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ABSTRACT 

Complexity in spatial simulation models developed without an iterative development 

process can lead to models that produce inaccurate or nearly random results. This case study 

examines how real world moving-object data can be used to inform the model development 

process. Moving-object analysis provides a template for understanding movement behaviors 

evident in both empirical data and model output. Moving object data generally consists of the 

GPS points from tracked animals, and is usually acquired as a comma separated values file. 

Agent-based simulation model development in this case study is informed by pattern oriented 

modeling, an iterative process used to control a model’s complex variables while gradually 

improving model design.  Three simple agent-based models were constructed and a best fit 

model whose output most closely matches the spatial characteristics of the Galapagos Swallow-

tailed Gull moving object data was identified. 

.
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CHAPTER ONE: INTRODUCTION 

This study demonstrates how ecological analysis of moving-object data can be used to 

empirically validate agent-based models (ABMs) and presents a combination of methods that can 

be used to analyze moving-object data to inform model development.  Integrating ecological 

analysis in the modeling process proves effective at providing a framework for model 

development and validation.  

Spatial modeling in scientific terms is both a simplified way of representing a spatial 

system that is being studied and a tool for understanding and predicting processes and behavior 

(O'Sullivan and Perry 2013).  Models are useful to explore changes in the real world as well as 

help us understand the processes that generate the patterns we observe in the system.   

Models are often used for prediction and to assist in data collection, but can also be used 

as a tool to enable critical thinking about the real world.  Examples of this may include 

predicting weather, identifying critical habitat areas to investigate with sampling techniques, or 

providing a framework to explore environmental factors and their effect on an ecological system.  

In this case study I will use a simulation model to explore the process of movement through 

space and time in an effort to understand and reproduce seabird movement activities. 

Spatial modeling comes with a few challenges, especially that of identifying when too 

much complexity is present for the model to be useful.  It is also necessary to decompose the 

real-world into component parts that are modeled and decide which factors are more likely to 

affect the system in a meaningful way.  In some cases, a lesson learned early on in exploring 

agent-based models for this study, too much complexity can slow a model down and also 

produce unpredictable and unreliable results.   
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This study demonstrates an iterative process for validating a random walk model, a 

fundamental building block model of agent-based modeling, designed to simulate bird flight 

tracks.  The objective is to integrate Geographic Information Science (GIScience) methodologies 

with computer science and ecological epistemologies to inform model development through a 

gradual process beginning with simple movement.  The methodology builds on work in agent-

based model validation and ecological analysis to provide a multidisciplinary tool for examining 

agent-based models during the development process using moving-object data.   

1.1 Understanding moving-object behavior 

Home range estimation, tortuosity or searching intensity, and linear or sequential spatial 

autocorrelation are tests of range, behavior and independence in movement patterns and provide 

important insight into the structure of moving-object data.  Ecological studies using records of 

movement tracks of insects, birds and marine and terrestrial mammals commonly include many 

such tests of the track trajectories to assist in developing an understanding of the moving-object’s 

behavior (Bence 1995; Benhamou 2004; Brillinger et al 2002; Colomb et al 2012; Fauchald and 

Tveraa 2003; Kareiva and Shigesada 1983; Lichstein et al 2002; Root and Kareiva 1984).  As 

illustrated in this study, modeling is an effective tool for understanding the structure of a moving 

object’s motive force and assists in the exploration of the real-world data. 

Knowledge of movement patterns in animal behavior is imperative for understanding the 

results of simulated behavior in ABMs.  Through the use of analysis techniques developed in 

ecological studies of animal behavior, it is possible to look at the overall shape of the animal’s 

track without regard to its feeding or nesting behavior, making it a suitable approach for 

analyzing movement patterns simulated by agent-based models.  In Figure 1, the paths of four 
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Galapagos Swallow-tailed Gulls are displayed.  These four birds were tracked using GPS collars 

and are the moving-object data for this study.  

 

Figure 1 Galapagos Swallow-tailed Gull relocation flight paths constructed from tracking 

data 

It is the goal of this study to decompose the moving-object data’s spatial elements to their 

component parts and use those parts to act as a filter for the agent-based modeling movement 

processes.   

1.2 Overview of the study 

The study began with the review of a set of analytical tools in ecological analysis that 

include statistics for the shape of the movement track, the independence of the movements and 

the home range area.  These were evaluated to design a framework for the analysis of patterns in 

empirical data available from Movebank.org, a repository of tracking data collected and shared 

with an open source license.  Using these analysis tools, a moving-objects dataset which records 
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the flight paths of Galapagos Swallow-tailed Gulls off the coast of Santa Cruz, Ecuador was 

analyzed to evaluate movement metrics that describe the patterns observed in a form that is 

transferrable to ABM. Then, three agent-based models were developed to simulate the birds’ 

movement using increasingly complex forms of a random walk model with identical analytic 

techniques applied to filter out results that are inconsistent with real world behaviors.     

The agent-based models were programmed to simulate three different mathematically 

modeled movement patterns: a simple random walk, a correlated random walk and a correlated 

random walk with variations in speed that match the mean and standard deviation of a normally 

distributed curve modeled from the empirical data. Each model revision was intended to add 

structure to the simulated movement patterns that better replicated the actual movement tracks. 

Importantly, the models are not designed to predict the movement patterns evident in the seabird 

dataset, rather they seek to reproduce similar overall movement patterns, and thus provide insight 

into mechanisms behind the observed patterns.  This means it is possible to model reactions to 

environmental change or habitat incursion without actually changing the real-world environment.  

The data from Movebank.org acted as a means to assess for and filter out poor program design 

decisions, eliminating choices that were unable to produce similar trajectories and movement 

structures. 

Agent-based modeling is a bottom up approach to modeling that looks for pattern from 

process (O'Sullivan and Perry 2013).  These models simulate the decisions of multiple 

individuals simultaneously and allow patterns to emerge from this complexity.  One classic 

example of agent-based modeling is a predator-prey model, which tracks each individual 

predator and prey’s actions and bases the decisions they make on environmental and neighboring 

attributes.  While a predator-prey model is relatively simple, often these models can be 
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incredibly complex.  In these cases standards for the ABM empirical validation process are 

called for but are often ignored (Janssen and Ostrom 2006).   

Through agent-based modeling it is possible to examine the processes that create 

movement patterns in moving-object data.  It is possible to use an ABM to explore the effects of 

habitat extent and resource availability on movement and resource exploitation.  The exploration 

of these effects requires validated simulation output to be meaningful.   

The method of empirical validation is specific to each model and the processes and 

patterns that are modeled.  In the analysis of moving-object data in ecology, trajectory and home 

range analysis can help validate the simulated movements.  The ecological techniques may, for 

example, decompose the animals’ track into relative angle changes between each track segment 

or a habitat area into a cluster of core movements.  The ‘clusthr’ tool identifies three locations 

with a minimum mean nearest-neighbor joining distance (NNJD), which forms the first cluster.  

Then, in set steps the search expands and locations (which in this case are relocations, or the 

sequential locations observed in the dataset) are added based on the next set of NNJD clusters 

with the minimum mean distance to the first, until 100% of the locations are incorporated. Such 

decomposed behavior can be simulated with an agent-based model and exported for analysis and 

validation against real-world data.   

Using the seabird data as a case study, the use of empirical data to evaluate the success of 

interactively developed agent-based models was demonstrated.  Applying the same tools and 

metrics used to evaluate the movement patterns evident in the Movebank.org data to the 

simulated data resulting from the agent-based models indicates that it is possible to assess 

whether an agent-based model can accurately reproduce the structural components of moving-

object data.   
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1.3 Research Objective and Process 

The objective of this research was to examine the practical aspects of using an analysis of 

moving-object data to validate an agent-based model during the iterative model development 

process.  The model generates moving-object data for analysis in a geographic information 

system using the ecological analysis tools in the R-project for statistical computing, including 

sequential autocorrelation, habitat estimation, and trajectory analysis.  Model development began 

by modeling very basic random walks, incorporating more complex random walk models as 

analysis progressed.  Based on ecological analysis carried out during modeling, it was concluded 

that correlated random walks and correlated random walks with varying speed produce results 

that most closely match real-world observations.  Further development involving modifications 

based on animal behavior will be necessary to replicate the empirical data. 

The remainder of this document describes the study in detail.  Chapter 2 provides the 

multidisciplinary framework used in this study and establishes the link between agent-based 

modeling and ecological analysis.  Chapter 3 provides detailed methods and results.  Chapter 4 

discusses the results and Chapter 5 sums up the study, provides conclusions from the results and 

raises questions for future research.   
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CHAPTER TWO: THEORETICAL FRAMEWORK 

Two scientific fields provide the theory and methods used in this research, agent-based 

modeling and ecological analysis. Agent-based modeling provides a tool to investigate processes 

that underlay complex patterns in social science, biology, and other disciplines.  The tools of 

ecological analysis decompose complex patterns and provide quantifiable observations of real-

world processes.  Ecological analysis laboratory studies of bugs in a maze (Colomb et al. 2012) 

and tracked animal data (Brillinger et al. 2002) provide a framework for decomposing moving-

object data.  The building blocks of agent-based modeling (see O’Sullivan and Perry 2013) 

provide the basis for using decomposed moving-object data as a means of structuring an agent-

based model to simulate movement behaviors accurately using an iterative model development 

process.    

Several approaches are used in each discipline, however there are unifying elements such 

as the assumptions made regarding animal movement, which make this study possible.  Simple 

and correlated random walks are the subject of much discourse in both agent-based modeling and 

ecological studies (Kareiva and Shigesada 1983, Grimm et al 2005, Haefner 2005).  

Fundamentally both walking styles form the basis of modeling animal foraging behavior in both 

agent-based modeling and ecological analysis and even have many applications in economics, 

psychology, physics, chemistry and biology (Van Kampen 1992, Goel and Richter-Dyn 1974, De 

Gennes 1979, Weiss 1994). 

Several software applications and statistical techniques were used in this study to create 

the models and analyze the output.  Agent-based models were created in the Netlogo modeling 

environment using the language of the same name.  The ecological analysis was done in R using 
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several packages that are tailored to ecological movement analysis, the main package being 

‘adehabitatlt’ and its dependencies, ‘sp’, ‘CircStats’ and others installed automatically. 

2.1 Ecological Analysis and Moving-object Data 

Tracked animal behaviors in ecological analysis form an important part of this study.  

Ecology is the scientific study of interactions between and among organisms, thus movement 

takes an important role in an ecological analysis.  Moving-object data consists of a set of 

relocations, either from GPS tracking or sighting and observations.  These can be part of an 

ecological study, lab study, or any set of data with tracked movement.  Encoding and storing 

moving-object data in a useful way is critical not only for analysis but for meaningful sharing of 

data.  Data without a standard, especially without metadata, can be difficult to decipher and use 

even for the original collector if enough time passes.  Storing and using moving-object data is the 

focus of several associations including the Open Geospatial Consortium, who develop standards 

for open spatial data storage to extend usability.     

2.2 Agent-based modeling 

Agent-based (sometimes called individual-based) models (ABM) are composed of 

collections of individual objects that are unique and autonomous, interacting with each other and 

their immediate spatial environment (Railsback and Grimm, 2012).  While generally based on 

cellular automata models developed in the 1940’s by John Von Neumann, it was the Game of 

Life by John Conway that spurred the development of methods of modeling of simple rules to 

investigate complex patterns (Neumann and Burks 1966; Gardner 1970, 120-123).  In many 

cases agent-based modeling is considered modeling from the bottom up (i.e. from the individual 

actions that combine into the big picture).   
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In agent-based modeling an agent is the individual agent that makes decisions based on 

the patches around it.  The Netlogo patches are a raster surface.  The patches can be both agents 

and dynamic variables (resource quantities, environmental conditions, weather, etc.) that change, 

assess and react during each tick, or time-step, along with agents, also called turtles, which move 

across the surface.  Each agent assesses the world around it during a tick, makes the decisions 

based on how it is programmed and organizes or prepares any variables it needs for the next tick. 

2.2.1 Modeling languages for ABM 

Many software platforms have been created for agent-based modeling.  Repast, Swarm, 

Netlogo, and the Multi-Agent Simulator Of Neighborhoods (MASON) are just a few.  These 

languages may have been developed for specific purposes, such as modeling social complexity, 

as in the case of MASON, or they can be general purpose like Repast and Netlogo.  Netlogo was 

selected for this study because of its supportive community of users, relatively easy learning 

curve and access to high quality tutorials and textbooks.  Netlogo was developed by Uri 

Wilensky in 1999 at Northwestern University and is derived from the educational programming 

language Logo, known for Turtle, a robot whose movements across the floor could be easily 

programmed by school children.  Netlogo is likewise an easy to learn programming language 

that is well documented and supported by a community of active developers including students, 

professors and professional consultants (www.ccl.northwestern.edu/netlogo).  There is a wide 

variety of open simulations to play with and learn from, and many instructional books.  The 

output is spatial in nature, with x and y coordinates marking location in the Netlogo world, 

making it intuitive to use the tools of a GIS to analyze the results. 

 

 

http://www.ccl.northwestern.edu/netlogo


 
 

 
 

20 

2.2.2 ABM building blocks 

While developing and understanding complex, agent-based models about the real-world 

is usually very difficult, O’Sullivan and Perry (2013) suggest that there are three fundamental 

building blocks that make up a complete agent-based model’s basic structure.  These building 

blocks, grouping, mobility and spread, are discussed below. 

Grouping is comprised of segregation and aggregation processes that produce 

heterogeneity in the landscape.  These processes are used as a part of models that explore 

neighborhood segregation or the evolution of patchy landscapes in ecological studies.  Most 

often these processes use operations like local averaging, in which each tick provides a chance 

for an agent to move closer to other agents with similar attributes.  This behavior is directly 

observable in the real-world; examples include gentrification and ecosystems models showing 

clear patches of homogeneity in a landscape.   

Mobility is embodied in random walk models.  These involve the movement decisions 

that cause an agent to act on, and react to, the environment around it.  Simple random walks 

involve picking a random direction on a grid and moving one step, then repeating the process.  

Since there are 360 possible directions to move in the study models, over time the agent is not 

likely going to be far from its point of origin (O'Sullivan and Perry 2013; Šalamon 2011; 

Railsback and Grimm 2011).  A more complex version of the random walk, called a correlated 

random walk, provides a more realistic process for movement.  In a correlated random walk, the 

decision on which direction to move is related to the direction previously traveled, meaning if the 

agent moved east in the previous tick, the agent will have higher odds of choosing a direction 

that is similar.  Restricting an agent’s change in direction by limiting the relative angle of 

movement on subsequent ticks is one way of programming a correlated random walk.   



 
 

 
 

21 

The use of random walks for modeling real-word behavior is supported by biological and 

ecological studies (Kareiva and Shigesada 1983, 234-238; Benhamou 2004, 209-220).  The 

random walk is considered a stochastic model, but it does not focus on the end product – the 

combined movements of the animals -- rather it models how each individual contributes to the 

overall movement of the population (O'Sullivan and Perry 2013).  While often used in physics 

(Berg 1993; Rudnick and Gaspari 2004), pure random walks may seem unrealistic for ecological 

analysis, since it is likely that almost no living animals move in this way. Nevertheless, 

variations on random walks are the focus of this particular study, as random walks form a 

foundation for understanding movement without directly modeling observed movement itself. 

Spread, or growth and reproduction form the final building block.  This deals with how 

agents procreate and spread their influence across a landscape.  This is different from simply 

moving through an area as in the random walk because the agent becomes a part of the landscape, 

acting on it and changing it.  It incorporates that landscape into its area of influence, or home 

range.  

2.2.3 Validation of ABM Results 

Validation of agent-based models can be a long process and can be very difficult. The 

entire system must be checked against all the possible variations present in the programs 

structure.  In the simple models in this study, only a few variables exist, such as allowed relative 

angle changes and speed, however in models that incorporate foraging behaviors, exploration, 

memory, and links between agents (growth and reproduction) the number of variables that must 

be tested can be intimidating. 

 Sensitivity analysis alone represents a significant investment in time (Janssen and 

Ostrom 2006, 37; Grimm et al. 2006, 115-126; Macal and North 2007, 95-106; Parker and 
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Meretsky 2004, 233-250; Topping, Høye, and Olesen 2010, 245-255; Valbuena et al. 2010, 185-

199).  Sensitivity and Uncertainty analysis require repeated model runs with small variations in 

parameters.  Sensitivity analysis often allows a model builder to filter out obviously incorrect 

model behavior by observing which variables have the most effect on the outcome.  Using tools 

such as Netlogo’s BehaviorSpace it is possible to automate the runs and set ranges for variables 

to vary.  This produces a great deal of output, both tabular and spatial that needs stored and 

analyzed.  Both running the model and the analysis can be extremely time consuming.  In early 

models runs using Scott Hekbert’s 2013 model, MayaSim, one hundred runs produced over 30 

gigabytes of data and took between 24-36 hours to complete on a personal computer.   

2.2.4 Pattern Oriented Modeling 

Evaluating uncertainty on each building block in the iterative development process will 

not produce results worth the significant investment of time needed to run the model enough 

times to perform the analysis.  Pattern Oriented Modeling (POM) helps minimize these analysis 

steps by identifying relevant patterns in a real system that are relevant to the questions being 

asked, preventing a model from becoming over-parameterized (Grimm and Railsbeck, 2012).  

Since the model building step begins with identifying patterns, or behaviors that fall beyond 

random variation that are then reproduced indirectly but purposefully in the model, the analysis 

step will begin with a series of controlled experiments on the model itself (Grimm and Railsbeck, 

2012, Salamon 2011). 

POM begins with patterns found in real-world systems and develops a hypothesis to 

explain the pattern.  Predictions based on that pattern are then tested and the model is adjusted 

accordingly and the process begins again.  POM is used to assist in the development of an ABM.  

This allows model parameters that are not adequately explaining the observed real world patterns 
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to be filtered out.  It is an iterative and incremental method to tweak the model and balance the 

model’s complexity with that relevance of what can be learned from it (Railsback and Grimm 

2011; Šalamon 2011; O'Sullivan and Perry 2013). 

Pattern oriented modeling can be used in any agent-based modeling programming 

language or environment.  The approach presented here should be a part of the iterative model 

development process (see Salamon 2011; Grimm and Railsback, 2012;), preceding and 

supporting the sensitivity analysis. 

2.3 The R Project and Ecological analysis 

The R Project for Statistical Computing is an open source statistical programming 

language and software environment used for statistical computing and graphics (www.r-

project.org). The core functionality of the environment was originally developed at the 

University of Auckland in New Zealand. R is available for a variety of operating systems.  It is 

community supported, with many online forums for questions and a robust set of tutorials and 

publications providing tutorials and support.  In R, custom sets of tools called packages make 

research using discipline-specific analytical techniques more accessible to non-specialists.  There 

are many packages available through the Comprehensive R Archive Network (CRAN). To make 

it easy to find packages for specific purposes, CRAN offers several task views that organize 

packages into thematic subsets such as Environmetrics, Spatial or SpatioTemporal groups.  

Packages are open source and made available in CRAN with a reference manual and optional 

vignette document with a walkthrough and illustration of the package functions.   

 

 

 

http://www.r-project.org/
http://www.r-project.org/
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2.3.1 R functions and Packages used in this study 

ACF and PACF take a time series of recorded values as input with missing values 

removed.  These functions provide a tool for looking at periodicity in the datasets by 

investigating repeating patterns in the dataset and are also used to investigate sampling error  

(Venables and Ripley 2002).  Used in this study on the changing relative angles of each 

relocation, both ACF and PACF look for patterns that can show searching behavior of real world 

tracked seabirds, a movement which may be difficult to reproduce in an agent-based model 

(Bence 1995, 628-639; Lichstein et al. 2002, 445-463).  PACF is primarily used to fit an 

Autoregressive Integrated Moving Average (ARIMA) model, which does not fall within the 

scope of this study and is not used.  ACF may be used to test sampling error in both the real 

world dataset and the simulated one (which represents a simulated sample).   

R’s ‘adehabitatLT’ package was chosen for this study because of its flexible nature and 

ability to convert a wide variety of data formats to its ‘ltraj’ object class, as well as providing 

compatibility with other packages tailored to ecological analysis and the study of moving-objects.  

Adehabitat is a collection of tools for analyzing habitat selection by animals and includes tools 

for modeling error and uncertainty as well as understanding how animal tracks influence habitat 

range.  

A relocation in the ‘adehabitatLT’ package is considered a sequential or timed 

observation of an animal’s location in space.  This data must contain coordinates and a sequence 

identifier, or time and often includes information related to the observation such as weather, 

wind speed and direction, elevation, and other miscellaneous data.  This data is imported into the 

‘ltraj’ object class in order to begin the analysis.  The ‘ltraj’ object calculates additional measures 

when the data is converted that enable more advance analysis by the package.  Critical to this 



 
 

 
 

25 

study is the calculation of relative angle changes, referred to in ‘adehabitatLT’ literature as the 

shape of an animal’s movement. The ‘ltraj’ object calculates the following measures: 

1. Change in x-coordinate (dx) 

2. Change in y-coordinate (dy) 

3. Distance to previous relocation 

4. Absolute angle change 

5. Relative angle change 

Because the ‘ltraj’ object contains calculated values for the relative angle changes 

between each relocation, it is possible to begin investigating the overall shape of movement 

through space and time. Extracting the relative angle changes makes it possible to use time series 

analysis to investigate periodicity and the overall shape of the relocations.  The relative angle 

values of sequential relocations can then be converted to smoothed cosine values for analysis in 

the time series.  The ‘sliwinltr’ transformation in the ‘adehabitatLT’ package creates a sliding 

window chart of smoothed cosine values, which is used to investigate tortuosity, or searching 

behaviors (Benhamou 2004, 209-220). Benhamou states that cosine values near 0.5 are 

considered tortuous searching behaviors, possibly when the bird is circling an area looking for 

prey, while values close to 1 or 0 are more linear behaviors, possibly indicating navigating to a 

location from memory or fleeing a predator.   

This study uses several functions found within the core R package as well as the 

‘adehabitatLT’ and ‘tseries’ packages. Each of the functions used in this study is summarized in 

Table 1. 
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Table 1 Summary of R functions used to investigate ABM 

Function Name Found in package Brief Description Example Use 

acf Core R Autocorrelation 

function 

Examine linear 

autocorrelation of 

relative angle 

changes 

wawotest adehabitatLT Wald-Wolfowitz 

test of 

independence 

Finds data in a 

sequence that 

doesn’t belong. 

clusthr adehabitatHR Estimates home 

range by single-

linkage cluster 

analysis and 

produces a 

Multiple Convex 

Hull object to 

store the data 

Identify home 

range extent from 

tracked animals 

relocation data 

MCHu2hrsize adehabitatHR Calculates home 

range size from 

Multiple Convex 

Hull object with 

specified 

percentage levels 

for the home 

range 

Examines the rate 

of home range 

increase – can 

identify 

exploration and 

foraging behaviors 

sliwinltr adehabitatLT Applies any 

function to an 

‘ltraj’ object using 

a sliding window 

Used to 

investigate 

relative angle 

changes 

ts.plot stats (core R) Plots a time series Used to plot the 

relative angle 

changes through 

time 

testang.ltraj adehabitatLT Independence test 

for successive 

angles (relative or 

absolute) 

Tests for abnormal 

patterns or 

periodicity that 

can result from 

sampling error 
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CHAPTER 3: METHODS  

In this chapter the basic methods of agent-based modeling and ecological analysis will be 

reviewed.  I have chosen to place the analysis and results of the seabird data in this chapter in 

order to provide a context for understanding the ecological metrics that are used.  Additionally, 

since the analysis of this real-world data was necessary prior to beginning the model 

development process, this step is part of the methods. 

The statistical software available through the R-Project for Statistical Computing, and 

several associated packages tailored to GIS and ecological habitat modeling were used to assess 

the moving-object data.  The primary packages used are adehabitatLT and adehabitatHR 

(Calenge, C., 2006).  Using Movebank.org, tracked locations of Galapagos Swallow-tailed Gulls, 

collected by Martin Wikelski from 2008 to 2010 were downloaded to provide real world, 

moving-object data to act as a filter for building the agent-based model.  These paths are 

displayed in Figure 2.  This data was assessed prior to creating the model to provide statistical 

measures to be used as a filter for validating the output of the agent-based model (ABM). Both 

the general method and results are presented below.   

Data was imported into R from a comma-separated values (CSV) file downloaded from 

Movebank or generated by the ABM.  Movebank is an online database of animal tracking data 

stored at the Max Planck Institute for Ornithology.  Scientists are free to put their data on the site, 

sharing it with others, while still enabling them manage the data closely.  It contains several 

datasets of tracked animals, including tortoise, whales and seabirds.  The Galapagos Swallow-

tailed Gull dataset (Movebank ID 5503590) provided breeding and non-breeding period data for 

this study. The XY coordinates, time/sequence and a unique identifier for each tracked location 

are used.  In this case the objects are imported as an ‘ltraj’ object of class II, meaning that the 
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exact time of the observations is ignored in favor of placing the relocations in the correct 

sequence.  The use of the class II ‘ltraj’ object enables comparison between the Netlogo model 

output and the real-world bird tracking data.  

3.1 Investigating moving-object data, the Galapagos Swallow-tailed Gull 

In this study, the simulated data captured from the agent-based model contains four 

columns; x and y coordinates, the unique agent identifier, and the Netlogo tick number.  The 

Galapagos moving-object data contains latitude, longitude, a time stamp, temperature readings, 

speed, heading, height (above sea level) and the unique identifier.   

3.1.1 Seabird track shape and activity 

 

Figure 2 Seabird discrete movement paths sampled at 5-minute intervals 

Figure 2 displays the discrete movements of the real-world gulls, sampled every 5 

minutes over a time period ranging from approximately 3-8 hours.  The starting point is identical 

for each seabird, right off the coast of the island.  Several incidents, including battery 
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consumption and tag damage, can cause the end point.  The seabird data imported into the ‘ltraj’ 

class includes a unique ID for each bird, the number of relocations, or observations taken by the 

GPS tag, and the number of missing relocations (NA values), or relocations that do not occur 

every 5 minutes.  These numbers are given in Table 2 however in this dataset there are no NA 

values. 

Table 2 Galapagos Swallow-tailed Gull 'ltraj' characteristics 

ID Number of Relocations 

PLS-13 99 

PLS-2 134 

PLS-4 143 

PLS-8 22 

 

In order to analyze the overall shape of the seabird relocations, a rediscretizing step is 

taken, adding or removing point locations to create relocations at regular intervals in space, 

rather than in time.  In mathematics, the process of taking continuous data and breaking it up is 

called discretizing.  Since this has already been done in the seabird data, i.e. the continuous flight 

path of the gulls is discretized by the GPS sampling their position, the rediscretizing step models 

a best fit continuous path and discretizes it at the spatial or time intervals chosen for the study.  

This means that instead of a sequence of relocations 50, 90, 20 and 11 meters distance, all the 

distances are computed and relocations added or removed to enforce a particular distance as the 

standard. This effectively fills in the blanks of the relocation data and allows several R tools to 

assess the changes in relative and absolute angle between each successive relocation (Calenge 

2011, Turchin 1998, Benhamou, 2004).  The rediscretized movement paths for Galapagos 

Swallow-tailed Gull observations is given in Figure 3. 
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Figure 3 100m Rediscretized movement paths of Galapagos Swallow-tailed Gull 

observations 

Smoothed cosine values of these rediscretized trajectories’ relative angles, i.e. the angle 

changes between each successive movement, provide information on the tortuosity, or intensity 

of searching behavior in the tracked animal (Benhamou 2004, Colomb 2012).  Tortuosity refers 

to the sharper turn angles of an animal searching for food or a safe location to nest/rest.  The use 

of ‘sliwinltr’ provides the visual display of these relative angle cosine values in Figure 4.  Cosine 

values near 1 indicate a relatively straight trajectory, while values that approach 0.5 indicate a 

sharp turn and are commonly considered food or resource searching behaviors (Benhamou, 2004, 

Calenge, 2011).  The seabird data in Figure 4 demonstrates these varied behaviors, linked by 

Benhamour (2004) to searching behaviors.  
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Figure 4 Galapagos Swallow-tailed Gull smoothed cosine values of the relative angles 

demonstrating searching behaviors 

The cosine values of the relative angles in Figure 4 do not show periodic patterns but do 

demonstrate the same intermittent searching behaviors, with values near 1 and values in the mid-

range at times demonstrating tortuous angles, or searching behaviors.  Simulating searching 

behaviors themselves will require a modification of the entire model to include foraging and 

energetics concepts, additionally predicting the foraging areas will require a model more 

complex than time will allow for this exploratory study.  Thus, foraging locations and behavior 

are not simulated with these study models. We can test that the underlying movement processes 

of the foraging behavior are present, specifically that these values vary without any periodic 

components and that straight line travel and tortuous trajectories are present.  The relative cosign 

values are important for understanding the overall shape of an animal’s trajectory.  If model 

development continues beyond the scope of this paper, later iteration of this ABM will 

necessarily revisit this test as a means of validating foraging behaviors. 
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Since moving-object data is spatially linear and sequential, the standard tools for 

investigating error and independence (autocorrelation) in space will not provide useful 

information.  The spatial location of the animal is correlated to its last location because it came 

from that location; a different approach is needed.  Instead, using R and the adehabitatLT 

package ‘ltraj’ object, it is possible to extract the sequential changes in relative angles to 

investigate searching behavior.  After extracting the data, R’s standard autocorrelation ACF 

function can be used.   

The data from the ‘ltraj’ object is exported to an R dataframe, which is similar to a 

Microsoft Excel spreadsheet with column names and provides access to the ‘ltraj’ object’s 

calculated values for the relative angles in each burst, which is the set of relocations for one 

animal.  It is necessary to omit any NA values from the data in order for the ACF function to run, 

though in this case the real-world seabird data has no NA values.   

Figure 5 provides the ACF for individual seabirds in the dataset.  Both in the bird dataset 

and the Netlogo model simulation output, autocorrelation at time equals zero is near 1.  The 

initial angle change has no reference to compare it to, i.e., there is no prior angle for the value to 

be compared against, causing an edge effect.  The ACF values indicate the similarity of 

observations and identify when abnormal observations occur, whether these are the events of a 

bird recovering from capture or sampling error from the GPS tracking tags.   
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Figure 5 ACF values of seabird relative angles 

3.1.2 Seabird relocation independence 

Building on the examination of each relocation as a statistically independent event, an 

overall test of randomness known as the Wald and Wolfowitz Test of Independence (WaWo) is 

included with the ‘adehabitatLT’ package.  In the seabird data the p-values are very small for 

each of the four birds tracked.  These values are presented in Table 3.  Each is low enough to be 

considered zero for delta x (dx), delta y (dy), and distance.  The WaWo test is a tool for detecting 

randomness in a sequence of sample values.  If the p-values are high, it suggests that there are 

values present that do not fit in the sequence, i.e. values that are unlikely to occur in a normal 

distribution.     
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Table 3 Individual seabird P-values from the Wald-Wolfowitz test of randomness 

 

3.1.3 Seabird home range analysis 

Home range estimation can be done with several different tools in R and ArcGIS.  A 

simple plot of the birds movement tracks is provided in Figure 2.  In this case, the ‘ltraj’ object is 

not needed and a staple of R’s spatial analysis packages, ‘sp’, is used instead called a Spatial 

Points Data Frame.  This is basically an Excel sheet but the coordinate values are hidden and 

accessed through a variety of special calls in the ‘sp’ package.  The ‘clusthr’ tool provides an 

intuitive graph of home range size over home-range level, where level is the percentage of points 

included to calculate the home range (Figure 6). 

 

Figure 6 Home range analysis of seabird data using 'clusthr' 
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It is apparent from these charts that with around 75-80% of points included, the home 

range begins to increase at an increasing rate.  This suggests that a good estimate for the home 

range will occur with around 75-80% of the points around the first set of clusters identified by 

the tool.  This is important when considering a model of seabird behaviors and suggests that 

exploration activities may make up around 30% of the relocations for each seabird, though it is 

possible they are attempting to seek out their home range area after being captured, tagged and 

released. 

3.2 Development of study models through POM 

When the real-world data is analyzed, it becomes possible to begin thinking about the 

creation of the models and how to use the real-world data as a filter on the model output.  When 

comparing a simple random walk model to the moving-object data, there is a large difference in 

nearly every metric.  A truly random walk forms a cluster around the origin point with the 

probability of movement away from the origin decreasing with distance (O'Sullivan and Perry 

2013).  The initial form of random walk used in this study is slightly modified to restrict 

simulated seabird movement over land.  After each tick, or time step, the code checks if the 

seabird is headed toward land or is over land and adjusts the heading out to sea if the movement 

will take it more than a few hundred meters inland.  This location check was developed after 

examining the tracking data, which revealed rare flights over or near land, and provides a spatial 

restriction for all three models. 

The three simulations model seabird movement off Santa Cruz Island in the Galapagos 

Islands.  The simulation area is modeled to scale after the real-world environment where the 

tracked data is located.  The geography is loaded into the Netlogo environment using Netlogo’s 
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GIS extension. The simulation time is one 8-hour tracking period with observations every 5 

minutes to match the 5 minute intervals of the GPS tracking data. 

The movement speed for the models is based off the analysis of the seabird data.  Each 

movement in the simple random walk and correlated random walk models is 16 patches per tick.  

This was calculated based of the average speed of the seabirds, 1217.6 meters per 5 minutes, 

which when transformed to a Netlogo speed is 16 patches per tick.  This is based off the original 

size of the model area, 53,244.5 m
2
, determined using ArcGIS and creating a polygon to cover 

the extent of the study area, which is used to bound the Netlogo environment. Given that there 

are two square grids, one 54,244.5 meters in length and the other 701 patches in length, then, the 

real-world length of one patch in the Netlogo grid is the real world distance divided by the 

number of patches on one side.  This is a ratio based method of transformation and results in 

approximately 76 meters per Netlogo patch. 

These models were constructed specifically for this study, and are very similar.  The 

random walk building block is modified sequentially after investigating the patterns in relation to 

the real-world data.  Code from demonstration models in the Netlogo Modeling Commons, 

which is included with a Netlogo install, as well as example models from O’Sullivan and Perry 

(2013) were used to construct each model, with some customization for the environmental 

restrictions. 

3.2.1 Building the basic structure of the models 

Three agent-based models were constructed iteratively to investigate the trajectory, 

movement and home range behaviors of simulated bird movements.  I have termed these models 

the simple random walk (SRW), correlated random walk (CRW), and correlated random walk 

with variable speed (CRWS) after the elements that were adjusted to get closer to the real-world 
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data patterns.  The basic structure of each model is the same.  A vector outline of Santa Cruz 

Island in the Galapagos Islands is used to match the location of the seabird data and can be seen 

in Figure 7 with airplanes representing the seabird agents in mid-simulation.  In this case the 

black area is the ocean and the brown is the island of Santa Cruz, Ecuador.  

 

Figure 7 Netlogo modeling environment with vector graphic of Santa Cruz Island 

Seabirds return to land only to nest or shelter and spend most of their lives out at sea, thus 

the agent-based model restricts their movements over land by choosing a random angle that is 

directed seaward if they end up over the landmass.  This behavior is coded into all three models 

very simply, if the turtle will be over land in one tick, it is directed to pick an angle 180 degrees 

opposite its current direction, then randomly vary it 90 degrees left or right, enabling the turtle to 

travel parallel to the coast or go farther out to sea.  While this does not prevent a bird from 

ending up overland entirely, it does allow for some variation in movement when near the coast to 

approximate seabird behaviors. 
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CHAPTER 4: ITERATIVE MODEL DEVELOPEMNT AND ANALYSIS 

The following sections demonstrate the iterative model development process informed by 

ecological analysis techniques and presents the results.  The simple random walk (SRW) model 

is the starting point, with the hypothesis that the birds simply have to move through space 

somehow, ideally in the least complex way possible, avoiding land.  The SRW model does not 

meet the expectations setup by the real-world data and the next step in the iterative process, the 

correlated random walk (CRW) model is implemented.  The final model, the correlated random 

walk with variable speed (CRWS) model provides the best fit without incorporating behavioral 

parameters. 

4.1 A Starting Point; the Simple Random Walk as a process for bird movement  

The simple random walk model is presented as a starting point.  This is the simplest way 

of creating agent movement in Netlogo.  Since we need agents to move across the landscape, 

using the most basic method possible, it was expected the analysis would result in some 

similarities with the real-world data.  Using the SRW, the agent engages these steps:  

1. Pick a direction randomly from 360 degrees 

2. Check if that will intersect land 

a. If yes, pick a direction 90 degrees plus or minus the angle that is 180 

degrees opposite the original direction 

3. Move 16 patches in that direction 

4. Start over at Step 1 

The model will persist with these actions until 96 ticks have been completed, simulating 

an 8-hour time period of tracking.  Other than movement over land, there are no additional 

restrictions.  Model runs where birds reached the edge of the map extent were discarded as this 
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causes an edge effect that is unsuitable for analysis, however if future models need to extend 

farther from the island, the programming will not need adjustment.  The data is exported into a 

CSV file and the analysis in R can begin.   

4.1.1 Shape and the use of space by agents with SRW movement programming  

When comparing the SRW output to the seabird data (Figure 8) it is clear through visual 

inspection that this is not the correct model for movement programming.  The simulated agents 

are tightly clustered and do not exhibit the range or deliberateness found in any of the seabird 

tracks. 

 

Figure 8 Seabird (left) and SRW Model movement tracks 

The movement tracks can be decomposed further by analyzing the spatial components 

that make up their movement.  The ‘ltraj’ object is used to examine the shape of movements in 

space and the object itself contains basic characteristics displayed when the object is created 

which are identical for each model with 96 relocations and 4 simulated birds, referred to as 

agents.  Without device or battery failure there are no missing observations, and the tracks 

contain the same number of relocations.   
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Following the steps used for analyzing the seabird data, the SRW data is rediscretized, 

producing even more tightly clustered areas.  In Figure 9, the rediscretization of the SRW paths 

provides a more continuous path, but the tight clustering and lack of real-world behaviors is 

apparent.    

 

Figure 9 Rediscretized seabird (left) and SRW movement paths 

To further decompose the shape of movements into spatial components that can be 

compared without regard to seabird origin or spatial extent, the cosine values of relative angles 

changes are used.  This method of inspecting the cosine values of relative angle changes also 

provides an insight into the differences between the seabird data and the simulated movements.  

To understand these charts it is necessary to know that cosine values near 1 and zero indicate 

near straight line travel, while values closer to 0.5 indicate what is called a tortuous trajectory, 

think flying in circles looking for something or a jet fighter pilot avoiding incoming fire.  In the 

SRW output, there is almost no indication of straight line behavior, (Figure 10) instead the 

cosine values appear to vary widely at every tick indicating movements in completely random 
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directions with no pattern.  This implies that the agents are not moving relative to their previous 

heading, but instead careening around as though in a pinball machine. 

  

  

  

  

Figure 10 Seabird (left) and SRW smoothed relative angle changes over time 

These same relative angle values can be analyzed using R functions that are able to look 

for patterns in the sequential values.  The ACF function tests if the model is selecting truly 
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random numbers or if an underlying pattern is working on the selection of angles.  The presence 

of autocorrelation in these data suggests there is an error in the model and that it is not a random 

walk.  This is true, since we have restricted the agent’s movement over land, which forces the 

system to use a different set of rules and select an angle value from a different distribution.  The 

values above and below the blue lines in Figure 11 indicate autocorrelation that is statistically 

significant, and that our movement programming needed adjusted for the next iteration of model 

development. 

 

 

Figure 11 ACF of relative angle changes in seabird (top) 

 and SRW simulation movements 

While it would be possible to begin the new iteration here a few remaining tests exists 

that can help explore and understand the data generated by the ABM and shed light into why a 
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simple random walk is not suitable for modeling moving-object data in the context of animal 

tracking.  The tests above look at the overall shape of the travel paths and begin investigating the 

underlying values that compose the overall shape.  These tests are used to determine the 

geometric processes acting on the movements, identify searching behaviors and begin testing for 

independence and sampling error.  The tests below will further investigate independence and 

begin to incorporate the use of space, or home range, into the analysis.   

4.1.2 SRW relocation independence, pattern in random values 

The WaWo test continues the investigation into the process of movements by examining 

the distribution of changes in the xy coordinates and distance traveled.  WaWo tests examine the 

sequence of values by looking for values that do not belong and are from a different distribution.  

Recall that the seabird P-values for dx, dy and dist are very low, meaning that the null hypothesis 

of the WaWo test holds true, the values are consistent with no unexpected values in the sequence.  

This test suggests that the movement process of the seabirds has a normal distribution and that 

they are not moving randomly, but moving with a purpose.  While this seems like common sense, 

obviously birds do not randomly careen about like drunkards, having a mathematical test validate 

this is useful when examining the simulation data since it allows for the quantitative comparison 

of the model values with the real-world data and checks the randomness of the movement 

process in Netlogo. 

For the SRW model, the WaWo test results are presented in Table 4.  The dx and dy p-

values are consistently low enough that the test is confident they are independently drawn from 

the same distribution.  Error here would indicate flaws in the tracking data itself, a bad location 

fix, or a value in sequence from a different datum.  In the simulation, these values are near zero 

because Netlogo is controlling the coordinate system for all the values.  The dist values however 
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are completely different.  These values are much higher and the WaWo test indicates that they 

are not independently drawn from the same distribution.  This is true, since the distance traveled 

is related to the speed of the agent, which we have set to a constant 16 patches per tick.   

Table 4 WaWo test results for SRW Model Output 

Agent ID dx dy dist 

1 1.13E-10 1.84E-10 0.6036293 

2 1.43E-09 2.12E-08 0.6631326 

3 6.19E-08 2.34E-08 0.45736442 

4 5.38E-07 1.53E-07 0.1883668 

 

4.1.3 The use of space: home range 

The minimum convex polygon (MCP) that contains 90-95% of all relocations in a set of 

tracks is a common measure of home range (Kenward, et al 2001, Calenge 2011).  The results of 

the density and linkage estimator ‘clusthr’ are presented in Figure 12.  This test identifies a core 

group of clusters and begins incorporating other clusters into the group until 100% of the 

relocation points are included.  It is often used prior to creating an MCP to identify the 

percentage of points to include that excludes exploration behaviors.  In the seabird data from 

around 50-75% there is very steady increase in home range area as the percentage of points 

included increases and demonstrates an exponential increase in area.  The simulation results are 

more parabolic, with increases beginning at or around 50-60% of the home-range level and 

increasing quickly.  This suggests that the SRW model is not utilizing the space in the same way 

as the seabirds, which is supported by the analysis of shape and space above.   
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Figure 12 Seabird (left) and SRW home range size from ‘clusthr’ 

In summary, the SRW produces agent movement paths that are tightly clustered, tortuous, 

and autocorrelated due to programming restrictions.  These evidently do not utilize space in the 

same way as the seabirds.  Overall the SRW model clearly does not produce movements accurate 

enough to model seabird behaviors.   

The next stage in the model development was to test a correlated random walk.  The 

correlated random walk is more complex since it changes the process by which the agents pick a 

direction to move in, making it less random and more directional, it was hypothesized that it 

would prevent the tightly clustered movement paths and change the overall use of space by the 

simulation. 

4.2 Incorporating a correlated random walk to modify spatial behavior 

Adding the correlated random walk changes the behavior of agents at each tick.  In this 

model the agents are still looking out for the landmass, and avoiding it, but the angle changes 

they are allowed make are restricted.  The decision was made to allow the agents to pick a 

direction that is no more than 45 degrees off their previous heading.  This means the agent will 
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not be able to move back toward its origin point without making a more sweeping turn to do so 

and was expected to bring the model output closer to that of the seabirds since it is unlikely they 

are making 180 degree turns often.   

The correlated random walk model is presented as the second iteration in the basic 

movement model.  When this model is initialized, the agents are given a random heading chosen 

from the full 360 degrees available for them to move in.  After initializing the model, the agents 

in the correlated random walk model follow these steps:  

1. Pick a direction plus or minus 45 degrees off your current heading 

2. Check if that will intersect land 

a. If yes, pick a direction 90 degrees plus or minus the angle that is 180 

degrees opposite the original direction 

b. If no, continue 

3. Move 16 patches in that direction 

4. Start over at Step 1 

4.2.1 Shape and the use of space by agents with CRW movement programming 

In Figure 13 it is apparent that the correlated random walk does bring us closer to the 

movement model of the seabirds.  The agent paths have become much less clustered and tortuous 

in comparison to the SRW model output.  Rediscretizing the movement steps, shown in Figure 

14, prior to decomposing the spatial components of the movement tracks, reveals that there are 

still more clusters in the CRW tracks than are present in the seabird tracks.   



 
 

 
 

47 

 

Figure 13 Seabird (left) and CRW movement tracks 

 

Figure 14 Rediscretized seabird (left) and CRW movement paths 

The cosine values are less torturous than the SRW model produces, with some of the wild 

oscillations seen in the previous model reduced somewhat.  While these values still vary a great 

deal compared to the seabird data, they are showing a reduction in tortuous behaviors overall, 
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with cosine values mostly in the 0.8-0.95 range, indicating relatively straight flight paths with 

occasionally sharp heading changes.   

  

  

  

  

Figure 15 Seabird (left) and CRW smoothed relative angle changes over time 

 

The ACF function for the CRW in Figure 16 reveal autocorrelation very similar to that of 

the SRW model, with regular spikes of statistically significant autocorrelation.  The spikes are 
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nearly identical to that of the SRW.  Solla et al (1999) suggest that ecological relationships are 

often related to the spatial environment and it is common to observe autocorrelation in real-world 

data, however it is unlikely that it occurs with the regularity observed in the SRW and CRW 

models.   

 

 

Figure 16 ACF results of relative angle changes in seabird (top)  

and CRW simulation movements 

4.2.2 CRW relocation independence, pattern in random values 

The results of the WaWo test on the CRW output are in Table 5.  Similar to the SRW the 

dx and dy p-values remain at zero, but the dist p-value is more interesting.  One of the agents 
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achieved a value near zero, however the remaining agents all fail the test of independence.  This 

is interesting because the speed is still set to a constant 16 patches per tick.   

Table 5 WaWo test results for CRW Model Output 

Agent ID dx dy dist 

1 1.82E-14 3.34E-12 2.44E-15 

2 1.36E-12 1.16E-13 0.6945514 

3 3.53E-09 1.37E-14 0.9069382 

4 1.94E-14 8.71E-13 0.9889598 

 

4.2.3 CRW home range analysis 

The results of the density and linkage estimator on CRW results are presented in Figure 

17.  The simulation results are almost linear, with increases beginning at or around 50-60% of 

the home-range level and increasing at nearly the same rate.  This suggests that the CRW model 

is still not using space in the same manner as the seabirds.   

 

  

Figure 17 Seabird (left) and CRW home range size from ‘clusthr’ 
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To summarize, the movement tracks themselves are closer to that of the seabird data than 

the SRW model results.  There is less clustering, though some still exists in random places.  The 

smoothed relative angle changes are beginning to show less wild oscillations, however 

something is still causing the WaWo test to indicate that the changes in distance between each 

relocation are not pulled from the same distribution.  Home range levels increase linearly and 

still do not match the expected gradual increase to 75-80% found in the real world data.   

4.3 Incorporating speed variation into the correlated random walk 

When looking at the original map of relocations in Figure 8and Figure 13 the ABM 

output consistently delivered points at regular intervals in both space and time.  The seabird data 

would have many points separated by larger distances and small clusters of points close together; 

indicating that speed played an important role in the overall shape of the seabird movements 

when decomposed.  Adding the variable speed to the correlated random walk again changes the 

behavior of agents at each tick.  In this model the agents are still looking out for the landmass, 

and avoiding it, the angle changes they are allowed make are restricted and now their speed will 

vary with the same mean and standard deviation observed in the aggregated seabird data set.     

The CRWS model is presented as the third iteration in the basic movement model.  When 

this model is initialized, the agents are given a random heading chosen from the full 360 degrees 

available for them to move in.  After initializing the model, the agents in the correlated random 

walk model follow these steps:  

1. Pick a direction plus or minus 45 degrees off your current heading 

2. Generate a random speed from a normal distribution centered around the mean of 

16, with a standard deviation of 16.1, discarding negative values 

3. Check if that speed will cause the agent to intersect land 
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a. If yes, pick a direction 90 degrees plus or minus the angle that is 180 degrees 

opposite the original direction 

b. If no, continue 

4. Move at the random speed in that direction 

5. Start over at Step 1 

4.3.1 Shape and the use of space by agents with CRWS movement programming 

In Figure 18 it is apparent that the CRWS model brings us even closer to the movement 

model of the seabirds.  The agent paths have become much less clustered and tortuous in 

comparison to the SRW model output and the varied speed as made clusters of relocations 

matching that of the seabirds that should be reflected in the investigations below.  Rediscretizing 

the movement steps, shown in Figure 19, prior to decomposing the spatial components of the 

movement tracks reveals that there are significantly less clusters than the SRW model and it was 

expected that the results would match the seabird data more closely. 

 

Figure 18 Seabird (left) and CRWS movement tracks 
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Figure 19 Rediscretized seabird (left) and CRWS movement paths 

The cosine values are significantly less torturous than those of the SRW and CRW 

models, with oscillations that more closely resemble that of the seabird data.  Also of note is a 

more similar range of values to the seabird data.  There are still some discrepancies and the 

values still appear to be influenced by the random number generator control the angle changes.  

It is possible that GPS accuracy issues may play a role in cloaking the more wild variations 

observed in the CRWS movements.  If the seabird is tightly circling in an area less than 30m, 

searching for food, the GPS error may not capture these tortuous angle changes.  At this point, I 

am confident that this test is better applied at a point in the iterative process where foraging 

behaviors can be integrated.   
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Figure 20 Seabird (left) and CRWS smoothed relative angle changes over time 

The ACF function for the CRWS agents in Figure 21 reveal autocorrelation very similar 

to that of the seabirds, without the regular spikes of autocorrelation found in the CRW and SRW 

agent paths.  Since the only change in the model was varied speed this suggests that speed plays 

a significant role in the autocorrelation of relative angle changes. 
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Figure 21 ACF results of relative angle changes in seabirds (top) and CRWS agents 

4.3.2 CRWS relocation independence, pattern in less random values 

The results of the WaWo test run on the CRWS output are in Table 6.  Even with the 

third model iteration using CRWS agents, the paths are still not a statistical match to the real-

world data.  Similar to the SRW and CRW agent paths, the dx and dy p-values remain near zero.  

In this case the dist values become an important indicator.  These values are consistently lower 

than those of the previous models, closer to the seabird values, which suggests that adding a 

behavioral element to the model, varied speed, made a bigger difference than changing the 

geometric processes that govern movement.  Nevertheless, the CRWS agents are still rejecting 

WaWo’s null hypothesis.  This is interesting because the speed value is programmed to come 

from the same distribution. 
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Table 6 WaWo test results for CRWS model output 

Agent ID dx dy dist 

1 0.000476589 0.000592477 0.4073415 

2 0.000231885 0.000320847 0.47143726 

3 8.91121E-05 0.01447694 0.7902441 

4 0.006280511 0.02280497 0.580764 

 

4.3.3 CRWS home range analysis 

The results of the density and linkage estimator on CRWS results are presented in Figure 

22.  The simulation results are very similar to that of the seabird data, with increases beginning at 

or around 75-80% of the home-range level and increasing rapidly after.  This suggests that the 

CRWS model agents are forming a similar core of movements that the density and linkage 

estimators are identifying as similar to the seabird movements. 

  

Figure 22 Seabird (left) and CRWS home range size from ‘clusthr’ 

In summary, the movement tracks themselves are closer to that of the seabird data than 

the any of the previous model agents.  There is significantly less clustering in the overall 

movements and the smoothed relative angle changes show far less wild oscillations.  However, 

something is still causing the WaWo test to indicate that the changes in distance between each 
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relocation are not pulled from the same distribution.  Calenge (2011) and the CRWS results 

suggest that speed is a very significant factor.  Home range levels increase linearly and still do 

not match the expected gradual increase to 75-80% found in the real world data.   

Additional testing was done to investigate the programmatic errors that may arise from 

Netlogo itself.  An example of testing the random number generator can be found in Appendix 7.  

This appendix shows how the speed distribution of the simulated data differs from that of the 

real-world data. 
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CHAPTER 5: DISCUSSION 

Shape of the sequential relocations in space, independence, and home range are all 

considered as model outcome key performance indicators.  The indicators provide a common 

language for comparing ecological data with agent-based modeling output.  In general, 

simulations are simplified versions of the real world, implying that some variation between 

observations and simulations is expected.  The problem then becomes selecting a best-fit 

simulation model that emulates a selection of processes found to be critical in real world data.   

5.1 Spatial elements 

The overall shape of real-world animal’s movement trajectory is likely impossible to 

predict since an animal’s movement track will be unique in an ever changing environment.  

Variables such as weather and food availability vary a great deal and prevent specific predictions 

of movement.  The mechanisms behind movement can be identified and programmed to produce 

similar overall behaviors to the real world data, with some caveats.  The CRWS model produced 

results, shown by both the trajectory analysis and home range clustering (Kareive and Shigesada 

1983) that mimic the same characteristics as the seabird data.  The overall changes in relative 

angle and percent home range estimates most closely match the output of the CRWS Netlogo 

model.  Other models fail at producing acceptable results on all counts, either displaying no 

patterns matching the real-world data, as in the case of the simple random walk data or by 

revealing a completely new pattern.  One step in the analysis, that of deconstructing the cosine 

values of the relative angles and performing a time series analysis is likely better suited at a later 

point in the iterative development of the model. 

The cosine values of relative angles in the real world data reveal signs of tortuous 

trajectories or searching behaviors (Benhamou 2004).  This implies that in order for the agent-
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based model to accurately mimic the processes that create such trajectories, a great deal of time 

must be spent informing the model about bird predatory habits and behaviors, as well as 

incorporating memory and inter-agent communication.  Restricting the turn angle to a range 

around the current direction the simulated agent is facing provides movement paths that more 

closely mimic that of the real world relocation patterns, which becomes quickly evident when 

compared, even with modifications to the models to avert seabird movement over land.   The 

smoothed cosine values then inform an iterative step in the model development relating to 

resource harvesting behavior rather than agent movement.  This enables the structure of an ABM 

to more closely match the processes that develop aggregate behaviors in the real world.   

Agent movement, largely controlled by very simple programming, is put to the test using 

a sequential analysis test that looks for values that are unexpected.  Wald and Wolfowitz test of 

independence (WaWo) results for dx and dy are consistent with the seabird data.  The distance 

variable however seems very dependent on speed, as the results of the CRWS model indicate 

WaWo test p-values in dx and dy remain consistently low enough to accept the null 

hypothesis that the values are independent and normal, dist values however, are not independent 

with p-values as high as 0.98 in the SRW model.  Looking at the structure of the model itself, 

this is related to the speed value chosen during the analysis steps on the original real-world 

moving-object data.  The gull data was used to find the mean movement speed of the Galapagos 

Swallow Tail Gull during the model movement, as well as the standard deviation of that speed.  

In the simple random walk and correlated random walk models the speed was set to that average, 

while for the correlated walk with variable speed the model was instructed to choose a speed at 

random during each step from a normal distribution created with the mean and average of the 
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real-world data.  The values for the CRWS model are the closest to the real-world data, 

indicating that variable speed is an important element. 

 5.2 Conclusions 

Several tests with quantifiable or visual comparisons enable a model builder to assess the 

movement component of an agent-based model.  Nearly any model in which independent agents 

move and have expected behaviors in the real world such as movement restrictions (the birds in 

the model presented here rarely fly over land), would benefit from quantitative analysis to ensure 

the model behavior is consistent with real world observations, the goal of Pattern Oriented 

Modeling.   

As demonstrated here, each small step in the iterative model building approach, referred 

to by Railsbeck and Grimm (2012) as Pattern Oriented Modeling, can take time and careful 

research.  If patterns are identified in the target structure, i.e., the real-world moving-object data, 

they should be used as filters for the model not only at the end of the programming and 

development process, but during and before.  This is especially so if moving-object data is 

available for comparison. 

Continuing this iterative process through to the development of a complete 

comprehensive model of the bird behavior would take a considerable amount of time. 

Incorporating feeding and reproductive behaviors could take up to a year to complete if an 

appropriate multidisciplinary team could be polled for parameter data.   Parameters such as 

energy consumption, fatigue and resource degradation could be tested in the complete model.  

Nevertheless, such a complete model would be useful for many reasons.  In a real-world system, 

collapsing a component of the ecosystem, such as a fishery, to see how an animal responds 

would be impossible to justify.  With an ABM, it is possible to simulate the collapse of a 
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resource, or any change in the environment, and observe the patterned outcome.   This would 

allow the ABM to become a valuable tool for policy makers which could be used to inform their 

decisions on environmental management and business policies as well as to help direct 

conservation efforts. 

5.3 Lessons learned 

This study demonstrates the need for iterative model development and testing throughout 

the programming phase.  If movement rules had been chosen that are not a best fit for the real-

world object modeling it may not appear until sensitivity analysis is performed several steps 

further into the model building effort, meaning a return to the foundational programming of a 

model.  It suggests that model complexity must be carefully balanced against the needs of the 

researcher.  Complex models that are not validated may provide data that is unusable, something 

that can only be discovered after hours of investigation.   

5.4 Questions for the future 

As more complex agent-based models emerge from the iterative process it becomes 

necessary to investigate them thoroughly.  Initial study designs incorporated models whose 

complexity was not easily understood and could not produce consistent results.  Further research 

is needed into identifying when a model’s complexity reaches a point where it no longer is able 

to provide useful information and speak meaningfully about the system it is modeling.   

Additionally, other methods could be incorporated into the iterative validation process 

that is specific to a scientific discipline interested in agent-based modeling.  It may also be 

possible to use sets of data that do not include tracked moving-objects but rather single-event 

observations, such as marine mammal or seabird observations from on board a survey ship.  The 
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use of such data would restrict the tools available within the ecological framework but may still 

provide important insights into the results of an agent-based model. 
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APPENDICES 

APPENDIX 1: TRAJECTORIES 

 

Figure 23 Movement of Netlogo  gulls with a simple random walk 

 

Figure 24 Movement of Netlogo gulls with a correlated random walk 
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Figure 25 Movement of Netlgo gulls with a correlated random walk and variable speed 
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APPENDIX 2: REDISCRETIZED TRAJECTORIES 

 

Figure 26 Movebank.org Gull relocations 

 

Figure 27 Correlated random walk with variable speed 
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Figure 28 Simple Random Walk 
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Figure 29 Correlated Random Walk 
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APPENDIX 3 SMOOTHED COSINE VALUES 

 

Figure 30 Correlated random walk with variable speed 
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Figure 31 Simple random walk 
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APPENDIX 4: ACF VALUES FOR INDIVUDAL BIRD AND NETLOGO TURTLE 

RELATIVE ANGLE CHANGES 

  

  

Figure 32 Seabird relative angle ACF, clockwise from upper left, PLS-13, PLS-2, PLS-4, 

PLS-8 
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Figure 33 SRW relative angle ACF, clockwise from upper left, bird 0-3 

  

  

Figure 34 CRW relative angle ACF, clockwise from upper left, bird 0-3 

  

  

Figure 35 CRWS relative angle ACF, clockwise from upper left, bird 0-3 
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APPENDIX 5: NEAREST-NEIGHBOR CLUSTERING ANALYSIS OF HOME RANGE 

ESTIMATES 

 

Figure 36 Simple Random Walk ‘clusthr’ home range results. 
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Figure 37 ‘Clustr’ home range results from the Correlated Random Walk with Variable 

Speed 

 

Figure 38 ‘Clustr’ home range results from the Correlated Random Walk 
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Figure 39 ‘Clustr’ home range results from Moving-Object Bird data set 
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APPENDIX 6: SPEED, FROM RANDOM TO NORMAL  

Speed obviously played a more significant role in two of the tests than I had anticipated 

when investing ecological analysis methods.  After the third and final model iteration, digging 

deeper into the variation between seabird speed distributions and CRWS speed distributions 

seemed relevant.  The CRWS agents speed distribution, in Error! Reference source not found. 

approximates the distributions in the seabird data in Error! Reference source not found..  

Small variation is present in the probability distribution of the correlated random walk with 

variable speed model.  It does however follow a very similar pattern to the real world data.  The 

seabird data has several characteristically different curves, however the overall shape of the 

distribution is identical to the model values.   

  

  

Figure 40 CRWS agents speed distributions 
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Figure 41 Galapagos Swallow-tailed Gull speed distributions 

:  
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