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Abstract 

Turf replacement rebate programs are a water-conservation measure promoted by many local and 

regional government agencies in California. In an effort to reduce outdoor water use, these 

programs offer financial incentives to homeowners who replace water-intensive lawns with 

drought-tolerant landscaping and more efficient irrigation systems. Previous studies, however, 

have found that landscaping choices are based on more than just economic factors; social 

pressure, neighborhood norms, and property value are also important considerations, and 

homeowners tend to opt for landscaping similar to that of their neighbors. This study uses GIS, 

linear regression, binary logistic regression, and a comparison of means to characterize a 

spatiotemporal spillover effect in turfgrass replacement rebate program participation data for 

Long Beach, California. The study determines that residents are more likely to participate in a 

Lawn-to-Garden program when one or more neighbors on the same block have already 

completed turfgrass replacement projects. In fact, a block with a single project completion is 5.8 

times more likely to see a future application submission than blocks where no projects have been 

completed, and the highest future application rates occur on blocks where more than 8% of 

households have already completed a Lawn-to-Garden project. Project completions on adjacent 

blocks were found to be far less influential. These findings indicate that residents are more 

willing to replace their conventional landscaping with drought-tolerant gardens after an 

alternative norm has been established on visually adjacent properties, suggesting that local 

governments should consider focusing their turf replacement program marketing and support 

efforts on blocks with no prior participation. 
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Chapter 1 Introduction 

As California residents and governments grapple with the severe statewide drought that began in 

the fall of 2011, turf buyback programs have become an increasingly popular means of curtailing 

urban water use. Turf buyback programs, often referred to as lawn replacement rebate programs, 

cash-for-grass programs, or lawn-to-garden programs, are incentive programs wherein local 

governments offer to pay residents—usually by the square foot of lawn removed—to replace 

irrigated turfgrass with drought-tolerant landscaping and to replace spray irrigation with more 

efficient drip systems. The Metropolitan Water District of Southern California (MWD), which 

sells imported water from the Colorado, Sacramento, and San Joaquin rivers to cities in Southern 

California, paid out $401.3 million in turf replacement rebates between July 1, 2014 and July 10, 

2015, supplementing rebates paid by local water suppliers (Atwater, Schmitt, and Atwater 2015). 

Turf buyback programs are not without challenges, though. Rates of participation in turf 

replacement rebate programs can vary dramatically from month to month and from 

neighborhood to neighborhood, and program attrition is high (Seapy 2015). In fact, Atwater, 

Schmitt, and Atwater (2015) estimate that only 1–2% of lawns have been replaced in Southern 

California, including independent (non-incentivized) conversions. On the other hand, results of 

an ongoing program participation survey by the Irvine Ranch Water District in Southern 

California indicate that participation is on the rise and that for every three households that 

replace their lawns in exchange for a rebate, four more households remove their lawns without 

applying for a rebate, suggesting that turf replacement rebate programs could have a multiplier 

effect (Johnson 2017; Knickmeyer 2016).  

This study examines spatiotemporal patterns of project participation in Long Beach, 
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California, where the Long Beach Water Department (LBWD) has offered its Lawn-to-Garden 

(L2G) program continuously since 2010. By combining Geographic Information System (GIS) 

methods with statistical analysis, this study contributes a spatial dimension to the emerging 

understanding of turf replacement rebate program effectiveness, quantifying the previously 

unexamined roles of visual adjacency, social contagion, and neighborhood norms in program 

participation. Results of the study could inform future decisions by local and regional 

government bodies as they focus marketing and outreach efforts for turf replacement programs. 

Specifically, this study aims to determine whether a spatiotemporal spillover effect is at 

play wherein each L2G project completion increases the likelihood of nearby neighbors 

participating in the program in the future. Spatial and temporal spillover effects exist when the 

value of a variable in a given analysis unit and time period affects the values of other variables in 

neighboring analysis units and future time periods. The presence of a spatial spillover effect 

would indicate that as the garden-to-turf ratio increases on a residential block, the likelihood of 

other neighbors replacing their turf with gardens also increases. To that end, more than six years 

of L2G program participation data provided by the LBWD were geocoded and analyzed for 

spatial autocorrelation between L2G project completion points in order to determine the extent of 

that potential spillover effect. Next, city-block-level spatial aggregation units were developed 

based on that peak autocorrelation distance. Quarterly application and completion rates were 

calculated and normalized for each city block, and completion rate variables were lagged both 

temporally and spatially to identify spatial and temporal spillover effects. In addition, several 

other explanatory variables were derived from Los Angeles County tax assessor parcel data, U.S. 

Census Bureau household data, and Zillow estimated property values, resulting in a panel dataset 

of quarterly values for each residential city block in Long Beach. Finally, a linear regression 
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model was fitted to characterize interactions between non-zero city-block-level application and 

completion rates, comparing annualized future project application rates to rates of previously 

completed projects on the same and adjacent blocks while controlling for owner occupancy, 

home value, and rebate amount. In addition, a binary logistic regression model was developed to 

estimate the likelihood of future application submissions on blocks at a series of project 

completion rate ranges with the goal of identifying critical completion rate thresholds—both on 

the same block and on adjacent blocks—after which residents are more likely to participate. 

Finally, a comparison of means test was used to examine application rates on blocks above and 

below those same-block and adjacent-block thresholds.  

These analyses tested three hypotheses. The first was that future L2G application rates 

have a significant linear relationship with cumulative completion rates; the second was that the 

likelihood of application presence on a block is significantly higher when completion rates on the 

same and adjacent blocks are above zero than when completion rates are zero; and the third 

hypothesis was that application rates are statistically higher on blocks that have achieved a 

critical project completion threshold on the same and adjacent blocks. 

1.1. Motivation 

Homeowners’ choices regarding their residential landscaping and methods of irrigation 

have implications that extend beyond their own property lines and water bills; collectively, 

residential yards represent the largest land-use class in the Los Angeles Basin (Hevesi and 

Johnson 2016). Minor et al. (2016, 56) go so far as to claim that “residential yards are perhaps 

the most underappreciated and understudied ecosystem in the world,” citing their collective 

influence on urban temperatures, water quality and conservation, animal and plant habitat and 

diversity, and human wellbeing. 
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Residential irrigation is especially relevant in California, where drought conditions have 

brought water conservation to the fore. The four years between 2012 and 2015 were the driest on 

record in California (Hanak et al. 2015), and ten of the last sixteen years—from 2000 to 2016— 

were drier than average (NOAA 2016). In Southern California, where outdoor irrigation 

represents about half of urban water use (Hanak et al. 2015), reducing residential outdoor water 

consumption is a priority for local governments. The City of Long Beach is one of dozens of 

local governments in California to offer homeowners a financial incentive to replace lawns with 

drought-tolerant gardens in an effort to achieve that goal (Knickmeyer 2016). The LBWD claims 

that L2G program participants can reduce their landscape irrigation by 70% (LBWD 2016). 

Turf-replacement rebate requirements—and the time and money that must be spent 

meeting them—can be a barrier to program participation and completion (Hurd, St. Hilaire, and 

White 2006). In a report to the California Urban Water Council, Seapy (2015) cites several 

challenges to turf replacement project success. First, many homeowners lack both the skill to 

produce a successful result and the funds to hire a professional landscape designer. Second, 

program requirements, project planning, and the length of the conversion process can be 

overwhelming; Seapy notes that some agencies report a 50% attrition rate between rebate 

application submission and landscape design approval. Finally, homeowners may hesitate to 

convert lawns to drought-tolerant landscapes if they feel social pressure to conform to a more 

conventional landscaping norm. In the same report, Seapy (2015, 12) emphasizes the influence 

of neighborhood norms: “Powerful in their ability to attract or dissuade customers to a rebate 

program, social norms can make or break a program’s success. For example, agencies have seen 

that one to two stunning conversions in a neighborhood can catalyze an entire neighborhood’s 

transformation.” 
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The idea that landscaping choices are “contagious” is not new. In a study examining the 

spatial clustering of easement gardens (gardens planted on the strip of land between street and 

sidewalk) in Ann Arbor, Michigan, Hunter and Brown (2012) found that properties were more 

likely to have easement gardens when a visually adjacent property also has an easement garden. 

Their findings can be explained by an earlier study exploring the role that cultural norms play in 

homeowner adoption of landscaping innovations. In that study, Nassauer, Brown, and Dayrell 

(2009) offer two reasons that homeowners may be reluctant to install an innovative landscape 

even when they appreciate its aesthetic or ecological value. First, homeowners feel social 

pressure to conform to perceived neighborhood norms dictating more conventional landscaping 

choices, and second, they fear that unconventional landscaping could reduce their property 

values. Figure 1 shows a Long Beach neighborhood in which five turf replacements have been 

completed on a single block, suggesting the establishment of an alternative landscaping norm for 

that block.  
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Figure 1. Cluster of L2G projects. In this Long Beach neighborhood, no block has more than one 
completed project with the exception of a single block with five project completions. 

 

While anecdotal evidence and agency reports support the idea that homeowners are more 

likely to participate in turf replacement rebate programs after a some of their neighbors have 

already done so with success, as of 2016, the literature contains scant reference to measurement 

of a spillover effect in turfgrass replacement participation. By using GIS to conduct a spatial 

analysis of patterns of turf replacement program participation in both space and time, one can 

attempt to quantify the social multiplier effect each L2G conversion can have on participation 

rates among neighboring residents. 

1.2.  Study Area 

Long Beach is a Southern California city situated on just over 50 square miles (130 

square kilometers) of urbanized coastal plain between the Los Angeles and San Gabriel rivers. 
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Located in southern Los Angeles County, immediately adjacent to Orange County, Long Beach 

is part of the Los Angeles-Long Beach-Santa Ana Metropolitan Statistical Area (Figure 2). The 

city is bordered on the south by the San Pedro Bay and is surrounded by other urbanized 

communities to the west, north, and east (City of Long Beach 2009); the city of Signal Hill sits 

near the center of the city and is bordered on all sides by Long Beach. Signal Hill is not included 

in this study because its residents are not eligible to participate in the LBWD turf replacement 

rebate program. 
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Figure 2. Study area. Long Beach is a coastal city in southern Los Angeles County. 
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First incorporated in 1888 following the extension of transcontinental railroad lines to 

Southern California, Long Beach was the fastest growing city in the country in the early 1900s 

(City of Long Beach 2009). Thousands of eastern and midwestern families moved west, bringing 

with them their landscaping preference for lush lawns bordered by shrubs and flowers (Mickey 

2013); however, in Southern California’s Mediterranean climate—characterized by warm, dry 

summers with little or no rainfall—a green lawn requires regular irrigation. After World War I, 

oil was discovered in Long Beach and the population jumped from 55,000 to 135,000 in five 

years. The oil boom spurred development of neighborhoods featuring bungalows and multi-unit 

residential buildings with small yards and courtyards. The second major wave of residential 

construction occurred after World War II, as large tracts of post-war bungalows, each with a 

thirsty front lawn, were built further inland. The average year of construction of single-family 

homes in Long Beach is 1957 (Los Angeles County Office of the Assessor 2014).  

Today, Long Beach is home to about 474,000 people. With over 9,400 residents per 

square mile (over 3,600 residents per square kilometer), the population density of Long Beach is 

moderate compared to other cities in the Los Angeles metropolitan area (United States Census 

Bureau 2015). High- and medium-rise apartment and condominium buildings pepper the 

downtown area and the coastline; throughout the city, two-, three-, and four-story apartment 

complexes are common. Single-family residences occupy roughly 63% of all residential parcels. 

The average single-family house in Long Beach is approximately 1,500 square feet and sits on a 

5,830 square-foot parcel (Los Angeles County Office of the Assessor 2014). The lawns and 

gardens planted on these single-family residential (SFR) parcels are the focus of this study. 
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1.3. LBWD Lawn-to-Garden Program 

The Long Beach L2G program was introduced in 2010. The LBWD initially offered 

residents $2.50 for every square foot of turf grass they replaced with drought-tolerant 

landscaping, with a cap of 1,500 square feet and $3,750.00 (Green 2010). In 2013, funding from 

MWD allowed LBWD to increase the incentive to $3.00 per square foot (Noell 2013) and then to 

$3.50 per square foot in 2014 (Williams 2014; Machles 2014). By 2015, the MWD subsidy 

budget had been exhausted, and the incentive was reduced to $2.50 per square foot once again 

(Smith 2015).  

To qualify for the L2G rebate, Long Beach residents must complete a multi-step approval 

process. They begin by submitting an online application in which they provide the dimensions of 

the turf they intend to replace; areas of living turf grass up to 1,500 square feet in front yards or 

parkways (the city-owned strip of land between sidewalk and street) are eligible. Next, property 

owners complete a short landscape design course online or in person prior to developing and 

submitting a proposal. The proposal must include a plan to remove and replace turf grass with a 

drought-tolerant garden in which at least 65% of the former turf area will be covered with 

vegetation within two years; the remaining area can be covered with mulch or a permeable 

hardscape. They must also replace conventional sprinkler systems with water-saving irrigation 

such as drip systems, bubblers, or low-emission rotator nozzles, or no irrigation at all. Finally, 

LBWD inspects the site upon project completion to verify compliance with program 

requirements (LBWD 2016). Figure 3 illustrates a successfully completed Long Beach turf 

replacement project. 
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Figure 3. Before and after photos of a Lawn-to-Garden project (LBWD 2013). 

 

1.4.  Study Design 

This study was undertaken with the objective of answering three questions. First, is future 

application rate dependent on the rate of previously completed projects? Second, does the 

presence of previously completed projects on a city block increase the likelihood of other 

residents of that block and neighboring blocks participating in the program as well? And finally, 

is there a critical completion rate threshold at which the mean block-level L2G application rate 

increases significantly? This research aims to answer those questions by calculating quarterly 

block-level L2G project application rates and comparing those to cumulative project completion 

rates on the same and adjacent blocks using linear and binary logistic regression analyses and a 

difference of means test, controlling for independent variables such as owner occupancy, housing 

prices, and rebate amounts. 

This project methodology was undertaken in two stages: data acquisition and integration 

and statistical analysis. In the first stage, data were acquired from the LBWD, the City of Long 

Beach, Los Angeles County, the U.S. Census Bureau, and Zillow, and processed to achieve 

uniformity of spatial reference systems and geographical extents. GIS techniques were used to 

aggregate the data into city-block polygons with attributes describing present and future L2G 
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application rates and same-block and adjacent-block completion rates for 20 quarters from 2011 

through 2015 along with explanatory variables like rebate rates, mean real estate value estimates, 

parcel sizes, and household composition information. Next, block-quarter analysis units were 

generated by restructuring the tabular polygon attribute data to produce a panel dataset with 20 

quarterly records for each residential city block, each containing values for the dependent 

variables (application rate and four-quarter future application rate) and independent variables. 

The same-block and adjacent-block cumulative completion rate variables were lagged by one 

quarter to enable comparison of each quarter’s present and future application rate with the 

previous quarter’s completion rates.  

In the second stage, the panel dataset was then subjected to three different statistical 

analyses. First, a linear regression analysis modeled the relationship between non-zero future 

mean application rates and non-zero same-block and adjacent-block cumulative completion 

rates, controlling for block-level mean housing value and owner occupancy rate; second, a binary 

logistic regression model was fitted to quantify the likelihood of a future application being 

submitted within four quarters for a block-quarter at different categories of same-block and 

adjacent-block previous-quarter cumulative completion rates (including zero values); and third, a 

independent samples t test was used to compare future application rate means above and below 

the same-block and adjacent block completion rate thresholds identified by the regression 

models. All spatial data processing and analysis tools used in this study can be found in the 

ArcGIS Spatial Statistics Toolbox, while tools for extracting and analyzing descriptive statistics 

and developing linear and binary logistic regression models are available in IBM’s Statistical 

Package for the Social Sciences (SPSS).  
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1.5. Organization 

The remainder of this thesis will document the results of a literature review of related 

work followed by a detailed explanation of the research methodology, including data acquisition, 

integration, and aggregation and statistical analysis. Finally, results will be presented and 

discussed. The Related Work chapter includes an overview of previous research related to 

residential outdoor water conservation, neighborhood norms and social contagion, 

spatiotemporal spillover effects, threshold identification, and similarly structured data. The Data 

Integration chapter discusses the methods used to acquire and process spatial and tabular data 

from the City of Long Beach, Los Angeles County, the United States Census Bureau, and Zillow 

(an online real estate database company) and to spatially and temporally aggregate those data in 

preparation for statistical analysis. The Statistical Analysis chapter details the statistical 

methodology employed. The Results chapter will detail the outcomes of the linear regression, 

binary logistic regression, and comparison of means tests, and the Discussion chapter will delve 

further into the implications and limitations of those results. 
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Chapter 2 Related Work 

Turf replacement rebate programs are a relatively recent phenomenon; while newspaper articles 

and white papers assessing program effectiveness and participation abound (Tull, Schmitt, and 

Atwater 2016; Atwater, Schmitt, and Atwater 2015; Seapy 2015; Green 2010; Addink 2005), 

few peer-reviewed academic treatments of the topic exist. To date, no research has been 

published on the topic of spatiotemporal spillover in turf rebate program participation. There is, 

however, much discussion in the literature of the role of landscaping and irrigation methods in 

residential water conservation and urban sustainability, as well as of the factors that influence 

residential landscaping and irrigation choices and behaviors. With regard to analytical 

methodology, a review of other fields such as econometrics and ecology yields numerous 

examples of spatiotemporal spillover and threshold identification and provides insight into 

approaches for statistical analysis of similarly structured data. 

2.1. Residential Outdoor Water Conservation 

A number of studies address the role of residential landscaping in urban water use and 

conservation. While there is consensus regarding the importance of landscaping choices and 

irrigation methods to water conservation efforts, findings are mixed with regard to the 

effectiveness and appropriateness of turf replacement rebate programs. 

Most recently, Tull, Schmitt, and Atwater (2016) investigate monthly water savings for a 

set of 545 single-family households that participated in residential turf removal programs in three 

different California water districts. By modeling monthly water usage data at the household level 

both before and after turf replacement, controlling for household size, the percentage of irrigable 

area converted, and external influences, their research determines that the households in their 

study save an average of 24.6 gallons per square foot per year. In a separate study, Atwater, 
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Schmitt, and Atwater (2015) describe their evaluation of participation patterns and outcomes of a 

turf removal rebate program that began in 2011 in the Moulton Niguel Water District in Orange 

County, California. The researchers were unable to correlate program participation with other 

variables including irrigable area, property value, educational attainment, and household size, 

noting that “the lack of a strong link between participation in rebate programs and the variables 

measured in this study points to the challenge of developing an effective conservation program” 

(p. 6). Atwater, Schmitt, and Atwater do not investigate a link between program participation and 

the presence of nearby completed projects in their study.  

Helfand et al. (2006) attempt to quantify homeowners’ willingness to pay to replace 

turfgrass with a more ecologically sound garden, finding that people are willing to pay more for 

alternative garden landscaping, although their willingness to pay decreases as the monthly costs 

increase relative to income. This finding is supported by Hurd, St. Hilaire, and White (2006), 

who evaluate New Mexico homeowners’ attitudes and preferences with regard to residential 

landscaping and water conservation. Their work indicates that homeowners are strongly in 

support of transitioning from conventional lawns to drought-tolerant native and natural 

landscaping in that region; however, 25% of study participants cited money as a barrier to 

completing that transition, and only one of the three New Mexico cities studied offered a rebate 

for turf removal. The researchers also highlight the importance of evaluating the effectiveness of 

water conservation programs—including turf rebate programs—since those programs are funded 

by taxpayer and ratepayer dollars.  

Findings differ with regard to the value of replacing turfgrass lawns with drought-tolerant 

landscaping as a water conservation measure. Sovocool, Morgan, and Bennett (2006) consider 

the value of low-water use landscaping in Las Vegas as a means of conserving urban water 
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resources in a six-year study that tracks a xeric (low-water use) landscape group, a turf group, 

and a control group, monitoring their water consumption and landscape-related costs, including 

conversion and maintenance. Their results show an average decrease of 76% in outdoor 

irrigation and 30% in total water consumption among the households with a xeric landscape, 

with a marked reduction in peak summer water use. Participants with xeric gardens also saved 

$206 each year on landscape expenses and spent over 26 fewer hours maintaining their 

landscapes. On the other hand, Addink (2005) questions the cost-effectiveness of turf 

replacement rebate programs in a non-peer-reviewed report for the University of California at 

Riverside’s Turfgrass Research Facility. Having reviewed the outcomes of four turf replacement 

rebate programs, Addink concludes that irrigation technology and management are more 

important than vegetation type with regard to water conservation.  

Other studies have highlighted the idea that landscape policy makers should consider 

more than just water conservation. Halper, Scott, and Yool (2012) analyze residential irrigation 

and patterns of vegetation and thermal comfort in the desert city of Tucson, Arizona, noting the 

importance of urban vegetation in mitigating heat in cities and suggesting that city governments 

remain mindful of the risk of creating urban heat islands as they work toward reducing outdoor 

irrigation. The importance of urban vegetation in mitigating heat is underscored by a Beumer and 

Martens (2016), who use the BIMBY (Biodiversity in My Back Yard) framework to assess the 

ecology of various front-yard landscaping in Phoenix, Arizona, and Maastricht, Netherlands. 

They discuss the potential of residential landscapes to contribute to biodiversity in the urban 

setting and argue that the higher water use associated with green gardens (as opposed to xeric 

gardens) is offset by their habitat contributions and climate regulating benefits.  
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2.2. Neighborhood Norms and Social Contagion 

If factors like education and property value are not predictive of turf rebate program 

participation (Atwater, Schmitt, and Atwater 2015), what factors do motivate homeowners to 

participate? A study of communication strategies for encouraging water conservation by 

Seyranian, Sinatra, and Polikoff (2015) suggests that neighborhood norms are powerful 

motivators of water conservation behaviors. Their study compares four approaches to fostering 

reduced indoor and outdoor water consumption in an affluent neighborhood in Los Angeles 

County, and their results indicate that water conservation campaigns emphasizing social norms, 

social identity, or personal identity are all more effective at influencing homeowner behavior 

than educational materials alone. Their research suggests that when residents perceive that water-

conserving behaviors are linked to desirable social factors, they are more likely to overcome 

barriers to water conservation. The authors also point out that the role of social factors in 

household water conservation is worthy of further study, noting that “socially oriented 

interventions appear to be a promising area of future research in promoting water stewardship 

and reducing water waste” (2015, 89).  

Nassauer, Wang, and Dayrell (2009) lend further support to the idea that neighborhood 

norms are important factors in homeowners’ landscaping choices. They employ an online 

questionnaire that asks respondents to first rate their preferences for five different landscape 

designs and then to rate them again after having been shown pictures of three hypothetical 

neighbors’ front yard landscaping. The authors report that respondents’ preferences were 

strongly influenced by the neighbors’ landscape designs: when all the neighbors’ yards had 

conventional lawns, respondents preferred lawns as well, but when most of the neighbors’ yards 

had native gardens, the respondents strongly preferred that alternative landscape for their own 
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houses as well. When respondents were shown neighboring yards without a consistent norm, 

their preferences were more variable. Furthermore, those results were not significantly affected 

by other demographic variables. Nassauer, Wang, and Dayrell concluded that “...individual 

homeowners deeply value having a front yard that matches a consistent neighborhood 

appearance, but that neighborhood appearance does not need to conform to broader cultural 

conventions” (2009, 290). 

Hunter and Brown (2012) further examine the influence of nearby neighbors’ 

landscaping on homeowners’ own landscaping preferences by analyzing the spatial distribution 

of easement (street-side) gardens (as opposed to easements planted with turf) in Ann Arbor, 

Michigan. The authors find that a property is more than twice as likely to have an easement 

garden if there is another easement garden within 30 meters, and that clustering is most 

significant in a neighborhood radius of 91 meters. Similarly, McClintock et al. (2015) find that 

front yard gardens in Portland, Oregon were spatially clustered rather than randomly dispersed. 

Further, they identify clusters of front yard gardens occurred in affluent neighborhoods with 

higher percentages of young, college-educated homeowners, but do not identify garden 

clustering in a lower-income neighborhood where McClintock speculates that replacing a lawn 

with a garden “might constitute a transgression of dominant cultural norms” (2015, 12). These 

results confirm earlier findings that homeowners tend to mimic the landscape elements of their 

close neighbors (Zmyslony and Gagnon 1998), and Hunter and Brown suggest that local 

governments could leverage this phenomenon by “seeding” neighborhoods with model gardens 

for neighbors to imitate (2012, 415). 

Promoting the establishment of new social norms to effect behavioral change is further 

supported by Collier et al. (2013), who consider the role of community participation in urban 
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transitions to sustainable design. The authors emphasize the importance of shifting paradigms, 

concluding that environmentally sustainable practices must be normalized in order to achieve 

resilience. Hayden et al. (2015) also call for a need to cultivate new aesthetic norms 

incorporating water conservation practices, citing an unwillingness to sacrifice aesthetics to 

reduce water consumption, even among people who recognize the need for conservation. 

Finally, Fowler and Christakis (2010) show that altruistic behavior spreads in a cascading 

fashion through social networks. Their work indicates that when individuals witness others 

contributing to the greater good, they are more likely to contribute as well; this mimicry causes 

contributions to propagate through a network. While participation in a turf removal rebate 

program may personally benefit the participant in the form of the rebate received and reduced 

monthly water bills, it might also be perceived by others as a contribution to the greater good, 

particularly in times of drought. When residents see others in their neighborhood network 

contributing to the greater good by replacing a lawn with a drought-tolerant garden, the desire to 

mimic that altruistic behavior may also be a powerful motivator for participation. 

2.3. Spatiotemporal Spillover Effects 

A spatial spillover effect occurs when a variable describing one analysis unit indirectly 

affects outcomes in neighboring units in an endogenous (reciprocal) relationship; a temporal 

spillover occurs when a variable describing an analysis unit affects a future outcome in the same 

unit. Spatiotemporal spillover occurs when both spatial and temporal spillovers are present; in 

other words, the value of a variable in a given analysis unit and time period affects outcomes in 

neighboring analysis units and future time periods. The current study attempts to identify and 

quantify a spatiotemporal spillover wherein the L2G application rate on a city block is influenced 

by the same-block and adjacent-block cumulative completion rates of the previous quarter.  
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Various types of spillover effects have been identified in the literature, including 

spillovers of knowledge, industry, and growth (Zubek and Henning 2016; Capello 2009). Many 

treatments of spatial and temporal spillover effects have arisen from the field of spatial 

econometrics (Anselin, Le Gallo, and Jayet 2008; Elhorst 2012; Elhorst 2014), which 

incorporates spatial effects—namely spatial dependence and spatial heterogeneity—into 

regression analysis in order to model interactions between variables; this effort to incorporate the 

effects of space into regression analysis has been used with increasing frequency by researchers 

in a variety of fields including economics, crime analysis, public health, and ecology (Anselin 

2010).  

A spatially lagged variable is created by aggregating the values of neighboring analysis 

units in order to model the interactions between variables in neighboring units. The study herein 

incorporates a spatially lagged independent variable describing the average rate of L2G project 

completions on adjacent blocks in order to measure their effect on the application rate of a 

subject block. While spatial regression models more commonly employ a spatially lagged 

dependent variable (Elhorst 2010; Anselin 2002), Grubesic and Rosso (2014) and Rosso et al. 

(2013) argue that by using a spatially lagged independent variable in regression analysis, 

researchers can measure the effect of neighboring individuals or aggregation units on a 

dependent variable without having to employ the specialized estimation models often required 

for spatially lagged dependent variables. Grubesic and Rosso (2014) explain that spatially lagged 

independent variables can be incorporated into linear models, and highlight their utility for 

analyzing epidemiological and socioeconomic data related to neighborhood. Researchers often 

calculate spatially lagged variables by calculating the sum of weighted neighborhood values 

within a given distance (Grubesic and Rosso 2014; Franzese and Hays 2007); other studies 
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employ the average of weighted neighborhood values instead (Zubek and Henning 2016). The 

weights are usually reflective of each neighbor’s relative distance from the subject case so that 

closer neighbors are weighted more heavily in accordance with Tobler’s first law of geography: 

“Everything is related to everything else, but near things are more related than distant things” 

(Tobler 1970). 

Zubek and Henning (2016) use a spatial econometric approach to study whether spatial 

spillovers in knowledge and financial means play a role in the allocation of European Union 

(EU) regional funding in Slovakia. Not unlike the L2G program in Long Beach, the EU regional 

funding program has a complicated application and approval process; a region’s likelihood of 

applying for and receiving this funding depends on its level of political knowledge and 

administrative capacity. Zubek and Henning use a spatial Durbin model (a model that uses 

spatially lagged dependent and independent variables) to test for the existence of a spatial and 

temporal spillover in a panel dataset. The researchers note that in the case of knowledge 

spillovers, effects may not be immediately apparent; for that reason, developing a panel 

dataset—a dataset in which each aggregation unit has multiple records containing data collected 

at specific time intervals—is essential to capturing the temporal as well as the spatial nature of a 

knowledge spillover (2016, 372).  

An especially pertinent example of spillover analysis is the spatial analysis methodology 

employed in a study examining water use patterns in Kelowna, British Colombia, which uses a 

spatial econometrics approach to document a spatial spillover effect wherein water-saving 

innovations on one property are propagated to neighboring properties (Janmaat 2013). The 

author Janmaat (2013, 12)  explains that this effect is “analogous to the propagation of impacts 

from a shock.” In this study, the author runs a series of spatial structure tests at three distances 
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(50 m, 100 m, and 200 m) to establish that the water usage data are spatially structured and to 

create a spatial weights matrix to be used in the estimation of a set of regression models. The 

regression models provide evidence for the presence of a spatial spillover in the data, suggesting 

a diffusion process. Finally, the author develops a model that predicts the strength and extent of 

the spillover effect depending on the locations of and spatial relationships between water-saving 

innovations. Janmaat (2013, 16) directly relates his work to the topic of this thesis when he notes 

that his results indicate that requests for turf replacement rebates will tend to be spatially 

clustered and “...neighborhoods where no one has taken a chance on water saving landscaping 

are less likely to avail themselves of the subsidy.” Janmaat suggests that communities should 

allocate dollars by spatial divisions to maximize patterns of spillover mimicry. 

Similarly, Zhang and Wang (2016) use regression modeling to analyze the effects of low-

cost airlines on airports’ average ticket prices, as well as the relationship between average fares 

at an airport and the current and past average fares of neighboring airports. Their results describe 

a temporal spillover effect wherein an airport’s average airfare price drops after a low-cost 

airline’s market share increases, and a spatial spillover effect wherein neighboring airport prices 

also drop in proportion to their proximity to the airport serving the budget airline. For this study, 

the researchers used MATLAB, MathWorks’ proprietary programming language, to incorporate 

a spatial weights matrix, a one-year temporal lag, and a one-year spatiotemporal lag into a 

dynamic spatiotemporal regression model. 

Osorio (2015) also investigates a spillover effect by employing spatial econometric 

methods in a recent study of drug-related violence and police action, finding that escalating drug-

related violence in a given location tends to be followed by increased violence in nearby areas. In 

that study, Osorio develops a first-order autoregressive model with spatial autoregressive 
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disturbances for spatial panel data—data collected for the same geographical units at multiple 

time intervals—to analyze patterns of spatial diffusion of drug violence in Mexico in response to 

five categories of violent and non-violent police actions. Caetano and Maheshri (2013) also 

analyze spatial panel data on crime and crime reduction policies in Dallas, Texas. Their two-

stage analysis first estimates equations describing the causal relationships between current and 

previous levels of each type of crime, and then uses those equations to simulate the effects that 

reducing levels of a given crime might have on future levels of other crimes. 

2.4. Threshold Identification 

Xie et al. (2011) find that in various types of social networks, when approximately 10% 

of a network becomes inflexibly committed to a minority opinion, there is a decrease in the time 

required for the majority to shift their opinion to that of the initial minority. In other words, 

adoption of an alternative idea or behavior begins gradually, but then accelerates once a critical 

percentage of randomly distributed committed proponents is reached. The threshold model 

(Granovetter and Soong 1983) is one well-established means of modeling social diffusion of 

innovation; it assumes that the behavior of an individual is dependent on the proportion of other 

individuals already exhibiting the behavior. The current study attempts to determine whether 

such a threshold exists in L2G participation data. 

Qian and Cuffney (2012) evaluate the appropriateness of multiple threshold models to 

analyze stream ecological response to urbanization with special focus on means used to identify 

a threshold response. They conclude that experimenting with multiple models is of paramount 

importance in identification of thresholds because different models can produce different 

thresholds, or even identify a threshold where none exists. Andersen et al. (2009) examine 

several possible methods of detecting thresholds within the ecology domain, specifically with 
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regard to describing ecological regime shifts. Ecological systems often react in a nonlinear 

manner in response to external pressures, and predicting shifts before they occur is of interest to 

ecologists. Andersen et al. point out that indicators such as rising variance and growing skewness 

in data often precede a regime shift. Methods of detecting these change points in a dataset 

include chronological clustering, cumulative sum control charts, sequential t tests, F-tests, and 

nonlinear diffusion filtering, threshold autoregressive models, and dynamical linear models.  

2.5. Zero-Inflated Proportion Data 

Many commonly used inferential statistical methods, including t tests, analysis of 

variance (ANOVA) tests, and linear regression, assume normality of data. A normally-

distributed dataset is one in which about two-thirds of the data fall within one standard deviation 

of the mean, and 95% of the values fall within two standard deviations of the mean (Jongman, ter 

Braak, and van Tongeren 1987). The study herein involves a panel dataset in which the key 

variables are proportions (expressed as percentages) and zero values predominate; both of these 

characteristics violate the assumption of normality. 

A panel dataset comprises repeated measurements or observations collected at specific 

time intervals for the same individuals. Here, the “individuals” are residential city blocks, the 

time intervals are three-month quarters spanning a five-year study period, and the measurements 

are application and completion rates. Because even a block with a high level of L2G 

participation might only have eight application submissions and four completed projects by the 

end of the study period, the application and completion rate variables are positively skewed 

(values are clustered close to zero), zero inflated (zero values are overrepresented), and do not 

exhibit a normal distribution of errors (a plot of the differences between predicted and observed 

values does not resemble a symmetrical bell-shaped curve). These characteristics present unique 
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challenges with regard to statistical analysis.  

Studies in the water management and conservation domains have used straightforward 

methods like linear regression or geographically weighted regression to analyze panel data for 

water consumption (Chang, Parandvash, and Shandash 2010; Franczyk and Chang 2009), but 

their data were aggregated at the census block group and county levels where numerous zero 

values are unlikely. While their choices of regression models cannot be applied to the current 

dataset in its entirety because of its abundance of zero values, their methods of inferring 

socioeconomic data from building structure data are relevant to the current study. Chang, 

Parandvash, and Shandash found that variations in residential water consumption correlate 

strongly to building structure characteristics, which in turn correlate to socioeconomic variables 

like income and education. Since income and education data are difficult to obtain at the 

household or parcel level, the authors suggest that building structure data from publicly available 

tax assessors’ records can be used as proxies for socioeconomic variables and recommend 

further study to evaluate the effectiveness of that substitution. 

For insight into the statistical analysis of zero-inflated panel datasets like the one 

developed for this study, looking beyond water management and conservation to the field of 

ecology yields numerous relevant examples. Species presence-absence and abundance data often 

exhibit positively skewed distributions with large proportions of zero values (Fletcher, 

MacKenzie, and Villouta 2005; Pearce and Boyce 2005; Dobbie and Welsh 2001). Because this 

type of data does not meet the assumptions of normality of error distribution built into linear 

regression models, ecology researchers have developed other methods of analysis. Fletcher, 

MacKenzie, and Villouta (2005) recommend modeling binary presence-absence data (zeros 

included) and positive abundance data (zeros excluded) separately. For zero-inflated presence-
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absence data, a binary logistic regression is suggested, as that nonlinear model does not assume 

normal distribution of errors; this is not a novel approach, as employing logistic regression to 

analyze presence-absence data is well documented in the literature (Dobbie and Welsh, 2001; 

Jongman, ter Braak, and van Tongeren 1987). For the abundance data, Fletcher, MacKenzie, and 

Villouta compare a continuous, positive dependent variable to one or more explanatory values 

using a linear model. Because the abundance data—like city-block-level L2G rate data—

typically remain positively skewed even after exclusion of zero values, the authors recommend a 

log transformation of the dependent variable to satisfy the assumption of normal distribution of 

residual errors. A data transformation is an operation applied to each measured value, replacing it 

with another value in order to achieve a more normal distribution or facilitate comparison with 

other variables (Montello and Sutton 2013, 196; Jongman, ter Braak, and van Tongeren 1987, 

20). Fletcher, MacKenzie, and Villouta (2005, 46) explain that the advantage of modeling 

presence-absence and abundance data separately is that researchers can examine the influence of 

explanatory variables on the two aspects of the data individually without developing a more 

complicated mixed model approach in which parameters would have to be estimated for both 

aspects of the data concurrently. This two-stage approach is supported by earlier work; Dobbie 

and Welsh (2001) adopt a similar methodology in an analysis of repeated counts of species, 

taking into account the possibility that repeated observations of an individual are often 

correlated. Their study also employs a logistic regression model to analyze presence-absence 

data. For their non-zero count data, Dobbie and Welsh used a truncated discrete model, a linear 

model in which observations are incomplete due to the systematic exclusion of some portion of 

the data (zero values, in this case). Because the data in the current study are not discrete counts, 

but rather proportions, a discrete model was ruled out for the current study.  
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Analysis of proportion data poses additional challenges even when zero values are 

excluded. Proportion data are unique in that values range between zero and one (or zero and 100 

when expressed as a percentage) and can never be less than zero or greater than one (or 100). 

When relationships to independent variables are plotted, they tend to look more like a curve than 

a straight line because the difference between observed and predicted outcomes is often greater 

as values approach those zero and one limits; for this reason, linear regression is only an option if 

data can be brought closer to normality through a transformation. In addition, linear regression 

can predict invalid values smaller than zero or greater than one (Crawley 2007, 248-9).  

Warton and Hui (2011) discuss the role of data transformation in the evaluation of 

proportion data, noting that over one-third of papers published by the journal Ecology discuss the 

analysis of that type of data. Because proportion data often exhibit a non-normal distribution, 

transformations are frequently applied prior to regression analysis. A transformation often 

mentioned in the papers published in Ecology is the arcsine transformation, but Warton and Hui 

argue that the arcsine transformation is outdated. Instead, they suggest that better options exist, 

such as using logistic regression for binomial data and applying other transformations—such as 

the log transformation—for non-binomial data to satisfy linearity assumptions. They suggest a 

logit transformation, as follows: log(y/[1-y]). A logit transformation is easier to interpret than an 

arcsine transformation, but cannot be applied to values of 0 or 1, effectively excluding those 

observations from the dataset. A solution to that problem in situations where researchers must 

include zero values is to add a small value such as the minimum non-zero proportion to both the 

numerator and denominator of the logit function. Since this value is added to all data, their 

relative proportions remain unchanged. In datasets where zero values predominate, however, the 

data will remain skewed and an approach that excludes zero values, such as those discussed by 
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Fletcher, MacKenzie and Villouta (2005) or Dobbie and Welsh (2001), might be more 

appropriate.  

Pham et al. (2012) discuss statistical analysis of proportion data in their study of the 

spatial distribution of vegetation in Montreal in relation to concentrations of minority and low-

income populations. Their statistical analysis used descriptive statistics and ordinary least 

squares (OLS) regression and spatial regression to measure vegetation equity among 

demographic groups. While that study did not utilize a panel dataset and did not present issues of 

zero inflation, it did bear similarities to the current study in its aggregation of proportion data at 

the city-block level. The authors calculated the vegetated proportions of city-block-level 

aggregation units and then compared them to demographic explanatory variables that were 

disaggregated from the Canadian equivalent of census block groups to the city block level. The 

authors chose the city block as their aggregation unit, noting that the city block is relatively 

homogenous compared to the overall heterogeneity of the urban built environment. Other studies 

also stress the importance of fine-scale aggregation within the patchy mosaic of the urban 

ecosystem (Landry and Pu 2010; Grove, Burch, and Pickett 2005; Grimm et al. 2000). The 

authors of a study of crime hot spots in Seattle, Washington analyze their data at the street 

segment level since previous studies (Taylor 1997; Wicker 1987) have shown that micro-

geographic units such as street segments can function as “social units with specific routines” 

(Weisburd, Groff, and Yang 2013).  

Finally, Lumley et al. (2002) point out that assumptions of normality are not required for 

comparing means with a two-sample t test when samples are sufficiently large. Since the data 

used in this study represent the entire population of block-quarters during the study period rather 
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than a sample drawn from them, a t test can be considered a valid evaluation of the difference of 

mean values of a variable under different conditions. 
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Chapter 3 Data Acquisition and Integration 

In order to create block-quarter analysis units representing street-segment-based city blocks at a 

given three-month quarter, each characterized by the same set of dependent and independent 

variables, a great deal of data integration work was required. This chapter details the steps 

undertaken to acquire, integrate, aggregate, normalize, restructure, lag, and transform the data 

using both spatial and non-spatial data processing techniques in preparation for statistical 

analysis. The statistical analysis methodology is discussed in Chapter 4. 

 

3.1. Data Sources 

Data for the study herein were acquired from five sources: the LBWD, the City of Long Beach, 

Los Angeles County, the United States Census Bureau, and Zillow. All spatial data were 

imported into an Esri file geodatabase (the “L2G database”) and projected to the Lambert 

Conformal Conic projection with the California State Plane Coordinate System of 1983 (zone 5), 

as these are the projection and coordinate system used by Los Angeles County and the City of 

Long Beach. The specific acquisition and processing methodologies for each of these datasets 

are detailed in the following paragraphs. 

3.1.1. Lawn-to-Garden Data  

A tabular dataset provided by the LBWD forms the core of this study design. The dataset 

comprised 5,394 L2G project applications submitted from January 2010 to September 2016, 

including a street address and zip code for each project application. These addresses were 

geocoded to yield a point feature class of property locations indicated on turf replacement project 

applications. Each point has an associated application date as an attribute, and the 2,884 projects 

that were successfully completed also have a completion date attribute; these date attributes form 
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the basis of the temporal component of the analysis.  

3.1.2. City of Long Beach Data 

The Long Beach city boundary and Long Beach street centerline datasets were 

downloaded from the City of Long Beach’s online GIS Data Catalog in shapefile format and 

imported into the L2G geodatabase. Each street centerline segment represents an unbroken 

stretch of road between intersections and includes attributes describing its length, street name, 

and address ranges. These street centerlines were the basis of the block polygons that served as 

aggregation units for the project application and completion points.  

3.1.3. Los Angeles County Office of the Assessor Data 

A geodatabase containing 2015 tax assessor parcel data for all of Los Angeles County 

was downloaded from the Los Angeles County GIS Data Portal. The assessor parcel feature class 

includes attributes describing property type, building square footage, number of bedrooms and 

bathrooms, and lot size for every parcel in Los Angeles County.  

3.1.4. United States Census Bureau Data 

Next, household composition data were acquired from the US Census Bureau in a two-

part process. First, TIGER/Line census block polygons for Los Angeles County were 

downloaded from the Census Bureau’s Maps and Data website, clipped to the Long Beach city 

boundary. Then, the block-level 2010 Household Type by Tenure dataset was downloaded from 

the US Census Bureau’s American FactFinder website as a table of comma separated values. 

This file was imported into Microsoft Excel, where it was reformatted according to Census 

Bureau instructions in preparation for joining the tabular data with the TIGER/Line census block 

polygons in ArcGIS (U.S. Census Bureau 2014). 
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3.1.5. Zillow Home Value Index Data 

Finally, tabular neighborhood-level Zillow Home Value Index (ZHVI) single-family-

home time series housing value data were acquired from real estate website Zillow for December 

of each year from 2010 to 2015. The ZHVI is a hedonic home-price index developed to 

overcome the bias inherent in median sales price due to fluctuations in the composition of homes 

sold in a given time period. In other words, the same set of homes is not sold in each time period, 

so median sold prices based on observed home sales can fluctuate in a way that does not reflect 

actual market trends. The ZHVI incorporates the estimated home valuations (called 

“Zestimates”) of all houses in a neighborhood, so it is not affected by differences in the mix of 

properties sold in a given period (Bruce 2014). These valuations are based on multiple property 

characteristics available in public records, and Zillow reports a median error rate for its estimated 

valuations of 4.2% for the Los Angeles-Long Beach-Anaheim metro area. This means that the 

actual sales price of 56.1% of all homes sold are within 5% of their estimated valuation, 78.6% 

are within 10%, and 91.4% are within 20% (Zillow 2017). These data were downloaded as an 

Excel spreadsheet and included monthly median ZHVI data calculated for single-family homes 

in 42 Long Beach neighborhoods. In addition, a polygon shapefile representing the neighborhood 

boundaries used by Zillow was downloaded. 

3.1.6. Basemap 

To provide visual context for the vector data and a reference for spot-checking data, the 

ArcGIS Online World Imagery layer was used as a basemap. This high-resolution raster layer 

enabled visual inspection of the data and provided a means for spot-checking features during the 

subsequent processing steps. 
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3.2. Data Integration and Aggregation 

The newly acquired datasets required considerable processing and some preliminary 

analysis to aggregate and integrate the data to produce the panel dataset of block-quarter analysis 

units that would be used in the statistical analysis stage of the study.  

3.2.1. Selection of Spatial and Temporal Aggregation Units 

Because multivariate analysis results are extremely sensitive to adjustments to the scale 

and segmentation (placement of divisions between units) of both spatial and temporal 

aggregation units—a phenomenon known jointly as the modifiable areal unit problem 

(Fotheringham and Wong 1991) and the modifiable temporal unit problem (de Jong and de Bruin 

2012; Cheng and Adepeju 2014)—spatial and temporal aggregation and segmentation of data 

must be undertaken with caution. The street-segment-based city block, rather than larger spatial 

aggregation units like census blocks or tracts, neighborhoods, or zip codes, was selected as the 

aggregation unit for this study because the literature review had suggested that residents’ 

landscaping choices are most influenced by the choices of their visually adjacent neighbors 

(Hunter and Brown 2012) and that street-segment-based city blocks function as a relatively 

homogenous social unit (Weisburd, Groff, and Yang 2013; Pham et al. 2012). Census blocks 

were also considered because they are a similarly fine aggregation unit in an urban context and 

their use would obviate the necessity of re-aggregating census-based household data; however, 

this aggregation option was ruled out because census blocks would have failed to capture the 

effect of visual adjacency. Because census blocks generally describe a square city block, that 

areal unit would have included visually non-adjacent neighbors (those on the other three street 

segments that define a square block) and excluded visually adjacent neighbors on the opposite 

side of the street. To test the validity of this decision in the context of L2G participation data, a 
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preliminary analysis of spatial autocorrelation of project application dates (expressed as months 

elapsed since L2G program inception) was performed at this point on the L2G participation data. 

The Incremental Spatial Autocorrelation tool in ArcGIS identified a peak autocorrelation 

distance of 300 feet (z = 4.137, 0.000), which is less than the mean length of a Long Beach 

residential city block (1,182 feet). This result indicates that temporal clustering of project 

application submissions is most intense at a distance less than the length of a typical block, 

which supports the decision to aggregate data at the city block level in order to measure the 

effect of cumulative L2G project completions on application rates. A peak autocorrelation 

distance greater than the length of an average city block would have indicated that visual 

adjacency was less important than expected; in that case a larger aggregation unit such as census 

block groups or tracts might have been more appropriate.  

With regard to temporal aggregation and segmentation, Silvestrini and Veredas (2008) 

note that the same model will produce different results for different frequencies of data, but that 

in general, smaller temporal units provide more information because they represent a larger 

number of observations. Balancing the benefits of higher frequency data with practical 

constraints related to the increased time required to aggregate the data to a larger number of 

smaller units resulted in the selection of three-month quarters as the temporal units for this study. 

Finer temporal aggregation was deemed unnecessary because even at the quarter temporal 

aggregation unit, over 97% of block-quarters have quarterly application rates of zero. The three-

month temporal units were segmented with the first quarter beginning on the first day of January 

2011 and the last quarter ending on the last day in December 2015 since there was no clear 

periodicity in the data that would compel a less intuitive segmentation scheme. Seasonality was 

evident in quarterly application data, with the highest rates of applications generally occurring in 
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the spring; this was corrected by averaging each quarter’s application rate with the subsequent 

three quarters to create a four-quarter future application rate for each block-quarter, representing 

a “moving window” of annualized data to compare to the previous quarter’s cumulative project 

completion rate on the same and adjacent blocks. Creation of these variables is detailed in 

section 3.2.4. 

3.2.2. Lawn-to-Garden Program Participation Data  

The L2G project application and completion dataset was furnished in the form of an 

Excel spreadsheet containing five fields: address, city, zip code, application date, and completion 

date. The spreadsheet was imported into the L2G geodatabase in ArcGIS, and the tabular data 

were geocoded using the ArcGIS Online World Geocoding Service. The geocoding process 

produced a point feature class of 5,397 points corresponding to all L2G project applications 

submitted since the program was initiated in 2010. Upon examination, three duplicate records 

were found and removed, leaving 5,394 unique points. 

Further examination of the L2G project participation data revealed that some completed 

projects were for commercial properties, churches, government-owned buildings, and multi-unit 

residential buildings. Although this study seeks to characterize the likelihood of L2G 

participation by residents of single-family houses, a decision was made to include these non-

residential project completions because the presence of those completed projects is expected to 

contribute to the landscaping norms of a block. Final counts of L2G applications and 

completions are shown by year in Table 1, and Figure 4 shows the spatial distribution of 

applications submitted for L2G projects on single-family residential parcels from 2011 to 2015. 
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Table 1. Single-family residential (SFR) L2G applications and completions by year 

Year SFR 
Applications 

All 
Applications 

SFR 
Completions 

All 
Completions 

2010 (April–December only) 532 574 112 122 
2011 441 508 346 378 
2012 448 493 243 263 
2013 651 732 310 347 
2014 866 961 470 504 
2015 1,337 1,507 873 952 
2016 (January–September only) 589 619 253 318 
Totals 4,864 5,394 2,607 2,884 

 

 

Figure 4. Single-family residential L2G applications by year 



 37 

Last, a rebate rate attribute was added to each point based on its L2G application date. 

Rebate rates have changed three times since the inception of the L2G program. The rebate was 

$2.50 per square foot of turf removed from the beginning of the program through April 2013; 

from April 2013 through July 2014 it was $3.00 per square foot; and from July 2014 to July 2015 

the rate reached its peak of $3.50 per square foot. From July 2015 through the end of 2016, the 

rate was $2.50 per square foot.  

Figure 5 offers further support for the idea that application rates are influenced by nearby 

cumulative completion rates. This figure, created in the course of an initial exploration of the 

L2G participation data, shows the relative density of completed project points by year compared 

to the density of points representing new application submitted in the following year. In these 

kernel-density maps, the darkest colors indicate areas with the greatest relative density of 

cumulative completions or new applications each year. A comparison of the previous year’s 

cumulative completions with the following year’s applications reveals that the areas with the 

greatest application density appear to coincide with or abut areas where the density of cumulative 

completions is greatest, suggesting the presence of a spatial spillover effect. 
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Figure 5. Comparison of kernel density maps of each year’s cumulative Lawn-to-Garden project 
completions alongside the following year’s new applications in Long Beach. 

3.2.3. Residential Parcel Polygon Data  

The next step in the data integration and aggregation stage of the study was to incorporate 

parcel data. Tax assessor parcels are an essential component of this methodology for two 

reasons: first, parcel attributes were used to identify applications submitted for single-family 

housing units, a key piece of information since this study seeks to characterize the likelihood of 

participation by residents of single-family houses. Second, counts of single-family parcels and 

total parcels per block were used to normalize application and completion counts, a step deemed 

necessary because of considerable variation in block length.  
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Since the Los Angeles County parcel dataset included all parcels in Los Angeles County, 

the first step was to reduce that dataset to a more manageable one containing only parcels served 

by the Long Beach Water Department. To that end, parcels whose centroids fell outside the Long 

Beach city boundary polygon were selected and removed from the Long Beach parcels feature 

class. 

Next, the parcel use type fields were used to select all single-family residential parcels, 

and these were exported as a separate Long Beach single-family residential parcel feature class. 

Creating separate feature classes for SFR parcels and all parcels facilitated the calculation of 

quarterly block application and completion rates discussed later in this chapter; application rates 

are a ratio of SFR applications to eligible SFR parcels, while cumulative completion rates are a 

ratio of all project completions to all parcels.  The parcels dataset identifies eight types of 

residential parcels in Long Beach (Table 2). Unlike most single-family residences, many of the 

housing types listed in Table 2 have no landscaped outdoor space or share a single landscaped 

space used by multiple residents; consequently, L2G application points for those properties were 

excluded from the analysis. 

Table 2. Specific Residential Parcel Use Types in Long Beach (2015) 

Specific Residential Use Type Count 

Single-Family Residence Condominiums: 18,462 80,531 Houses: 62,069 
Double, Duplex, or Two Units 7,549 

Three Units 2,114 
Four Units 2,933 

Five or More Units or Apartments 4,682 
Rooming or Boarding House 12 

Manufactured Home Park 14 
Manufactured Home 61 

Total Parcels 97,896 
  

Further study is needed to determine whether the factors that influence landscaping 

decisions made by residents of single-family homes are the same as those that influence owners 
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or residents of apartment buildings, multi-unit houses, and mobile homes. Figure 6 and Figure 7, 

which depict the distribution of single-family residential parcels in two Long Beach 

neighborhoods, illustrate that the concentration of single-family residential parcels varies 

considerably from one block to another and from one neighborhood to another. This disparity 

called for extra care in calculating block-level SFR application rates, as comparing application 

counts to total parcel counts would have resulted in artificially low rates on mixed-use blocks. 

 

Figure 6. Single-family residential parcels in the Belmont Heights neighborhood 
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Figure 7. Single-family residential parcels in the Wrigley neighborhood 

An initial examination of the Long Beach parcel data revealed duplicate parcels on some 

blocks. Further investigation of this duplication identified 18,793 stacked parcels (multiple 

parcels with identical geometry). Of those, 18,462 were categorized as single-family residences, 

the vast majority of which were classified as condominiums, a unique case in which multiple 

property owners share ownership of a single plot of land (Solano and Megerdichian 2009). 

Another 331 stacked parcels were classified as multi-family residential buildings, retail or offices 
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spaces, boat slips, and parking lots where multiple owners share parcel ownership. Because the 

parcel count was meant to reflect the number of parcels on a block, not the number of parcel 

owners, duplicate polygons were removed from both the all-parcels dataset and the SFR parcels 

dataset. Inclusion of stacked parcels would have skewed the L2G application and completion 

rates by increasing the parcel counts per block (sometimes by hundreds of parcels, as is the case 

with high-rise condominium buildings).  

Finally, L2G application and completion points were spatial joined to the nearest parcel 

in the all-parcels dataset and a binary attribute was created for each project application to 

indicate whether it was for a single-family residence or some other type of parcel. Of 4,775 L2G 

applications submitted between 2010 and 2015, 4,275 were for single-family residences; most of 

the others were for condominiums, duplexes, and multi-family residences along with a handful 

for vacant lots and non-residential properties like churches, government-owned buildings, and 

commercial buildings. 

3.2.4. City Block Data  

Next, the Long Beach street centerlines were processed in conjunction with both parcel 

datasets and the L2G project applications and completions data to produce the city block 

polygons that would serve as spatial aggregation units. Centerline segments were buffered on 

both sides by 20 meters to enable a subsequent spatial join with adjacent parcels. The 20-meter 

buffer distance was chosen to assure adequate overlap with parcel boundaries even on wide 

streets while not extending beyond the rear lot lines of small lots located on narrow streets, as 

illustrated by Figure 8. Buffering the centerline segments resulted in 9,708 polygons representing 

each city block in Long Beach, i.e. each stretch of street between intersections.  
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Figure 8. Street centerline buffers. 20-meter centerline buffers overlap the street-side edge of 
parcel boundaries on both narrow streets with small parcels (left) and wide streets with large 

parcels (right). 

Next, these block polygons were spatially joined to intersecting parcel polygons to 

calculate counts for both single-family parcels (not including condominiums) per block and total 

parcels per block. In addition, averages were captured for the following single-family parcel data 

for each block: parcel size, structure size, and number of bedrooms. Values for parcels classified 

as condominiums or as property types other than single-family residences were not included in 

those averages. Finally, 2,187 blocks with no single-family residential parcels were removed 

from the dataset, ten blocks with null parcel attributes were removed, and two pairs of blocks 

were merged, leaving a total of 7,509 city blocks with at least one single-family parcel. These 

remaining block polygons are shown in Figure 9.  
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Figure 9. Block polygons with one or more parcels classified as single-family residences. 

3.2.3.1. Application and Completion Counts 

Because the study aims to characterize patterns of L2G program participation over time, 

block-level L2G application and completion counts were calculated for all 26 three-month 

quarters in the dataset (April 2010 through September 2016). These counts were then used to 

calculate four application and completion rate variables for the 20 quarters in the study period 

(January 2011 through December 2015), a time span that was selected because each rate variable 
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could be calculated for every quarter. Counts for the three quarters preceding the study period 

and the three quarters following the study period were included in the calculations because 

cumulative completion rates incorporated projects completed prior to the first quarter of the 

study period, and four-quarter future application rates included applications submitted in the 

three quarters following the end of the study period.  

To calculate quarterly application counts for each city block polygon, applications 

submitted for single-family parcels were iteratively selected in one-quarter selection sets based 

on application date and spatially joined to the city block polygons, capturing single-family 

residential application count values for each block in each quarter and storing that information as 

a block polygon attribute (e.g. Q1 Application Count, Q2 Application Count, etc.). The same 

iterative process was then repeated for project completions, using completion dates to select 

projects completed for any parcel type in each quarter and capturing that quarterly block-level 

count as a block polygon attribute. Then the process was repeated for single-family residential 

completions only, a value that would be used to adjust the number of eligible SFR parcels on 

each block for the calculation of quarterly adjusted application rates. Finally, both quarterly 

cumulative completion counts and quarterly cumulative SFR completion counts were calculated 

for each block polygon by summing the completion counts of the current quarter and all previous 

quarters. 

3.2.3.2. Same-Block Cumulative Completion Rates 

This study hinges on knowing, for each L2G application, how many L2G projects have 

already been completed on the applicant’s block. Thus, a cumulative completion count is 

required. However, some block polygons contain many more residential parcels than others due 

to differences in street segment length or parcel size. For example, a block where three out of ten 
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parcels have completed projects is not equivalent to a block where three out of eighty parcels 

have completed projects. Accordingly, the cumulative completion rate (CCR) rather than the 

cumulative completion count was required for analysis to normalize variations in aggregation 

unit size for the purpose of regression analysis. The CCR value for each block-quarter is equal to 

each quarter’s cumulative completion count divided by the total number of parcels on that block 

(Equation 1).  

Equation 1. Cumulative completion rate 

Quarterly Cumulative Completion Rate = 
Quarterly Cumulative Completion Count

Total Parcel Count 
 

 
The end result was a L2G CCR value for each block polygon for each quarter from 2011 to 

2015; mean positive CCR values are shown in Figure 10.  
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Figure 10. Mean quarterly cumulative completion rates, excluding blocks with no completions.  

While this study is focused on the L2G participation of residents and owners of single-

family properties, the CCR value includes all completed projects including those for vacant lots, 

commercial properties, churches, government-owned buildings, condominiums, and multi-family 

residential buildings. These projects were included in the CCR because they are presumed to 

contribute to the neighborhood landscaping norms regardless of the nature of the buildings they 

front; therefore, all completed L2G projects are expected to exert an influence on the future SFR 
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application rate, which reflects the landscaping choices of inhabitants of single-family 

residences. 

Of 7,509 block polygons, 1,826 were found to have a CCR greater than zero at the end of 

the study period; a CCR of zero would indicate that no L2G projects had been completed on that 

block. The minimum rate was 0.003 while the maximum rate was 1, but an examination of the 

data’s histogram revealed a non-normal distribution of the rate values in between, with a small 

number of very high outlier rates skewing the data. Examination of the blocks with the highest 

L2G conversion rates identified two scenarios most likely to result in an abnormally high 

conversion rate. First, short “end blocks” like those pictured on the left side of Figure 8 often 

have a very small number of parcels (usually four, but sometimes only one or two), which is 

inadequate to produce a rate that accurately reflects a neighborhood trend, since a single project 

could result in a rate of 0.25 or greater. The second scenario involves blocks with few residential 

parcels, such as mixed-use blocks where residential parcels were located alongside schools, 

parks, or retail, office, or industrial parcels. To detect these outliers, the absolute deviation 

around the median was calculated (Leys 2013) and values that were more than three absolute 

deviations from the mean were removed. The median value of CCR values greater than zero was 

0.083 and the median absolute deviation was 0.124. Therefore, all blocks with L2G conversion 

rates greater than 0.454 were removed from the dataset, reducing the block count by 22 blocks 

for a total block count of 7,487. All rates lower than the median fell within a single absolute 

deviation from the median.  

Further examination of the city blocks dataset found 187 blocks for which county 

assessor data values were null. Satellite imagery revealed that the largest group of these blocks 

fell within a mobile home park where the parcels had been classified as “Vacant Land” rather 
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than “Manufactured Home” or “Manufactured Home Park” in the assessor data; other blocks 

with null values included those with condominium or cooperative complexes that were not 

identified as such in the parcel data, blocks within a small recently built development, and 

scattered blocks that turned out to be bridges or other uninhabitable stretches of road. The 187 

blocks with null values were removed, leaving a total block count of 7,300. 

Another issue encountered during block polygon creation was the inclusion of completed 

L2G projects in the counts and rates of more than one block when projects were located on 

corner parcels. Because most block polygons overlap the polygons buffering their cross-streets at 

the corner parcel, projects occurring on corner lots were often included in the CCR calculations 

of more than one block polygon. This duplication was deemed to be acceptable since a corner-lot 

project is expected to contribute to the neighborhood norm of both blocks and should thus be 

represented in both CCR values.  

3.2.3.3. Adjacent-Block Cumulative Completion Rates 

The spatially lagged dependent variable designed to test for a spatial spillover effect was 

the mean Adjacent-Block Cumulative Completion Rate (ABCCR). These values were calculated 

by performing a spatial join between the city block feature class and a copy of itself and 

calculating the sum of the CCR value for all intersecting polygons. The subject block’s own 

CCR value was subtracted from that sum and that result was divided by the intersecting block 

count minus one (the number of adjacent blocks, excluding the subject block) to create a new 

quarterly variable for each city block representing the mean of all adjacent block CCR values 

(Equation 2).  

Equation 2. Adjacent-block cumulative completion rate 

Quarterly mean ABCCR = 
Sum of CCR values of intersecting blocks – same-block CCR

Intersecting block count - 1 
 



 50 

 

The ABCCR variable would allow the regression analyses to test whether residents’ 

willingness to participate in the L2G program is influenced by previous L2G completions on 

adjacent blocks. 

3.2.3.4. Adjusted Application Rates 

The dependent variable for each block-quarter was the percentage of eligible residents of 

single-family residences on that block who submitted applications in a given quarter, referred to 

herein as the single-family residential adjusted application rate (AAR). The “adjusted” portion of 

the name refers to the fact that the single-family residential parcel count undergoes an adjustment 

to remove parcels on which a L2G project has already been completed. Parcels where lawns have 

already been converted to gardens in previous quarters are generally no longer eligible to 

participate in the program; summarizing the street address field in the application feature class 

confirmed that only one application had been submitted for each address.  

In order to calculate the AAR for each block-quarter, each quarterly count of single-

family residential applications was divided by the difference between the total number of single-

family residential parcels on the block and the number of L2G projects previously completed on 

single-family residential parcels (Equation 3).  

 
Equation 3. Adjusted application rate 

Quarterly SFR adjusted application rate = 
Quarterly SFR application count

Total SFR parcel count - (Sum of all previous SFR completions) 
 

 
It is important to note that the AAR is not a cumulative proportion like the CCR, so the set of 

quarter-block AAR values is composed mostly of zeros interspersed with occasional small 

positive numbers. Mean positive AAR values are shown in Figure 11. 
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Figure 11. Mean quarterly AAR values, excluding zeros. 

 

3.2.3.5. Four-Quarter Mean Adjusted Application Rates 

The mean of the current quarter’s AAR rate and that of the three subsequent quarters was 

also calculated, to provide a measure of long-term L2G project participation outcome. A multi-

quarter application rate—rather than the quarterly AAR—was deemed important because while 

neighbors may be influenced by a new completion on their block or an adjacent block, they 

might not act on that influence for months or even years because of economic factors, scheduling 
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concerns, or other unknown reasons. The four-quarter mean adjusted application rate 

(4QMAAR) allowed the effect of an increase of completion rate to be captured anytime during 

the subsequent year. This four-quarter temporal scale was selected because it ensured that 

seasonal variations in participation would be equivalent for all block-quarters. Moreover, this 

temporal scale allowed for analysis of five complete years of data with the currently available 

dataset; as additional years of data are gathered, it would be interesting to analyze a multi-year 

future application rate variable as well. The 4QMAAR value was calculated as shown in 

Equation 4, where AARQ represents the AAR value of the current quarter, AARQ+1 represents the 

AAR value of the following quarter, and so on. 

Equation 4. Four-quarter mean adjusted application rate 

Quarterly 4QMAAR = 
AARQ + AARQ+1  + AARQ+2 + AARQ+3

4 
 

3.2.3.6. Four-Quarter Application Presence 

Finally, a binary four-quarter application presence variable was calculated based on the 

4QMAAR variable for each block-quarter. Using the field calculator, a 1 was assigned when 

4QMAAR was greater than zero, while a 0 was assigned when 4QMAAR was equal to zero. 

This variable would be used as the binary presence-absence outcome for the binary logistic 

regression described in section 4.2. 

3.2.5. Census Data  

Six independent variables were derived from the census block-level “Household 

Population and Household Type by Tenure” 2010 Census dataset: owner occupation percentage, 

family percentage, senior householder percentage, female householder percentage, male 

householder percentage, and husband-wife householder percentage. Calculation and aggregation 

of these variables involved a number of steps described in detail in the paragraphs that follow. 
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To summarize, census block polygons were first joined to the tabular household dataset using 

their common unique identifier (United States Census Bureau 2014), resulting in 5,181 census 

blocks attributed with household composition data. An assessment of that data revealed that 

1,300 blocks had a population of zero; those blocks were removed from the dataset, leaving a 

total of 3,931 populated census blocks. Next, the six census variables were calculated for each 

census block and a separate raster layer was generated for each independent variable. Finally the 

city block polygons were used to extract the mean values of all intersecting raster cells. These 

mean independent variable values were stored as attributes of each city block polygon.  

This method of rasterizing the census data ensured that intersecting census blocks were 

represented proportionally in the mean values assigned to each city block polygon. In other 

words, if a city block polygon overlapped one census block by 95% and the other by only 5%, 

then about 95% of the intersecting raster cells would store the first census block’s value and the 

remaining 5% of the intersecting cells would store the second census block’s value, so the mean 

of all those intersecting cells would reflect those proportions. Conversely, a simple spatial join of 

census block polygons with city block polygons would have simply added the two values and 

divided by two, disregarding the proportions of each city block intersected by the census blocks. 

Furthermore, most census block polygons include the parcels facing all four street segments that 

constitute a square city block, while the city block polygons created for this study represent only 

those houses facing each other across a single street segment. This means that there were nearly 

twice as many residential city blocks (7,300) as census blocks (3,931), and each city block 

usually intersected at least two census blocks (adjacent census block polygons typically meet in 

the center of a city block polygon as illustrated in Figure 12). Proportionally averaging the 

characteristics of the census blocks intersecting each city block provided a general 
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characterization of a location with regard to the ratios of homeowners to renters, seniors to 

younger residents, families to non-families, and husband-wife co-householders to male and 

female heads of household.  

 

Figure 12. City blocks and census blocks. The white polygons on the left are city-block polygons 
created by buffering street centerlines, while the white lines on the right outline the larger census 

block polygons that usually delineate square blocks. 

The Household Population and Household Type by Tenure dataset had 86 fields storing 

household data for 43 different hierarchical categories; each category is described in two fields, 

one a raw number and the other a percentage. Field names beginning with HD01 are raw 

numbers, while field names beginning with HD02 are percentages. The 24 fields that were used 

to create the five independent variables derived from these data are listed in Table 3, along with 

descriptions of the data contained in each. It should be noted that family households are defined 

as those in which two or more members are related by birth, adoption, or marriage. Same-sex 

couples and unmarried couples with no children were not counted in this category in the 2010 

Census (Lofquist et al. 2012). Table 4 details how the census data fields were combined to obtain 
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percentages for each of the regression variables. Note that combining the percentage values of 

each category of variables (occupancy, type, age, and gender) always equals 100. 

 
Table 3. Census data field names in the census-block-level 2010 Household Type by Tenure 

dataset 

Field Name Description 
HD01_S01 Count of occupied housing units 
HD01_S02 Count of all units occupied by owner 
HD01_S05 Count of all units occupied by renter 
HD01_S09 Count of owner-occupied units occupied by families 
HD01_S15 Count of owner-occupied units occupied by non-families 
HD01_S27 Count of renter-occupied units occupied by families 
HD01_S33 Count of renter-occupied units occupied by non-families 
HD01_S10 Count of owner-occupied units occupied by families with householder under 65 
HD01_S11 Count of owner-occupied units occupied by families with householder 65 or over 
HD01_S16 Count of owner-occupied units occupied by non-families with householder under 65 
HD01_S17 Count of owner-occupied units occupied by non-families with householder 65 or over 
HD01_S28 Count of renter-occupied units occupied by families with householder under 65 
HD01_S29 Count of renter-occupied units occupied by families with householder 65 or over 
HD01_S34 Count of renter-occupied units occupied by non-families with householder under 65 
HD01_S35 Count of renter-occupied units occupied by non-families with householder 65 or over 
HD01_S12 Count of owner-occupied units occupied by families with husband-wife householders 
HD01_S13 Count of owner-occupied units occupied by families with male householder 
HD01_S14 Count of owner-occupied units occupied by families with female householder 
HD01_S18 Count of owner-occupied units occupied by non-families with male householder 
HD01_S22 Count of owner-occupied units occupied by non-families with female householder 
HD01_S30 Count of renter-occupied units occupied by families with husband-wife householders 
HD01_S31 Count of renter-occupied units occupied by families with male householder 
HD01_S32 Count of renter-occupied units occupied by families with female householder 
HD01_S36 Count of renter-occupied units occupied by non-families with male householder 
HD01_S40 Count of renter-occupied units occupied by non-families with female householder 

 

Table 4. Census regression variable composition. Each regression variable was calculated by 
combining the values stored in multiple fields from the Household Type by Tenure dataset and 

dividing the result by the population value stored in HD01-S01. 

Category Variable (%) Calculation (where HD01_S01 > 0) 

Occupancy Owner Occupancy ([HD01_S02] / [HD01_S01]) * 100 
Renter Occupancy ([HD01_S05] / [HD01_S01]) * 100 

Type 
Family Occupancy (([HD01_S09] + [HD01_S27]) / [HD01_S01]) * 100 
Non-family 
Occupancy (([HD01_S15] +[HD01_S33]) / [HD01_S01]) * 100 

Age 
Senior Householders (([HD01_S10] + [HD01_S16] + [HD01_S28] + [HD01_S34]) / [HD01_S01]) * 100 
Non-Senior 
Householders (([HD01_S11] + [HD01_S17] + [HD01_S29] + [HD01_S35]) / [HD01_S01]) * 100 

Gender 

Husband-Wife 
Householders (([HD01_S12] + [HD01_S30]) / [HD01_S01]) * 100 

Male Householder (([HD01_S13] + [HD01_S18] + [HD01_S31] + [HD01_S36]) / [HD01_S01]) * 100 
Female Householder (([HD01_S14] + [HD01_S22] + [HD01_S32] + [HD01_S40]) / [HD01_S01]) * 100 
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For each calculated regression variable, the Polygon to Raster tool was used to generate a 

raster layer with cell values set to the value of the variable (Figure 13 through Figure 18). A 

raster cell size of 50 feet was chosen because it was less than both the peak autocorrelation 

distance demonstrated in the L2G project completion data (50 feet vs. 100 feet) and the average 

area of a residential parcel in Long Beach (2,500 feet vs. 6,550 feet). Next, the Zonal Statistics 

by Table tool was used to calculate the mean values of the raster cells that intersected each city 

block polygon; the output of this operation was a table containing the identifier of each city 

block, a count of the intersecting raster cells, and their mean value. That table was then joined to 

the city block polygons attribute table and the mean variable value was copied into a 

corresponding field in the city blocks attribute table before removing the join. This process was 

repeated for each of the six independent variables derived from census data.  
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Figure 13. Owner occupancy 
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Figure 14. Percentage of family households  
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Figure 15. Percentage of heads of household over 65 years old 
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Figure 16. Percentage of households headed by a husband and wife 
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Figure 17. Percentage of households headed by a woman 
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Figure 18. Percentage of households headed by a man 

3.2.6. Zillow Data  

The methodology for capturing the mean median single-family home ZHVI independent 

variable for each city block polygon for each year from 2011 to 2015 was similar to that used to 

capture the census-derived variables, because the Zillow neighborhood polygons were much 

larger than the city block polygons. First, the Zillow neighborhood polygons for the state of 

California were limited to those within Long Beach, resulting in a smaller dataset of 51 
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neighborhoods. These 51 polygons were then joined to the tabular median ZHVI data on the 

RegionID field. Fifteen of the 51 neighborhood polygons contained no joined median ZHVI 

values; examination of those polygons revealed that nine of them represented unpopulated areas 

such as the Port of Long Beach, the man-made offshore oil islands, large public parks, and the 

Long Beach Airport, so those polygons were removed from the dataset. An additional six 

neighborhood polygons with no ZHVI values contained small pockets of residential blocks in the 

downtown area, as well as Carroll Park in the Bluff Heights area and the Peninsula between 

Alamitos Bay and the Pacific Ocean, adjacent to Belmont Shore. These six polygons were each 

merged with an adjacent neighborhood polygon based on geometry (longest shared edge, 

locations of intersecting city block polygons), and local knowledge of shared neighborhood 

characteristics. Next, for each year from 2011 to 2015, the Polygon to Raster tool was used to 

generate a median ZHVI raster layer from the Zillow neighborhood polygons with cell values set 

to store that year’s December median ZHVI value (Figure 19). Like the census-derived variable 

rasters, the rasters were assigned a cell size of 50 feet. Finally, the Zonal Statistics by Table tool 

was used to calculate the mean median ZHVI values of the raster cells that intersected each city 

block polygon; this operation produced a table containing the identifier of each city block, a 

count of the intersecting raster cells, and their mean median ZHVI value. That table was then 

joined to the city block polygons attribute table and the mean median ZHVI value was copied 

into a corresponding field in the city blocks attribute table before removing the join. This process 

was repeated for each year of the ZHVI data. As was described with regard to the census-derived 

variables, rasterizing the census data ensured that each intersecting neighborhood polygon was 

represented proportionally in the mean values assigned to each city block polygon. 
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Figure 19. Median ZHVI values for single-family houses by neighborhood, December 2015. 

 
A review of the final dataset found 90 city block polygons (out of 7,300) with null values 

for the census or ZHVI regression variables. The Zonal Statistics as Table tool stores null values 

when zone polygons (city blocks, in this case) have overlapping centroids or when the centroids 

of zone polygons fall beyond the edge of the raster. Of the 90 polygons with null data, 80 were 

found to be overlapping block polygons created by buffering tiny street segments that occur in 

complicated intersections, 2 were unpopulated bridges, and 8 were normal block polygons whose 

centroids fell outside the edge of the census raster layers. The 80 overlapping blocks and the 2 
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bridge blocks were removed from the dataset, leaving a new total block count of 7,218; census 

and ZHVI variable values for the remaining 8 normal blocks were manually populated using the 

field calculator. 

3.2.7. Panel Dataset Creation 

The next step was to prepare the wide-form data to be restructured to produce a balanced 

long-form panel dataset. Wide-form refers to a data structure in which each aggregation unit is 

represented by a single record with repeated variables storing values calculated at different time 

periods (e.g. first-quarter CCR, second-quarter CCR, etc.); repeating each rate variable 20 times 

results in a very wide table. Long-form panel data, by contrast, includes multiple records for 

each aggregation unit; each record represents a single aggregation unit at a single moment in 

time, and stores one instance of each variable; this structure results in a table that is long rather 

than wide. The term balanced indicates that every variable was calculated for every block at 

every time interval; in other words, each aggregation unit was revisited at each time interval in 

the study. When completed, the panel dataset would have 20 records (one for each quarter of the 

five years spanning 2011–2015) for each of the 7,218 city blocks and one column for each 

variable. Each of these records would represent a single block-quarter analysis unit. The 15 

dependent and independent variables gathered or calculated for the statistical analyses are 

outlined in Table 5. 
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Table 5. Dependent and independent variables for regression analysis 

Dependent 
Variable # Independent Variables Implication or Purpose 

Type 
Time 

variant 
Individual 

variant 
 

Adjusted 
application 
rate (AAR) 

 
or  
 

Future mean 
adjusted 

application 
rate 

(4QMAAR) 
 

or  
 

Binary 
four-quarter 
application 
presence  

1 Time-lagged cumulative 
completion rate (CCR) 

Spatial contagion/ 
spillover effect  ✔ ✔ 

2 
Spatially-lagged adjacent-block 
cumulative completion rate 
(ABCCR) 

Spatial contagion/ 
spillover effect  ✔ ✔ 

3 L2G Rebate Rate L2G incentive ✔  

4 Mean parcel size in square feet Proxy for income  ✔ 

5 Mean house size in square feet Proxy for income  ✔ 

6 Owner occupancy percentage Demographics  ✔ 

7 Family occupancy percentage Demographics  ✔ 

8 Senior householder percentage Demographics  ✔ 

9 Male householder percentage Demographics  ✔ 

10 Female householder percentage Demographics  ✔ 

11 Husband-wife householder 
percentage Demographics  ✔ 

12 Mean median single-family home 
value (ZHVI) Proxy for income ✔ ✔ 

 

These variables included six varying regressors, or variables that change both over time 

and between individuals (AAR, 4QMAAR, binary four-quarter application presence, CCR, 

ABCCR, and ZHVI), eight time-invariant regressors, or variables that vary between individuals 
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but not over time (owner occupancy, family occupancy, senior householder, husband-wife 

householder, male householder, female householder, mean parcel size, and mean house size), 

and one individual-invariant regressor, or variable that varies over time but not between 

individuals (L2G rebate). The time-invariant variables were not publicly available for each 

quarter or year of the study, so the same 2015 tax assessor values (mean parcel size, mean house 

size, mean yard size) and 2010 census data (owner occupation percentage, family percentage, 

senior householder percentage, and husband-wife householder percentage) were used for every 

year of the regression analysis. While it is possible that some blocks could have experienced a 

drastic shift in one or more of these values during the five-year study period relative to other 

blocks in the study area, it was expected that for most blocks, these data would serve as a valid 

means of characterizing blocks for comparison purposes since the age of the data is the same for 

all.  

 In order for SPSS to restructure the data from wide form to long form, each varying or 

time-variant variable must be repeated the same number of times. The AAR, 4QMAAR, binary 

four-quarter application presence, CCR, and ABCCR values had already been tabulated for every 

quarter, but because the ZHVI values were annual figures, only five ZHVI variables were 

present. Consequently, each annual ZHVI variable was duplicated three times for a total of four 

quarterly ZHVI variables for each year of the study, and the resulting 20 ZHVI variables were 

renamed to reflect quarters rather than years. Similarly, 20 L2G rebate variables were added to 

the table and populated with the rebate amount values corresponding to each quarter. The 

assessor-based and census-based variables did not have to be repeated for each quarter because 

they remained constant for each individual block throughout the five-year study period. The 

completed long-form dataset was then exported from ArcGIS as a .dbf file and imported into 
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SPSS, where it was restructured into a long-form panel dataset with 20 cases and 15 variables for 

each city block. 

Next, CCR values were lagged by one quarter to enable comparison of each quarter’s 

application rate or presence values with the previous quarter’s CCR values. This was 

accomplished by populating a new variable (Lagged CCR) with the previous case’s CCR value. 

Because there was no case prior to the first quarter, all first-quarter cases lacked that value and 

would be excluded from regression analyses.  

Finally, four more quarterly variables were added to store log transformations of the 

positively skewed AAR, 4QMAAR, CCR and ABCCR values in order to bring them closer to a 

normal distribution. Histograms of the 4QMAAR and CCR values are shown in Figure 20 and 

Figure 21, with raw rates in the left panel and their more normally distributed natural logs in the 

right panel. Because log transformations cannot be applied to zero values, this calculation 

effectively excluded all zero value AAR, 4QMAAR, CCR, and ABCCR values from linear 

regression analyses. This exclusion was deemed acceptable because a two-stage statistical 

analysis was used for the study wherein all values (including zeros) would be analyzed using 

binary logistic regression and only positive values would be analyzed using linear regression. 

This scheme has been used by multiple studies, especially in the field of ecology (Pearce and 

Boyce 2005; Fletcher, MacKenzie, and Villouta 2005; Dobbie and Welsh 2001). 
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Figure 20. Histograms of raw 4QMAAR values and their natural logs 

 
 

 
Figure 21. Histograms of raw CCR values and their natural logs. 
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Chapter 4 Statistical Analysis 

The objective of this study was to answer three questions. First, is the four-quarter mean 

application rate dependent on the rate of previous completions on the same block and adjacent 

blocks? Second, does an increase in the rate of nearby L2G project completions increases the 

likelihood of new L2G application submissions in the subsequent four quarters on the same and 

adjacent blocks? And third, is there a completion rate threshold after which a block’s four-

quarter mean application rate markedly increases? This chapter describes the statistical analysis 

approach that was used to address these questions.  

Because the total number of L2G applications and completions was quite small compared 

to the number of parcels multiplied by 20 quarters, the panel dataset was both positively skewed 

(meaning smaller values were dominant) and heavily zero-inflated. In fact, for the four L2G rate 

variables, zero values comprised between 64.1% and 97.6% of the dataset (Table 6). This non-

normal distribution and abundance of zero values posed special challenges with regard to fitting 

regression models. The analytical approach described in the following sections draws from 

earlier treatments of species presence and abundance data (Pearce and Boyce 2005; Fletcher, 

MacKenzie, and Villouta 2005; Dobbie and Welsh 2001) and proportion data (Warton and Hui 

2011, Chao et al. 2005) in the ecology domain, as those datasets exhibit similar distributions and 

pose similar challenges.  

 
Table 6. Zero values in L2G rate data 

Variable1 Zero Values (%) 
Application Rate 97.6 

4-Quarter Mean Application Rate 90.9 
Cumulative Completion Rate 88.4 

Adjacent-Block Cumulative Completion Rate 64.1 
1 Aggregated to block-quarter analysis units.  
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The analytical methodology employs a two-part regression strategy. First, a linear 

regression model was used to examine the relationship between positive 4QMAAR values and 

positive CCR and ABCCR values, excluding cases with zero values for any of these variables. 

Then, a separate binary logistic regression model was developed to incorporate those zero values 

into the analysis and determine whether the proportion of existing project completions on the 

same and adjacent blocks increases the likelihood of project participation on a subject block in 

the following four quarters. In addition to analyzing the dataset with and without zero values, 

these two regression models provide different insights: the linear regression model describes how 

completion rates affect the application rate in the future, while the logistic regression model 

describes how completion rates affect application presence in the future. In this way, 

participation presence and rate data are treated like species presence-absence and abundance data 

in the ecology literature (Fletcher, MacKenzie, and Villouta 2005; Pearce and Boyce 2005; 

Dobbie and Welsh 2001). Finally, an independent samples t test was performed to determine 

whether 4QMAAR values differ between blocks above and below the peak CCR and ABCCR 

thresholds identified by the logistical regression analysis. While common practice limits the use 

of an independent samples t test to normally distributed data, the size and completeness of this 

dataset justify the test’s use, especially since excluding blocks where no applications were 

submitted would fail to provide a meaningful assessment of the effect of CCR threshold 

attainment on a block (Lumley et al. 2002; Sullivan and D’Agostino 1992). 

The null hypotheses for each of the three analyses are as follows:  

1. Four-quarter mean adjusted application rates do not show a 

statistically significant linear relationship with previous-quarter 

cumulative completion rates on the same and adjacent blocks 
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2. The likelihood of application presence within four quarters is not 

statistically higher at positive same-block and adjacent-block 

cumulative completion rate thresholds than at same-block and 

adjacent-block completion rates of zero.  

3. There is no statistically significant difference between mean 

4QMAAR values above and below peak same-block and adjacent-

block completion rate thresholds. 

4.1. Linear Regression 

First, a linear regression model was fitted to examine the relationship between non-zero 

four-quarter mean application rates and previous-quarter non-zero completion rates (Figure 22). 

This analysis examines a subgroup of the dataset limited to block-quarters with positive 

application and completion rates. While this regression equation is of little real-world predictive 

value since it excludes block-quarters with application or completion rates of zero, it does 

provide insight about the degree to which residents’ willingness to participate in the L2G 

program is influenced by the proportion of completed L2G projects on their blocks and adjacent 

blocks. 



 73 

          

Figure 22. AAR, 4QMAAR, CCR, and ABCCR by quarter 

Linear regression equations include coefficients for each variable that can be interpreted 

as the predicted increase in the dependent variable given a one-unit increase in a single 

independent variable when all others are held constant. To simplify the interpretation of 

coefficient results, the AAR, 4QMAAR, CCR, and ABCCR variables were converted to 

percentages by multiplying each by 100 prior to analysis. This conversion allowed changes to 

these variables to be described in terms of percentage points without altering relative outcomes. 

Similarly, ZHVI values were converted from $1 units to $10,000 units because the effect of a 

single dollar increase in property value is miniscule. Finally, as described in section 3.2.7, 

histograms of the quarterly participation rate values revealed that the data were strongly 



 74 

positively skewed (Figure 20 and Figure 21). Because linear regression is based on the 

assumption that input variables are normally distributed, a natural log transformation was applied 

to all the participation rate variables. Since this transformation is applied to every non-zero value 

in the dataset, relative proportions were unaffected. The exponentiation operation is the inverse 

of the natural log operation, so this was applied to predicted natural logs of 4QMAAR to reverse 

the transformation in order to interpret outcomes.  

Two dependent variables, AAR and 4QMAAR, were tested along with all 13 explanatory 

variables—independently and together in a stepwise model—and only significant (p < 0.05) 

variables that improved model fit and did not exhibit multicollinearity were retained in the final 

model. The best fit was achieved by modeling the natural log of 4QMAAR with the natural log 

of CCR (lagged one quarter), owner occupancy percentage (O), ZHVI value (Z), and rebate 

amount (R).  

Using the 4QMAAR variable instead of the AAR variable as the dependent variable in 

the linear regression equation seemed the logical choice, because as Zubek (2016) points out, 

effects of knowledge spillovers are not always immediately apparent. A resident influenced by a 

newly completed L2G project next door might not be ready to apply to the program for several 

months more; the 4QMAAR variable accounts for all applications submitted within a four-

quarter temporal window while AAR only measures applications submitted in a single quarter. 

The 4QMAAR variable also ensures equivalence of seasonal influences for each block-quarter. 

The aptness of the 4QMAAR variable was confirmed by an improvement in model fit when 

AAR was replaced with 4QMAAR, and the bivariate correlation test results shown in Table 7 

confirm that while AAR and 4QMAAR are both significantly correlated to the previous quarter’s 

CCR value (p = 0.000), only 4QMAAR is significantly correlated to ABCCR. 
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Table 7. Correlations between L2G participation rate variables. 

 ln(AAR%) ln(4QMAAR%) 
ln(Lagged 
CCR%) 

ln(Lagged 
ABCCR%) 

ln(AAR%)1 Pearson Correlation 1 0.928** 0.631** 0.040 
Sig. (2-tailed)  0.000 0.000 0.098 
N 3,504 3,504 1,030 1,694 

ln(4QMAAR%)2 Pearson Correlation 0.928** 1 0.606** 0.070** 
Sig. (2-tailed) 0.000  0.000 0.000 
N 3,504 13,080 3,507 6,107 

ln(Lagged 
CCR%)3 

Pearson Correlation 0.631** 0.606** 1 0.069** 
Sig. (2-tailed) 0.000 0.000  0.000 
N 1,030 3,507 15,897 9,405 

ln(Lagged 
ABCCR%)4 

Pearson Correlation 0.040 0.070** 0.069** 1 
Sig. (2-tailed) 0.098 0.000 0.000  
N 1,694 6,107 9,405 49,218 

** Correlation is significant at the 0.01 level (2-tailed). 
1Adjusted application rate 
24-quarter mean adjusted application rate 
3Same-block cumulative completion rate 
4Adjacent-block cumulative completion rate 

 

The ABCCR variable was eliminated from the linear regression model despite being a 

variable of theoretical interest here. Table 7 illustrates that the correlation between 4QMAAR 

and ABCCR is significant, but quite weak. Consequently, the relationship between these two 

variables was significant in a linear model that included ABCCR as the only independent 

variable, but the coefficient was small (0.068, p = 0.000) and the adjusted R2 was only 0.005, 

indicating that the model accounted for very little variation in the data. When CCR was added to 

the model, the coefficient of ABCCR decreased to 0.044 (p = 0.005) and the adjusted R2 value 

jumped to 0.342, indicating that CCR was a much more important explanatory variable than 

ABCCR. When the owner occupancy rate variable was added to the equation, the effect of 

ABCCR became insignificant (p = 0.263) and the adjusted R2 value increased to 0.508; therefore 

ABCCR was excluded from the final regression equation because exploratory linear regression 

analysis indicated that completion rates on adjacent blocks are not a significant predictor of 

subject-block application rates in the subsequent four quarters when controlling for same-block 
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completion rate and owner occupancy. 

Many of the remaining variables were eliminated because of multicollinearity, which was 

determined by assessing changes in coefficients and significance as variables were included or 

excluded from the model as well as by examining Pearson correlation scores in the Bivariate 

Correlation function in SPSS. 4QMAAR showed significant correlation with owner occupancy, 

family occupancy, husband-wife householder, male householder, female householder, and senior 

variables, but these independent variables exhibited varying degrees of multicollinearity when 

analyzed together. Since owner occupancy had the strongest correlation to 4QMAAR and its 

inclusion resulted in the largest increase in adjusted R2 value, it was retained and the rest of the 

census variables were excluded. Similarly, ZHVI and house size showed evidence of 

multicollinearity; though neither variable appeared to be strongly correlated with 4QMAAR, 

ZHVI had the stronger correlation with 4QMAAR and improved the model slightly, so it was 

retained and house size was excluded. Parcel size was also excluded because it did not have a 

significant effect on the model when included alongside CCR, owner occupancy, and rebate 

amount (p = 0.121). Descriptive statistics are summarized for each of the final regression 

variables in Table 8; quarterly descriptive statistics for the same variables are listed in Appendix 

A. 
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Table 8. Descriptive statistics for final regression variables. 

Statistic AAR (%) 
4-Quarter 

Mean AAR 
(%) 

Lagged 
CCR (%) 

Lagged 
ABCCR (%)1 

Owner 
Occupancy 

(%) 
ZHVI ($) 

N 144360 144360 137142 137142 144360 144,360 
Mean .2580 0.2692 .9778 .995947 62.4233 496,719.7061 
Median .0000 0.0000 .0000 .000000 72.0577 451,200.0000 
Minimum .00 0.00 .00 .0000 .00 236,600.00 
Maximum 100.00 37.50 44.44 22.7564 100.00 1,268,800.00 
Std. Deviation 2.64275 1.36438 3.42142 1.8828952 28.73118 206,069.46481 
Variance 6.984 1.862 11.706 3.545 825.481 42,464,624,327.809 
Skewness 661.912 10.474 27.042 12.151 -1.046 2.185 
Kurtosis 21.648 155.345 4.739 2.971 -.569 1.365 
1 ABCCR value is the mean of all adjacent-block CCR values, excluding the subject block. 

 

4.2. Binary Logistic Regression 

Second, a binary logistic regression model was used to determine the likelihood of a L2G 

application being submitted within four quarters at ten different categories of previous-quarter 

positive CCR and ABCCR threshold values, controlling for owner occupancy and rebate amount, 

in comparison to blocks with CCR or ABCCR values of zero. The completion-rate thresholds 

were established by using the SPSS Frequencies procedure to calculate ten percentile-based cut 

points for both non-zero CCR values and non-zero ABCCR values.  

A binary logistic regression employs a dichotomous dependent variable representing 

future application presence or absence. This binary four-quarter application presence variable is 

based on the 4QMAAR variable; a 0 indicates no applications will be submitted within four 

quarters, while a 1 indicates that at least one application will be submitted within four quarters. 

This analysis incorporates nearly the entire dataset (137,142 cases) with the exception of first-

quarter blocks (7,218 cases), as these have missing values for the lagged CCR and ABCCR 

values because there is no previous quarter value to pull that value from. Completion-rate 
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thresholds with peak likelihoods of four-quarter application presence were used to formulate the 

independent samples t tests described in the following section. 

Prior to fitting the equation, a cross-tabulation analysis was run to assess the relationship 

between the binary four-quarter application presence variable and the categorical same-block and 

adjacent-block completion rate dummy variables. The chi-square output tables showed that the 

p-value for the chi-square tests (Pearson chi-square, likelihood ratio, and linear by linear 

association tests) evaluating the relationship between four-quarter future application presence 

and CCR and ABCCR threshold categories were all statistically significant (p = 0.000). Table 9 

contains the chi-square results of the cross-tabulation analysis. Because completion rates on both 

the same and adjacent blocks significantly improved the predictive value of the binary logistic 

regression model, both variables were used in the model. In addition, the model controlled for 

owner occupancy and rebate amount. The effect of ZHVI value was insignificant in the binary 

logistic regression model, so that variable was excluded from the model.  

 
Table 9. Cross-tabulation results for lagged CCR threshold by four-quarter application presence 

and ABCCR threshold by four-quarter application presence 

Chi-Square Tests: Lagged CCR Thresholds * 4-Quarter Application Presence 

 Value df Asymp. Sig. (2-sided) 

Pearson Chi-Square 4706.153 10 0.000 

Likelihood Ratio 3389.616 10 0.000 

Linear-by-Linear Association 1250.048 1 0.000 

N of Valid Cases 137142   
 

Chi-Square Tests: Lagged ABCCR Thresholds * 4-Quarter Application Presence 

 Value df Asymp. Sig. (2-sided) 

Pearson Chi-Square 1428.319 10 0.000 

Likelihood Ratio 1267.483 10 0.000 

Linear-by-Linear Association 1364.368 1 0.000 

N of Valid Cases 137142   
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4.3. Independent Samples t Tests 

Independent samples t tests were performed to compare the means of 4QMAAR values 

above and below the peak CCR and ABCCR thresholds identified by the binary logistic 

regression analysis. The null hypothesis for the first t test was that no significant difference exists 

in mean 4QMAAR values for blocks with previous-quarter CCR values of zero and blocks with 

previous-quarter CCR values above zero (a cut point of 0.01 was used to define the groups as no 

CCR greater than zero and less than 0.01 exists). The null hypothesis for the second t test was 

that there is no significant difference between 4QMAAR values for blocks with ABCCR values 

above and below a cumulative completion rate threshold of 4.28%. For both tests, the 4QMAAR 

rates were expected to be higher for blocks that exceeded the critical CCR thresholds. Finally, to 

validate the decision to use the t test on skewed data, a non-parametric Independent Samples 

Kruskal-Wallis test was also performed for 4QMAAR across categories of lagged CCR 

thresholds. 
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Chapter 5 Results 

The analytical portion of the study used linear regression to estimate a statistically significant 

positive relationship between a block’s four-quarter non-zero application rate and its previous-

quarter non-zero cumulative completion rate on the same block; the linear regression did not find 

a significant relationship between a block’s four-quarter non-zero application rate and the rate of 

previous completions on adjacent blocks. The binary logistic regression model estimated the 

likelihood of future application submission on blocks with different cumulative completion rate 

thresholds on the same and adjacent blocks, including those with zero values; that model 

predicted a significant increase in likelihood of an application submission within four quarters 

when either same-block or adjacent-block completion rates exceeded zero, and peak same-block 

and adjacent-block completion thresholds were identified. Finally, an independent samples t test 

was used to confirm a significant difference between the four-quarter mean application rates of 

blocks above and below the peak same-block and adjacent-block completion rate thresholds 

identified by the logistic regression. Detailed results of each of the three analyses are presented 

in the sections that follow. 

5.1. Linear Regression Results 

Equation 5 is the linear regression equation calculated to estimate the log-transformed 

4QMAAR (Y4QMAAR) for a given block-quarter based on the previous quarter’s non-zero same-

block CCR (XLagged CCR), controlling for owner occupancy rate (XO), ZHVI value (XZ), and 

rebate amount (XR). Adjacent-block completions are not factored into this equation because non-

zero ABCCR did not significantly contribute to the accuracy of the linear regression model.  
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Equation 5. Linear regression equation 

𝐿𝑛(𝑌!!"##$)  =  −0.107 +  0.632(𝐿𝑛(𝑋!"##$% !!"))  − 0.013(𝑋!)  + 0.002(𝑋!)  +  0.012(𝑋!) 

 
This equation describes a significant relationship between the dependent and independent 

variables (F(4, 3502) = 1,006.002, p = 0.000) with an adjusted R2 of 0.534. The coefficient of 

each independent variable represents the predicted change in ln(4QMAAR) for each one-unit 

increase in that variable. This means that on blocks with positive non-zero 4QMAAR values and 

positive non-zero lagged CCR values, ln(4QMAAR) increases 0.632 (p = 0.000) following each 

percentage point increase in CCR, controlling for rebate amount, owner occupancy rate, and 

home values. Examining the standardized beta coefficients, which represent the change in 

outcome for a one-standard-deviation increase in a variable (rather than a one-unit increase), 

allows for comparison of the relative effect of each of the variables and reveals that a positive 

same-block CCR has a considerably stronger effect than rebate amount on the four-quarter mean 

application rate. The null hypothesis—that four-quarter mean adjusted application rates would 

not have a statistically significant linear relationship with previous-quarter cumulative 

completion rates on the same and adjacent blocks—was partially rejected: 4QMAAR values 

were significantly related to same-block completion rates, but not to adjacent-block completion 

rates. Table 10 lists coefficients for each variable, and complete SPSS output from this analysis 

is included in Appendix B. 

  



 82 

 

Table 10. Linear regression results 

Dependent variable: 
ln(4QMAAR%) 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

95.0% Confidence 
Interval for B 

B Std. 
Error Beta Lower 

Bound 
Upper 
Bound 

(Constant) -0.107 0.073  -1.469 0.142 -0.249 0.36 
ln(Lagged CCR %) 0.632 0.015 0.501 41.737 0.000 0.603 0.662 
Owner Occupancy (%) -0.013 0.000 -0.422 -35.020 0.000 -0.014 -0.013 
ZHVI in units of $10,000 0.002 0.001 0.034 2.844 0.004 0.001 0.003 
Rebate amount in units of $0.10 0.012 0.002 0.072 6.145 0.000 0.008 0.016 
  

       

Table 11 illustrates the relative effects of each variable by predicting 4QMAAR values 

after a five-unit increase in each variable compared to a baseline example, holding the other 

variables constant. Because the linear regression equation predicts the natural log of the 

4QMAAR value, the inverse of the natural log was calculated by applying the exponential 

function, resulting in a predicted 4QMAAR value expressed as a percentage. Increasing rebate 

amount by five $0.10 units, or $0.50 per square foot, elevates the predicted 4QMAAR value by 

about 0.17 percentage points. Increasing mean owner occupancy on a block by five percentage 

points has the opposite effect, lowering the predicted 4QMAAR by 0.17 percentage points, while 

increasing ZHVI values by five $10,000 units increases the predicted 4QMAAR by only 0.03 

percentage points.  The largest predicted gains in application rate are seen when the CCR value 

increases by five percentage points, the equivalent of one newly completed project on a block 

with 20 eligible parcels. That increase raises the predicted 4QMAAR value from 2.74% to 

3.54%, an increase of 0.80 percentage points. In other words, the linear regression equation 

predicts that an increase of 5 percentage points in same-block completion rate raises a block’s 

expected application rate over the following four quarters 4.7 times more than a $0.50 hike in 

rebate amount would. However, it’s important to remember that this equation is based only on 

blocks with CCR and 4QMAAR values greater than zero. 
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Table 11. Linear regression model predictions. Each example shows the result of a 5-unit 
increase in each of the variable values compared to the baseline case.  

Case CCR Owner 
Occupancy 

ZHVI 
Value 

Rebate 
Amount 

Predicted 
4QMAAR  

Percentile 

Baseline 10% 60% $700,000 $2.50 2.74% 96.8 
5-unit increase in 
CCR  15% 60% $700,000 $2.50 3.54% 97.6 

5-unit increase in 
Owner Occupancy 10% 65% $700,000 $2.50 2.57% 96.8 

5-unit increase in 
ZHVI  10% 60% $750,000 $2.50 2.77% 96.8 

5-unit increase in 
Rebate Amount 10% 60% $700,000 $3.00 2.91% 97.2 

           1Percentiles refer to non-zero 4QMAAR rates. 
 

5.2. Binary Logistic Regression Results 

The binary logistic regression was performed to ascertain the effects of CCR (lagged one 

quarter and divided into ten percentile-based categories as well as a zero category), ABCCR 

(also lagged one quarter and divided into ten percentile-based categories and a zero category), 

and rebate amount (divided into three categories representing the three rebate amounts offered 

during the study period) on the likelihood of an application submission within four quarters, 

controlling for owner occupancy. The ZHVI value was excluded, because it did not significantly 

contribute to the predictive value of the model. This regression model takes into account data for 

block-quarters with application and completion rates of zero as well for those with positive 

participation rates. The logistic regression model was statistically significant, χ2(23) = 

5,661.471, p = 0.000. Results are shown in Table 12.  
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Table 12. Binary logistic regression results 

 B S.E. Wald df Sig. Exp(B) 95% Confidence Interval 
for EXP(B) 

       Lower Upper 

Lagged CCR = 0%     2936.983 10 0.000       
Lagged CCR = 0.01-2.9% 1.760 0.054 1060.306 1 0.000 5.811 5.227 6.461 
Lagged CCR = 2.91-3.7% 1.405 0.056 630.981 1 0.000 4.074 3.651 4.546 
Lagged CCR = 3.71-4.4% 1.305 0.055 573.080 1 0.000 3.687 3.313 4.103 
Lagged CCR = 4.41-5.0% 1.217 0.063 371.730 1 0.000 3.376 2.984 3.821 
Lagged CCR = 5.01-6.3% 1.043 0.064 264.506 1 0.000 2.838 2.503 3.219 
Lagged CCR = 6.31-8.3% 1.109 0.070 248.585 1 0.000 3.032 2.642 3.481 
Lagged CCR = 8.31-10.0% 0.985 0.056 313.787 1 0.000 2.678 2.401 2.986 
Lagged CCR = 10.01-12.5% 0.604 0.074 67.384 1 0.000 1.829 1.583 2.112 
Lagged CCR = 12.51-16.7% 0.177 0.083 4.511 1 0.034 1.193 1.014 1.405 
Lagged CCR > 16.7% -0.558 0.113 24.549 1 0.000 0.572 0.459 0.714 
Lagged ABCCR = 0%   542.375 10 0.000    
Lagged ABCCR > 0-.67% 0.137 0.050 7.399 1 0.007 1.147 1.039 1.266 
Lagged ABCCR = .68-.87% 0.117 0.051 5.348 1 0.021 1.125 1.018 1.242 
Lagged ABCCR = .88-1.11% 0.132 0.056 5.590 1 0.018 1.141 1.023 1.273 
Lagged ABCCR = 1.12-1.52% 0.159 0.048 10.776 1 0.001 1.172 1.066 1.289 
Lagged ABCCR = 1.53-1.98% 0.316 0.048 42.555 1 0.000 1.372 1.247 1.508 
Lagged ABCCR = 1.99-2.50% 0.351 0.046 58.304 1 0.000 1.421 1.298 1.555 
Lagged ABCCR = 2.51-3.33% 0.409 0.048 73.942 1 0.000 1.505 1.371 1.652 
Lagged ABCCR = 3.34-4.28% 0.424 0.044 92.892 1 0.000 1.528 1.402 1.665 
Lagged ABCCR = 4.29-6.10% 0.694 0.042 278.564 1 0.000  2.002 1.845 2.172 
Lagged ABCCR > 6.10% 0.639 0.042 228.133 1 0.000 1.895 1.744 2.059 
Rebate = $2.50   959.957 2 0.000    
Rebate = $3.00 0.301 0.024 161.674 1 0.000 1.351 1.290 1.415 
Rebate = $3.50 0.713 0.023 959.899 1 0.000 2.040 1.950 2.134 
Owner Occupancy (%) 0.009 0.000 595.255 1 0.000 1.009 1.008 1.010 
Constant -3.462 0.030 13210.339 1 0.000 0.031     

 

The values in the Exp(B) column represent odds ratios; in other words, the Exp(B) value 

for a categorical variable describes the likelihood of an application being submitted for a block 

within four quarters, compared with the zero category for that variable, when all other variables 

are held constant. Figure 23 shows the likelihood of an application submission within four 
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quarters at each same-block CCR threshold category. An examination of these odds ratios 

indicates that block-quarters with CCR values in the first non-zero category (0.01–2.9%) are 

5.811 times more likely to see another application submission within four quarters than block-

quarters with completion rates of zero (p = 0.000), pointing to the existence of a temporal 

spillover effect that is strongest upon completion of the first projects on a block. The second-

highest likelihood occurs at the second CCR category, when CCR is between 2.9% and 3.7% 

(Exp(B) = 4.074, p = 0.000); that trend generally continues as CCR thresholds increase, with the 

likelihood of an application submission within four quarters gradually diminishing, perhaps as 

the pool of willing participants is exhausted. Finally, when CCR exceeds 16.7%—a 90th 

percentile CCR rate—the likelihood of an additional application within four weeks dips below 

that of a block-quarter with no same-block completions at all.  

 
Figure 23. Odds ratios for future application submission relative to CCR = 0. 
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Figure 24 illustrates the effect of adjacent-block project completions on the likelihood of 

an application submission within four quarters. A comparison of these two figures reveals that 

while project completions on adjacent blocks significantly increase the likelihood of an 

application submission within four quarters, the effect is much weaker than the effect of 

completions on the same block. Interestingly, odds ratios increase as adjacent-block completion 

rates increase, while the opposite trend is apparent for same-block completions. The strongest 

effect of adjacent-block completions was seen at ABCCR values of 4.29% to 6.10%, at which 

point the likelihood of a future application submission is twice as likely as it is for an ABCCR 

value of zero (p = 0.000) when all other variables are held constant. No non-zero ABCCR 

categories resulted in a reduced likelihood of application submission within four quarters 

compared to an ABCCR value of zero; this result points to the existence of a small 

spatiotemporal spillover effect. 

 

Figure 24. Odds ratios for future application submission relative to ABCCR = 0.  
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The binary logistic regression model also showed that when all other variables are held 

constant, a rebate value of $3.50 per square foot doubles the likelihood of an application 

submission on a block within four quarters compared to a $2.50 rebate (p = 0.000). A rebate of 

$3.00 increases four-quarter application submission likelihood by 1.351 times (p = 0.000). 

Like the linear regression model, the binary logistic regression model does not appear to 

be a reliable predictor of L2G project participation. In fact, it explained only 8.8% (Nagelkerke 

R2) of the variance in application presence and lacked sensitivity, correctly classifying less than 

one percent of the blocks on which future applications were actually submitted, probably due to 

the overwhelming preponderance of zero values in the dataset. Despite the poor predictive 

sensitivity of the model, the null hypothesis—that the likelihood of application presence within 

four quarters is not statistically higher at positive same-block and adjacent-block cumulative 

completion rate thresholds than at same-block and adjacent-block completion rates of zero—was 

rejected. Complete SPSS output from this analysis is included in Appendix C. 

5.3. Independent Samples t-Test Results 

The t tests found that 4QMAAR values were significantly higher for blocks that had 

attained the peak threshold CCR and ABCCR values identified by the binary logistic regression 

model. The first independent samples t test showed a significant difference between mean 

4QMAAR values on blocks with CCR values above zero (x̅ = 0.490%, SD = 1.566%) and blocks 

with CCR values of zero (x̅ = 0.247%, SD = 1.348%); t(137,140) = 18.627, p = 0.000, equal 

variances not assumed. The second independent t test found that blocks with adjacent-block 

cumulative completion rates above 4.28% had statistically significantly higher mean 4QMAAR 

values (x̅ = 0.597%, SD = 2.159%) than blocks with cumulative completion rates below 4.28% 

(x̅ = 0.241%, SD = 1.264%); t(137,140) = 17.426, p = 0.000, equal variances not assumed. Taken 
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together, these findings suggest that attaining a critical same-block or adjacent-block CCR value 

is likely to increase L2G program participation on that block in the future. The null hypothesis—

that there is no statistically significant difference between mean 4QMAAR values above and 

below peak same-block and adjacent-block completion rate thresholds—was rejected. Complete 

SPSS output from this analysis is included in Appendix D. 

To validate the decision to use the t test on skewed data, a non-parametric Independent 

Samples Kruskal-Wallis test was also performed for 4QMAAR values across categories of 

lagged CCR thresholds. This test confirmed that 4QMAAR values are significantly different 

across both lagged CCR threshold categories (H(10) = 4,313.117, p = 0.000) and lagged ABCCR 

threshold categories (H(10) = 1,484.021, p = 0.000) for N = 137,142. 
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Chapter 6 Discussion 

The results of all three statistical analyses indicate that cumulative completion rates exert a 

relatively strong temporal spillover effect on four-quarter application presence and rate on the 

same block; the binary logistic regression and the independent samples t test—both of which 

included participation rate values of zero—also indicate that a spatiotemporal spillover effect is 

exerted by adjacent-block completion rates. However, the linear regression analysis results 

suggest that once a block has a same-block completion rate greater than zero, the spatial spillover 

effect from adjacent blocks is insignificant. At that point, each new project completion on the 

same block increases both the likelihood of an additional application submission and the 

predicted rate of application submissions in the subsequent four quarters. To a lesser extent, each 

new completion also increases the odds of a new project application on any adjacent blocks with 

no previous completions; however, that new completion is unlikely to affect the application rate 

on adjacent blocks that already have positive cumulative completion rates of their own, perhaps 

because any potential participants on those blocks have already been influenced more strongly 

by their own same-block completion rate as suggested by the linear regression results. These 

findings support the earlier work of Hunter and Brown (2012), who found that residents were 

most likely to install innovative landscaping where a visually adjacent neighbor had already done 

the same. 

Specifically, the logistic regression model predicted that blocks with cumulative 

completion rates between zero and 2.9% were 5.811 times more likely to see another L2G 

project application on the same block in the future compared to blocks with completion rates of 

zero. Blocks with a CCR value between 2.9% and 3.7% showed the second-highest likelihood of 

additional participation in the following four quarters with future applications 4.074 times more 
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likely than on a block with no completions. CCR values from 3% to 16.7% also increased the 

likelihood of future applications, but to a gradually diminishing extent, and CCR values greater 

than 16.7% actually decreased the likelihood of additional application submissions on a block in 

the following four quarters. Project completions on adjacent blocks had a much less striking 

effect on four-quarter application presence; the peak likelihood of a new application being 

submitted within four quarters occurred when adjacent-block completion rates surpassed 4.9%, 

but even then, the likelihood of future application submission was only 2.002 times greater than 

for an adjacent-block completion rate of zero. 

Similar to the binary logistic regression model, the linear regression model also showed 

that completion rates are strongly predictive of future participation on the same block. Unlike the 

binary logistic regression model, however, the linear regression model found that rates of project 

completions on adjacent blocks have no significant effect on a subject block’s future L2G 

participation. It is important to remember, though, that the binary logistic regression model 

predicted the likelihood of application presence within four quarters while the linear regression 

model predicted application rate during that time. In addition, the binary logistic regression 

included 137,142 block-quarters (95% of the dataset, including a preponderance of zero values), 

while the linear regression only included the 3,502 block-quarters (2.4% of the dataset) with non-

zero 4QMAAR and previous-quarter CCR values. Considered together, these results suggest that 

on blocks with no same-block completions, residents are more likely to submit their block’s first 

application when adjacent blocks have higher rates of project completions; however, once that 

block has a completion rate greater than zero, the rate of future applications is more strongly 

influenced by same-block completion rate; completion rates on adjacent blocks do not appear to 
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predict future application rates on a subject block. Figure 25 shows that future mean application 

rates reach their peak when 8.3% of households on the same block have completed L2G projects.  

 

Figure 25. Mean future AAR values at CCR thresholds created from percentile break points. 
Peak 4QMAAR values occur when cumulative completions achieve a threshold of 8.3%.  

The peak application rate seen at completion rates between 8.3% and 10% seems to be 

further evidence of the “minority influence” described by Xie et al. (2011, 6). Their research 

found that when approximately 10% of a social network commits to an opinion or innovation, 

the time until the rest of the network follows suit decreases dramatically. However, while Xie et 

al. documented an increased rate of adoption leading to a majority consensus, the current study 

shows a peak in participation rate at 8.3% followed by a generally decreasing rate of 

participation beginning at 10% completion (Figure 25). Furthermore, consensus—or even 
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majority L2G participation on a block—is still rare; in the five-year study period, only about 

10% of blocks achieved a completion rate greater than 16.7%.  

This decrease in application rate and apparent barrier to full participation can be 

explained by the fact that the number of potential participants on a block is often far less than the 

number of parcels. The CCR value is calculated by dividing the number of completed projects by 

the total number of parcels, including multi-family, government, and commercial parcels. Many 

of these parcels do not have lawns to convert, and if they do, commercial property owners may 

not consider the rebate worth the effort of complying with program requirements. Even among 

single-family households, the pool of potential participants is probably less than 100%. Some 

households are ineligible because they do not have lawns to begin with (in the Belmont Shore 

neighborhood, for example, a courtyard is common), while others may dislike the aesthetic of a 

drought-tolerant garden more than they care about conserving water. Some residents may be 

unable to participate because of economic or personal circumstances, and others may have 

already converted their lawns to gardens without applying for a rebate. The presence of non-

single-family households on a block combined with the unknown percentage of residents 

unlikely to participate may explain why even among the 1,783 blocks with at least one project 

completion, the mean completion rate at the end of the study period was only 10%.  

Both regression models indicated that rebate amount exerts an influence on both four-

quarter application presence and rate. While the rate of previous project completions on the same 

block was the strongest predictor of future participation in both models, the binary logistic 

regression indicated that increasing rebate amounts boost the odds of a first application 

submission on a block to a degree similar to that of an increase in adjacent-block completion 

rate. Specifically, when all other variables are held constant, the model predicts an odds ratio of 
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1.351 (p = 0.000) for a $0.50 increase in rebate amount, which is similar to the odds ratio 

predicted for the fifth ABCCR threshold of 1.53% (1.372, p = 0.000); a $1.00 increase in rebate 

amount resulted in an odds ratio of 2.040 (p = 0.000), which is close to the peak ABCCR 

threshold of 4.28% (2.002, p = 0.000). These findings suggest that on blocks where no projects 

have been completed on the same or adjacent blocks, an increase in rebate rate is an effective 

means of encouraging those first projects, which in turn will increase the likelihood of additional 

project applications on the same and adjacent blocks through the spatiotemporal spillover effect 

characterized by this study. Rebate values are shown chronologically in conjunction with mean 

quarterly block-level application rates in Figure 26. It is worth noting that the highest AAR 

value—by nearly double—occurred in the final quarter of the highest rebate period, immediately 

before the rebate dropped back to $2.50 per square foot. The second highest AAR value occurred 

in the first quarter that rebates were increased to $3.00 per square foot. 

 

Figure 26. Mean AAR values at different rebate levels over time. 
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The effect of rebate values is shown in another way in Figure 27, where quarterly mean 

application rates are grouped by rebate category at different previous-quarter CCR values. 

Application rates are highest for previous quarter CCR values of 10–12.5% regardless of rebate 

category, but the magnitude of that peak is clearly greatest for the highest rebate category. In 

fact, application rates at every CCR category were highest when the top rebate category was in 

effect, suggesting—not surprisingly—that a combination of high rebates and high completion 

rates result in the highest rates of future participation. 

 

 
Figure 27. AAR values grouped by rebate amount. Mean application rates were highest on block-

quarters with previous-quarter completion rates of about 10% and rebates of $3.50 per square 
foot. 

6.1. Implications 

These findings highlight the importance of encouraging the completion of a first project 

on every block; on most blocks, that first completion substantially increases the odds of future 
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project applications on the same block. On an average Long Beach block (about 14 parcels), the 

first project completion represents a 7% completion rate and the second easily surpasses the 

8.3% threshold at which application rates peak.  Even on the longest block in the dataset, with 85 

parcels, that peak 8.3% completion threshold is nearly met with only seven completed projects. 

Perhaps, since rebate amounts appear to be a motivator, local governments should consider 

increasing the rebate for the first project on a block. After that, the reduced financial incentive of 

a lower rebate would theoretically be supplemented by the more powerful spillover effect of the 

first completed projects. Alternatively, local governments could focus their marketing and 

support efforts on blocks with no previous project completions. 

6.2. Limitations 

Results of this study were limited by several factors. First, the dataset included only 

turfgrass replacement projects that were carried out through the L2G program. It is likely that 

many other Long Beach residents have converted their lawns to drought-tolerant landscaping 

outside of the L2G program or before its inception and that these projects contribute equally to 

neighborhood norms, but they are not included in the completion rates calculated for this study. 

It is also unknown if these out-of-program project completions occur at the same rate across 

Long Beach, or whether they are more likely to occur in some neighborhoods than others. 

Second, calculated AAR values also may have been lower than the true rate because every 

single-family residential parcel without a prior L2G project completion was considered eligible. 

In reality, some of those parcels may not have been eligible for the L2G program because they 

did not have a lawn. Third, it is possible that inclusion of other explanatory variables in 

regression models could have improved their predictive value and changed the outcome of the 

analysis. It is unknown whether educational attainment, political affiliation, or race and ethnicity 
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play a role in L2G project participation in Long Beach. Fourth, the variables derived from 

census, tax assessor, and Zillow data were not collected for each quarter of the study. All census 

data were collected in 2010 and all tax assessor data were collected in 2015; Zillow data were 

acquired on an annual basis though Zillow does provide monthly values. It is likely that the 

accuracy of these variables decreases as time from collection date increases. Similarly, the 

census and Zillow data were derived from spatially different aggregation units and re-aggregated 

to the city block polygons created for this study. Though efforts were made to re-aggregate these 

data proportionally, the original aggregation units were probably not uniform, so the re-

aggregation process likely resulted in some degradation in accuracy. Finally, decisions related to 

spatial and temporal aggregation and segmentation of data likely influenced the results of the 

analyses because of both the modifiable areal and temporal unit problems. Further study is 

needed to discover whether changes to temporal aggregation and segmentation of the L2G 

participation data would produce different analysis outcomes.  

One final potential limitation of this study was the decision to use a mean ABCCR rather 

than a summed ABCCR as the spatially lagged independent variable. Both versions of the 

ABCCR variable were tested for use in this study. Exploratory regression models showed 

slightly better model fit for the summed version (adjusted R2 = 0.424 versus adjusted R2 = 0.408, 

p = 0.000 for both), and Pearson correlation tests showed a slightly higher correlation between 

4QMAAR values and the sum ABCCR value (Pearson correlation value of 0.081 versus 0.075 

for the mean ABCCR, p = 0.000 for both) though both correlations are extremely small. In the 

end, the mean ABCCR value was chosen because it allowed for more intuitive comparison with 

the effect of the same-block CCR variable since both were expressed as a percentage. Both 

methods are supported in the literature—Zubek and Henning (2016) and Beck, Gleditsch, and 
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Beardsley (2006) create spatially lagged variables by averaging neighboring values, while 

Grubesic and Rosso (2014) used summed values—but sums were initially preferred for this 

study because of their capacity to effectively represent not only the trend on surrounding blocks, 

but also how many blocks were exerting an influence. A typical block has six adjacent blocks 

(three at each end: left, straight, and right), but some blocks have as few as one adjacent block. It 

seems likely that a single adjacent block with a completion rate of 10% would exert less 

influence than six adjacent blocks with completion rates averaging 10%; summing the CCR 

values of all adjacent blocks rather than averaging them might better capture that expected 

difference in influence. Additional research is needed to determine if there is strong evidence for 

selecting one method of spatially lagging variables over the other.  

6.3. Future Work 

Further research is in order to better understand the variables that affect L2G program 

participation. An analysis of parcel-level application data taking into account the effect of the 

number of previously completed projects within a given radius of each parcel (perhaps 300 feet 

based on the incremental spatial autocorrelation analysis results obtained in this study) calculated 

for regular time intervals as well as parcel-specific data available in the assessor parcel database 

might provide additional insight. In addition, it would be informative to conduct a study to 

determine the duration of the temporal spillover effect of a new L2G project completion; that 

information could then be used to select a more appropriate temporal scale for future application 

rate and presence variables in similar studies in the future.  

The question of whether L2G participation leads to increased turfgrass removal outside of 

the rebate program also deserves more study. It remains unknown whether the Long Beach L2G 

program is experiencing the same multiplicative effect as a similar program in Irvine, California, 
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where early results of a house-to-house survey indicate that for every three households that 

participate in a turf replacement rebate program, four more replace their lawns without applying 

for a rebate (Johnson 2017; Knickmeyer 2016). Further study incorporating out-of-program turf 

replacements—perhaps through ground surveys or analysis of aerial imagery acquired at 

multiple time intervals—is needed to estimate the full extent of the L2G program’s spillover 

effect and to measure the transformative effect of establishing an alternative neighborhood 

landscaping norm. 

6.4. Conclusion 

Previous and ongoing studies examine the roles of household characteristics and 

neighborhood demographics in turf replacement program participation, and this study is the first 

to measure spatiotemporal spillover as a driver of program participation. A two-stage analysis of 

five years of Long Beach L2G program participation data aggregated both spatially and 

temporally to block-quarter analysis units found that of all the explanatory variables considered, 

the rate of previous L2G project completions on a block is by far the most effective predictor of 

future participation on that block. In the absence of same-block completions, completed projects 

on adjacent blocks also exert an influence, though to a lesser degree. These findings suggest that 

by encouraging initial projects completions on non-participatory city blocks, local governments 

and water districts can catalyze a spatiotemporal spillover effect that will increase program 

participation on the same and adjacent blocks in the future.  

 

 

  



 99 

References 

 
Addink, Sylvan. 2005. “Cash for Grass” – A Cost-Effective Method to Conserve Landscape 
Water? A report by the Turfgrass Research Facility at University of California at Riverside. 
https://agops.ucr.edu/turf/topics/Cash-for-Grass.pdf [accessed September 19, 2016]. 
 
Andersen, Tom, Jacob Carstensen, Emilio Hernandez-Garcia, and Carlos M. Duarte. 2009. 
Ecological thresholds and regime shifts: approaches to identification. Trends in Ecology & 
Evolution 24, no. 1: 49-57. 
 
Anselin, Luc. 2002. Under the hood: Issues in the specification and interpretation of spatial 
regression models. Agricultural Economics 27: 247–267 
 
———. 2003. Spatial externalities, spatial multipliers, and spatial econometrics. International 
Regional Science Review 26 (2): 153-66. 
 
———. Thirty years of spatial econometrics. 2010. Papers in Regional Science 89, no. 1: 3-25. 
 
Anselin, Luc, Elizabeth Griffiths, and George Tita. 2008. Crime mapping and hot spot analysis. 
In Environmental Criminology and Crime Analysis, pp. 97-116. Willan Publishing Cullompton, 
Devon. 
 
Anselin, Luc, Julie Le Gallo, and Hubert Jayet. 2008. Spatial panel econometrics. In The 
Econometrics of Panel Data, pp. 625-660. Springer Berlin Heidelberg. 
 
Atwater, Patrick, Christopher Tull, Eric Schmitt, Joone Lopez, Drew Atwater, and Varun 
Adibhatla. 2016. Transforming how water is managed in the West. Conference paper presented 
at Bloomberg Data for Good Exchange Conference, New York, NY, September 25. 
 
Atwater, Patrick, Eric Schmitt, and Drew Atwater. 2015. Towards California water conservation 
impact evaluations by default: lessons of a turf removal rebate study in South Orange County. 
Conference paper presented at Bloomberg Data for Good Exchange Conference, New York, NY, 
September 28. 
 
Bass, Frank M. 1969. A new product growth for model consumer durables. Management 
Science 15, no. 5: 215-227. 
 
Beck, Nathaniel, Kristian Skrede Gleditsch, and Kyle Beardsley. 2006. Space is more than 
geography: Using spatial econometrics in the study of political economy. International Studies 
Quarterly 50, no. 1: 27-44. 
 
Beumer, Carijn, and Pim Martens. 2016. BIMBY’s first steps: a pilot study on the contribution 
of residential front-yards in Phoenix and Maastricht to biodiversity, ecosystem services and 
urban sustainability. Urban Ecosystems 19, no. 1: 45-76. 
 



 100 

Bousema, Teun, Jamie T. Griffin, Robert W. Sauerwein, David L. Smith, Thomas S. Churcher, 
Willem Takken, Azra Ghani, Chris Drakeley, and Roly Gosling. 2012. Hitting hotspots: spatial 
targeting of malaria for control and elimination. PLoS Med 9, no. 1: e1001165. 
 
Bruce, Andrew. 2014. Zillow Home Value Index: Methodology. Zillow Real Estate Research.  
https://www.zillow.com/research/zhvi-methodology-6032/ [accessed February 27, 2017]. 
 
Caetano, Gregorio, and Vikram Maheshri. 2013. Do Broken Windows Matter? Identifying 
Dynamic Spillovers in Criminal Behavior. Paper presented at the 5th Transatlantic Workshop on 
the Economics of Crime, Frankfurt, October 5. No. 2013-252-22. 
 
Capello, Roberta. 2009. Spatial spillovers and regional growth: a cognitive approach. European 
Planning Studies 17, no. 5: 639-658. 
 
Chainey, Spencer, Lisa Tompson, and Sebastian Uhlig. 2008. The utility of hotspot mapping for 
predicting spatial patterns of crime. Security Journal 21, no. 1-2: 4-28. 
 
Chang, Heejun, G. Hossein Parandvash, and Vivek Shandas. 2010. Spatial variations of single-
family residential water consumption in Portland, Oregon. Urban Geography 31, no. 7: 953-972. 
 
Chao, Anne, Robin L. Chazdon, Robert K. Colwell, and Tsung-Jen Shen. 2005. A new statistical 
approach for assessing similarity of species composition with incidence and abundance 
data. Ecology Letters 8, no. 2: 148-159. 
 
Cheng, Tao, and Monsuru Adepeju. 2014. Modifiable temporal unit problem (MTUP) and its 
effect on space-time cluster detection. PloS one 9, no. 6: e100465. 
 
Chiang, Chi-Ting, Ie-Bin Lian, Che-Chun Su, Kuo-Yang Tsai, Yu-Pin Lin, and Tsun-Kuo 
Chang. 2010. Spatiotemporal trends in oral cancer mortality and potential risks associated with 
heavy metal content in Taiwan soil. International Journal of Environmental Research and Public 
Health 7, no. 11: 3916-3928. 
 
City of Long Beach Department of Development Services, Office of Historic Preservation. 2009. 
City of Long Beach Historical Context Statement. 
http://www.lbds.info/civica/filebank/blobdload.asp?BlobID=3169 [accessed November 16, 
2016]. 
 
Collier, Marcus J., Zorica Nedović-Budić, Jeroen Aerts, Stuart Connop, Dermot Foley, Karen 
Foley, Darryl Newport, Siobhán McQuaid, Aleksander Slaev, and Peter Verburg. 2013. 
Transitioning to resilience and sustainability in urban communities. Cities 32: S21-S28. 
 
Crawley, Michael J. 2007. Proportion data. Statistics: an introduction using R: 247-262. 
 
Cronk, Brian C. 2012. How to use SPSS statistics: A step-by-step guide to analysis and 
interpretation. Pyrczak Pub. 
 



 101 

Cunningham, Ross B., and David B. Lindenmayer. 2005. Modeling count data of rare species: 
some statistical issues. Ecology 86, no. 5: 1135-1142. 
 
de Jong, Rogier, and Sytze de Bruin. 2012. Linear trends in seasonal vegetation time series and 
the modifiable temporal unit problem. Biogeosciences 9, no. 1: 71. 
 
Dobbie, Melissa J., and Alan H. Welsh. 2001. Theory & Methods: Modelling Correlated Zero-
inflated Count Data. Australian & New Zealand Journal of Statistics 43, no. 4: 431-444. 
 
Dormann, Carsten F. 2007. Effects of incorporating spatial autocorrelation into the analysis of 
species distribution data. Global Ecology and Biogeography 16, no. 2: 129-138. 
 
Elhorst, J. Paul. 2010. Applied spatial econometrics: raising the bar. Spatial Economic 
Analysis 5, no. 1: 9-28. 
 
———. 2012. Dynamic spatial panels: models, methods, and inferences. Journal of 
Geographical Systems 14, no. 1: 5-28. 
 
———. 2014. Spatial panel data models. In Spatial Econometrics. Springer Berlin Heidelberg, 
37-93. 
 
Fletcher, David, Darryl MacKenzie, and Eduardo Villouta. 2005. Modelling skewed data with 
many zeros: a simple approach combining ordinary and logistic regression. Environmental and 
Ecological Statistics 12, no. 1: 45-54. 
 
Fotheringham, A. Stewart, and Taylor M. Oshan. 2016. Geographically weighted regression and 
multicollinearity: dispelling the myth. Journal of Geographical Systems 18, no. 4: 303-329. 
 
Fotheringham, A. Stewart, and David WS Wong. 1991. The modifiable areal unit problem in 
multivariate statistical analysis. Environment and Planning A 23, no. 7: 1025-1044. 
 
Fowler, James H., and Nicholas A. Christakis. 2010. Cooperative behavior cascades in human 
social networks. Proceedings of the National Academy of Sciences 107, no. 12: 5334-5338. 
 
Franczyk, Jon, and Heejun Chang. 2009. Spatial analysis of water use in Oregon, USA, 1985–
2005. Water Resources Management 23, no. 4: 755-774. 
 
Franzese Jr, Robert J., and Jude C. Hays. 2007. Spatial econometric models of cross-sectional 
interdependence in political science panel and time-series-cross-section data. Political Analysis: 
140-164. 
 
Furth-Matzkin, Meirav, and Cass R. Sunstein. 2016. Social Influences on Policy Preferences: 
Conformity and Reactance. Preliminary draft available at SSNR: 
https://ssrn.com/abstract=2816595 [accessed January 24, 2017].  
 



 102 

Granovetter, Mark, and Roland Soong. 1983. Threshold models of diffusion and collective 
behavior. Journal of Mathematical Sociology 9, no. 3: 165-179. 
 
Green, Emily. 2010. The Dry Garden: Long Beach lawn rebates prove just how beautiful change 
can be. Los Angeles Times, October 8. http://latimesblogs.latimes.com/home_blog/2010/10/long-
beach-drought-tolerant-gardens.html [accessed September 18, 2016]. 
 
Grimm, Nancy B., J. Morgan Grove, Steward TA Pickett, and Charles L. Redman. 2000. 
Integrated Approaches to Long-Term Studies of Urban Ecological Systems. BioScience 50, no. 
7: 571-584. 
 
Grove, Morgan, William R. Burch, Jr, and S. T. A. Pickett. 2005. Social mosaics and urban 
forestry in Baltimore, Maryland. In Communities and Forests: Where People Meet the Land. 
Eds. Lee, R.G. and D.R. Field. 250-274. Corvallis, OR: Oregon State University Press. 
 
Grubesic, Tony H. and Andrea L. Rosso. 2014. The Use of Spatially Lagged Explanatory 
Variables for Modeling Neighborhood Amenities and Mobility in Older Adults. Cityscape: A 
Journal of Policy Development and Research 16, no. 2: 205–214. 
 
Halper, Eve B., Christopher A. Scott, and Stephen R. Yool. Correlating Vegetation, Water Use, 
and Surface Temperature in a Semiarid City: A Multiscale Analysis of the Impacts of Irrigation 
by Single­Family Residences. Geographical Analysis 44, no. 3 (2012): 235-257. 
 
Hanak, Ellen, Jeffrey Mount, Caitrin Chappelle, Jay Lund, Josué Medellín-Azuara, Peter Moyle, 
and Nathaniel Seavy. 2015. What If California’s Drought Continues? Public Policy Institute of 
California. http://www.ppic.org/content/pubs/report/R_815EHR.pdf [accessed September 18, 
2016]. 
 
Harrington, John W., Vu Q. Nguyen, James F. Paulson, Ruth Garland, Lawrence Pasquinelli, and 
Donald Lewis. 2010. Identifying the “tipping point” age for overweight pediatric 
patients. Clinical Pediatrics 49(7): 638–643. 
 
Hayden, Lillian, Mary L. Cadenasso, Darren Haver, and Lorence R. Oki. 2015. Residential 
landscape aesthetics and water conservation best management practices: Homeowner perceptions 
and preferences. Landscape and Urban Planning 144: 1-9. 
 
Helfand, Gloria E., Joon Sik Park, Joan I. Nassauer, and Sandra Kosek. 2006. The economics of 
native plants in residential landscape designs. Landscape and Urban Planning 78, no. 3: 229-
240. 
 
Hevesi, J.A., and Johnson, T.D. 2016. Estimating spatially and temporally varying recharge and 
runoff from precipitation and urban irrigation in the Los Angeles Basin, California: U.S. 
Geological Survey Scientific Investigations Report 2016–5068. 
http://dx.doi.org/10.3133/sir20165068 [accessed November 5, 2016]. 
 



 103 

Hill, Alison L., David G. Rand, Martin A. Nowak, and Nicholas A. Christakis. 2010. Infectious 
disease modeling of social contagion in networks. PLoS Computational Biology 6, no. 11: 
e1000968. 
 
Hunter, Mary Carol R., and Daniel G. Brown. 2012. Spatial contagion: Gardening along the 
street in residential neighborhoods. Landscape and Urban Planning 105, no. 4: 407-416. 
 
Hurd, Brian H., Rolston St. Hilaire, and John M. White. 2006. Residential Landscapes, 
Homeowner Attitudes, and Water-wise Choices in New Mexico. HortTechnology 16(2): 241–
246. 
 
Jackson, Donald A. 1997. Compositional data in community ecology: the paradigm or peril of 
proportions? Ecology 78, no. 3: 929-940. 
 
Janmaat, Johannus John. 2013. Spatial patterns and policy implications for residential water use: 
An example using Kelowna, British Columbia. Water Resources and Economics 1: 3-19. 
 
Johnson, Dane. 2017. Multiplier Effect Study for Turf Removal – 2016 Update. Talk presented 
at American Water Works Association California-Nevada Section Spring Conference. Anaheim, 
California. April 11. 
 
Jongman, Robert H. G., Cajo J. F. Ter Braak, and Onno F. R. van Tongeren. 1995. Data Analysis 
in Community and Landscape Ecology. Cambridge University Press. 
 
Joshi, Nayan Krishna. 2016. Local house prices and mental health. International Journal of 
Health Economics and Management 16, no. 1 (2016): 89-102. 
 
Katz, Mitchell H. 2011. Multivariable Analysis: A Practical Guide for Clinicians and Public 
Health Researchers. Cambridge University Press. 
 
Knickmeyer, Ellen. 2016. In California, a $350 million social experiment over lawns. Radio 
interview by Alex Cohen, Take Two, 89.3 KPCC, October 31, 2016. 
http://www.scpr.org/news/2016/10/31/65860/in-california-a-350-million-social-experiment-over/ 
[accessed January 26, 2017]. 
 
Koenig, Walter D. 1999. Spatial autocorrelation of ecological phenomena. Trends in Ecology & 
Evolution 14, no. 1: 22-26. 
 
Landry, Shawn, and Ruiliang Pu. 2010. The impact of land development regulation on 
residential tree cover: An empirical evaluation using high-resolution IKONOS 
imagery. Landscape and Urban Planning 94.2: 94-104. 
 
Larson, Kelli L., and Jaleila Brumand. Paradoxes in landscape management and water 
conservation: examining neighborhood norms and institutional forces. Cities and the 
Environment (CATE) 7, no. 1 (2014): 6. 
 



 104 

Leys, Christophe, Christophe Ley, Olivier Klein, Philippe Bernard, Laurent Licata. 2013. 
Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around 
the median. Journal of Experimental Social Psychology 49, no. 4:764–766.  
 
Locke, Dexter H., and J. Morgan Grove. Doing the hard work where it’s easiest? Examining the 
relationships between urban greening programs and social and ecological characteristics. Applied 
Spatial Analysis and Policy 9, no. 1 (2016): 77-96. 
 
Lofquist, Daphne, Terry Lugaila, Martin O’Connell, and Sarah Feliz. 2012. Households and 
Families 2010. A U.S. Census Bureau Brief. 
https://www.census.gov/prod/cen2010/briefs/c2010br-14.pdf [accessed February 25, 2017]. 
 
Long Beach Technology and Innovation Department. Centerlines (shapefile). Posted April 2015. 
In the Long Beach GIS Data Catalog. http://www.longbeach.gov/ti/gis-maps-and-data/data-
catalog/ [accessed October 11, 2016]. 
 
———. City Boundary (shapefile). Posted September 2016. In the Long Beach GIS Data 
Catalog. http://www.longbeach.gov/ti/gis-maps-and-data/data-catalog/ [accessed October 11, 
2016]. 
 
Long Beach Water Department. Lawn-to-Garden Turf Replacement Program. City of Long 
Beach, California. http://www.lblawntogarden.com/gardens-open. Undated [accessed September 
9, 2016]. 
 
———. Project Checklist. City of Long Beach, California. 
http://www.lblawntogarden.com/Project-Checklist. Undated [accessed September 19, 2016]. 
 
Long, J. Scott, and Jeremy Freese. 2006. Regression Models for Categorical Dependent 
Variables Using Stata. Stata press. 
 
Los Angeles County Office of the Assessor. 2015. Assessor Parcels – 2015 Tax Roll (file 
geodatabase). On the Los Angeles County GIS Data Portal. 
http://egis3.lacounty.gov/dataportal/tag/gis-data/ [accessed November 5, 2016]. 
 
———. 2016. FAQ. Los Angeles County Assessor Portal. http://portal.assessor.lacounty.gov/faq 
[accessed November 5, 2016]. 
 
Lumley, Thomas, Paula Diehr, Scott Emerson, and Lu Chen. 2002. The importance of the 
normality assumption in large public health data sets. Annual Review of Public Health 23, no. 1: 
151-169. 
 
Machles, Maren. 2014. Long Beach Water Commissioners Increase Turf Removal Rebate. Long 
Beach Post, July 14. https://lbpost.com/news/2000003994-long-beach-water-commissioners-
increase-turf-removal-rebate [accessed November 27, 2016]. 
 



 105 

McClain, Michael E., Elizabeth W. Boyer, C. Lisa Dent, Sarah E. Gergel, Nancy B. Grimm, 
Peter M. Groffman, Stephen C. Hart et al. 2003. Biogeochemical hot spots and hot moments at 
the interface of terrestrial and aquatic ecosystems. Ecosystems 6, no. 4: 301-312. 
 
McClintock, Nathan, Dillon Mahmoudi, Michael Simpson, and Jacinto Pereira Santos. 2016. 
Socio-spatial differentiation in the Sustainable City: A mixed-methods assessment of residential 
gardens in metropolitan Portland, Oregon, USA. Landscape and Urban Planning 148: 1-16. 
 
Metropolitan Water District of Southern California, 2013. California Friendly Turf Replacement 
Incentive Program Southern California, Final Project Report. Bureau of Reclamation website. 
http://www.usbr.gov/lc/socal/reports/MWDturfreduction.pdf [accessed September 17, 2016]. 
 
Mickey, Thomas J. 2013. America’s Romance with the English Garden. Athens: Ohio University 
Press. 
 
Minor, Emily, J. Amy Belaire, Amélie Davis, Magaly Franco, and Meimei Lin. 2016. 
Socioeconomics and neighbor mimicry drive yard and neighborhood vegetation patterns. Urban 
Landscape Ecology: Science, Policy and Practice: 56. 
 
Montello, Daniel R. and Paul C. Sutton. 2013. An Introduction to Scientific Research Methods in 
Geography & Environmental Studies. London: Sage Publications, Ltd. 
 
Mount, Jeffrey and Ellen Hanak. Water use in California. 2016. Public Policy Institute of 
California. http://www.ppic.org/main/publication_show.asp?i=1108 [accessed September 17, 
2016]. 
 
Neel, Rebecca, Edward Sadalla, Anna Berlin, Susan Ledlow, and Samantha Neufeld. 2014. The 
social symbolism of water-conserving landscaping. Journal of Environmental Psychology 40: 
49-56. 
 
Nassauer, Joan Iverson, Zhifang Wang, and Erik Dayrell. 2009. What will the neighbors think? 
Cultural norms and ecological design. Landscape and Urban Planning 92, no. 3: 282-292. 
 
NOAA National Centers for Environmental Information. 2016. State of the Climate: Drought for 
July 2016. National Oceanic and Atmospheric Association. 
http://www.ncdc.noaa.gov/sotc/drought/201607 [accessed September 18, 2016]. 
 
Noell, Nicholas. 2013. In Pictures: 2nd Annual Long Beach Lawn-to-Garden Tour. Long Beach 
Post, May 20. https://lbpost.com/life/2000002292-long-beach-lawn-to-garden-tour[accessed 
September 9, 2016]. 
 
Osorio, Javier. 2015. The Contagion of Drug Violence Spatiotemporal Dynamics of the Mexican 
War on Drugs. Journal of Conflict Resolution 59, no. 8: 1403-1432. 
 
Pearce, Jennie L., and Mark S. Boyce. 2006. Modelling distribution and abundance with 
presence‐only data. Journal of Applied Ecology 43, no. 3: 405-412. 



 106 

 
Pede, Valerien O., R. J. G. M. Florax, and Matthew T. Holt. 2008 Modeling non-linear spatial 
dynamics: A family of spatial STAR models and an application to US economic growth. Paper 
prepared for presentation at the American Agricultural Economics Association Annual Meeting, 
Orlando, Florida, July, pp. 27-29. 
 
Pham, Thi-Thanh-Hien, Philippe Apparicio, Anne-Marie Séguin, Shawn Landry, and Martin 
Gagnon. 2012. Spatial distribution of vegetation in Montreal: An uneven distribution or 
environmental inequity? Landscape and Urban Planning 107, no. 3: 214-224. 
 
Qian, Song S., and Thomas F. Cuffney. 2012. To threshold or not to threshold? That's the 
question. Ecological Indicators 15, no. 1: 1-9. 
 
Rendell, Luke, Laurel Fogarty, William J. E. Hoppitt, Thomas J. H. Morgan, Mike M. Webster, 
and Kevin N. Laland. 2011. Cognitive culture: theoretical and empirical insights into social 
learning strategies. Trends in Cognitive Sciences 15, no. 2: 68-76. 
 
Rosso, Andrea L., Tony H. Grubesic, Amy H. Auchincloss, Loni P. Tabb, and Yvonne L. 
Michael. 2013. Neighborhood amenities and mobility in older adults. American Journal of 
Epidemiology 78, no. 5: 761-769. 
 
Roth, Robert E., Kevin S. Ross, Benjamin G. Finch, Wei Luo, and Alan M. MacEachren. 2013. 
Spatiotemporal crime analysis in US law enforcement agencies: Current practices and unmet 
needs. Government Information Quarterly 30, no. 3: 226-240. 
 
Ryan, Sandra E., and Laurie S. Porth. 2007. A tutorial on the piecewise regression approach 
applied to bedload transport data. U.S. Forest Service Technical Report. 
https://www.fs.fed.us/rm/pubs/rmrs_gtr189.pdf [accessed January 29, 2017]. 
 
Scott, Lauren M. and Mark V. Janikas. 2009. Spatial Statistics in ArcGIS. In Handbook of 
Applied Spatial Analysis, eds. Fischer, M.M. and A. Getis, 27–41. Heidelberg, Germany: 
Springer Berlin Heidelberg.  
 
Seapy, Briana. 2015. Turf Removal & Replacement: Lessons Learned. A report of the California 
Urban Water Conservation Council. http://cuwcc.org/Resources/Publications-and-Reports 
[accessed September 22, 2016]. 
 
Seyranian, Vivian, Gale M. Sinatra, and Morgan S. Polikoff. 2014. Comparing communication 
strategies for reducing residential water consumption. Journal of Environmental Psychology 41: 
81–90.  
 
Silvestrini, Andrea, and David Veredas. 2008. Temporal aggregation of univariate and 
multivariate time series models: a survey. Journal of Economic Surveys 22, no. 3: 458-497. 
 
Smith, Keeley. 2015. LBWD Continues Lawn-to-Garden Program, Despite End of Metropolitan 
Turf Removal Subsidies. Long Beach Post, July 9. https://lbpost.com/news/2000006554-lbwd-



 107 

to-continue-lawn-to-garden-program-in-smaller-capacity-after-metropolitan-discontinues-turf-
removal-subsidies [accessed September 17, 2015]. 
 
Solano, Emilio J. and Garo Megerdichian. 2009. Standards and Procedures for Assessor’s Maps. 
White paper produced by the Los Angeles County Assessor’s Office. 
http://www.calmapping.org/counties/losangeles/losangeles-mapping-manual.pdf [accessed 23 
February, 2017]. 
 
Sovocool, Kent A., Mitchell Morgan, and Doug Bennett. 2006. An In-depth Investigation of 
Xeriscape as a Water Conservation Measure. Journal (American Water Works Association) 98, 
no. 2: 82-93.  
 
Stevens, Matt and Monte Morin. 2015. Southland water district ends popular lawn-removal 
rebate program. Los Angeles Times, July 10. http://www.latimes.com/local/california/la-me-
mwd-turf-rebates-20150710-story.html [accessed September 18, 2016].  
 
Sugumaran, Ramanathan, Scott R. Larson, and John P. DeGroote. 2009. Spatio-temporal cluster 
analysis of county-based human West Nile virus incidence in the continental United 
States. International Journal of Health Geographics 8.1: 43. 
 
Sullivan, L. M., and R. B. d'Agostino. 1992. Robustness of the t-test applied to data distorted 
from normality by floor effects. Journal of Dental Research 71, no. 12: 1938-1943. 
 
Taylor, R. B. 1997. Social order and disorder of street blocks and neighborhoods: Ecology, 
microecology, and the systemic model of social disorganization. Journal of Research in Crime 
and Delinquency, no. 34: 113–155. 
 
Tobler, Waldo R. 1970. A computer movie simulating urban growth in the Detroit region. 
Economic Geography 46: 234–40 
 
Tull, C., Schmitt, E., Atwater, P. 2016. How Much Water Does Turf Removal Save? Applying 
Bayesian Structural Time-Series to California Residential Water Demand. Knowledge Discovery 
and Data Mining 2016 Workshop “Data Science for Food, Energy and Water” (DS-FEW). 
 
UCLA: Statistical Consulting Group. 2017. Logistic Regression SPSS Annotated Output. UCLA 
Institute for Digital Research and Education. http://stats.idre.ucla.edu/spss/output/logistic-
regression [accessed March 12, 2017]. 
 
———. 2017. SPSS Annotated Output Regression Analysis. UCLA Institute for Digital 
Research and Education. http://stats.idre.ucla.edu/spss/output/regression-analysis [accessed 
March 12, 2017]. 
 
United States Census Bureau. American Fact Finder. https://factfinder.census.gov/ [accessed 
February 2, 2017]. 
 



 108 

———. Geography: TIGER/Line® Shapefiles and TIGER/Line® Files. 
https://www.census.gov/geo/maps-data/data/tiger-line.html [accessed February 2, 2017]. 
 
———. 2014. Utilizing Data from American FactFinder with TIGER/Line Shapefiles in ArcGIS. 
Instructional document. 
https://www2.census.gov/geo/pdfs/education/tiger/AFF_TIGERLine_Joining_Presentation.pdf 
[accessed February 2, 2017]. 
 
———. 2015. United States Quick Facts. https://www.census.gov/quickfacts/ [accessed 
November 12, 2016]. 
 
 
Uren, Hannah V., Peta L. Dzidic, and Brian J. Bishop. Exploring social and cultural norms to 
promote ecologically sensitive residential garden design. Landscape and Urban Planning 137 
(2015): 76-84. 
 
Valente, Thomas W. 1996. Social network thresholds in the diffusion of innovations. Social 
Networks 18, no. 1: 69-89. 
 
Warton, David I., and Francis KC Hui. 2011. The arcsine is asinine: the analysis of proportions 
in ecology. Ecology 92, no. 1: 3-10. 
 
Weisburd, David, Elizabeth R. Groff, and Sue-Ming Yang. 2014. Understanding and controlling 
hot spots of crime: The importance of formal and informal social controls. Prevention 
Science 15, no. 1: 31-43. 
 
Wicker, A. W. 1987. Behavior settings reconsidered: Temporal stages, resources, internal 
dynamics, context. In Handbook of Environmental Psychology, eds. D. Stokels & I. Altman, 
613–653. 
 
Williams, Lauren. 2014. Long Beach offering residents incentive for converting lawns. Orange 
County Register, July 21. http://www.ocregister.com/articles/water-629428-long-beach.html 
[accessed September 18, 2016]. 
 
Wilson, Kenneth, and Ian CW Hardy. 2002. Statistical Analysis of Sex Ratios: An Introduction. 
48-92. 
 
Xie, Jierui, Sameet Sreenivasan, Gyorgy Korniss, Weituo Zhang, Chjan Lim, and Boleslaw K. 
Szymanski. 2011. Social consensus through the influence of committed minorities. Physical 
Review E 84, no. 1: 011130. 
 
Zhang, Dapeng, and Xiaokun Wang. 2016. Investigating the dynamic spillover effects of low-
cost airlines on airport airfare through spatio-temporal regression models. Networks and Spatial 
Economics 16 (3): 821-36. 
 



 109 

Zillow. How Accurate is the Zestimate? 2017. https://www.zillow.com/zestimate/#acc [accessed 
February 27, 2017].  
 
———. Median Home Value – Zillow Home Value Index (ZHVI). 
https://www.zillow.com/research/data/#bulk [accessed February 1, 2017]. 
 
Zmyslony, Jean, and Daniel Gagnon. 1998 Residential management of urban front-yard 
landscape: A random process? Landscape and Urban Planning 40, no. 4: 295-307. 
 
Zubek, Nana, and Christian HCA Henning. 2016. Local Government, Spatial Spillovers and the 
Absorption of EU Structural Funds. Journal of Agricultural Economics 67, no. 2: 368-397. 
 
 
 
  



 110 

Appendix A: Variable Statistics by Quarter 
 

Statistics by 
Year and Quarter AAR (%) 4-Quarter Mean 

AAR (%) 
Lagged 

CCR (%) 
Mean lagged 
ABCCR % 

Owner 
Occupancy ZHVI 

Y1Q1 N 7218 7218   7218 7218 
Mean .1831 0.1529   62.4233 415947.0503 
Median .0000 0.0000   72.0577 376300.0000 
Minimum .00 0.00   .00 236600.00 
Maximum 100.00 37.50   100.00 1118300.00 
Std. Deviation 2.01990 1.08843   28.73307 184578.20662 
Variance 4.080 1.185   825.589 34069114357.454 
Skewness 975.472 16.746   -1.046 3.278 
Kurtosis 25.260 401.606   -.569 1.625 

Y1Q2 N 7218 7218 7218 7218 7218 7218 
Mean .1404 0.1315 .1892 .194555 62.4233 415947.0503 
Median .0000 0.0000 .0000 .000000 72.0577 376300.0000 
Minimum .00 0.00 .00 .0000 .00 236600.00 
Maximum 100.00 37.50 25.00 12.5000 100.00 1118300.00 
Std. Deviation 2.00246 1.00819 1.36298 .6750849 28.73307 184578.20662 
Variance 4.010 1.016 1.858 .456 825.589 34069114357.454 
Skewness 1064.803 18.401 127.886 45.917 -1.046 3.278 
Kurtosis 27.712 490.021 10.230 5.695 -.569 1.625 

Y1Q3 N 7218 7218 7218 7218 7218 7218 
Mean .1021 0.2014 .3234 .330265 62.4233 415947.0503 
Median .0000 0.0000 .0000 .000000 72.0577 376300.0000 
Minimum .00 0.00 .00 .0000 .00 236600.00 
Maximum 100.00 25.00 33.33 12.5000 100.00 1118300.00 
Std. Deviation 1.71755 1.29809 1.81684 .8836372 28.73307 184578.20662 
Variance 2.950 1.685 3.301 .781 825.589 34069114357.454 
Skewness 1817.727 12.913 80.448 22.783 -1.046 3.278 
Kurtosis 36.947 215.754 8.000 4.124 -.569 1.625 

Y1Q4 N 7218 7218 7218 7218 7218 7218 
Mean .1860 0.2114 .3988 .405024 62.4233 415947.0503 
Median .0000 0.0000 .0000 .000000 72.0577 376300.0000 
Minimum .00 0.00 .00 .0000 .00 236600.00 
Maximum 100.00 25.00 33.33 12.5000 100.00 1118300.00 
Std. Deviation 2.54214 1.34357 2.05252 1.0106670 28.73307 184578.20662 
Variance 6.462 1.805 4.213 1.021 825.589 34069114357.454 
Skewness 1025.660 12.614 63.888 19.114 -1.046 3.278 
Kurtosis 28.452 204.251 7.194 3.789 -.569 1.625 

Y2Q1 N 7218 7218 7218 7218 7218 7218 
Mean .0973 0.1821 .4595 .465671 62.4233 441482.4931 
Median .0000 0.0000 .0000 .000000 72.0577 398900.0000 
Minimum .00 0.00 .00 .0000 .00 257000.00 
Maximum 33.33 25.00 33.33 14.0741 100.00 1088300.00 
Std. Deviation 1.16244 1.23793 2.22809 1.0996245 28.73307 185932.97929 
Variance 1.351 1.532 4.964 1.209 825.589 34571072786.681 
Skewness 356.605 13.561 57.881 17.821 -1.046 2.049 
Kurtosis 17.116 238.009 6.833 3.639 -.569 1.391 
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Statistics by 
Year and Quarter AAR (%) 4-Quarter Mean 

AAR (%) 
Lagged 

CCR (%) 
Mean lagged 
ABCCR % 

Owner 
Occupancy ZHVI 

Y2Q2 N 7218 7218 7218 7218 7218 7218 
Mean .4201 0.1744 .5092 .517128 62.4233 441482.4931 
Median .0000 0.0000 .0000 .000000 72.0577 398900.0000 
Minimum .00 0.00 .00 .0000 .00 257000.00 
Maximum 100.00 25.00 33.33 14.0741 100.00 1088300.00 
Std. Deviation 4.00385 1.23906 2.36385 1.1749722 28.73307 185932.97929 
Variance 16.031 1.535 5.588 1.381 825.589 34571072786.681 
Skewness 393.582 13.663 50.334 16.142 -1.046 2.049 
Kurtosis 17.758 238.698 6.424 3.467 -.569 1.391 

Y2Q3 N 7218 7218 7218 7218 7218 7218 
Mean .1421 0.1865 .5520 .558831 62.4233 441482.4931 
Median .0000 0.0000 .0000 .000000 72.0577 398900.0000 
Minimum .00 0.00 .00 .0000 .00 257000.00 
Maximum 100.00 25.00 33.33 14.0741 100.00 1088300.00 
Std. Deviation 2.22516 1.24209 2.44424 1.2129939 28.73307 185932.97929 
Variance 4.951 1.543 5.974 1.471 825.589 34571072786.681 
Skewness 1241.215 13.476 45.597 14.530 -1.046 2.049 
Kurtosis 31.417 235.309 6.109 3.295 -.569 1.391 

Y2Q4 N 7218 7218 7218 7218 7218 7218 
Mean .0689 0.2148 .6230 .631475 62.4233 441482.4931 
Median .0000 0.0000 .0000 .000000 72.0577 398900.0000 
Minimum .00 0.00 .00 .0000 .00 257000.00 
Maximum 100.00 25.00 33.33 14.0741 100.00 1088300.00 
Std. Deviation 1.49929 1.28283 2.62126 1.3262073 28.73307 185932.97929 
Variance 2.248 1.646 6.871 1.759 825.589 34571072786.681 
Skewness 2832.788 12.417 40.635 13.601 -1.046 2.049 
Kurtosis 46.665 206.527 5.791 3.211 -.569 1.391 

Y3Q1 N 7218 7218 7218 7218 7218 7218 
Mean .0667 0.2377 .7319 .743065 62.4233 516949.0999 
Median .0000 0.0000 .0000 .000000 72.0577 468000.0000 
Minimum .00 0.00 .00 .0000 .00 329800.00 
Maximum 33.33 25.00 33.33 14.0741 100.00 1260200.00 
Std. Deviation 1.05795 1.31560 2.87047 1.4878376 28.73307 200353.67641 
Variance 1.119 1.731 8.240 2.214 825.589 40141595650.280 
Skewness 538.051 11.244 34.798 11.378 -1.046 2.771 
Kurtosis 21.757 173.910 5.374 3.004 -.569 1.518 

Y3Q2 N 7218 7218 7218 7218 7218 7218 
Mean .4686 0.2806 .7861 .799726 62.4233 516949.0999 
Median .0000 0.0000 .0000 .000000 72.0577 468000.0000 
Minimum .00 0.00 .00 .0000 .00 329800.00 
Maximum 100.00 25.00 33.33 14.0741 100.00 1260200.00 
Std. Deviation 4.05279 1.37833 2.98110 1.5412877 28.73307 200353.67641 
Variance 16.425 1.900 8.887 2.376 825.589 40141595650.280 
Skewness 375.399 10.106 31.631 9.913 -1.046 2.771 
Kurtosis 17.209 145.139 5.144 2.826 -.569 1.518 

Y3Q3 N 7218 7218 7218 7218 7218 7218 
Mean .2550 0.2398 .8353 .850729 62.4233 516949.0999 
Median .0000 0.0000 .0000 .000000 72.0577 468000.0000 
Minimum .00 0.00 .00 .0000 .00 329800.00 
Maximum 100.00 25.00 33.33 14.0741 100.00 1260200.00 
Std. Deviation 2.59498 1.23253 3.09884 1.5971099 28.73307 200353.67641 
Variance 6.734 1.519 9.603 2.551 825.589 40141595650.280 
Skewness 688.302 10.620 30.737 8.849 -1.046 2.771 
Kurtosis 21.948 163.422 5.058 2.704 -.569 1.518 
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Statistics by 
Year and Quarter AAR (%) 4-Quarter Mean 

AAR (%) 
Lagged 

CCR (%) 
Mean lagged 
ABCCR % 

Owner 
Occupancy ZHVI 

Y3Q4 N 7218 7218 7218 7218 7218 7218 
Mean .1605 0.2792 .9122 .927079 62.4233 516949.0999 
Median .0000 0.0000 .0000 .000000 72.0577 468000.0000 
Minimum .00 0.00 .00 .0000 .00 329800.00 
Maximum 50.00 25.00 33.33 14.0741 100.00 1260200.00 
Std. Deviation 1.82053 1.34851 3.21473 1.6582010 28.73307 200353.67641 
Variance 3.314 1.818 10.334 2.750 825.589 40141595650.280 
Skewness 354.124 9.713 27.233 8.143 -1.046 2.771 
Kurtosis 17.003 134.627 4.768 2.583 -.569 1.518 

Y4Q1 N 7218 7218 7218 7218 7218 7218 
Mean .2384 0.2931 1.0696 1.093161 62.4233 536663.3988 
Median .0000 0.0000 .0000 .000000 72.0577 489300.0000 
Minimum .00 0.00 .00 .0000 .00 344300.00 
Maximum 50.00 25.00 37.50 16.6667 100.00 1268800.00 
Std. Deviation 1.99535 1.38510 3.51299 1.8327755 28.73307 205009.67501 
Variance 3.981 1.918 12.341 3.359 825.589 42028966849.198 
Skewness 235.518 9.737 24.281 7.883 -1.046 2.338 
Kurtosis 13.266 134.379 4.486 2.492 -.569 1.445 

Y4Q2 N 7218 7218 7218 7218 7218 7218 
Mean .3054 0.2939 1.1514 1.177877 62.4233 536663.3988 
Median .0000 0.0000 .0000 .000000 72.0577 489300.0000 
Minimum .00 0.00 .00 .0000 .00 344300.00 
Maximum 100.00 25.00 44.44 20.0000 100.00 1268800.00 
Std. Deviation 3.18696 1.45354 3.66395 1.9455260 28.73307 205009.67501 
Variance 10.157 2.113 13.424 3.785 825.589 42028966849.198 
Skewness 578.913 9.905 23.411 8.964 -1.046 2.338 
Kurtosis 21.224 133.907 4.368 2.563 -.569 1.445 

Y4Q3 N 7218 7218 7218 7218 7218 7218 
Mean .4126 0.4396 1.2475 1.277484 62.4233 536663.3988 
Median .0000 0.0000 .0000 .366300 72.0577 489300.0000 
Minimum .00 0.00 .00 .0000 .00 344300.00 
Maximum 100.00 25.00 44.44 20.0000 100.00 1268800.00 
Std. Deviation 3.37851 1.60128 3.82415 2.0448920 28.73307 205009.67501 
Variance 11.414 2.564 14.624 4.182 825.589 42028966849.198 
Skewness 377.368 7.191 21.069 8.669 -1.046 2.338 
Kurtosis 16.427 77.374 4.169 2.499 -.569 1.445 

Y4Q4 N 7218 7218 7218 7218 7218 7218 
Mean .2161 0.4387 1.3972 1.429590 62.4233 536663.3988 
Median .0000 0.0000 .0000 .537634 72.0577 489300.0000 
Minimum .00 0.00 .00 .0000 .00 344300.00 
Maximum 100.00 25.00 44.44 21.5980 100.00 1268800.00 
Std. Deviation 2.21346 1.56447 4.08510 2.2073616 28.73307 205009.67501 
Variance 4.899 2.448 16.688 4.872 825.589 42028966849.198 
Skewness 729.790 7.060 18.762 8.618 -1.046 2.338 
Kurtosis 22.066 75.983 3.951 2.458 -.569 1.445 

Y5Q1 N 7218 7218 7218 7218 7218 7218 
Mean .2414 0.4243 1.5939 1.625923 62.4233 572556.4886 
Median .0000 0.0000 .0000 .649351 72.0577 533100.0000 
Minimum .00 0.00 .00 .0000 .00 368500.00 
Maximum 100.00 25.00 44.44 22.2390 100.00 1266200.00 
Std. Deviation 2.70184 1.56655 4.38125 2.3962856 28.73307 210253.66400 
Variance 7.300 2.454 19.195 5.742 825.589 44206603226.695 
Skewness 633.983 7.362 15.386 7.755 -1.046 1.677 
Kurtosis 21.791 82.063 3.620 2.331 -.569 1.352 
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Statistics by 
Year and Quarter AAR (%) 4-Quarter Mean 

AAR (%) 
Lagged 

CCR (%) 
Mean lagged 
ABCCR % Homeowners ZHVI 

Y5Q2 N 7218 7218 7218 7218 7218 7218 
Mean .8884 0.4229 1.7476 1.780415 62.4233 572556.4886 
Median .0000 0.0000 .0000 .769231 72.0577 533100.0000 
Minimum .00 0.00 .00 .0000 .00 368500.00 
Maximum 100.00 25.00 44.44 22.2390 100.00 1266200.00 
Std. Deviation 4.22934 1.57332 4.60051 2.5289422 28.73307 210253.66400 
Variance 17.887 2.475 21.165 6.396 825.589 44206603226.695 
Skewness 127.789 7.571 13.951 6.641 -1.046 1.677 
Kurtosis 9.044 87.068 3.458 2.195 -.569 1.352 

Y5Q3 N 7218 7218 7218 7218 7218 7218 
Mean .4088 0.3102 1.9145 1.945730 62.4233 572556.4886 
Median .0000 0.0000 .0000 .869565 72.0577 533100.0000 
Minimum .00 0.00 .00 .0000 .00 368500.00 
Maximum 100.00 25.00 44.44 22.2390 100.00 1266200.00 
Std. Deviation 2.91519 1.46965 4.82989 2.6588166 28.73307 210253.66400 
Variance 8.498 2.160 23.328 7.069 825.589 44206603226.695 
Skewness 429.872 9.781 12.279 5.408 -1.046 1.677 
Kurtosis 16.333 133.797 3.265 2.024 -.569 1.352 

Y5Q4 N 7218 7218 7218 7218 7218 7218 
Mean .1584 0.2692 2.1355 2.169262 62.4233 572556.4886 
Median .0000 0.0000 .0000 1.052632 72.0577 533100.0000 
Minimum .00 0.00 .00 .0000 .00 368500.00 
Maximum 100.00 25.00 44.44 22.7564 100.00 1266200.00 
Std. Deviation 2.27764 1.41793 5.10558 2.8280353 28.73307 210253.66400 
Variance 5.188 2.011 26.067 7.998 825.589 44206603226.695 
Skewness 1122.416 10.359 10.459 4.315 -1.046 1.677 
Kurtosis 29.468 145.577 3.045 1.853 -.569 1.352 

Total N 144360 144360 137142 137142 144360 144360 
Mean .2580 0.2692 .9778 .995947 62.4233 496719.7061 
Median .0000 0.0000 .0000 .000000 72.0577 451200.0000 
Minimum .00 0.00 .00 .0000 .00 236600.00 
Maximum 100.00 37.50 44.44 22.7564 100.00 1268800.00 
Std. Deviation 2.64275 1.36438 3.42142 1.8828952 28.73118 206069.46481 
Variance 6.984 1.862 11.706 3.545 825.481 42464624327.809 
Skewness 661.912 10.474 27.042 12.151 -1.046 2.185 
Kurtosis 21.648 155.345 4.739 2.971 -.569 1.365 
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Appendix B: SPSS Linear Regression Output 
 
 

Variables Entered/Removeda 

Model Variables Entered 
Variables 
Removed Method 

1 Natural log of 4QMAAR (%) 
Natural log of lagged CCR (%) 
Owner Occupancy (%) 
ZHVI in units of $10,000 
Rebate in units of $0.10b 

. Enter 

a. Dependent Variable: Natural log of 4QMAAR 
b. All requested variables entered. 

 
Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate 
1 .731a .535 .534 .50230 
a. Predictors: (Constant), Rebate10 in units of $0.10, ln(Lagged CCR%), ZHVI in units of $10,000, Owner Occupancy (%) 
b. Dependent Variable: ln(Future Mean AAR) 

 
ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression 1015.281 4 253.820 1006.002 0.000b 

Residual 883.575 3502 .252   
Total 1898.857 3506    

a. Dependent Variable: Natural log of 4QMAAR (%) 
b. Predictors: (Constant), Rebate10 in units of $0.10, ln(lagged CCR%), ZHVI in units of $10,000, Owner Occupancy (%) 

 
Coefficientsa 

Model 
Unstandardized Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 
1 (Constant) -.107 .073  -1.469 .142 

ln(Lagged CCR %) .632 .015 .501 41.737 .000 
Owner Occupancy (%) -. 013 .000 -.422 -35.020 .000 
ZHVI in units of $10,000 .002 .001 .034 2.844 .004 
Rebate10 .012 .002 .072 6.145 .000 

a. Dependent Variable: Natural log of 4QMAAR (%) 
 
 

Residuals Statisticsa 
 Minimum Maximum Mean Std. Deviation N 
Predicted Value -.6062 2.2276 .4630 .53813 3507 
Residual -1.57714 2.504476 .00000 .50201 3507 
Std. Predicted Value -1.987 3.279 .000 1.000 3507 
Std. Residual -3.140 4.071 .000 .999 3507 
a. Dependent Variable: Natural log of 4QMAAR (%) 
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Charts 

  

 

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N
Predicted Value
Residual
Std. Predicted Value
Std. Residual

-.6062 2.2276 .4630 .53813 3507
-1.57714 2.04476 .00000 .50201 3507

-1.987 3.279 .000 1.000 3507
-3.140 4.071 .000 .999 3507

Dependent Variable: Natural log of 4-quarter FMAAR (%)a. 
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Appendix C: SPSS Binary Logistic Regression Output 
 

Case Processing Summary 
Unweighted Casesa N Percent 
Selected Cases Included in Analysis 137142 95.0 

Missing Cases 7218 5.0 
Total 144360 100.0 

Unselected Cases 0 0 
Total 144360 144360 
a. If weight is in effect, see classification table for the total number of cases. 

 
Dependent Variable Encoding 

Original Value Internal Value 
0 0 
1 1 

 
Categorical Variables Codings 

 Freq. 
Parameter coding 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Lagged Mean 
ABCCR 
Thresholds 
(subject block 
excluded) 

= 0 87924 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
> 0-.67% 5075 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
.68-.87% 5069 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
.88-1.11% 4226 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
1.12-1.52% 5435 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1.53-1.98% 4802 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
1.99-2.50% 5199 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 
2.51-3.33% 4448 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 
3.34-4.28% 5125 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 
4.29-6.10% 4921 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 
> 6.10% 4918 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Lagged CCR 
Threshold 

= 0% 121245 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
> 0-2.9% 1613 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2.91-3.7% 1728 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3.71-4.4% 1902 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
4.41-5.0% 1478 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5.01-6.3% 1503 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
6.31-8.3% 1199 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 
8.31-10.0% 2136 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 
10.01-12.5% 1458 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 
12.51-16.7% 1492 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 
> 16.7% 1388 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

Rebate (in units 
of $0.10) 

25 72180 0.000 0.000         
30 36090 1.000 0.000         
35 28872 0.000 1.000                 
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Block 0: Beginning Block 
Classification Tablea,b 

 
Observed 

Predicted 
4-Quarter Application Presence Percentage 

Correct 0 1 
Step 0 4-Quarter Application Presence 

variable (1 = presence, 0 = absence) 
0 124446 0 100.0 
1 12696 0 0.0 

Overall Percentage    90.7  
a. Constant is included in the model. 

 b. The cut value is .500 
 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 0 Constant -2.283 0.009 60024.874 1 0.000 0.102 

 
Variables not in the Equation 

 Score df Sig. 
Step 0 Variables LagCCRThreshold 4706.153 10 0.000 

LagCCRThreshold(1) 1437.090 1 0.000 
LagCCRThreshold(2) 723.515 1 0.000 
LagCCRThreshold(3) 690.826 1 0.000 
LagCCRThreshold(4) 398.281 1 0.000 
LagCCRThreshold(5) 319.865 1 0.000 
LagCCRThreshold(6) 306.742 1 0.000 
LagCCRThreshold(7) 365.983 1 0.000 
LagCCRThreshold(8) 85.899 1 0.000 
LagCCRThreshold(9) 9.257 1 0.002 
LagCCRThreshold(10) 14.918 1 0.000 
MeanABCCRThresh 1428.319 10 0.000 
MeanABCCRThresh(1) 0.992 1 0.319 
MeanABCCRThresh(2) 0.336 1 0.562 
MeanABCCRThresh(3) 0.000 1 0.990 
MeanABCCRThresh(4) 2.461 1 0.117 
MeanABCCRThresh(5) 28.028 1 0.000 
MeanABCCRThresh(6) 46.446 1 0.000 
MeanABCCRThresh(7) 92.856 1 0.000 
MeanABCCRThresh(8) 150.264 1 0.000 
MeanABCCRThresh(9) 437.209 1 0.000 
MeanABCCRThresh(10) 385.213 1 0.000 
Rebate10 1540.698 2 0.000 
Rebate10 (1) 4.383 1 0.036 
Rebate10 (2) 1342.243 1 0.000 
Owner Occupancy (%) 705.876 1 0.000 
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Block 1: Method = Enter 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 
Step 1 Step 5661.471 23 0.000 

Block 5661.471 23 0.000 
Model 5661.471 23 0.000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 
1 78943.243a 0.040 0.088 

3 Estimation terminated at iteration number 5 because parameter estimates changed by less than .001. 
 

 
Classification Tablea  
 
Observed 

Predicted 
4-Quarter Application Presence Percentage 

Correct 0 1 
Step 1 4-Quarter Application Presence 

variable (1 = presence, 0 = absence) 
0 124348 98 99.9 
1 12579 117 0.9 

Overall Percentage      90.8  
a. The cut value is .500 

 

Variables in the Equation B S.E. Wald df Sig Exp(B) 
95% C.I.for EXP(B) 
Lower Upper 

Step 1a LagCCRThreshold     2936.983 10 0.000       
LagCCRThreshold(1) 1.760 0.054 1060.306 1 0.000 5.811 5.227 6.461 
LagCCRThreshold(2) 1.405 0.056 630.981 1 0.000 4.074 3.651 4.546 
LagCCRThreshold(3) 1.305 0.055 573.080 1 0.000 3.687 3.313 4.103 
LagCCRThreshold(4) 1.217 0.063 371.730 1 0.000 3.376 2.984 3.821 
LagCCRThreshold(5) 1.043 0.064 264.506 1 0.000 2.838 2.503 3.219 
LagCCRThreshold(6) 1.109 0.070 248.585 1 0.000 3.032 2.642 3.481 
LagCCRThreshold(7) 0.985 0.056 313.787 1 0.000 2.678 2.401 2.986 
LagCCRThreshold(8) 0.604 0.074 67.384 1 0.000 1.829 1.583 2.112 
LagCCRThreshold(9) 0.177 0.083 4.511 1 0.034 1.193 1.014 1.405 
LagCCRThreshold(10) -0.558 0.113 24.549 1 0.000 0.572 0.459 0.714 
MeanABCCRThresh   542.375 10 0.000    
MeanABCCRThresh(1) 0.137 0.050 7.399 1 0.007 1.147 1.039 1.266 
MeanABCCRThresh(2) 0.117 0.051 5.348 1 0.021 1.125 1.018 1.242 
MeanABCCRThresh(3) 0.132 0.056 5.590 1 0.018 1.141 1.023 1.273 
MeanABCCRThresh(4) 0.159 0.048 10.776 1 0.001 1.172 1.066 1.289 
MeanABCCRThresh(5) 0.316 0.048 42.555 1 0.000 1.372 1.247 1.508 
MeanABCCRThresh(6) 0.351 0.046 58.304 1 0.000 1.421 1.298 1.555 
MeanABCCRThresh(7) 0.409 0.048 73.942 1 0.000 1.505 1.371 1.652 
MeanABCCRThresh(8) 0.424 0.044 92.892 1 0.000 1.528 1.402 1.665 
MeanABCCRThresh(9) 0.694 0.042 278.564 1 0.000 2.002 1.845 2.172 
MeanABCCRThresh(10) 0.639 0.042 228.133 1 0.000 1.895 1.744 2.059 
Rebate10   959.957 2 0.000    
Rebate10(1) 0.301 0.024 161.674 1 0.000 1.351 1.290 1.415 
Rebate10(2) 0.713 0.023 959.899 1 0.000 2.040 1.950 2.134 
Owner Occupancy 0.009 0.000 595.255 1 0.000 1.009 1.008 1.010 
Constant -3.462 0.030 13210.339 1 0.000 0.031     

a. Variable(s) entered on step 1: LagCCRThreshold, MeanABCCRThresh, OOccupation, ZHVI_10K. 
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Appendix D: SPSS Independent Samples t-Test Output 
 
 
t Test – 4QMAAR (%) at Lagged CCR (%) = 0 and Lagged CCR (%) > 0 
 

Group Statistics 
 Lagged CCR (%) N Mean Std. Deviation Std. Error Mean 
4-Quarter 
Mean AAR 
(%) 

>= .01 15897 0.4896 1.56607 0.01242 
< .01 121245 0.2472 1.34786 0.00387 

 
 

 Independent Samples Test   

 

Levene's Test 
for Equality of 

Variances 
t test for Equality of Means 

F Sig. t df 
Sig. 

(2-tailed) 
Mean 

Difference 
Std. Error 
Difference 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

Future 
Mean 
AAR 
(%) 

Equal 
variances 
assumed 

805.376 0.000 20.896 137,140 0.000 0.24234 0.01160 0.21961 0.26508 

Equal 
variances not 
assumed 

  18.627 19,110.012 0.000 0.24234 0.01301 0.21684 0.26785 
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t Test – 4QMAAR (%) at lagged ABCCR (%) <= 4.28 and ABCCR (%) > 4.28 
 

Group Statistics 

 
Mean lagged ABCCR %  
(not including subject block) N Mean Std. Deviation 

Std. Error 
Mean 

4-Quarter 
Mean AAR 
(%) 

>= 4.28 11474 0.5974 2.15855 0.02015 
< 4.28 132,306 0.2410 1.26386 0.00347 

 
 

 Independent Samples Test   

 

Levene's Test for 
Equality of 
Variances 

t test for Equality of Means 

F Sig. t df 
Sig. 

(2-tailed) 
Mean 

Difference 
Std. Error 
Difference 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

Future 
Mean 
AAR 
(%) 

Equal 
variances 
assumed 

2,006.359 0.000 26.981 143,778 0.000 0.35634 0.01321 0.33046 0.38223 

Equal 
variances 
not assumed 

  17.426 12,164.423 0.000 0.35634 0.02045 0.31626 0.39643 

 
 
 
 
 
 


