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Abstract 

As our country grapples with the long term negative effects that traditional electrical generation 

methods have on the environment, such as nuclear with a 50 year average decommissioning 

time, natural gas and the methane emissions associated with it, and coal which is not clean, there 

is a renewed focus on solar energy. This renewed focus is partially fueled by advancements in 

photovoltaic cell technology and favorable regulatory conditions, resulting in a decrease of solar 

energy production costs. This has led to the installed solar energy production capacity of the 

United States to grow from 7.33 gigawatts in 2012 to 51.45 gigawatts in 2018. As the industry 

matures and solar energy is adopted in new markets, the available land suitable for development 

has subsequently been reduced. A result of this is the industry has shifted its focus to identify 

suitable sites in areas that have been otherwise overlooked or discounted. To remain competitive, 

potential sites must be screened to identify site conditions that can increase costs or render a site 

undevelopable. This project identified that OBIA can successfully be used to identify a multitude 

of features that are encountered during the development of USSE projects, but the complexity 

and variability of the process makes it currently unsuitable to be deployed at scale. OBIA can 

however, be used to assess current site suitability analyses by generating otherwise unknown 

attribute data about a site to target locations wherein to look.   
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Chapter 1 Introduction  

A combination of advancements in photovoltaic (PV) cell performance, shifting cultural attitudes 

towards the use of fossil fuels, government mandates, and a reduction in capital expenditures has 

created an energy market in which electricity generated by PV can compete on cost. In the first 

quarter of 2020, a record 3.6GW of solar PV was installed with another 5.4GW of utility scale 

projects being announced. Cumulatively 14.4GW of utility scale solar is expected to be installed 

in the United States in 2020 (SEIA, 2020). Simultaneously, the cost to develop utility-scale PV 

has decreased by two-thirds since 2009 (U.S. Department of Energy, 2017). With the increase in 

installation numbers, comes increased competition to identify and acquire land suitable for 

projects up to thousands of acres in size. 

Typically, identifying ideal sites for USSE developments is a straightforward process 

when there is ample land available. Criteria like aspect, slope, solar radiation, and zoning are 

available as sources of data readily inputted into a GIS, however, this process does not apply to 

all situations. When evaluating sites in areas categorized by less favorable conditions, such as 

hilly terrain or areas prone to flooding, traditional methods used to identify sites with 

conditionals suitable for the development of utility scale PV becomes a time-intensive process. 

This is a result of the need to manually evaluate and vet each site for surface conditions and 

possible natural or manmade features that may be present, but are not accounted for in the vector 

data employed. Manual review is done to identify features on sites such as tree stands, wetlands, 

buildings, or roads; that lead to increased construction costs and restricts where on the sites 

USSE can be developed. While it may seem relatively straightforward to identify sites, a 

decrease in ideal sites requires a more precise approach to site selection, which has historically 

been done manually. This research aims to identify whether object-based image analysis can be 
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used to accurately identify common construction impediments encountered on less-viable USSE 

sites, and if so, provide a conceptual workflow on how one could incorporate these findings into 

their site selection process.   

The term utility-scale has multiple definitions (SEIA, 2020; U.S. Department of Energy, 

2017). The Solar Energy Industries Association (SEIA) defines utility-scale PV as any project 

that has an offtake agreement with a utility, regardless of project size. Conversely, financiers of 

PV development define utility-scale by the amount of investment required to construct the site. 

For the purposes of clarity, this research defines utility-scale is as a PV development that is 5mw 

or larger in size (US Department of Energy, 2012). Each megawatt (MW) produced requires, on 

average, 8-10 acres of developable land (Mulvaney, 2019). 

1.1. Site Review Process 

A typical USSE site selection process is relatively standardized, which is convenient to 

those involved. However it lacks accuracy by relying on datasets such as the National Wetland 

Inventory (NWI) and the Federal Emergency Management Agency (FEMA) 100 Year 

Floodplains that are dated. Since 1996 the Fish and Wildlife Service (FWS) has been updating 

the NWI at a rate of 2% of the total land area of the lower 48 states per year (US Fish and 

Wildlife Service, n.d.). Research that closely parallels this project, conducted in 2019, relies on 

wetland datasets from 2002 and a landside risk dataset from 1991 in the site selection process 

(Guaita-Pradas et al, 2019). These data sets have since become outdated, as the wetland 

morphology has changed significantly in years since. As a result, inaccuracies are introduced 

into models. 

The site selection process begins with the exclusion of land deemed undevelopable. The 

reason land can be deemed undevelopable can be grouped into two categories, topographic and 
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regulatory. Topographic constraints on development include aspect, slope, soil composition, and 

wetlands. Regulatory constraints include protected lands, areas of environmental concern, and 

zoning. Undevelopable land is removed from the original parcel geometry resulting in a new 

parcel geometry that is representative of only the developable areas within a given site. This is 

done by loading parcel data into a model created in ArcGIS Model Builder that erases wetlands, 

floodplains and slope greater than 10%. In this example two parcels from the study area were 

selected and used as the input to the model. The output of the model is the new parcel geometry 

with only the developable land remaining. Figure one illustrates this process, it is important to 

note that the total developable land decreased from 227.6 acres to 194.67 acres for Example A 

and from 241.50 acres to 184.67 acres for Example B. This reduction of available developable 

land only accounts for the above criteria and falls short of fully quantifying the sites conditions 

such as roads, buildings, vegetation, irrigation channels and retention ponds. 
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Figure 1: Example sites A and B’s parcel boundary (white) is used as the input for the model. 

The model removes slope greater than 10%, NWI, and FEMA 100 year floodplain from the 

parcel’s geometry.. The output of this process only leaves the remaining developable land (rust 

color) remaining.  

 Figure 1 illustrates one problem with the current selection process. In Figure 1, Example 

A has 194.67 acres of developable land after the initial screen compared to Example B with 

184.69. However, the unaccounted for tree stands intersecting the developable land in Example 

A create a break along the eastern edge of the parcel. To mitigate the impact of the trees, the 
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developer would need to clear them in advance. If this was not an option, the site would either 

have to be designed around the trees or built at a smaller scale, by not developing the smaller of 

the two areas. All of the options available increase capital expenditures or result in a smaller 

project, thus producing less revenue. This is also true of buildings and roads, although in these 

cases the impediments cannot always be moved or cleared. The earlier in the development 

process these features are identified, the earlier they can be accounted for to allow for accurate 

cost estimation and site planning to be conducted.  

 The number of potential sites remaining after the removal of the slope, wetlands, and 

floodplains varies and is determined by the size of the area of the target market, the size of the 

project, and the complexities of the local topography. A site for a 5MW project requires 

approximately 50 developable acres, while a 50MW project requires upwards of 500 developable 

acres. Due to this, there are fewer potential sites as a project size increases. That said, these 

numbers run in the thousands. It is necessary to run the models at this scale because not every 

landowner is willing to sell or lease their land for USSE development; it can be assumed that 

only 5-10% of contacted landowners will be interested. Of the projects that make it past this 

initial phase, still less will make it through the full development cycle and be placed in service 

(Mulligan, 2020).  

When faced with making decisions that are difficult to automate, a GIS technician uses 

their spatial reasoning and logical assumptions to assess the impacts, not only of a single feature, 

but all of a site’s features in relation to one another. Two sites of 100 acres can both have the 

same number of buildings, roads, and trees, with only one being be suitable for development. For 

example, one site may have a road running along the property line to a home in the corner of the 

property, versus a site with a road that leads to a house surrounded by trees situated in the middle 
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of a property. In the first case, the layout of the features does not impact the overall site. By 

relying on human reasoning and spatial analyses, the process gains precision and the GIS-based 

site selection process is improved upon. However the process cannot be scaled or replicated, 

which makes it time-consuming in nature, potentially causing delays in the selection process. 

Further, human judgement, while it has the potential to increase precision, can also introduce the 

element of human error. Ultimately, no two GIS technicians will evaluate a site’s suitability in 

the same way, even though they may agree on many of the key characteristics and concepts of 

the site selection process 

1.1.1. Incorporating Object Based Image Analysis  

 During the site selection process, a GIS technician is identifying, categorizing, and 

quantifying the objects present on the site based on shape, texture, spectral properties, and spatial 

relationship to other objects present (Rizvi et al, 2019). The goal of this research is to identify if 

this process can be mimicked by using OBIA to identify and classify objects, rather than being 

done manually by a GIS technician. OBIA first groups pixels into objects based on their spectral, 

textural, or spatial similarities; the objects are then identified using rule based classification. 

OBIA was specifically chosen for this project as it “…applies a logic intended to mimic some of 

the higher order logic employed by human interpreters, who can use the sizes, shapes, and 

textures of regions, as well as the spectral characteristics used for conventional pixel based 

classification.” (Campbell and Wynne 2012, 371). The assumption is,  if OBIA can accurately 

identify and classify construction impediments, similarly to how a technician would, this process 

can be partially or fully automated. This could then be scaled in size to increase the overall 

efficiency of the site selection process. The ensuing benefits of this improvement will be the 
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expedition the site selection process, granting a competitive advantage over developers 

employing time consuming methods, and a decrease in the associated labor costs.   

1.2. Study Area 

Each environment presents its own unique conditions and challenges. In the desert 

regions of the American Southwest, shallow bedrock leads to increased costs associated with 

driving the pilings needed to support PV arrays. In the Pacific Northwest, there is extensive tree 

cover and difficult topography. The study area select for this research is located in the southwest 

corner of Weakly County, TN, within the Tennessee Valley Authority (TVA) electric service 

territory. This area was purposely chosen for its diverse topography and the interplay between 

agricultural land and forest or rural infrastructure, which increases the likelihood that 

impediments will be found. Selecting a study area devoid of any impediments would not fulfill 

the need of this research. Because the very high resolution (VHR) image that will be used is 

being provided free of charge from a third party, this research was limited to acquiring only one 

image. As such it was important to purposively select a study area that would provide enough 

examples of impediments of interest. 

1.2.1. Tennessee Valley Authority  

The TVA service territory was selected for this study for multiple reasons. One being that 

the market expected to see an increase in the construction of utility scale projects. Based on the 

TVA’s integrated resource plan (IRP) published in 2019, the utility plans on installing an 

additional 14 gigawatts of PV generating capacity over the next 20 years (St. John, 2019). The 

TVA’s electric service territory has approximately 16,000 miles of transmission lines that span 

roughly 80,000 square miles (TVA, 2020). This area covers all of Tennessee as well as parts of 

Southern Kentucky, Southern Virginia, Eastern North Carolina, Northern Georgia, Northern 
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Alabama, and Northern Mississippi. Figure 2 shows TVA’s territory as well as the study area for 

this project. 

 

Figure 2 : TVA service territory and study area. 

1.2.2. Study Area Selection  

The selection of the study area was based on a number of factors. For a utility scale 

project to succeed, it is necessary to be in proximity to load centers, or areas that consume large 

amounts of energy such as cities, as well as a large amount rural or undeveloped land. The area 

needed to have the topographic qualities associated with utility scale solar. These areas are 

primarily flat and free of wetlands, floodplains, and high slopes. 
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The study area for this project lies within an area known as the Mississippi Valley Loess 

Plains that comprises the western edge of Tennessee. This area is on average between 250 – 500 

feet in elevation and known for loess deposits that can be up to 50 feet thick in some areas 

(Environmental Protection Agency, n.d.). This area has a large number of river systems and 

floodplains that transect the area. Historically the area was covered in oak and hickory tree 

stands and floodplain forests, but much of this has been cleared and converted for agricultural or 

livestock use (Environmental Protection Agency, n.d.). Figure three shows in greater detail the 

location and features of the study area. 
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Figure 3: Study Area within the USGS 7.5 minute Garder, Tennessee Quadrangle. 



11 

 

After a visual review, the location of the study area was selected using base map satellite 

imagery within ArcGIS. One critical criteria were that it contained the necessary features within 

a 60 km2 area. The size limitation was a result of the need for VHR imagery. Due to the high 

costs of obtaining VHR imagery, 60 km2 is the maximum size provided for academic use by the 

vendor. This will be discussed in further detail in Chapters 2 and 3. The study area also had to 

contain sites where a USSE project could feasibly be developed. After running an initial screen 

on the whole state of Tennessee by removing slope greater than 10%, wetlands, and floodplains, 

the forest cover of the sites was tabulated using the National Land Cover Database. The final 

study area was selected because it contained potential sites with established forest cover within a 

60 km2 area.  

1.3. Summary of Project Objectives  

The objective of this project is to identify if OBIA can be used to more effectively 

identify objects on a potential solar site that may cause additional time and cost despite what may 

appear, via traditional methods, to be suitable sites. A literature review was conducted to identify 

related works and research, and to ensure that this idea of research was a novel one. Related 

works, discussed in Chapter 2, provide the framework on which this research project was 

designed. The related works section informed the requirements of this project, such as the need 

for VHR imagery and a means of measuring the accuracy of the process. Chapter 3 describes the 

methodology used for this project. It explains and describes the sources for data used in the 

project. In addition, the software utilized for OBIA, Harris Geospatial ENVI Feature Extraction, 

will be discussed and explained. Chapter 4 discusses and assesses the accuracy of the OBIA 

process. Chapter 5 concludes the paper by providing recommendations on how this research can 
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be expanded upon as well as its broader importance within the context of industrial solar 

development, within the TVA, nationally, and globally.
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Chapter 2 Related Works 

This literature review did not identify previous research on the application of OBIA for USSE 

site selection process. This is likely due to the fact that only recently have user interfaces been 

developed that allow for routine or practical application of OBIA, while much the theoretical and 

conceptual data was completed in previous decades (Campbell and Wynne, 2012). This chapter 

introduces and defines common construction impediments encountered in the study area, reviews 

research related to identifying features that share similarities with the features of interest to this 

project, and the related research on how OBIA can be used to identify these features. It will also 

discuss the spatial and spectral resolutions required for OBIA, and the importance they have in 

achieving accurate results. The chapter concludes by providing sample workflows that can be 

replicated or modified to suit the needs of other studies.  

2.1. Utility Scale Photovoltaic Construction Impediments   

There are many definitions of what constitutes a utility scale PV development. For the 

purposes of this study, utility scale is defined as a PV development that is 5mw or larger in size 

(US Department of Energy, 2012). Each megawatt (MW) produced requires, on average, 8-10 

acres of developable land (Mulvaney, 2019). Using this formula, a 100mw PV development will 

require 800-1000 acres of suitable land. Due to their size, utility scale PV developments are most 

often found outside of urban centers in rural areas with large flat tracts of contiguous land, free 

from impediments such as trees, buildings, roads, and water. Site impediments are conditions or 

features on the ground that can increase construction costs or prohibit construction altogether 

(Guaita-Pradas et. al, 2019). By identifying these features and assessing their impact on a 

potential site, developers can make actionable decisions using temporally relevant data. Table 1 
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contains common impediments found within the study area, and previous research on using 

OBIA for their identification.  

 

Table 1. Common Impediments and Related Works 

 

  

2.1.1. Roads 

Roads are a common impediment found on sites within the TVA service territory and 

cause problems to solar development interests by fragmenting the useable area on a site. The 

fragmentation caused by roads is especially relevant in utility scale PV developments because it 

is often necessary to create an assemblage of parcels with different owners to acquire the acreage 

needed to develop a USSE project (US Department of Energy, 2012). Being that roads were put 

in place without consideration for future development, their placement fragments the 

developable area. This introduces the need to build around the roads, introducing gaps in the site 

design where solar panels cannot be placed, leading to an increase in construction costs. 

Removing or moving the location of the roadway will increase both engineering and construction 

costs. Additionally, roads on private property are not readily available as a vector layer, making 

identifying them individually on each site a laborious task. If OBIA can identify roads at scale 

then they can be incorporated into the site screening process.  

Impediment Examples Previous Research Method(s) Platform(s) Study Area

Road

• Street

• Driveway

• Access Road
• (Medhi and Saha, 2019)

• Nearest Neighbor 

• Rule Based 

• Multiresolution 

   Segmentation 

   Algorithm 

• Resourcesat-II 

     •  5.8m Multispectral    

• Kompsat 

     • 2.8m Multispectral 

     • 0.7m Panchromatic 

• Jorhat District; Assam, India 

Building

• House

• Barn

• Silo

• (Attarzadeh and Momeni, 2012)

• SEaTH

     • SEperability 

     • THresholds

• QuickBird

     • 2.4m Multispectral

     • 0.6m Panchromatic 

• Isfahan, Iran

Vegetation • Tree Stands
• (Chubey et al, 2006)

• (Rizvi et al, 2019)

• eCognition 

     • Multiresolution 

       Segmentation

      Algorithm

• IKONOS-2

     • 4.0m Multispectral  

     • 1.0m Panchromatic 

• Rocky Mountains; Alberta,

  Canada
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2.1.2. Buildings 

Buildings are impediments that contribute to construction costs for a number of reasons, 

some shared and others specific to building type. Common buildings found on rural sites in the 

TVA include houses, mobile homes, barns, stables, and silos. All buildings create a physical 

impediment to construction, as the site must be built to accommodate their locations. Many 

homes are occupied and have connecting infrastructure such as sewers lines, water lines, and the 

electrical grid. The height of silos can often create large swaths of shading leading to areas with a 

decreased production capacity. All buildings present unique challenges to a site and can be 

constructed in short time, and the geometric shape and often uniform spectral returns make them 

very compatible with OBIA methodologies.   

2.1.3. Vegetation    

Due to their size, the impact of utility scale solar developments on sites existing 

vegetation must be considered. Developing utility scale solar involves the clearing and 

disturbance of vegetation on the site. This can have negative effects on both the biological 

environment and a create community opposition, resulting in the increased chance of a project 

not making it to completion. These effects are manifested in a variety of ways and are related to 

the type of vegetation in question. 

From an environmental standpoint, the development of utility scale solar risks habitat 

loss, effects groundwater runoff, pollution of local streams, and even alters the location where 

aquatic insects lay their eggs (Mulvaney 2019, 171). The simple act of clearing wildflowers on a 

site can negatively affect the local pollinator population. One study linked the deaths of between 

16,200 and 59,400 birds in 2016 caused by the land use changes of utility scale solar 
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developments in Southern California (Walston et al, 2016). One of the most visible changes solar 

can have on the landscape is the clear cutting of large swaths of trees.  

The presence of trees on a site presents unique challenges with respect to the siting and 

execution of a project. While solar developers traditionally target agricultural land, the conflict 

between solar development and existing forests will only increase as less agricultural land 

becomes available for development. For example, the Massachusetts Department of Energy 

Resources estimates that 2,500 acres of trees have been cleared in the past 10-15 years within the 

state to make way for solar development (LeMoult, 2019). Clear cutting can also generate 

opposition within the community, leading to a project’s failure. This can also be the case even if 

the clearing of the trees is not happening within the local community. Georgetown University’s 

planned solar farm has faced sharp criticism from the student body for  their plan to clear 240 

acres of trees in in Charles County, MD to make way for the development of the project (Dance, 

2019). Lastly, the costs associated with clear cutting forests to prepare a site for development, 

while dependent of the thickness of the forest and its location, estimate between $3,000 and 

$5,600 per acre (O’Keefe, 2020). For a site such as Georgetown University’s, this can equate to 

between a $720,000 and $1,344,000 increase in construction costs. 

2.2. Platforms  

Selecting the platform to be used is determined by the size of the object being identified. 

If the spatial resolution results in pixels larger than the object being analyzed, this requires per-

pixel or sub-pixel analysis and are not suitable for use in OBIA (Blashke, 2010). The launch of 

IKONOS-1 in 1999 ushered in the era of commercially available VHR satellite imagery 

providing 0.8m panchromatic and 4.0m multispectral spatial resolution (Chen and Hossain, 
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2019). Since IKONOS’ launch, advances in sensor technologies are now producing VHR images 

with <1m spatial resolution, which is required for accurate OBIA. 

2.2.1. Spatial Resolution  

Accurate segmentation, or the grouping of individual pixels into objects, is dependent on 

the spatial resolution of the input image. While image segmentation has been applied to remotely 

sensed (RS) data since the launch of Landsat-1, it was the launch of IKONOS that finally 

provided an opportunity for researchers to apply these techniques to VHR images (Chen and 

Hossain, 2019). For the purposes of this study it is important to ascertain the spatial resolution 

that will be suitable to use for segmentation on objects of varying size. Prior research has 

established minimal thresholds required for accurate segmentation. Medhi and Salah (2019) 

compared three segmentation techniques applied to images collected by the Resourcesat-II and 

Kompsat satellites. An accuracy assessment was performed on the results and it was found that 

by using a multiresolution segmentation algorithm (MRS) on Kompsat 0.7m Panchromatic 

imagery resulted in 56% accuracy rate, compared to a 15% accuracy rate when using 

Resourcesat-II 5.8m multispectral imagery (Medhi and Salah, 2019).  

 Past research has identified the minimum threshold required for segmentation and 

identification. Attarzadeh and Momeni (2012) used QuickBird 2.4m multispectral imagery to 

identify building outlines. Their workflow accurately identified 80% of the buildings in the 

image. To achieve this accuracy, the authors ran multiple segmentation iterations to first identify 

the proper scale level for segmentation. Their research also demonstrated the importance of rule 

development; because of the variation in color, texture, and size, even among like objects such as 

buildings, a rule designed to identify buildings with light color roofs can inadvertently exclude 

buildings with dark roofs. Attarzadeh and Momeni note that their accuracy was limited as a 
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result of a rule they developed because the spectral threshold set excluded buildings with light 

colored roofs.  Additional research applied a semiautomated OBIA workflow to National Aerial 

Image Program (NAIP) 1.0m multispectral images. This approach resulted in 95% of buildings 

being accurately identified (Caggiano et. al, 2016). 

 Research on the use of OBIA for vegetation detection and classification has generally 

been focused on plant species classification for environmental monitoring and inventory 

(Blashke, 2010). Trees alone do not create an impediment to solar site construction, however, 

tree stands and heavily forested areas do, as they require clearcutting and stump removal to 

prepare the site for the driving of the piles and instillation of the solar panels. Chubey et. al 

applied Trimble’s eCognition MRS module to IKONOS-2 4.0m multispectral imagery and were 

able to identify 81 of 86 tree stand image objects in the dataset (Chubey et. al, 2006). This 

suggests that 4.0m multispectral imagery can be suitable for tree stand identification using 

OBIA.  

2.3. OBIA Segmentation and Classification Workflows 

There is a robust amount of research available on the topic of OBIA and the workflows 

that provide the most accurate results in identifying specific feature within an image. This 

research intended to create an iterative workflow suitable for identifying the most common 

impediments found in the TVA service territory. To achieve this, a literature review was 

conducted to identify workflows that have demonstrated to be able to achieve the desired 

outcomes of this paper. A key determinate in selecting the workflows to be analyzed was there 

was potential to be replicated using Harris Geospatial ENVI + IDL software and the 

accompanying ENVI Feature Extraction Module (ENVI FX) (Xiaoying, 2009). The ENVI + IDL 

and ENVI FX software will be discussed in detail in Chapter 3 of this paper.  
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2.3.1. Segmentation   

The first step in OBIA is segmentation. Segmentation is the process of grouping pixels 

with similar spectral properties into objects, which represent real world features. The accuracy of 

the segmentation process has a direct effect on the accuracy of the classification process. The 

primary segmentation algorithm used in the studies reviewed is the Multiresolution 

Segmentation Algorithm (MRS). MRS has been shown to be more accurate than other 

segmentation algorithms, such as the watershed transformation, by up to 18% (Kavzoglu and 

Tonbul, 2017). MRS works by grouping pixels with similar spectral attributes until the variance 

parameter threshold, also known as the scale parameter, is reached, at which point the 

segmentation process ceases.  

A workflow created by Belgui and Dragut involved using an MRS algorithm run in 

eCognition to identify buildings. After the image was segmented,  unsupervised classification 

was ran with an overall accuracy rate of 82.3%. The same segmented image was run through a 

supervised classification with overall accuracy of 86.4% (Belgui and Dragut, 2014). Being that 

the difference in accuracy between the two classification methodologies is 4.1%, this workflow 

shows promise for being semi-automated. MRS algorithms have shown promise not only in 

identifying buildings, but across a range of features including water and trees. 

MRS algorithms have been used to accurately segment water features in VHR images. 

Moffett and Gorelick identified a workflow for water feature extraction using MRS ran in 

eCognition. To optimize the accuracy of the segmentation process, the authors recommended 

that a heavy emphasis is placed on spectral properties while de-emphasizing the object (Moffett 

and Gorelick, 2012). Further research has shown that the use of MRS in OBIA workflows for 

water feature extraction are more accurate that those that rely on pixel-based classification, with 

one study achieving 90% accuracy (Kaplan and Avdan, 2017).  
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As previously discussed, MRS has proven to be successful in the identification of tree 

stands using IKONOS-2 imagery (Chubey et al, 2006). Further research has expanded on the 

work done by Chubey et al (2006) by using eCognition’s MRS algorithm on WorldView-2 0.5m 

pan-sharpened imagery. While the researchers utilized imagery with considerably better spatial 

resolution, their results were less accurate and attributed to over-segmentation (Sinaga et al, 

2019). The over-segmentation of VHR imagery when using MRS is a problem identified in 

previous research and is expected to be encountered in the course of this research (Chubey et al, 

2006; Culvenor, 2003). To mitigate the problem of over segmentation, multiple segmentation 

iterations are run at different scales and merge levels until the desired results are achieved. An 

exhaustive literature review did not identify any automated solutions to over segmentation. 

Harris Geospatial’s ENVI software offers the user the ability to preview their segmentation 

results on a small subset of the image in real time, which is one reason this software was used for 

this project.  

2.4. Findings 

The purpose of this literature review was to examine OBIA workflows and establish 

which segmentation methodology would be best suited for the purpose of this research. Based on 

the findings, it was determined that achieving the most accurate results across all of the listed 

impediments would require sub-meter resolution multispectral images (Blashke, 2010). In all 

cases, except for the identification of forest stands, it was shown that imagery with a higher 

spatial resolution yield results with a higher rate of accuracy. The related works also identified 

MRS to be a strong candidate to successfully segment the impediments this project focused on. 

By using the ENVI + IDL and ENVI FX module, this study intends ascertain if OBIA can be 
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used to identify impediments to construction on potential utility scale solar sites at scale, to 

replace the work currently performed by a human.  
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Chapter 3 Data and Methods 

 This project used a combination of vector data and VHR imagery to identify construction 

impediments on potential USSE developments. Wetlands, FEMA 100 year floodplains, and slope 

greater than 10% were erased from the parcels within the study area to remove land widely 

considered unsuitable for development. The output of this process creates a mask, in the form of 

a shapefile, that is used in the OBIA; this limits the segmentation and classification to only sites 

that meet the minimum requirements for USSE developments. The mask created in the previous 

step was uploaded, along with the VHR image of the study area, to Harris Geospatial’s ENVI. 

Using ENVI’s Feature Extraction module, the image was first segmented and merged to create 

objects. With the objects, rules were then created based on the attribute data created during the 

segmentation process. Based on the rules, the classification process was initiated to identify all 

similar objects within the image. The classification process creates a shapefile of all the objects 

boundaries, which is then fed back into ArcMap to further delineate impediments within the 

study area and the sample sites. This process and its inputs and outputs are described in detail 

within this chapter.  

3.1. Data Collection and Preparation 

Prior to aggregating the data for this analysis, the researcher first identified a suitable 

location for the study area within the area eliminated from future analysis via the basic site 

suitability described in the last chapter. The further requirements of the study area are that it 

contained a mixture of impediments on developable land within an area of less than 60 km2. The 

size constraint on the study area was due to the costs associated with VHR imagery, which was 

provided free of charge by Hexagon Geospatial via their Hexagon Imagery Program (HxIP). If 

this project were forced to pay for the same image it would cost $251.48. The final study area 
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selected is 56.34 km2 of primarily agriculture land within Weakley County, TN, and can be seen 

in Figure 3. Traditionally, the first step in identifying PV sites is to map the electrical 

infrastructure required for a utility scale project to interconnect. As the focus of this research was 

on OBIA, this step was omitted in favor of finding an ideal study area from a topological 

standpoint.  

3.1.1. Data Sets and Sources  

The data required for this project consisted of both vector and raster data. While the 

majority of the datasets are publicly available, both the satellite imagery and parcel data are 

proprietary datasets produced by private companies. Table 2 shows the datasets, their 

description, and sources.  

Table 2: Datasets and Sources  

 

Dataset Data Type Description Source Location

National Wetland 

Inventory

Polygon

Feature Class

This dataset contains delineated wetland 

boundaries. It is produced by having a 

investigator use satellite imagery to 

identify and delineate wetland 

boundaries and types.

US Fish

and

 Wildlife Service

https://www.fws.gov/wetlands/data

National Flood

Hazard Layer

Polygon

Feature Class

This dataset contains the boundaries for 

the Special Flood Hazard Area (SFHA). 

SFHA are areas that have a 1% chance 

of annual flooding, also known as 100-

year flood zones. This layer is produced 

by FEMA for use in the Flood 

Insurance Rate Map.

Federal Emergency

 Management Agency
https://msc.fema.gov/portal/home

Slope
Polygon

Feature Class

This dataset is produced by merging the 

study area DEMs into one raster that 

covers the study area. A raster 

calculator is used to group the slope into 

buckets 0-5%, 5-10%, 10-15%, 15-20%, 

and 20% +. The raster is then converted 

into a feature class in ArcMap.

United States 

Geological Survey 

https://www.sciencebase.gov/catalog/i

tem/530f4226e4b0e7e46bd2c315

Parcel 
Polygon

Feature Class

This proprietary dataset contains parcel 

geometry and associated attribute data 

such as owner name, parcel APN, tax 

ID, address, use code, zoning, and 

acreage. 

Digital Map Products https://www.digmap.com/

Satellite Image GeoTIFF

Spatial Resolution: 30cm

Projection: NAD83

Format: GeoTIFF

AOI size: 56.34km
2

Hexagon Geospatial 

https://www.hexagongeospatial.co

m/resources/resource-

library/content-providers/hexagon-

imagery-program
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3.1.2. Wetlands 

Due to their ecological sensitivity and physical characteristics, land that has been 

identified as wetlands are not considered for development. The National Wetland Inventory 

(NWI), produced by the US Fish and Wildlife Service (USFWS), is used to remove wetlands 

from a parcel geometry. This is done by using the erase tool in ArcMap 10.6. 

3.1.3. Floodplains   

Floodplains, specifically Special Hazard Flood Areas (100-year floodplains), introduce 

risk and delays into a project. The increased risk of flooding, and the insurance required to build 

within these areas, increase project costs. These factors alone and in combination make 

developing utility scale PV on floodplains impractical and difficult. Hence, these areas were also 

excluded from development by using the erase tool in ArcMap 10.6. 

3.1.4. Slope 

The impacts that slope has on a potential site are difficult to quantify and are different 

from site to site. Unlike wetlands and floodplains, there is no consensus as to the most 

appropriate slope on which to develop industrial solar. For example, a site with an even 20% 

slope with a southern aspect would, with the right conditions, warrant development. On the other 

hand, a site that is flat but has small undulations in slope across the developable area would 

require the site to be graded, increasing project costs. Similarly, a site with a steady 5% slope 

with a northern aspect would be less favorable than a southern facing slope of 10%. 

Additionally, the type of PV arrays used have different slope tolerances. Fixed axis arrays can be 

built on undulating land, while a single axis tracker requires a site with much less undulation. 

This problem is being addressed by manufactures such as Nevados Engineering who are 

developing what they have coined as “all terrain trackers” (Nevados, 2020). Due to the 
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complexity of evaluating slope on a project by project basis, slope of any aspect above 10% was 

removed from the parcel geometry. This seems to be the most popularly held threshold, despite 

not being universal (cite). 

3.1.5. Parcels  

Property data, in the form of parcel geometry, was used as the basis for creating utility 

scale PV sites. Because potential sites must adhere to real world boundaries, the parcels 

themselves are used to create the developable area. Parcel geometry datasets can generally be 

acquired from the county accessor. Weakley County, TN, where the study area is situated, only 

provides parcel geometry as .pdf maps. As a result, this parcel geometry was sourced from 

Digital Map Products (DMP). DMP assembles proprietary parcel datasets and provides them as a 

feature class with over 300 attributes to choose from. For the purposes of this research, all that 

was required was the parcel geometry and calculated acreage.  

3.1.6. Satellite Imagery  

The crux of this research is the satellite imagery. As previously discussed in Chapter 2, 

VHR imagery was required for the success of this project. This is because this research hinges on 

the ability to accurately identify site impediments on a scale beyond what is achieved through 

traditional methods. The accuracy of the segmentation process is partially determined by the 

spatial resolution of the imagery used. Because the costs of VHR imagery can be prohibitive, 

imagery was provided by Hexagon Geospatial under an academic license. The academic license 

provided one image, no larger than 60 km2 , free of charge, with the only stipulation that it could 

not be used for commercial purposes. Two images were provided, an RGB and a CIR for use. 

The images have a spatial resolution of 30cm, and are provided as GeoTIFFs with an NAD83 

projection.  
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3.2. Software  

Two software platforms were required for this research. Esri’s ArcMap 10.6 was used to 

remove undevelopable land from the parcel geometry, calculate acreage, identify potential sites, 

and create the mask then used in the OBIA. Harris Geospatial’s ENVI FX was used for the 

segmentation and classification process. ArcMap was provided by USC’s Spatial Science 

Institute while ENVI FX was accessed using an academic license from Cloudeo.  

3.2.1. Cloudeo 

Cloudeo is a third party provider of Software as a Service (SaaS) and Data as a Service 

(DaaS). Cloudeo was used to access ENVI FX, rather than acquiring it directly from Harris 

Geospatial; this was a result of cost and license terms. Harris Geospatial only offers lifetime and 

yearly license for access to ENVI, with the Feature extraction module being an additional cost. It 

was estimated that it would take approximately 1 month to complete the work in ENVI making a 

perpetual or yearly license was both cost prohibitive and unnecessary. Cloudeo provides 1 month 

academic licenses for ENVI FX accessed through a remote desktop. This option provided this 

project with ENVI FX at fraction of the costs of Harris Geospatial terms and the ability to extend 

the license on a month to month basis if it was required. Table (X) below details the costs 

associated with each license.  

3.3. Methodology and Workflow 

This section will discuss and describe in detail the methodology and steps taken to 

complete the project. The workflow consists of two primary steps- data preparation and OBIA. 

Data preparation was completed in ArcMap 10.6 and OBIA in ENVI FX 5.5.3. 
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3.3.1. Data Preparation  

Data preparation consists of identifying potential sites using a traditional site selection 

processes. Once the sites are identified, a mask is created so only areas of interest were included 

during the OBIA process. Hard criteria included in the masking are discussed in sections x and y; 

this creates a reduction in processing time and resource consumption when going through the 

OBIA process.  

3.3.1.1. Mask Creation  

Mask creation was an important component to this workflow because it excludes 

unwanted areas inclusion in the segmentation process resulting in faster processing times. The 

process of creating the mask began in ArcMap, where wetlands, floodplains, and slope greater 

than 10% were removed from a parcels geometry by using the erase tool. The output of this 

process was a shapefile including only the developable area within the potential sites. The order 

in which the constraints were removed does not affect the final remaining area, but does 

determine the total acres lost in each category. Because of overlap in the constraints, areas that 

are excluded because of wetlands will not be included in the number of acres for areas lost in the 

different categories and vice versa. This research found that erasing wetlands first, followed by 

floodplains, and lastly slope provided the quickest processing times. This process is outlined in 

Figure 4.  
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Figure 4: Site identification and mask creation process. 

 The masking process was able to eliminate a combined 3010.25 acres of the study areas 

13955.14 acres, or 21.57%. Of this 881.45 acres of wetlands, 1549.22 acres of floodplains, and 

533.58 acres of slope were excluded leaving 10944.88 acres of developable land. This was 

further reduced by only selecting sites with 100 or more developable acres remaining, leaving 
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only 1520.08 acres, or 10.76% of  total study area. This results in reduced processing time during 

segmentation and classification. 

 While a user can create a mask in ENVI, this workflow takes advantage of the fact that 

the mask created is a byproduct of the site selection process itself. By using the parcel geometry 

as the basis of the exclusion process, the sites remaining after removing all undevelopable land 

can be exported as a shapfile and used as the mask in ENVI. This eliminates the need to repeat 

this process in ENVI.  

3.3.2. Segmentation  

The process of OBIA is comprised of object identification and feature extraction. Object 

identification beings with segmenting the image; the segmentation process defines the objects 

and computes their spatial, spectral, and textural attributes. ENVI FX employs an edge-based 

segmentation algorithm that, based on scale level, suppresses weak edges (Visual Information 

Solutions, 2007). This is done by grouping pixels of like values into objects, which are defined 

by their spectral attributes.. The boundaries of these objects are formed by the edges where there 

are abrupt changes in the spectral gradient (Segmentation Algorithms background, n.d). The 

scale level selected ran from 0-100, and determined the accuracy of the segmentation process. A 

high scale level will result in less segmentation, conversely, a low scale level will result in 

increased segmentation. Included in segmentation is the optional step of merging. 

While merging is optional, it was used, with trial and error showing it yields better 

segmentation results than without. Merging works by aggregating small segments that fall within 

larger segments to account for over segmentation. Highly textured objects such as clouds and 

trees are a cause of over segmentation.  



30 

 

Texture, in this context, is defined as the spatial variation of grayscale levels as a function 

of scale (Texture Metrics Background, n.d.). The level is representative of pixel size of the box 

used to compute the statistics. Thus, a scale level of 3 would equate to a 3 x 3 pixel box. The 

kernel texture box creates the attribute information used in rules based classification. A box too 

small will not capture enough variation among pixels for an accurate calculation. A box too large 

will cause overlap leading to blending of texture across objects making creating rules based on 

textural attributes unreliable. 

The process began by uploading the image and mask to ENVI. The feature extraction 

module will automaticity convert the shapefile into a single band raster to be used as the mask, 

this can be seen in figure 5.  

 

Figure 5: Mask utilization in ENVI 

With the mask created, the scale and merge levels were set. Choosing the correct scale and 

merge levels is an iterative process to identify ideal levels. This process was guided by 

comparing each result to the previous iteration’s segmentation output. ENVI offers small 

preview of the segmentation output based on the levels chosen prior to running the full 

segmentation process. The parameters were developed by first starting with the default scale 

level of 50, merge level of 0, and texture kernel size of 3. On the suggestion of the ENVI FX 
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tutorial the levels were adjusted, first in increments of 10, followed by increments of 1, and lastly 

increments of 0.1 (Visual Information Solutions, 2007). This process was iterated through 

numerous times, each time adjusting the parameters based on the previous iterations results until 

the desired outcome was achieved. This example used a scale level of 60 and merge level of 80 

and a kernel size of 3.  These attributes were used to create the rules for the classification 

process.  

3.3.3. Classification 

Rule based classification was used as it allows increased control over the classification 

process. Rules are created based on the attribute information calculated in the segmentation 

process using AND / OR logic. AND is used to combine multiple attributes within rule, and the 

OR operator is used to combine multiple rules within one class. This process was rejected in 

favor or using class and rules scores. The class score is a function of the rule score and is defined 

as Class Score = ∑(Rule Score x Rule Weight). The rule score is defined as Rule Score = 

∑(Attribute Score x Attribute Weight), where attribute score is the likelihood of an object meets 

the conditions of an attribute. Attribute and Rule weights are defined by the user and must sum to 

1 (Rule Classification Background, n.d). The rule created for this example used the spectral 

mean of band 3 with a class threshold of .5 to identify tree stands. The classification process 

creates a temporary .dat file containing the identified objects. This is converted a shapefile that is 

fed back into ArcMap to account for the now identified impediments previously missed. This can 

be seen in figure 6 below. 
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Figure 6: Object identification and export 

3.3.4. Process Iteration  

The methodology outlined in this section is just one example of multiple iterations completed in 

the course of this research. The iteration process is time consuming, but necessary, as it can takes 

a considerable amount of trial and error to identify the combination that provides the most 

accurate results (Campbel and Wynne 2012, 372).  Each iteration uses unique rules in an attempt  

to identify those that yielded the most accurate results. The creation of the rules followed a 

similar process to the development of the segmentation parameters. The rules were developed, 

by first experimenting with the various attributes to identify those unique to trees. Using research 

into the spectral returns of trees it was determined that spectral and textural attributes have 

shown to be successful in identifying trees (Lin et al, 2013). Similarly to the preview window 

provided in the segmentation process, ENVI also has a preview window that can be used to 

display a rule confidence image while adjusting the rule parameters. The rule confidence image 

demonstrates the relative confidence of an object belonging to a feature, the brighter the color the 

greater the confidence, and vice versa (Visual Information Systems, 2007). As the rule 

parameters were adjusted, the preview window was used to visualize the results of each subtle 
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change, allowing for on the fly adjustments and not having the run the entire classification 

process to glean insight into the results.   
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Chapter 4 Results 

The intent of this research was to discern if OBIA and rule-based classification could accurately 

replicate and/or improve upon a manual utility scale solar site suitability prescreen workflow. To 

achieve this, multiple iterations of the process were run, with adjustments made to the 

segmentation parameters and/or the rules, in an effort to identify the most accurate combination 

to identify tree stands within the study area. This chapter will discuss the results of each iteration, 

the rules employed, and the justification for sampling technique and size.  

4.1. Segmentation  

As previously discussed, the accuracy of the classification process is largely influenced 

by the accuracy of the segmentation process. For the purposes of identifying tree stands, the 

scale level, set between 0-100, should be set at a level low enough to properly delineate trees 

without causing over segmentation. To identify the correct scale and merge levels, 47 

segmentation iterations were run, beginning with a scale level of 50 and a merge level of 0. A 

general rule of thumb is, as the scale level decreases, the merge level should conversely increase 

(ENVI, 2008). This process was assisted by ENVI’s segmentation preview window which allows 

the user to view a subset of the results prior to initiating the segmentation process. As previously 

noted, the selection of ENVI for this research was partially related to this specific feature. After 

multiple iterations, the combination that most accurately delineated the trees from their 

surroundings was iteration 7; with a scale level of 37, merge level of 97.5, and texture kernel size 

of 3. The 7 iterations to be discussed can be found in Table 3 below. Once the segmentation 

process was providing accurate results, only  small adjustments of the input values were required 

to alter the segmentation output. The resulting outputs required adjustments to the classification 
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rules to account for changes in the spectral, textural, and spatial attributes of the segmentation 

image. The results of each segmentation can be found in the appendix.  

Table 3: Segmentation Parameters  

 

4.2. Rules 

Similar to the segmentation process, the rules created for rule based classification were a 

result of an iterative process guided biophysical characteristics of trees found within the study 

area. A review of the attribute information generated during the segmentation process found that 

the spectral and textural attributes of the trees were the most homogenous across the class. A 

review of the spatial attributes found that there was too large of a range between the spatial 

attributes of a single or small group, or trees to that of a large tree stand. As such, spatial 

attributes were not used in the creation of the classification rules.  

4.2.1. Rule Development Process 

The development of the rules began by first identifying the biophysical characteristics 

that make trees unique from their surroundings. The rules must be able to discern green grass 

from green trees, or dark shadows from dark tree canopies, which can share similar spectral 

returns for example. To achieve this, the rules were developed using an iterative process that 

relied on the previous results to inform the changes required to further refine the rules. Take for 

example, the rule used in the seventh iteration, seen below in table 4. 

Iteration Scale Level Merge Level Texture Kernel Size

1 23 98 5

2 23 98 3

3 23 95 3

4 28.5 95 3

5 38 95 3

6 38 97 3

7 37 97.5 3
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Table 4: Rule 7 

 

Rule 7 uses 3 separate attributes in combination to define a tree. In this example, texture 

entropy is being used to help differentiate between green, but otherwise smooth, grass from a 

green, but highly textured tree canopy. When ran in combination, the results, seen in figure 7, 

show how the rule was able to correctly classify trees while minimizing the misclassification of 

grass as trees.  

 

Figure 7: Results of Rule 7 

 When rule 7 is ran again, this time removing the texture entropy constraint the results are 

vastly different with large swathes of not only grass, but also barren land misclassified as trees. 

This can be seen in figure 8 below. 

RULE 7 Min Max Band

Texture Entropy -0.59416 -0.53717 2

Spectral Max 66.71148 112.14201 3

Spectral Mean 22.21387 89 1

Class Threshold 0.75
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Figure 8: Rule 7 Modification Results 

This process also demonstrates how important a single constraint can be in a rule, as well as 

inform the creator of the rule what constraints were eliciting the changes made when ran in 

combination.  

  

4.3. Accuracy Assessment 

  To assess the accuracy of each iteration, 545 randomly sampled ground truth points were 

generated and manually classified as either 1 for trees or 0 for unclassified. This was done using 

the same 30cm VHR image employed in the segmentation and classification process to eliminate 

errors of registration (Campbell and Wynne, 2012, 416). The ground truth points were used to 

generate error matrixes, also known as confusion matrixes, for each iteration by comparing the 

reference, or ground truth data, to the classification results.  
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The accuracy of the results is the determining factor in judging this exercise to be a 

success or not, as such the accuracy assessment employed was based on the framework created 

by Alan Hay. While the confusion matrix provides the overall accuracy, this value alone does not 

provide the context required to understand the results. To determine the accuracy, Hay proposes 

using the error matrix to answer the following questions (Hay, 1979.) 

1. What proportion of all the sample predictions proved to be correct? 

2. What proportion of the sample predictions of a single category proved to correct? 

3. What proportion of land, within a category, is correctly predicted? 

4. Is the net effect, of numbers 2 and 3 above, for predictions to overestimate or 

underestimate a given category? 

5. If error occurs in either of the ways 2 and 3, is there any bias in these errors towards 

specific categories? 

4.3.1. Process Iteration  

 The need to run multiple iterations of both the segmentation and classification process to 

identify the ones that yield the most accurate results is a common theme found the related works. 

The ideal OBIA workflow put forth by Blaschke et al incorporates the iterative nature of the 

process into the workflow demonstrating the need to iterate the process to refine the results. 

Figure 7 outlines this workflow and shows that both the segmentation and classification steps 

within the workflow are iterated through.  
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Figure 9: Example of the iterative nature of the idealized OBIA workflow (Blaschke et al 2012, 

186)  

 The benefit of iterating though each step is it refines the outputs, the theory being that 

each iteration will guide the GIS technician towards the most accurate results based on their 

interpretations. A drawback of this process is that it requires iteration, and it cannot be assumed 

that accurate results are achieved without it. This coupled with the differences in spectral, 

textural, and spatial properties across VHR images makes it unfeasible to establish segmentation 

parameters and classification rule sets that can be applied across different image sets. This 
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limitation and its effects on the ability to replicate the work presented in this chapter is discussed 

in detail in Chapter 5.  

4.3.2. First Iteration  

The first iteration in this sequence was the result of multiple trial and error efforts to 

identify an acceptable baseline to attempt to improve upon. Table 4 provides the segmentation 

parameters, rule, and confusion matrix for the first iteration. The rule created to classify trees 

relied on the spectral mean and textural range of band 3. 

Table 5: First Iteration 

 

 The first iteration provided an overall accuracy of 0.9009, but only had a producer’s 

accuracy (P_Accuracy) (also known as errors of omission) of 0.6886. In other words, trees were 

only properly identified 68.86% of the time. This is not an acceptable level of accuracy if this is 

to be used for actionable decision making. Additionally, the Kappa value of 0.7456 demonstrates 

that the results of this iteration would achieve an accuracy that is 75.56% better than what would 

be expected from a chance assignment of ground truth points to categories (Campbell and 

Wynne, 2012, 420). A subset of the classification results can be seen below in Figure 8.  

Iteration Scale Level Merge Level Texture Kernel Size

1 23 98 5

RULE 1 Min Max Band

Spectral Mean 33.68989 60 3

Texture Range 32 58.67765 3

Class Threshold 0.75

Class Name Unclassified Trees Total U_Accuracy Kappa

Unclassified 376 52 428 0.8785 0

Trees 2 115 117 0.9829 0

Total 378 167 545 0 0

P_Accuracy 0.9947 0.6886 0 0.9009 0

Kappa 0 0 0 0 0.7456
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Figure 10: Classification results of the first iteration, the green represents areas classified as 

trees, the grey represents masked areas.  

4.3.3. Second Iteration 

In an attempt to create more granular textural attributes, the second iteration reduced the 

texture kernel size to 3, with all other segmentation parameters remaining the same (Table 5). To 

account for the changes in the segmentation attribute, the range of the spectral mean was 

decreased to 38.43266 – 59.7500. This did not achieve the desired results with the overall 

accuracy reduced to 0.8092, the producer accuracy to 0.5389, and the kappa value to 0.5101. The 

results of this change can be seen in figure 9; note the misclassified grasses adjacent to trees as 

well as less trees being correctly classified.  
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Figure 11: Second iteration classification results, green represents areas classified as trees, green 

represents masked areas. 

Table 6: Second Iteration 

 

Iteration Scale Level Merge Level Texture Kernel Size

2 23 98 3

RULE 2 Min Max Band

Spectral Mean 38.43266 59.75 3

Texture Range 32 58.67765 3

Class Threshold 0.75

Class Name Unclassified Trees Total U_Accuracy Kappa

Unclassified 351 77 428 0.8201 0

Trees 27 90 117 0.7692 0

Total 378 167 545 0 0

P_Accuracy 0.9286 0.5389 0 0.8092 0

Kappa 0 0 0 0 0.5101
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4.3.4. Third Iteration 

For the third iteration, the merge level was lowered to 95 with all other segmentation 

parameters remaining the same. In an attempt to increase the accuracy of Rule 2, the texture 

range was for band 2 was set to > 32.28139 as seen in table 6. This was done to attempt to 

exclude grassy areas, which had similar spectral properties, but a lower textural range. This 

change again reduced the overall accuracy, the producer accuracy, and the kappa value.  

Table 7: Third Iteration  

 
 

4.3.5. Fourth Iteration 

For the fourth iteration, the scale level was increased to 28.5 with all other segmentation 

parameters remaining the same. For this iteration, a new rule was created to focus on the textural 

entropy of band 2 and the spectral max of band 3 (Table 7). These changes were implemented as 

previous iterations were becoming less accurate when the rule parameters were adjusted. This 

change in direction was added via the ENVI preview window, which allowed for “on the fly” 

viewing of the classification results. This change increased accuracy over the previous iteration, 

but was still less accurate than the baseline set in the first iteration.  

Iteration Scale Level Merge Level Texture Kernel Size

3 23 95 3

RULE 3 Min Max Band

Spectral Mean 38.43266 59.75 3

Texture Range >32.28139 2

Class Threshold 0.75

Class Name Unclassified Trees Total U_Accuracy Kappa

Unclassified 378 114 492 0.7683 0

Trees 0 53 53 1 0

Total 378 167 545 0 0

P_Accuracy 1 0.3174 0 0.7908 0

Kappa 0 0 0 0 0.3921
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Table 8: Fourth Iteration 

 

4.3.6. Fith Iteration 

 After seeing a positive correlation between the changes made in the fourth iteration and 

accuracy levels, the scale level was again increased, this time to 38, with all other segmentation 

parameters remaining the same (Table 8). Further review of the classification results of the 

fourth iteration identified that the RULE 4, in an attempt to exclude shadows, also excluded dark 

trees. RULE 5 accounts for this by including the new attribute of Band 1 Spectral Mean < 

74.75175. With this change, the spectral max of band 3 was similarly adjusted, increasing the 

minimum to 66.71148 and the maximum to 112.14201. This change increased the overall 

accuracy to 0.8826, the producer accuracy to 0.7126, and the kappa value to 0.7081, which 

improves upon the fourth iteration.  

 

 

 

 

Iteration Scale Level Merge Level Texture Kernel Size

4 28.5 95 3

RULE 4 Min Max Band

Texture Entropy -0.59416 -0.53717 2

Spectral Max 65.13619 101.27068 3

Class Threshold 0.75

Class Name Unclassified Trees Total U_Accuracy Kappa

Unclassified 377 83 460 0.8196 0

Trees 1 84 85 0.9882 0

Total 378 167 545 0 0

P_Accuracy 0.9974 0.5030 0 0.8459 0

Kappa 0 0 0 0 0.5798
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Table 9: Fifth Iteration 

 

4.3.7. Sixth Iteration 

  In the sixth iteration, the merge level was increased to 97 with all other segmentation 

parameters remaining the same. Similarly to the results of the fifth iteration, the sixth iteration 

again excluded to many dark trees in an effort to exclude shadows. To manage this, the spectral 

mean was increased to < 88.23574. This change had the most significant positive change to the 

accuracy of the classification. Overall accuracy was increased to 0.9174, producer accuracy to 

0.8862, and kappa value to 0.8080 (Table 9). 

 

 

 

 

 

 

Iteration Scale Level Merge Level Texture Kernel Size

5 38 95 3

RULE 5 Min Max Band

Texture Entropy -0.59416 -0.53717 2

Spectral Max 66.71148 112.14201 3

Spectral Mean < 74.75175 1

Class Threshold 0.75

Class Name Unclassified Trees Total U_Accuracy Kappa

Unclassified 362 48 410 0.8829 0

Trees 16 119 135 0.8815 0

Total 378 167 545 0 0

P_Accuracy 0.9577 0.7126 0 0.8826 0

Kappa 0 0 0 0 0.7081
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Table 10: Sixth Iteration 

 

 

4.3.8. Seventh Iteration 

For the seventh iteration, the merge level was increased to 97.5 with all other 

segmentation parameter remaining the same. Upon inspection of the results of the sixth iteration, 

it was found that shadows were again being included and classified as trees. In an attempt to 

mitigate this, the spectral mean of band 1 was changed from < 88.23574 to 22.21387 – 89.00, as 

seen in Table 10. This was surprising because there was no change in the confusion matrix and 

thus no change in accuracy.  

 

 

 

 

 

Iteration Scale Level Merge Level Texture Kernel Size

6 38 97 3

RULE 6 Min Max Band

Texture Entropy -0.59416 -0.53717 2

Spectral Max 66.71148 112.14201 3

Spectral Mean <88.23574 1

Class Threshold 0.75

Class Name Unclassified Trees Total U_Accuracy Kappa

Unclassified 352 19 371 0.9488 0

Trees 26 148 174 0.8506 0

Total 378 167 545 0 0

P_Accuracy 0.9312 0.8862 0 0.9174 0

Kappa 0 0 0 0 0.8080
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Table 11: Seventh Iteration 

 

 

4.4. Conclusions  

The hypothesis underlying this research was that OBIA can be used to accurately 

replicate a manual USSE site review workflow. While each real world use case brings with it its 

own unique environmental properties, the results of this research shows the potential for the use 

of OBIA in USSE site suability analyses. A key finding is that the measurement of accuracy 

must be put in the context of the desired outcome, namely with respect to what is determined to 

be an acceptable error rate. For the purposes of using the classification outputs to make 

actionable decisions a 90% accuracy rate would be desired. While an overall accuracy of 91.74% 

was achieved, no more than 88.62% of the trees were correctly classified, resulting in a kappa 

value of 0.8080. With more experience and iterations, it is assumed that the accuracy of a 

classification technique such as this can be increased, but the measurement of the accuracy will 

always be subjective as it is up to the end user to determine their confidence in the results.  

Iteration Scale Level Merge Level Texture Kernel Size

7 38 97.5 3

RULE 7 Min Max Band

Texture Entropy -0.59416 -0.53717 2

Spectral Max 66.71148 112.14201 3

Spectral Mean 22.21387 89 1

Class Threshold 0.75

Class Name Unclassified Trees Total Comission Kappa

Unclassified 352 19 371 0.9488 0

Trees 26 148 174 0.8506 0

Total 378 167 545 0 0

Omission 0.9312 0.8862 0 0.9174 0

Kappa 0 0 0 0 0.8080
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Chapter 5 Discussion and Conclusions  

Chapter 5 discusses the results of the OBIA process, limitations of the study, and recommends 

areas of further research. This project set out to investigate the use of OBIA to augment or 

replace the time consuming process of visually inspecting each potential USSE site for 

construction impediments. The results of this research demonstrated that OBIA using VHR 

imagery can identify trees with 88.62% accuracy within the study area. This number was 

achieved by running multiple iterations of OBIA, each time adjusting either the segmentation 

parameters or class rules based on the previous iteration to increase accuracy.  

5.1. Findings  

 The goal of this research was to identify if OBIA can be used to accurately identify 

construction impediments on potential USSE sites, and if so, if a workflow could be developed 

to achieve similar outcomes as if the sites were visually reviewed by a GIS technician. OBIA 

was selected because it has the ability to apply logic that mimics some of the higher order logic 

employed by GIS technicians (Campbell and Wynn, 2012). Success in this case is determined by 

two factors; the accuracy of the OBIA results and the ability to use OBIA, at scale, to replicate 

the site suitability analysis currently completed using human intervention.  

 The level of accuracy required to confidently make actionable decisions on is subjective 

and determined by the needs and requirements of the end user. For this project, the desire was to 

achieve a classification accuracy of greater than or equal to 90%. While an overall accuracy of 

91.74% was achieved, the greatest accuracy achieved in identifying trees was 88.62%, which, in 

this case, would be below the required threshold. With further iterations and development of 

classification rules, it would be assumed that accuracy could be increased. This research has 



49 

 

further demonstrated that, when accurate rules are developed, OBIA can be applied to 

homogenous areas to screen sites for unfavorable conditions and features. While there is 

considerable upfront investment in time to develop the rules for classification, once they are 

established they can be reused in future land acquisition campaigns within the same territory to 

generate similar returns.  

5.2. Applications and Benefits  

The guiding idea behind the use of OBIA in USSE was that it had the capacity to 

improve upon existing approaches to site selection, which are not scalable, time consuming, and 

prone to human error. To assess the real world applications of this research requires complex 

cost benefit analysis to determine if there is a favorable return on investment. This must be 

conducted at the level of an individual organization to consider their ability to fund the 

acquisition costs associated with VHR images and the specialized software required for OBIA. 

As each organization has a different approach to quantifying and justifying their investments in 

GIS, this research focused on the overall types of benefits that can come from the application of 

this technology (Croswell, 2009). To evaluate the potential benefits of using OBIA in USSE site 

selection a list of categories and descriptions created by Peter L Croswell to assess the impact of 

GIS was used.  
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Table 12: Potential benefits gained from the use of OBIA in USSE site selection  

(Croswell, 2009). 

 

As seen in table 11, the benefits that can be realized by using OBIA to assist in the site selection 

process manifest in different ways. OBIA can contribute to operational efficiency gains, cost 

avoidance, revenue enhancement, and qualitative benefits. Cost savings, Non-Monetary 

quantitative benefits, and difficult to predict benefits are can only be calculated by the 

organization itself, as there are too many unknowns to make accurate predictions in these 

Category Description OBIA Benefits

Operational Efficiency Gains 

Expected Gains in current personnel efficiency and 

productivity allowing work to be accomplished in 

less time. 

• Using OBIA to assist in the site selection 

process works as a force multiplier allowing 

more sites to be reviewed in less time and with 

less personnel.  

Cost Savings 
Reduction in current expenses such as contract 

costs and salaries.
• Unknown and calculated per organization.

Cost Avoidance 

Reducing or eliminating costs that would be 

incurred without the use of GIS technology, when 

new programs, regulatory requirements, or other 

new demands are placed on an organization. 

• Using OBIA to asses, at scale, site conditions in 

the early phases of development  results in 

more accurate cost estimations. 

• Early identification of possible construction 

impediments can disqualify a potential site 

before more labor hours are invested in its 

development. 

Revenue Enhancement 

Use of GIS technology and data in a manner that 

results in increased revenue from existing or new 

sources. 

• Enhancement of unrealized future operating 

revenue by decreasing capital expenditures for 

site construction by favorable altering expected 

return on investment. 

Non-Monetary Quantitative 

Benefits 

Potential benefits that can be measured 

quantitatively but do not translate precisely into 

monetary terms.

• Unknown and realized on a per organization 

level. 

Difficult to Predict Benefits

Benefits that are driven by external events and 

thus are not easily predictable or routine in nature 

and that are not easily reflected in a return on 

investment analysis.

• Unknown and realized on a per organization 

level. 

Qualitative Benefits 

Benefits that are not easily quantified yet have a 

positive impact on operations, decision making, 

quality of service, social conditions, or economic or 

environmental health. 

• Quantified outputs of the OBIA process 

creates data that is relevant to the organization 

and can be shared to assist with decision 

making. 
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categories. Any organization that intends to implement OBIA into their current operations should 

conduct a thorough cost benefit analysis beforehand to accurately assess the impact it may have 

on their operations.  

 This research’s intent was to validate the application of OBIA to assist in USSE site 

selection processes, and provide a conceptual framework which an organization can use to 

identify if OBIA has the potential to improve the site selection process. Due to OBIA being 

highly influenced by the specific inputs used, it will be difficult to exactly replicate the results of 

this research without identical inputs. While this can be done, it would be more advantageous for 

an organization to first asses their current, if any, RS data to identify if it can be used for OBIA 

or if VHR imagery must be acquired. By then following the framework provided in this research, 

an organization can assess if they can achieve their desired accuracy, and if the investment of 

capital required to extract value from OBIA is warranted.  

5.3. Limitations 

This project identified numerous limitations in the use of OBIA for the purposes of 

identifying construction impediments. Some of the limitations of OBIA, such as the need for 

VHR imagery, were expected and factored into the initial workflow. Unexpected limitations of 

OBIA became evident during the classification process.  

5.3.1. Temporal 

OBIA relies on VHR imagery as its primary input, and the temporal relevance of the 

image is extremely important to achieving accurate results. Rules written to classify trees during 

the summer months would struggle to classify the same trees in fall or winter. The seasonal 

transformation that many types of vegetation go through changes their physical appearance 

which for the purposes of OBIA would require that rules are specific to seasonal changes. For 
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example, a deciduous tree loses it leaves in winter, resulting in a change in the spectral returns 

because of the lack of green leaves. These changes also effect, in a similar fashion, the textural 

and spatial attributes of an object. Additional seasonal changes, such as snow or drought, will 

also affect classification rules by altering the physical landscape. For example if the image being 

used is captured in winter, there can be snow on the ground and vegetation has gone dormant, 

this changes the physical characteristics of vegetation and as result their spectral returns.  

5.3.2. Regional 

Similar to seasonal changes, region is also a factor. Changes in the physical environment 

across a large utility territory would need to be accounted for in rule development. A service 

territory such as the Electric Reliability Council of Texas (ERCOT) that spans the entire state of 

Texas presents vastly different environments depending on the location of the state. Rules 

developed for classification in the south east of the state, where there are vast wetlands and 

rivers, would not necessarily apply to the arid lands of the Permian basin. This limitation 

constrains the rules to the region they were designed for, making it difficult to create a ruleset 

that would generate accurate results across a large area. This limitation can be mitigated, but 

only by breaking down large regions into more homogeneous subregions. This would require 

additional labor, but presumably would only need to be conducted once.  

5.3.3. Complexity  

OBIA’s ability to classify multiple objects of different origin in one pass is a result of a 

complex process that means investigating the spectral, textural, and spatial attributes of an object 

of interest. The development of the rules requires an understanding of remote sensing and 

working with VHR imagery. The primary investigator required 3 months of studying, practicing, 

and trial and error until they had a confident understanding of how the process worked, and how 
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to the adjust segmentation process and the rules to elicit the desired results. Even after spending 

considerable time working with ENVI FX and studying OBIA and rule based classification there 

is still much more to be learned to fully understand the process and underlying science. Because 

of the complexity of OBIA, it would require an employee with knowledge of the process to 

develop and implement the workflow, which is not a skill inherent in all GIS technicians.  

The complexity of OBIA leads to another limitation imposed by the process, which is the 

upfront labor required to develop the rules. As discussed, OBIA is an iterative process and 

requires trial and error when identifying the correct scale and merge levels, and developing the 

rules. This research focused on one impediment, trees, and spent 3 months researching to create 

the simple rules employed in this project. To be completed at scale and capture the totality of a 

site’s conditions, vastly more complex rules would need to be developed to identify a multitude 

of different features each with their own unique attributes. This would require considerable 

upfront capital expenditures and labor to achieve, something not always on hand.  

5.3.4. Labor Investments 

 One noted limitation of this process is how labor intensive it is to set up. The requirement 

to understand the biophysical characteristic of the target area local environment is necessary to 

accurately segment and classify an image. This is further compounded by the limitations listed 

previously, which dictate that this process must be redone for each region of interest. The total 

man hours required to begin to achieve accurate results would, in this case, negate any time 

savings incurred by using OBIA in the screening process. One key benefit that arises from 

investing the time to develop rules is that they can be reused in the future should an area be 

revisited.  
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5.4. Areas of Further Research 

 This project intended to classify a multitude of features such as trees, roads, wetlands, 

and buildings. In the initial stages of the research it was determined that this would be difficult to 

achieve in the time required for this project. As such, a focus was placed on developing rules for 

only one class as a proof of concept. As such, there is still much research to be done to fully 

develop the ideas presented in this paper. This section discusses the ways in which this can be 

improved upon and further developed. 

5.4.1. Objects 

  The first area that warrants further research is developing rules for the numerous site 

conditions that can be encountered. While this paper only focused on a handful of features and 

developed rules for only one, for OBIA to be truly effective in assisting site suability analysis 

workflows it must be able to identify all features or conditions that create impediments to 

construction. For this to be achieved properly, the individual developing the rules must 

understand the prevailing site conditions in the region and the features that are expected to be 

encountered. This process requires an upfront investment in time to study an area prior to 

developing the rules. Without this upfront investment, the process described here is unlikely to 

be successful. 

5.4.2. Scalability    

 For OBIA to be successful it must be scalable. This relates to both area of interest and 

computational resources. The study area selected for this study was limited to 60 km2  as a 

condition of the vendor who provided the VHR images for this project. For context, the 

Tennessee Valley Authority is approximately 207199 km2 , meaning only approximately .0002% 

of the service territory was included for analysis. To scale this workflow  to cover a whole 
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service territory would require an immense amount of capital to acquire VHR images for full 

area coverage. Working with a dataset of this size would require immense computational 

resources to process. These two factors would make this endeavor cost-prohibitive for many 

users.  

5.5. Conclusion 

 There is a growing consensus that clean, renewable sources of energy are necessary to 

address global energy needs and address climate change. Solar energy provides passive clean 

energy generation but not without costs. Utility scale solar requires large areas of land, can 

displace local flora and fauna, encounters push-back from communities and environmental 

groups, and requires large capital expenditures. This makes it all the more important to find new 

ways to identify suitable locations for solar development.  

 This research explored the use of OBIA to assist in site suitability identification with a 

desire to eventually scale the process to be used on a large scale. While OBIA provided 

promising results, it also presented a number of obstacles that makes its use, at scale, a difficult 

but worthwhile endeavor. This research lays a framework that can be built upon by anyone 

willing to invest the time and resources, and identifies the opportunities and challenged in doing 

so.  
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Appendix A  

 

Figure 12: First Iteration Segmentation Image 
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Figure 13: Second Iteration Segmentation Image 
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Figure 14: Fourth Iteration Segmentation Image  
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Figure 15: Fifth Iteration Segmentation Image 
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Figure 16: Sixth Iteration Segmentation Image 
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Figure 17: Seventh Iteration Segmentation Results 

 


