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Abstract 

The Salmon Creek Watershed in Sonoma County, California, USA, is home to a variety 

of wildlife, and many of its residents are mindful of their place in its ecology.  In the past 

half century, several of its native and rare species have become threatened, endangered, 

or extinct, most notably the once common Coho salmon and Chinook salmon.  The cause 

of this decline is believed to be a combination of global climate change, local land use, 

and land cover change.  More specifically, the clearing of forested land to create 

vineyards, as well as other agricultural and residential uses, has led to a decline in 

biodiversity and habitat structure.  I studied sub-scenes of Landsat data from 1972 to 

2013 for the Salmon Creek Watershed area to estimate forest cover over this period.  I 

used a maximum likelihood hard classifier to determine forest area, a Mahalanobis 

distance soft classifier to show the software’s uncertainty in classification, and manually 

digitized forest cover to test and compare results for the 2013 30 m image.  Because the 

earliest images were lower spatial resolution, I also tested the effects of resolution on 

these statistics.  The images before 1985 are at 60 m spatial resolution while the later 

images are at 30 m resolution.  Each image was processed individually and the training 

data were based on knowledge of the area and a mosaic of aerial photography.  Each sub-

scene was classified into five categories:  water, forest, pasture, vineyard/orchard, and 

developed/barren.  The research shows a decline in forest area from 1972 to around the 

mid-1990s, then an increase in forest area from the mid-1990s to present.  The forest 

statistics can be helpful for conservation and restoration purposes, while the study on 

resolution can be helpful for landscape analysis on many levels.   
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Chapter 1:  Introduction 

Ecological processes have been constrained due to anthropogenic causes worldwide, leading to a 

decline in biodiversity and extinction of many species.  Landsat satellite data are freely available, 

and with data from 1972 to present, they are commonly used to monitor surface conditions 

including forest change and ecosystem attributes.  Several species residing in Sonoma County 

have been classified as rare, threatened, or endangered either by the Federal Endangered Species 

Act or by the California Endangered Species Act (California Department of Fish and Wildlife 

2014).  These species include the Marbled Murrelet, Baker’s Larkspur, the California Red-

legged Frog, the California Tiger Salamander, Yellow Larkspur, Chinook salmon, Coho salmon, 

and Steelhead trout, each of which is sensitive to changes in land cover, especially forest.  I 

studied the forest area in the Salmon Creek Watershed and the surrounding areas using Landsat 

satellite data dating from 1972 to the present to determine forest area and the places of change 

over the years.  I used the maximum likelihood hard classifier to determine forest area, a 

Mahalanobis distance soft classifier to determine uncertainty in classification, and I manually 

digitized the forest area for the 2013 image for comparison with the 2013 maximum likelihood 

forest classification.   

The Salmon Creek Watershed covers 56.3 km² of the 323.9 km² study area in 

southwestern Sonoma County and contains critical habitats for several species, but is often 

overlooked in research and studies for larger adjacent river systems (i.e., the adjacent Russian 

River Watershed), or is combined with other watersheds for analysis.  For instance, the 

Department of Commerce (DoC) and the National Oceanic and Atmospheric Administration 

(NOAA) combine the Salmon Creek, Estero Americano, and adjoining small watersheds into 
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Bodega Hydraulic Unit 1115 when it designated critical habitats for salmon and steelhead in 

California (DoC and NOAA 2005).   

The Salmon Creek Watershed retains unique characteristics from either of the adjoining 

watersheds.  The Estero Americano Watershed is mostly rolling grassy hills and does not have 

the elevation differential of Salmon Creek.  The Russian River Watershed covers a vastly larger 

area and supplies much of the region with agricultural and drinking water, as well as having 

dams and water pumped to it from the Eel River.  The Salmon Creek Water Conservation Plan 

was developed in a collaborative effort primarily to restore historic late-spring and summer 

surface flows in the watershed (Prunuske Chatham, Inc. 2010).  The species highlighted in the 

study are primarily aquatic such as Coho and Chinook salmon, Steelhead trout, tidewater goby, 

California red-legged frog, California freshwater shrimp, and the northwestern pond turtle.  

Contributing to the essential environments of these species is complexity in the stream 

environment, sufficient riparian cover, and strong groundwater retention leading to stronger 

summer flows.  Forests provide all of these in riparian zones, as well as nesting and rearing 

habitats (Bragg and Kershner 1999) and in the broadest sense the entirety of the Salmon Creek 

Watershed can be considered riparian.  The watershed and landscape level are the best for local 

salmon restoration projects (Feist et al. 2003), and little research has been focused solely on the 

Salmon Creek Watershed, although the extreme decline in salmon counts over the years has 

shown that the watershed needs immediate attention.  This study was designed to focus on the 

Salmon Creek Watershed and the surrounding areas in order to fill in some gaps for researchers 

of the area.   

Conservation efforts are often focused on areas containing the most biodiversity (Wiens 

et al. 2009) and landscape connectivity has been shown to strengthen species richness 
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(Damschen and Brudvig 2012).  Of primary concern to conservationists in the Salmon Creek 

Watershed are habitats for endangered Chinook and Coho salmon and Steelhead trout, who are 

reared in freshwater inland streams before making their way to sea, finally coming back to their 

original nesting stream to spawn and die.  The habitat for these anadromous fish has been shown 

to be characterized by cooler temperatures, riparian cover, and coarse woody debris (CWD), and 

it has been degraded by anthropogenic disturbances such as roads, clear-cutting, and extensive 

urban and residential development.  It is estimated that one-third of all Pacific Salmon 

populations have become extinct (Gustafson et al. 2007).  In turn, riparian forests provide 

connectivity and many benefits that regulate stream and biotic processes by normalizing light 

and temperature fluctuations, providing nourishment, providing physical structural complexity, 

filtering sediment, reducing runoff, providing links between aquatic and terrestrial habitats, 

regulating stream flow, and benefitting overall water quality (Naiman, Décamps, and Pollock 

1993; Naiman and Décamps 1997; Robinson, Tockner, and Ward 2002; Tomer et al. 2008; and 

Atkinson, Hunter, and English 2010).   

Complexity refers to variations in the arrangement and makeup of physical structures 

allowing for greater biodiversity a more stable ecosystem (Kovalenko, Thomaz, and Warfe 

2012).  A complex habitat has impediments of sight and movement, variance in type, size, and 

arrangement of objects, and is characterized by a diversity of flora and fauna. Old-growth forests 

tend to be physically and biologically complex environments, whereas clear-cutting and mono-

crop agriculture are examples of practices creating a simplistic environment not capable of 

sustaining the needs of multiple diverse creatures. In streams, complexity includes stream 

morphology and changes in depth, which are increased with adequate amounts of CWD provided 

by healthy forests.   
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CWD is the large dead wood which provides shelter and sustenance for a diverse biology 

and adds complexity to waterway morphology (Bragg and Kershner 1999).  CWD is strongly 

associated with polypore communities (Edman, Kruys, and Jonsson 2004), which in turn are 

associated with strong ecosystem health (Lonsdale, Pautasso, and Holdenrieder 2008).  The 

volume of CWD is often used as an indicator for forest biodiversity (Rondeux and Sanchez 

2010; Lassauce et al. 2011) and is positively correlated with fungal species richness (Edman, 

Kruys, and Jonsson 2004; Lonsdale, Pautasso, and Holdenrieder 2008).  The highest priority 

sites for reforestation are more likely to be near riparian or large forested areas (Holzmueller, 

Gaskins, and Mangun 2011).  Parcel conservation adjacent to nature reserves can reduce 

fragmentation and help preserve environmental processes (Rissman et al. 2006).  It is generally 

concluded that sites rich in CWD are of primary conservation interest and that restoration 

projects would be most effective in sites in the riparian corridor adjacent to CWD-rich areas.  

CWD-rich areas correspond strongly with aged forests, so much so that modern logging practice 

involves leaving certain amounts of CWD behind to help maintain forest health (Lonsdale, 

Pautasso, and Holdenrieder 2008; Junninen and Komonen 2010), and the Normalized Difference 

Vegetation Index (NDVI) was shown to be the best predictor of CWD after a disturbance (White, 

McGill, and Lechowicz 2012).  The chronological as well as spatial continuity of deadwood is 

important for ecological processes and is associated with riparian and mature forest areas 

(Lonsdale, Pautasso, and Holdenrieder 2008).   

In a recent study (Pflugmacher, Cohen, and Kennedy 2012), Landsat time stacks were 

used to determine the degree and frequency of canopy disturbance, the changes associated with 

the death of trees, to estimate CWD.  The time stacks were shown to function almost as well as 

the spatially and temporally limited LiDAR data sets at estimating forest structure, and were 
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better at estimating CWD.  LiDAR is available for only a small portion of Earth’s surface, and it 

is expensive to obtain new images, making Landsat time series a feasible alternative in areas 

lacking LiDAR data, such as most of the Salmon Creek Watershed.   

Habitat loss is a known danger to biological and genetic diversity worldwide and 

preserving parcels is the main conservation strategy used worldwide for reduction in biodiversity 

loss (Mӧnkkӧnen et al. 2010).   Coastal California counties near major urban centers are 

considered highly vulnerable areas for many sensitive species due to the rapid encroachment of 

human habitats in the ecosystem (Newburn, Berck, and Merenlender, 2006).  Landscape 

fragmentation from anthropogenic uses (deforestation, urban growth, agriculture) is a major 

cause of habitat degradation, as it restricts the movement of many species and reduces habitat 

complexity associated with species richness and biodiversity (Malanson and Cramer 1999; 

Kovalenko, Thomaz, and Warfe 2012).  Due to extensive clear-cutting, lands have been 

converted to agricultural and residential uses, leading to declines in biodiversity and habitat 

structure.   

Forests are essential for maintaining ecological balance through providing habitat 

structure and sustenance for many flora and fauna, essential detritus and debris, and by 

sequestering carbon from the air and contaminants from the water and soil.  Some species 

depend on spatial and temporal continuity of forests, in particular some specialized wood-

decaying species of fungus (Hottola, Ovaskainen, and Hanski, 2009) and coho salmon (Andrew 

and Wulder 2011).  Another local example is the Marbled Murrelet, which is a seabird that was 

discovered to have its nesting grounds in old-growth redwood forests extending as far as 80 km 

inland.  Trees provide erosion control, as well, which prevents harmful sediment from 

contaminating streams and adds to stream geomorphology.  Demand for timber and conversion 
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of land for residential and agricultural purposes has led to certain types of disasters worldwide, 

including landslides and flooding, leading forest conservation to be the main approach to reduce 

disasters related to the atmosphere, water, land, and biodiversity (Bhagat 2009). 

Remote sensing can be an effective and efficient way to observe and analyze forest 

characteristics, and Landsat data has been used in 42 percent of landscape studies in a recent 

survey of the journal Landscape Ecology (Newburn, Berck, and Merenlender, 2006).  Remotely 

sensed data has been used commonly in landscape characterization for ecological mapping.  

Remote sensing allows a quick alternative to ground surveys and other conventional methods for 

landscape analysis, and often proves to be an affordable tool for land managers.  Landsat is 

perhaps the most widely used remotely sensed data for vegetation and land-cover categorization 

due to its spatial and temporal continuity, and its availability for free download on the Internet.  

Spatial resolutions of 60 m for the Multispectral Sensor (MSS) of Landsat missions 1-3 and 30 m 

for the Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) are sufficient for 

many landscape management purposes.    
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Chapter 2:  Background 

2.1 Landsat History 

The first satellite was originally named Earth Resources Technology Satellite 1(ERTS-1) and 

was the first satellite aimed at studying Earth’s land (NASA 2013). It was launched July 23, 

1972 and stayed in commission until January 1978.  The sensors aboard the satellites were 

designed to capture specific wavelengths of the electromagnetic spectrum (Figure 1), called 

bandwidths.  The sensors passively detect reflected electromagnetic energy within each 

bandwidth, allowing greater analysis of the land.  Its instruments were the Return Beam Vidicon 

(RBV) and highly experimental Multispectral Scanner (MSS), and while the RBV was 

anticipated as the primary tool, the MSS proved more useful.  The still-experimental Landsat 2 

was launched January 22, 1975 and had the same instruments as ERTS-1, now known as Landsat 

1.  It lasted seven years and operations were terminated on February 25, 1982 (Tables 1&2).   

 
Figure 1. The electromagnetic spectrum with the visible wavelengths highlighted.  From 

http://landsat.usgs.gov/images/Spectral_Bands.jpg. 

 

 Landsat 3 launched March 5, 1978 and had the RBV and MSS, as well.  The RBV was 

changed so that it had greater spatial resolution and captured a broad spectral range, while the 

http://landsat.usgs.gov/images/Spectral_Bands.jpg
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MSS had an added thermal band, although the thermal infrared band malfunctioned after liftoff.  

Landsat 3 continued for five years before being decommissioned September 7, 1983.   

 Landsat 4 launched July 16, 1982, and while still having the MSS instrument, it was 

significantly different from the previous ones in the addition of the Thematic Mapper (TM), 

which replaced the RBV.  The TM had finer spatial resolution and effectively had three more 

bands gathering data from a wider range of bandwidths (a thermal infrared band and two mid-

infrared bands were added).  Landsat 4 suffered technical damages less than a year into its 

mission and stopped gathering data in 1993, but was kept in orbit for organizational purposes 

until it was decommissioned in 2001. 

 The Landsat 5 satellite and instruments were assembled together with Landsat 4 to the 

same specifications, and it was launched less than two years later on March 1, 1984.  Three years 

after launch, the Tracking and Data Relay Satellite System (TDRSS) Ku-transmitter failed, 

leaving Landsat 4 to downlink international data until 1993.  The MSS was turned off in 1995 

until 2012, shortly after the TM malfunctioned; however, the satellite was decommissioned later 

that year because of a broken gyroscope.   

 Landsat 6 was launched October 5, 1993, but never reached orbit.  It had a new 

instrument, the Enhanced Thematic Mapper (ETM), which contained a panchromatic band at 15 

m resolution for sharpening images.  Had it not been for Landsat missions 4–5 outlasting their 

designed life-span, we would have data gaps that Landsat 6 was designed to fill, and this thesis 

would perhaps be one comparing data from two data eras.   

 Landsat 7 launched on April 15, 1999, carrying the ETM+ instrument which had a new 

panchromatic band at 15 m resolution and a 60 m resolution thermal infrared band, as well as 

improvements in data recording and radiometric calibration.  The satellite experienced a 
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hardware failure in the scan line corrector (SLC) in May 2003, which gives the data wedge-

shaped areas of missing pixels totaling about 22% of the entire image.  The satellite continues to 

function properly otherwise and its highly accurate calibration makes Landsat 7 the go-to 

satellite for validating data from other sensors.  Landsat 7 data were originally offered at $600 

per scene, a reduced price from previous missions, until the USGS made all Landsat 7 data free 

for public download in October 2008.  The demand for data downloads led the USGS to offer all 

Landsat data for free in January of the next year, leading to an explosion in data downloads.   

 The eighth Landsat satellite was launched February 11, 2013 and called the Landsat Data 

Continuity Mission (LDCM) until the USGS took over operations on May 30, 2013, when it 

became known as Landsat 8.  Two new instruments onboard Landsat 8 provide added coverage 

of the electromagnetic spectrum:  the Operational Land Imager (OLI) adds a coastal/aerosol 

detecting band 1 and a cirrus detecting band 9, while the Thermal Infrared Sensor (TIRS) uses 

two thermal bands (10 & 11) instead of one.  The bandwidths are also slightly adjusted from the 

ETM+ sensor.   
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Table 1.  Landsat satellites and sensor with associated bandwidths and spatial resolutions.   
Satellite Sensor Bandwidth (µm) Resolution (m) Satellite Sensor Bandwidth (µm) Resolution (m) 

Landsat 1-2 RBV (1)0.48-0.57 80 Landsat 6 ETM Bands 1-7 the same as TM  

  (2)0.58-0.68 80   (8)0.52-0.90 PAN 15 

  (3)0.70-0.83 80 Landsat 7 ETM+ (1)0.45-0.52 30 

 MSS (4)0.50-0.60 79   (2)0.52-0.60 30 

  (5)0.60-0.70 79   (3)0.63-0.69 30 

  (6)0.70-0.80 79   (4)0.76-0.90 30 

  (7)0.80-1.10 79   (5)1.55-1.75 30 

Landsat 3 RBV (1)0.505-0.75 40   (6)10.4-12.5 60 

 MSS (4)0.50-0.60 79   (7)2.08-2.35 30 

  (5)0.60-0.70 79   PAN 0.52-0.90 15 

  (6)0.70-0.80 79 Landsat 8 OLI (1)0.434-0.451 30 

  (7)0.80-1.10 79   (2)0.452-0.512 30 

  (8)10.4-12.6 240   (3)0.533-0.590 30 

Landsat 4-5 MSS (4)0.50-0.60 82   (4)0.636-0.673 30 

  (5)0.60-0.70 82   (5)0.851-0.879 30 

  (6)0.70-0.80 82   (6)1.566-1.651 30 

  (7)0.80-1.10 82   (7)2.107-2.294 30 

 TM (1)0.45-0.52 30   (8)0.503-0.676 15 

  (2)0.52-0.60 30   (9)1.363-1.384 30 

  (3)0.63-0.69 30  TIRS (10)10.60-11.19 100 

  (4)0.76-0.90 30   (11)11.50-12.51 100 

  (5)1.55-1.75 30     

  (6)10.4-12.5 120     

  (7)2.08-2.35 30     
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Table 2.  Landsat mission characteristics. 
System Launch- Date of 

Decommission 
Instrument(s) Altitude (km) Return (days) 

Landsat 1 23 July 1972-          
06 January 1978 

RBV and MSS 917 18 

Landsat 2 22 January 1975- 
25 February 1982 

RBV and MSS 917 18 

Landsat 3 05 March 1978-   
31 March 1983 

RBV and MSS 917 18 

Landsat 4 16 July 1982 -      
15 June 2001     

MSS and TM 705 16 

Landsat 5 01 March 1984-   
05 June 2013 

MSS and TM 705 16 

Landsat 6 05 October 1993- 
05 October 1993 

ETM 705 16 

Landsat 7 15 April 1999- 
present 

ETM+ 705 16 

Landsat 8 11 February 2013- 
present 

OLI and TIRS 705 16 

 

2.2 Landsat in Forest Mapping 

Remote sensing is commonly used for vegetation mapping, having been applied to land 

cover classification, forest analysis, and change analysis, among many other uses.  Since the first 

satellite was launched in 1972, the data from what would become known as the Landsat missions 

has been widely used for forest and vegetation mapping.  With over 40 years of collecting data 

methodically, Landsat is the longest-lasting of the Earth monitoring satellite missions and has 

played a significant role in land management and ecology (Cohen and Goward 2004).   

Landsat’s multiple bands allow for detection of features such as water, mineral, or 

vegetation with specific reflectance properties.  For instance, the near infrared bands are well-

suited for vegetation detection because the “green” chlorophyll absorbs red wavelengths and has 

its highest reflectance in the near infrared wavelengths (Ӧzyavuz 2010).  Band combinations are 

also used for detection of various phenomena, and certain mathematical and algebraic 

transformations can produce revealing information including a range of vegetation indices (VIs).   
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The Normalized Difference Vegetation Index (NDVI) is a widely used VI and is 

expressed in the formula
       

       
.  For example, the NDVI for the TM and ETM+ would 

be 
            

             
, and would reveal the degree of vegetation present in an area.  While bands 4 

and 3 of the TM are used for NDVI, bands 4 and 2 of the MSS are preferred.   

Landsat digital data can be manipulated in many ways to extract valuable data.  

Histograms of DNs can narrow down certain ranges of data for display or evaluation.  

Transformations on DNs can be performed to such indexes as wetness, greenness, or brightness, 

as in the Tasseled Cap transformation (Healy et al. 2005).  Image classification is one of the 

more common applications of Landsat data, and the most commonly used supervised 

classification method since the 1970’s has been the maximum likelihood classifier due to 

Gaussian probabilities of each class having a similar spectral pattern (Roberts 2013).   

 

2.3 Change Detection 

 Because of Landsat’s orbital pattern, data for the same place on earth can be obtained 

every 16-18 days, depending on the satellite (Table 2).  As the sensors scan the earth in a “push-

broom” fashion, they gather data for entire surface of the earth until the satellite comes back to 

the same point in just more than two weeks.  The data are indexed by path and row, with each 

path/row combination covering approximately the same geographical area and are given in the 

Universal Transverse Mercator (UTM) projected coordinate system.  This allows for a solid 

comparison of images from multiple dates. 

Before automated change detection methods were introduced, change detection consisted 

of placing a transparent negative and positive plastic sheet of Landsat images (Crapper and 

Hynson 1983).  In an instance of no change, the two sheets would cancel each other out, 
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revealing no information; in instances of change, such as images separated by time, the areas of 

variation will be exposed while unchanged areas remain neutral.  Automated evaluations of 

Landsat time-stacks have become common in remote sensing and have led to a greater 

understanding of the world at large, and they have led to many advances in climate change 

detection.   

Automated vegetation change detection algorithms are introduced fairly regularly in 

attempts to improve time and processing constraints, as well as  change detection accuracy (e.g. 

Huang et al. 2010).  Many change detection techniques have been used including thresholding 

(areas of change are given a value of 1, while areas of no change are given a background value of 

0), univariate image differencing, image regression, image ratioing (Howarth and Wickware 

1981), decision trees (Belward and de Hoyos 1987), vegetation index differencing, Principal 

Component Analysis (PCA), post-classification comparison, direct multi-date classification, 

change vector analysis, and image subtraction (see Singh 1989).  Newer forest change detection 

techniques which have proven successful include the vegetation change tracker (VCT) (Huang et 

al. 2010), and temporal segmentation algorithms (Kennedy, Yang, and Cohen 2010).  

Due to its spatial resolution, footprint (area covered by a single image), global coverage, 

and availability, studies involving forest change using Landsat data often cover larger regions 

than what this study covers.  At regional, continental, and global scales, Landsat provides 

sufficient accuracy for forest change detection (Huang et al. 2008), and many common uses of 

Landsat data are at the footprint scale or broader (e.g. Kennedy, Yang, and Cohen 2010; Masek 

et al. 2013; and Tan et al. 2013). Use of Landsat sub-scenes (scenes within a greater Landsat 

image) often is improved with ancillary data such as field data, GPS, analytic software, and 

DEMs (e.g. Mihal, Savulescu, and Sandric 2007). 
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Change detection using Landsat time stacks has improved to detect trends (e.g. Kennedy, 

Yang, and Cohen 2010), as well as finding causality for certain phenomena.  For instance, forest 

disturbance in the western United States has been linked to western wildfires using Landsat time 

series analysis (Masek et al. 2013). 

Table 3. Studies in forest change detection and the scale and region studied.   

Author(s) - Date Subject/ Technique Scale Study Region 

Howarth and 

Wickware (1981) 

Band ratioing and supervised 

post-classification change 

detection 

Single scene Peace-Athabasca Delta, 

northern British Columbia, 

Canada 

Belward and de 

Hoyos (1987) 

Comparison of maximum 

likelihood with supervised 

decision tree 

Single scene Farmlingham, Suffolk, UK 

Singh (1989) Review of change detection 

techniques 

N/A N/A 

Mihal, Savulescu, 

and Sandric 

(2007) 

Evolution of vegetation zones Sub-scene 

(<500km²) 

Iezer Mountains, Southern 

Carpathians, Romania 

Keleş et al. 

(2008) 

Urbanization and forest cover 

change- maximum likelihood 

and fragmentation analytic 

software 

Single scene Regional Directorate of 

Trabzon Forestry, NE 

Turkey 

Nelson et al. 

(2009) 

Spatial aggregation and 

resolution effects on forest area 

estimation 

Two 

Landsat 

scenes 

Minnesota 

Huang et al. 

(2010) 

Vegetation Change Tracker 

(VCT) 

Multiple 

Landsat 

scenes 

Eastern Virginia and 

Oregon 

Kennedy, Yang, 

and Cohen (2010) 

LandTrendr: temporal 

segmentation algorithms 

Multiple 

Landsat 

scenes 

Pacific Northwest 
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Chapter 3:  Methods 

3.1 Study Area 

Sonoma County, California, USA is on the north-central coast of California in the San Francisco 

Bay area.  It is home to a rich diversity of terrains, land cover, and species.  According to the 

Sonoma County Administrator’s Office (2011) based on the 2010 US Census, Sonoma County is 

projected to experience over a 5% population growth by 2015, causing environmentalists to be 

concerned about urbanization.  The Salmon Creek Watershed is a small, predominantly rural, 

coastal watershed emptying just north of Bodega Bay.  Extending less than 1/11
th

 of a Landsat 

image, the study area covers 323.9 km² at a scale of 1:144,841, and using the UTM-10N 

projected coordinate system it has minimum and maximum x coordinates of 491265 and 512685, 

and minimum and maximum y values of 4239195 and 4254315, respectively.   

 Coastal redwood, various pine, Douglas fir, and California bay as well as deciduous oaks 

and maple are common trees throughout the study area.  Alder, willow, and cedar are also 

present in the riparian areas.  Sonoma County has become known for its wine and dairy products, 

and apple orchards are seen throughout much of the study area based on ground observation.  

The coastal regions and the south of the study area are dominated by rolling grassy hills, many of 

which are being used for grazing by cattle or sheep.  Coastal scrub brush is also present, 

especially on the coastal grassy hills. Five small towns are located in the study area: Bodega, 

Bodega Bay, Camp Meeker, Freestone, and Occidental. 
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Figure 2. The Salmon Creek Watershed study area, Sonoma County, California.  Image is 

a window, or sub-scene, of Landsat 8’s OLI instrument Path 045, Row 033 from bands 2, 3, 

and 4, day 289.  The Salmon Creek Watershed is outlined in red. 
 

3.2 Data 

The Landsat images were downloaded from the USGS EarthExplorer website 

(http://earthexplorer.usgs.gov/) for WRS1 path 048, row 033 and WRS2 path 045, row 033 

starting in 1972.  All images were gathered for mid- to late-summer clear days in order to enable 

easier distinction between grasses, cultivated land, and forested land (Table 3).  The images from 

before 1985 were collected at 80 m spatial resolution and processed and distributed at 60 m 

resolution; the images since 1985 are at 30 m spatial resolution.  Six USGS Digital Orthophoto 

Quadrangles (DOQs) from 11–13 July 1993 were also downloaded from the USGS 

EarthExplorer website and are in 1 m spatial resolution.  All images are publicly available for 

free download.   

http://earthexplorer.usgs.gov/
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Table 4.  Image dates, Landsat mission, and instrument used in analysis of the Salmon 

Creek Watershed study area.  * denotes both days were combined into a single image due 

to the SLC-off anomaly.   

 

 

3.3 Tools 

IDRISI is image processing and geographic information systems software with strong 

raster processing capabilities.  The Selva edition of the software provides many tools for 

analyzing spatial data, including surface data, statistical analysis, change and time-series 

exploration, and hard and soft classifiers.  Mathematical and logical processes can be applied to 

raster images to determine relationships between data and for pattern analysis.  IDRISI also 

offers convenient import and export formats compatible with the most common formats.  IDRISI 

Selva tools were used for the examination of the Landsat images, for analyzing the resulting 

rasters, and for assessing the accuracy of the classified images (Table 5).    

Year Day

Landsat 

Mission Instrument

1972 299 1 MSS

1975 211 1 MSS

1977 155 2 MSS

1980 266 2 MSS

1982 192 3 MSS

1985 276 5 TM

1987 186 5 TM

1990 178 5 TM

1992 248 5 TM

1995 176 5 TM

1997 213 5 TM

2000 230 7 ETM+

2002 187 7 ETM+

2005 267 5 TM

2007 241 5 TM

2010 249 5 TM

2012 231/ 263* 7 ETM+ (SLC-off)

2013 289 8 OLI
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Table 5.  Tools used in IDRISI Taiga. 

Tool Usage 

COMPOSITE Uses a 3-band combination representing red, green, and blue to create a color composite image.  

In this case, I used MSS bands 4, 5, and 7, and TM and ETM+ bands 2, 3, and 4 to create a false-

color composite highlighting vegetative growth. 

EXPAND Increases image resolution by a given factor. 

MAHALCLASS Creates a new set of signature classes by determining Mahalanobis distance.  

MAKESIG Creates signature files of classes based on the spectral reflectance signatures in the training data 

used for hard classification.   

MOSAIC Creates an image from overlapping images of the same data type, referencing system, and pixel 

resolution.  The tool offers the option to match image grey levels, creating what looks like a 

more natural single image.  I used this tool for six DOQs covering the study area. 

RESAMPLE This tool is a “rubber sheet” transformation that registers the data of one grid system into that of 

another when the PROJECT tool is not sufficient.  I used the RESAMPLE tool to correct the 

position of the 1975 image. 

WINDOW Extracts a subset of a larger image by coordinates or row/column positions. 

 

The Image Calculator can generate new images using either a mathematical or logical 

expression.  I used the AREA tool to generate a table of the total area in square kilometers for 

forests in each classified image.  I also used it for comparing images or determining overall 

trends, as with the resulting images of the MAHALCLASS tool. 

The MAXLIKE maximum likelihood classification tool is a Bayesian classifier 

determining classes based on the probability of each pixel belonging to the predefined class 

signatures.  Bayes’ Theorem infers the probability of an occurrence given a set of possible 

occurrences and is expressed in the following equation for the probability of x given y:     

 ( |  )   
 ( | ) ( )

 ( )
  where x   and p is the probability of an occurrence.   
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The MAHALCLASS tool is a soft classifier, one which decides the degree of 

membership in a particular class of an image.  The same signature files are used as those which 

are generated from the MAKESIG tool to classify all pixels in an image, but contrary to other 

classifiers, the MAHALCLASS tool generates a series of rasters showing the degree to which 

each pixel is typical of the training data for each class based on Mahalanobis distance.  

Mahalanobis distance determines the similarity of each pixel to the training data and is 

equivalent to z-scores (standard deviations from the mean) for multiple variables.   

 

3.4 Image Preparation 

Some preprocessing must be performed on the Landsat images before they will be useful 

for analysis.  Atmospheric correction was not used because the training data are at the same scale 

as the image data and are taken from the images themselves (Song et al. 2001). First, each 

Landsat image was cropped, band by band, to an area containing the Salmon Creek Watershed 

study area using the WINDOW tool.  One image was found to be incorrectly registered, having 

coordinates off by as much as 1.5 miles.  This was corrected by using the RESAMPLE tool and 

creating ground control points for reference with another image.   

Second, the images from before 1985 are not in the same spatial resolution as the later 

images.  The images must all be in the same resolution before they can be compared.  Since 

Landsat 1, 2, and 3 data are distributed by the USGS in 60 m spatial resolution (although they are 

gathered in 80 m resolution) and the latter Landsat data are in 30 m resolution, and in order to 

enable further analysis, the resolution of the latter images was enlarged to 60 m resolution using 

the EXPAND tool, expanding the image by a factor of two in width and length, combining the 
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smaller pixels to create an aggregated image.  This created two different sets of images for 

Landsat data obtained at 30 m spatial resolution, 30 m and 60 m resolution datasets.   

Using the COMPOSITE tool, a false-color composite of the windowed images was 

created for each year from bands 4, 5, and 7 for MSS images and bands 2, 3, and 4 for TM, 

ETM+, and OLI images.  Each of the DOQs was pieced together using the MOSAIC tool so that 

they can be used as a reference for classification of the Landsat images.   

 

3.5 Training Data and Hard Classification 

The windowed composite images were used to define sites as training data to digitize 

vector files of five land cover categories:  water, forest, pasture/grassland, vineyard/orchard, and 

developed/barren.  The water in the images has obvious visual color differences, since some of 

the water pixels are open ocean, some are shallow/murky bay, and some are in streams and 

estuaries.  The forested areas, which are the focus of this study, dominate the mid- and northern 

regions of the study area.  Because the forest class was the focus of interest, chaparral areas were 

considered as part of the pasture class, opting for a simpler classification structure to determine 

forested land.  The pasture land, including scrub brush, dominates the southern and coastal areas, 

and seems to fill many of the gaps between forests.  Most of the vineyard/orchard land is located 

in the northeastern quarter of the study area.  The developed/barren areas were beaches, bare 

land, roads, and buildings, and are scattered throughout the scene.   
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Figure 3.  Flowchart for the process of creating an image using the maximum likelihood 

classifier. 
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Training data were created by carefully selecting representative samples of the selected 

land cover for each image.  Using new training data for each image is recommended to avoid 

complications from atmospheric effects (Huang et al. 2008).  The DOQ mosaic was used as a 

reference to find areas with “pure” pixels for each category.  Training data were manually 

digitized using representative areas for each different category.  The digital number (DN) 

associated with each pixel in the image is placed in one of the above categories by the maximum 

likelihood classifier based on its similarity to the training data DNs.   After this comparison, each 

pixel is placed in the category that it is most likely to fall into.  Sometimes there are mixed pixels 

(pixels containing two or more types of land cover) or otherwise confusing DNs (i.e. cloud 

cover), which may cause some complications.   

Signature files were then created from the vector training data polygons by using the 

signature development tool MAKESIG, which uses the spectral signatures from the training data 

applied to the various bands of the Landsat image to extract the spectral values for that land 

cover type for that particular image.  To create a classified image using the maximum likelihood 

classification method, the signature files were entered as input to the MAXLIKE tool with equal 

probabilities that a pixel’s DN could fall into each class.  A color palette file was created and 

named LandClassification using the “Symbol Workshop” tool for consistent visual 

interpretation.   
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3.6 Digitization of Forest Area 

To compare the automated forest classification with ground truth data, forest area was 

manually digitized according to the author’s best judgment for the 2013 image, and cross-

referenced with the DOQ mosaic (Figure 4).  This was done by using the Digitize function in 

IDRISI, creating a vector polygon file.  Once the forest area was digitized, the 

RASTERVECTOR tool was used to transform the vector file to a raster file.  The AREA tool 

was then used to generate a tabular file showing how many square kilometers the digitized forest 

area covers.  While this approach may have the drawback of missing individual pixels, it is a 

useful tool for showing what the author considers forest area compared to what the software may 

include.  It is one way of checking for and describing the error found in the automated maximum 

likelihood method.   
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Figure 4. Flowchart for manual digitization of the 2013 30 m resolution composite image 

and comparison with the 2013 30 m resolution maximum likelihood forest classification. 
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To compare the manually digitized image with the automated classification, the Image 

Calculator was used to show only the forest area (pixels in category 2, which is forest) from the 

2013 30 m maximum likelihood classified image.  The Image Calculator was again used to 

subtract the automated pixel values from the digitized pixel values, which showed me where 

there was disagreement between what the author considers forest and what the tool considers 

forest based on the training data used.   

 

3.7 Soft classification 

IDRISI’s MAHALCLASS soft classifier was used with the intension of visualizing the 

uncertainty that the software had in determining classes.  The same signature data files were used 

as for the MAXLIKE tool (Figure 5), and the result is an image showing the degree of 

uncertainty involved in the classification, both for individual classes and for all classes 

combined.  The MAHALCLASS tool was used for every image and both 30 m and 60 m 

resolutions.  After the images were processed in this manner, the Image Calculator was used to 

add the combined uncertainty for each year for each resolution.  This gave the overall uncertainty 

involved for each pixel in all categories in each resolution.  Because the forest class was the sole 

focus, the Image Calculator was used to add only the uncertainty from forest classes for each 

year at both resolutions, which gave the uncertainty through the years involved only in 

categorizing forest classes at each resolution.   
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Figure 5. Flowchart for creating Mahalanobis distance soft classification images to 

visualize uncertainty in classification.   
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3.8 Error Analysis 

Error analysis is an important part of GIS and remote sensing classification.  It is a way of 

statistically determining the extent of error to be expected in the classified images, and therefore, 

assessing the final classified images’ accuracy.  Since 300 test points are recommended per 

scene, and because of time limitations, only six scenes were selected for error assessment.  

IDRISI has built in to its software an accuracy assessment tool that generates an error matrix, 

ERRMAT, based on manual visual interpretation of a representative sample of points in the study 

area.  The process is laid out in Warner and Campagna, Ch. 8 (2009), which I summarize here. 
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Figure 6. Flowchart for the task of generating an error matrix based on stratified random 

sampling in IDRISI Selva. 
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The process is begun by the SAMPLE tool to create a vector file of random test points 

(Figure 6).  The recommended 300 test points per scene were used for stratified random 

sampling.  Stratified random sampling spreads the sample points randomly, while assuring each 

class is well represented.  Then, an Attribute values file (.avl) was created using the EDIT tool to 

match points 1–300 with the class most representative of the point.   The random test points are 

overlaid both on the color composite from which the classified image was derived and on the 

DOQ of the study area.  Each point is systematically visually interpreted and categorized based 

on a comparison of their place in the DOQ and composite images.  This can be a somewhat 

troublesome task as some pixels are mixed; that is, they represent the reflected radiance of more 

than one class.  For instance, how is a pixel to be assigned when a road lined with small trees on 

one side and a pasture on the other is present, which can certainly be the case when the 

resolution is 60 m or 30 m?  A common country road surely is only 1/3 of a 60 m pixel at most.  

In these situations, the most representative class was chosen, or a “0” was entered to prevent that 

pixel from being computed in the error matrix.  The .avl file was updated with each number, one-

300, being assigned the category most representative of the point on the image through visual 

interpretation.  A raster was then created from the vector layer of interpreted sample points using 

the tool RASTERVECTOR.  A “ground-truth” image was created with the updated attribute 

values file (.avl) using ASSIGN, which assigns photo-interpreted values for the pixels associated 

with the sample points.  Finally, the accuracy of the classified images was calculated with the 

ERRMAT tool.   

The ERRMAT tool creates an error matrix in which the columns represent the ground-

truth samples measured against the rows which contain the classifications as generated by the 

maximum likelihood classification for the corresponding pixels.  The error matrix shows errors 
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of omission and errors of commission for each category in the classified image.  At the bottom of 

each column shown as a proportion are the total errors of omission; that is, the pixels which were 

assigned to one category in the ground-truth data, and to another category in the classified image.  

At the end of each row are the errors of commission, or the proportion of pixels assigned 

incorrectly in the ground-truth data.  The diagonal line of numbers from the upper left to lower 

right represent correctly classified pixels.  In the bottom right-hand corner of the matrix is the 

total classification error, also shown as a proportion.   The ERRMAT tool also calculates the 

overall Kappa, which is a measure of difference in agreement between the overall accuracy of a 

classified image and the amount of agreement one should expect by a random comparison of two 

maps.   

 

3.9 Study Assumptions 

 In the process of the study, I made several assumptions that affected its direction.  The 

first assumption was that atmospheric correction is not necessary.  The training data are at the 

same resolution as the images and were chosen from each year’s image.  Training data from one 

year and resolution was not used for an image from another year or resolution.  This means that 

an atmospheric condition in one image would not carry over to another image.   

 Another assumption is that by expanding the 30 m resolution images to match the 

resolution of the 60 m images, the expanded image would be equivalent to an original 60 m 

resolution image.  The aggregated image inherently involves mixing pixels, and mixed pixels are 

a common problem in remote sensing.  But, by decreasing the resolution of the 30 m images, it 

was assumed that a basic comparison could be made with the already too coarse earlier images.   
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 Due to high error in preliminary results, it was assumed that a soft classifier would help 

determine where the problem areas are.  Also, the forest area was manually digitized for the 2013 

scene with the assumption that the author’s knowledge of the area may be more accurate overall, 

or at the very least, helpful ancillary data. 

An important assumption was that the soft classifier would be helpful by showing the 

areas that the software had the most difficulty in determining classes.  The purpose of the soft 

classifier was not to determine forest cover, but to help visualize uncertainty or confusion.  An 

image with high levels of uncertainty can mean corrupted training data, so it was believed to be a 

helpful double-check.   

 The author also assumed that the DOQ and personal knowledge of the area are sufficient 

information to generate training data for the earlier images.  Much of the forested area, based on 

ground research, is comprised of large redwoods and firs that are at least 50–75 years old.  The 

assumption was that the large trees and forested area visible in the DOQ from 1993 were in fact 

predominantly of this type from 1972–1992. 
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Chapter 4:  Results 

4.1 Training Data 

The training data was carefully chosen to include different types of forest, pasture, vineyard, 

water, and developed or barren land based on a DOQ mosaic and the author’s knowledge of the 

area (Figure 7).   

 

Figure 7. The 2013 Landsat subscene with training data outlined.  Blue=water; 

green=forest; yellow=pasture; magenta=vineyard/orchard; and cyan=developed/barren.   
   

4.2 Maximum Likelihood Hard Classifier 

The images resulting from the maximum likelihood classifier showed obvious differences 

in resolution (i.e. Figures 8 and 9), and the variation from image to image was a concern 

(compare Figures 9 and 10).   
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Figure 8.  The results of the maximum likelihood classifier for the 60 m resolution 1995 

Landsat subscene of WRS Path 45/ Row 33. 
 

 
Figure 9.  The results of the maximum likelihood classifier for the 30 m resolution 1995 

Landsat subscene of WRS Path 45/ Row 33. 
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Figure 10. The results of the maximum likelihood classifier for the 30 m resolution 1997 

Landsat subscene of WRS Path 45/ Row 33. 
 

 A comparison of forest area from year to year shows significant variation, but the core 

forest area remains essentially the same throughout the different images.  A comparison of the 

first two images, years 1972 and 1975, shows a difference of –9.2592 km² in forest area (Figure 

11, see Figure 16).  A comparison of change between the 1985 classified forest area (the first 

year of 30 m resolution images) and the 2013 classified forest area shows a more detailed change 

image (Figure 12) depicting an overall gain in forest area of 8.2476 km² during that time period.  

The overall forest change based on post-classification comparison is a net loss of 3.7512 km² of 

forest area since 1972 based on 60 m resolution analysis (Figure 13).  The 30 m resolution 

images, however, consistently showed greater forest area than the aggregated 60 m resolution 

images (see Figure 16), and a comparison of the 1972 60 m resolution forest area with the 2013 

30 m resolution forest area shows a net gain in forest area of 2.2599 km².   
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Figure 11. The forest change from post classification change detection.  The image 

represents the forest area from 1972 minus the forest area from 1975 after the maximum 

likelihood classification in 60 m resolution.  Blue areas represent forest loss, black 

represents no change, and red represents forest gain from 1972–1975.  Forest area of of 

9.2592 km² was lost. 
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Figure 12. Forest change between the 1985 maximum likelihood classified forest area and 

the 2013 classified forest area at 30m resolution. Blue represents areas of forest loss, black 

represents no change, and red represents forest gain.  A total of 8.2476km² of forest area 

was gained.   
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Figure 13. Forest change between 1972 and 2013 for 60 m maximum likelihood forest 

classification.  Blue represents areas of forest loss, black represents no change, and red 

represents forest gain.  At this resolution, a total of 3.7512 km² of forest area was shown to 

be lost. 
 

Estimates of forest area varied substantially from year to year but appear to trend 

downward from 1972 to around 1987, then upward from 1987 to the present, with a peak around 

2007 (Figure 16). Digitized forest area for 2013 at 30 m resolution is about 100 km², which is 

within the upper limit of the error associated with the maximum likelihood classified images.  By 

adding the images of forest area for each year, it is possible to see the core forest areas, those 

areas which have not major canopy disturbance events, and the areas which have experienced 

some form of change in the time period of 1972 to 2013 (see Figure 14 for change at 30 m 

resolution since 1985; see Figure 15 for change at 60 m resolution since 1972).  
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Figure 14. Total forest change from 1985–2013 at 30 m resolution.  Darker green areas 

represent those pixels which were more consistently categorized as forest.  Lighter green 

colors were categorized as forest less frequently, and white areas were not classified as 

forest during this time period.   
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Figure 15. Total forest change from 1972–2013 at 60 m resolution.  Darker green areas 

represent those pixels which were more consistently categorized as forest.  Lighter green 

colors were categorized as forest less frequently, and white areas were not classified as 

forest during this time period.   
 

When comparing the original 30 m resolution classified images with those made from the 60 m 

resolution aggregated images, it can be seen that the 60 m aggregated images consistently 

underestimate forest area.  Some variation can be found from image to image, with the 1992 

images having the widest gap at 12.9708 km² difference in forest area between the 30 m and 60 

m classified images.  The smallest gap was in 1985 with only 1.8747 km² difference.  The 

average difference between 30 m resolution forest area and aggregated 60 m resolution forest 

area was 7.1346 km².   
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Figure 16. Total forest area for 30m and 60m resolution images after the maximum 

likelihood classification and error associated with forest classification.  The error bars 

below the points are errors of commission, while the error bars above are errors of 

omission.   
 

4.4 Error Analysis 

The error of omission was a major concern (Tables 6, 7, & 8), showing that the maximum 

likelihood classification consistently underestimated forest area.  This could be due to a limited 

classification scheme, incomplete or otherwise erroneous training data, spatial resolution that is 

too coarse for this scale, or a perhaps some types of forest have spectral signatures that are more 

similar another class in the classification scheme (for instance, riparian willows and alders may 

be getting confused with orchard or pasture).   
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Table 6. The error matrix from the 1975 Landsat maximum likelihood classified image (60 

m) for the five coded classifications:  1= water, 2= forest, 3= pasture, 4= vineyard/orchard, 

5= developed/barren.  The error and KIA are expressed as proportions for each category.   

Category Water Forest Pasture Vineyard

/Orchard 

Developed/

Barren 

Total ErrorC KIA compared 

with classified 

image 

Water 26 0 0 0 0 26 0 1 

Forest 0 68 0 0 0 68 0 1 

Pasture 0 11 122 4 1 138 0.1159 0.7697 

Vineyard/Orchard 0 18 19 16 1 54 0.7037 0.246 

Developed/Barren 1 0 8 0 5 14 0.6429 0.3418 

Total 27 97 149 20 7 300   

ErrorO 0.037 0.299 0.1812 0.2 0.2857  Overall 

Error 

0.21 

 

KIA compared 

with truth sample 

0.9594 0.6134 0.6644 0.7561 0.7003   Overall 

Kappa   0.69 

 

 

Because error of omission was unacceptably high, the training data were tested to 

determine whether they were satisfactory by more than doubling the training data for the 1997 

image, which had unusually high error after the first run of ERRMAT.  After classification and 

error analysis, the overall error and forest error of omission were still very similar and 

unacceptably high, but the places where the error occurred changed (Tables 7 and 8).  The 

original image (Table 7) showed that the MAXLIKE classification tool classified the forest as 

vineyard/orchard (category 4) 28 times and as developed/barren 23 times out of 299 total points 
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tested, leading to a 42.86% error of omission, with no error of commission.  After more than 

doubling the training data for forest, the MAXLIKE tool classified forest as pasture 18 times 

(compared to 0 in the original), still classified forest as vineyard/orchard about the same at 26 

times, and as developed/barren only twice (Table 8).  The error of omission was only slightly 

lower at 38.66%, while the error of commission remained at 0%.  The overall error improved 

some from 31.44% to 23.41%, which is still unacceptably high, leading me to believe that it is 

unlikely that the training data was primary source of error. 

 

Table 7. The error matrix associated with the 1997 image at 30 m resolution with the 

original training data.  Bold data in columns and rows labeled “2” are associated with 

forest.  ErrorC is error of commission; ErrorO is error of omission for 299 pixels tested. 

Category Water Forest Pasture Vineyard/Orchard Developed/Barren Total ErrorC  

Water 32 0 0 0 1 33 0.0303  

Forest 0 68 0 0 0 68 0.0000  

Pasture     0 0 81 1 4 86 0.0581  

Vineyard/Orchard 0 28 21 19 4 72 0.7361  

Developed/Barren 1 23 11 0 5 40 0.8750  

----------- -- -- -- -- -- -- --  

Total 33 119 113 20 14 299   

ErrorO 0.0303 0.4286 0.2832 0.0500 0.6429  0.3144  
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Table 8. Error matrix associated with 1997 image at 30 m resolution after doubling the 

training data.  Bold data in columns and rows labeled “2” are associated with forest.  

ErrorC is error of commission; ErrorO is error of omission for 299 pixels tested. 

Category Water Forest Pasture Vineyard/Orchard Developed/Barren Total ErrorC 

Water 32 0 0 0 1 33 0.0303 

Forest 0 73 0 0 0 73 0.0000 

Pasture 0 18 100 1 4 123 0.1870 

Vineyard/Orchard 0 26 11 19 4 60 0.6833 

Developed/Barren 1 2 2 0 5 10 0.5000 

------------- -- -- -- -- --   

Total 33 119 113 20 14 299  

ErrorO 0.0303 0.3866 0.1150 0.0500 0.6429  0.2341 

 

4.2 Soft Classifier 

The results of the MAHALCLASS tool showed that the main areas of uncertainty are the 

coast where the waves meet the sand, riparian areas (especially those to the south of the main 

forest areas), some of the pasture area in the southeast corner of the images, and almost the 

entirety of the forest area (Figure 17).  Of the areas with the highest degree of uncertainty, the 

riparian and forest areas (even some areas that had been used for the training data) showed high 

degrees of uncertainty for the forest class, with pixels on the edge of the forest and some 

vineyard/orchard also being a concern (Figure 18). 
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Figure 17. The classification uncertainty for all classes for the 2013 30m resolution image; 

0.00= no uncertainty, 1.00= 100% uncertainty.   
 

 

Figure 18. Uncertainty involved in forest classification for 2013 30 m resolution image after 

application of MAHALCLASS tool.  0.00= no uncertainty, 1.00= 100% uncertainty. 
 

 After adding the results of each year using the Image Calculator, a clearer picture of the 

uncertainty can be seen.  The total uncertainty for all classes of all 30m resolution images reveals 

that the coast, some chaparral areas just inland from the coast, riparian areas, and the same 
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pasture land in the southeast corner of the image prove to be areas of greatest uncertainty (Figure 

19).  The total uncertainty for forest classification for each resolution compounded through time 

shows that the most heavily forested areas are associated with the highest uncertainty (Figures 20 

and 21). 

 

Figure 19. The accumulation of Mahalanobis distance classification uncertainty for all 30 

m resolution images.  Blue= least uncertainty, Magenta= most uncertainty.   
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Figure 20. Uncertainty associated with forest classification for all years at 30 m resolution 

using the MAHALCLASS soft classifier in IDRISI Selva.  Black= lowest uncertainty, 

Magenta= highest uncertainty. 
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Figure 21. Uncertainty associated with forest classification for all years at 60 m resolution 

using the MAHALCLASS soft classifier in IDRISI Selva.  Black= lowest uncertainty, 

Magenta= highest uncertainty. 
 

4.3 Digitized Forest Area 

When compared to the automatically classified 2013 image, the manually digitized 2013 

image had approximately 16 km² more land classified as forest (100.7217 km², compared with 

84.2823 km²), which was within the error associated with the automatically classified images.  

After subtracting the automated forest area (Figure 22) from the manually digitized forest area 

(Figure 23), two images were produced showing the areas of disagreement (Figures 24 and 25).  

The main areas of disagreement are riparian areas along the Salmon Creek between the towns of 

Bodega and Freestone, some pockets of within forested areas containing a few pixels of other 

types, and some coastal chaparral.   
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Figure 22. The 2013 forest area in red as defined by the maximum likelihood tool, 

MAXLIKE, in IDRISI Selva. 
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Figure 23. The 2013 forest area in red as defined by the author by manual digitization 

using the Digitize function in IDRISI Selva.   
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Figure 24. The results of the comparison of the manually digitized forest area with the 

automatically classified forest area for the 2013 scene.  Red areas are those which I 

classified as forest, but which were classified otherwise by the software. 
 

 
Figure 25. The results of the comparison of the manually digitized forest area with the 

automatically classified forest area for the 2013 scene.  The areas in red correspond to 

areas classified by the software as forest, but which I did not consider to be forest.   
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Chapter 5:  Discussion 

The main task of this thesis was to study the forest cover change for a time stack of subscenes of 

Landsat data to discover the story of the forests in the Salmon Creek Watershed and vicinity 

since 1972.  The primary interest was to estimate forest cover change in the Salmon Creek 

Watershed and its immediate surroundings with an aim to present new knowledge to those 

interested in conservation or restoration in the area.  The maximum likelihood classifier was the 

main tool used for assessment of forest area, while the soft classifier aided in visualizing 

uncertainty in classification, and a manually digitized 2013 scene revealed the author’s 

interpretation of forest area for that scene.  The results that stand out most are the consistent 

errors of omission in forest cover associated with the maximum likelihood classifications.  The 

maximum likelihood classifier consistently underestimated forest cover, but there seemed to be 

enough of a pattern to see a “U”-shaped trend in forest area.  The trend seems to bottom out in 

the mid-1990’s before beginning to rise, which would seem to coincide with logging regulations 

in the mid-1990’s sparked by the spotted owl controversies (U.S. Government 1995). 

  Total forest area from 1972 to 2013 appears to have slightly risen by 2.2599 km².  

However, if the 60 m resolution images from the MSS instrument underestimate forest area in 

the same way as the aggregated images do, then there may be a net decrease in forest area since 

1972.  The aggregated 60 m images underestimated forest area compared to the original 30 m 

images by on average 7.1346  km², meaning that there could be a net loss of about 5 km² forest 

area.  

The chosen classification scheme did not allow for mixed pixels, pixels showing 

reflectance from two or more land cover types, which was exacerbated in the 30 m resolution 

images that were degraded to 60m resolution images. The images which were aggregated to 60 
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m resolution consistently underestimated forest area compared to the original 30 m resolution 

images, and draws into question whether the MSS 60 m resolution images also underestimates 

forest area.  The error analysis consistently showed very few errors of commission, but 

significant omission errors, meaning that the data should have been classified as forest much 

more frequently than they were for all years.  The manually classified image showed that what I 

believe to be the actual forest area is significantly greater than what IDRISI Selva shows it to be 

with the MAXLIKE tool, the training data I gave it, and the resolution of the Landsat images.  

The forest area was consistently underestimated at these resolutions. 

 

5.1 Training Data 

 The training data chosen for the forest class showed to be sufficient, although, in 

retrospect, another category for chaparral may have helped.  After more than doubling the 

training data on an image with especially high overall error, the error only decreased slightly.  

The choice to add chaparral to the pasture class seemed to cause confusion not only between 

forest and pasture, but between pasture and vineyard/orchard, as well.  Applying a terrain 

correction algorithm may have produced better results, since shadows and slope differences can 

affect the results in mountainous terrain (Tan et al. 2013). 

  

5.2 Hard Classifier 

 The maximum likelihood classifier alone did not produce sufficient results.  This could 

be due to the classification scheme, an inability to discern mixed pixels, and/or insufficient 

spatial resolution.  The variation from year to year made it difficult to make an accurate 

assessment of forest area.  Areas that showed the greatest variation are mixed pixels, pastures, 
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and vineyard/orchards.  Much of this variation may be due to the amount of moisture in the soil.  

For instance, some open, grassy fields are on irrigation systems and some are not.  While the 

fields may appear visually similar, they are distinguishable by the different bands available with 

Landsat.    

 

5.3 Error Analysis 

 The error analysis was conducted on only a few select years due to the time constraints 

involved in classifying 300 points per scene.  It would have been only slightly less time-

consuming than digitizing forest area for all years.  It was high error of omission from 

preliminary error analysis which led to use of a soft classifier and manual digitization. 

 

 

5.4 Soft Classifier 

 The results of the MAHALCLASS analysis show that there were areas of consistent 

confusion; even some of the same places that were used as training data were associated with 

great uncertainty.  The coastal brush seems to have less uncertainty in the forest classification 

than there is for the more heavily forested areas, adding to my belief that the training data was 

not the source of confusion.  Based on this and the fact that the coastal brush areas show great 

uncertainty when all five categories are accounted for, I conclude that the coastal brush was more 

likely confused with the vineyard/orchard and/or pasture classes than with the forest class.  The 

use of the soft classifier was interesting, but proved to be little help as far as actually determining 

forest area, and it is the author’s opinion that this step could have been skipped entirely with little 

difference in the overall results of the study.   
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5.5 Digitization 

Another factor that may be involved is perceived contiguity as a factor in determining 

classes.  For instance, in my manual digitization of the forest area, I may have considered 

riparian areas as more likely to be forest, whereas the DN associated with these pixels may more 

closely represent the vineyard/orchard class due to moisture and canopy density.  My decision to 

classify these riparian areas as forest was perhaps more an issue of function rather than the 

density of trees.  The presence of a few trees in riparian areas may have been more likely to be 

considered forest, whereas the presence of a few trees in developed areas may still be likely to 

receive the developed/barren designation.  Many residences are also located amongst the 

redwoods and other tall trees, which may have the visual appearance of pure forest.  In these 

cases, I chose to classify the pixels as forest rather than developed/barren because the forest 

canopy is more easily observed; although, there are aspects such as impervious surfaces and 

fences which hinder full forest functionality below the canopy.   

Digitizing was a tedious and time-consuming task, and I was aware that I inevitably 

enclosed some non-forest pixels in the digitized polygons (shown by sparse pixelated areas in 

Figure 24).  This is by no means the only difference between the digitized and automated, as I 

took great care in keeping as many of these areas outside the digitized polygons as possible.   

 

5.6 Further Directions 

Even with the variation from image to image, I believe there is enough evidence to 

suggest that the downward and then upward trend in forest area is essentially correct, though 

underestimated.  The consistently low error of commission is my main evidence for this 
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conclusion, supported strongly by the manual digitization of the forest area.  The soft classifier 

showed that there were areas of uncertainty in determining forested pixels, but that the chaparral 

was not a major source of confusion (see Figure 20).   

One on the most common and successful techniques for determining vegetation cover and 

change is the NDVI, which would have been a much simpler and more direct approach to this 

project.  A comparison of NDVIs would have given much more information than what I was able 

to determine based on the methods laid out above, and the procedure is fairly simple and 

straightforward without taking much time to process.   

A Landsat time lapse from 1984 to 2012 is available on the internet via Google’s Earth 

Engine at https://earthengine.google.org/#intro/v=38.5779555,-

122.98883189999998,7.946972730143203 (Google 2012).  Upon inspection, a few areas of 

development and some conversion of grassland to vineyard/orchard are apparent, but there are no 

obvious signs of clear-cutting, and only a few small areas seem to have been converted from 

forest to developed/barren.  It is interesting to note that MSS data were not used in the above 

time-lapse.   

Most Landsat time series studies use full or mosaicked images to capture the significance 

of regional dynamics, while some such as this search for significance at a scale within a sub-

scene of a full image.  This presents difficulties as the 30 m and 60 m resolution images do not 

capture the detail desired for assessment of a small area, although finer spatial resolution will not 

necessarily mean higher map accuracy (see Thompson and Gergel 2008).  The availability and 

history of the Landsat data contribute heavily in our foundational understanding of Earth’s 

surface, especially at medium to broad scales, and has over 40 years of consistent data.  With its 

many benefits, Landsat essentially lacks the ability to capture nuanced details necessary for a 

https://earthengine.google.org/#intro/v=38.5779555,-122.98883189999998,7.946972730143203
https://earthengine.google.org/#intro/v=38.5779555,-122.98883189999998,7.946972730143203
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thorough investigation of forest dynamic in smaller areas.  For instance, several smaller trees or 

undergrowth could be “thinned” from a forest background without much of a change in an 

individual pixel’s value at 30 m resolution, yet the ecology has changed.  At 60 m resolution, a 

fairly large redwood could be removed without being detected.   

While it has been shown sufficient to aggregate pixels to coarser resolutions to estimate 

forest land where larger patches (9–25 ha) are concerned (Nelson et al. 2009), this says little 

about the utility of 30 m and 60 m resolution images for smaller land areas.  The greatest benefit 

to this project of the Landsat data was it temporal history, but for improved change detection at 

the small watershed scale, data with broader temporal resolution and finer spatial resolution 

would be required. 

 Further study should be conducted in whether the apparent downward then upward trend 

in forest cover is associated with salmon counts in the Salmon Creek Watershed during this time.    
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