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ABSTRACT 
 

Geographic Information Systems (GIS) provide a good framework for solving 

classical problems in the earth sciences and engineering. This thesis describes the 

geostatistics associated with creating a geological model of the Abacherli reservoir 

within the Mahala oil field of the Los Angeles Basin of Southern California using a 

variogram-based two-point geostatistical approach. The geology of this study area 

features a conventional heterogeneous sandstone formation with uniformly inclined 

rock strata of equal dip angle structurally trapped by surrounding geologic faults. 

Proprietary electrical well logs provide the resistivity and spontaneous potential at 

depth intervals of 10’ for the thirteen active wells in the study area. The dimensions 

and shape of the reservoir are inferred from geological reports. An isopach map was 

georeferenced, digitized and used to generate a 3D point-set grid illustrating the 

boundaries and the volumetric extent of the reservoir. Preliminary exploration of 

the input data using univariate and bivariate statistical tests and data 

transformation tools rendered the data to be statistically suitable for performing 

ordinary kriging and sequential Gaussian simulation. The geological and statistical 

characteristics of the study area ensure that these interpolations are appropriate to 

employ. Three variogram directions were established as part of the variogram 

parameters and then a best-fit statistical function was defined as the variogram 

model for each of the two electrical log datasets. The defined variogram was then 

used for the kriging and simulation algorithms. The data points were interpolated 

across the volumetric reservoir resulting in a 3D geological model displaying the 

local distribution of electrochemical properties in the subsurface of  



xii 

the study area. Data is interchanged between separate modeling programs, Stanford 

Geostatistical Modeling Software (SGeMS) and Esri ArcGIS, to illustrate the 

interoperability across different software. Validation of the predictive geostatistical 

models includes performing a leave-one-out cross-validation for each borehole as 

well as computing a stochastic model based on the sequential Gaussian simulation 

algorithm, which yielded multiple realizations that were used for statistical 

comparison. The reservoir characterization results provide a credible 

approximation of the general geological continuity of the reservoir and can be 

further used for reservoir engineering and geochemical applications
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CHAPTER ONE: INTRODUCTION 
 

1.1 Background 

 

 Geographic Information Systems (GIS)  are a very useful way to integrate 

geology with engineering. Geostatistics in particular is an inherently interdisciplinary 

branch with direct applications to geology, geography and petroleum engineering 

practices (Myers 2013). Since geostatistics involves quantitative analysis, modeling and 

simulation of field data using numerical and analytical techniques it is a core component 

of petroleum engineering (Dubrule and Damsleth 2001). Due to the focus on modeling of 

spatial and spatiotemporal datasets measured at geographical locations, geostatistics is 

also a widely used approach in geography and GIS (Burrough 2001). When geostatistics 

is applied to petroleum (or hydrology) the focus is on modeling the subsurface 

environment constrained to the local geology, thus geostatistics is also an important 

discipline in the earth sciences (Journel 2000). Therefore this research provides a good 

interdisciplinary opportunity to combine the earth and spatial sciences with petroleum 

engineering. 

  

1.1.1 Global Objective 

A global effort within the scientific community has begun which acknowledges the 

need for greater capabilities in information management to: 1) satisfy the continuously 

increasing demand for the discovery, management and sustainability of natural resources, 

and 2) provide solutions in forecasting natural phenomena for addressing societal 

challenges (Sinha et al. 2011). One of the main objectives of this research is to promote 

and contribute to the relatively new but rapidly evolving interdisciplinary field of 
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geoinformatics. Geoinformatics is the science that uses spatially related information and 

computational technology systems to address complex problems in the earth, 

environmental, geographical and related engineering disciplines with the future goal to 

provide greater availability of data and tools for serving the needs of the public (Awange 

and Kiema 2013). When GIS-assisted approaches are used to acquire, manage and 

analyze geo-information in combination with advanced computational techniques, 

geoinformatics becomes a powerful tool to efficiently integrate different data and 

improve the way scientific information is processed and presented (Krishna et al. 2010).  

The development and implementation of information and computing technology as 

well as cyberinfrastructure for the earth sciences is expected to help transform the next 

generation of interdisciplinary research. The shift to the information age (known as the 

“Digital Revolution”) has very significantly affected academia in which earth scientists 

increasingly rely more on digital data instead of hard copy. Hence the emergence of 

evolving fields such as geoinformatics will be very important for data-intensive research, 

especially with the global exchange of information (i.e. the onset of “big data”).  

Geographic information systems are complex systems that are comprised of different 

components which have separate functions including data, software/hardware and 

personnel. When used collectively the components allow for broader approaches to 

spatial problem solving. GIS usage specializations relevant to this research include 

remote sensing, programming, global navigation and positioning systems, spatial analysis 

and modeling, as well as other spatial science disciplines dealing with data visualization 

and optimization (Wilson and Fotheringham 2008). The data management system of a 

GIS is typically managed via the use of integrated spatial databases that allow for the 
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organization of information and the determination of relationships between the data and 

topology. An illustration of the database which was used as a model for the database for 

this research and for optimizing field activities, and which contains information about the 

study area input data and individual oil reservoir wells, is shown in Figure 1. Additional 

more complex programs that can perform GIS geoprocessing functions (e.g. 

ModelBuilder) can be used to automate workflows for improving production activities 

encountered in day-to-day field work.  

 

 

 

 

Figure 1: Database design utilized for field services by lease operators (OCR 2014). 
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1.1.2 Thesis Objective 

The primary objective of this thesis project was to develop a volumetric 3D geological 

model of the petroleum reservoir in the study area using GIS to visualize the subsurface 

distribution of rock properties shown in Figure 2, the Abacherli reservoir within the 

Mahala oil field of the Los Angeles Basin of Southern California. 

 

 

Interpolation of drilled well or wellbore data involves predicting values of specific 

variables at unknown locations based on the measurements obtained from known 

locations using statistical principles, thereby creating a continuous surface of the 

subsurface field. Earth systems are inherently complex, dynamic and contain various 

Figure 2: DEM of study area region with active geological faults (based on USGIN 2011) 
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characteristics that can make reservoir characterization a very burdensome task (Caumon 

2010). The inclusion of geological features depends mainly on the depositional 

environment and defines the overall geological architecture of a given reservoir (Kelkar 

and Perez 2002). Different geological settings may require different geostatistical 

approaches (e.g. object-based modeling or variogram-based modeling) in order to 

construct an appropriate model that honors the form of the reservoir as closely as 

possible. Stationarity, defined in practice as local data averages within a spatial domain 

that are approximately constant, is the most important assumption for estimation in 

geostatistics. Assuming stationarity in a particular region requires that the model 

developed from the sampled data be applicable within the specified study area. In 

reservoir analyses this assumption is necessarily subjective because of the inherent 

uncertainties in the subsurface and the scarcity of data which prevents researchers from 

being absolutely certain about the subsurface geology of a region in which there is 

limited wellbore data. In the context of this study, a region of stationarity defines the 

continuity boundaries for the study area subsurface or “field”.   

Geostatistics is the discipline concerned with determining the extent of that continuity 

within the region of assumed stationarity by taking advantage of the notion that values 

that are closer to one another are more similar than values further away (i.e. as the 

distance between any two values increases the similarity between the two measurements 

decreases) (Kelkar and Perez 2002). Following this assumption, geostatistical techniques 

are aimed at identifying spatial relationships between variables, such as how neighboring 

values are related to each other, in order to estimate values at separate locations. Provided 

that field conditions meet the criteria, one reliable approach to define this variability is 
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through a statistical correlation as a function of distance, known as a variogram. In many 

cases where geological structures are assumed continuous throughout the reservoir, even 

if a few discontinuous lithological layers act as baffles, it is appropriate to assume that the 

reservoir can be modeled as a whole by the use of variogram-based modeling. Figure 3 

illustrates a typical petroleum deposit scheme in which oil and gas are generated at the 

source, migrate in direction of least resistance and are subsequently trapped and 

accumulated to form petroleum reservoirs. 

 

 

 

 

 

 

 

Figure 3: Digitized hydrocarbon deposit system (based on AAPG UGM SC 2011)  
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1.2 Analysis Review 

 

1.2.1 Kriging Review 

 Kriging is a widely used conventional estimation technique that is based on a 

linear estimation procedure expected to provide accurate predictions of values within a 

volume, over an area or at an individual point within a specified field. In earth science, 

kriging is a favored interpolation approach compared to other methods because of its 

ability to include the anisotropy that rock layers of a sedimentary material exhibit in 

geological formations, thus the models that are obtained via the use of kriging have more 

resemblance to the true field geology (SPE PetroWiki 2013). This is in part because the 

linear-weighted averaging methods used in kriging techniques depend on direction as 

well as orientation, instead of only depending on distance as other interpolation methods 

do. The fundamental principle in any kriging technique is that an unknown value at an 

unsampled point is estimated by the product of a weighted average of neighboring values, 

as explained by the following simplified expression: 

  ( ⃗  )   ∑   ( ⃗  )

 

   

                    (                                              ) 

 
Where  ( ⃗  ) = value at neighboring location ( ⃗  ),     = weight of neighboring value and 

   ( ⃗  ) = estimated value at unsampled location. The estimation procedure calculates the 

weights (  ) assigned to neighboring locations, which depend on the spatial relationship 

between unsampled points and neighboring values as well as the spatial relationship 

between neighboring points (Kelkar and Perez 2002). The relationships are obtained via 

the use of a variogram model. 
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 Variations between the different types of variogram-based kriging methods 

available are different depending by how the mean value is determined and used in the 

interpolation (SPE PetroWiki 2013). Ordinary kriging is by far the most commonly used 

kriging approach that allows for the local mean to vary and be re-estimated based on 

nearby (local) values thereby easing the assumption of first-order stationarity (Kelkar and 

Perez 2002). Ordinary kriging is better suited for this type of analysis because a true 

stationary global mean value for data in a reservoir is typically unknown and it cannot be 

assumed that the sample mean is the same as the global mean. This is due to the fact that 

in any real reservoir the local mean within a neighborhood in the field can easily vary 

over the spatial domain.  

Ordinary kriging is deemed appropriate and used as the estimation technique in 

this analysis. Nevertheless, it is important to consider three other types of kriging 

techniques, which include simple kriging, universal kriging and cokriging. As the name 

suggests simple kriging is the mathematically simplest technique where a known 

stationary mean must be assumed over the entire spatial domain or study area. However, 

it is unrealistic to assume that we know the exact mean for all the data locations in the 

field given the degree of uncertainty in the subsurface geology, therefore this technique 

was not applied in this study. The universal kriging model assumes that there is a general 

polynomial trend. However the data is not known to exhibit a trend in a particular 

direction and there is no scientific justification to describe a potential trend, so universal 

kriging was not deemed to be more appropriate either. Cokriging is a type of kriging 

technique that uses spatial correlations from different data variable types to estimate the 

values at unsampled locations. In addition to estimating the values at unsampled locations 
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with surrounding samples of the same variable type (e.g. porosity), cokriging also uses 

the surrounding samples from different variables (e.g. permeability) provided the 

assumption that both variable types are spatially correlated to each other (Kelkar and 

Perez 2002). Taking advantage of the covariance between two or more spatially related 

variables, and in theory providing a greater ability to make better predictions, cokriging is 

an attractive as well as commonly used approach. Nevertheless, the applicability of 

cokriging to a particular field depends on if the objective is to provide a stronger 

prediction of a more undersampled variable relative to a more well-sampled variable 

given a strong correlation between the two variables. For example, if permeability values 

were derived from core samples for only a few wells, say 4 or 5, but electrical log values 

were obtained for all of the 13 wells and assuming spatial relationships between the cores 

and logs, then it would be most appropriate to “cokrige” the permeability samples with 

the resistivity/spontaneous potential to provide a better permeability distribution model. 

But because both electrical properties in this study, spontaneous potential and resistivity 

(“SP” and “R”), are adequately sampled, it was decided that cokriging analysis would not 

be included. Nevertheless performing cokriging between SP and R as an additional 

analysis in the future may provide useful results and information.  

 

1.2.2 Simulation Review 

 

 Another approach besides conventional estimation techniques such as kriging to 

characterize heterogeneous reservoirs is the use of geostatistical conditional simulation 

techniques. One of the primary differences between the two is that simulation methods 

preserve the variance observed in the data by relaxing some of the constraints of kriging, 
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as opposed to only preserving the mean value. Conditional simulation is a type of 

variation of conventional kriging and is a stochastic modeling approach that allows for 

the calculation of multiple equally probable solutions (i.e. realizations) of a regionalized 

variable by simulating the various attributes at unsampled locations, instead of estimating 

them (SPE PetroWiki 2013). A “conditional” simulation is conditioned to prior data, or in 

other words the hard or raw data measurements and their spatial relationships such as a 

variogram are honored. By providing several alternate equiprobable realizations this 

approach helps represent the true local variability thereby helping to characterize local 

uncertainty. This is one of the most useful properties of a simulation because all models 

are subject to uncertainty, in particular geological models because they are based on 

partial sampling. This is especially true of reservoir models due to the several different 

sources of uncertainty.  

Provided that the true value of a geological attribute is a single number but that 

exact value is always unknown because of the uncertainty in the field, the practice in 

statistical modeling is to transform the single number into a random variable, a variate, 

which is a function that specifies its probability of being the true value for every likely 

outcome. The two main types of conditional simulation methods are either grid-based 

(a.k.a pixel-based) which operate one cell (or point) at a time, or are object-based which 

operate on groups of cells arranged within a discretized geologic shape (SPE Petrowiki 

2013). During each individual run the corresponding realization starts with a unique 

random ‘navigational path’ through the discretized volume providing the order of cells 

(or points) to be simulated. Because the ‘path’ differs from each realization-to-realization 

the results provide differences throughout the unsampled cells which yield the local 
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changes in the distribution of rock properties throughout the reservoir that are of interest 

for accurate geological representations. For example, in this study running several 

realizations produced several values per variate, which then allowed for a graphical 

representation of the results and an approximation of the variates (Olea et al. 2012). The 

method used in this study is the grid-based approach because of the geological 

assumption that the geologic facies vary smoothly enough across the reservoir (typical 

depositional setting of shallow marine reservoirs) as opposed to sharp changes in the 

shape of the sedimentary body. Furthermore, there are different types of simulation 

methods including annealing simulation, truncated Gaussian simulation, turning bands 

simulation and sequential simulation. Sequential simulation methods are some of the 

most widely used in practice and are kriging-based methods where unsampled locations 

are sequentially and randomly simulated until all points are included. The order and the 

way that locations are simulated determine the nature of the realizations. There are three 

types of sequential-simulation procedures, including Bayesian indicator, sequential 

Gaussian, sequential indicator. These are based on the same algorithm but with slight 

variations. Sequential Gaussian Simulation (SGS) is one of the most popular, it assumes 

the data follow a Gaussian distribution. Because SGS is best suited for simulating 

continuous petrophysical variables (e.g. resistivity, spontaneous potential, porosity, 

permeability) it is deemed most appropriate for this study and thus was used as the 

simulation method, detailed in Chapter 4.  
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1.2.3 Interpolation Comparison 

 Both conventional estimation (kriging) and stochastic modeling (sequential 

Gaussian simulation) techniques are well proven, but slightly different, approaches to 

describe the natural processes and attributes of geological phenomena, in this case the 

characterization of a petroleum reservoir. A useful addition is to use both of them in a 

study to compare and contrast. To recap the main differences between the two: 1) kriging 

provides an estimation of the mean value and its standard deviation at an individual point 

given that the variate is represented as a random variable that follows a Gaussian 

distribution, and 2) SGS selects a random deviate from the same Gaussian distribution 

instead of estimating the weighted mean at each point where the simulation is selected 

according to a uniform random number that represents the probability level (Halliburton-

Landmark Software 2011). When including the simulation approach the natural 

variability of the local geology counters the blunt smoothing effects of kriging. From the 

multiple equiprobable realizations obtained it is possible to characterize uncertainty by 

comparing a large number of realizations. Assuming the model is representative of the 

field then the true value is expected to fall within the bounds of the probability. 

Quantification in terms of probability can be made, for example finding the mean value 

of the distribution which corresponds to the highest probability. Both approaches 

complement each other and are used in the analysis performed as part of this thesis 

research. The mathematical details of these methods are extensive and beyond the scope 

of this report. More detailed information on the mathematical and statistical expressions 

can be accessed from additional text available in the literature (e.g. McCammon 1975; 

Chiles and Delfiner 1999; Kelkar and Perez 2002).  
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1.3 Motivation 

 

1.3.1 Applicability to Petroleum Engineering and Petroleum Geology  

Applied geostatistics for geological modeling and simulation is essential for successful 

oil and gas production. Reservoir characterization includes determining the distribution, 

or the closest possible approximation, of subsurface properties of a geologic system in a 

petroleum field.  This is essential information for improving resource management, 

production development and field operations (Gorell 1995). Geologic outputs obtained 

from geostatistical models are used in a variety of important applications for petroleum 

and similarly for groundwater resources, including exploration, reservoir engineering and 

environmental remediation (Nobre and Sykes 1992). Having a thorough geostatistical 

model is very important when it is used in reservoir simulators, inverse models and 

geochemical models. Reliable geological models based on geostatistics can be used for 

specific practices such as calculating oil production rates, remediating contaminated 

aquifers, estimating the recoverable reserves (i.e. oil, gas or water), drilling new 

boreholes and determining hydrocarbon migration (Deutsch 2006). The combined use of 

geostatistical, simulation and inverse models enable effective reservoir engineering. This 

provides the opportunity to predict field performance and further understand reservoir 

behavior, which in turn furthers the ultimate goal of optimizing production and 

maximizing hydrocarbon recovery (Coats 1969). Reservoir engineering as a sub-

discipline has grown exponentially with the onset of digital technologies and computers 

capable of performing larger and more complex sets of calculations. Because of this 

“reservoir simulation revolution” and the increasing demand for energy, geostatistical 



 14 

modeling will remain a key engineering tool in natural resource development (Stags and 

Herbeck 1971).  

The schematic diagram provided in Figure 4 illustrates the general workflow cycle of 

the “field” from a reservoir engineering perspective. First a geostatistical model 

(geological continuity) is developed and input into a fluid flow model (reservoir 

simulator) that predicts field production, then an objective function (inverse model) is 

developed to integrate dynamic data (field observations) and adjust the necessary 

parameters (history match) until the simulations are reasonably close to the observations. 

The complete process assists in the validation of all model(s) included in a given 

analysis, thus providing the opportunity to achieve a validated decision-making tool 

ensuring that optimal field performance is achieved in the future. 

 

 

Figure 4: Reservoir engineering results illustrating reservoir characterization/simulation scheme. 
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1.3.2 Importance of the Energy Industry 

 The energy industry is an extremely important part of the Unites States economy 

and will remain a key component for economic growth in the following decades. 

Petroleum is currently the most important player in the energy industry and is expected to 

continue to be the main source of energy throughout our human timescale. Petroleum 

affects virtually every aspect of the industrialized world and is found in most synthesized 

materials in use today, from the fuel we use (cars, jets, boats) to our electronics and 

beauty products. Therefore, control of this resource is imperative for the development and 

stabilization of human well-being (Ranken Energy 2014). In 2011 the U.S. consumed an 

estimated 18.8 MMbbl/day plus around 19.1 MMbbl/day of refined petroleum products, 

or around 22% of the global production, making it the largest consumer in the world (EIA 

2012). Recent resurgence in domestic oil and gas production has led to a remarkable oil 

boom, in great part due to the use of advanced recovery technologies for the extraction 

from unconventional resources. This is dramatically transforming the nation’s energy 

market and has put the U.S. on the verge of becoming the world’s largest oil producer 

(Thompson 2012). In 2012 the U.S. experienced the largest increase in the world of crude 

oil and natural gas production, providing extraordinary opportunities for independent 

producers in the upstream industry (Bell, Julia 2013). Independent oil companies operate 

most of the national oil production, accounting for around 42% offshore and 72% 

onshore (averaging 68%) (PolitiFact 2014). Approximately 80% of the domestic oil wells 

in the U.S. are classified as stripper wells (i.e. wells yielding ≤ 10 bbl./day), and 

production from stripper wells makes up about 20% of the total domestic production 

(NSWA 2014). Furthermore the U.S. is the only country with significant stripper well 
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output. The production from independent companies in California alone comprises 

around 70% of total oil and 90% of gas production in the state with a fair share coming 

from small to midsized companies (CIPA 2014). Therefore crude oil production from 

independent sources will continue to play an imperative role on the road to energy 

independence and economic stability. It is important to mention that the amount of oil 

extracted during primary oil recovery, especially with outdated practices used in the mid-

20th century, typically only ranges between 5-15% of the total recoverable oil. When 

combined with secondary or tertiary recovery production may only reach between 40-

60% of the total oil reserves (Tzimas et al. 2005). Since mature oil fields such as the 

Abacherli reservoir in the Mahala field have only been subjected to primary recovery 

using outdated technology, much interest and investment is focused on reviving these old 

fields, which are guaranteed to retain most of their extractable reserves still intact. With 

innovative solutions and growing technology, mature oil fields including the Mahala have 

the potential to become significant contributors to the national oil and gas boom, 

especially with the use of functional operations such as: horizontal drilling, hydraulic 

fracturing, gas injection and other enhanced oil recovery techniques. Mature reservoirs 

produce more than 80% of the world oil production. In addition, the rate of production 

from new (non-mature) discoveries has consistently dropped since the turn of the century 

(Alvarado and Manrique 2010; Delshad, Mojdeh 2013; EOIR 2013). Therefore mature 

reservoirs and associated stripper wells comprise an essential part of the energy industry, 

so increasing production from these assets is very important for ensuring economic 

security and meeting the growing energy demand. As part of an old large oil field with 

the vast majority of its recoverable reserves still in play, the Abacherli reservoir in the 
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Mahala oil field is a good candidate for evaluation and revival. The social motivation of 

this work and contribution to society is providing computational results for the 

management of an indispensable natural resource, petroleum. Because of the 

interconnection between the energy industry with the economy as well as public and 

political interests, this research project could have a significant impact on the economy. 

Information derived from this study will be used to take action and make substantial 

improvements in oil reservoir extraction from the Abacherli reservoir in the Mahala oil 

field in the future. Lastly, the academic motivation of this work is to help contribute to 

the rapidly evolving cross-disciplinary research between the natural and applied sciences.     
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CHAPTER TWO: STUDY AREA 

2.1 Geography 

 

2.1.1 Physical Geography Overview of Study Area 

 This project evaluates the Abacherli reservoir within the Mahala oil field of the 

Los Angeles Basin of Southern California, shown in Figure 2. Situated between the 

intersection of Los Angeles, Riverside, Orange and San Bernardino county lines, the 

reservoir is part of the Chino Hills highlands and immediately connected to the Chino 

Hills State Park. Based on distance calculations obtained from field observations using 

GPS/GIS tools, the Abacherli lease is estimated to have a total surface area measuring 

approximately 1.0 km
2
 and a rugged terrain with variable elevation ranging from 500’ to 

1,200’ above sea level, consisting of hills dissected by deep canyons. The study area field 

is geographically located on the southern Californian pacific coast of the North American 

Cordillera, which is the major mountain chain extending throughout the western 

continent.  

Along the American west coast are numerous major mountain ranges known 

collectively as the pacific mountain system. In southern California, more specifically, 

there are collections of different mountain ranges including the Peninsular Ranges and 

the Transverse Ranges. The ecology of this region is typical of terrestrial ecosystems of 

southern California, transitioning from coastal to the desert environments and consisting 

mostly of shrubland (e.g. chaparral) and woodlands (Schoenherr 1992). The Santa Ana 

Mountains, part of the Peninsular Ranges, are a north-south trending range that 

geographically and geologically divide Los Angeles, marking the easternmost border of 
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the LA basin and county. Within these mountains, the Chino Hills highlands mark the 

beginning of the Santa Ana range from the north. The Chino Hills are the foothills to the 

southern section of the east-west trending San Gabriel Mountains of the Transverse 

Ranges and act as a bridge connecting the Peninsular Ranges to the south, with the 

Transverse Ranges to the north immediately adjacent to the Puente Hills (California State 

Parks 2013). The location of Chino Hills is of geographic importance because of its 

relation to major metropolitan cities and its connection to mountain ranges, ecosystems 

and local watersheds. In fact, the southeastern part of the study area extends into the 

Santa Ana River valley. The map provided in Figure 2 displays the major geologic faults 

of the region overlain on a digital elevation model (DEM) that further illustrates the 

topography of the study area. Figure 5 illustrates the oil fields within the Los Angeles 

Basin of southern California. The significant deposits of petroleum in the region can be 

attributed to the deposition of organic-rich sediments in the basin and their effective 

accumulation in part due to the major geologic forces at work, such as faulting, folding.    
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2.2 Geology 

 

2.2.1 Geological Setting 

 The following geologic map, Figure 6, of Southern California illustrates some of 

the overall bedrock and lithology of the region. 

Figure 5: Oilfields of the Los Angeles basin (based on DOGG 2013) 
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 Regional geographic features and landscapes are shaped by California’s complex 

but young and active geology. Active tectonic forces have resulted in dominant fault 

zones where structural formations have allowed for the large accumulation of 

hydrocarbons. Southern California in particular is in a pivotal location where a great 

continental transform fault (San Andreas) divides two of the world’s major tectonic 

plates. Energy released from geological activity along these plates has resulted in massive 

stress fields that have triggered the generation of several faulting and folding mechanisms 

(Wright, Thomas 1987). The two most important structural mechanisms that are 

responsible for the formations of the Mahala oil field are the Whittier and Chino faults; 

these are the two upper segments that branch off of the major Elsinore Fault Zone, which 

is part of the trilateral split of the intercontinental San Andreas Fault system (Figure 2). 

There are four known and producing reservoirs in the Mahala oil field, listed as follows: 

Figure 6: Geology of Southern California study area region (Madden and Yeats 2008) 
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Mahala, West Mahala, Prado Dam and Abacherli, and there are an additional three 

known reservoirs in the vicinity of the field as shown in Figure 7. 

 

 

2.2.2 Geological Structure 

 Compressional forces from the Whittier and Chino faults have resulted in 

deformation in the area, including large anticline-syncline folding structures between 

these two faults, such as the Mahala anticline. Located on the geographic extreme eastern 

edge of the Puente Hills/Chino Hills and located on the geologically extreme eastern edge 

of the LA basin, the Mahala anticline is an asymmetric northwest-trending breached 

anticline extending over three miles in length (Dorsey, Ridgely 1993). The anticline is 

thrust-faulted by the chino fault, which is directly responsible for the uplift of the region 

Figure 7: Reservoirs in the Mahala oilfield study area (Olson 1977) 
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and is the primary structural feature of the Abacherli reservoir. The chino fault trends to 

the northwest and has a dip range between 50-70 to the southwest (dipping ≤ 50° at 

depths less than 1,000’ and around 70° at depths exceeding 3,0000’) (Olson, Larry 1977). 

The Chino fault thrust segmented the northeastern-most limb of the Mahala anticline fold 

dividing the area into a hanging wall above the fault and a footwall below the fault. It is 

estimated that movement along the fault occurred during the Pleistocene epoch (Olson, 

Larry 1977). This local mechanism is responsible for setting up the updip fault trap for 

the oil accumulation of the Abacherli reservoir, such as the footwall block in the 

segmented limb of the faulted Mahala anticline within the Chino fault zone. The reservoir 

itself is a tilted homocline with steeply but uniformly dipping beds to the northeast with 

an approximate strike of 315°. The reservoir dip angle ranges between 40-70° with an 

average of 60°, and the dip angle is largest closer to the fault and decreases with distance 

from the fault. There are two unnamed northeast-southwest trending sealing faults which 

merge southwest of the Abacherli area that cap the reservoir at its northern and southern 

edges, effectively serving as the boundaries of the reservoir. 

 Figure 9 is a cross-section of line E-E’ from Figure 8 below. Both Figures 

illustrate some of the local lithology and main structures of the chino fault zone within 

the chino fault area. The column on the right of Figure 9 is the legend for both Figures, 

providing a reduced version of the stratigraphic column. Figure 10 is an additional cross-

section for the location of interest helping to illustrate the local stratigraphy. The 

“Michelin Zone” in the cross-section is the primary sandstone formation that produces 

most of the oil in the lease. Appendix I and II illustrates additional information on the 

stratigraphic sequence. 
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Figure 8: Geological map of study area (Madden and Yeats 2008) 
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Figure 9 (above): Cross-section of Chino fault zone for line E-E’ of Figure 8. Stratigraphic 

Legend (right) applies to both Figures 8 and 9. (Madden and Yeats 2008) 

Figure 10: Idealized cross-section of Chino fault zone (DOGG 1992) 
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2.2.3 Sedimentary History Overview 

 Part of the greater Los Angeles Basin, the Mahala field is on par with the 

geological history of the rest of the basin. Basin formation occurred during the Neogene 

period (approximately 15 million years ago) with major subsidence and deposition 

occurring between the Upper Miocene until the Lower Pleistocene epochs (approximately 

between 11.5 to 2.5 million years ago) (Mayuga, 1970). The depositional environment is 

known to be a marine to moderately deep marine environment with sediment being 

deposited via the transport mechanisms of the sea and rivers which allowed for the 

accumulation of large sediment deposits to be further transformed into hydrocarbons. The 

United States Geological Survey (USGS) report by Durham and Yerkes 1964 estimates 

the water depth of the Mahala field vicinity at the time of deposition to have been 

approximately 2,000’, with turbidity currents as the main transport method (Dorsey, 

Ridgely 1993). 

 

2.2.4 Lithology and Stratigraphy 

 The strata in the area are first divided into series depending on their age, then the 

series are divided into separate formations according to their sequence. Then the 

formations are further divided into members according to their producing intervals, such 

as production zones and lithology. Appendix II illustrates the full stratigraphic column 

for the Mahala area and surrounding vicinity. Based on the known well penetrations the 

strata in the field range from Late Cretaceous to Holocene, with the oldest (lowest) 

Cretaceous section supposedly underlain by a basement of Mesozoic age consisting of 

granodiorite and associated plutonic rocks of the Southern California batholith from a 
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depth of 5,000’ to 7,000’ (Olson, Larry 1977). Following the law of superposition we 

expect that the layering order of the sedimentary rocks will follow the sequence on the 

stratigraphic column (i.e. oldest on bottom and youngest on top). However, the 

movement of the thrust fault has reversed the normal order by pushing up rocks of a 

lower layer over rocks of a higher layer, so older strata southwest of the Chino fault, such 

as the Yorba shale member, are thrust over younger strata to the northeast, for example 

the Sycamore Canyon sand member. Therefore the overthrust hangingwall block above 

the fault contains the lower permeability shale member, and the footwall block including 

the Abacherli reservoir oil field contains the higher permeability oil-rich sand member 

(Olson, Larry 1977).  

The “Michelin Zone” of the ‘Sycamore Canyon’ member within the Upper 

Miocene ‘Puente’ formation is the only stratigraphic layer analyzed in this study. 

Therefore this is the only zone discussed herein. Additional information on the entire 

stratigraphic column and other associated strata is available in the literature (e.g. Madden 

and Yeats 2008). The Michelin Zone is predominantly a sandstone facies with some 

interbedded thin layers of silty and shaly sands underlain by poorly consolidated basal 

conglomerates (Dorsey, Ridgely 1993). Observations on the lithology include:  

 Sand- tan to brown color with fine to coarse grain size 

 Shale and Siltstone – white to buff to light gray and dark gray ultrafine grain size 

 Conglomerates- Pebble to cobble size, hard, poorly consolidated by calcareous 

matrix  
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 Key foraminifera identified – Rotalia garveyensis, Bolivina barbarana and 

Bolivina Hughesi (biostratigraphy of Upper Miocene foraminiferal fauna of 

California) 

Figure 11 is a geologic contour map of adjacent reservoirs illustrating their areal extent in 

the field. Additional structural contour maps are included in Appendix III, IV and V. 

 

 

Figure 11: Structural and geological contour map of Mahala oil field (Olson 1977) 
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Figure 12 is an isopach map, the contours of which help detail the thickness of the 

stratigraphic formation of interest. This map was subsequently digitized for use in this 

study to establish the boundaries of the reservoir, to compile the point set shown in 

Figure 22, and the areal outline shown in Figure 23, all utilized in this analysis. 

 

 

 

 

Due to very limited core data, values for the production sand characteristics are 

rough estimates. Dorsey’s 1993 study provides estimates of an average permeability of 

500 md and an average porosity of 27% (Dorsey, Ridgely 1993). Although the values are 

Figure 12: Isopach map of Abacherli reservoir (Dorsey 1993) 
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probably overestimated, the sand characteristics are expected to be well within the 

characteristic sand range favorable for conventional crude oil production.   

 

2.2.5 Remark on Previous Studies and Field Observations 

 Most of the information obtained from previous geological work for the Mahala 

oil field is endorsed as true geological characteristics, conditions and representations of 

the field including the Abacherli reservoir. The necessary geological assumptions are 

made for the continuation of the analysis, however the only major exception is the 

suggestion of cross-faults within the reservoir as shown in Figure 12. Dorsey’s (1993) 

geological review suggests that there are at least six cross-faults that divide the reservoir 

into separate fault blocks. However, in this study this interpretation is deemed rather 

unsuitable based on direct field observations and the analysis conducted. The existence of 

these cross-faults is questionable mainly because of the general continuity across the 

whole reservoir apparent from the geostatistical analysis discussed in this thesis, as well 

as the synchronous field observations of well pressures on either side of a given proposed 

cross-fault. In the case of these well pressures, change in one well causes a pressure 

change in another well across a proposed fault signifying that there must be connectivity 

between the wells. Even if cross-faults are present and do affect the local geology, the 

geostatistical analysis performed in this study assumes pre-fault conditions in which the 

entire reservoir is modeled as a single unit in order to make an overall study viable. Most 

geological interpretations are subject to case-specific interpretations. The objective of this 

project is not to refute previous geological work but to model the strata as accurately as 

possible in the analyses performed. More detailed information on previous geological 
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work conducted in the study area is available in the literature, for example in Olson, 

Larry 1977, Dorsey, Ridgely 1993, and Madden and Yeats 2008.  
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CHAPTER THREE: DATA 

3.1 Hard Data Sources 

 The primary data used in this report consists of well logs located at specific 

coordinate locations displaying the electrical properties of rocks and their fluids in the 

borehole. This data represents a geophysical exploration test that provides information on 

the lithology and other geological characteristics at different points within the reservoir. 

When combined with additional physical and chemical information of the subsurface a 

useful description and better evaluation of the field can be made. Electrical properties are 

given as resistivity values (‘R’) measured in ohms (Ω) and spontaneous potential values 

(‘SP’) measured in millivolts (mv) for the active wells in the field.  

The entire Mahala oil field has had several dozens of wells drilled since its initial 

discovery. All of the thirteen wells drilled within the Abacherli reservoir are still in good 

production today, and their log values are used as the hard data in this report. Several 

other dry, unproductive wells were drilled in the immediate vicinity around the reservoir 

that helped define the extent of the reservoir area and confirm the presence of no-flow 

boundaries (OCR, LCC 2014). Because the reservoir consists of a single small to 

medium-sized geological unit comprised of the same sand facies throughout, the wellbore 

data within the known reservoir boundaries are expected to show coherent statistical 

properties throughout the field. Thus in order to conduct the statistical analyses 

performed in this study, stationarity within the boundaries of the Michelin sand layer of 

the reservoir must be assumed in order for this study to be viable.  

For any type of computational analysis it is imperative to know and understand 

the integrity of the data. Schlumberger Limited performed the borehole logging of the 
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thirteen wells used in this study (OCR, LLC 2014). Log values are measurements 

obtained from borehole equipment which consists of wireline instruments directed down 

into the subsurface of the earth that record the measurements at depth via direct contact 

of electrical sensors with rocks and their fluids (Schlumberger 2014). The wireline 

services produced a continuous dataset (recorded as a log) for each of the drilled wells, 

and this raw data was used as the hard data points utilized in this analysis. Snapshots of 

sections of different well logs are shown in Figure 13 a through c. Vertical quantitative 

data values were obtained for 10’ intervals to depths ranging down to 3,050’ from 

surface. 

 

                 a                              b      c 

  
Figure 13(a-c): Electrical well logs from the Mahala field (KMT Oil Co., Inc 2013) 
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3.1.1 Electrical Data Boring 

 Spontaneous Potential (‘SP’) measures the differences in static electrochemical 

potential and ionic concentration in pore fluids of rocks that is caused by the charge 

separations due to the diffusion of ions (Radhakrishna, I. and Gangadhara, T. 1990). Ions 

in porous and permeable media diffuse differently than ions in impermeable media. The 

difference in voltages between a reference electrode and the ground electrode is caused 

by the electric current given off by the sensor at depth as a response to its electric charge. 

The charge depends on the buildup of ions. This ionic concentration can be high, low, 

positive or negative depending on the characteristics of the rock material including its 

mineralogy, permeability and porosity. Greater ion exchange occurs in porous and 

permeable rock media causing a higher response in the SP log (SPE PetroWiki 2013). 

Similarly the concentration of ions in connate water depends on the mineral components 

of the formation rocks  Generally, large and negative deflections in SP indicate the 

presence of permeable beds, thus SP values have been extensively used to help detect 

permeable and porous formation beds, for instance to identify the location of reservoir 

rocks (Schechter, David 2014). Figure 14 illustrates how the distribution of an electric 

current changes between beds of different permeability due to the behavior of ions in 

separate geologic media, and how it affects the SP electrical measurements in a well log. 
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Resistivity (‘R’) measures the electrical resistance of the fluid in the pores of the 

rock. It is the inverse of electrical conductivity and quantifies how strongly a material 

readily opposes (or resists) the movement of electric current (William, Lowrie 2007). 

Rocks, sediments, and their fluids within a borehole will have different properties that 

cause the resistivity in the materials to vary. By measuring the degree of resistivity down 

a borehole it is possible to characterize the formation downhole. Although most rocks are 

insulators, the fluids within their pores are conductors, however the big exceptions are 

hydrocarbon fluids, which do not conduct electricity. When a formation contains oil, the 

resulting resistivity will be high and recorded as a “spike” in the log, thus resistivity these 

logs have been extensively and efficiently used to detect the presence of hydrocarbons. 

Both the SP and R values combined provide a good tool to characterize geological 

formations. Large positive R deflections and large negative SP deflections are clear 

indicators of permeable hydrocarbon-containing formations (a.k.a “pay zones”). Figure 

18 is an illustration of a pay zone that has been logged showing the spikes in R and the 

Figure 14: Spontaneous Potential illustration (PetroWiki 2013) 
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opposite spikes in SP. Resistivity values range from 0 to 60 (6mV intervals) and 

Spontaneous Potential values range from -50 to 50Ω (1ohm intervals). 

 

 

3.2 Software 

 

3.2.1 Modeling Software Interoperability 

 This study provided a good opportunity to showcase the interoperability between 

different geographic and modeling software. The transfer of data via common exchange 

formats allows for data to be inputted and outputted between separate computing 

programs, including popular systems such as Stanford Geostatistical Modeling Software 

(SGeMS), Esri ArcGIS, Microsoft Excel and Mathworks MATLAB. The two primary 

software used for the geostatistical modeling done in this thesis research include SGeMS 

Figure 15: Pay zone electrical log (KMT Oil Co., Inc 2013) 
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2.0 and ArcGIS 10.1. As the most popular Geographic Information System in the world, 

ArcGIS has several integrated applications including ESRI ArcScene for 3D analysis and 

modeling, ArcMap for 2D analysis and modeling, ArcCatalog for database management 

and ArcGlobe for 2D and 3D mapping and visualizing larger datasets (Esri 2012). Since 

SGeMS is specifically designed for geostatistical modeling it was used for the 3D 

variogram-based modeling and conditional simulation performed in this study, then these 

data output were transferred to ArcGIS. ArcGIS and its functional components were used 

for organizing, georeferencing, digitizing, visualizing and managing most of the field 

data. Besides electrical well logs other sources include remote sensing, GPS and 

additional geological information. 

 

3.3.1 Remote Sensing DEM 

 Remote sensing data obtained from the USGS national map viewer platform was 

downloaded to provide a DEM of the oil field study area. Geographic coordinates of the 

oil field were input into the USGS server and the elevation information was then 

downloaded and georeferenced in ArcGIS (USGS 2014). The DEM grid set, consisting of 

grid blocks of about 1-arc second resolution (or 30 meters), was imported into ArcScene 

and converted to a 3-D elevation map of the field. An aerial map was then draped on top 

of the DEM to provide a realistic visualization model of the topography for the area of 

interest (Appendix VI). Figure 16 illustrates a close-up 3D DEM representation for the 

area of interest draped over a full spectrum color ramp to better illustrate the variable 

elevation. 
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3.2.2 3D Stratigraphic Cross-section 

 As previously discussed, significant deflections in the logs indicate zones of high 

and low values; these changes in rock properties indicate the interfaces between different 

geological facies. With this information it is possible to determine the thickness of 

individual rock units and thus determine the local stratigraphic boundaries. Knowing the 

facies and thicknesses of geological units at specific depths and coordinate locations 

within the reservoir makes it possible to develop a cross-section for the area. ArcScene 

allows for creating and mapping 3D models, thus it is a useful tool to create and maintain 

the volumetric models used in this study.  

 The depths of the tops and bottoms of the rock strata were interpreted from the 

logs at each respective borehole and were input into ArcScene. A continuous surface was 

created connecting all of the 13 points on the top of each formation and a separate 

continuous surface was created connecting all of the 13 points at the bottom of each 

Figure 16: DEM of study area with legend (based on USGS 2014) 



 39 

formation for all of the facies. Next a volume within each formation was generated 

resulting in a 3D geologic cross-section illustrating the local lithological boundaries of 

the strata in the field. For visualization purposes, Figure 17 illustrates the stratigraphy of 

the reservoir as well as the log values for all of the wells. Appendix VI provides 

illustrations of the cross-section at different angles as well as processed models 

transferred from SGeMS and MATLAB and integrated into ArcScene.     

 

 

 

Figure 17: 3D cross-section 
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3.3.3 Data Point Set 

 Figure 18 is an image of the point set grid used in the interpolation. After 

georeferencing the isopach map (Figure 12) and digitizing the dimensions of the 

reservoir, ArcGIS tools were used to create an ultra-high resolution point data set with 

the specified volumetric dimensions of the field. The blank point set served as the 

interpolation medium where each of the individual points were populated after running 

the ordinary kriging and conditional simulations. One of the drawbacks of performing 

simulations on an ultra-high resolution point set is the time required to run all of the 

simulations. Due to the large size of the data point set (> 1.5 million points) running all of 

the simulations was computationally demanding, taking a total time of over one month 

for completely performing all 101 realizations to run on a Dell XPS-8300 desktop with a 

Windows 7 professional 64-bits operating system. 

 

 

 Figure 18: Blank 3D point set 
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3.3.4 GPS Data Acquisition 

 Figure 19 is an aerial map view of the field with the boundaries of the reservoir 

obtained by digitizing the isopach geology map (Figure 12). Additional information in 

Figure 19 includes GPS-derived positions of production lines, water lines, tanks, wells 

and valves. GPS data points, lines and polygons were obtained via direct measurement 

using an ultra-high precision Geo-XH GPS unit and subsequent data corrections were 

done using GPS pathfinder software and then imported into ArcGIS. The GPS unit and 

software were obtained from the University of Southern California’s Spatial Sciences 

Institute. The Trimble GPS Geo-XH unit is an ultra-high precision data collection device, 

with precision to a few millimeters (GSI Works 2009).  

 

Figure 19: Mapview of study area lease (based on GPS 2013) 
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CHAPTER FOUR: METHODS 

4.1 Data Exploration and Evaluation 

 

4.1.1 Data Input and Transformation  

 Exploration of the data of the datasets allows an assessment of their suitability for 

the proposed analyses. An important preliminary step in the evaluation of the data is to 

examine the spatial distribution of the datasets. Because the kriging and conditional 

simulation techniques used in this study are methods for interpolating values that are 

modeled by a Gaussian process, it is necessary for the sample data to have a normal 

distribution. Simple univariate and bivariate statistical tests were performed to determine 

if data need transformation to become Gaussian. The well locations and log values for the 

thirteen active wells in the stratigraphic formation of interest in the Michelin Zone were 

entered into SGeMS software. A Probability Density Function (PDF), Cumulative 

Distribution Function (CDF) and QQ-plot of the two variables as well as a scatter plot 

analysis illustrating the correlation coefficient between both variables were obtained. 

Resulting Figures from the preliminary statistical analyses are illustrated from Figure 22 

to Figure 26.  

 

Figure 20 and 21 illustrate the spatial distribution of the wellbores, surrounded by a 

bounding box representing the overall volume of the field, including color-coded R and 

SP values and legend.  
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Figure 22 shows the PDF and CDF outputs of the raw SP dataset. The dataset follows an 

acceptable normal distribution and therefore it can be assumed that it does not need to 

undergo further transformation to be used in this analysis. 

Figure 20: Resistivity Data logs 

Figure 21: Spontaneous Potential Data logs 
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Figure 23 shows the PDF and CDF of the raw R dataset. Since the data exhibit a 

significant positive skew to the right and thus is not normally distributed, it is therefore 

preferable to transform this dataset to normality.  

 

Figure 22: Spontaneous Potential CDF and PDF 

Figure 23: Raw Resistivity PDF and CDF 
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The R dataset was transformed to resemble a normal distribution by using the 

histogram transformation tool in the SGeMS utilities box. Figure 24 shows the PDF and 

CDF of the normally transformed R dataset.  

 

 

 

 
 

Figure 25 is a Q-Q plot of both SP and R probabilities plotting their quantiles 

against each other. This graph compares the shapes of the two probability distributions 

and also allows one to better determine if the data is close to a normal distribution. For 

the compared probability distributions to be normal, the plotted points should lie within a 

straight line. The closer all points are to a straight line the closer the samples are to a 

normal distribution. This graph illustrates that there is a significant offset, indicating a 

clear deviation from normality. 

Figure 24: Transformed Resistivity PDF and CDF 
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Figure 26 is the Q-Q plot of the SP dataset with the normally transformed R 

dataset. In this Figure the linear relationship between the two variables (points plotted 

across a straighter line) indicates a more normal distribution. 

 

 

Figure 25: Raw Q-Q plot between R and SP 

Figure 26: Transformed Q-Q plot of SP and R 
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 Figure 27 is a scatterplot of SP and R including the linear regression line 

illustrating the correlation between both variables and their coefficient. 

 

 

 

 

The correlation coefficient for SP and R is -0.665. The strong negative correlation 

(as SP goes up R goes down and vice versa) follows the field expectation as described in 

the data section. Although this correlation is not needed for ordinary kriging it provides 

more useful information and allows a better evaluation for potential cokriging as a future 

study.   

 

4.2 Variogram 

Several attempts experimenting with different parameters, conditions and components 

were tried in the variogram modeling for this study. Correct variogram modeling requires 

Figure 27: Scatterplot between R and SP 
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practice and a fair amount of guesswork. The defined variogram model is at best an 

approximation of a best-fit function describing the spatial relationship of the variables in 

the field. 

 

4.2.1 Variogram Parameters 

 A useful initial technique to help estimate the variogram is to restrict the 

maximum distance at which the variogram is computed to ensure sufficient pairs for a 

given distance while still allowing for a reliable estimate of the variogram for that given 

distance. A very common approach to select that restricted distance is to use around half 

of the maximum possible distance within the region of assumed stationarity and use it as 

the lag distance (Kelkar and Perez 2002). Because a variogram is symmetric this 

approach also ensures that all pairs on either side of a given location are included in the 

model, and adding 180° to a given direction provides the same variogram estimate. In 

addition, another common rule of thumb is to use approximately half the distance of the 

lag separation as the lag tolerance (Babish, G. 2000). It is important to note that these lag 

assumptions are not necessarily relevant for every case. The conditions (geologic 

structure, well geometry, depositional setting) of different oil field reservoirs can require 

significantly different lag parameters. However, as noted in the geology section and 

illustrated in Figure 19, the wells in this field are oriented or located in nearly a straight 

line and their spacing is consistently distributed at closely uniform intervals. In addition, 

the area of the field is not too large geographically so the entire reservoir system is 

analyzed as a whole. These factors simplify the decision-making process for defining the 

distance and direction of the variogram model.  
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Once the data is inputted into the modeling software and determined to be 

appropriate for the kriging analysis, an experimental variogram model can be defined. 

Figures 23 and 24 show the initial data input of the wells. The first step is to choose the 

parameters that will estimate the variogram, the lag components that define the distance 

and the directional components that define the direction/orientation. In SGeMS the three 

lag distance components are: 1) number of lags, 2) lag separation and 3) lag tolerance and 

the four lag direction components are: 1) azimuth, 2) dip, 3) tolerance and 4) bandwidth. 

Figure 28 displays the lag distance and direction parameters used.  

 

 

 

Lag distance is the product of the number of lags and the lag separation, i.e. 

(                                       ). The maximum distance between any 

Figure 28: Variogram direction and distance parameters 
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two pairs of points in this field, for instance the distance between the two wells that are 

farthest apart, is 4,300’. Therefore the maximum lag distance the model was initially 

targeted to have is around 2,150’. After several attempts with the given directions, a lag 

number of 39 and a lag separation of 55 provided promising preliminary variogram plots. 

A lag tolerance half the value of the lag separation was targeted, so the value selected is 

27 (         ) rounded down to the nearest whole.  

The variogram for a 3D model is commonly expected to include as a minimum, 

three directions: 1) a vertical directional component to account for variability with respect 

to depth in any given borehole, 2) an omni-directional component to account for global 

variability throughout the field, to see the overall picture, and 3) at least one horizontal 

directional component covering the major directions in the field.  

Four components in the SGeMS software define the directionality of the 

variogram, including: 1) the azimuth, which corresponds to the direction on a planar 

surface measured in degrees from 0°-360°, 2) the dip, which corresponds to the angle of 

descent relative to the azimuth measured in degrees from 0°-90°, 3) the tolerance which 

corresponds to the angle of tolerance of the directional variogram measured in degrees 

from 0°-90°, and 4) the bandwidth, which corresponds to the maximum width of the area 

resulting from the directional variogram (Remy,  Boucher and Wu 2009). The azimuth 

and dip, analogous to geologic strike and dip, are two important components reflecting 

the major axes in a 3D environment, and the tolerance and bandwidth help further refine 

the directions of interest to accommodate the intended directionality of the field. By 

manipulating the variogram azimuth, dip, tolerance and bandwidth it is possible to 

capture the structural geology of the field (strike, dip, rake, plunge) and hence end up 
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with a true volumetric (3D) estimation resembling the geology. Once a general direction, 

(azimuth and dip) is established then the tolerance and bandwidth choices, which are 

more flexible because they are based on subjective decisions, should be adjusted until an 

interpretable variogram structure is identified.    

 

4.2.2 Experimental Variogram 

 Three variogram directions were established: a vertical direction, an omni-

directional and a horizontal direction following the geological geometry (strike) of the oil 

field reservoir. The components for all directions are shown in Figure 28. The tolerance 

and bandwidth were manipulated until a clear variogram structure was obtained. Figures 

29 and 30 illustrate the experimental variogram in all three directions for both datasets 

after a decipherable structural trend was identified.  

 

Figure 29: SP experimental variogram in all three directions 
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In Figures 29 and 30 if Cartesian coordinate plane orientation is assumed and the figure is 

divided into four separate figures, or quadrants, Quadrant I in the upper right represents 

the omni-direction, Quadrant II in the upper left represents the vertical direction, 

Quadrant III in the lower left represents the horizontal direction, and Quadrant IV in the 

lower right represents a plot of all the directions combined. Quadrant IV is useful to 

visualize the complete extent of the entire variogram. 

 

 

 

The first direction established is the vertical direction with an azimuth of zero, a dip of 

90°, a tolerance of 5° and bandwidth of 200 (Figure 28). The interpreted variogram 

Figure 30: R experimental variogram in all three directions 
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structure for each dataset in this direction as well as the fitted function is shown in 

Figures 31 and 32. 

 

 

 

The second direction established is the omni-direction with an azimuth of 0°, a dip of 0°, 

a tolerance of 91° and a bandwidth of 200 (see Figure 28). The interpreted variogram 

structure for each dataset in this direction as well as the fitted function is shown in 

Figures 33 and 34. 

 

 

Figure 31: SP Fitted vertical variogram model  

Figure 33:  Fitted SP Omni-directional variogram 

model 

Figure 32: R Fitted vertical variogram model 

Figure 34: Fitted R Omni-directional 

variogram model 
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The third direction established is the horizontal direction aligned along the major trend of 

the wells with an azimuth of 120°, a dip of 10°, a tolerance of 40° and a bandwidth of 500 

(see Figure 28). The interpreted variogram structure for each dataset in this direction as 

well as the fitted function is shown in Figures 35 and 36. 

 

 

4.2.3 Variogram Models 

 Once the distances and directions are established (see Figure 28) to get 

interpretable structures (Figures 29 and 30), then the variogram can be modeled to 

represent the statistical function. Two requirements that must be honored in modeling the 

variogram are: 1) the condition of positive definiteness, and 2) the use of a minimum 

number of parameters and models to model the variogram (Kelkar and Perez 2002). 

Because the model types available in the computing software (exponential, spherical, 

Gaussian) are already known to satisfy the condition of positive definiteness, by using 

any of these, or linear combinations of them, it is automatically assumed that the model is 

positive definite, thus satisfying condition one. As previously discussed, the variogram 

estimation parameters direction and distance capture the most important reservoir 

Figure 35: SP fitted horizontal variogram model  Figure 36: R fitted horizontal variogram model  
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structures including geologic strike and dip, and orientation or trend of wells. It is 

assumed that the essential spatial features of the oil field reservoir are thus included in the 

model, which satisfies condition two. The model types available in the software are 

assumed to have a sill contribution, which is a constant value after a certain lag distance 

called the range, as shown in Figure 37. The components in the modeling software user 

interface used to characterize the variogram model are described in the following table.  

 

SGeMS Variogram Model Components 

Interface 

Input 

Description 

Nugget 

Effect 

The initial abrupt jump to the first value at the beginning of the entire 

variogram model. Non-continuity only at the origin is due to either 

measurement error or variation at a scale smaller than the sampling 

distance.  

Number of 

Structures 

Number of (nested) variogram structures composing the variogram 

model. An accurate fit to a variogram model may be best constructed 

using a combination of multiple model functions (a.k.a. nested 

structures), especially to model variability at different scales. 

Sill 

Contribution 

Effect of the sill, or the maximum variance of the variogram. Sill is the 

limit (represented graphically as where the function flattens out) of the 

variogram model after a specific distance a.k.a the range. 

Type The type of variogram model. SGeMS includes only models for 

variograms that have a sill: Spherical, Exponential and Gaussian. The 

model type depends on the function used to approximate the variogram 

(determines the overall shape of the model). 

Ranges 

(Max,Med, 

Min) 

Ranges along each of the three directions of the anisotropy ellipsoid in 

the variogram structure (maximum, medium and minimum) used to 

approximate the model. Depending on the direction(s) specified these 

ranges help refine the shape/extent of the function. 

Angles  Measurement in degrees for each of the three angles (directions) of the 

3D anisotropy ellipsoid in the variogram structure: azimuth, dip and 

rake. Rotation of the angles along the orthogonal planes of a Cartesian 

coordinate system positions the 3D ellipsoid in space 

 

Table 1: Interface input description of variogram model components 
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Once a nugget constant and the number of structures in the whole variogram 

model are selected, then each individual nested structure is further defined by the 

subsequent parameters listed in the table: the variance contribution (sill), the variogram 

function (type), and anisotropy characterized by a 3D ellipsoid defined by the ranges and 

angles (Remy, N., Boucher, A. and Wu, J. 2009). This 3D ellipsoid is defined by the six 

parameters of the ranges and angles where the three angles, azimuth, dip, and rake, 

represent the direction of the major, medium and minor axes, and the ranges represent the 

radii of the axes along the three directions. More detailed information on variogram 

modeling inputs and conditions is available in the following references: Chiles and 

Delfiner 1999, and Remy, Boucher. and Wu 2009. Figure 37 illustrates the main 

components of a typical variogram model, including lag distance, variance, sill, nugget 

and range.   

 

 

 

 

Several experiments with the variogram design in terms of the modeling 

components and variogram parameters were undertaken for both the SP and R datasets. 

After different options were tested, the following variogram model inputs displayed in 

Figure 37: Illustration of main variogram model components (based on Landscape 

Toolbox Wiki 2014) 
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Figures 38 and 39 for SP and R illustrate the final variogram models used for both the 

interpolation functions. These variogram models were used for the subsequent ordinary 

kriging and conditional simulation procedures. 

 

 

 

Figure 38:  Complete variogram model for Spontaneous Potential 
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4.3 Interpolation 

 

 

4.3.1 Kriging Parameters 

 

 Once the variogram models are defined and saved they can be loaded into 

the kriging toolbox in the SGeMS program followed by simple selections of the grid, data 

and the type of estimation (e.g. ordinary kriging) necessary to run the analyses. Because 

the kriging algorithm used in the modeling software requires a 3D ellipsoid to be 

specified in order to represent a search volume in 3D, the only remaining task was to 

define the search ellipsoid (Remy, Boucher and Wu 2009). The search ellipsoid was 

represented by a search space surrounding the interpolation point, and only the points that 

fell within this search space were considered to take part in the kriging calculations, for 

Figure 39: Complete variogram model for resistivity 
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instance in defining the extent and volume to look for values to be used in the 

interpolation. The search ellipsoid, which is characterized in the same way as the 

variogram anisotropy ellipsoid, consists of minimum and maximum conditioning data 

(min/max number of data points to be included in the algorithm), max/med/min ranges 

and the 3-directional angles. After several experimental kriging runs were conducted, the 

parameters used to define the search ellipsoid for the analyses determined to be the best 

were selected, provided in Table 2. . These results are described in detail in Chapter 5. 

Search Ellipsoid Parameters 

Conditioning Data Min Max  

 2 20  

Ranges Max Med Min 

 3000 1650 200 

Angles Azimuth Dip Rake 

 128 2 3  

 

 

 

 

 

4.4 Validation 

 

 

 As part of the kriging interpolation procedure the kriging variance was also 

calculated and the resulting models mapped the variance in the oil field reservoir. This 

procedure can help define the areas with higher or weaker variance in the estimation. 

 

4.4.1 Cross-validation 

 

 To know how well the models predict the values at unknown locations in the 

field, in other words to test the integrity of the methods and determine their effectiveness, 

it was necessary to perform validation procedures on the predicted models. An 

appropriate technique is cross-validation which consists of leaving one data location out 

Table 2: Search ellipsoid parameters used for kriging 
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(i.e. one well) and performing the estimation to predict the values at that excluded 

location, repeating the process by removing one different well location at a time and re-

running the estimation until all the well values have been interpolated. Once the predicted 

values were obtained for the data at all the measured locations, they were compared to the 

known values to help determine the quality or accuracy of the model. The observed 

values, which consisted of actual values from the logs, were plotted against the estimated 

values predicted values from the model, then compared and contrasted to evaluate their 

differences. In this manner, cross-validation at each well for both datasets was performed. 

 

4.4.2 Statistical Comparisons  

 By generating several realizations using the sequential Gaussian simulation 

algorithm based on the same kriging parameters, uncertainty can be characterized by the 

multiple possibilities that exhibit local variation. The uncertainty at individual locations 

throughout the field can be ascertained by examining the differences among several 

equiprobable plots which will display the local variations and distributions in the oil field 

reservoir. In this sense, if uncertainty at a particular location is relatively small then a 

number of images will display similar simulated values at that location, and conversely if 

uncertainty at a particular location is relatively large then a majority of images will 

display the differences in simulated values at that location (Kelkar and Perez 2002).  

 

As previously stated, the primary objective of performing a stochastic simulation 

is to create a model for the probability distribution of the unknown variables. Because the 

variables are conditioned to the information provided from the field data which is 
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assumed to be a true representation of the subsurface geology, then their values are 

reasonably expected to fall within the limits of the simulated probability distribution. 

Summary statistics on the simulation output provide a measure of the uncertainty of the 

model, and specific statistical calculations on the suite of realizations provide estimated 

probabilities.   

 

Calculating the median or mean of the provided multivariate distribution where 

the median (mean) at each cell is computed from the values of all realizations at that cell 

location will yield a map with the highest probability of representing the true model. This 

probability model can be compared to the predicted (kriged) model to provide a better 

assessment of the analysis. The similarity between the predicted and the probability 

models provides a degree of confidence in the estimated model. In addition to the median 

probability (i.e. P50) the P10 and P90 quantiles provide uncertainty ranges or error bars 

in the simulated median value, providing more confidence that the true expected mean 

falls within the simulated range. A total of 48 realizations for R were obtained and a total 

of 53 realizations for SP were obtained. These results are described in detail in Chapter 6. 
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CHAPTER FIVE: RESULTS  

5.1 Conditional Simulation 

5.1.1 Sequential Gaussian Simulation Models 

In terms of final results of this thesis research, Figure 40 a-f comprises six random 

realizations of SP distribution across the oil field reservoir, visualized using SGS. 

 

      Figure 40a – SP Realization 1          Figure 40b – SP Realization 2 

 

 
 

       Figure 40c – SP Realization 3           Figure 40d – SP Realization 4 

 

 
 

        Figure 40e – SP Realization 5           Figure 40f – SP Realization 6 
 

Figure 40 (a-f): Six random SP SGS realizations 
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Figure 41 (a-f) includes 6 realizations of R distribution across the oil field reservoir. 

`                Figure 41a – R Realization 1                          Figure 41b – R Realization 2 

 
                   Figure 41c – R Realization 3               Figure 41d – R Realization 4 

 

 
                    Figure 41e – R Realization 5               Figure 41f – R Realization 6 

 

The calculated median (P50) as well as the P10 and P90 probability simulation models 

from all the realizations are also included. Figures 42-44 illustrate the P50 map as well as 

the P10 and P90 maps for R with designated color bars. Figures 45-47 illustrate the P50 

map as well as the P10 and P90 maps for SP with designated color bars. 

Figure 41 (a-f): Six random R SGS realizations 
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Figure 42: Resistivity P50 map 

Figure 43: P10 Resistivity map 

Figure 44: P90 Resistivity map 
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Figure 45: Spontaneous Potential P50 map 

Figure 46: P10 Spontaneous Potential map 

Figure 47: P90 Spontaneous Potential map 
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5.2 Ordinary Kriging 

5.2.1 Predicted Models 

The kriged model and its associated variance map for R are included as Figures 48 and 

49. Figures 50 and 51 illustrate the predicted map and its associated variance map for SP. 

 

 

 

 

 

 

 

Figure 48: Resistivity ordinary kriging interpolated map 

Figure 49: Resistivity variance map from ordinary kriging model 
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5.3 Volume Explorer 

 

 The “volume explorer” tool in the SGeMS modeling software allows exploring of 

the 3D distribution of properties across the estimated volume of the field. Figures 52 and 

53 display a snapshot of the “inside” of the SP and R models. This is an important tool 

because static images mostly show the outside of a model and may not provide an 

Figure 50: Spontaneous Potential ordinary kriging interpolated map 

Figure 51: Spontaneous Potential variance map from ordinary kriging model 
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adequate representation of the entire 3D volume distribution. The scale of Figure 52 is 

identical to that of Figure 50 and the scale of Figure 53 is identical to that of Figure 48.  

 

 

 
 

 

  

Figure 52: Spontaneous Potential 3D volume map 

Figure 53: Resistivity 3D volume map 
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CHAPTER SIX: DISCUSSION AND CONCLUSION 

 

 
6.1 Variogram and Simulation Model Remarks 

 

 The experimental variogram in the vertical direction (top left corner, or Quadrant 

I, of Figures 29 and 30) for both datasets exhibit periodic behavior, which represents 

cyclical geological processes. This is known as the “hole effect” in geostatistics and is 

typically experienced when modeling a variogram in the vertical direction. In 

depositional environments sediment is deposited in layers during geological events, thus 

this repetition of cycles will be reflected in the vertical continuity of the layers in the 

field. In these variograms the transition from one facies to another can be clearly defined. 

Interpretation from both of the vertical-directional variograms indicates that the 

formation is continuous in the vertical direction up to around 350’ and then becomes 

discontinuous but regains continuity at greater distances. This trend is expected to 

continue throughout different depths across the field. The fitted vertical variogram 

functions (Figures 31 and 32) only include those values to 350’ and ignore the rest 

because it is of most interest to only capture the extent of that continuity. In addition, the 

average thickness of the formation is only 378’, so by modeling to 350’ we are capturing 

all the continuity necessary for building a valid 3D model for this formation. The other 

two variogram directions show the overall and the horizontal continuity trends in the 

field, both of which exhibit very similar patterns. The fitted functions (Figures 33 through 

36) were plotted in order to include most of the points. A few points which were 

considered as possible local outliers were neglected in order to obtain a reasonable 

structural function for the variogram model, discussed further in the project evaluation. 

Overall, the trend of the study area is well captured in both of the variogram models.  
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Since all of the realizations of the conditional simulations honor the same constraints 

because they are coming from the same data distribution, it is not possible that one 

realization image is more likely to occur than any other. Therefore the apparent 

differences between realized images is representative of the local uncertainty, and 

visualizing the variability between simulations provides a reasonable assessment of 

uncertainty. Provided the distribution is representative of the real oil field reservoir then 

the true reservoir values are expected to fall within the bounds of the distribution while 

the calculated statistical summaries of the simulations (P10, P50, P90) illustrate the 

probabilities of occurrence.   

 

6.1.1 Well ID Locations 

 Figure 54 is a 2D map displaying the well locations of each borehole in the 

reservoir area, labeled by unique well identification number. The well ID numbers were 

assigned based on the order that the wells were drilled. The spatial configuration of wells 

is important to note for the discussion and interpretation of results.   
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6.2 Validation 

 Figures 55 and 56 (a-m) display the cross-validation results of all wells for both 

datasets. The well number is the well ID number (Figure 54). The results include the 

observed data (log values) plotted along with the estimated data (kriged values) versus 

subsea depth. All the plots include low, medium and high value thresholds as well as 

horizontal error bars of the standard deviation of the observed data for each borehole. 

 

 

Figure 54: Well ID location map 
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6.2.1 Cross-validation plots 

Figure 55 (a-m) provides R cross-validation graphs which represent the differences 

between the observed values and the estimated values. 

 

           
`      Figure 55a – R Cross-Validation Well #1            Figure 55b – R Cross-Validation Well #2 

 

 
       Figure 55c – R Cross-Validation Well #3                 Figure 55d – R Cross-Validation Well #4 

 

 
         Figure 55e – R Cross-Validation Well #5            Figure 55f – R Cross-Validation Well #6 

 

Figure 55 (a-f, continued on page 73): Resistivity cross-validation results for all wells 
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          Figure 55g – R Cross-Validation Well #7           Figure 55h – R Cross-Validation Well #8 

 

 
          Figure 55i – R Cross-Validation Well #9           Figure 55j – R Cross-Validation Well #10 

 

 
          Figure 55k – R Cross-Validation Well #11          Figure 55l – R Cross-Validation Well #13 

 

 
Figure 55 (g-l, continued from page 72): Resistivity cross-validation results for all wells 
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        Figure 55m – R Cross-Validation Well #14 

 

 

  

 

 

 

Figure 56 (a-m) displays SP cross-validation graphs, which depict the differences 

between observed values and estimated values. 

 

 
          Figure 56a – SP Cross-Validation Well #1           Figure 56b – SP Cross-Validation Well #2 

 

 

 

 

Figure 55 (m, continued from page 73): Resistivity cross-validation results for all wells 

 

Figure 56 (a-b, continued on page 75): Spontaneous Potential cross-validation results for all wells 
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        Figure 56c – SP Cross-Validation Well #3                    Figure 56d – SP Cross-Validation Well #4 

 

 
   Figure 56e – SP Cross-Validation Well #5       Figure 56f – SP Cross-Validation Well #6 

 

 
    Figure 56g – SP Cross-Validation Well #7           Figure 56h – SP Cross-Validation Well #8 

 

 

 Figure 56 (c-h, continued from page 74):  Spontaneous Potential cross-validation results for all wells 
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     Figure 56i – SP Cross-Validation Well #9      Figure 56j – SP Cross-Validation Well #10 

 

 
     Figure 56k – SP Cross-Validation Well #11     Figure 56l – SP Cross-Validation Well #13 

 

 
          Figure 56m – SP Cross-Validation Well #14 

 

 Figure 56 (i-m, continued from page 75): Spontaneous Potential cross-validation results for all wells 
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6.3 Project Evaluation 

 Both of the kriged models illustrate static representations, in 3D, of the 

distribution of SP and R throughout the field. The intent of kriging interpolation is to 

estimate, or provide the best possible approximation of the overall continuity in this study 

area. The conditional simulations provide complementary information to help determine 

the local variation and quantify uncertainty in a probabilistic sense while providing a 

degree of confidence in the models. The cross-validation provides a direct measurement 

of the estimation accuracy.   

 

6.3.1 Comparison of Results 

 Both the spontaneous potential (SP) and resistivity (R) kriged models appear to 

follow an expected continuity trend based on the local geology of the field, and both of 

their corresponding variance maps help indicate the local variance in their predictions. 

Both of the simulations and their calculated statistical outputs provide useful 

representations of the field variabilities and their probabilistic ranges. Comparing the R 

kriged model with the calculated R P50 simulation mean value model (Figure 48 and 

Figure 42), it appears that the overall trend remains generally consistent between both 

models with the exception of a few small areas in the upper half of the field. Comparing 

the SP kriged model with the calculated SP P50 simulation mean value model (Figure 50 

and Figure 45) it appears that most of the continuity is also well preserved, especially in 

the lower half of the field. However, small to moderate dissimilarity appears within the 

upper half of the oil field reservoir. The dissimilarities that are most apparent occur 

mainly near opposite edges, which is probably due to lack of data from boreholes drilled 
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near the edges of the study are (i.e. no conditioning data points). In addition, the distances 

from the observed locations (i.e. logged wells) are larger, therefore we can expect greater 

uncertainty in those locations. Aside from the expected larger variances near the corners 

of the study area due to the edge wells being farther away from real/observed values, and 

some of the localized variances that can be seen from the variance maps (Figures 49 and 

51), the P10 and P90 maps appear to show a modest margin of probability in the 

distribution in which the P50 median (or average) falls between the lower and upper 

quantiles (P10 and P90). The noticeable differences apparent in both datasets in the upper 

half of the oil field reservoir are probably related to the larger variability experienced in 

the upper half of the field.  

From the cross-validation it is possible to gauge the accuracy of the estimation given the 

assumptions made in the modeling process, since the standard deviation error bars help 

provide a “tolerance range”. Although the SP and R values obtained for the same well 

locations and at the same depths do show a strong (negative) correlation, the spatial 

relationships within each set differ significantly. The interpolation and validation 

procedures conducted in this study help quantify these relationships. Observance of the 

raw data indicates correlation trends will likely differ between both datasets due to 

different modest deviations within each set of wellbores. Also, the cross-validation 

results point out the individual wells that deviate the most.  

 

The R well#1 is the well with the largest error in the R dataset, followed by the 

southernmost R well#4. Although these wells plot in a consistent manner close to the 

observed values, most of the calculated values fall outside the bounds of the standard 



 79 

deviation (Figures 55 and 56). The estimated values for the rest of the wells in this 

dataset appear to plot reasonably close to the observed values. However, close 

examination of the results reveals that the estimations for all of the wells between R 

well#1 and R well #4 (i.e. wells #11, 3, 13, 9, 8 and 14 in the lower half of the field) 

appear to plot slightly better in terms of accuracy than all of the wells north of well #1 

(i.e. wells #10, 2, 5 and 5 in the upper half of the field). 

 

In contrast to the R data plots, the SP well#7 estimated values deviate the most from the 

observed data, also plotting outside the bounds of the standard deviation. Most of the 

other wells within this dataset plot reasonably close to the observed values, however there 

are some significant differences noted, including well #4 (located at the southern edge) 

and well #6 (located at the northern edge) which both show significant deviation. The 

same overall field observation noted from the R results appears to also be evident in the 

SP results, where all the wells in the lower half (south of the dataset outlier) provide 

slightly closer approximations relative to all the wells in the upper half (north of the 

dataset outlier). The “dataset outlier” for the SP values is well #7, and for the R values it 

is well #1. Also included in this observation is the significant deviation of these two wells 

at the boundaries, where one is located at the northern edge and one at the southern edge 

of the field.  

 

6.3.2 Interpretation 

 In summary, the cross-validation results as well as the compared interpolation 

results indicate that the wells with slightly larger errors include the two wells at the 
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north/south edges of the field (well #4 and well #6) as well as the outlier for each dataset 

(well #7 for SP and well #1 for R). Also, all of the wells north of the outlier for each 

dataset (in upper half of field) show slightly higher errors than all of the wells south of 

the outlier (in lower half of field).      

 

The apparent estimation discrepancies are probably related to the fact that well #4 is the 

southernmost well located in an almost isolated southeastern corner of the reservoir, and 

well #6 is  the northernmost well and is also the thinnest borehole (100’ of formation with 

only 10 log values). The relatively larger accuracy error of these two wells located at the 

study area boundaries can be attributed to their locations compared to the configuration 

of other wells in the field and their less than optimal proximity to the other boreholes. 

The clustered borehole locations have more conditioning data and so are expected to 

provide slightly more accurate estimates. Given a general consistency between the kriged 

and simulated models in addition to the same general trend expressed from the cross-

validation of both electrical datasets, the assumption can be made that the spatial 

continuity in the lower half of the field is very strong (from well #4 up to somewhere 

between well #7 and well#1), and in the upper half (from well #1 to well#6) it is strong 

but slightly less continuous. Nevertheless, this assumption does not include the notion 

that the reservoir is divided into separate segments or compartments. Based on the 

observations discussed herein the integrity of the overall trend throughout the entire field 

is continuous enough to consider and treat the reservoir as a whole. Based on the results 

of this study, and although there a few slightly statistically deviated wells (or minor 
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localized zones), it is suggested that the reservoir is intact with a generally strong 

continuity trend mimicking the geologic attitude of the field.  

 

It is very important to provide final clarifications on the uncertainties associated with the 

necessary assumptions that are expressed in the results and how it relates to the 

confidence that can be attributed to the models. As mentioned in Chapters 1 and 3 the 

assumption of stationarity for the entire reservoir must be made as a necessary subjective 

decision. Stationarity is assumed in order to build a single geological model for the entire 

study area. Also, as mentioned in Chapters 2 and 4 the wellbores are aligned along the 

plane parallel to the geological strike of the field. Because all of the wells are 

preferentially directed along this plane there is inherently more certainty in the data 

obtained in this direction (northwest-southeast) compared to the perpendicular direction 

(southwest-northeast). Due to a lack of data in the southwest-northeast direction relative 

to northwest-southeast, it is apparent that there is significant directional uncertainty (i.e. 

more uncertainty) in the model results along the lateral southwest-northeast direction. 

Because the assumed continuities throughout the reservoir volume are constrained to and 

are a direct result of the chosen variogram model parameters, the variability in the 

parameters for the variogram models define the global continuity in the field. As can be 

seen from the similarities between the variogram in the northwest-southeast trend and 

omni-directions the continuity in the study area is preferential in the plane parallel to the 

well alignment, and the uncertainty in the estimation in this direction is less significant. 

Similarly, because a coherent continuity trend is captured in the vertical direction for 

most of the thickness of the formation layer, the uncertainty in the estimation in this 
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direction is also less significant. According to the data in this analysis the confidence 

levels (i.e. from maximum continuity to minimum continuity) follow this order, from 

greatest to least: first the vertical direction, second the well alignment direction, and third 

the direction perpendicular to the orientation of the wells.  

 

Despite the many benefits of conventional estimation techniques (as discussed in Chapter 

1) one of the common weaknesses of kriging, which relies on a variogram model, is that 

it is completely dependent upon the input data, and because of data limitations it is 

necessary to make large assumptions for an entire field which typically yield results with 

directional uncertainty in continuities across the study area. As future work, to reduce the 

uncertainty in this study area along the lateral plane perpendicular to the well orientation 

(i.e. southwest-northeast direction), additional variogram models should be computed 

using available data from wellbores drilled outside of the southwestern and northeastern 

boundaries of the reservoir in order to determine any correlations with the continuities 

defined in this project. 

 

To summarize, based on all of the assumptions discussed with regards to this specific oil 

reservoir, including the model parameters and directional uncertainties of the field, there 

are various levels of confidence. Because of the previously mentioned similarities 

between the simulated and predicted maps as well as the cross-validation results we can 

assume more confidence in the variogram and continuity results for both the trends in the 

vertical direction and in the direction of the wellbore alignment in the field. We can 

assume less confidence in the variogram and continuity results for the trend in the 
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direction perpendicular to the wellbore alignment because of larger uncertainties in this 

direction and thus weaker predictions. In addition, because of the local active geology 

consisting of continuous thrust faulting that extends the reservoir along its northwest-

southeast plane and thins the geologic units of interest along its southwest-northeast 

plane, it can be expected that the trend along the plane perpendicular to the geologic 

strike of the study area will not be as continuous. Thus the geological representations of 

the field obtained from the interpolation analyses presented as the final results of this 

thesis appear to provide acceptable reservoir models that can be used at individual 

discretion  for subsequent engineering analyses and field operations, as long as all of  the 

relevant uncertainties of the field are taken into consideration. 

 

6.3.3 Final remarks 

 Geostatistics is applied to several disciplines including environmental science, 

oceanography, geology, meteorology and epidemiology for specific operations such as 

petroleum production, water production, mining, weather prediction and even disease 

spreading. Ongoing research within this field is vast and it is likely to remain a very 

important modeling approach in the sciences and engineering. Although the data utilized 

in this study include the electrical properties of rocks and their fluids, the same (or 

similar) methodology can be applied to different datasets including hard data and soft 

data values obtained from other sources such as seismic, geochemical sampling, core 

sampling or remote sensing. For example, in applications to geochemistry and hydrology, 

geostatistical modeling using chemical and geochemical data can help quantify the flow 

and transport of subsurface constituents in aqueous systems (e.g. pollutants, solutes, 
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particles) and thus provide a better assessment of water resources including groundwater 

quantity and quality (e.g. remediation of contaminant plumes and aquifer productivity).   

 

The discipline of geostatistics is a core component of reservoir characterization and is a 

necessary step to obtain an adequate geological model of the reservoir that can be 

integrated into a fluid-flow numerical simulator to predict hydrocarbon production, then 

further formulated into an inverse model and adjusted to match field responses. The 

whole reservoir characterization-simulation-engineering process is a dynamic and 

continuous process that allows scientists, engineers and operators to understand, predict 

and to some extent control the reservoir in order to achieve optimal field performance.  

 

6.4 Conclusion 

 The use of geostatistics provides an effective way to integrate earth science and 

spatial science with engineering. This research project has demonstrated the necessary 

steps to develop a geological model that characterizes the distribution of subsurface 

properties using a two-point geostatistics approach. Additionally this study has directly 

exemplified how GIS tools can be combined with engineering techniques based on 

geological concepts and use genuine field data to solve complex real-world problems 

with the aid of software interoperability. The oil field represents a conventional 

petroleum reservoir and preliminary evaluation of the hard data obtained from direct 

subsurface field measurements presents ordinary kriging and sequential Gaussian 

simulation as valid methods for the aforementioned analysis and modeling. A satisfactory 

variogram was defined incorporating geological and statistical assumptions, and used for 



 85 

the kriging and conditional simulation interpolations to map the field properties in a 

volumetric extent. The procedures taken to construct the variogram as well as the major 

aspects and the different components of these techniques including the variogram 

parameters, kriging parameters and interpolation conditions are discussed throughout the 

report. Results include 3D static models and multiple possible realizations of the spatial 

distribution of electrical properties of rocks and their fluids throughout the field domain. 

And because of the direct relationship of SP and R with additional reservoir properties 

and their associated characteristics (such as permeability, porosity, water saturation) the 

geostatistical outputs provide useful information that can be used for further field 

modeling including numerical and inverse modeling. With the information provided and 

especially with the addition of subsequent engineering analyses such as reservoir 

simulation and history matching, it is possible to make more informed decisions for field 

operations aimed at improving petroleum development and management, including 

activities such as drilling and waterflooding.  

Validation procedures included statistical calculations to assess local uncertainty and 

variability, as well as direct measurement comparisons. By way of comparing and 

evaluating the analyses the interpretable conclusion is that the modeling techniques 

performed do indeed provide a proper approach for reservoir characterization. Although 

the structural continuity of the reservoir appears to retain general consistency throughout 

the entire field, there is an apparent continuity trend (based on keen observations) where 

the upper half of the reservoir becomes slightly less continuous relative to the lower half. 

This small to modest apparent change reflected from the field continuity is probably due 

to geological phenomena attributed to the major thrusting experienced in the area. 
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Moreover, the confidence level in the models and interpreted results and the associated 

uncertainties due to the inherent variability and limitations in modeling subsurface 

geological formations always need to be taken into consideration. The interoperability of 

this project between GIS, engineering and geology alike is expected to promote the 

growing field of geoinformatics and thus help bridge the gap in interdisciplinary 

collaboration for data intensive research in the natural and applied sciences.        
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APPENDIX I: Cross-section with stratigraphic log of adjacent reservoirs in Mahala  
Obtained from CA DOGGR 1992 Report #TR12  
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APPENDIX II: Stratigraphic Column of Mahala Oilfield 
Obtained from DOGG Report #TR18  
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APPENDIX III: Structural Contour Map of Chino Fault Zone 
Obtained from USGS NEHRP 2008 report # 04HQGR0107 
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APPENDIX IV: Geological Contour Map 
Obtained from DOGG Report #TR18  
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APPENDIX V: Structural Contour/Isopach Map of Mahala and West Mahala 

Fields 
Obtained from CA DOGGR 1992 Report #TR12  
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APPENDIX VI: INTEGRATED VOLUMETRIC AND NUMERICAL MODELS 
Obtained from combining Matlab, SGeMS, Excel and ArcGIS using Reservoir Data 

 

 

 

 

 

 

 
 

 

 

    


