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Abstract 

This study predicts the spreading pattern of an invasive plant species, Spartium junceum, 

using Maxent, a type of Species Distribution Model (SDM). Species Distribution 

Modeling estimates the relationship between species records at sites within a given study 

area and the environmental or spatial characteristics of those sites. This study combines 

environmental variables found at sites where species occurrence has been confirmed and 

analyzes the results to predict future spreading patterns. A subset of occurrence data is 

used for quality control with the intended purpose of validating the accuracy of the 

model and its results. This study uses ArcGIS 10.6.1 and Maxent version 3.4.1 to 

perform presence-only species distribution modeling of Spartium junceum from data 

collected in 2011–2016 in the Angeles National Forest (ANF), which is managed by the 

U.S. Forest Service. The primary study area is the ANF with an emphasis on the San 

Gabriel Mountains which lie in the eastern portion of the national forest. The results will 

increase the exposure of Maxent as a feasible, cost-effective species distribution model 

that Federal land management agencies can incorporate into environmental analyses and 

environmental impact studies that contribute to their land management plans. The 

Angeles National Forest does not currently employ SDMs in its invasive species 

management plan and Maxent modeling represents an option for studying species 

distribution patterns where only presence data are available. Many studies use Maxent to 

understand species distributions of flora and fauna, but few such efforts are updated 

annually and used as a key indicator in a Federal Agency’s decision-making process in 

their land management plans and actions.   
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 Chapter 1 Introduction  

Diverse topography, ecosystems, and flora and fauna characterize California’s 

national forests. Native vegetation diversity is considered a key indicator of forest 

health, but the spread of invasive species has complicated what interpreting that 

diversity looks like and has thus become an important issue for land management 

agencies such as the US Forest Service (USFS) and local communities that neighbor 

national forests. The ability of invasive species to compete with native vegetation 

for resources and alter the local ecosystem is a primary concern to the interested 

parties.    

The purpose of this research is to better understand the underlying factors that 

contribute to the spread of Spartium junceum (Spanish Broom) in the Angeles National 

Forest (ANF). Spartium junceum is a particularly mettlesome invasive species and is 

very difficult to remove and therefore is emphasized as a species for removal and other 

mitigation efforts by the USFS (Mullin et al. 2000).  The operating premise of this 

research is that Spartium junceum thrives and spreads under certain conditions and, by 

identifying those conditions through species distribution modeling (SDM), accurate 

estimates of the geographic regions to which they may spread as the weather conditions 

under which they will thrive in the future evolve.  

Some of the conditions used in Maxent are environmental while others are non-

environmental; both conditions will be referred to as variables in the remainder of the 

thesis. The non-environmental variables that will be considered in this research are 

linear distance to nearest water source, linear distance to recreation sites, linear distance 

to local roads, linear distance to vegetation burn areas, and linear distance to the 
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 wildland urban interface. The environmental variables that will be considered in this 

research are biophysical and bioclimatic with the bioclimatic variables coming from the 

worldclim dataset (www.worldclim.org).  The biophysical variables are as follows: 

elevation, slope, aspect, hill shade and visibility. The bioclimatic variables are as 

follows: mean diurnal temperature range (mean of monthly, maximum-minimum 

temperature) minimum temperature of the coldest month, annual precipitation, 

precipitation of the driest month, precipitation seasonality, and precipitation of warmest 

quarter (Qin et al., 2017) Datasets associated with each variable will be accessed in 

Maxent and ArcGIS to perform predictive spatial analysis. 

1.1 Motivation  

Federal management of national public lands and the natural resources that make 

up the diverse array of ecosystems in those lands is a major endeavor that requires a 

large annual budget and workforce on the ground at the field level. With increasing 

budget cuts to critical natural resource programs, it has become increasingly important 

to be as efficient as possible with the workforce that is already in place and incorporate 

new technologies in the land management process. The USFS’s 2018 discretionary 

budget, for example, decreased by 16.5% while the amount of land management either 

remained same or increased. The USFS discretionary budget for fiscal year 2017 was 

$6.2 billion and the President’s approved budget for fiscal year 2018 was $4.7 billion 

(USDA Forest Service, 2017). The combination of shrinking budgets and increasing 

recreation pose a substantial challenge for the future of the agency and its land 

management practices.  

http://www.worldclim.org/
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 One of the most crucial aspects of doing applied scientific research lies in its 

ability to affect the planet and the lives of those who live in it in a positive way and to 

increase the capacity and efficiency for protecting and managing natural resources.  That 

is precisely the goal of this research.  In this case, the science can benefit the USFS, 

which is the second largest federal land management agency in the U.S. that is tasked 

with caring for the largest portion of national public lands.  

The USFS is responsible for managing the national forest system, including the 

natural resources and recreation areas which lie within its boundaries. The USFS has 

jurisdiction over 28.7% of the nation’s federally owned land and is responsible for all 

the natural resource work that must be performed on that land (Vincent 2004). The ANF 

is one of the smaller national forests in the U.S. at 668,887 acres (USDA Forest Service, 

2012) but receives some of the highest recreational use. The USFS reported recreational 

use on the ANF at 3,471,486 people during the 2000 calendar year (USDA Forest 

Service, 2001). One of the biggest explanations for the recreational use per acre is the 

proximity of the ANF to the second the largest metropolitan area in the U.S., Los 

Angeles. The estimated population of Los Angeles County in 2017 was 10,105, 722 

based on information provided by the U.S. Census Bureau (2017).  

The ANF is facing a modern-day management crisis. As the population grows 

and the size of forest stays the same, increasing levels of recreation use on the forest are 

approaching capacity and are creating more natural resource work when the personnel 

and resources available to do the work decline as budgets continue to shrink. One of the 

biggest problems facing the USFS today is managing the increasing number of invasive 

plant species found throughout the forest. This is a particularly challenging task because 
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 recreation increases on the forest and unpermitted off-trail forest users act as vectors for 

invasive plant seed dispersal. Invasive species compete with native species and, in the 

process, alter the local ecosystems, which affects natural wildlife habitat, wildlife food 

sources, recreational opportunities and buffer zones that are critical to the wildland-

urban interface (Stein et al., 2013).  

The Natural Resources Department is an integral unit to the overall structure of 

the forest and is responsible for surveying, documenting, reporting and treating invasive 

plant populations on the ANF, including Spartium junceum. The Forest Service 

Supervisor’s office in Arcadia, California is the headquarters for the entire ANF, and the 

Natural Resources Department personnel.  

 The Natural Resources Department on the ANF uses GIS to analyze the data 

they record in the field but could greatly benefit from SDM in their many projects and 

programs.  The lead biologist, botanist, and their subordinates use a combination of 

Trimble GPS units and mobile smartphones and tablets to collect and document data on 

the invasive species they study in the field. After collecting data in the field, each field 

biologist and botanist use Esri’s ArcPad software for Trimble or Esri’s collector mobile 

GIS app to digitize their data. The software they use is suitable for routine GIS field data 

collection and standard analysis but can greatly benefit from more robust spatial analysis 

tools such as SDM.  

 This study examines the spread of the invasive plant species Spartium junceum 

in the ANF. The high levels of vehicle and foot traffic throughout the study area are the 

result of its location in Los Angeles County and the presence of what is known as the 
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 wildland-urban interface, which is the zone of transition “where houses and wildland 

vegetation meet or intermingle” (Radeloff et al., 2018). 

 This project shows how the application of species distribution modeling can 

serve as a powerful spatial analysis tool to support land management across areas that 

range from small to large extents. The use of Maxent clarifies some of the variables that 

influence the spread of invasive species to provide a better understanding of the 

mechanisms that are most dominant in their distribution patterns.  

 Most of the data being used for this research has come internally from USFS but 

also from other governmental agencies including: the U.S. Geological Survey (USGS), 

and the National Oceanic and Atmospheric Administration (NOAA). All the 

government agencies that are providing the data collect that data on an annual basis and 

have large databases dedicated to storing and publishing that data once it is in a suitable 

format for the public. The data provided for this work at the time it was gathered (2017) 

was in a transactional phase and had yet to be made publicly available. Its use for this 

thesis project was approved at the time of writing by ANF resource officer Jaime 

Uyehara and collected and provided by Jason Martin.  

 The goal of this research is to use the Maxent, Esri’s ArcGIS software, and 

different sets of unique environmental and non-environmental variables to better 

understand the spatial distribution of Spartium junceum in the study area. In using more 

robust and powerful spatial analysis, a predictive approach can be taken by the Forest 

Service to better remove, monitor, and manage the invasive plant species problems 

affecting the areas they manage.   
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 1.2 Study Area 

 The ANF was chosen as the primary study area due to its relatively small extent 

in comparison to other national forest and the high levels of recreation use found 

throughout the forest (Figure 1).  

 

Figure 1 Angeles National Forest 

  This study considers many different types of environmental variables at play in 

the forest as well as the many recreational opportunities available to the public. The goal 

is to portray how those opportunities are increasing the chances and likelihood that seeds 

are transported and dispersed into far ranging areas where invasive species can establish 

themselves and compete with native plants.  The ANF provides access to numerous 
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 hiking trails, off-highway vehicle (OHV) trails and access areas, scenic roadways, 

campgrounds, day use picnic areas and stream and river access to the many visitors who 

frequent the region during the hot summer months.  

As a very highly frequented national forest, the ANF serves as prime location for 

Maxent as the area provides a plethora of variables needed for the modeling itself and an 

abundance of presence-based invasive plant species data which is the primary type of 

data needed to run this species distribution model.  

1.3 Surveyed Invasive Species 

An invasive plant species is defined as a non-native (or alien) species to any 

ecosystem that is under consideration. The ANF plays host to many different varieties of 

invasive species some of which fall into its noxious weeds list as well. The noxious 

weeds list indicates that a species is not only invasive but also harmful to the 

environment or to wildlife in an environment and necessitates more extreme monitoring 

and removal efforts than normal invasive plant species. This study focuses on one of 

those major invasive species. Spartium junceum (Spanish Broom) is the target species of 

this research and is one of highest priority invasive species in the ANF invasive species 

and noxious weeds list. Spartium junceum is found in many areas throughout the forest 

and notoriously difficult to remove. The difficulty in removing individual plants, the 

resilience to approved chemical applicators and the longevity of seed life has led to 

numerous annual exhaustive efforts to control population blooms.  It has been estimated 

that the seeds of Spartium junceum remain viable for 5 years and mature plants can 

produce anywhere from 7,000-10,000 seeds per season (Zouhar, 2005).  
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 This research focuses on the land contained within the administrative boundary 

of the ANF with an emphasis on the eastern side of the forest where the San Gabriel 

Mountains are located. The study area supports recreation in the form picnicking, day 

use camping, hiking and OHV (Off highway Vehicle) use, which makes it an ideal study 

area for this research.  

1.4 Species Distribution Modeling and Maxent Explained 

Species distribution modeling, also known as environmental niche modeling, is a 

modeling technique that uses two different data types to estimate the potential locations a species 

will likely inhabit in the future. The two different data types are integral in determining the type 

of SDM that is most appropriate for individual cases studies; the two data types are presence-

only data and presence-absence data (Philips et al., 2004).  

 The required data types for a species distribution model are often determined on a case-

by-case basis but one of the main determining factors is the availability of data. In many 

instances, insufficient records are available to support presence-absence species distribution 

modeling and presence-only SDMs are more suitable (Philips et al., 2004). Furthermore, a key 

issue with presence-absence is that a species may be declared absent from a landscape unit 

simply because the species was not detected using the prescribed sampling methods. The effect 

of this imperfect detection is that parameter estimates will be biased, and any modeling of the 

data provides a description of the surveyor’s ability to find the species on the landscape, not 

where the species is on the landscape (Mackenzie, 2005). 

Maximum Entropy Modeling is a “species distribution model that uses presence-only 

data to predict the distribution of a species based on the aforementioned theory of maximum 

entropy” (Qin et al., 2017). One of the constraints of species distribution modeling is the 
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 availability of data for a given study variable within a given study area. Maxent relies on large 

datasets to be as accurate as possible (Philips et al., 2004). The more data that is available the 

better the model runs as it allows for higher quality or more appropriate data to be selected and 

used with the model, which can help produce more accurate predictions of a probability 

distribution for species occurrence in each study area. Being able to obtain the necessary data is a 

critical component of being able to use this type of model.  

The availability of historical datasets is a limiting factor in presence-absence modeling, 

as many of the necessary records are held in archives managed by museums or other archiving 

entities and are not always easily accessible or readily available. Maxent is not as burdened by 

this challenge as it relies on presence-only datasets (Philips et al., 2004). In this case the 

presence-only data needed is readily available to the public in a spatial data clearinghouse and 

internally via request from the USFS.     

Maxent aims to predict a species’ distribution based on environmental predictors 

(precipitation, temperature, etc.), background data and the number of individuals or samples in a 

data set based on the underlying theory of maximum entropy (Philips et al., 2004). The theory of 

maximum entropy relies heavily on the principle of being able to find what the best 

approximation of a probability distribution is relative to the constraints on a given study variable 

in a specific study area (Qin et al., 2017). Entropy itself can be looked at as a measure of how 

much choice is involved in the selection of an event in each system. Combining the concepts of 

entropy and species distribution modeling, Maxent essentially “agrees with everything that is 

known but carefully avoids assuming anything that is not known when trying to find the optimal 

probability distribution for a given study or study area (Qin et al., 2017). When using Maxent, 

the study area of choice is divided into a grid and from that grid, Maxent extracts a sample of 
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 background locations that it contrasts against the presence locations where a species (Spartium 

junceum) is found and uses this with the environmental predictors to predict future areas of 

presence (Merow 2013).  

 As is the case with presence-absence data, presence-only data is subject to sampling bias 

(Qin et al., 2017). This occurs primarily with sample selection bias where areas that are 

oversampled are given more consideration or weight than areas that are not.  To account for this 

sampling bias, careful consideration will be given to the choice of the overall study area and the 

presence of multiple data points that fall near each to avoid spatial autocorrelation. Furthermore, 

presence-only data from previous years will be used to validate occurrence of the target species. 

The information resulting from this research will be useful in helping the USFS carry out their 

land management practices and serve as a basis for future studies related to species distribution 

as it relates to land management.  

1.4.1. Multiple Maxent Models 

 Multiple Maxent models are run in this research in order to get a thorough understanding 

of the factors that play the biggest role in the study area. In taking this step a more 

comprehensive approach is used in understanding which variables play the biggest roles on their 

own and which variables when combined paint the most accurate picture in predicting habitat 

suitability. This is carried out by running Maxent multiple times with each unique set of 

environmental variables (layers) to see which instance produces the highest statistical 

significance and which individual variables within each unique set of layers are the most 

important predictors of that significance. Lastly, Maxent is run a final time with a combination of 

all the unique layers once they have been converted to the same spatial resolution. This final run 

provides a complete and thorough use of all of the variables in all of the layers and produces 
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 results that are compared to all other Maxent results which is discussed in chapter 4.  

1.5 Thesis Structure  

The next chapter discusses species distribution modeling, the different types of models 

available for use, and various case studies where species distribution modeling has been used. 

Chapter 3 details the procedures used to collect and process the data and the variables in Maxent. 

Chapter 4 details the results from this study and provides insight into how the study can be used 

by land management agencies such as the USFS. Chapter 5 discusses how this research can be 

improved and other potential land management program areas where it can be employed. 
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 Chapter 2 Related Work  

National forests across the U.S. have been dealing with a major land management crisis 

as a result of severe budget constraints, reoccurring furloughs and government shutdowns. The 

impacts of these factors have had and continue to have major implications on the availability of 

skilled personnel to tackle the diverse array of problems facing national forests today. The “2019 

Forest Service budget for discretionary appropriations” was $4.77 billion, a decrease of $486 

million from the FY 2018 budget in the annualized Continuing Resolution. It included $1.72 

billion for the management of national forest system lands and $2.5 billion for wildland fire 

management (U.S. Forest Service, 2018). With most of the upcoming FY 2019 budget being 

allocated to wildfire management, other program areas must become more selective and efficient 

in prioritizing their approach to land management.  

The aim of this research is to use Maxent, to predict future spreading locations where 

noxious and invasive plant species, Spartium junceum, may occur and use those results as a cost-

effective tool to help mitigate some of the land management challenges facing the USFS and 

other agencies today.  The purpose of this chapter is to examine and critically evaluate 

information on Spartium junceum characteristics and habitat and to highlight several studies 

where Environmental Niche Modeling (ENM), also referred to as SDM, was used for predictive 

analysis of species like the test species in this research. The chapter first examines research and 

reports relevant to the characteristics, habitat tendencies, and management practices for 

controlling Spartium junceum infestations. The chapter then examines some of the different 

types of SDM/ENM currently being used based on the data types required. Lastly, the chapter 

discusses Maxent as the preferred method for SDM/ENM amongst the ecological community.  
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 2.1 Spartium junceum and Invasive Species  

Spartium junceum, also commonly known as Spanish broom, is an invasive plant with a 

high-level pest rating based on the California Invasive Plant Council (CAL-IPC) pest rating 

system. This rating means that “these species have severe ecological impacts on ecosystems, 

plant and animal communities, and vegetation structure. Their reproductive biology and other 

attributes are conducive to moderate to high rates of dispersal and establishment. These species 

are usually widely distributed ecologically, both among and within ecosystems” (Warner et al., 

2003, 4).  In addition, Spartium junceum is a noxious weed and is included in the California 

Department of Food Agriculture’s noxious weed list. A noxious weed is a plant that has been 

defined as such by law or regulation (CDFA, 2009). This is consistent with how the USFS 

defines an invasive species and factors in the noxious weed designation.  

According to the USFS, “invasive species are among the most significant environmental 

and economic threats facing our Nation’s forest, grassland, and aquatic ecosystems. They 

endanger native species and threaten ecosystem services and resources, including clean water, 

recreational opportunities, sustained production of wood products, wildlife and grazing habitat, 

and human health and safety” (USDA Forest Service, 2013). A species is invasive if it is non-

native to an ecosystem that is being studied (USDA Forest Service, 2013). This criterion applies 

to this research and understanding the habitat characteristics is a critical component of 

understanding the effects this invasive species has to ecosystems.  

2.1.1. Spartium junceum History 

Spartium junceum was initially introduced “into the California ornamental trade in 1848 

in San Francisco. Beginning in the late 1930s, it was planted along mountain highways in 

southern California” as a method to prevent soil erosion.  Evidence of Spartium junceum 
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 colonies can be seen along those same access routes and highways that run through the national 

forest system today (Zouhar, 2005). 

2.1.2. Spartium junceum Characteristics 

Spartium junceum is a shrub that is 3 m tall with green stems and fragrant yellow pea-like 

flowers that bloom from April to June. Spartium junceum have very deep branched taproots that 

are difficult to remove and are associated with nitrogen fixing bacteria. The plant begins to 

produce seeds when it reaches 2-3 years of age and is indicated by its pods turning brown. Each 

pod can contain 10-18 seeds. The seeds can germinate readily without treatment and will 

produce 7,000 to 10,000 seeds per plant per season (Zouhar, 2005). Furthermore, the pods and 

the plants themselves can tolerate frost providing exceptional longevity and viability (CAL-IPC, 

2004). 

2.1.3. Spartium junceum Habitat Types and Plant Communities  

Spartium junceum is a native of the southern Mediterranean region of Europe 

and thus thrives in a Mediterranean climate like that found in southern California. A 

Mediterranean climate is characterized by rainy winters and dry summers (University of 

California, 2019).    

Spartium junceum is most commonly found in disturbed areas such as along roadsides 

where it was seeded in the early 1900s, but it has also spread to riparian and upland areas 

throughout much of the southern California national forest system (Nickerman, 2009). There are 

also other documented cases of Spanish Broom populations persisting in other disturbed areas 

such as on eroding slope, and riverbanks. Spartium junceum has also managed to start invading 

adjoining stands of chaparral that are near roadsides.  
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 2.1.4. Impacts of Spartium junceum on ecosystems 

Spartium junceum can rapidly colonize disturbed areas and develop thick shrub like 

communities that can crowd out and prevent colonization by native chaparral plant species. It 

also poses a particularly challenging problem during the fire season. Spartium junceum not only 

serves as additional fuel during the fire season but it can survive if its roots are not burned. 

Spartium junceum is also a nitrogen-fixing plant which means it can enrich the nitrogen 

levels of the surrounding soils of the communities it inhabits. The ability of broom to fix 

nitrogen affects the way in which the local nitrogen cycles behaves. This is unlikely to benefit 

native plants who do not have the same nitrogen demands and may reduce species diversity in 

ecosystems as a result (Zouhar, 2005). 

2.1.5. Spartium junceum Management and Control Methods  

Established infestations are difficult to eliminate due to the large and long-lived seed 

banks that accumulate annually. Furthermore, the success of any control methods will vary based 

on the site characteristics (topography, soil, and climate) where the species are found, the 

condition and age of the stands or communities, and the human and technical resources available. 

The main methods for trying to control Spanish Broom infestations are through prevention, 

integrated management, chemical management, and physical/mechanical management. 

2.1.5.1. Control Methods  

There are the two primary control methods currently employed by the USFS for removal 

of invasive plants species, integrated management, and physical/mechanical management.   

 Integrated management refers to an effective method of combining the use of a chainsaw 

for larger mature plant shrubs or shears for smaller shrubs and the application of a chemical 

herbicide such as a glyphosate applied as a 2-3% v/v foliar spray to the cut parts of the stem. 
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 Physical/mechanical management refers to the human use of tools to physically remove both 

young and mature plants. While young Spartium junceum can be removed by hand rather easily 

more mature broom must be removed with the use of a weed wrench which can be an exhausting 

process and is only effective for small broom infestations where the previous control method is 

impractical or too expensive (Zouhar, 2005). Control methods represent a crucial aspect of 

invasive species management alongside prevention.  

2.1.5.2. Prevention  

According to USFS documentation the most effective way of managing an invasive 

species is by preventing the establishment and spread of that species. Some of the ways this is 

accomplished is by limiting seed dispersal, minimizing soil disturbance, introducing more native 

plants into areas where infestations have been known to occur and, removing current plants to 

limit the spread of infestation.  

While there are numerous control methods and prevention measures currently being used 

for removal and mitigation efforts there is no predictive analysis currently being used for 

Spartium junceum and this represents an opportunity for the incorporation or utilization of SDM 

as a cost-effective way to anticipate future locations of infestation and prioritize management 

activities.  

2.2 Species Distribution Modeling 

SDM is a machine learning technique that has become a popular analytical 

framework for predicting species distributions based on species specific geo-located 

occurrence information and the environmental variables that contribute to that species’ 

survival rate (Vaclavik and Meentemeyer, 2009, 3248). There are two primary types of 

SDMs that are differentiated based on the types of data they require and thus cater to 
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 certain types of research and analysis. The two primary types of data required to perform 

any type of predictive modeling are presence-absence data and presence-only data. The 

merits of each data type and the availability of each data type are the primary 

determining factors for model selection in each community or industry field. The 

following sub-section details species distribution modeling that rely on presence-absence 

data and explores some of the different types that are commonly used.  

2.2.1. Presence-Absence Data Modeling 

Presence-absence species distribution modeling relies on presence-absence data, 

which means it is heavily dependent on the availability of current presence and absence 

data for the case subject and historical data for that same subject. Historical data can be 

from prior studies or from prior field collection provided the data is in a similar or 

usable format that can be converted into the format that is the same as that of the current 

presence data being used and the same format used by a particular model of choice. 

There is a third category known as pseudo-absence data modeling which relies 

on modelers generating pseudo-absence data by sampling environmental conditions at 

locations where the species is not recorded and hence absent (Vaclavik and 

Meentemeyer,  2009, 3249). There is a risk of introducing false or negatives errors when 

engaging in this process because no actual records of absence data exist but rather, they 

are being created. In addition, the results from using pseudo-absence data are not as 

accurate as reflected in the area under the curve receiver operating characteristic (AUC-

ROC) status that will be explained in the following paragraph. As a result of the type of 

data available and the prevalence of true presence-absence data model types used by the 

ecological community and suitable for comparison with presence-only data models, 
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 pseudo-absence data modeling techniques were not considered. For this research three 

types of presence-absence models were examined.  

Three presence-absence species distribution models commonly used in the 

ecological community are multiple logistic regression (MLR), generalized linear models 

(GLM), and classification and regression trees /classification trees (CART/CT). The 

primary means of evaluating how effective each presence-absence model is in predicting 

potential future distributions of a case species is by comparing the results of each model. 

This can be accomplished by using similar test species amongst the three models and 

evaluating the results of each by using AUC-ROC, which offers a global performance 

measure for classification problems based on various threshold settings (Pepe et al., 

2007, 928). The closer to 1.0 the AUC-ROC value is the more accurate the result is 

since a value of 1.0 indicates perfect discrimination whereas a value of 0.50 indicates 

that the model performed no better than random.  

The three models are explored in more detail by referencing the work of Vaclavik and 

Meentemeyer (2009) on invasive species distribution modeling and Bedia et al. (2011) on 

predicting plant species distribution across an alpine rangeland in northern Spain as a means of 

further explaining the merits of this type of modeling and for providing the background for 

choosing presence-only data modeling for the actual research performed in this thesis. GLM and 

CT models were evaluated using an extensive dataset on the distribution of the invasive forest 

pathogen Phytophhthora ramorum in California and the AUC-ROC (Vaclavik and 

Meentemeyer, 2009, 3248). MLR and a CART model were evaluated using presence-absence 

data from 15 different plant species found on the Riofrio rangeland in northern Spain. 
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 2.2.1.1. Multiple Logistic Regression  

MLR is a parametric technique that relies on the assumption that the response of 

a species to environmental variables is consistent across space and time. This technique 

attempts to model a relationship between two or more independent variables and a 

dependent variable by fitting a linear equation to the data. MLR is considered one of the 

simplest and easiest SDMs to work with and is frequently used by ecologists who have 

access to presence-absence data.  

Bedia et al. (2011) describe how MLR performed compared to the other SDMs for 

modeling plant distributions across northern Spain. MLR achieved mixed results when compared 

with the other models in the study. MLR provided high AUC-ROC values for half of the 15 

samples in the study and low values for the other half with the highest AUC-ROC value being 

0.92 and the lowest being 0.64. The results based on presence-absence data for non-invasive 

species data were somewhat inconsistent across the board for all the models. However, the MLR 

models produced some of the poorest resolution results amongst all the models in the study and 

were ultimately ruled out as an option for predicting future distributions of Spartium junceum 

(Bedia et al., 2011). 

2.2.1.2. Classification Trees/Classification and Regression Trees 

CTs and CARTS offer “a non-parametric, data driven method that recursively 

partitions data into homogeneous groups based on identification of a specific threshold 

for each environmental predictor variable” (Vaclavik and Meentemeyer, 2009, 3252). In 

this method a hierarchical decision tree of rules is created to split data into “present and 

absent” categories. According to Bedia et al. (2011), CARTs are better than MLRs for 

predicting the distribution of oak species in California. For most species in the study, 
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 CART produced good predictive resolutions, but also low AUC-ROC values. The 

predictive resolution is a value that quantifies the “deviation of the prediction from the 

true species prevalence” (Bedia et al., 2011). The highest AUC-ROC value for a CART 

was 0.89 and the lowest was 0.67. This is consistent with the results from Vaclavik and 

Meentemeyer (2009) where CT produced an AUC-ROC of 0.89 with true presence-

absence data and 0.65 when using true presence-pseudo absence data created from 

environmental sampling.  

Both cases highlight research performed on native species distributions which 

does not fit invasive species distribution patterns nor address the fact that invasive 

species are not necessarily in equilibrium with their environments as is more typical 

with native plant species. When using true presence-absence data, CART/CT models 

produced some high AUC-ROC values but when using pseudo-absence data, the AUC-

ROC values dropped significantly and as a result were ultimately ruled out as an option 

for predicting future distributions of Spartium junceum (Bedia et al., 2011). 

2.2.1.3. Generalized Linear Models 

A GLM “is an extension of common multiple regression that allows for the 

modeling of non-normal response variables” (Vaclavik and Meentemeyer, 2009, 3252). 

This means that GLM is well suited for SDMs focused on invasive species where there 

is available presence-absence data with variables that may vary tremendously such as 

more localized weather or climate factors that might be influenced by subtle topography 

changes. This was the case with the test species Phytophhthora ramorum, which is the 

invasive pathogen, studied by Vaclavik and Meentemeyer (2009). This sample species is 

like Spartium junceum in that it is invasive but differs in that it is a pathogen and not a 
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 plant species and because there was available absence data to use in the model. With 

their data GLM is able produces binary responses that specify the relationship between a 

dependent (or response) variable Y, and a set of predictor variables, X.  

When using true presence-absence data GLM produced an AUC-ROC value of 

0.90 which was the best out of the models tested including Maxent, which was the 

model used in this research (Vaclavik and Meentemeyer,  2009, 3254). There is plenty 

of evidence to support using CART/CT or GLM for invasive species distribution 

modeling but neither meet the requirements necessary for studying the invasive species 

in this research given the lack of absence data. There are no test cases of Spartium 

junceum being used as sample data for analysis with GLM or any of the previously 

mentioned models and that may be due to the lack of available absence data as well.  

For a more in-depth explanation of how AUC-ROC is used to evaluate the statistical 

significance of the results produced by each model and thus the effectiveness of each model, the 

reader is referred Hanley and McNeil (1982) and Zou et al. (2007).  

2.2.2. Presence-Only Data Modeling 

Presence-only SDM relies on presence-only data, which means that it is not 

hampered by a reliance on the availability of absence data but rather only needs presence 

data on the test species being analyzed during the time a study is being conducted. 

Absence data is a very selective data type and can be very difficult to acquire. In many 

cases absence data records are archived by herbaria and are either not available to the 

public for use or are only obtainable by formal request which may or may not be 

granted. This may occur because researchers are unwilling to share their findings with 

the public or other researchers or as a result of that data being too sensitive for 
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 governmental or other reasons. Furthermore, absence data for a sample species may not 

even exist and this is often the case with invasive plant species. The very nature of 

invasive plant species makes it difficult to acquire their absence data because 

management and mitigation efforts require eradication and removal rather than studying 

patterns on a seasonal or annual basis.   

One of the biggest differences between presence-absence modeling and 

presence-only modeling is having to account for sampling bias and an often-encountered 

lack of information on a species’ prevalence.  

Three commonly used presence only SDMs used by the ecological community 

are Ecological Niche Factor Analysis (ENFA), General Algorithm Rule-Set Prediction 

(GARP), and Maximum Entropy (Maxent) (Pearson et al., 2007). Like the examples of 

the presence-absence SDMs in Section 2.2.1, these three presence-only models were 

evaluated on how effective each one is in predicting potential future distributions of a 

case species and by comparing the results of each model. This was accomplished by 

using similar test species with the three models and evaluating the results of each by 

using the area under the AUC-ROC. The performance of the three models has been 

explored in a more detail by Vaclavik and Meentemeyer (2009). Maxent and ENFA 

have been evaluated by using the same invasive forest pathogen Phytophhthora 

ramorum data as the presence-absence models and AUC-ROC (Vaclavik and 

Meentemeyer, 2009, 3248). GARP and Maxent have also been evaluated using 

presence-only data from two invasive plant species, a generalist (Bromus tectorum) and 

a specialist (Tamarix chinensi). In this context, a generalist is one with characteristics or 

traits that allow them to inhabit a broad range of habitats whereas a specialist is one with 
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 traits that require specific habitats or specific ecosystem conditions for them to thrive. 

Lastly, additional examples of Maxent are referenced in Section 2.2.2.3. 

2.2.2.1. Ecological Niche Factor Analysis  

ENFA is a model that compares the distribution of locations where a sample species was 

identified to a reference set describing the whole area. It does this by computing variables that 

explain a major part of the ecological distribution of the sample species. The model produces two 

factors with biological significance: marginality and specialization. Marginality describes how 

the sample species’ optimum conditions differ from the global mean of environmental conditions 

in a study area. This allows for comparisons between the environmental variables that may be 

found at the site location and study area and the variables found at the site location but not in the 

study area. This helps to identify correlated variables and spatial autocorrelation, which measures 

the correlation between the values of one variable and the values at those locations that are 

closest to it. Specialization refers to factors that are sorted by the decreasing amount of explained 

variance, which helps describe how species variance compares to global variance.    

When using presence-only Phytophhthora ramorum data ENFA produced an AUC-ROC 

value of 0.80 which was lower than any of the AUC-ROC values produced by presence-absence 

models which used the same presence data but also incorporated true absence data as well. 

Furthermore, ENFA had a poorer efficiency (commission/omission error rate) than Maxent, CT 

and GLM and tended to overestimate species distributions (Vaclavik and Meentemeyer, 2009, 

3255). ENFA provided a good test case and positive results for presence-only modeling but was 

not as accurate as Maxent and does not have as many positive test case reviews as Maxent in the 

ecological literature. Therefore, it was not used for predicting future distributions of Spartium 

junceum in this thesis research project. 
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 2.2.2.2. General Algorithm Rule Set Prediction 

GARP models relate ecological characteristics of known species-specific 

occurrence locations (point data in GIS) to points that have been randomly selected from 

the remainder of the study region. This helps the model to develop a series of decision 

rules that best summarize the factors that are associated with the species’ presence in a 

study region (Adjemian et al., 2006, 94). GARP uses presence-only data in the form of 

sample species occurrence data along with environmental data to enable the model to 

determine or predict locations where the species should be found. The output results take 

the form of multiple predictive distribution maps that can be used for comparison 

amongst each other or in combination with one another to provide a comprehensive 

picture of where a study sample species might be expected to be found. Like Maxent, 

GARP performs very well when dealing with small sample sizes and provides a cost-

effective means of rapidly generating spatial data that can be analyzed in GIS.  

When using the generalist species Bromus tectorum, GARP produced an AUC-

ROC value of 0.58 for training data and a value of 0.50 for validation data. When using 

the specialist species Tamarix chinensi, GARP produced an AUC-ROC of 0.72 for 

training data and a value of 0.830 for validation data (Evangelista et al., 2008, 811). 

These values are not as high as any of the AUC-ROC values produced by presence-

absence models, but these are the result of a different data set and upon closer inspection 

show how the choice of generalist or specialist species produces major differences in 

overall model performance. In general, specialist species were easier to predict.  

The type of data used by Evangelista et al. (2008) is more reflective of the 

Spartium junceum data being used in this thesis research project as both species are 

invasive plant species and Spartium junceum would be considered a specialist species. 
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 Turning next to the results from Maxent, the results were lower for Bromus tectorum 

and the same for Tamarix chinensi. The overall results for GARP were comparable to 

Maxent but not as strong and therefore was not used for predicting future distributions of 

Spartium junceum in this thesis research project.  

2.2.2.3. Maximum Entropy Modeling  

Maximum entropy modeling techniques use presence-only data to predict the 

distribution of a species based on the theory of maximum entropy (Qin et al., 2017, 

140). The principle of maximum entropy states that the most appropriate “probability 

distribution to model a given set of data is the one with the highest degree of entropy 

(i.e., that which is most spread out, or closest to uniform)” among all those that satisfy 

the constraints of our prior knowledge (Philips et al., 2006).  In information theory, 

entropy refers to randomness or unpredictability. The idea behind this is that the 

information that does not fall within the probability distribution created by the model 

has maximum entropy (randomness or unpredictability) and thus those results are 

discarded and those that fall within the probability distribution remain. The remaining 

information represents the best possible description of the distribution of data that was 

fed into the model prior to it being run (Kemp, 2012, 4). Maxent creates this probability 

distribution based on environmental variables spread across the entire study area 

(Pearson et al., 2007, 106). The modeling process in Maxent uses an iterative heuristic 

approach where the first instance of the model being run represents the first solution that 

is tested. Once the first solution is tested the results from that first test are permuted and 

run over again and again, sometimes through 500 iterations, until the model is trained 

with data that improves with each iteration. The data that does not improve the model 
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 with each successive iteration is discarded until ultimately the model moves to a stable 

solution that was better than the first one obtained.   

Maxent offers many advantages but also a few drawbacks. In addition to 

utilizing easier to obtain presence-only data, Maxent can run without needing large 

sample datasets, it can also utilize both continuous and categorical data, and can 

incorporate interactions between different variables. It also has efficient deterministic 

algorithms that have been developed, and a probability distribution that has a concise 

mathematical definition. Over-fitting can be avoided by using l1-regularization and 

because dependence of the Maxent probability distribution on the distribution of 

occurrence localities is explicit, there is the potential (in future work) to address the 

issue of sampling bias formally” (Philips et al., 2006, 234). Maxent requires special 

software in order to be run, it is relatively new statistical model in comparison to other 

SDMs such as GLM and GARP and thus has less guidelines and fewer methods for 

estimating the amount of error in a prediction. Furthermore, the amount of regularization 

requires more study as does the model’s effectiveness in avoiding over-fitting compared 

to other models.  When considering the use of Maxent for this thesis research project it 

was also important to consider another major factor in this type of modeling and that is 

sampling bias. 

One of the biggest differences between presence-absence and presence-only modeling is 

having to account for sampling bias. Occurrence data are frequently biased, for example, data 

that is closer to access routes will be better sampled and better documented and thus better 

represented in the results of the model. When the bias is large, presence-only models mimic the 

biased sampling distribution as much as they do the species distribution. This can be corrected by 
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 having the background data reflect the same bias and thus essentially cancel it out. This is 

accomplished by using as a background the set of occurrence data for an entire group of species 

that may have been captured or observed using the same methods. In this research, this was 

accomplished by randomly selecting background points, but this can also lead to situations where 

samples are counted more than once. This problem can be mitigated by keeping track of which 

sites have been sampled in order to not reselect sites that have already been sampled. Lastly, 

another way to account for sampling bias is to keep track of which environmental variables have 

been better sampled and where they have been sampled in order to weight the value of those 

samples (Philips et al., 2008, 162).  There is a large body of research performed using Maxent 

that shows how accurate it is in predicating species distribution patterns with the results being 

evaluated with the same AUC-ROC values as the models in the previous sections.  

 When using a generalist species such as Bromus tectorum, Maxent produced an AUC-

ROC value of 0.55 for training data and 0.50 for validation data. When using a specialist species 

such as Tamarix chinensi, Maxent produced an AUC-ROC of 0.77 for training data and 0.830 for 

validation data (Evangelista et al., 2008, 811). These AUC-ROC values are very similar to those 

produced by GARP on the same dataset and indicate a strong predictive outcome. Maxent 

produced strong results predicting distributions of the endangered conifer Thuja sutchuenensis in 

southwestern China with an AUC-ROC value of 0.99. This study used sample data from a 3-year 

long field survey in conjunction with global BioClim data (Qin et al., 2017, 142).    

When using presence-only Phytophhthora ramorum data, Maxent produced an AUC-

ROC value of 0.85 which was lower than any of the AUC-ROC values produced by all but one 

of presence-absence models that used the same data (ENFA). Lastly, when Maxent was used on 

the following invasive species Common reed (Phragmites australis), musk thistle (Carduus 
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 nutans), salt cedar (Tamarix), and Russian olive (Elaeagnus angustifolia) it produced positive 

results. For Phragmites australis it produced an AUC-ROC of 0.98 for training data and 0.97 for 

validation data. For Carduus nutans it produced an AUC-ROC of 0.978 for training data and 

0.965 for validation data. For Tamarix it produced an AUC-ROC of 0.988 for training data and 

0.983 for validation data. For Elaeagnus angustifolia it produced an AUC-ROC of 0.976 for 

training data and 0.945 for validation data (Hoffman et al., 2008, 362-364).  

The results from the last study which included multiple invasive plant species datasets 

show how Maxent produced strong AUC-ROC results. These results also show that Maxent 

performed well when used with both native and invasive species data. The combination of the 

results and the similarities of the different data types to the data being used in this research effort 

serve as an additional rationale for using Maxent in this thesis research project.  

Maxent was ultimately chosen for this thesis research project because of the many 

advantages of the software, the ability to successfully address the challenges of sampling bias, 

the availability of presence-only data for Spartium junceum, and the positive AUC-ROC results 

generated from multiple related research studies on native and non-native invasive species in the 

last two decades.  
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 Chapter 3 Methodology 

The main purpose of this research is to evaluate how effective Maxent is as a tool for 

predicting future locations and distribution patterns of the invasive plant species Spartium 

junceum. The primary source of sample data came from the USFS, with a secondary source 

coming from the Cal Flora/Jepson herbarium, which was used as a quality check. The third 

source of data came from the WorldClim global dataset. The last source of data came from a 

USGS digital elevation model that was then used to derive other layers in ArcMap. Section 3.1 

outlines how this research was approached and designed. Section 3.2 details the different 

datasets used in this research. Sections 3.2.1 and 3.2.2 discuss the different data sets in more 

detail and how they were obtained. Lastly, Section 3.3 details how the data was processed and 

formatted for use with Maxent and ArcGIS.  

3.1 Research Approach and Design  

The basis for this research revolves around the understanding that environmental 

conditions at locations where a plant species is found and considered to be thriving is consistent 

with the conditions that are expected to be found in other areas in the study extent where the 

same species might be found at some point in the future. This fundamental notion was critical to 

how this research was approached and designed. Multiple instances of the Maxent model are run 

with the same biological sample data but with different environmental layers to test this 

fundamental notion. Running the model with different environmental layers and comparing the 

results allows for a more comprehensive dive into the many factors at play including climate, 

topography and the scale at which the underlying environmental data is recorded and then used 

in the model.  
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 This thesis research project relies on the use of ArcGIS for Desktop version 10.6 and 

Maxent 3.4.1 (Phillips et al., 2006). The Maxent software is available for free and can be 

downloaded while ArcGIS for Desktop version 10.6 needs to be purchased. Both were required 

for this thesis research project.  

Maxent uses data in the form of raster and CSV files that have been converted from Excel 

spreadsheets that contain latitude and longitude coordinates for the occurrence locations of the 

sample data being used. Vector data can be used in Maxent, but this can be accomplished 

indirectly. Vector data but must be converted into rasters in ArcMap before being used in 

Maxent. This approach was used for the ANF features vector dataset.  

Maxent uses categorical (biological samples) and continuous data (environmental and 

proximity variables) as inputs in order to generate a summary html file which contains several 

charts, images, and tables with information about AUC-ROC values, the variables that contribute 

the most to the predicted outcome, and a series of jackknife tests.  

The AUC-ROC results are particularly important because they indicate if the model 

produces results that are random or are better than random, which reveals how much confidence 

can be had in the results. The level of confidence is indicated by the AUC value, which ranges 

from 0.0 to 1.0. A median AUC value of 0.5 indicates that the results from the model are no 

better than random while a value of 1.0 indicates the highest level of confidence. A higher AUC 

value in Maxent translates to higher confidence in Maxent’s ability to accurately predict the 

species distribution patterns. In addition, there are two different sets of results produced by 

Maxent in the output html file which explain the contributions each individual environmental 

variable has on the outcome of the model: the analysis of variable contribution and three 

jackknife tests. 
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 The Jackknife of regularized training gain shows the training gain of each variable if it 

was run in isolation and compares that to the training gain of all of other variables (Phillips et al., 

2006).  This helps show which variables contribute the most individually while considering how 

they contribute amongst all of the other variables in the dataset. The jackknife of test gain is 

interpreted the same way as the jackknife of regularized training game but uses the test gain data 

from Maxent as opposed to the training gain data. Lastly, the jackknife of AUC uses the same 

jackknife test but with AUC values on the test data. The three jackknife tests combine to create 

the values behind the analysis of variable contribution. The analysis of variable contribution 

gives estimates of the relative contributions of each environmental variable used in Maxent and 

shows their percent contribution to the overall results in the form of a table.   

Maxent’s default settings produce an ASCII output file that shows the study area and 

displays the predicted areas of habitat suitability using values that range from 0 to 1. Warmer 

colors (reds, oranges, and yellows) show areas with better predicted conditions for habitat 

suitability while cooler colors indicate the opposite (blues and greens). The dots/points that are 

found scattered throughout the ASCII file represent the presence locations (sample data) that are 

used when training the model. The ASCII file that is produced by Maxent must be imported into 

ArcMap and converted from ASCII format back to its original raster format with the ASCII to 

Raster tool so that further analysis of the results can be done.  

3.2 Research Sample Data 

There are two primary data types needed by Maxent to perform this research. The first 

type is the sample biological species data. The second type is environmental data, which when 

combined with the sample data is used to train Maxent. The environmental data can be further 

broken up into three sub-groups: bioclimatic data, data derived from a USGS DEM, and ANF 
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 feature vector data converted to raster data. Maxent will be run a total of six times using these 

environmental layers in isolation at their original recorded spatial resolutions, in isolation at a 

resampled resolution and lastly, in combination with one another. The results of each Maxent run 

are discussed and compared in Chapter 4.  

3.2.1. Sample Biological Data 

The Spartium junceum sample data was obtained from the USFS. A geodatabase (GDB) 

containing ANF vector data was downloaded as a zip file and then extracted into a local 

workspace in ArcCatalog. Necessary data from the GDB in ArcCatalog for this thesis project 

was filtered out by using a series of queries. The results of those queries were then exported into 

a new project-specific file geodatabase for use in ArcMap and then Maxent.  

The Spartium junceum sample data, which was in the project GDB, was in polygon 

format and had be converted into a point format. The Create Random Points tool was used to 

create a large set of random points in the study extent with unique x, y coordinates. Those points 

were then filtered out with the Select by Location tool, which allowed for the selection of all of 

the points that fell inside the polygon boundaries of the original Spartium junceum layer. Figures 

2 and 3 show the Spartium junceum feature class shapefile before and after the Create Random 

Points and S elect by Location tools were run. 
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Figure 2 Spartium junceum polygon data 

Once the Spartium junceum polygon feature class shapefile was converted into a point 

feature class shapefile and x, y coordinates were created, the data was then saved as a database 

file (.dbf) in the same project GDB. That database file was converted into an Excel file where 

only the necessary headers for species, longitude and latitude were kept. The Excel file was 

saved as a comma separated values (.csv) file and was then ready for use in Maxent.  
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Figure 3 Spartium junceum point data. 

3.2.2. Environmental Variables/Layers 

The sample data used in Maxent must be combined with raster layers containing 

information on the environmental conditions that are present at locations where the sample data 

are found in order to train the model to predict future locations for the species of interest. For this 

study those environmental raster layers come in the form of three groups. The first group 

contains environmental layers related to climate. This study uses 19 bioclimatic variables from 

the WorldClim version 2.0 dataset to create a comprehensive understanding of climate factors 

The 19 bioclimatic variables used in this study reflect the most current data available (Table 1).  
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Table 1 WorldClim bioclimatic variables 

 
 

Code Variable 
BIO1  Annual Mean Temperature  

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))  

BIO3  Isothermality (BIO2/BIO7) (* 100)  

BIO4   Temperature Seasonality (standard deviation *100)  

BIO5  Max Temperature of Warmest Month  

BIO6 Min Temperature of Coldest Month  

BIO7  Temperature Annual Range (BIO5-BIO6)  

BIO8  Mean Temperature of Wettest Quarter  

BIO9 Mean Temperature of Driest Quarter  

BIO10  Mean Temperature of Warmest Quarter  

BIO11  Mean Temperature of Coldest Quarter  

BIO12  Annual Precipitation  

BIO13  Precipitation of Wettest Month  

BIO14  Precipitation of Driest Month  

BIO15  Precipitation Seasonality (Coefficient of Variation)  

BIO16  Precipitation of Wettest Quarter  

BIO17  Precipitation of Driest Quarter  

BIO18 Precipitation of Warmest Quarter  

BIO19  Precipitation of Coldest Quarter  
 

 

The second group of environmental variables that is used in this thesis research project 

are derived from a series of DEMs that were obtained from the USGS. These DEMs have a 

spatial resolution of 1/3 arc second (90 m) whereas the 19 bioclimatic variables have a resolution 

of 30 arc seconds (~1 km). The digital elevation model has a substantially higher spatial 

resolution than the bioclimatic data and was used to derive a secondary set of environmental 

variables using tools in ArcMap. Elevation, hill shade, aspect, slope and visibility rasters were 
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 generated using the Surface tool kit that is stored within the Spatial Analyst Toolbox. Table 2 

lists the DEM layers that were created in ArcMap and used in the third Maxent run.  

Table 2 List of DEM Rasters 

Name of feature class Type of feature class 

DEM ANF Study Area (Elevation) Raster 

DEM Hillshade Raster 

DEM Slope Raster 

DEM Aspect Raster 

DEM Visibility Raster 

 

The third group of environmental variables used in this thesis research project were 

created by converting ANF features vector data into raster data by using the Euclidean distance 

tool, which is a type of proximity tool found in the Spatial Analyst Toolbox. Proximity tools are 

used to indicate the distance between presence data points (Spartium junceum sample data) and 

select features (ANF feature data) that are believed to influence species distribution patterns. 

Table 3 lists the ANF features data used to create the Euclidean distance rasters for use in the 

second run of Maxent.  

Table 3 List of feature classes used to create Euclidean distance rasters 

Name of feature class Type of feature class 
Angeles National Forest Service Roads Line 

Angeles National Forest Recreation Facilities Point 

Water Bodies Polygon 
California Flow lines (Hydrography) Line 
Angeles National Forest Burn Severity Dataset Polygon  

 
 

 

 

 



 

37 
 

 3.2.3. Data Processing and Standardization  

Once all of the presence and raster data were downloaded and/or created it was necessary 

to standardize the spatial resolutions, projections and boundaries of these datasets. The presence-

only data was already converted into csv format and needed no further changes; however, the 

raster data required substantial conversions. The first step was converting the rasters into the 

same projection, which was WGS84 for this study.  This was accomplished using the Project 

Raster tool found in the Data Management Toolbox. The newly projected rasters were then 

clipped to the study boundary using the Clip tool found in the Data Management Toolbox. The 

clipped rasters are then converted into ASCII files, the required raster format for Maxent, by 

using the Raster to ASCII tool found in the Conversion Toolbox. There is one extra step in the 

case of the bioclimatic variables, which precedes the raster to ASCII step and that was to 

resample the rasters into the same format as the DEM rasters. This was accomplished with the 

Resample tool found in the Data Management Toolbox. This workflow is the same for all of the 

raster files and can be run quickly using the Model Builder function in ArcMap. Figure 4 details 

the conversion process from raster file to ASCII file in Model Builder.  
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Figure 4 Raster Conversion tools with Model Builder in ArcMap. 

Once all of the data is converted into the necessary format it is placed into the appropriate 

destination windows in Maxent. The Spartium junceum sample data is entered in the samples 

window, study area versions of the BioClim, Euclidean distance and DEM rasters are entered in 

the environmental layers window, and study extent versions of the BioClim, Euclidean distance 

and DEM rasters are entered in the projection layers window.  The study area versions of the 

environmental layers reflect the areas where the actual sample data lie within the ANF boundary 

and the study extent environmental layers reflect the entire area within the ANF boundary. All of 

the environmental layers come from the same raster source files. The outputs of the model are 

sent to a designated folder created by the user, which is set in the Maxent output directory 

window. The ‘create response variables’, ‘make predictions’, and ‘do jackknife to measure 
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 variable importance’ boxes are checked as well. Lastly, the ‘logistic’ output format was chosen 

per the consensus recommendations from Young et al. (2011) and Philips (2017). Figure 5 shows 

the first Maxent window with all of the sections filled out. 

 

Figure 5 Maxent window with appropriate boxes checked 

In the settings section of the Maxent window there are further parameters which could be 

checked and/or selected. In the Basics tab (Figure 6) settings all of the boxes have been left as 

they are but a random test percentage of 25 has been added to the window and the number 15 has 

been added to the replicates window. The test percentage indicates that 25% of the sample data 

will be used for training the model and the other 75% will be used as the actual data. The number 

15 in the replicate window signifies that the model will run through 15 replications and the 
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 results from the model will come from an average of all of the results. The replication run type 

selected for this thesis research project is sub-sample. These parameters in Table 6 are used each 

time the model is run. 

 

Figure 6 Maxent Basic tab settings 

All boxes in the advanced window in Figure 7 except for the ‘write output grids’ have 

been left unchanged. The ‘write output grids’ box has been unchecked in order to speed up 

model performance. This eliminates the need to produce results from each specific replication in 

the output folder and instead produces and exports the average results from all the replications 

into the folder. A value of 5,000 maximum iterations is used over the default value of 500. This 

allows for a more accurate model as each replication runs through, 5,000 iterations to create the 
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 best and most accurate model possible.  There is no value selected for the default setting in the 

‘apply threshold’ rule box but for this research,  ‘minimum training presence’ is selected.  

 

Figure 7 Maxent Advanced tab settings  

Maxent is run six different times with each run using a unique set of individual 

environmental variables or a unique combination of environmental variables. The results Maxent 

produces are in the form of an HTML file, which is placed in the outputs folder. The HTML file 

contains a graphic image that is created by the parameters set in the Maxent windows and 

produced an ACSII file with habitat suitability information in the form of continuous values 

ranging 0 to 1. These values can be changed into discrete values by using the Reclassify Tool 
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 found in the Spatial Analyst Toolbox. The output ASCII file is imported into ArcMap and 

converted back into a raster file using the ASCII to Raster tool. The raster is then classified into 

an appropriate number of breaks using a 90% threshold of sensitivity. This 90% sensitivity 

threshold can be found in the outputs folder in the maxentResults.csv file under the filed header 

“10 percentile training presence logistic threshold” (Young et al., 2011). Three breaks are used 

for this thesis research project to indicate low, medium and high levels of habitat suitability. The 

results from all six Maxent runs are presented in Chapter 4. 
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 Chapter 4 Results 

The results from running Maxent with the sample data come in the form of 

tables, graphic images and charts that explain which variables contribute to the model, 

and the overall performance of the model based on the AUC. These results are important 

because they allow for a well-informed evaluation of how well the model is performing 

with the given sample data and environmental layers.  

In this thesis research project Maxent was run numerous times with different 

environmental layers and the same sample data. The idea behind using different 

environmental layers in each run is to see if one set of layers is more indicative of 

species presence compared to the other layers. This was accomplished by running 

Maxent numerous times with each set of unique environmental layers and systematically 

modifying the parameters based on the results. This process entails combining, or in 

some cases, eliminating environmental layers that are deemed insignificant contributors 

to the overall performance of the model and rerunning the model with those deemed 

significant contributors; this information is found in the ‘Analysis of variable 

contributions’ in the results section after Maxent is successfully run.   

The results from running Maxent with each unique set of environmental layers 

are compared to each other as a way of evaluating which has the most significant 

influence on the presence of Spartium junceum and to see how well suited Maxent is as 

an SDM. The following subsections report the Maxent results for each unique set of 

environmental variables. The comparison of the results and the final evaluation of 

Maxent are discussed Chapter 5. 
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 4.1 Current Distribution of Spartium junceum in the Angeles National Forest   

 Figure 8 represents the current distribution pattern of Spartium junceum in the ANF as 

collected by USFS natural resources staff and contracted partner, the Rancho Santa Ana Botanic 

Garden. The forest encompasses 655,598 acres (1,024 square miles). The aggregate acreage of 

all Spartium junceum samples collected is 3,163.23 acres or approximately 4.95 square miles. 

The Spartium junceum point data reproduced in Figure 8 does not give an area value for the 

samples but the original source of the Spartium junceum point data does. The source data is the 

Spartium junceum polygon layer that was converted to point data in ArcMap using the Create 

random points tool. The Spartium junceum polygon layer does have values for acreage and area 

and that is what is used to calculate the aggregate values. Sections 4.2 through 4.7 detail the 

results from running Maxent with different environmental layers and spatial resolutions.  

4.2 Maxent results using BioClim Data at 1 km resolution  

This section examines the results that come from using the 19 bioclimatic environmental 

layers that come from worldclim.org at a maximum spatial resolution of 30 arc seconds (~1 km).  

The parameters that are used for this set of environmental variables are the same as 

those that are displayed in Figures 5-7 in Section 3.2.3 and the same parameters are 

used for each ensuing set of environmental variables in the following subsections.  The 

parameters that were ultimately selected result from trial and error and the 

recommendations from Young et al. (2011) and Philips (2017).  

The results in Figure 9 indicate that the forest has roughly equal amounts of high, 

medium and low suitability areas for Spartium junceum.  
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Figure 8 Spartium junceum point data in ANF 
 

Figures 11-13 show the results of the jackknife test which indicate that 

ascii_wc2_0_bio_30s_15 (precipitation seasonality) had the highest gain when run 

independently for all three of the jackknife tests of variable importance, which means it has the 

most useful information when run by itself.  

Table 4 shows the variable contribution of each environmental layer in Maxent as a 

percentage. Under normal circumstances the variables that contribute very little or contribute 0% 

are taken out and the model is re-run but for this dataset which has such a large spatial resolution 

it has been deemed unnecessary to do so. 
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Figure 9 Maxent suitability results using BioClim 1 km spatial resolution in ANF 

The world BioClim environmental layers come in a maximum spatial resolution of 1 km 

which is the equivalent of 0.386 mi. The entire aggregated area of all the Spartium junceum 

sample data is 4.95 mi2. The spatial resolution of this data set is large in comparison to the study 

area boundary and the aggregated value for all of the sample data and thus it is not the most 

indicative of how much influence each variable has on the sample data set. In Section 4.3 

Maxent is run with the BioClim variables after they have been resampled to a spatial resolution 

of 10 m.  
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Figure 10 AUC-ROC Curve for Spartium junceum 

 

 

   Figure 11 Jackknife of regularized training gain for Spartium junceum                             
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Figure 12 Jackknife for test gain for Spartium junceum 

 

Figure 13 Jackknife of AUC for Spartium junceum  
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 Table 4 Variable contributions  

 

4.3 Maxent results using BioClim Data at 10 m resolution  

The results in Figure 14 indicate that a very large portion of the forest can be deemed as 

suitable habitat for Spartium junceum with most of the suitable habitat located in the eastern 

portion of the San Gabriel Mountains.  
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Figure 14 Maxent results using BioClim 10 m resolution in ANF 

Figure 15 shows the AUC-ROC value for the BioClim environmental layers after they 

have been resampled to 10 m spatial resolution and have run through Maxent.  The model has an 

AUC of 0.664 and a standard deviation of 0.006 which means it is significant, but it is slightly 

less significant than the BioClim data at its original spatial resolution.   

Figures 16-18 show the results of the jackknife test which show that 

ascii_wc2_0_bio_30s_15 (precipitation seasonality) has the highest gain when run independently 

for all three jackknife tests of variable importance, which means it has the most useful 

information when run by itself. 
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Figure 15 AUC-ROC for Spartium junceum 
 

 

Figure 16 Jackknife regularized training gain for Spartium junceum 
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Figure 17 Jackknife of test gain for Spartium junceum  

 

Figure 18 Jackknife of AUC for Spartium junceum  
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 Table 5 shows the variable contribution for the BioClim data at 10 m spatial resolution. 

The results are different than those of the BioClim data at its original spatial resolution. While 

the variable with the highest contribution is still ascii_wc2_0_bio_30s_15, the percentage 

increased with the resampled variables from 26.4 to 40.6%. In addition, the lowest contributing 

variable changed from ascii_wc2_0_bio_30s_16 (precipitation of the wettest quarter) in the 

original BioClim set to ascii_wc2_0_bio_30s_08 (mean temperature of the wettest quarter) in the 

resampled set with both contributing variables contributing 0%.  

Table 5 Variable contributions  
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 4.4 Maxent results using DEM Raster layers at 10 m resolution 

The map reproduced in Figure 19 uses a DEM and other layers created from that DEM by 

using the Spatial Analyst toolbox as mentioned in Section 3.2.1. The DEM file used for this 

Maxent run came at a 10 m spatial resolution and did not need to be resampled. The 10 m spatial 

resolution is well suited to the size of the study region. As seen in the two previous results maps, 

most of the suitable habitat is found in the eastern portion of the mountain range. In addition, 

there are signs of increased occurrence and more pronounced dispersion of highly suitable areas 

in the study area when using the DEM variables in comparison to the BioClim variables.  

 

Figure 19 Maxent results using DEM at 10 m resolution in the ANF 
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 Figure 20 shows the AUC-ROC value for the DEM environmental layers at their 

recorded 10 m resolution.  The model has an AUC of 0.707 and a standard deviation of 0.007 

which means it is significant but is slightly less significant than the AUC values (0.751) 

produced when running the BioClim layers at their original 1 km spatial resolution in Maxent.  

 

Figure 20 AUC-ROC for Spartium junceum 
 

Figures 21-23 show the results of the jackknife test which shows that 

ascii_dem_anf_visbility (visibility or Spartium junceum) had the highest gain when run 

independently for all three jackknife tests for variable importance, which means it has the most 

useful information when run by itself. 

 

. 
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Figure 21 Jackknife of regularized training gain curve for Spartium junceum 

 

 

Figure 22 Jackknife of regularized training for Spartium junceum 

 

 

Figure 23 Jackknife of AUC for Spartium junceum 
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 Table 6 shows the variable contribution for the DEM layers at a 10 m resolution. The 

layer with the highest variable contribution is supported by the results of the jackknife tests 

above. 

Table 6 Variable Contribution 

 

The DEM layers were recorded at the 10 m scale and thus the spatial resolution is more 

appropriate for the size of study area. The DEM layers benefit from being recorded at this scale 

and do not have to be interpolated whereas the BioClim layers do.  While the original set of 

BioClim layers have a higher AUC-ROC value than the DEM layers it does not necessarily mean 

that they are more accurate or are better indicators of suitable habitat for the sample species. This 

will be discussed further in Chapter 5.  

4.5 Maxent results using Euclidean Distance ANF features layers at 10 m 

resolution  

The map reproduced in Figure 24 uses environmental layers that were created by 

converting USFS vector data into raster data using the Euclidean distance tool in ArcMap. The 

rasters were created using the same 10 m spatial resolution as the DEM environmental layers in 

order to maintain consistency. As is seen in the three previous maps, most of the suitable habitat 

is found in the eastern portion of the mountain range although there is increased suitability in the 
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 western portions of the mountain range as well. The results from running Maxent with this set of 

environmental layers are the most different. The predicted suitability areas are very concentrated 

along a visible network. This visible network is derived from the converted vector files with 

USFS roads producing the most visible results in Figure 24. Furthermore, the presence of USFS 

roads helps explain why there is a noticeable increase in suitability areas in the western portion 

of the study area, and similarly helps explain the large patches of unsuitable areas in the eastern 

portion of the study area.  

 

Figure 24 Maxent results using Euclidean distance ANF features and 10 m resolution in ANF 

Figure 25 shows the AUC-ROC value for the Euclidean distance proximity 

environmental layers at their recorded 10 m spatial resolution.  The model has an AUC of 0.692 
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 and a standard deviation of 0.005 which means it is significant but less significant than the 

Maxent results from the DEM and original BioClim layers.  

 

Figure 25 AUC-ROC for Spartium junceum 
 

Figures 26-28 show the results of the jackknife test in which the anf_roads (Euclidean 

distance Angeles National Forest roads) had the highest gain when run independently for all 

three jackknife tests for variable importance, which means it has the most useful information 

when run by itself. 

Table 7 shows the variable contribution for the Euclidean distance ANF features layers at 

10 m resolution. The Euclidean distance layer of Spartium junceum to local forest service roads 

has the highest variable contribution and is supported by the results of the jackknife tests above. 
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Figure 26 Jackknife of regularized training gain for Spartium junceum 

 

 

Figure 27 Jackknife of test gain for Spartium junceum 

 

 

Figure 28 Jackknife of AUC for Spartium junceum 

 



 

61 
 

 Table 7 Variable contributions using Euclidean distance ANF features and 10 m 
resolution 

 

4.6 Maxent results using combined 10 m BioClim and DEM layers  

The map reproduced in Figure 29 uses a combination of environmental layers from 

Sections 4.3 and 4.4. The spatial resolution of both sets of environmental layers is 10 m and the 

underlying values of the individual ASCII files are the same which allowed Maxent to run both 

layers combined without any issues. As seen in the four previous maps, most of the suitable 

habitat is again found in the eastern portion of the forest but there are some increased areas 

concentrated at the eastern end of the western portion of the forest. The results from running 

Maxent with these combined environmental layers shows higher levels of suitability located in 

the south facing aspects in the forest and low suitability on the north facing aspects in the forest. 

Figure 30 shows the AUC-ROC value for the BioClim and DEM 10 m layers.  The model 

has an AUC of 0.730 and a standard deviation of 0.005 which means it is significant and has a 

higher AUC-ROC value than the BioClim 10 m, DEM 10 m, and Euclidean distance ANF 

features layers when run on their own. However, it is still lower than the results produced with 

the original BioClim 1 km layers when run on their own. 
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Figure 29 Maxent results using BioClim and DEM 10 m layers combined in ANF 

Figures 31-33 show the results of the jackknife tests which show that 

ascii_dem_anf_visbility has the highest gain for variable importance when run independently for 

all three jackknife tests, which means it has the most useful information when run by itself. This 

is the same result found in Section 4.4, which is a further indicator of how critical this variable is 

to Spartium junceum habitat.  

Table 8 shows the variable contribution of the BioClim and DEM 10 m layers. The 

ascii_dem_anf_visbility has the highest variable contribution from these input layers. This is 

consistent with the results of the jackknife tests above and like the results reported in Section 4.4.  
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Figure 30 AUC-ROC BioClim 10 m and DEM 10 m variables combined 
 

The BioClim layers were resampled to the 10 m scale with the intention of combining 

them with the DEM layers in this section in order to strengthen the number and quality of 

environmental layers being used in Maxent. Resampling the BioClim layers is significant 

because it allows these layers to be combined in a way that the BioClim 1 km layers cannot 

while maintaining spatial resolution and integrity. The intention of this is to provide Maxent with 

a set of variables that produces results from a set environmental layers that are spatially relevant 

and have a spatial resolution to the study area. The combined BioClim and DEM 10 m layers 

produce an AUC-ROC value that is higher than all but the BioClim layers at their original 1 km 

spatial resolution. While the combined layers in this section may have a lower AUC-ROC value 

than the BioClim 1 km layers this does not necessarily mean that they are less reliable or less 

preferred. The significance of this argument will be discussed further in Chapter 5.   
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Figure 31 Jackknife of regularized training gain for Spartium junceum 
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Figure 32 Jackknife of test gain for Spartium junceum  
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Figure 33 Jackknife of AUC for Spartium junceum 
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 Table 8 Variable contributions using combined BioClim and DEM 10 m layers 
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 4.7 Maxent results using combined 10m BioClim, DEM, and Euclidean 

Distance ANF Feature layers 

The map reproduced in Figure 34 uses the environmental layers from Sections 4.3, 4.4 

and 4.5. The spatial resolution of all three sets of environmental layers is 10 m and the 

underlying values of the individual ASCII files are the same which allowed Maxent once again 

to run all three layers combined without any issues. As seen in the results reproduced in the five 

previous sections, most of the suitable habitat is found in the San Gabriel Mountains in the 

eastern portion of the forest but some suitable habitat occurs in the western portion of the forest. 

In addition, the results show higher levels of suitability located on south facing aspects of the 

forest and low suitability on north facing aspects of the forest like the results reported in Section 

4.6.  

The results are better defined here than in any other section and that is the result of 

having so many environmental layers available for Maxent to use. Figure 35 shows the AUC-

ROC value for the BioClim, DEM, and Euclidean Distance ANF features 10 m layers combined.  

The model has an AUC of 0.762 and a standard deviation of 0.004 which means it is significant 

and has the highest AUC-ROC value of all of the Maxent runs, indicating it the best predictor of 

Spartium junceum habitat suitability.  

Figures 36-38 show the results of the jackknife tests which show that anf_roads have the 

highest gain when run independently for all three jackknife tests for variable importance, 

meaning it has the most useful information by itself. The variable that decreases the gain the 

most when it is omitted is ascii_dem_slope, which indicates it has the most information that is 

not present in any of the other variables.  The results from this set of jackknife tests indicate that 
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 the proximity of Spartium junceum to forest service roads is a key indicator of habitat suitability 

which is like the results in Section 4.5. 

Table 9 shows the variable contributions of the combined BioClim, DEM, and Euclidean 

Distance ANF features 10 m layers. The ascii_dem_anf_visbility has the highest variable 

contribution at 31.9% which is only slightly higher than the variable contribution of anf_roads at 

30.1 %. The next highest variable contribution (19.65%) is ascii_dem_slope and the remaining 

variable contributions from the remainder of the layers are 2.4% or less.  

 

Figure 34 Maxent results using the BioClim, DEM, and Euclidean distance ANF features 10 m 
layers combined in ANF 
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Figure 35 AUC for Spartium junceum 

The BioClim layers that were resampled at a 10 m scale as described in Section 4.6 have 

been combined with the Euclidean distance ANF features layer, which were created at the same 

10 m scale. The Euclidean distance ANF features were created by first converting the original 

source vector data into raster data and then using the Euclidean distance tool with a 10 m spatial 

resolution. This is accomplished with the intention of combining all the layers to provide the 

most complete set of environmental layers possible for use in Maxent.  

The combined BioClim, DEM, and Euclidean distance ANF features layers at a 10 m 

resolution produce the highest AUC-ROC values of all of the Maxent results in this research and 

that is possible because all of the layers have the same spatial resolution.  The significance of this 

result is discussed in the next chapter. 
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Figure 36 Jackknife of regularized training gain for Spartium junceum 
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Figure 37 Jackknife of test gain for Spartium junceum 
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Figure 38 Jackknife of AUC for Spartium junceum  
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 Table 9 Variable contributions from the combined BioClim, DEM, and Euclidean Distance ANF 
features layers at 10 m resolution 
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 Chapter 5 Discussion and Conclusions 

The Maxent results for each run indicate larger areas of suitable habitat than actual 

surveys of documented locations where Spartium junceum has been found at this time. While the 

results from each run are different, they do reflect an increased habitat suitability range where 

Spartium junceum may spread or may already be colonizing. This reflects a trend that USFS 

should monitor. 

This research helps fill in some of the gaps as it pertains to Spartium junceum and 

invasive species management options in the national forest system by adding to the body of 

knowledge that is currently available.  The results from this research show how SDMs can serve 

as a very low-cost option for surveying and monitoring invasive species that is worth exploring 

further in national forests. 

The remainder of this chapter is divided into two sections. The first discusses the 

strengths and weaknesses of the Maxent modeling approach, and the second discusses the 

opportunities for future work 

5.1 Strengths and Weaknesses 

Maxent appears to be a capable modeling tool for evaluating invasive species habitat 

suitability over large areas. The results produced by running the model with different 

environmental variables showed that the model can handle layers from different sources and at 

different resolutions without incurring any issues. The model was able to produce results that 

were consistent in terms of the type of trends that were highlighted. The model’s ability to use 

presence-only data is one of its biggest strengths because there is no real way to accumulate true 

presence-absence data for this invasive species. There is no real way to survey areas where the 

species is absent without documenting areas where it is present first and then removing the 
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 species and continually monitoring where it pops up again as a control measure for comparison 

which runs counter to the primary land management goal of removing the species altogether.   

The study area for this research was selected at the forest level whereas much of the 

research that was conducted previously has been at either the regional or the continental level. 

The bulk of SDM research has used the bioclimatic data layers at a 1 km resolution (Elith e t al., 

2010) or layers recorded at a more regionally friendly 30 m resolution (e.g. Vaclavik and 

Meentemyer, 2009).  Maxent was able to handle all of the environmental layers at their different 

resolutions and produce results that reflected an overall trend of increased habitat suitability. The 

AUC value for each model run was over 0.60 which means that each was statistically significant 

with results that are better than random (0.50 or less). There is some debate about how accurate 

AUC is as a measure of statistical significance in SDMs but the variable results from the DEM 

layers and the Euclidean Distance ANF features layers are consistent with what was expected to 

be the most influential factors in predicting suitable habitat (i.e., proximity to forest service 

roads, elevation, slope and visibility). 

There were no real challenges in terms of obtaining the sample data from the Forest 

Service as I was able to obtain the data directly while I was employed by them as an intern when 

this thesis project research was launched. However, there were significant issues with the format 

of the sample data, the introduction of uncertainty from using the Create Random Points tool in 

ArcMap, the collection methods of the sample data, sampling bias, and the resolution of the 

environmental variables from the BioClim dataset. 

The sample data and x, y coordinates associated with them were in polygon form and 

needed to be converted into point form in ArcMap using the Create random points tool. The 

results from that step produced a large dataset that needed to be filtered by selecting only those 
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 points that fell within the original recorded polygon locations and eliminating all those that did 

not. Using the Create Random Points tool was a necessary step in order to get the sample data 

into a usable format in Maxent but as a result almost certainly would have introduced uncertainty 

into the data set. That is because the original source polygons included numerous 10 m grid cells 

and therefore the random points produced by the tool may have acquired one of a variety of 

values for one or more of the pertinent co-variates.  

There were 1,285 records in the original Spartium junceum polygon file and 6,245,000 

records after running the create random points tool. This large number was necessary to ensure 

that enough point features fell within every polygon in the study area. That number was reduced 

to 222,614 after selecting point features that fell within the Spartium junceum polygons from the 

source feature class. The two important things to understand is that the number of records 

substantially increased because of the need to have individual x, y coordinates for each 

occurrence of Spartium junceum and that uncertainty was almost certainly introduced into the 

dataset as a result. Each instance of a point feature that was assigned an x, y coordinate pair 

corresponded to a location where Spartium junceum should be found but did not necessarily 

reflect the amount of plants actually found at each location (introduced uncertainty) nor the 

number of coordinate pairs that were required to define the entire polygon boundary from the 

source file. 

Data collection methods serve as a major limitation for Maxent because the sample data 

need to have one x, y coordinate pair per record for the model to be run. The ANF does not 

currently have a clear and established protocol for capturing presence data in the field that relies 

on point sampling which limits the confidence in the accuracy and truth of the data. Given this 

lack of confidence,  we cannot be certain how many actual plants are found at an actual location 
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 where a polygon boundary was created, nor can we be certain of the actual coordinate pair count 

that would define the entire boundary for each polygon with sample data. Figure 39 illustrates 

this point.  

 

Figure 39 Spartium junceum polygon data and point data after conversion 

There also existed a realistic and likely possibility that the spartium junceum data 

included sampling bias due the increased likelihood that mapped instances where spartium 

junceum was found was closer to Forest Service roads and thus more likely to be included in the 

USFS dataset than those instances of spartium junceum that were further away from the Forest 

Service road network.   

There were some difficulties when working with the BioClim data due to the resolution at 

which it was recorded, and the efforts needed to resample the data. There was significant loading 

time required to build the pyramids needed to display the BioClim raster data in ArcMap and 

significant processing time needed to clip the raster to the study boundary. This proved to be a 

very limiting factor in terms of using the model because any changes or errors in the final 

versions of the rasters necessitated reloading and reprocessing of the files, which required 
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 substantial time. The time required increased significantly when the BioClim data was resampled 

at a 10 m spatial resolution as that required the tool to create substantially more pixels than were 

in the original file.  

Running Maxent with the higher resolution raster files takes substantial memory and 

required more than the 524 MB that is preset in the Maxent bat File. The available RAM was 

increased to 2,096 MB to allow Maxent to run using the larger raster files without any issues. 

This is an important factor to consider when working with data on thumb or hard drives which 

will be used on multiple computers or machines. The amount of RAM available will need to be 

the same on all machines that run the software. Systems resources are a crucial factor when 

working with Maxent and that is something the USFS will need to consider if they want to use 

the software even if on a trial basis only. Furthermore, storage space is a critical issue that should 

be considered. The outputs from running the model for this thesis project using 15 replications 

consumed 80 GB of storage space. If larger files are used or more replications are needed or 

desired this can become a significant factor that would need to be accounted for.  

5.2 Interpretation of Maxent results for each set of layers  

When looking at the results from running Maxent with each set of environmental layers it 

is important to consider two major factors, the resolution at which the data was captured and the 

overall trend of the results.  

The overall trend from each Maxent run is the increase in the areas that can be deemed as 

suitable habitat for Spartium junceum; however, there were significant differences in the actual 

size of those areas predicted by the various runs. This can be attributed to the resolution at which 

the data was recorded and the appropriateness of that data relative to the size of the study area. 

The spatial resolution of the BioClim layers is 1 km, which is the equivalent of 247.11 acres in a 
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 study area spanning 655,387 acres. The resolution does not seem to be as much of an issue when 

looking at the entire forest, but it was when selection was focused on the area occupied by 

Spartium junceum. At this resolution, it takes just only 12.8 cells of BioClim 1 km data to cover 

the entire Spartium junceum habitat. The BioClim data were recorded at the global scale to track 

global climate trends. The BioClim layers are better suited for predicting habitat suitability 

across a larger study area such as the entire national forest system rather than one forest by itself.  

To account for the problems caused by the spatial resolution the original BioClim layers 

were resampled in ArcMap to 10 m to match the DEM layers which were recorded at that spatial 

resolution. At this resolution, a 10 m cell is the equivalent of 0.00247 acres which is well suited 

to the thesis research given the total area occupied by Spartium junceum (3,168 acres). When 

looking at the results from Figures 9 and 14 the predicted areas of habitat suitability are smoother 

and more defined in the resampled set of layers than in the original raster layer and match the 

habitat area in the eastern and western parts of the forest better than the original BioClim layers. 

The DEM environmental layers seem to be the best suited for the study area and that is 

most likely because they were initially recorded at a 10 m spatial resolution. The study area is 

relatively small, and the DEM layers are better suited to account for the sizes of both the study 

area and the area occupied by Spartium junceum. The results from running the DEM layers with 

Maxent reflect this as they show habitat suitability areas that are much more detailed than those 

produced with the BioClim layers. The AUC value 0.707 shows strong statistical significance 

and reflects how elevation, slope, aspect and visibility tend to influence fauna in various ways in 

forest ecosystems.  The AUC values for the BioClim variables and resampled BioClim variables 

were 0.751 and 0.664, which offered justification for combining layers from those pair of 

sources. It is important to emphasize that each cell or pixel in the original BioClim layers 
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 accounts for 1/13 of the sample species occurrence area, which is misleading with such a small 

study area and does raise questions about the efficacy of the 0.751 AUC value in this instance.  

 Maxent was run a fourth time with a set of vector data feature classes that were converted 

into raster data using the Euclidean Distance tool in order to indicate the proximity of those 

geographic features to each other. The reason for using this tool was to account for spatial 

autocorrelation and to indicate the influence that the proximity of each layer has on the sample 

data. The results in Figure 24 look very similar to the sample species locations shown in Figure 

9. The suitable habitat area is smaller and more delineated in this instance and that can be 

attributed to the underlying vector data being the most detailed and spatially relevant in terms of 

the scale at which it was recorded. The AUC value when running Maxent with the Euclidean 

Distance rasters was 0.692 which means it is statistically significant but not as significant as the 

results generated using the DEM layers or the BioClim 1 km layers. This can be attributed to the 

fact that the data in these layers were originally recorded as vector features and needed to be 

converted to raster features and then Euclidean distances. This major factor was considered when 

performing the final Maxent run with the combination of all three of the 10 m spatial resolution 

layers. 

 The fifth Maxent run combined the BioClim and DEM 10 m layers. This was done 

because both layers were either recorded or converted to 10 m spatial resolution and had AUC 

values that were significant. The AUC value for this run was 0.730, which was higher than the 

AUC values produced when the BioClim and DEM layers when run on their own. This AUC 

value reflects a high degree of statistical significance indicating that the result from running 

Maxent with these two data sets is significantly better than random.  This can be attributed to the 

strength of combining both layers together to provide a stronger understanding of the many 
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 variables at play that influence habitat suitability. The variable contribution percentages are 

critical indicators of which variables play the largest role in habitat suitability and hence 

potential future occupancy.  The two biggest contributors from each data set are in line with 

some of the key variables found in the historical background information for this species 

(Zouhar, 2005). Section 5.2.1 discusses the variable contributions in a little more depth. 

The sixth and final Maxent run incorporates the BioClim 10 m layer, the DEM 10 m 

layers, and the Euclidean Distance ANF features layers. This was done because all layers were 

either recorded or converted to 10 m spatial resolution and had AUC values that were significant. 

The AUC value for this run was 0.762, which was the highest AUC value produced in all of the 

Maxent runs. This can be attributed to two primary factors. The first being that in combining the 

three layers a robust final layer set was created which can better account for the many variables 

and factors at play that influence habitat suitability. The second factor is that in combining the 

three different layers some the inconsistencies of a given individual layer, such as a source being 

a vector layer, or a layer being recorded at a different spatial resolution, can be accounted for by 

combining the three sets of layers.  

The AUC values were used as the primary means of evaluating how well a model 

performed at predicting habitat suitability. The AUC is “a common metric for assessing the 

predictive ability and hence utility of a habitat suitability model” (Glover-Kapfer (2015). The 

AUC assesses whether model predictions are better than random by interpreting the value scores 

on a 0 to 1 scale.  AUC values with a score of 1 indicate the model predicts presence perfectly 

and a value of 0.5 indicates model predictions are equivalent to random guesses (Philips et al., 

2006).  Interpreting the results from the six Maxent runs indicates that all models are better than 

random and the BioClim, DEM and ANF features 10 m combination layers present a good level 



 

83 
 

 of performance in terms of habitat suitability.  Although there is some criticism of using AUC as 

the primary means of evaluating how well SDMs such as Maxent perform (e.g., Lobo, Jimenez-

Valverde & Real, 2008) it still “remains the most common means of measuring model 

performance to date” (Glover-Kapfer, 2015) 

5.2.1 Interpretation of Variable Results 

The relevancy of the BioClim variables in this study needs to be carefully assessed. The 

original BioClim variables were recorded at a scale that is too large to be considered a good 

predictor of suitable habitat. This is because the resolution reflects large-scale climate trends 

rather than localized weather factors, which are more appropriate for the size of the study area. 

Resampling the BioClim data did help adjust the resolution and make the data more applicable to 

the study region but did not necessarily represent localized weather or climate as well as it could 

have had it been modeled at a 10 m resolution at the onset. It is worth mentioning that 

“precipitation seasonality” had the highest variable contribution in Maxent for both the original 

and resampled BioClim data. This could indicate that even though the data was resampled it is 

likely that it still does not accurately depict the local climate or microclimate expected or 

experienced in the study area.    

The most reliable indicators of habitat suitability in this study are the DEM and Euclidean 

Distance ANF features layers because they were recorded at a scale that is appropriate for the 

study area. The largest variable contributors to the DEM layers are ascii_dem_anf_visbility at 

56% and ascii_dem_slope_10 m at 39.1%. The largest variable contributors for the Euclidean 

distance ANF features layer are anf_roads at 70% and and_recreation_facilities at 15.8%. For 

the combined the BioClim and DEM 10 m layer data set, the two highest variable contributions 

are ascii_dem_anf_visbility at 47% and ascii_dem_slope_10 m at 33.3%. The next highest 
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 variable contribution came from ascii_wc2_0_bio_30s_15 (precipitation seasonality) at 3.7%. 

This is a significant result because this was the same variable that had the highest variable 

contribution in both BioClim Maxent runs. This is another indication that BioClim on its own 

may not be a good indicator of habitat suitability at the local scale.  

In the combined BioClim, DEM, and Euclidean Distance ANF features combined 10 m 

layer dataset, the top three variable contributors are ascii_dem_anf_visbility at 31.9%, anf_roads 

at 30.1%, and ascii_dem_slope_10 m at 19.6%. These three variables account for 81.6% of the 

total variable contribution while the remaining 27 variables account for only 18.4%. The top 

three variables come from the DEM and Euclidean distance ANF features layers while 19 of 

remaining 27 variables come from the BioClim data. This is another strong indication that 

despite the high AUC values found in Sections 4.2 and 4.3, the results are not as a strong an 

indicator as one might initially think. This further supports the merits of creating a more 

comprehensive variable dataset by combining the three 10 m layer data sets. The top three 

variables can be considered the most critical elements that need to be present when assessing an 

area for Spartium junceum habitat suitability. The remainder of the variables should be 

considered but not with the same weight as the top three. Furthermore, while the BioClim 

variables should not be relied on in this case, they do represent a key set of variables that could 

and should be incorporated in future models if they are captured at finder resolutions than 1 km.  

5.3 Opportunities for future research and Model improvement  

The overall goal of this study was to test the feasibility of using Maxent as a tool 

for aiding land management agencies such as the USFS in their invasive species 

management plans. There is no real cost associated with using the software as it is free 

to use and comes with tutorial information. This makes Maxent a great tool for land 
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 management use but based on the results of this research there are a few more steps that 

need to be taken before Maxent can be confidently used in everyday land management.   

While this research did demonstrate that with presence-only data and some initial 

reading and training, agencies can easily get started with Maxent, it also revealed some 

issues that need to be addressed before confidently using Maxent as an everyday tool. 

 The USFS should work to establish clear protocols for capturing presence data in 

the field that rely on point sampling to avoid some of the aforementioned problems. 

Additionally, the USFS can ensure the enforcement of a standardized workflow for data 

entry into invasive species data dictionaries.  Furthermore, one or more environmental 

variables focused on geology and/or soil should be added to Maxent to account for 

spartium junceum’s characteristically large root system that enables it to penetrate 

substrate which can promote long life and further spreading (invasion) to new habitat 

areas. Lastly, resampling of the BioClim data represents another key area for 

improvement. 

Resampling of the BioClim data can be improved by incorporating the use of a 

more precise resampling scheme that includes some form of interpolation such as block 

kriging or by locating regional weather and/or climate data sets that were recorded at 

finer resolutions. There are a large number of studies that now utilize the ANUCLIM 

software (Xu and Hutchinson, 2013) to generate finer scale representations of climate  

(e.g. solar radiation, precipitation, daily maximum temperature, isothermality), which 

can be used to improve on the methods and results of this research. 

There is no shortage of opportunities for future research with the abundance of 

different plant and animal species found throughout the forest. Maxent is not only 
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 applicable to invasive species management but also to other areas such as native species 

management, forest health assessment and forecasting, vector born disease prediction, 

and regional weather and climate forecasting (Antoine and Thuiller, 2005). The USFS 

could benefit greatly from incorporating SDMs such as Maxent into their everyday land 

management plans but this research only serves as a starting point for having those 

conversations. The issues of sampling bias introduced uncertainty from using the Create 

Random Points tool, data collection and data entry methods, incorporation of substrate 

variables, and selecting appropriately scaled climate data would all need to be addressed 

first before Maxent would be ready for everyday use.  
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https://www.fs.fed.us/database/feis/plants/shrub/spajun/all.html


 

 

 Appendix A: List of Layers 

BioClim 1 km Raster Layers  
Short 
Name  Description Projection Source URL Spatial 

Resolution 

BIO1    Annual Mean 
Temperature WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO2 

Mean Diurnal Range 
(Mean of monthly 
(max temp - min 

temp)) 

WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO3 Isothermality 
(BIO2/BIO7) (* 100) WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO4 
Temperature 

Seasonality (standard 
deviation *100) 

WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO5 Max Temperature of 
Warmest Month WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO6 Min Temperature of 
Coldest Month WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO7 Temperature Annual 
Range (BIO5-BIO6) WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO8 Mean Temperature of 
Wettest Quarter WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO9 Mean Temperature of 
Driest Quarter WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO10 Mean Temperature of 
Warmest Quarter WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO11 Mean Temperature of 
Coldest Quarter WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO12 Annual Precipitation WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO13 Precipitation of 
Wettest Month WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO14 Precipitation of 
Driest Month WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO15 

Precipitation 
Seasonality 

(Coefficient of 
Variation) 

WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO16 Precipitation of 
Wettest Quarter WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO17 Precipitation of 
Driest Quarter WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO18 Precipitation of 
Warmest Quarter WGS 1984 https://www.worldclim.org/bioclim 1km 

BIO19 Precipitation of 
Coldest Quarter WGS 1984 https://www.worldclim.org/bioclim 1km 
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 BioClim 10 m Raster Layers  
Short 
Name  Description Projection Source URL Spatial 

Resolution 

BIO1    Annual Mean 
Temperature WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO2 

Mean Diurnal Range 
(Mean of monthly 
(max temp - min 

temp)) 

WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO3 Isothermality 
(BIO2/BIO7) (* 100) WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO4 
Temperature 

Seasonality (standard 
deviation *100) 

WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO5 Max Temperature of 
Warmest Month WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO6 Min Temperature of 
Coldest Month WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO7 Temperature Annual 
Range (BIO5-BIO6) WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO8 Mean Temperature of 
Wettest Quarter WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO9 Mean Temperature of 
Driest Quarter WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO10 Mean Temperature of 
Warmest Quarter WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO11 Mean Temperature of 
Coldest Quarter WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO12 Annual Precipitation WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO13 Precipitation of 
Wettest Month WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO14 Precipitation of 
Driest Month WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO15 

Precipitation 
Seasonality 

(Coefficient of 
Variation) 

WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO16 Precipitation of 
Wettest Quarter WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO17 Precipitation of 
Driest Quarter WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO18 Precipitation of 
Warmest Quarter WGS 1984 https://www.worldclim.org/bioclim 10 m 

BIO19 Precipitation of 
Coldest Quarter WGS 1984 https://www.worldclim.org/bioclim 10 m 
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 Angeles National Forest Digital Elevation Model Raster Layers 
Short 
Name  Description Projection Source  Source URL Spatial 

Resolution 
DEM 
ANF 

Study 

Angeles National 
Forest Elevation Data  WGS 1984 

United States 
Geological 

Survey 

https://viewer.
nationalmap.go

v/basic/ 

10m 

DEM 
ANF 

Visibility 

Angeles National 
Forest Spanish 

Broom Visibility data 
derived from DEM 
and Spanish Broom 

Sample Points 

WGS 1984 

Created using 
Arc Map from 

source DEM file 
via the United 

States 
Geological 

Survey 

N/A 10m 

DEM 
ANF 

Aspect 

Angeles National 
Forest Aspect/ 

downslope direction 
of the maximum rate 

of change derived 
from DEM file 

WGS 1984 

Created using 
Arc Map from 

source DEM file 
via the United 

States 
Geological 

Survey 

N/A 10m 

DEM 
ANF Hill 
shade 

Angeles National 
Forest Hill 

shade/shaded relief 
derived from DEM 
file considering the 
illumination source 
angle and shadows 

WGS 1984 

Created using 
Arc Map from 

source DEM file 
via the United 

States 
Geological 

Survey 

N/A 10m 

DEM 
ANF 

Slope 

Angeles National 
Forest Slope/ 

gradient derived 
from DEM 

WGS 1984 

Created using 
Arc Map from 

source DEM file 
via the United 

States 
Geological 

Survey 

N/A 10m 
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 Angeles National Forest features converted to Rasters from Vector Layers 

Short 
Name  Description Projection Source  Spatial 

Resolution 

ANF CA 
Flow lines 

California Hydrography 
Data clipped to Angeles 

National Forest Boundary 
WGS 1984 

Initial internal data request 
via Jason Martin, GIS Intern 
USFS. Data now currently 

available on USFS 
Geospatial Data 

Clearinghouse website.  

10m 

ANF 
Recreation 

Facilities  

Designated recreation 
facilities/sites located 
through the Angeles 

National Forest  

WGS 1984 

Initial internal data request 
via Jason Martin, GIS Intern 
USFS. Data now currently 

available on USFS 
Geospatial Data 

Clearinghouse website.  

10m 

ANF Roads  
Angeles National Forest 
Service roads managed 
by the US Forest Service  

WGS 1984 

Initial internal data request 
via Jason Martin, GIS Intern 
USFS. Data now currently 

available on USFS 
Geospatial Data 

Clearinghouse website.  

10m 

ANF 
Vegetation 

Burn 
Severity 

Areas burned in the 
Angeles National Forest 
by wildfire including the 
year of the fire and the 

name of the fire. 

WGS 1984 

Initial internal data request 
via Jason Martin, GIS Intern 
USFS. Data now currently 

available on USFS 
Geospatial Data 

Clearinghouse website.  

10m 

ANF Water 
Bodies  

Standing water bodies 
(Lakes, Small Lakes, 
ponds, etc...) in the 

Angeles National Forest. 

WGS 1984 

Initial internal data request 
via Jason Martin, GIS Intern 
USFS. Data now currently 

available on USFS 
Geospatial Data 

Clearinghouse website.  

10m 

ANF 
Wildland 

Urban 
Intermix 

Buffered feature class 
detailing areas where 
Wildland habitat, flora 

and fauna mix with 
Urban interface and 
human interaction.  

WGS 1984 

Initial internal data request 
via Jason Martin, GIS Intern 
USFS. Data now currently 

available on USFS 
Geospatial Data 

Clearinghouse website.  

10m 

 



 

 

  
 

Angeles National Forest Vector layers list 
Short 
Name  Description Projection Source  Source 

URL 

ANF CA 
Flow lines 

California 
Hydrography Data 
clipped to Angeles 

National Forest 
Boundary 

WGS 1984 

Initial internal data request via 
Jason Martin, GIS Intern USFS. 
Data now currently available on 

USFS Geospatial Data 
Clearinghouse website.  

https://data.
fs.usda.gov/

geodata/ 

ANF 
Recreation 

Facilities  

Designated recreation 
facilities/sites located 
through the Angeles 

National Forest  

WGS 1984 

Initial internal data request via 
Jason Martin, GIS Intern USFS. 
Data now currently available on 

USFS Geospatial Data 
Clearinghouse website.  

https://data.
fs.usda.gov/

geodata/ 

ANF Roads  

Angeles National 
Forest Service roads 
managed by the US 

Forest Service  

WGS 1984 

Initial internal data request via 
Jason Martin, GIS Intern USFS. 
Data now currently available on 

USFS Geospatial Data 
Clearinghouse website.  

https://data.
fs.usda.gov/

geodata/ 

ANF 
Vegetation 

Burn 
Severity 

Areas burned in the 
Angeles National 
Forest by wildfire 

including the year of 
the fire and the name 

of the fire. 

WGS 1984 

Initial internal data request via 
Jason Martin, GIS Intern USFS. 
Data now currently available on 

USFS Geospatial Data 
Clearinghouse website.  

https://data.
fs.usda.gov/

geodata/ 

ANF Water 
Bodies  

Standing water bodies 
(Lakes, Small Lakes, 
ponds, etc...) in the 

Angeles National 
Forest. 

WGS 1984 

Initial internal data request via 
Jason Martin, GIS Intern USFS. 
Data now currently available on 

USFS Geospatial Data 
Clearinghouse website.  

https://data.
fs.usda.gov/

geodata/ 

ANF 
Wildland 

Urban 
Intermix 

Buffered feature class 
detailing areas where 
Wildland habitat, flora 

and fauna mix with 
Urban interface and 
human interaction.  

WGS 1984 

Initial internal data request via 
Jason Martin, GIS Intern USFS. 
Data now currently available on 

USFS Geospatial Data 
Clearinghouse website.  

https://data.
fs.usda.gov/

geodata/ 
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Angeles National Forest Vector layers list (cont.) 

Short 
Name  Description Projection Source  Source 

URL 

Spanish 
Broom 
Sample 
Points 

 

Spanish Broom 
features class created 

in ArcMap using 
random point 

generating tool and 
filtered to .5 meters 

distance of actual 
locations of Spanish 
Broom from Spanish 
Broom polygon file 

 

WGS 1984 

Initial internal data request via 
Jason Martin, GIS Intern USFS. 
Data now currently available on 

USFS Geospatial Data 
Clearinghouse website.  

 

https://data.
fs.usda.gov/

geodata/ 

Spanish 
Broom 

Polygon  
 

Spanish Broom 
invasive species data 

in the form of a 
polygon feature class 
resulting from field 

crew collection 
 

WGS 1984 

Initial internal data request via 
Jason Martin, GIS Intern USFS. 
Data now currently available on 

USFS Geospatial Data 
Clearinghouse website.  

https://data.
fs.usda.gov/

geodata/ 

ANF 
Boundary 

  

Administrative 
Boundary of the 
Angeles National 

Forest as administered 
by the US Forest 

Service 
 

WGS 1984 

Initial internal data request via 
Jason Martin, GIS Intern USFS. 
Data now currently available on 

USFS Geospatial Data 
Clearinghouse website.  

https://data.
fs.usda.gov/

geodata/ 
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