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Abstract 

Large and severe wildfires have become the norm in many parts of the western US, including the 

region along the Oregon-California border. As populations in this area continue to grow, they 

encroach on undeveloped land with abundant wildland fuels and high fire risk. Communities that 

inhabit this wildland-urban interface (WUI) are increasingly imperiled as climate change 

exacerbates catastrophic fire activity. While previous, national-level studies have established a 

methodological baseline for WUI identification using vegetation and population density data, the 

impacts of variable criteria on small-scale study areas remains under investigated. This is a key 

area of concern because the adequate identification of WUI communities is a vital first step for 

effective public policy decision making, emergency planning, and resource allocation. This 

project attempts to bridge the current research gap by analyzing the impact of vegetation and 

population variable parameters on the size and character of identified WUI areas for ten counties 

along the Oregon-California border. This analysis is used to generate an optimal WUI definition 

for the project area, which defines the WUI as census block groups with ≥1 household/400 acres 

and ≥25 % wildland vegetation cover. This project finds that, compared with previous national-

level studies, a much lower population density threshold is necessary to adequately identify 

plausible WUI communities. This study also supports previous findings, which indicate that 

vegetation density thresholds are of secondary importance when compared to population density. 

These findings are of interest to land managers who are tasked with resource allocation and 

wildland firefighting in the WUI, along with residents who inhabit these communities.   
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Chapter 1 Introduction 

In recent years residents of western states have come to begrudgingly expect a fifth season in late 

summer. Driven by catastrophic, landscape-level wildfires, the “smoky” season typically 

includes weeks of poor air quality and the evacuation of rural communities, followed by multi-

year rebuilding efforts. Though different regions are spared in a given year, this new paradigm, 

endemic to the Anthropocene in the era of climate change, is annually consistent. One only needs 

to skim the headlines in late summer to read an updated report of acres burned and homes lost in 

a given year’s mega-fire. Fire is, of course, ecologically indigenous to the western landscape. 

Natural and anthropogenic fire has long been a fact in many environments across the globe, 

leading to a proliferation of fire-adapted species and ecological communities reliant on routine, 

low intensity fires (Pyne 1997). What is unique about the current fire paradigm is the abundance 

of people and infrastructure vulnerable to fire and the increased frequency of severe, large-scale 

fire events resulting from a hotter, drier climate and alteration to historic fire regimes.  

Wildland-urban interface (WUI) communities are located where “humans and their 

development meet or intermix with wildland fuels” (USDA and USDI 2001, 752-753). WUI 

communities across the US have seen sustained growth in recent decades (Hammer, Stewart, and 

Radeloff 2009) and have emerged as the fastest growing land use type in the country (Radeloff et 

al. 2018). With their close proximity to abundant, fire-prone fuels, WUI communities and homes 

frequently receive the brunt of wildfire impacts. While drier and hotter conditions continue to 

increase the frequency and severity of wildfires across the west, wildfire impacts to homes and 

communities have become a standard feature of the annual fire season. As communities grapple 

with frequent and severe fire events, the onus for prevention and risk reduction on private 

property is placed on individual home and landowners (Downing et al. 2022). The presence of 
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homes and related infrastructure also complicates firefighting efforts (Radeloff et al. 2018) and 

increases the probability of catastrophic outcomes for individuals and communities. Between 

1990 and 2014, the number of homes lost in wildfires in the US increased by 300% (Downing et 

al. 2022). This issue has also led to a marked increase in fire suppression costs by government 

entities that are tasked with protecting private property adjacent to public lands (Mell et al. 

2010). Likewise, wildfire risk reduction and fire prevention has seen increased political 

prominence in recent years, as worsening fire conditions near populous western communities 

have garnered national attention.  

 Understanding the location and geographic extent of the WUI is a fundamental issue for 

wildfire planning, hazard mitigation, and related resource allocation. For instance, fuels 

reduction programs are a common method of wildfire hazard mitigation by land management 

agencies. Logistically, it is often not feasible to uniformly conduct these treatments across an 

entire landscape, so identifying high priority areas, such as the WUI or especially vulnerable 

portions of the WUI, is imperative (Wimberly, Zhang, and Stanturf 2006). Though the general 

definition of the WUI is easily understood, the question of how to actually demarcate WUI from 

non-WUI locations is much more complicated. Methodological approaches to WUI identification 

vary, but they typically combine population and landcover data or, for smaller scale studies, 

remote sensing and object detection. WUI identification is often the preliminary step for a wider 

analysis of emergency preparedness or risk assessment.  

Extant research has provided a solid methodological framework that combines vegetation 

and population data, but the impact of variable thresholds on mapped WUI locations remains 

under-investigated. For instance, a given proportion of wildland vegetation cover is a common 

WUI identifier, but the selected proportion (e.g. 20% versus 40% of the landcover in a given 
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area) might significantly impact the geographic extent of the area defined as WUI. This is 

especially true for smaller, regional study areas where variable characteristics may differ from 

the national norm established in large scale studies. This project attempts to bridge this research 

gap by investigating the impact of land cover and population density variable thresholds on WUI 

identification for ten counties along the Oregon-California border. By testing variable threshold 

combinations, this study attempts to identify the relative impacts of vegetation and population 

density and determine the optimal combination of variables for the project area.   

1.1. Defining the WUI 

Across the western US, much of the land that abuts private property in the WUI is 

administered by various federal, state, and local government agencies. Federal land management 

agencies administer the largest swathes of public wildland. The five largest federal land 

managers (Department of Defense, Bureau of Land Management (BLM), US Forest Service 

(USFS), National Park Service, and Fish and Wildlife Service) collectively administer over 600-

milion acres of the country. These agencies administer 52.3% of the state of Oregon and 45.4% 

of California (Congressional Research Service 2020). Often, federal agencies and their state 

counterparts are tasked with wildfire risk mitigation, prevention, and emergency response. In the 

1980s, the USFS, along with the National Fire Protection Association and the Federal 

Emergency Management Agency (FEMA), formed a partnership to address fire and the WUI. 

This partnership, which later drew collaboration with the BLM and the National Association of 

State Foresters, held the first conference dealing with fire and the WUI in 1986 (Cortner and 

Gale 1990). National, state, and local governments continue to prioritize WUI community 

planning and resilience. As recently as 2021, the Bipartisan Infrastructure Bill allocated funding 
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to improve the fire regime condition and restore 10,000,000 acres of land in the WUI by 2027 

(Public Law 117–58, Sec. 40803. Wildfire Risk Reduction).  

Defining and identifying WUI communities is a fundamental task for emergency 

planning and resource allocation. Definitions vary slightly, but ultimately describe the same core 

phenomenon (Stewart et al. 2007). An official definition was established in a 2001 Federal 

Register article: “the urban wildland interface community exists where humans and their 

development meet or intermix with wildland fuel” (USDA and US Department of Interior 

(USDI) 2001, 752-753). The Federal Register publication identifies three categories of WUI: 

interface, intermix, and occluded (Table 1). Interface communities are those that abut wildland 

fuels, with a “clear line of demarcation” between the two (2001, 753). These areas are defined as 

having a density of three or more structures per acre or a population density of 250 or more per 

square mile. Intermix WUI lacks a “clear line of demarcation” and has more intermixing of 

wildland fuels and development (2001, 753). Structure density can be as low as one structure per 

40 acres or 28-250 people per square mile. Occluded WUI occurs where structures abut an island 

of wildland fuel in otherwise developed areas, such as an urban park. The Federal Register 

definition has become the baseline for WUI research because it provides a standardized, 

quantifiable measure. 

Table 1. Federal Register WUI types 

WUI Type Definition Criteria 

Interface Settlement borders wildland fuels ≥3 structures/acre or ≥250 people/sq mi 

Intermix 
Settlement mixed with wildland fuels, no 

separation 

≥1 structure/40 acres or 28-250 people/sq 

mi 

Occluded Island of fuels surrounded by settlement No specific criteria 
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In the western US, the geographic extent of the WUI has increased dramatically over 

time. Between 1990 and 2000, the WUI in western states grew 25%; collectively, this comprised 

45% of housing units in the region (Hammer, Stewart, and Radeloff, 2009). This trend has 

continued into the 21st century. The WUI collectively increased by 25-million residents between 

1990 and 2010. In that same span of time, the number of houses within fire perimeters grew 

62%, to 286,000 (Radeloff et al. 2018). Though the long-term impacts of the 2020 COVID-19 

pandemic are still playing out, WUI growth has almost certainly escalated in the first years of the 

decade. Outmigration, prompted by remote work opportunities and rising housing costs in urban 

areas, has led to an influx of new residents into smaller communities (Frey 2022). 

1.2. Motivation 

Previous GIS-based WUI identification projects often focus on determining and 

operationalizing the criteria for identifying the WUI at a national or regional scale. Though a 

useful exercise for broad decision-making and emergency planning, national level WUI mapping 

does not account for nuanced local differences. Factors like local economic history, geography, 

and land management practices have varying degrees of impact on local settlement patterns and 

community makeup, and therefore, the contemporary WUI. The social and demographic makeup 

of WUI communities can also vary greatly, which has real-world ramifications for fire resiliency 

and economic capacity. Because of the nuanced nature of WUI communities and fire behavior 

across the country, localized, smaller-scale mapping projects have the potential to yield greater 

insight into a specific area, making them a valuable tool to improve wildfire planning. Small, 

geographic regions provide an optimal area to test and improve up the federal definition and 

criteria established in national-level studies.  



15 

 

Though federal and state agencies are directly involved in fire suppression and fuels 

reduction, the responsibility for risk mitigation in the WUI is shared with homeowners and local 

communities. Recent research demonstrates that the majority of wildfires in the US that burn 

structures begin on private property before spreading across ownership lines onto USFS land 

(Downing et al. 2022). The authors suggest that, while fire is inevitable, private landowners and 

homeowners are “the actors best positioned to reduce fire risk to homes and other high-value 

assets” (2625). It is also the case that most wildfires are caused by humans. Between 1992 and 

2012, the majority (84%) of wildfires in the US were anthropogenic (Balch et al. 2017). 

Common sources of anthropogenic fire include arson, debris burning, campfires, and equipment 

or vehicle use (NIFC n.d.). Though human-caused wildfires do start in more remote areas, it is 

inevitable that the majority occur along the WUI where people and their activities are more 

concentrated. Fire in the WUI has been a topic of increased importance in recent years, 

especially as fire seasons have become more severe and long-lasting across much of the western 

US. This issue is not unique to the American West. Recent summers have seen above-average 

fire severity in Siberia (Patel 2021), the Mediterranean (Abnett 2021), and Australia (Gramling 

2021), among other parts of the world. Continued population growth and sprawl into WUI areas, 

along with the deleterious impacts of climate change, indicate that proactive WUI identification 

and resource allocation will be essential for public planning and protecting communities and 

their residents.  

1.3. Study Area 

The ten counties selected for this project encompass the entirety of the Klamath-Siskiyou 

region and incorporate portions of the southern Willamette Valley and the very northern portion 

of California’s Central Valley. The project area is bounded by the Cascade Mountains in the east 
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and the Coast Range in the west. These north/south trending ranges are connected by the 

Umpqua and Klamath Mountains, which include many subranges such as the Calapooya, 

Siskiyou, Marble, Scotts, Salmon, Russian, Trinity Alps, and Yolla-Bolly mountains. Much of 

the project area is characterized by rugged topography with most larger settlements occupying 

the Umpqua, Rogue, Klamath, and Upper Sacramento River valleys. Climatically, the area 

occurs at the junction of numerous ecological zones, including the Great Basin, Sierra Nevada, 

Cascade Mountains, Central Valley, and Coastal temperate zone. The region experiences a 

generalized west-east rain gradient, with higher precipitation along the Pacific coast, generally 

tapering off as weather systems move inland and over mountainous terrain. The rugged 

topography and high relief create complex, localized climatic zones, as well as numerous 

vegetation communities and microclimates, all of which impact localized fire regimes (Morton 

2017). Portions of the project that lie east of the Cascade mountains, such as eastern Siskiyou, 

are given a Köppen Climate Classification of “Humid Continental Climate - Dry Cool Summer.” 

Most of the project area that lies between the Cascades and Coast Ranges is categorized as 

“Warm-Summer Mediterranean Climate” or “Hot-Summer Mediterranean Climate” (Kottek et 

al. 2006). These areas experience comparatively hot, dry summers, and tend to have the highest 

burn risk and most frequent fire intervals.   

This study area straddles the Oregon-California border (Figure 1). Together, the ten 

counties studied encompass 30,746 square miles and approximately 800,000 residents. In 

addition to many smaller communities, the main urban spheres are Eureka-Arcata and Redding 

on the California side and Medford-Ashland-Grants Pass and Roseburg on the Oregon side. This 

area has mostly seen sustained population growth through the first decades of the twenty-first 

century (Table 2). Population growth is most pronounced in counties with larger urban centers, 
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while more rural counties such as Siskiyou and Coos counties have seen a slower increase. Only 

one county, Del Norte, has experienced a slight decrease in residents over the last twenty years. 

Curry county has the lowest population, at just over 23,000. Jackson county is the most 

populous, with over 223,000 residents.  
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Figure 1. Study area and major population centers 
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Table 2. Population totals for study area by county and 20-year population change 

County State 
2000 

Population 

2010 

Population 

2020 

Population 
Population Change 

Del Norte CA 27509 28565 27221* -1.04 % 

Humboldt CA 126476 134353 136002* 7.50 % 

Shasta CA 162889 177248 178271* 9.40 % 

Siskiyou CA 44281 44962 44612* 0.74 % 

Trinity CA 13031 13811 13635* 4.63 % 

Coos OR 62779 63043 63315 0.85 % 

Curry OR 21137 22364 23005 8.83 % 

Douglas OR 100399 107607 112530 12.08 % 

Jackson OR 181269 203206 223240 23.15 % 

Josephine OR 75726 82713 86560 12.51 % 

* 2018 population  

Source: State of Oregon (2021) and California State Association of Counties (2019) 

 For context, a 2001 Federal Register listing identified 23 WUI communities in the project 

area. Though the identification methods are not clarified, and the list is clearly incomplete for 

anyone familiar with the area, it nonetheless serves as a convenient starting point for 

contextualizing the region (Figure 2). In Oregon, the listed WUI communities include Applegate, 

Ashland, Merlin, Murphy, Ruch, Sam’s Valley, Shady Cove, and Williams. On the California 

side, Burney, Dorris, Dunsmuir, Etna, Fort Jones, Happy Camp, Hayfork, Hoopa, Klamath, 

McCloud, Mount Shasta, Redding, Weed, Willow Creek, and Yreka were identified (USDA and 

USDI 2001).  
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Figure 2. Federal Register listed WUI communities 
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According to the US Census Bureau’s 2021 population estimates, the mean poverty rate 

for the project area is 15.1%. Del Norte County has the highest poverty rate of 18.5%, while the 

lowest is 11.9% in Jackson County. Median annual household income ranges from $57,139 in 

Shasta County to $41,780 in neighboring Trinity County. The largest proportion of the 

population, 78.6%, is White alone, not Latino or Hispanic. Hispanic or Latino residents are the 

next largest demographic group within the project area, accounting for 11.2% of the population. 

In descending order, the next largest demographic groups are people of two or more races, 

Native Americans, Asian Americans, and Black or African Americans.   

Historically, the region was typified by frequent, naturally occurring, low-intensity fires. 

Beginning in the late 19th century, this regime has been interrupted by fire suppression policies 

(Frost and Sweeney 2000). Routine landscape-level burning by Native American groups prior to 

colonization was also ubiquitous across Oregon (Boyd 2019) and California (Marks-Block et al. 

2021). Seasonal low-severity burning of the landscape helped to improve habitat for game 

animals and plant foods while maintaining a more fire-resilient landscape with less fuel buildup. 

Following the establishment of land management agencies like the USFS and BLM in the early 

twentieth century, wildfire suppression became the common approach to land management. 

Suppression of low-severity burns, in addition to myriad other factors, laid the groundwork for 

comparatively infrequent, but much more severe fire seasons. 

The project area has seen a number of large fires in recent decades including many high 

profile, destructive fires that have ravaged homes and communities. According to the National 

Interagency Fire Center’s (NIFC) “Wildland Fire Perimeters” dataset, over 5.2 million acres 

burned in the project area between 2000 and 2018 (Figure 3). Recent fires of note include the 

2018 Carr Fire, which burned into the outskirts of Redding, California. According to CalFire, the 
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Carr Fire ultimately killed three people, torched 229,651 acres, and destroyed over 1,600 

structures. On the Oregon side of the project area, similarly large and catastrophic fires have 

occurred in recent years. Early in the century, the 2002 Biscuit Fire burned over 500,000 acres, 

setting records as the largest fire in Oregon history (LaLande 2022). In early September 2020, a 

number of fires occurred. These included the Obenchain, Almeda, Slater, Archie Creek, and 

Thielson. Together, the Labor Day fires burned over 300,000 acres and destroyed more than 

3,000 structures.  
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Figure 3. National Interagency Fire Center (NIFC) Fire Perimeters 2000-2018 
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1.4. Project Overview  

The overarching hypothesis of this project is that the choice of thresholds set for the 

levels of vegetation coverage and population density, which serve to demarcate areas as “WUI”, 

has an impact on the extent and location of areas identified as WUI, and further that, because 

both vegetative and population landscapes vary from place to place, different thresholds might be 

appropriate in different regions for designating the WUI. Though the 2001 Federal Register 

listing provided a consistent definition, the effect of vegetation and population criteria remains 

under-investigated for small study areas. The effects of variable thresholds are potentially 

significant and may be the source of under- or over-representation of the WUI in a given area. 

This could have substantial consequences if a given WUI definition is the basis for public 

planning and resource allocation. This impact inevitably differs based on local variables, and is 

therefore best assessed in relatively small, homogenous study areas. Because of the importance 

and sensitivity of WUI areas, a more nuanced understanding of how selection criteria can impact 

WUI designation is necessary for better GIS-based identification. This is especially true given 

the nuanced, mosaic quality of WUI, demonstrated by the suite of sociological research 

described in the next chapter. To better understand the relationship between thresholds for WUI 

criteria and the specific portions of a landscape which are designated as WUI according to a 

chosen set of thresholds, this project tests different WUI variable thresholds, adjusting and 

combining wildland vegetation cover and population density proportions. The goal of this 

research is to identify the optimal criteria and thresholds for WUI identification in the project 

area.  

More specifically, this study attempts to answer the following questions: How does the 

areal extent of WUI differ when the proportion of wildland vegetation landcover is adjusted? 
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What impact does the population density threshold have on the WUI extent? Which combination 

of landcover and population density parameters is most suitable for the project area? A number 

of smaller hypotheses can also be tested. For example, it is reasonable to suspect that a lower 

population density threshold may better represent (or over-represent) higher income WUI areas 

by including households on larger plots of land. Conversely, a higher population density 

threshold may better account for lower income WUI areas such as rural trailer parks or 

residences associated with smaller plots of land. This could be especially significant as a way to 

better incorporate interface homes on the outskirts of larger communities, which may not be 

associated with large land holdings despite occupying a wildland interface. Similarly, 

adjustments to the wildland vegetation cover part of the equation could reasonably be expected 

to have a diminishing level of return. Wildland vegetation covers as low as 10% have proven 

efficacy in other studies (Hanberry 2020), but those effects inevitably vary based on local 

environmental factors. Portions of the project area, especially nearer the Pacific Ocean, have 

comparatively dense vegetation due to abundant moisture and a relatively moderate climate. For 

these areas, then, a higher vegetation threshold may be ideal to definitively rule out non-wildland 

areas. Conversely, interior valleys dominated by sparse chaparral or juniper scrub may require a 

lower vegetation threshold to adequately identify wildland areas. The findings of this project, 

regardless of which pattern they support, would be valuable to land managers and other 

researchers who are interested in the relationship described above. The findings could help 

inform public policy and resource allocation, along with community planning efforts and 

emergency preparedness. 
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Chapter 2 Related Work 

This project integrates methodology from a selection of previous WUI identification projects. 

Previous scholarship can be broken down into a few broad, overlapping categories. First are the 

studies that have set the groundwork for the standard approach to WUI designation, which 

integrate vegetation and population density data to identify areas that meet the Federal Register 

definition. The second body of research incorporates various technical and methodological 

improvements for identifying aspects of a landscape that support a WUI designation, such as 

dasymetric mapping and object detection to more accurately locate settlements and apportion 

populations across a landscape. A final section provides greater context for the project by 

describing the sociological nature of WUI communities. 

2.1. Vegetation and Population-Based WUI Delineation 

 The most common approach to WUI identification combines population and vegetation 

data to identify communities that fit the minimum Federal Register thresholds for settlements 

and wildland vegetation. Radeloff et al. (2000) provide an early example of GIS-based 

integration of vegetation and population data, setting the groundwork for ensuing WUI-oriented 

research. Recognizing the potential of GIS for data integration and interdisciplinary research, the 

authors combine census block data with Landsat imagery to assess the relationship between 

housing density and vegetation for a region in northern Wisconsin. Methodologically, the study 

uses total housing and land area at the census block level to calculate housing density. The 

housing data is overlaid with a classified Landsat raster. Spatial patterning of population density 

is first visually assessed before the population density data is converted to a raster at the same 

resolution as the Landsat data. The two raster layers are then overlaid and the housing density 

and land cover classification for each cell is determined. Though not specifically WUI-related, 
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this project provides a methodological groundwork that the authors expand upon in later WUI 

identification efforts.  

 Developing on this previous study, Radeloff et al. (2005) undertake a national-level 

assessment of the WUI using a similar methodology. The study also incorporate a sensitivity 

analysis of WUI mapping criteria using California, New Hampshire, and North Carolina as test 

samples. The authors overlay census block-level housing data with land cover data from the 

National Land Cover Database (NLCD), calculating the housing density and percentage of 

wildland vegetation cover for each block. The result is then considered against the 2001 Federal 

Register definitions for interface and intermix WUI. Next, a sensitivity analysis of housing 

density and vegetation cover is performed for the three states. The test varies the vegetation and 

housing density criteria to assess changes in the WUI output. The results indicate that the choice 

of housing density threshold tends to have a more significant impact on amount of land 

designated as WUI than the threshold of vegetation cover. Of the three sample states, this finding 

is especially true for California. The authors have two additional findings that are significant for 

the methodology developed in the project herein. First, they find that, nationally, intermix WUI 

accounts for over 80% of the WUI. The second finding is that the WUI proportion by state 

follows an east-west gradient, where WUI accounts for a higher proportion of the eastern area of 

each state.  

  The approach developed in Radeloff et al. (2005) has been improved upon and validated 

in follow up studies. For example, Stewart et al. (2007) runs through essentially the same 

methodology as the Radeloff et al. (2005) study, using updated datasets. A similar sensitivity 

analysis is conducted, this time for seven sample states: California, Colorado, Florida, Michigan, 

North Carolina, New Hampshire, and Washington. As with the previous study, vegetation and 



28 

 

housing density parameters are adjusted above and below the Federal Register thresholds. The 

findings indicate that adjusting housing density thresholds has the most statistically significant 

impact on the WUI output, with Florida and California especially sensitive to these adjustments. 

Overall, the authors find that operationalizing the Federal Register WUI definition leads to 

plausible outcomes and that altering individual parameters did not significantly alter the 

“prevalence or pattern” of WUI at a national level (Stewart et al. 2007, 206). 

The Modifiable Areal Unit Problem (MAUP) refers to an issue inherent in overlaying 

spatial data. Depending on the size and location of a polygon, the individual data that it 

encompasses will differ. If census blocks are used to determine population density, as is the case 

with WUI identification, the size and extent of the census polygon is somewhat arbitrary. If 

shifted or expanded, the population density could differ significantly (Bolstad 2017, 392). A few 

generalized approaches to addressing the MAUP have been suggested. First, if possible, data 

should be addressed individually instead of at the aggregate level. A second approach is to 

optimize zoning by minimizing differences within individual aggregations. Finally, a third 

recommendation is to conduct a sensitivity analysis by comparing aggregations at different levels 

(Bolstad 2017, 393).   

 Zhang and Wimberly (2007), address the MAUP issue inherent in using census data for 

identifying WUI areas, basically selecting the latter two options. As the authors describe, “the 

hierarchal way census data are organized provides researchers with various potential scales of 

analysis. However, it is not immediately clear which scale is the best for specific research 

questions” (Zhang and Wimberly 2007,139). Regarding methodology, the authors aggregate 

census data at the county, tract, census block group, and census block. These census aggregations 

are then used to compare WUI growth in southern states between 1990 and 2000. Significantly, 
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the study uses housing density instead of population density to account for secondary homes, 

which may be underrepresented when using population. The study demonstrates a key point: 

county-level census data provides a comparatively coarse WUI output and is most suitable for 

looking at broader regional trends. The census block level was found to be most suited to more 

nuanced for landscape-level analysis that requires the inclusion of demographic data (145-146). 

The smallest possible level of aggregation, then, provides the most detailed and accurate WUI. 

 Dasymetric mapping is “a geospatial technique that uses information such as land cover 

types to more accurately distribute data that have been assigned to selected boundaries like 

census blocks” (US Environmental Protection Agency 2022). Phrased differently, dasymetric 

mapping is an additional set of steps that categorically excludes geographic portions of an area 

based on a specified criterion. Many of the above studies implicitly integrate dasymetric 

mapping by counting only wildland fuel portions of a given study area, but more overt and 

intentional dasymetric mapping steps can be added to the WUI identification workflow.

 Wilmer and Aplet (2005, as cited in Greetan 2016) integrate a dasymetric mapping step 

that is especially apt for the study area in this project. The authors, as part of their workflow for 

identifying the WUI for three case study areas, omit public land from the census blocks before 

calculating population density. This is a key step because, if much of the land area within a 

census block is public land, the population density will skew lower than it actually is. If a 

minimum housing density of ≥1 household/40 acres is used, census blocks with already low 

population densities may not be included at all if they have enough public land within their 

boundaries. By only calculating population density for residential portions of the census block, 

the authors are able to get a much more accurate measure. 
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2.2. Identifying the WUI with Indirect Evidence of Human Presence  

 The process of WUI mapping is iterative, with successive studies providing small 

improvements and alterations, adding to the established methodology. This section describes 

recent studies that rely upon data that suggests the presence of humanity rather than or in 

addition to direct population data via the census.   

 Greetan (2016), in developing a WUI identification methodology for Lassen County, 

California, incorporates more extensive dasymetric mapping steps than previous studies. In lieu 

of census data, the author uses county cadastral data to identify residential plots. The use of 

residential parcels allows for the inclusion of only demonstrably occupied areas. This is an 

improvement on previous studies which ascribe a uniform population density across an entire 

census block. The integration of cadastral data is not possible for all studies, due to data 

accessibility and privacy issues, but the higher resolution is well-suited to very fine scale studies. 

Compared with census block data, residential parcel-level data allows for a more accurate WUI 

output, especially when paired with quality land cover data. Greetan’s (2016) workflow also 

integrates vegetation data by including a .5-mile buffer around residential areas in the final WUI 

output (to account for the community’s footprint) and omitting non-wildland NLCD data. 

Though census-based population data combined with landcover is the most common 

approach to WUI identification, a number of other methods have been successfully employed. 

For example, Johnston and Flannigan (2018) take a novel approach to mapping the Canadian 

WUI based on the presence of infrastructure rather than population data. The authors add greater 

nuance to the standard WUI by distinguishing between three types of interfaces. The “wildland-

industrial interface (or WUI-Int)” occurs where industrial “values”, like oil and gas facilities, 

electricity stations, and industrial areas, intermingle with wildland fuels. The “wildland-
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infrastructure interface (or WUI-Inf)” similarly incorporates infrastructural values like 

powerlines, roads, and transmission lines. Finally, “wildland-human interface” is selected based 

on the presence of public or private structures like homes, hospitals, and railway stations. 

Identification of these areas was accomplished via CanVec+, a government produced public data 

source that includes structure information. Methodologically, these areas are rasterized, buffered, 

and overlain with landcover data to identify each WUI type. This project is unique because it 

distinguishes different WUI types based on remote sensing data. By integrating building 

presence data, rather than assuming a census block is uniformly populated, the study may be 

better able to account for actual residential habitation for human interface areas. For example, 

small rural communities may cluster within a fraction of the area of a census block, but if 

population data alone is used without further dasymetric steps, the entire block is assumed to be 

inhabited. The effects would be less pronounced in core urban or suburban locales, but may be 

significant in rural settings. Further, distinguishing industrial and infrastructural interfaces can 

generate a more useful end product, which is ultimately the goal of WUI mapping. The 

identification of key economic resources allows for better proactive planning and risk reduction 

and, as the authors demonstrate, is well-suited for national-level mapping.  

Caggiano et al. (2016) offer an alternate approach to WUI mapping. Using National 

Agriculture Imagery Program (NAIP) imagery, the authors utilized semi-autonomous object-

based image extraction to identify structures within ten small (5.28 km x 6.94 km) sample blocks 

in northern Colorado. In comparing their results with county structure data, the study concludes 

that this approach is potentially more accurate than census data based approaches at similarly 

small scales. The authors argue in favor of this approach by detailing some of the shortcomings 

of census based WUI mapping. The central concern is inaccuracy due to census data being based 
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on the aggregation of individual population data (e.g. households or persons) into a census block. 

Though dasymetric mapping steps can help remedy this issue, the authors argue that, at small 

scales, object-based image extraction is more accurate. 

 In a recent study, Hanberry (2020) advocates a more deductive approach by using 

previous fire locational data to identify and classify WUI areas. Methodologically, the project 

utilizes a fire occurrence database, in conjunction with vegetation and decadal census data, for 

classifier-based statistical modeling. The author demonstrates that fire is statistically likely to 

occur in areas with as little as 10% vegetation cover. Given the Federal Register WUI threshold 

of at least 50% vegetation cover, this is a key finding, because depending on nearby vegetation 

type, land cover data may not adequately capture fire risk. For example, lower elevation 

chapparal may appear sparsely vegetated when using NLCD data but is comparatively high fire 

risk relative to higher elevation conifer forests which appear more densely vegetated. The study 

also reaffirms previous findings that indicate housing density is a more sensitive determinant of a 

WUI designation than vegetation density in ecologically homogenous areas.  

2.3. Sociology of WUI Communities 

To better understand what a map of the WUI represents, it is important to have a nuanced 

understanding of the sociological characteristics of those communities. The WUI is not a 

uniform entity, but instead a complex patchwork with varying demographic, economic, and 

cultural contexts, which act together to influence response and adaptive capacity to wildfire risk. 

Paveglio et al. (2009) provide a useful starting point for contextualizing these differences. The 

authors demonstrate that WUI communities are better understood as a “mosaic,” which are 

distinguished by their demographic and social context. They determine that a community’s 

adaptive capacity is the result of its demography, access to information, place-based knowledge, 



33 

 

and informal relationships. Differences in these criteria between communities results in varying 

capacities and approaches to firewise planning, even in geographically similar contexts.  

Winkler et al. (2007) add greater nuance to this discussion, addressing the shifting “social 

landscapes” of the intermountain west. The authors distinguish between “old west” and “new 

west” communities. Old west communities are characterized by a continued reliance on 

extractive industries like logging, mining, and ranching. New west communities, in contrast, are 

typically associated with in-migration of more affluent and educated populations and a shift 

towards natural resource tourism, conservation, and development. Discussing trends more 

broadly in the west, Paveglio et al. (2015) add an important caveat to the new west demographic 

shift. These changes are not uniform across the landscape. The influx of the new west and 

associated demographic and economic trends is concentrated in areas that are “particularly scenic 

or resource rich…with cultural and recreational resources” (300). The expansion and sprawl of 

WUI areas away from city centers was also found to exacerbate urban poverty and reify greater 

sprawl in the southeast US. Cho et al. (2012) examined this relationship, showing the impacts of 

white outmigration. Outmigration to WUI communities and homes has the dual effect of drawing 

money out of cities and shifting businesses into exurban areas, both of which have the potential 

to exacerbate urban poverty.  

Collectively, these sources suggest broad demographic shifts in WUI areas, in which 

higher income residents move away from city centers, increasing urban poverty, and supplant or 

change existing rural communities. Per Paveglio (2015), this relationship is not equal across 

space but is concentrated in high amenity areas. The relationship between this demographic force 

and fire preparedness is not overtly clarified but is alluded to in various studies. For example, 

Bright and Burtz (2006b) look at differences in perceptions and behaviors about fire-wise 
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activities for year-round versus seasonal residents in northern Minnesota. The authors find that 

seasonal residents are less likely to engage in and have favorable opinions of firewise activities. 

This would suggest that permanent residents, with deeper local knowledge, may have greater 

personal investment in wildfire preparedness. Though an overt connection between year-round 

residency and economics was not made in this study, seasonal residents were largely comprised 

of people who own summer vacation homes in the community, suggesting a degree of economic 

privilege.   

This body of research suggests that higher income, new west communities may be less 

invested in and knowledgeable of local fire issues. Interestingly, though, the opposite 

relationship is suggested in other research. For example, Paveglio et al. (2015) describe 

community archetypes and their WUI adaptive capacity. This study finds that “working 

landscape/ resource dependent WUI communities,” which closely align with the old west 

communities described by Winkler et al., have the highest “local ecological knowledge”, but 

tend to be “highly independent and distrustful of the government” (306). Individual and 

community political ideology undoubtedly plays a role in firewise planning. This is shown in 

Bright and Burtz (2006a), which notes the influence of individualistic values, personal property 

rights, and personal freedom on defensible space. This would, presumably, suggest greater 

reluctance to follow government advice about fuels reduction and firewise planning. Typical 

advice, such as removing vegetation, replacing roof material, and landscaping with native plants 

(Radeloff et al. 2018) would likely be met with relatively greater resistance, and perhaps, less 

economic capacity. 

By focusing on an explicitly spatial workflow, this project is unable to integrate a full 

sociological synthesis of WUI communities in the project area. The above body of research, 
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though, suggests some of the broader demographic trends that occur within various WUI 

communities. These trends undoubtably occur, to some degree, within the current project area 

and could be investigated further in future research.    
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Chapter 3 Methods 

As demonstrated in the previous chapter, previous WUI assessments have generated a series of 

overlapping methodological approaches and refinements. The scope and methods employed in 

this project attempt to combine relevant methods developed in previous studies, while avoiding 

potential downfalls. WUI identification typically combines two key data types: vegetation and 

population. As Zhang and Wimberly (2007) demonstrate, this can be done at different 

hierarchical scales, depending on the requirements and logistics of the study. The geographic 

scope of this project is local, focusing on a discrete area with common ecological and 

demographic characteristics. This scale allows for a more nuanced level of data relative to 

national or state-level WUI mapping, which is in direct response to the MAUP issue inherent in 

large scale WUI mapping. The overall goal of the project is to evaluate different land cover and 

population density thresholds for identification of the WUI in the study area.  

 It is impossible to fully integrate every refinement and method described in the previous 

chapter. Many key findings, though useful, may apply only to a specific study area and remain 

untested for other geographic locations. For example, Radeloff et al. (2005) find that California 

is most sensitive to changes in housing density thresholds, compared with New Hampshire and 

North Carolina. This finding is echoed in Stewart et al. (2007), which finds Florida and 

California more sensitive to housing density adjustments compared to other sample states. This is 

an interesting finding, but its significance is unclear. Would this result hold true across other 

larger states when compared with smaller states in the northeast? Because California and Florida 

are large, diverse, densely populated states, is this finding the result of an inherent MAUP issue 

when using state-level aggregations? If, for example, the same relationship was examined at a 

county level across California, would this finding be true across the board or is it skewed by 
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more populous urban nodes? Radeloff et al. (2005) also find that the proportion of WUI land 

relative to the state was higher on the east coast compared to the west coast. Is this due to the fact 

that states on the east coast are smaller and have less public land? Would the relationship hold 

consistent if dasymetric mapping was added to the workflow, omitting public land in western 

states?  

3.1. Methods Overview 

This project seeks to better understand how WUI mapping parameters impact the extent 

and character of a mapped WUI output. As described earlier, the way a study or project defines 

and identifies the WUI can have significant downstream impacts, with real-world consequences 

if that data is used to support public planning and resource allocation. Ten counties on either side 

of the Oregon-California border were selected as a case study for this project. These counties 

encompass the entirety of the Klamath-Siskiyou region and surrounding areas, which, due to 

their geographic proximity, share many characteristics such as climate, fuel type, and settlement 

patterns. This relative homogeneity across the project area allows for a sort of control variable, 

where regional differences are less likely to skew results compared with national or statewide 

WUI mapping.  

Methodologically, this project overlays data layers showing vegetation cover and total 

household density to test a series of WUI variable thresholds. Household density was used as the 

population input and was derived from the total number of households per block group and the 

total geographic area of residential land per block group. As argued in Stewart et al. (2007), 

housing is a better suited metric for human habitation when compared with other potential 

measures like population density. This is due, in part, to the importance of structure protection in 

WUI fire suppression and the growth of housing density compared to population. Depending on 
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the family makeup of an area, total households may represent different population totals. 

Households, though, measure the number of housing units, which is a better metric when looking 

at the WUI. Because most construction in rural areas is single family housing, a household can 

be reasonably expected to be a single structure, with associated outbuildings like sheds or 

garages.  

Based on previous research, several additional steps were added to this basic workflow. 

This project incorporates robust dasymetric mapping steps to refine the extent of areas that meet 

the vegetation and population density criteria. This additional step is not included in Stewart et 

al. (2007) or Radeloff et al. (2005) but is particularly well-suited to the project area. As described 

in Section 3.4.2, this step allowed for the exclusion of large swathes of federal and state land, in 

addition to unoccupied census blocks. This step is especially appropriate for western states where 

a large proportion of the total and area is administered by federal and state agencies and is, by 

definition, non-residential. Omitting these plots of land from the workflow before calculating 

housing density generated a more accurate household density measure, in turn enabling a more 

accurate assessment of WUI criteria.   

The entirety of this workflow was completed via ArcGIS Pro using various cartographic 

and geoprocessing tools (Figure 4). Data for this project, described more extensively later in this 

chapter, was projected using the North American Albers Equal Area Conic coordinate system. 

This is the default projection for the land cover and census data used in the analysis. State 

ownership data was reprojected into this coordinate prior to analysis. Generally, the methods 

employed in this project condense and aggregate WUI identification data to the census block 

group level. Land cover data was clipped and reclassified into wildland and non-wildland 

vegetation types, before being summarized based on census block groups. With the requisite land 
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cover and population data appended, census block groups were next whittled down to only 

populated areas in a dasymetric mapping step. Finally, WUI selection criteria were used to select 

and export block groups that met the appropriate criteria. WUI selection criteria tested for 

wildland vegetation cover ranged from 0-75%, while household density thresholds of  ≥1 

household/20 acres, /40 acres, and /60 acres were tested. The output WUI from each criteria 

combination was then assessed based on its total population, area, relative poverty status, and 

identification of Federal Register WUI communities.  

 

Figure 4. Generalized WUI identification workflow 

3.2. Selection of Variable Thresholds 

Variable thresholds for the workflow described above were determined based on previous 

sensitivity analyses detailed in Stewart et al. (2007) and Radeloff et al. (2005) (Table 3). The 

standard wildland vegetation cover of ≥50% was used as the control. The value is increased and 

decreased by half for comparison. A low range of ≥10% was also used, based on the findings by 

Hanberry (2020). Previous studies found that household density was the most significant variable 
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for WUI identification, so a wildland vegetation threshold of ≥0% was also tested to address the 

impact of household density alone. For household density, the same thresholds used in previous 

studies were selected, with ≥40 acres/household as the control and ≥60 acres and ≥20 acres, a 

50% increase and decrease, as test parameters. As with vegetation criteria, a test null household 

density was also included to show the effects of wildland vegetation cover alone. 

Table 3. WUI identification criteria and thresholds from previous studies 

Author Land Cover 

Criteria 

Population/Housing 

Density 

Buffer Distance Additional Steps 

Radeloff et 

al. (2005) 

NLCD >50% 

wildland veg 

cover 

Census block. Minimum 

density of 1 house/40 

acres 

<2.4 (≈1.5 mi) from 

heavily vegetated 

area = interface 

Sensitivity analysis 

of vegetation and 

population density. 

Stewart et al. 

(2007) 

NLCD >50% 

wildland veg 

cover 

Census block. Minimum 

density of 1 house/40 

acres 

<2.4 (≈1.5 mi) from 

heavily vegetated 

area = interface 

Sensitivity analysis 

of vegetation and 

population density. 

Zhang and 

Wimberly 

(2007) 

Does not 

include 

vegetation 

criteria 

Housing density between 

1/40 acres to 1/1.67 acres 

No buffer distance 

used, only housing 

density 

Test WUI output 

using county, tract, 

census block group, 

and census block 

Greetan 

(2016) 

Reclassified 

NLCD 

Buffered parcel ownership .5 mi around houses Dasymetric mapping 

to omit uninhabited 

areas 

Hanberry 

(2020) 

As low as 10% 

valid 

Census block. Determines 

high-med-low density 

classes for WUI type. Low 

end is <6.17 houses/km2 

None Uses fire locations 

to determine WUI 

location 

 

3.3. Data 

 This project made use of six datasets for the identification of WUI areas (Table 4). Each 

is described in more detail below. 
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Table 4. Project data 

Dataset Description Format Source and Date 

National Land 

Cover Database 

Land cover classified into 16 

categories 

30-meter 

raster 

MRLC Consortium 2019 

TIGER/line Shapfile County, census block group, and 

census block 

Polygon US Census Bureau 2019 

American 

Community Survey 

Demographic characteristics at 

census block group level 

Tabular US Census Bureau 2015-

2019 

Federal Lands Land administered by federal 

agencies 

Polygon Esri Living Atlas of the 

World 2022 

California State 

Lands 

Land administered by the state Polygon California State Geoportal 

2022  

Oregon State Lands Land administered by the state Polygon Oregon Dept of Forestry 

2022 

 

Landcover data, used to identify wildland fuels, was derived from the 2019 National 

Landcover Database (NLCD). This raster dataset is freely available via the Multi-Resolution 

Land Characteristics (MRLC) Consortium, “a group of federal agencies who coordinate and 

generate consistent and relevant land cover information at the national scale for a wide variety of 

environmental, land management, and modeling applications” (MRLC, n.d.). NLCD data is 

generated from Landsat imagery at a 30-meter resolution. After testing with finer resolution data, 

it was determined that the 30-meter resolution of the NLCD raster was most suitable for the 

current mapping scale. For example, Esri hosts a 10-meter resolution land cover dataset derived 

from the European Space Agency Sentinel-2 Imagery. Though providing greater detail, the 

dataset has less land cover classifications (ten instead of sixteen) and proved to be unwieldy 

during geoprocessing tasks due to its comparatively large size. NLCD data is also advantageous 

because of its geographic and temporal extent. The same high-resolution dataset covers the entire 

continental US with the same vegetation classifications. At present, NLCD data is available in 

two to three-year increments going back to 2001. The ubiquity and availability of this dataset 

allows for scalability and consistency for WUI mapping across geographic and temporal extents.  
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The second key data source is the US Census Bureau, a federal agency under the 

Department of Commerce. The mission of the US Census Bureau is to collect and provide 

demographic and economic data about the US. This project used two Census Bureau datasets, 

both made available to the public through the US Census Bureau data interface. First are 

TIGER/Line shapefiles. TIGER (short for Topologically Integrated Geographic Encoding and 

Referencing)/line shapefiles are “extracts of selected geographic and cartographic information 

from the Census Bureau's Master Address File” (US Census Bureau 2019, 1-1). In short, they are 

polygon shapefiles representing, among other things, various levels of census statistical units. 

The US Census Bureau collects several types of data at different hierarchal levels (Figure 5). 

Below the state and county level are census tracts. According to the US Census Bureau, these are 

“relatively permanent statistical subdivisions of a county or equivalent entity,” comprised of 

“1,200 to 8,000 people with an optimum size of 4,000” (2021, 4-22). The census tract is 

subdivided into one or more census block groups, which contain 600 to 3,000 people. The 

smallest unit of aggregation is the census block, which are subdivisions of the block group. 

Census blocks are bounded on all sides by roads, city boundaries, or other geographic features. 

In urban areas, they often consist of a single city block, though they can be geographically larger 

in more rural locales to encompass a similar amount of people (US Census Bureau 2019). This 

project used census block groups as the primary unit of aggregation, but also incorporated census 

blocks as part of the workflow. The county boundaries used for the project area were also 

sourced from the same dataset. For consistency with the NLCD data, this project used 2019 

TIGER/Line shapefiles.  
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Figure 5. Hierarchy of census geographic entities (via census.gov) 

The US Census Bureau was also the source for the demographic data, which is appended 

to the block group polygons based on a shared identification code. This project specifically 

incorporated American Community Survey (ACS) population and poverty data published in 

2019 based on 5-year estimates from 2015-2019. The ACS is an annual survey used to 

supplement the decadal census. The survey consists of various “social, economic, housing, and 

demographic” questions, which are more detailed than the shorter questions asked on the 

decennial census (US Census Bureau 2017, 1). The annual ACS is sent to a sample of the 

population and is aggregated at various scales. For privacy reasons, the smallest level at which 

ACS data is available is the census block group level. ACS data is available at 1-year and 5-year 

estimates. Because ACS data is based on sampling of the general population, 5-year estimates 
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contain a larger breadth of data and are more statistically reliable, especially for less populated 

areas (US Census Bureau 2022).  

One key question when mapping WUI areas is the appropriate scale of the data. This 

determination is inevitably made based on both logistical constraints (e.g. data size and 

geoprocessing capability) and on the required level of detail for the output. For the given project 

area, comprised of ten counties, there are a total of 651 census block groups, a manageable 

number for use with geoprocessing tools. In comparison, there are over 44,000 census blocks for 

the same area. Though a robust and detailed data source, the 44,000 plus census blocks proved to 

be inefficient during geoprocessing tasks. This project, then, used census block groups as the 

main areal population unit. Though geographically larger, this dataset was much more suitable 

for efficient geoprocessing and provided a sufficient level of detail for WUI identification, 

especially after the dasymetric mapping steps described later in the chapter. Because the census 

block group is also the smallest scale for which ACS data is available, using block groups 

allowed for the integration of detailed demographic data. This became important later in the 

workflow to determine household density and poverty status.  

The final category of data includes the miscellaneous sources for land ownership, which 

were combined in the WUI mapping workflow for dasymetric mapping. Three different sources 

of information were incorporated. Federal lands in the project area, administered by the BLM, 

USFS, National Park Service, Bureau of Reclamation, Department of Defense, and Fish and 

Wildlife Service, were sourced from Esri’s Living Atlas of the World. The Living Atlas is a 

curated collection of ready-to-use spatial data provided by Esri for visualization and analysis 

(ESRI n.d.). According to the source’s metadata, it was compiled using data from each of the 

federal agencies it represents and was last updated earlier in 2022. Though federal land data can 
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be acquired from other sources, the Esri provided data was preferable because the various 

datasets were already aggregated into one comprehensive feature class. State land ownership was 

sourced separately for Oregon and California. The Oregon ownership data was provided by the 

Oregon Department of Forestry. This shapefile was last updated earlier in 2022 and depicts state 

owned forest lands. For California, state ownership data was sourced from the California State 

Geoportal, which provides centralized, authoritative spatial data for the public. This dataset was 

also last updated in 2022. Notably, it also includes county and city ownership categories. Only 

state ownership was included in this project because a similarly authoritative data source for 

Oregon was not available. 

3.3.1. NLCD Pre-processing  

A number of pre-processing steps were taken to prepare each dataset for further analysis. 

The workflow to process the land cover data had two main steps (Figure 6). The first step was to 

limit the data to the study area boundary. First, the study area counties were selected from the 

county TIGER/line shapefile and exported as a separate layer. The raster data was then clipped to 

the project area using the Clip Raster tool. NLCD data is only available at a much larger extent 

than is needed for this study, so this initial step was necessary to whittle down the raster to a 

more manageable size. The Clip Raster tool maintains individual raster cells, but consequently 

does not match the raster to the exact clipping input, so additional steps are necessary. The 

clipped raster was run through the Extract by Mask tool. This tool is similar to the Clip Raster 

tool, but the output raster is defined exactly by the mask, in this case the project area counties. 

The Extract by Mask tool also differs from the Clip Raster tool because it resamples cells along 

the edge of the mask. According to the Esri technical guidance for the tool: “when the input 

mask is feature data, cells in the input raster whose center falls within the perimeter of the feature 
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will be included in the output, while cells whose center falls outside it will receive No Data” 

(ESRI n.d.b). For certain types of raster analysis, this may represent a potential issue. For this 

project, a sufficient number of cells with vegetation values remained in each catchment (census 

block group) that the effect of resampled null values was negligible when the mean vegetation 

value was calculated in later steps.  

 

Figure 6. NLCD pre-processing workflow  

3.3.2. Census Data Pre-Processing 

As with the NLCD raster, the census block group data required a number of pre-

processing steps to generate a dataset with the appropriate information and geographic extent 

(Figure 7). To start, TIGER/Line shapefiles for California and Oregon Census block groups were 

added. The appropriate ACS tables were selected and joined with each state’s block groups 

based on their matching GEOIDs. For this project, the “Poverty” and “Household, Family, and 

Subfamily” ACS tables were used. Specifically, this project utilized the total household and ratio 

of income to poverty level data. The latter is a measure of the total number of people per census 

block whose income was below the poverty income level. Other similar poverty measures could 

be used in lieu of poverty income level. This variable was selected because it provided a general 

baseline to measure poverty relative to the total population. Similar ACS poverty measures 

breakdown populations based on race/ethnicity, education, et cetera. While these variables could 
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be integrated into a deeper analysis of WUI demography, they were too nuanced to provide the 

generalized information needed in this project. With poverty and population data appended, the 

next step was to export the California and Oregon block groups, which makes the joins 

permanent and allows the features to be more easily edited later. Similarly, the two block group 

datasets (for Oregon and California) were clipped to the project area and merged together into a 

single feature class. 

 

Figure 7. Census block pre-processing workflow 

3.4. Identifying the WUI 

 With data pre-processing complete, this section describes the overarching workflow 

developed to identify WUI areas. Methodology pulled from Radeloff et al. (2005), Stewart et al. 

(2007), Zhang and Wimberly (2007), Greetan (2016), and Hanberry (2020).  

3.4.1. Calculation of Wildland Vegetation Cover 

With the block group data and the NLCD raster prepared, the next step in the process was 

to use both datasets as inputs for the Zonal Statistics as Table tool to calculate wildland 

vegetation cover proportions by block group. First, the NLCD raster needed to be reclassified 

based on cover type. As produced by the MLRC, NLCD raster cells are assigned one of sixteen 

landcover classifications. For this workflow, the raster was simplified into Boolean categories of 

non-wildland and wildland fuel. The categorization of land cover type borrows from Radeloff et 
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al. (2005) and Stewart et al. (2007). Both studies are fairly intuitive in their classifications, 

defining any developed land, including agricultural land, as non-wildland. Open water, ice, and 

bare rock/sand/clay are also considered non-wildland vegetation land cover. The remaining land 

cover classes are defined as wildland. Using the 2019 NLCD data, the following categories were 

defined as non-wildland fuels: open water, perennial ice/snow, developed open space, developed 

low intensity, developed medium intensity, developed high intensity, pasture/hay, cultivated 

crops, barren land (rock/sand/clay), and no data. All of these categories are present in the study 

area. Wildland vegetation includes all remaining categories, which are deciduous forest, 

evergreen forest, mixed forest, dwarf scrub, shrub/scrub, grassland/herbaceous, 

sedge/herbaceous, lichens, moss, woody wetlands, and emergent herbaceous wetlands. Of these 

landcover types, dwarf scrub, sedge/herbaceous, lichens, and moss do not occur in the study 

area. Logistically, this recategorization was accomplished using the Reclassify Raster tool. The 

numerical code for each landcover type is changed to either 0, for non-wildland vegetation, or 1, 

for wildland vegetation (Table 5). 
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Table 5. Land cover type and reclassification values 

Original Classification  Land Cover Type Reclassification Value 

11 Open Water 0 

12 Perennial Ice/Snow 0 

21 Developed, Open Space  0 

22 Developed, Low Intensity 0 

23 Developed, Medium Intensity 0 

24 Developed, High Intensity  0 

31 Barren Land 0 

41 Deciduous Forest  1 

42 Evergreen Forest 1 

43 Mixed Forest 1 

51 Dwarf Scrub Not Present  

52 Shrub/Scrub 1 

71 Grassland/Herbaceous  1 

72 Sedge/Herbaceous Not Present 

73 Lichens Not Present 

74 Moss Not Present 

81 Pasture/Hay 0 

82 Cultivated Crops 0 

90 Woody Wetlands 1 

95 Emergent Herbaceous Wetlands 1 

 

The next step used the reclassified raster and block groups to calculate zonal statistics. As 

the name suggests, this tool calculates various statistical outputs for a dataset based on specified 

zones, with the end result being a separate table that contains the specified values. In this case, 

the zones were the census block groups, with the GEOID specified as the zone field for each 

block group. The GEOID was used so the table output could be joined to the block group later. 

The target zonal statistic was the mean of the reclassified landcover value representing wildland 

vegetation in each zone. The output table, then, indicated the mean wildland vegetation 

percentage for each census block group. Because non-wildland vegetation was given a 

reclassified value of 0 and wildland vegetation is given a value of 1, a zonal mean of .4 would 

indicate that, in the given block group, 40% of the landcover is wildland vegetation. As a final 
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step, this value was multiplied by 100 to give a whole number percentage. Finally, the new zonal 

statistics table was joined to the block group dataset based on matching GEOIDs, completing this 

portion of the workflow. The end result of this section of the workflow (Figure 8) was a block 

group feature class with the percentage of wildland vegetation (Figure 9) and selected ACS 

demographic data appended as attributes of each polygon.  

 

Figure 8. Calculation of wildland vegetation cover workflow 
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Figure 9. Wildland vegetation landcover percentage by block group 
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3.4.2. Dasymetric Mapping 

The next step of the process involved refining the block groups, with appended data, to a 

more accurate geographic extent. Put simply, this was accomplished by omitting portions of the 

block group that were unoccupied. Compared with other population aggregations, such as 

counties and census blocks, census block groups vary greatly in size. In rural portions of the 

project area (i.e., where WUI areas are most likely to occur) individual block groups are much 

larger than in more urban areas. Amongst the larger, rural census block groups, much of the land 

is not actually inhabited or zoned for residential use. There is the potential for overestimating the 

extent of the WUI in these areas if it is assumed that the entire landscape is uniformly sparsely 

populated, instead of populated with small clusters of settlement amidst large swathes of 

uninhabited land. This issue underscores the importance of additional dasymetric mapping steps 

that provide more nuance when added to population density and vegetation cover.  

 To counteract the large scale of census block group data, this project omitted portions of 

the census block group based on two criteria. The first was census blocks with a total population 

of zero. The second criterion was land that is, by definition, not occupied. This includes federal 

and state lands administered by agencies such as the US Forest Service, the BLM, and the 

Oregon Department of Forestry.      

Methodologically, the dasymetric mapping was straightforward. Government-

administered state and federal land polygons were merged and given a negative 1-mile buffer. 

The negative buffer excludes a 1-mile internal band within the boundary of a given polygon. The 

negative buffer is used to account for wildland adjacent to private property. Due to the proximity 

to residential land, adjacent public land acts as a WUI extension. Statistically, fire incidents that 

occur on public land often occur near private property (and are therefore likely the result of 

actions by nearby residents) (Downing et al. 2022).  Previous projects typically employ a buffer 
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distance of 1 to 1.5-miles to account for the distance a firebrand can travel and ignite (e.g., 

Greetan 2016 and Stewart et al. 2007). The distance is typically based on local slope and fuel 

conditions. Because this project area encompasses a large region with mixed fuel types and 

topography, a 1-mile distance for the buffer was selected as a conservative estimate. Instead of 

buffering the entire WUI output, as is typically done, this project applied only a negative buffer 

to public land. This accomplished basically the same thing, but only incorporated areas that are 

actually adjacent to wildland by targeting only public land. In comparison, buffering the census 

block group would have also included more densely populated urban areas that border WUI 

block groups in exurban areas. Public land data, after being merged, was laid over the census 

block group dataset prepared in the previous steps. Areas of the block group that were 

overlapped by the public land layer were omitted using the Erase tool.   

 Next, unpopulated census blocks were reincorporated using a similar workflow (Figure 

10). As described earlier, census blocks are a smaller level of aggregation than the block groups. 

Within each block group are numerous census blocks with different population totals. Of the 

over 44,000 census blocks within the study area, approximately half are unoccupied. These 

census blocks were selected and exported as their own feature class, which was then overlaid on 

the block group data. As with federal and state land, the areas of the block group layer that 

overlapped unoccupied blocks were erased. The rationale for this step was straightforward. 

Block groups in rural areas tend to be very large, so omitting demonstrably unoccupied census 

blocks allowed the block group to be whittled down to only its occupied portions.  
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Figure 10. Dasymetric mapping workflow 

3.4.3. WUI Outputs 

 The final product of the above workflow was the dasymetric block group with appended 

data. In summary, this feature class shows the geographic extent of the inhabited portions of each 

census block group. With a more accurate geographic extent of the occupied portions of the 

block group complete, household density was then calculated and added as an attribute to the 

dasymetric block groups. Based on Stewart et al. (2007) and Zhang and Wimberly (2007), 

household density was used in lieu of other population figures. Four household density attributes 

were added to the census block groups (Figure 11). First, the acreage of each block group, minus 

the portions erased during previous dasymetric mapping, was calculated. Next, the total number 

of households per 20, 40, and 60 acres was calculated. Total household density attributes were 

important when selecting blocks that meet WUI criteria, which was the next step in the 

workflow.  
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Figure 11. Appending population density attributes 

At this point in the workflow, each block group had all of the key attributes to identify 

WUI status. This included the percentage of wildland vegetation landcover and the household 

density per 20, 40, and 60 acres. The total population and total population below poverty income 

were also appended to the census blocks. With this main dataset ready, WUI outputs were 

generated by selecting the features with attributes that fit the WUI criteria for landcover and 

population density. Because all essential data is joined to the same feature class, generating WUI 

outputs only required the input of relevant selection criteria using the Select by Attributes query 

builder. For example, the following input was used to select block groups with ≥10% wildland 

vegetation and ≥1 household per 20 acres:  

“SELECT WHERE Percent Land Cover >= 10 And Household per 20 acres >= 1” 

The selected blocks that met those criteria could then be exported as a unique feature class. 

 To track the effect of WUI definition criteria, different combinations of landcover 

percentage and population density were tested. A table was generated so that combinations of 

each variable could be tracked. For each combination of vegetation cover and household density, 

four attributes were recorded: the total land area, the population percentage relative to the entire 

population, the proportion of the WUI population below poverty income, and the number of 
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federal register communities identified. To measure the total land area of the given WUI output, 

a new attribute called “Sq Mi” was added to each WUI attribute table. The square mileage was 

then calculated using the Calculate Geometry function. The population percentage relative to the 

entire population was calculated by adding up the total population of each selected block group 

in each WUI output. The total population of the given WUI was then compared with the total 

population of the entire project area and the percentage of the population present in the selected 

WUI was calculated.  The same basic process was followed to determine the proportion of 

residents with a monthly income below the poverty rate. The total number of residents with 

below poverty income was calculated using the Statistics attribute tool and the sum calculated 

against the total population of the WUI to determine the relative proportion. To identify Federal 

Register WUI communities identified by each WUI output, the Select by Location tool was used. 

The selection criteria identified Federal Register WUI communities that intersected the WUI 

output. Because points were used for each WUI community, this tool was supplemented by 

visual inspection. In some cases, only some of the block groups around a community were 

identified as WUI without clearly overlapping the community point. When this occurred, visual 

inspection was used to determine if the community was included in the output. Pending data 

availability, future studies may opt to use community polygons for larger datasets where visual 

inspection would be impractical.  
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Chapter 4 Results 

This chapter describes the results of the WUI identification process. It first discusses the 

dasymetric mapping results, demonstrating the effectiveness of omitting the specified areas. The 

next section compares the results from combining different variable parameters, drawing 

conclusions based on the performance of each variable. The third section evaluates the WUI 

outputs based on their ability to adequately identify known WUI communities. Finally, the 

information gained from the analysis is used to determine optimal WUI parameters for the 

project area.  

4.1. Dasymetric Mapping Results 

 Following the extensive data processing steps described in the previous chapter, 

dasymetric mapping proved effective for excluding unoccupied areas. As previously described, 

this is an important step prior to identifying WUI areas because it provides a better indicator of 

actual residential areas and, therefore, likely household density. The first step in the dasymetric 

mapping workflow allows for the exclusion of unoccupied census blocks. Of the 44,000+ census 

blocks in the project area, approximately half are uninhabited (Figure 12). The next step omits 

public (state and federal administered) lands, with a negative 1-mile buffer (Figure 13). In total, 

these unoccupied lands accounted for approximately 18,000 square miles, out of a total project 

area of approximately 31,000 square miles (Figure 14).  
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Figure 12. Populated census blocks used as input for dasymetric mapping 
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Figure 13. Federal and state lands used as input for dasymetric mapping 
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Figure 14. Final occupied census block groups  
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4.2. Comparing Input Parameters 

The above methods were employed to successfully generate nineteen unique WUI extents 

and populate a WUI parameter matrix (Table 6). 

Table 6. Complete WUI parameter matrix 
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Least Restrictive                                                                                              Most Restrictive 

 ≥0% (test) ≥10% ≥25% ≥50% ≥75% 

All hh 

(test) 

Area: 12,700mi2 

Pop: 897,090 

Below Pov 

Income: 16.5% 

a)12,576 mi2 

b) 65.3 % 

c) 15.1 % 

a) 12, 482 mi2 

b) 55.4 % 

c) 15.2 % 

a) 12,125 mi2 

b) 43.4 % 

c) 14.8 % 

a) 11,040 mi2 

b) 26.9% 

c) 14.4 % 

1hh/60 

acres 

a)  3,069 mi2 

b) 87.9 % 

c) 16.6 % 

a)  2,945 mi2 

b) 53.3 % 

c) 14.9 % 

a) 2,851 mi2 

b) 43.4 % 

c) 15.0 % 

a)  2,494.1mi2 

b) 31.4 % 

c) 14.4 % 

a) 1,956 mi2 

b) 15.6 % 

c) 13.2 % 

1hh/40 

acres 

a) 2,265 mi2 

b) 84.9 % 

c) 16.7 % 

a) 2,141 mi2 

b) 50.3 % 

c) 15.0 % 

a) 2,047 mi2 

b) 40.4 % 

c) 15.1 % 

a) 1,713 mi2 

b) 28.5 % 

c) 14.5% 

a) 1,268 mi2 

b) 13.1 % 

c) 13.0 % 

1hh/20 

acres 

a) 1,205 mi2 

b) 78.7 % 

c) 17.1 % 

a) 1,083 mi2 

b) 44.0 % 

c) 15.4 % 

a) 989 mi2 

b) 34.2 %  

c) 15.6 % 

a) 808 mi2 

b) 23.0 % 

c) 14.8 % 

a) 499 mi2 

b) 8.7 % 

c) 12.6 % 

a) Land Area 

b) Percentage of Total Population 

c) Percentage of Population Below Poverty Income 

 

 Five wildland vegetation cover thresholds were tested between ≥0% and ≥75%. The 

correlation is straightforward, but ≥0% was the most permissive vegetation criterion because 

does not exclude any area based on vegetation cover. Though the WUI extents generated are 

insufficient because they only incorporate the household density variable, the inclusion of this 

null criterion yielded interesting results. Adjusting the wildland vegetation cover from ≥0% to 

≥10% led to the exclusion of approximately 30% of the total population. For instance, at the ≥1 

household/60 acres, adjusting the wildland vegetation criteria from 100% (≥0%) of block groups 

to 90% (≥10%) led to a 34% decrease in total population. This relationship holds true across 

other household density levels. At the ≥0% wildland vegetation level, the effects of household 
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density alone are most pronounced. Predictably, the land area decreases substantially as the 

household density input is made more restrictive (from ≥60 acres to ≥40 to ≥20). Interestingly 

though, the proportion of the total population remains relatively homogenous (87% to 78%). 

This indicates that most of the block groups that have a household density of ≥1 household/60 

acres also have three times that quantity i.e. ≥1 household/20 acres. The proportion of the block 

group population who makes less that the poverty rate also stayed fairly static. This is likely the 

result of the dasymetric mapping step, which, by omitting large geographic areas, more 

accurately represents a higher household density in rural areas.  

 As with vegetation parameters, a null population density input was used, allowing for the 

inclusion of all block groups based on the number of households per acre. Similar to the null 

vegetation input, the WUI generated without a household density limit is insufficient as an 

accurate rendition of the WUI but is useful for looking at the role vegetation plays in the 

equation. As wildland vegetation parameters increase from ≥10% up to ≥75% a unique trend 

plays out. The land area remained fairly static, decreasing by only 1,536 square miles or 8% as 

the vegetation criterion became more restrictive. Across that same span, the percentage of the 

WUI population decreased dramatically from 53% to approximately 16% of the total population. 

This indicates that, as the vegetation criterion is increased, it effectively omits smaller, sparsely 

vegetated, populous areas (Figure 15). This suggests that the ≥10% wildland vegetation 

parameter might be overly permissive. Conversely, it suggests that the ≥75% wildland vegetation 

parameter might be overly restrictive, potentially excluding interface WUI.  
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Figure 15. Comparison of WUI outputs at ≥10 % wildland vegetation compared with ≥75 % 

wildland vegetation 
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 Outside of the test null parameters, the analysis produced a total of twelve potential WUI 

outputs. These test vegetation criteria from 10-75% and household density criteria between 20 

acres per household and 60 acres per household. The overall, obvious trend is, as each variable 

gets more restrictive, the output decreases in land area, percentage of the population, and 

percentage of population below poverty income. Land area decreased most notably as household 

density parameters increased. This is reasonable as, all block groups with ≥1 household/60 acres 

necessarily also have at least 1 household/20 acres. The same relationship was not true when 

looking at increases in wildland vegetation cover. Land area decreases were small or negligible 

as vegetation cover requirements increased. As suggested above, the decrease in area was largely 

in urban or suburban area, indicated by a comparatively high decrease in population as 

vegetation requirements increase. This finding is supported by the previous vegetation density 

map (Figure 10), which shows relative uniformity in wildland vegetation cover outside of urban 

areas around cities like Medford and Redding. 

4.3. Evaluating WUI Outputs 

The above findings are interesting but do not readily offer a way to compare mapped 

WUI results. One reasonable way to evaluate the various outputs is to compare mapped WUI 

coverage to known WUI communities. As discussed in the introductory chapter, 23 WUI 

communities were identified in the project area for a 2001 Federal Register listing (see Figure 2). 

The original rationale for selecting these communities was not clarified and the list is 

incomplete. Nonetheless, an adequate GIS-based WUI assessment ought to be able to reidentify 

these known communities.  
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As with the above table detailing geographic extent and demographic character, a table 

was generated to track the total number of Federal Register WUI communities identified at each 

pair of variable parameters (Table 7). Generally speaking, the number of Federal Register WUI 

communities identified decreases when vegetation density thresholds are increased. This effect is 

more pronounced with household density, but a slight decrease from 23 to 22 occurs when 

wildland vegetation cover is increased from 10% to 75% when household density is not 

accounted for. Similarly weak decreases occur at all household density levels between 25 and 

50% wildland vegetation cover. Household density had a strong impact on the number of Federal 

Register WUI communities identified. From ≥1 household/60 acres to ≥1 household/20 acres, the 

total number of WUI communities decreased by almost half across all vegetation densities, with 

the strongest drop at 75% wildland vegetation cover.  

Table 7. Federal Register WUI communities identified at each variable threshold  
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≥0% (test) ≥10% ≥25% ≥50% ≥75% 

All hh (test) 
 

23/23 23/23 23/23 22/23 

1hh/60 acres 20/23 20/23 20/23 19/23 15/23 

1hh/40 acres 17/23 17/23 17/23 16/23 13/23 

1hh/20 acres 13/23 13/23 13/23 12/23 9/23 

 

 Population totals for the Federal Register WUI communities are not uniformly available 

because many are technically unincorporated and often lumped into larger neighboring 

communities. Available population data, sourced from the US Census Bureau, shows that some 

degree of population change has occurred since 2001 (Table 8). For example, Shady Cove and 

Redding both grew considerably (33% and 15%) over the twenty-year period. Conversely, 

Dunsmuir and Etna both decreased by over 10% in the same period. These shifts in population 
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do not necessarily prohibit comparison with WUI identified using more recent data. Instead, 

these changes indicate that the population density criteria used to identify the same WUI 

communities today will be slightly different than they would have been when they were first 

listed in 2001. For instance, communities that grew over time would qualify as WUI using more 

densely populated household criteria (e.g. 1 household/20 acres versus 1 household/40 acres). 

The opposite would be true for communities with shrinking populations. 

Table 8. Federal Register WUI community population change 2000-2020, based on available US 

Census Bureau Data 

WUI Community 2000 Population 2020 Population  Population Change 

Ashland 19,522 21,413 + 9.6 % 

Shady Cove 2,307 3,085 + 33.7 % 

Dorris 886 863 - 2.6 % 

Dunsmuir 1,923 1,705 - 12.6 %  

Etna 781 677 - 11.3 % 

Fort Jones 660 696 + 5.5% 

Redding 80,865 93,559 + 15.7 % 

Weed 2,978 2,864 + 3.8 % 

Yreka 7,290 7,809 + 7.1 % 

 

To simplify the visualization of results, this study will look at four of the twelve WUI 

outputs. First, the WUI output using ≥10% wildland vegetation cover and ≥1 household/60 acres 

will be assessed. This output is the most permissive in the sense that it incorporates the largest 

area and population. On the opposite end of the spectrum is the WUI output generated with 

≥75% wildland vegetation cover and ≥1 household/20 acres. This pair of criteria is the most 

restrictive and generated the smallest WUI output, both in geographic extent and population. 

Two additional WUI outputs will be tested alongside this pair. The WUI output from ≥50% 

vegetation and ≥1 household/40 acres, which is the basic WUI mapping criteria, will be tested. 
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Finally, the WUI output using ≥10% wildland vegetation and ≥1 household/40 acres will be 

used, as these values are around the median for area and population percentage.  

The WUI output at ≥1 household/60 acres and ≥10% wildland vegetation cover 

performed best when compared with the Federal Register WUI communities (Figure 16). Of the 

23 listed, all but three were within the mapped WUI. The communities of Dorris, Fort Jones, and 

McCloud were missed using this output. Interestingly, further experimentation indicates that this 

is due to a lower population density than ≥1 household/60 acres. Of the four test outputs, the 

WUI at ≥1 household/20 acres and ≥75 % wildland vegetation cover performed the worst (Figure 

17). This output only overlapped nine of the 23 listed WUI communities. Experimentation and 

comparison with other WUI outputs indicates that the higher vegetation threshold has little 

impact on the overlap with WUI communities, instead it is due, almost entirely, to population 

density. This finding is reaffirmed when comparing the results of ≥50% (Figure 18) and ≥10% 

(Figure 19) vegetation, both at ≥1 household/40 acres. Both outputs are visually similar, with the 

lower vegetation threshold incorporating more small block groups near cities. At ≥50% 

vegetation cover, seven Federal Register WUI communities are missed (Ruch, Applegate, Fort 

Jones, Dorris, McCloud, Klamath, and Etna. Adjusting the from ≥50% to ≥10% only allows for 

the identification of Etna, still missing the other six communities.  
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Figure 16. WUI at ≥1 household/60 acres and ≥10% wildland vegetation cover, with Federal 

Register WUI communities 
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Figure 17. WUI at ≥1 household/20 acres and ≥75 % wildland vegetation cover, with Federal 

Register WUI communities 
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Figure 18. WUI at ≥1 household/40 acres and ≥50 % wildland vegetation cover, with Federal 

Register WUI communities 
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Figure 19. WUI at ≥1 household/40 acres and ≥10 % wildland vegetation cover, with Federal 

Register WUI communities 



72 

 

Based on these findings, the optimal WUI criteria for the project area needs a lower 

population density than ≥1 household/60 acres to account for the most sparsely populated areas, 

such as Dorris. The effects of the vegetation criteria have been shown to be most pronounced in 

including or omitting areas near urban cores. At ≥10%, this variable may overcount non-WUI 

urban areas. Conversely, a high threshold of ≥75% visibly decreases the amount of land on the 

outskirts of cities, where interface WUI is also likely to occur. An optimized ≥25% wildland 

vegetation would incorporate some areas near urban cores, without overestimating the extend of 

WUI in those areas. For population density, a much lower criterion is necessary to incorporate 

very sparsely populated areas. The community of Dorris, for example, has a population density 

of ≥1 household/400 acres. This low density threshold was determined by slowly decreasing the 

household density from 80, testing progressively smaller densities until the block groups around 

Dorris qualified for the selection criteria. This optimized WUI (Figure 20) covers 11,860 mi2, 

much more than any of the other outputs. This total accounts for 93% of the total land area. Even 

though this proportion of the land area skews much higher than any other WUI test, it makes 

intuitive sense. The study area only has a handful of population centers, with most of the area 

being sparsely populated. In contrast, the total population for the optimized WUI is only 

495,794, 55% of the total population. The proportion of people below poverty income in 15.1%, 

similar to most of the other outputs and 1% below the proportion of the entire project area 

population.  
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Figure 20. Optimal WUI at ≥1 household/400 acres and ≥25 % wildland vegetation cover, with 

Federal Register WUI communities 
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Interpretation of the results can be based both on technical measures of the output, but 

also on an understanding of how the WUI should reasonably be distributed in the study area. 

This is one of the advantages to limiting the geographic scope to a specific area. The WUI 

ultimately describes locations where human development meets wildland fuels. This area is at a 

comparatively high risk of being impacted by catastrophic wildfire due to proximity to wildland 

vegetation. In this specific project area, dense urban settlement occurs only in the small handful 

of urban cores (see Figure 1). Outside of these communities, most residential areas sprawl 

outwards from cities, along highways, and around small towns. Generally speaking, much of the 

non-public land is sparsely occupied outside of cities and towns. The WUI output with the most 

verisimilitude, then, would error on the side of expansive rather than restricted. 
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Chapter 5 Conclusion 

This project demonstrates how a streamlined and location specific WUI mapping methodology 

can be established based on existing research. The impacts of different combinations of 

vegetation cover and population density were tested and an optimal WUI definition was 

established for the project area. This definition employs ≥1 household/400 acres and ≥25% 

wildland vegetation cover as WUI identification criteria for the given study area. Despite the 

expedience of national WUI mapping efforts, this study demonstrates that standardized variable 

definitions may not be uniformly optimal across the country. Before moving forward with WUI 

locational data, then, it is necessary to assess whether the selected criteria are well-suited for the 

project area or selected arbitrarily based on previous projects. 

The heighted vulnerability of WUI communities in the age of climate change necessitates 

an honest and good faith effort to adequately identify vulnerable communities, especially if their 

identification is tied to resource allocation and public policy decision making. This chapter 

demonstrates how the main methodology for identifying WUI can be augmented by teasing out 

the differing vulnerabilities of communities within the WUI. The chapter then discusses the long-

term utility of the project’s results before considering the project’s limitations and proposing 

future work that could continue this research. 

5.1. Identification of Vulnerable Communities  

With an optimized WUI established, the identification of especially vulnerable interface 

communities is an important next step. To demonstrate this workflow, the process was 

completed using the optimized WUI established in Chapter 4. First, the proportion of people with 

below poverty income relative to the total population is calculated for each WUI block group. 

The feature class is then symbolized using graduated colors and natural breaks, which divides the 
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feature into five categories (Figure 21). Based on the sociological context described in Chapter 1, 

there is reason to believe that both higher and lower income communities may be vulnerable to 

wildfire based on demographic characteristics. For demonstration purposes, vulnerable 

communities will be defined as those with the highest proportion of poverty income relative to 

the total population (33%+).  
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Figure 21. Optimized WUI with proportion of population below poverty income 
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Identification of the poorest communities may be sufficient to identify vulnerability, but 

an additional step is to overlay fire risk data. This allows for the identification of the poorest 

communities with the highest burn risk. Wildfire hazard potential data is sourced from the Esri 

Living Atlas. The dataset depicts relative burn risk on a ranking of one to five, with five being 

the highest (Figure 22). Data is aggregated at various levels from state and county to block group 

and hex bin. For consistency across datasets, the median burn risk by block group was used. The 

median burn probability data is ultimately derived from the USDA’s Fire Modeling Institute, 

which represents fire risk in a 270-meter resolution raster (Holtzclaw 2020). Sourcing the data 

from Esri provides a convenient shortcut, skipping extensive pre-processing steps necessary to 

prepare the dataset as it comes from the USDA.  
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Figure 22. Wildfire hazard potential by block group 
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This dataset was clipped to the optimized WUI, and the union tool was used to combine 

the two datasets. From here, the select by attributes tool was used to identify most vulnerable, 

second most vulnerable, and third most vulnerable communities (Figure 23). The selection 

criteria are as follows: 

• Most vulnerable = % of population below poverty income>= 33 AND Median Wildfire 

Potential Score = 5 

• Second most vulnerable= % of population below poverty income >= 21 AND Median 

Wildfire Potential Score = 4 

• Third most vulnerable= % of population below poverty income >=13 AND Median 

Wildfire Potential Score = 3 

 The results of this analysis indicate that the most extensive area of high burn risk and 

high poverty status occurs near the community of Hoopa, California. This area includes the 

reservation of the Hoopa Valley Tribe and other communities adjacent to the Six Rivers National 

Forest. Additional small pockets are located around Happy Camp, California and west of 

Williams, Oregon near the communities of Cave Junction and Kerby.  
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Figure 23. Most vulnerable WUI areas based on fire risk and poverty status 
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5.2. Long-Term Functionality 

For long-term WUI data functionality, variable parameters should be retested using new 

census and landcover data as it is released and updated WUI extents should be generated. In any 

region with sustained and consistent population growth (or decline), the WUI is constantly 

expanding and shifting over time. This means that any estimation of WUI extent is necessarily 

approximate and, depending on the rate and nature of local growth, may be quickly outdated. 

The nature of this shift may differ across an area too. For example, WUI areas that abut federal 

and state land, which are common across the west, may be limited in their geographic spread. By 

definition, public land is not open for residential development and represents a growth barrier. 

As populations in these types of communities grow, population density rather than physical 

extent is more likely to increase. The opposite may be true along the periphery of urban centers, 

where new construction tends to sprawl outwards across previously undeveloped, private lands. 

ACS data is available annually and updated population and demographic data can be reintegrated 

into the workflow. As decadal census data is released, it can also be integrated.    

In the longer term, land cover can also be expected to shift and change. Urban sprawl is 

inevitably the likeliest source of land cover change, from wildland vegetation to developed, non-

wildland categories. But landcover change may also occur over time due to climate change and 

wildfire events. In some areas, warmer and drier conditions may shift vegetation communities 

e.g. from mixed forest to scrub. While these would both register as wildland vegetation, they 

may represent different levels of fire risk. It is also feasible that severe enough burn scars may be 

reclassified from forest to bare land cover types in some areas. Finally, areas previously 

classified as open water or perennial snow/ice may transition to bare ground or vegetation as a 

result of drier, hotter conditions. NLCD data is typically available in 2 to 3-year increments. At 
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this time, the 2019 NLCD data used in this study is the most updated version. As with population 

data, newer versions should be integrated as they are released. More detailed landcover data can 

also be substituted in future iterations of this workflow.  

5.3. Limitations 

Any GIS-based analysis is limited by data quality. This project relies extensively on 

NLCD and US Census Bureau data. Both of these datasets are considered authoritative resources 

and are sufficiently accurate for the project at hand. Both have some amount of inherent 

inaccuracy that is worth mentioning though. The metadata associated with the 2019 NLCD 

dataset clarifies that a formal accuracy assessment has not been made for that year. The previous 

edition, which dates to 2016, includes an overall accuracy assessment of 91% for landcover data 

for the conterminous US. Similarly, because ACS data is based on a sample of the population, 

there is an intrinsic amount of statistical error when extrapolating population level conclusions. 

ACS datasets also have “non-sampling error,” which are non-statistical errors that effect data 

accuracy (US Census Bureau 2019b, 20). The US Census Bureau gives data entry errors and 

systematic undercounting of “groups who are difficult to enumerate” (US Census Bureau 2019b, 

20).  The latter category is especially important when considering the role of socioeconomic 

status in WUI communities. For example, undocumented farm workers and rural homeless 

residents may be underrepresented in rural census data.  

An additional source of potential inaccuracy can arise from mismatched census and 

landcover data. This project matches 2019 census data with 2019 NLCD data. Both datasets 

include data from previous years, due to the lapse of time between observation and data 

publication. Direct temporal correlation between datasets is not possible but using roughly 

contemporaneous data is preferable. For example, pairing 2010 census data with 2016 NLCD 
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data would likely yield decent WUI results, but more inaccuracy would be introduced because of 

the temporal difference between the datasets.  

Beyond data accuracy and compatibility, the nature of this project represents a potential 

limitation. GIS-based research can be an invaluable tool. The project described here enables the 

remote and fairly accurate identification of large expanses of WUI areas. This identification is an 

important first step for a number of potential actions, but GIS-based research needs to be 

integrated with other research methods to fully understand, not just where the WUI is, but what 

that finding implies. For example, after identifying potential WUI locations, a reasonable next 

step would be applied sociological or ethnographic research to better understand the issues and 

challenges residents face and how they might interact with wildfire risk. If, for example, cost is a 

major limiting factor in firesafe planning for local residents, a grant system could be established 

by policy makers to better meet community needs. Alternatively, if negative perception of 

government and authority is a factor (as suggested in Bright and Burtz 2006a), then rapport 

building with the local community may be imperative to build trust and collaboration.  

5.4. Next Steps and Future Research  

With an optimized WUI definition established for the study area, a number of next steps 

are possible for policy makers and future researchers. In their analysis of WUI areas across the 

US, Radeloff et al. (2005) suggest that WUI locational data needs to be integrated with other 

detailed spatial data, such as a building materials database, detailed topography, and 

accessibility, to fully ascertain fire risk across the interface. This sentiment is echoed in Mell et 

al. (2010) who argue that, to assess the effectiveness of WUI wildfire risk mitigation programs, 

community characteristics and structure exposure conditions need to be integrated into a wider 

WUI model. Because the WUI extent is necessarily generated at a specific time series based on 
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the census and vegetation data used in the workflow, the mapping process is well-suited to 

longitudinal assessments of WUI change through time. Currently, the temporal scope is limited 

by the range of NLCD data, which is available as far back as 2001. As new NLCD datasets are 

released in the future, the temporal scope of WUI data will grow and be a potentially fruitful 

avenue for analysis. 

As is, the dataset generated here could be a valuable decision-making tool. For instance, 

if any of the neighboring land management agencies were tasked with WUI adjacent wildland 

fuels reduction, they could prioritize land near lower income, higher fire risk communities. 

Similarly, if state or county governments received funding to construct new rural fire 

infrastructure, they might identify high priority areas based on the same criteria. Individuals 

within communities might also use the dataset to understand their relative risk and, potentially, 

use it as an impetus for community-level planning and organization.   

The full realization of WUI mapping, then, is not in the minutiae of variable selection, 

but in the big picture functionality and integration of a well-designed dataset for long-term 

planning and analysis. Effective research approaches can integrate quality WUI locational 

information, using it as a building block to address key public planning and emergency 

preparedness decisions. Because of the foundational importance of WUI locational information, 

it is imperative to have a fully realized mapping methodology, such as the one developed in this 

project.  
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Appendix  

 

Figure 24. WUI output with all households and ≥10 % wildland vegetation cover 
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Figure 25. WUI output with all households and ≥25 % wildland vegetation cover 
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Figure 26. WUI output with all households and ≥50 % wildland vegetation cover 
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Figure 27. WUI output with all households and ≥75% wildland vegetation cover 

 



94 

 

 

Figure 28. WUI at ≥1 household/60 acres and no wildland vegetation criteria 
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Figure 29. WUI at ≥1 household/60 acres and ≥10% wildland vegetation cover 
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Figure 30. WUI at ≥1 household/60 acres and ≥25% wildland vegetation cover 
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Figure 31. WUI at ≥1 household/60 acres and ≥50% wildland vegetation cover 
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Figure 32. WUI at ≥1 household/60 acres and ≥75% wildland vegetation cover 
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Figure 33. WUI at ≥1 household/40 acres and no minimum wildland vegetation criteria 
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Figure 34. WUI at ≥1 household/40 acres and ≥10% wildland vegetation cover 
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Figure 35. WUI at ≥1 household/40 acres and ≥25% wildland vegetation cover 
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Figure 36. WUI at ≥1 household/40 acres and ≥50% wildland vegetation cover 
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Figure 37. WUI at ≥1 household/40 acres and ≥75% wildland vegetation cover 
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Figure 38. WUI at ≥1 household/20 acres and no minimum wildland vegetation criteria 
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Figure 39. WUI at ≥1 household/20 acres and ≥10% wildland vegetation cover 
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Figure 40. WUI at ≥1 household/20 acres and ≥25% wildland vegetation cover 
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Figure 41. WUI at ≥1 household/20 acres and ≥50% wildland vegetation cover 
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Figure 42. WUI at ≥1 household/20 acres and ≥75% wildland vegetation cover 

 


