeed WkDay =
"WkDay PeakAM AAS";

private string _IrsRailTripMetrics MidDayAvgSpeed WkDay =
"WkDay MidDay AAS";

private string _IrsRailTripMetrics PeakPMAvgSpeed WkDay =
"WkDay PeakPM AAS";

private string _IrsRailTripMetrics LatePMAvgSpeed WkDay =
"WkDay LatePM_AAS";

private string IrsRailTravMetrics RIDFieldName = "LINEARID";

private string _lrsRailTravMetrics FDFOFieldName = "FROM_M";

private string _IrsRailTravMetrics. TDFOFieldName ="TO M";

private string _lrsRailTravMetrics AllDayAvglnc WkDay =
"WkDay AllDay AAI",

private string _lrsRailTravMetrics EarlyAMAvgInc WkDay =
"WkDay EarlyAM_AAI";

private string _lrsRailTravMetrics PeakAMAvgInc WkDay =
"WkDay PeakAM AAI";

private string _lrsRailTravMetrics MidDayAvginc WkDay =
"WkDay MidDay AAI";

private string _lrsRailTravMetrics PeakPMAvgInc WkDay =
"WkDay PeakPM AAI";

private string _IrsRailTravMetrics LatePMAvgInc WkDay =
"WkDay LatePM_ AAI";

private string _buslineFeatureClass RIDFieldName = "BusRouteID1";

private string buslineFeatureClass FDFOFieldName = "FROM_M";

private string _buslineFeatureClass TDFOFieldName = "TO_M";

private string buslineFeatureClass AllDayWait WkDay =
"Avg AllDay WaitTime WD";

private string buslineFeatureClass  EarlyAMWait WkDay =
"Avg EarlyAM WaitTime WD";

private string buslineFeatureClass PeakAMWait WkDay =
"Avg PeakAM WaitTime WD";



Module 6 Summarized: LRSLocator.cs (continued)

private string buslineFeatureClass MidDayWait WkDay =
"Avg MidDay WaitTime WD";

private string buslineFeatureClass PeakPMWait WkDay =
"Avg PeakPM WaitTime WD";

private string buslineFeatureClass LatePMWait WkDay =
"Avg LatePM WaitTime WD";

private string busstopFeatureClass_GeolD = "GeolD";

private string _busstopFeatureClass_ RIDFieldName = "BusRouteID1";

private string _transferstationFeatureClass RIDFieldName = "BusRouteID1";

private string _transferstationFeatureClass_ AllDayWait WkDay =
"Avg AllDay WaitTime WD";

private string _transferstationFeatureClass EarlyAMWait WkDay =
"Avg EarlyAM WaitTime WD",;

private string _transferstationFeatureClass PeakAMWait WkDay =
"Avg PeakAM WaitTime WD";

private string _transferstationFeatureClass MidDayWait WkDay =
"Avg MidDay WaitTime WD";

private string _transferstationFeatureClass PeakPMWait WkDay =
"Avg PeakPM_ WaitTime WD";

private string _transferstationFeatureClass LatePMWait WkDay =
"Avg LatePM_WaitTime WD";

private string _lrsBusTripMetrics MetricKey = "MetricKey";

private string lrsBusTripMetrics RIDFieldName = "BusRouteID1";

private string _lrsBusTripMetrics FDFOFieldName = "FROM_M";

private string _lrsBusTripMetrics TDFOFieldName ="TO_M";

private string _lrsBusTripMetrics  AllDayAvgSpeed WkDay =
"WkDay AllDay AAS";

private string _lrsBusTripMetrics EarlyAMAvgSpeed WkDay =
"WkDay EarlyAM AAS";

private string _lrsBusTripMetrics PeakAMAvgSpeed WkDay =
"WkDay PeakAM AAS";

private string _lrsBusTripMetrics MidDayAvgSpeed WkDay =
"WkDay MidDay AAS";

private string _lrsBusTripMetrics PeakPMAvgSpeed WkDay =
"WkDay PeakPM AAS";

private string _lrsBusTripMetrics LatePMAvgSpeed WkDay =
"WkDay LatePM AAS";

private string _lrsBusTravMetrics RIDFieldName = "BusRouteID1";

private string lrsBusTravMetrics FDFOFieldName = "FROM_M";

private string _lrsBusTravMetrics. TDFOFieldName = "TO_M";

private string lrsBusTravMetrics  AllDayAvginc WkDay =
"WkDay AllDay AAI";

private string lrsBusTravMetrics EarlyAMAvgInc WkDay =
"WkDay EarlyAM_ AAI";
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Module 6 Summarized: LRSLocator.cs (continued)

private string lrsBusTravMetrics PeakAMAvgInc WkDay =
"WkDay PeakAM AAI";

private string lrsBusTravMetrics MidDayAvginc WkDay =
"WkDay MidDay AAI";

private string _lrsBusTravMetrics PeakPMAvginc WkDay =
"WkDay PeakPM AAI";

private string lrsBusTravMetrics LatePMAvginc WkDay =
"WkDay LatePM AAI";

private string walkwayFeatureClass RIDFieldName = "RoutelD";

private string walkwayFeatureClass FDFOFieldName = "FROM_M";

private string walkwayFeatureClass TDFOFieldName = "TO M";

private string _lrsWalkTripMetrics RIDFieldName = "RouteID";

private string lrsWalkTripMetrics FDFOFieldName = "FROM_M";

private string lrsWalkTripMetrics. TDFOFieldName = "TO M";

private string lrsWalkTripMetrics  AllDayAvgSpeed WkDay =
"WkDay AllDay AAS";

private string lrsWalkTripMetrics EarlyAMAvgSpeed WkDay =
"WkDay EarlyAM_AAS";

private string lrsWalkTripMetrics PeakAMAvgSpeed WkDay =
"WkDay PeakAM AAS";

private string lrsWalkTripMetrics MidDayAvgSpeed WkDay =
"WkDay MidDay AAS";

private string lrsWalkTripMetrics PeakPMAvgSpeed WkDay =
"WkDay PeakPM AAS";

private string lrsWalkTripMetrics LatePMAvgSpeed WkDay =
"WkDay LatePM_ AAS";

private string lrsWalkTravMetrics RIDFieldName = "RouteID";

private string lrsWalkTravMetrics FDFOFieldName = "FROM_M";

private string lrsWalkTravMetrics TDFOFieldName ="TO_M";

private string _lrsWalkTravMetrics_ AllDayAvginc WkDay =
"WkDay AllDay AAI",

private string lrsWalkTravMetrics_ EarlyAMAvgInc WkDay =
"WkDay EarlyAM_AAI";

private string lrsWalkTravMetrics PeakAMAvgInc WkDay =
"WkDay PeakAM AAI";

private string lrsWalkTravMetrics MidDayAvgIinc WkDay =
"WkDay MidDay AAI";

private string lrsWalkTravMetrics PeakPMAvgInc WkDay =
"WkDay PeakPM AAI";

private string lrsWalkTravMetrics_LatePMAvgInc WkDay =
"WkDay LatePM_AAI";
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//---- Relationship Class Field Names
private string busStopToTripLnRelationshipClass GeolD = "GeolD";

private string busStopToTripLnRelationshipClass MetricKey = "MetricKey";
private string _railStopToTripLnRelationshipClass GeolD = "GeolD";

private string _railStopToTripLnRelationshipClass MetricKey = "MetricKey";
/I --- Network Dataset Names
private string cgcAutoND NetworkName = "AutoNetwork ND";

private string cgcTransitND NetworkName = "TransitNetwork ND";

private double searchTolerance = 0.00015; // version 2.0, this is approx. 55 feet

private [FeatureClass naRoutes = null;

//-- auto data model feature classes
private [FeatureClass _highwayFeatureClass = null,
private [FeatureClass _IrsAutoTripMetrics = null;
private [FeatureClass _IrsAutoTravMetrics = null;
private [FeatureClass _IrsTransferStreets = null;
private [FeatureClass _IrsAutoNetworkPath = null;
private [FeatureClass _cgcAutoNetJunctions = null;

//-- transit data model feature classes ---
private [FeatureClass _railwayFeatureClass = null;
private [FeatureClass railstationFeatureClass = null;
private [FeatureClass _IrsRailTripMetrics = null;

private [FeatureClass _IrsRailTravMetrics = null;

private [FeatureClass _buslineFeatureClass = null;
private [FeatureClass busstopFeatureClass = null;
private [FeatureClass _transferstationFeatureClass = null;
private [FeatureClass _IrsBusTripMetrics = null;

private [FeatureClass _IrsBusTravMetrics = null;

private IFeatureClass walkwayFeatureClass = null;
private [FeatureClass _IrsWalkTripMetrics = null;
private [FeatureClass IrsWalkTravMetrics = null;
private [FeatureClass _IrsTransitNetworkPath = null;
private [FeatureClass _cgcTransitNetJunctions = null;

//-- map server objects ----
private IMapServer3 mapserver = null;

private IMapServerDataAccess _dataAccess;

private [FeatureWorkspace gdWorkspace = null;

private INetworkDataset cgcAutoND = null;

private INetworkDataset cgcTransitND = null;

private IRelationshipClass busStopToTripLnRelationshipClass = null;
private IRelationshipClass _railStopToTripLnRelationshipClass = null;
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private List<string> ftrsNames = null;
private int _nbrFtrs = 0;

private int nbrOfnonMfts = 0;

private int _allLayerCount = 0;

private int _hasMcount = 0;

private List<string> listHasMFtrs = null;

private int _saTblCount = 0;

private List<string> saTblNames = null;

private IStandaloneTablelnfos tableInfos = null;
private List<ITable> saTables = null;

private List<IRelationshipClass2> relCls = null;

public LRSLocator()

{
soe_name = this.GetType().Name;
logger = new ServerLogger();

reqHandler = new SoeRestImpl(soe name, CreateRestSchemal()) as
IRESTRequestHandler;

}

#region IServerObjectExtension Members

public void Init(IServerObjectHelper pSOH)

{
serverObjectHelper = pSOH;
IMapServer3 mapServer = serverObjectHelper.ServerObject as IMapServer3;
IMapServerObjects3 mapServerObjects = mapServer as IMapServerObjects3;

IMapServerDataAccess dataAccess = (IMapServerDataAccess)mapServer;
this. mapserver = mapServer;

this. dataAccess = dataAccess;

initiateFeatures(mapServer);

}

public void Shutdown()
{

soe_name = null;
serverObjectHelper = null;
logger = null;

}

#endregion
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#region 1ObjectConstruct Members
public void Construct(IPropertySet props)
{

configProps = props;
¥
#endregion
#region IRESTRequestHandler Members
public string GetSchema()

{
return reqHandler.GetSchema();

}

public byte[] HandleRESTRequest(string Capabilities, string resourceName, string
operationName, string operationInput, string outputFormat, string requestProperties, out
string responseProperties)

{

return reqHandler.HandleRESTRequest(Capabilities, resourceName,

operationName, operationlnput, outputFormat, requestProperties, out
responseProperties);

}

#endregion

private RestResource CreateRestSchemal()

{

RestResource rootRes = new RestResource(soe name, false, RootResHandler);

RestOperation getAutoCostFromLatLongOperation = new
RestOperation("Driving Cost From LatLong",
new string[] { "Begin_Longitude", "Begin Latitude",
"End Longitude", "End Latitude", "Time Of Day", "Spatial Reference" },
new string[] { "json" },
HandleOp getAutoCostFromLatLongHandlerOperation);

RestOperation getTransitCostFromLatLongOperation = new
RestOperation("Transit Cost From LatLong",
new string[] { "Begin_Longitude", "Begin Latitude",
"End Longitude", "End Latitude", "Time Of Day", "Spatial Reference" },
new string[] { "json" },
HandleOp_getTransitCostFromLatLongHandlerOperation);

rootRes.operations.Add(getAutoCostFromLatLongOperation);
rootRes.operations.Add(getTransitCostFromLatLongOperation);
return rootRes;

}
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private byte[]
HandleOp_ getAutoCostFromLatLongHandlerOperation(NameValueCollection
boundVariables, JsonObject operationInput, string outputFormat, string
requestProperties, out string responseProperties)

{

return HandleOperation(new GetAutoCostFromLatLongHandler(),
boundVariables, operationInput, outputFormat, requestProperties, out
responseProperties);

}

private byte|[]
HandleOp_getTransitCostFromLatLongHandlerOperation(NameValueCollection
boundVariables, JsonObject operationInput, string outputFormat, string
requestProperties, out string responseProperties)

{

return HandleOperation(new GetTransitCostFromLatLongHandler(),

boundVariables, operationInput, outputFormat, requestProperties, out
responseProperties);

}

//

private byte[] RootResHandler(NameValueCollection boundVariables, string
outputFormat, string requestProperties, out string responseProperties)

{

responseProperties = null;

JsonObject result = new JsonObject();
return Encoding. UTF8.GetBytes(result.ToJson());

}

/Il A generic internal handler for all REST operations.
/Il The REST operation delegate methods should call this method to benefit
/// from uniform request processing, response formatting, and exception handling.

private byte[] HandleOperation(IRESTHandler handler,
NameValueCollection boundVariables,
JsonObject operationInput,
string outputFormat,
string requestProperties,
out string responseProperties)
{
RESTContext context = CreateContext(boundVariables, operationInput,
outputFormat, requestProperties);
return HandleHelper(handler, context, out responseProperties);
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/Il A generic internal handler for all REST resources.
/Il The REST resource delegate methods should call this method to benefit
/// from uniform request processing, response formatting, and exception handling.

private byte[] HandleResource(IRESTHandler handler,

{

NameValueCollection boundVariables,
string outputFormat,

string requestProperties,

out string responseProperties)

RESTContext context = CreateContext(boundVariables, null, outputFormat,

requestProperties);

}

return HandleHelper(handler, context, out responseProperties);

private RESTContext CreateContext(NameValueCollection boundVariables,

JsonObject operationInput,
string outputFormat,
string requestProperties)

RESTContext context = new RESTContext();
context.BoundVariables = boundVariables;
context.OperationInput = operationlnput;
context.OutputFormat = outputFormat;
context.RequestProperties = requestProperties;
context. NARoutes = this. naRoutes;

context.SearchTolerance = searchTolerance;
context.LrsFeatureWorkspace = this. gdWorkspace;

[[~=====-- Auto network analysis layer
context.NetworkCGCAuto = this. cgcAutoND;
[[~====--- Auto network dataset (edges) -------------

context.NetworkCGC AutoNDName = this. cgcAutoND NetworkName;
[[~==mmmmm- Auto network junctions
context.Network CGCAutoJunctions = this. cgcAutoNetJunctions;

[[~===mmmm- Auto solved network path

context.IrsAutoNetworkPath = this. IrsAutoNetworkPath;

//

[]=mmmmmm Transit network analysis layer --
context.NetworkCGCTransit = this. cgcTransitND;

[]~======- Transit network dataset (edges) ------ -—--

context.NetworkCGC TransitNDName = this. cgcTransitND NetworkName;
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[[~==mmmmm- Transit network junctions ----------------
context.NetworkCGCTransitJunctions = this. cgcTransitNetJunctions;
[[~==mmmmm- Transit solved network path -----
context.IrsTransitNetworkPath = this. lrsTransitNetworkPath;

//

//-- Relationship Classes ----
context.BusStopToTripLnRelationshipClass =
this. _busStopToTripLnRelationshipClass;
context.RailStopToTripLnRelationshipClass =
this. railStopToTripLnRelationshipClass;

/I -- Auto Network Feature Classes

context.HighwayFeatureClass = this. highwayFeatureClass;
context.LrsAutoTripMetricFeatureClass = this. IrsAutoTripMetrics;
context.LrsAutoTravMetricFeatureClass = this. IrsAutoTravMetrics;
context.LrsTransferStreetsFeatureClass = this. IrsTransferStreets;

/I -- Auto Network layer fields
context.HighwayFeatureClass RIDField =
this. highwayFeatureClass RIDFieldName;
context.HighwayFeatureClass FDFOField =
this. _highwayFeatureClass FDFOFieldName;
context.HighwayFeatureClass TDFOField =
this. _highwayFeatureClass TDFOFieldName;

/I -- Transfer Streets Parking Penalty fields
context.LrsTransferStreetsFeatureClass RIDField =

this. lrsTransferStreets RIDFieldName;
context.LrsTransferStreetsFeatureClass ParkPenaltyField =
this. lrsTransferStreets ParkPenaltyFieldName;

// -- Auto Trip Speed fields — Weekend Fields (WE) Excluded
context.LrsAutoTripMetricFeatureClass  RIDField =

this. lrsAutoTripMetrics RIDFieldName;
context.LrsAutoTripMetricFeatureClass FDFOField =

this. lrsAutoTripMetrics FDFOFieldName;
context.LrsAutoTripMetricFeatureClass TDFOField =

this. lrsAutoTripMetrics. TDFOFieldName;
context.LrsAutoTripMetricFeatureClass WDAIIDayAASField =
this. lrsAutoTripMetrics_ AllDayAvgSpeed WkDay;
context.LrsAutoTripMetricFeatureClass WDEarlyAMAASField =
this. lrsAutoTripMetrics_ EarlyAMAvgSpeed WkDay;
context.LrsAutoTripMetricFeatureClass WDPeakAMA ASField =
this. lrsAutoTripMetrics PeakAMAvgSpeed WkDay;
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context.LrsAutoTripMetricFeatureClass WDMidDayAASField =
this. lrsAutoTripMetrics MidDayAvgSpeed WkDay;
context.LrsAutoTripMetricFeatureClass WDPeakPMAASField =
this. lrsAutoTripMetrics PeakPMAvgSpeed WkDay;
context.LrsAutoTripMetricFeatureClass WDLatePMAASField =
this. lrsAutoTripMetrics LatePMAvgSpeed WkDay;

/I -- Auto Traveller Income fields — Weekend Fields (WE) Excluded
context.LrsAutoTravMetricFeatureClass RIDField =

this. lrsAutoTravMetrics RIDFieldName;
context.LrsAutoTravMetricFeatureClass FDFOField =

this. lrsAutoTravMetrics FDFOFieldName;
context.LrsAutoTravMetricFeatureClass TDFOField =

this. lrsAutoTravMetrics. TDFOFieldName;
context.LrsAutoTravMetricFeatureClass WDAIIDayAAlField =
this. lrsAutoTravMetrics_ AllDayAvginc WkDay;
context.LrsAutoTravMetricFeatureClass WDEarlyAMAAIField =
this. lrsAutoTravMetrics EarlyAMAvgInc WkDay;
context.LrsAutoTravMetricFeatureClass WDPeakAMAAIField =
this. lrsAutoTravMetrics PeakAMAvgInc WkDay;
context.LrsAutoTravMetricFeatureClass WDMidDayAAlField =
this. lrsAutoTravMetrics MidDayAvginc WkDay;
context.LrsAutoTravMetricFeatureClass WDPeakPMAAIField =
this. lrsAutoTravMetrics PeakPMAvgInc WkDay;
context.LrsAutoTravMetricFeatureClass WDLatePMAAIField =
this. lrsAutoTravMetrics_LatePMAvgIinc WkDay;

/I -- Transit Network Feature Classes

context.RailwayFeatureClass = this. railwayFeatureClass;
context.RailStationFeatureClass = this._railstationFeatureClass;
context.LrsRailTripMetricFeatureClass = this. lrsRailTripMetrics;
context.LrsRailTravMetricFeatureClass = this. IrsRailTravMetrics;
context.BuslineFeatureClass = this. buslineFeatureClass;
context.BusStopFeatureClass = this. busstopFeatureClass;

context. TransferStationFeatureClass = this._transferstationFeatureClass;
context.LrsBusTripMetricFeatureClass = this. lrsBusTripMetrics;
context.LrsBusTravMetricFeatureClass = this. IrsBusTravMetrics;
context. WalkwayFeatureClass = this. walkwayFeatureClass;
context.LrsWalkTripMetricFeatureClass = this. IrsWalkTripMetrics;
context.LrsWalkTravMetricFeatureClass = this. IrsWalkTravMetrics;

// -- Transit Network layer fields

context.RailwayFeatureClass RIDField =
this. railwayFeatureClass RIDFieldName;
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context.RailwayFeatureClass FDFOField =
this. railwayFeatureClass FDFOFieldName;
context.RailwayFeatureClass TDFOField =
this. railwayFeatureClass TDFOFieldName;
context.BuslineFeatureClass RIDField =

this. buslineFeatureClass  RIDFieldName;
context.BuslineFeatureClass FDFOField =
this. buslineFeatureClass FDFOFieldName;
context.BuslineFeatureClass TDFOField =
this. buslineFeatureClass TDFOFieldName;
context. WalkwayFeatureClass RIDField =
this. walkwayFeatureClass RIDFieldName;
context. WalkwayFeatureClass FDFOField =
this. walkwayFeatureClass FDFOFieldName;
context. WalkwayFeatureClass TDFOField =
this. walkwayFeatureClass TDFOFieldName;

// -- Transit Transfer Wait Time fields — Weekend Fields (WE) Excluded
context.RailStationFeatureClass WDAIlIDayWaitField =
this. railstationFeatureClass_AllDayWait WkDay;
context.RailStationFeatureClass WDEarlyAMWaitField =
this. railstationFeatureClass_ EarlyAMWait WkDay;
context.RailStationFeatureClass WDPeakAMWaitField =
this. railstationFeatureClass PeakAMWait WkDay;
context.RailStationFeatureClass WDMidDayWaitField =
this. railstationFeatureClass MidDayWait WkDay;
context.RailStationFeatureClass WDPeakPMWaitField =
this. railstationFeatureClass PeakPMWait WkDay;
context.RailStationFeatureClass WDLatePMWaitField =
this. railstationFeatureClass LatePMWait WkDay;
context.BuslineFeatureClass WDAIIDayWaitField =

this. buslineFeatureClass AllDayWait WkDay;
context.BuslineFeatureClass WDEarlyAMWaitField =
this. buslineFeatureClass_EarlyAMWait WkDay;
context.BuslineFeatureClass WDPeakAMWaitField =
this. buslineFeatureClass Peak AMWait WkDay;
context.BuslineFeatureClass WDMidDayWaitField =
this. buslineFeatureClass MidDayWait WkDay;
context.BuslineFeatureClass WDPeakPM WaitField =
this. buslineFeatureClass PeakPMWait WkDay;
context.BuslineFeatureClass WDLatePMWaitField =
this. buslineFeatureClass LatePMWait WkDay;
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context. TransferStationFeatureClass RIDField =

this. transferstationFeatureClass RIDFieldName;

context. TransferStationFeatureClass WDAIIDayWaitField =
this. transferstationFeatureClass AllDayWait WkDay;
context. TransferStationFeatureClass WDEarlyAMWaitField =
this. transferstationFeatureClass EarlyAMWait WkDay;
context. TransferStationFeatureClass WDPeakAMWaitField =
this. transferstationFeatureClass Peak AMWait WkDay;
context. TransferStationFeatureClass WDMidDayWaitField =
this. transferstationFeatureClass MidDayWait WkDay;
context. TransferStationFeatureClass WDPeakPMWaitField =
this. transferstationFeatureClass PeakPMWait WkDay;
context. TransferStationFeatureClass WDLatePMWaitField =
this. transferstationFeatureClass LatePMWait WkDay;

// == Transit Trip Speed fields — Weekend Fields (WE) Excluded
context.RailStationFeatureClass GeolD = this. railstationFeatureClass GeolD;
context.RailStationFeatureClass RIDField =

this. railstationFeatureClass  RIDFieldName;
context.LrsRailTripMetricFeatureClass MetricKey =
this._IrsRailTripMetrics MetricKey;
context.LrsRailTripMetricFeatureClass_ RIDField =

this. IrsRailTripMetrics RIDFieldName;
context.LrsRailTripMetricFeatureClass FDFOField =

this. IrsRailTripMetrics FDFOFieldName;
context.LrsRailTripMetricFeatureClass TDFOField =

this. IrsRailTripMetrics TDFOFieldName;
context.LrsRailTripMetricFeatureClass WDAIIDayAASField =
this. IrsRailTripMetrics AllDayAvgSpeed WkDay;
context.LrsRailTripMetricFeatureClass WDEarlyAMAASField =
this. IrsRailTripMetrics EarlyAMAvgSpeed WkDay;
context.LrsRailTripMetricFeatureClass WDPeakAMAASField =
this. IrsRailTripMetrics PeakAMAvgSpeed WkDay;
context.LrsRailTripMetricFeatureClass WDMidDayAASField =
this. IrsRailTripMetrics MidDayAvgSpeed WkDay;
context.LrsRailTripMetricFeatureClass WDPeakPMAASField =
this. IrsRailTripMetrics PeakPMAvgSpeed WkDay;
context.LrsRailTripMetricFeatureClass WDLatePMAASField =
this. IrsRailTripMetrics LatePMAvgSpeed WkDay;

context.BusStopFeatureClass GeolD = this. busstopFeatureClass GeolD;

context.BusStopFeatureClass RIDField =
this. busstopFeatureClass RIDFieldName;
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context.LrsBusTripMetricFeatureClass MetricKey =

this. lrsBusTripMetrics MetricKey;
context.LrsBusTripMetricFeatureClass  RIDField =

this. lrsBusTripMetrics RIDFieldName;
context.LrsBusTripMetricFeatureClass FDFOField =

this. lrsBusTripMetrics FDFOFieldName;
context.LrsBusTripMetricFeatureClass TDFOField =

this. lrsBusTripMetrics. TDFOFieldName;
context.LrsBusTripMetricFeatureClass WDAIIDayA ASField =
this. lrsBusTripMetrics  AllDayAvgSpeed WkDay;
context.LrsBusTripMetricFeatureClass WDEarlyAMAASField =
this. lrsBusTripMetrics EarlyAMAvgSpeed WkDay;
context.LrsBusTripMetricFeatureClass WDPeakAMAASField =
this. lrsBusTripMetrics PeakAMAvgSpeed WkDay;
context.LrsBusTripMetricFeatureClass WDMidDayAASField =
this. lrsBusTripMetrics MidDayAvgSpeed WkDay;
context.LrsBusTripMetricFeatureClass WDPeakPMAASField =
this. lrsBusTripMetrics PeakPMAvgSpeed WkDay;
context.LrsBusTripMetricFeatureClass WDLatePMAASField =
this. lrsBusTripMetrics LatePMAvgSpeed WkDay;
context.LrsWalkTripMetricFeatureClass RIDField =

this. lrsWalkTripMetrics RIDFieldName;
context.LrsWalkTripMetricFeatureClass FDFOField =

this. lrsWalkTripMetrics FDFOFieldName;
context.LrsWalkTripMetricFeatureClass TDFOField =

this. lrsWalkTripMetrics. TDFOFieldName;
context.LrsWalkTripMetricFeatureClass WDAIIDayA ASField =
this. lrsWalkTripMetrics_ AllDayAvgSpeed WkDay;
context.LrsWalkTripMetricFeatureClass WDEarlyAMAASField =
this. lrsWalkTripMetrics_ EarlyAMAvgSpeed WkDay;
context.LrsWalkTripMetricFeatureClass WDPeakAMA ASField =
this. lrsWalkTripMetrics PeakAMAvgSpeed WkDay;
context.LrsWalkTripMetricFeatureClass WDMidDayAASField =
this. lrsWalkTripMetrics MidDayAvgSpeed WkDay;
context.LrsWalkTripMetricFeatureClass WDPeakPMAASField =
this. lrsWalkTripMetrics PeakPMAvgSpeed WkDay;
context.LrsWalkTripMetricFeatureClass WDLatePMAASField =
this. lrsWalkTripMetrics LatePMAvgSpeed WkDay;

// -- Trnasit Traveler Income fields — Weekend Fields (WE) Excluded
context.LrsRailTravMetricFeatureClass RIDField =

this. lrsRailTravMetrics RIDFieldName;
context.LrsRailTravMetricFeatureClass FDFOField =

this. lrsRailTravMetrics FDFOFieldName;
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context.LrsRailTravMetricFeatureClass TDFOField =

this. lrsRailTravMetrics TDFOFieldName;
context.LrsRailTravMetricFeatureClass WDAIIDayAAlField =
this. IrsRailTravMetrics_ AllDayAvginc WkDay;
context.LrsRailTravMetricFeatureClass WDEarlyAMAAIField =
this. IrsRailTravMetrics EarlyAMAvgInc WkDay;
context.LrsRailTravMetricFeatureClass WDPeakAMAAIField =
this. IrsRailTravMetrics PeakAMAvgInc WkDay;
context.LrsRailTravMetricFeatureClass WDMidDayAAlField =
this. IrsRailTravMetrics MidDayAvglnc WkDay;
context.LrsRailTravMetricFeatureClass WDPeakPMA AlField =
this. lrsRailTravMetrics PeakPMAvgInc WkDay;
context.LrsRailTravMetricFeatureClass WDLatePMAAIField =
this. lrsRailTravMetrics LatePMAvgInc WkDay;
context.LrsBusTravMetricFeatureClass RIDField =

this. lrsBusTravMetrics RIDFieldName;
context.LrsBusTravMetricFeatureClass FDFOField =

this. lrsBusTravMetrics FDFOFieldName;
context.LrsBusTravMetricFeatureClass TDFOField =

this. lrsBusTravMetrics TDFOFieldName;
context.LrsBusTravMetricFeatureClass WDAIIDayAAlField =
this. lrsBusTravMetrics_ AllDayAvginc WkDay;
context.LrsBusTravMetricFeatureClass WDEarlyAMAAIField =
this. lrsBusTravMetrics EarlyAMAvgInc WkDay;
context.LrsBusTravMetricFeatureClass WDPeakAMAAIField =
this. lrsBusTravMetrics PeakAMAvgInc WkDay;
context.LrsBusTravMetricFeatureClass WDMidDayAAlIField =
this. lrsBusTravMetrics MidDayAvginc WkDay;
context.LrsBusTravMetricFeatureClass WDPeakPMAAIField =
this. lrsBusTravMetrics PeakPMAvgInc WkDay;
context.LrsBusTravMetricFeatureClass WDLatePMAAIField =
this. lrsBusTravMetrics LatePMAvgInc WkDay;
context.LrsWalkTravMetricFeatureClass  RIDField =

this. lrsWalkTravMetrics RIDFieldName;
context.LrsWalkTravMetricFeatureClass FDFOField =

this. lrsWalkTravMetrics FDFOFieldName;
context.LrsWalkTravMetricFeatureClass TDFOField =

this. lrsWalkTravMetrics TDFOFieldName;
context.LrsWalkTravMetricFeatureClass WDAIIDayAAlIField =
this. lrsWalkTravMetrics AllDayAvginc WkDay;
context.LrsWalkTravMetricFeatureClass WDEarlyAMA AlField =
this. lrsWalkTravMetrics EarlyAMAvgInc WkDay;
context.LrsWalkTravMetricFeatureClass WDPeakAMA AlField =
this. lrsWalkTravMetrics PeakAMAvgInc WkDay;
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}

context.LrsWalkTravMetricFeatureClass WDMidDayAAlField =
this. lrsWalkTravMetrics MidDayAvgInc WkDay;
context.LrsWalkTravMetricFeatureClass WDPeakPMAAIField =
this. lrsWalkTravMetrics PeakPMAvgInc WkDay;
context.LrsWalkTravMetricFeatureClass WDLatePMAAIField =
this. lrsWalkTravMetrics LatePMAvglnc WkDay;

/I -- Relationship Class Fields
context.RailStopToTripLnRelationshipClass GeolD =
this. railStopToTripLnRelationshipClass GeolD;
context.RailStopToTripLnRelationshipClass MetricKey =
this. railStopToTripLnRelationshipClass MetricKey;
context.BusStopToTripLnRelationshipClass GeolD =
this._busStopToTripLnRelationshipClass_GeolD;
context.BusStopToTripLnRelationshipClass MetricKey =
this._busStopToTripLnRelationshipClass MetricKey;

context. NbrOfnonMfts = this. nbrOfnonMfts;
context.NbrFtrs = this. nbrFtrs;
context.FtrsNames = this. ftrsNames;
context.AllLayerCount = this. allLayerCount;
context.HasMcount = this. hasMcount;
context.ListHasMFtrs = this. listHasMFtrs;
context.SaTables = this. saTables;
context.RelClasses = this. relCls;

context.MapServer = this. mapserver;

return context;

//l' A generic internal handler for all REST resources and operations.

private byte[] HandleHelper(IRESTHandler handler, RESTContext context, out

string responseProperties)

{

object response = null;

try

{
response = handler.HandleRequest(context);
responseProperties = context.ResponseProperties;

}

catch (Exception e)

{

response = null; // JsonBuilder.BuildErrorObject(500, e.Message);

110



Module 6 Summarized: LRSLocator.cs (continued)

responseProperties = null;
Console.WriteLine(e.Message);
// throw e;

}

return JSONHelper.EncodeResponse(response);

}

private void initiateFeatures(IMapServer3 mapServer)

{
IMapServerDataAccess dataAccess = (IMapServerDataAccess)mapServer;
IMapServerInfo msinfo =
mapServer.GetServerInfo(mapServer.DefaultMapName);

IMapLayerInfos layerInfos = msInfo.MapLayerInfos;
this. mapserver = mapServer;
this. dataAccess = dataAccess;

//--Checkpoint
int layerCount = layerInfos.Count;

int featureLyrCount = 0;

List<string> fcNames = new List<string>();

int nonMFtrsCount = 0;

int hasMCount = 0;

int allLayersCount = layerCount;

List<string> saTbINames = new List<string>();
List<string> listOfMftrs = new List<string>();
//

for (int j = 0; j < layerCount; j++)

{
IMapLayerInfo layerInfo = layerInfos.get Element(j);

if (layerInfo.IsFeatureLayer)

{

featureLyrCount++;

IFeatureClass featureClass =
(IFeatureClass)dataAccess.GetDataSource(mapServer.DefaultMapName, layerInfo.ID);
IGeometryDef geometryDef =
featureClass.Fields.get Field(featureClass.FindField(featureClass.ShapeFieldName)).Ge
ometryDef;

fcNames.Add(featureClass.AliasName);
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Module 6 Summarized: LRSLocator.cs (continued)

if (featureClass != null)

{
if (geometryDef.HasM)

{
hasMCount++;
listOfMftrs.Add(featureClass.AliasName);

if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.Auto TAZ Network") //1
{
// ' Use this as Route FeatureClass
this. _highwayFeatureClass = featureClass;
H
else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.AutoTripMetrics") //2
{

this. IrsAutoTripMetrics = featureClass;
}
else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.AutoTravMetrics") //3
{

this. lrsAutoTravMetrics = featureClass;
b
else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.Rail TAZ Network") /4
{

this. railwayFeatureClass = featureClass;
}
else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.RailTripMetrics") //5
{

this. IrsRailTripMetrics = featureClass;

}

else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.RailTravellerMetrics") //6

{

this. IrsRailTravMetrics = featureClass;

}

else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.Bus TAZ Network") //7

{

this. buslineFeatureClass = featureClass;

}
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Module 6 Summarized: LRSLocator.cs (continued)

else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.BusTripMetrics") //8
{

this. lrsBusTripMetrics = featureClass;
b
else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.BusTravellerMetrics") //9
{

this. IrsBusTravMetrics = featureClass;
}
else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.Ped TAZ Network") /10
{

this. walkwayFeatureClass = featureClass;
b
else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.PedTripMetrics") /11
{

this. IrsWalkTripMetrics = featureClass;
}
else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.PedTravellerMetrics") //12
{

this. IrsWalkTravMetrics = featureClass;

}

else

{

this. naRoutes = featureClass;

b
//System.Diagnostics.Debugger.Break();

}

else
{
if ((featureClass.AliasName != "Stops") || (featureClass.AliasName !=
"Barriers") || (featureClass.AliasName != "PolylineBarriers") || (featureClass.AliasName
I="PolygonBarriers"))
{
if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.Transfer Street Stations") //13
{
nonMFtrsCount++;
this. IrsTransferStreets = featureClass;

}
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Module 6 Summarized: LRSLocator.cs (continued)

if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.Rail TAZ Stations") /14
{
nonMFtrsCount++;
this._railstationFeatureClass = featureClass;
h
if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.Bus TAZ Stops") //15
{
nonMFtrsCount++;
this. busstopFeatureClass = featureClass;
h
if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.Transit Transfer Stations") //16
{
nonMFtrsCount+-+;
this. transferstationFeatureClass = featureClass;
b
else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.AutoNetwork ND Junctions") /17
{
nonMFtrsCount++;
this. cgcAutoNetJunctions = featureClass;
b
else if (featureClass.AliasName ==
"SANDBOX STATIC.GIS.TransitNetwork ND Junctions") //18

{
nonMFtrsCount++;
this. cgcTransitNetJunctions = featureClass;
}
else
{
this. naRoutes = featureClass;
}
b
}
}// end if Feature

}
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Module 6 Summarized: LRSLocator.cs (continued)

if (layerInfo.Name == "RouteAuto")

{

INetworkDataset nwkAutoDataset =
(INetworkDataset)dataAccess.GetDataSource(mapServer.DefaultMapName,

layerInfo.ID);
this. cgcAutoND = nwkAutoDataset;
h
else if (layerInfo.Name == "RouteTransit")
{

INetworkDataset nwkTransitDataset =
(INetworkDataset)dataAccess.GetDataSource(mapServer.DefaultMapName,
layerInfo.ID);

this. cgcTransitND = nwkTransitDataset;

}

this. nbrFtrs = featureLyrCount;

this. ftrsNames = fcNames;

this. nbrOfnonMfts = nonMFtrsCount;

this. hasMcount = hasMCount;

this. allLayerCount = allLayersCount;

this. listHasMFtrs = listOfMftrs;
}
IMapServerObjects3 msObj = (IMapServerObjects3)mapServer;
//get map server info
IMapServerInfo3 msInfo3 = (IMapServerInfo3)msInfo;
IStandaloneTablelnfos tableInfos = msInfo3.StandaloneTablelnfos;
this. _tableInfos = tableInfos;

//get any standalone table info collection
List<ITable> saTables = new List<ITable>();
List<IRelationshipClass2> relClasses = new List<IRelationshipClass2>();
ITable table = null;
IRelationshipClass2 relCIl = null;
if (tableInfos != null)
{
int tableCount = tableInfos.Count;
int? tableID = null;
for (int j = 0; j < tableCount; j++)
{
IStandaloneTablelnfo tablelnfo = tableInfos.get Element(j);
//tableInfo.Name ="";
saTblNames.Add(tableInfo.Name);
tableID = tableInfo.ID;
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Module 6 Summarized: LRSLocator.cs (continued)

if (tableID != null)
{

table = msObj.get StandaloneTable(mapServer.DefaultMapName,
Convert.Tolnt16(tableID));

saTables.Add(table);

relCl = (IRelationshipClass2)table;

relClasses.Add(relCl);

b
}
}

this. saTables = saTables;

int standAloneTablesCount = tableInfos.Count;
this. saTblCount = tableInfos.Count; ;

this. saTbINames = saTbINames;

this. relCls = relClasses;
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Module 7: RouteFromInputPoint.cs

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Runtime.Serialization;
using ESRI.ArcGIS.Geometry;

using ESRI. ArcGIS.Geodatabase;

using ESRI.ArcGIS.esriSystem,;

using ESRI.ArcGIS.SOESupport;

using ESRI. ArcGIS.SystemUI;

using ESRI.ArcGIS.Display;

using ESRI.ArcGIS.Server;

using ESRI.ArcGIS.Output;

using ESRI.ArcGIS.GISClient;

using ESRI.ArcGIS.DataSourcesFile;
using ESRI.ArcGIS.DataSourcesGDB;
using ESRI.ArcGIS.DataSourcesOleDB;
using ESRI.ArcGIS.DataSourcesRaster;
using ESRI.ArcGIS.GeoDatabaseDistributed;
using ESRI.ArcGIS.Carto;

using ESRI.ArcGIS.Geoprocessing;
using ESRI. ArcGIS.NetworkAnalyst;

namespace LRSLocator

{

class RouteFromInputPoints

{
[DataMember(Order = 0, Name = "network path")]
public [Feature network path { get; set; }

public void SimpleRouteSetupSolveAndSaveWorkflow(INetworkDataset
netDataset, List<IPoint> inputPoints, RESTContext context)
{
[FeatureWorkspace imFtWorkspace =
(IFeatureWorkspace)CreateInMemoryWorkspace();
[FeatureClass wayPointFC = CreateFeatureClassFromPoints(imFtWorkspace,
inputPoints);

//var networkDataset = context.networkTxdot, as the input parameter for the

class method, getting the object from the RESTContext/Context Object Model-COM.
var networkDataset = netDataset;
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Module 7: RouteFromInputPoint.cs (continued)

var deNetworkDataset = ((IDatasetComponent)networkDataset). DataElement as
IDENetworkDataset;

// Set up your solver
var routeSolver = new NARouteSolverClass() as INASolver;
INASolverSettings naSolverSettings = routeSolver as INASolverSettings;

// Set up your context by creating it, then binding it to a network dataset.

var context = routeSolver.CreateContext(deNetworkDataset, "Path from points
Context") as INAContext;

var contextEdit = context as INAContextEdit;

IGPMessages gpMessages = new GPMessagesClass();

contextEdit.Bind(networkDataset, gpMessages);

/I Load new stops using the input feature class and a NAClassLoader.

var inputStopsFClass = wayPointFC;

var cursor = inputStopsFClass.Search(null, false) as ICursor;

var classLoader = new NAClassLoaderClass() as INAClassLoader;

classLoader.NAClass = context. NAClasses.get ItemByName("Stops") as
INAClass;

classLoader.Locator = context.Locator;

int rowsInCursor = 0;

int rowsLocated = 0;

classLoader.Load(cursor, null, ref rowsInCursor, ref rowsLocated);

//'Solve the route using current settings
/I And check the GPMessages after a successful solve to see if there are any
warning or informational messages.

try
{

bool IsPartialSolution = routeSolver.Solve(context, gpMessages, null);

}

catch (Exception e)

{

string ex = e.ToString();
Console.WriteLine(e.ToString());

}

// Get the FeatureClass containing the route results.

// Iterate over the route class features' attribute values to examine the results.

var routesClass = context. NAClasses.get ItemByName("Routes") as
IFeatureClass;
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Module 7: RouteFromInputPoint.cs (continued)

IFeature resultFC = null;
[FeatureCursor pFeatureCursor = routesClass.Search(null, false);
[Feature pFeature;
int numl = 0;
while ((pFeature = pFeatureCursor.NextFeature()) != null)
{
resultFC = pFeature;
numl++;

}

this.network path = resultFC;

//--SAVE THE NETWORK PATH TO LOCAL DRIVE FOR VISUAL
INTERPRETATION OF THE RESULT----
string outputFilePath = @"\\<full machine

name>\\D§\Projects\CGCLocator\Output\AutoRte.lyr";

}

// -—--

try

{
INALayer3 naLayer = routeSolver.CreateLayer(context) as INALayer3;
ILayerFile layerfile = new LayerFileClass();
layerfile.New(outputFilePath);
layerfile.ReplaceContents(nalLayer as [Layer);
layerfile.Save();
layerfile.Close();

}

catch (Exception e)

{

string ex = e.ToString();
Console.WriteLine(e.Message);

}
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Module 7: RouteFromInputPoint.cs (continued)

private IWorkspace CreateInMemoryWorkspace()

{
try
{
/I Create an in-memory workspace factory.
IWorkspaceFactory workspaceFactory = new InMemoryWorkspaceFactory()
as [WorkspaceFactory;

/I Create a new in-memory workspace. This returns a name object.

IWorkspaceName workspaceName = workspaceFactory.Create(string. Empty,
"MyWorkspace", null, 0);

IName name = (IName)workspaceName;

// Open the workspace through the name object.
IWorkspace workspace = (IWorkspace)name.Open();

return workspace;

}

catch (Exception e)

{
Console.WriteLine(e.Message);
throw e;

}

}
//

public static [FeatureClass CreateFeatureClassFromPoints(IFeatureWorkspace
featWorkspace, List<IPoint> inputPts)

{

String fcName = "StopPoints";

IFieldsEdit ptFieldsEdit = new FieldsClass();
IFieldEdit ptField = new FieldClass();

[Point pt = inputPts[0];
ISpatialReference ptSR = pt.SpatialReference;

ptField = new FieldClass();

ptField. Type 2 = esriFieldType.esriFieldTypeOID;
ptField.Name 2 ="OBJECTID";
ptField.AliasName 2 ="OBJECTID";
ptFieldsEdit. AddField(ptField);
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Module 7: RouteFromInputPoint.cs (continued)

IGeometryDefEdit ptGeomDef;

ptGeomDef = new GeometryDefClass();

ptGeomDef.GeometryType 2 = esriGeometryType.esriGeometryPoint;
ptGeomDef.SpatialReference 2 = ptSR;

ptGeomDef.HasZ 2 = false;

ptField = new FieldClass();

ptField.Name 2 ="SHAPE";

ptField.AliasName 2 ="SHAPE";

ptField.Type 2 = esriFieldType.esriFieldTypeGeometry;
ptField.GeometryDef 2 = ptGeomDef;

ptFieldsEdit. AddField(ptField);

ptField = new FieldClass();

ptField.Name 2 = "stopOrder";

ptField.AliasName 2 = "stopOrder";

ptField. Type 2 = esriFieldType.esriFieldTypelnteger;
ptFieldsEdit. AddField(ptField);

[FeatureClass ptFC = featWorkspace.CreateFeatureClass(fcName, ptFieldsEdit,
null, null, esriFeatureType.esriFTSimple, "SHAPE", "");

// Add data to Feature class setting the "stopOrder" field with position order of
respecively to the position in the list

int position = 0;

int ptldx;

foreach (IPoint pnt in inputPts)

{
position++;
[Feature stopFeature = ptFC.CreateFeature();
stopFeature.Shape = pnt;
ptldx = stopFeature.Fields.FindField("stopOrder");
stopFeature.set Value(ptldx, position);
stopFeature.Store();

}

return ptFC;
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