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Abstract 

Land subsidence is an ongoing problem in California’s San Joaquin Valley. Due to drought and 

over extraction of groundwater, land subsidence occurs at a rate of more than one foot per year. 

Since California enacted the Sustainable Groundwater Management Act in 2014, land subsidence 

has been labelled one of the six undesirable effects that causes degradation of groundwater 

aquifers. Spatially assessing and identifying issues pertinent to land subsidence tends to come 

after subsidence has already occurred. Modeling land subsidence has been attempted with some 

success but doing so has required complex hydrogeologic models that are computationally 

intensive and require large volumes of data to be collected for processing and input. This 

research incorporated simple, but key geological and engineering variables that are derived from 

the United States Geological Survey and the California Department of Water Resources. From 

these sources, a robust dataset was used to statistically explore spatial patterns and relationships 

among groundwater levels, amount of fine-grained sediment present in the aquifer, confined or 

unconfined aquifer designation, well completion length, aquitard clay thickness, and well depth 

all as they pertain to land subsidence. Land subsidence patterns were assessed with exploratory 

techniques of generalized linear regression and geographically weighted regression. Each 

method was used to visualize the spatial distribution and scale of land subsidence relationships 

among groundwater wells from 2015 to 2021. Due to the size of the valley, the number of wells 

found throughout, and accompanying variability in independent variables, global scale 

predictions of land subsidence were not as successful as local regression techniques. 

Geographically weighted regression took into consideration the variance among variables, 

accounted for spatial autocorrelation, and yielded an easy-to-update, but accurate prediction for 

spatial patterns of land subsidence in the San Joaquin Valley. 
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Chapter 1 Introduction 

In California, land subsidence has been well documented since the start of the 20th century 

(Poland 1972). California’s subsidence is largely the result of excessive groundwater extraction 

that when combined with the drier seasons due to climate change has become a rampant 

challenge in the San Joaquin Valley. Subsidence is at historically high rates of more than one 

foot per year and poses a risk not only to agriculture but to public and private water supply wells. 

Quick but accurate forecasting of land subsidence is crucial for effective groundwater 

management and environmental planning. In this study, spatial patterns of land subsidence in the 

San Joaquin Valley are assessed using key geological variables.  

This study uses recorded land subsidence from 2015 to 2021 to assess spatial 

relationships among explanatory variables such as annual change in groundwater level, 

groundwater level, subbasin area, well total depth, well completion length, confining clay layer 

depth, percentage of fine versus coarse-grained sediment, well vintage, classification of confined 

vs. unconfined aquifer, and confining clay layer thickness as each are key geological factors that 

relate to land subsidence. 

This study estimates the spatial variation of land subsidence from key geological and 

hydrological variables. This effort will assist with generating simplified, long-term subsidence 

estimates comparable to the complex Central Valley Hydrologic Model (CVHM) along with the 

level of accuracy needed for Groundwater Sustainability Plans (GSPs).  

This study evaluates spatial regression models to assess spatial patterns of land 

subsidence. To create a simple, but accurate regression model independent geologic variables 

linked to the causation and prediction of land subsidence are used. Ali et al. (2020) and Chu et al. 

(2021) utilized geographical temporal weighted regression (GTWR), which is an extension of 
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geographically weighed regression (GWR), which accounts for local effects in space and time. 

Furthermore, GTWR accounts for local effects of groundwater drawdown and subsidence in 

space and time making it sufficient for small slices of aggregated time, in this case, on an annual 

time slice for forecasting land subsidence. 

1.1. Land Subsidence and Groundwater 

The unique thing about groundwater, outside of it being a relatively abundant resource, is 

that it has the tendency to keep grains of rock and sediment apart from other grains, ultimately 

inflating the ground elevation (Fetter 2001). The extraction of water (and other fluids) from the 

subsurface eliminates the holding of such pore spaces open. Since air is compressible and water 

is not, this results in the rock grains and sediment compacting. Collapsing such pore space results 

in the ground above sinking. This is known as land subsidence (Neunedorf et al. 2011).  

Figure 1 exhibits land subsidence between 1965 and 2017 near Merced, CA (USGS 

2016). Each year notation shows the ground elevation for the designated year. Photos were taken 

just south of Merced in December 2017 and show how land has dropped 8.6 feet between 1965 

and 2016. The rate of subsidence was even greater from 1988 to 2016 when 6.2 feet of elevation 

loss occurred all due to groundwater extraction. Subsidence, particularly in the San Joaquin 

Valley, continues today at close to historically high rates of more than one foot per year (USGS 

2021).  
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Figure 1. Measured land subsidence through time outside of Merced, CA 

 

1.2. Study Area 

The San Joaquin Valley is a Mediterranean environment with long, hot, and dry summers 

and wet winters. It lies north of the Transverse Range and south of the Sacramento Valley. The 

San Joaquin Valley produces close to 13% of the United States’ agricultural products which 

include grapes, raisins, cotton, almonds, citrus, and a plethora of vegetables (CDFA 2010). Each 

of these crops are water intensive, so pumping groundwater in the Central Valley to water crops 

is not uncommon. Figure 2 shows the approximate location of the San Joaquin Valley, the area 

of interest (AOI) for this study.  
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Figure 2. San Joaquin Valley study area map with SAR measured subsidence, 2017 

 

 Areas to the southwest of Lemoore are not connected to the hydrologic system of the 

valley and are part of Kettleman Hills and the Kettleman Dome Oil Field (Harden 2004). While 

these areas are not part of this study, again as outlined in Figure 2, Kettleman Hills must be 

mentioned due to the gap or hole that this geologic structure creates in the study area. With this, 
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all of the light-blue shaded area in Figure 2 shows the AOI of the valley, of which is impacted by 

subsidence associated with groundwater extraction.  

The San Joaquin Valley boundary defines the area of interest (AOI) of this study. This 

polygon was created in ArcGIS Pro. This feature class was drawn based on the geophysical 

boundaries of the San Joaquin Valley Kings Subbasin and the Tulare Lake basin watersheds and 

was guided by groundwater wells the exist with both sub basins. As such, the polygon was drawn 

with an eastern border of the Sierra Nevada Mountains and the Coast Range mountains on the 

west. The southern boundary includes the Bakersfield Arch down to and against the Transverse 

Range. The northern extent is defined by the Stockton Delta. This boundary is ultimately defined 

by associated watersheds that comprise what it referred to the San Joaquin Valley (DWR 2022). 

Figure 2 also shows land subsidence recorded from synthetic aperture radar (SAR) in 

2017 within the San Joaquin Valley. Note that negative and warmer colors imply areas of areas 

of recharge where water may even be seeping to the surface. Positive values and darker blue 

colors imply areas of greater subsidence or decrease in elevation above sea level. 

1.3. Managing Land Subsidence 

The amount of subsidence within California’s San Joaquin Valley varies over time and is 

dependent on droughts, infiltration of runoff, and available pore space in the subsurface (Faunt et 

al. 2016; Jeanne et al. 2019; Poland 1972; Smith and Majumdar 2020). The same may be said 

anywhere excessive groundwater extraction may be found. Such areas as Shanghai, (Shen and 

Xu 2011; Xu et al. 2016), Mexico City (Kirwan and Megonigal 2013), Bangkok (Phien-Wej et 

al. 2006), Iran (Amiraslani and Dragovich 2011; Rahmati et al. 2019), and Las Vegas (Bell et al 

2008; Hoffman et al 2001), have undergone large amounts of subsidence. However, the San 

Joaquin Valley tends to be a textbook example of land subsidence. When assessed at the local 
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scale, subsidence is based on a multitude of local factors, including overexploitation, water-level 

drawdown, geology, and water-year type (California Department of Water Resources 2022). 

With the implementation of California’s Sustainable Groundwater Management Act (SGMA) in 

2014, a statewide framework was created to assist with the management and use of groundwater 

that can be maintained without causing an “undesirable result.” SGMA describes undesirable 

results as  

Persistent lowering of groundwater levels, significant and unreasonable reduction in 
groundwater storage, significant and unreasonable saltwater intrusion, significant and 
unreasonable degradation of groundwater quality, significant and unreasonable land 
subsidence, and surface water depletion having significant and unreasonable effects on 
beneficial uses (Sustainable Groundwater Management Act of 2014 §10733.2).  
  
Groundwater sustainability agencies (GSAs) are local agencies, oftentimes coalitions, for 

high and medium priority basins that have had significant undesirable results. High and medium 

priority basins are defined as critically overdrafted basins. With this, GSAs are tasked with 

developing and implementing groundwater sustainability plans (GSPs) that assist in avoiding 

undesirable results and help to mitigate overdraft in a twenty-year period (DWR 2022).  

1.4. Watersheds and Subbasins 

Management of California’s groundwater basins was first thought up in the early 20th 

century. This came as California’s population was exploding and rapid growth of the agricultural 

industry was occurring. Both were not only growing, but also becoming more dependent on 

groundwater extraction to meet demands (DWR 2020). Within the San Joaquin Valley, 

groundwater may be found in stratigraphic layers comprised of permeable and porous sediments, 

the former helps to lead to a high yield capacity (i.e. more easily extracted groundwater). These 

geologic layers tend to be laterally extensive, but in the early 1950’s, California’s Department of 
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Water Resources took the initiative to define geophysical boundaries within existing basins. This 

soon became known as a subbasin.  

California’s groundwater systems of interaction are defined by 515 subbasins. The San 

Joaquin Valley is made up fifteen hydrographic subregions, or drainage basins, which include 

the San Joaquin Valley and Tulare Basin which in the past decade have been the most impacted 

by land subsidence due to groundwater extraction (Galloway et al. 1999). These two basins, and 

the remaining 19 found within the San Joaquin Valley, contain the Tulare Formation, and its 

three stratigraphic subdivisions which define the primary aquifers. 

1.4.1. The San Joaquin River Watershed 

The San Joaquin River Watershed is approximately 15,600 square miles and is located in 

between the Sacramento River Watershed to the north and Tulare Basin Watershed to the south. 

The San Joaquin River watershed is bordered on the east by the Sierra Nevada Mountains and on 

the west by the Coast Range mountains. At the heart of this watershed is the San Joaquin Valley 

- Kings subbasin.  

Water flow in the San Joaquin River have been substantially modified by dams and 

diversions that remove 95% of the water from the river. These diversions cause the San Joaquin 

River to be dry for more than sixty miles of its course. Some stretches of the San Joaquin receive 

minimal amounts of agricultural and urban runoff. The Delta Mendota Canal was constructed to 

replenish water in the San Joaquin River by transporting Sacramento River water to Mendota 

Pool where it is directed to the San Joaquin River channel and agricultural users. 

The land area in the San Joaquin River Watershed is diverse ranging from snow covered 

peaks to sub-sea level agricultural areas. There are large areas of forest that cover mountain 

slopes, more than 3000 square miles of agriculture in the valley, and a human population of 2 
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million people living in the major urban centers of Stockton and Fresno, small towns, and rural 

communities. 

The San Joaquin River is the second longest river in California. It begins in the high 

Sierra Nevada Mountains and flows approximately 100 miles to the west then turns north 

flowing for 260 miles where it joins the Sacramento River. Tributary rivers that flow into the San 

Joaquin River include (from south to north) the Fresno, Chowchilla, Merced, Tuolumne, 

Stanislaus, Calaveras, Mokelumne, and Cosumnes Rivers (DWR 2022). 

1.4.2. The Tulare Lake Watershed 

The Tulare Lake Basin is located south of the San Joaquin River watershed bordered on 

the east by the Sierra Nevada Mountains, on the south by the Tehachapi Range and west by the 

Coast Range. Major rivers in the Tulare Lake Basin come out of the Sierra Nevada Mountains 

and include the Kings, Kaweah, Tule, and Kern Rivers. Smaller Sierra Nevada streams include 

Deer Creek, White River, and Poso Creek as shown in Figure 3.  
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Figure 3. San Joaquin and Tulare Lake Basin watersheds (NOAA 2022) 

 

Prior to the 19th century the Tulare Lake Basin was characterized by four large lakes. 

After the basin’s tributaries were diverted for agricultural irrigation and municipal water uses, 

the lakes dried up. These lakes used to cover 800 square miles during wet years. Included in this 

were large tracts of wetlands that covered close to 625 square miles (Garone 2011). These 

wetlands had the tendency to periodically spillover into the San Joaquin River watershed. In the 

modern era, the large lakes and wetlands have been replaced with irrigated agriculture, rural, and 

large swaths of urban development. Rivers that drain the Tulare Basin do not have a natural 

surface water pathway out of the watershed. Water moves into and out of Tulare Lake Basin by 
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precipitation and water diversions through canals. However, the most impacted water source 

remains groundwater via pumping (DWR 2022). 

1.4.3. Subbasin Prioritization and Data 

The San Joaquin Valley contains nineteen subbasins for water management purposes, but 

the valley as a whole is the focus of this study. According to California’s Groundwater (Bulletin 

118) 2020 updated, the San Joaquin Valley - Kings subbasin uses 2,522,126 acre-ft of 

groundwater annually. This is ~84% of the water use within this subbasin that is extracted by 

~26,684 total wells. That is 17.4 wells per square mile (DWR 2021)! Figure 4 outlines the 

subbasins that comprise the San Joaquin Valley. Of note is the San Joaquin Valley – Westside 

Subbasin. This ~970 square mile subbasin is where most of the land subsidence occurs within the 

valley.  
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Figure 4. San Joaquin Valley Subbasins 

 

Figure 4 complements Figure 3 and is adapted from the SGMA Basin Prioritization 

Statewide Summary Table (2022) and outlines similar data for each of the seventeen San Joaquin 

Valley subbasins, each which have been greatly impacted by land subsidence. It should be noted 

that according to existing subbasin collations, that are responsible for compiling and managing 

basin data, and DWR (2018), basin prioritization is based on numerous factors that are identified 

in CA Water Code §10933. Some factors include current and projected population as well as the 
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number of existing water wells in the basin. Such rankings then determine if SGMA provisions 

are applicable within a given basin. The four rankings of very low-, low-, medium-, or high-

priority indicate the overall importance of groundwater for each basin and subbasin (DWR 

2019). Of the seventeen subbasin within the San Joaquin Valley, thirteen of these subbasins have 

been marked as high-priority. This tag proliferates from the number of production wells that are 

present, the number of wells per square mile, and the amount of water extracted from subsurface 

aquifers. Water extraction is exacerbated by ongoing drought and operates as a catalyst for land 

subsidence. Table 1 further designates the primary surface stream or river that may exist, albeit 

more often than not in a dry state, within each subbasin. The area of each subbasin is not 

something to be missed as that measured surface area reflects the underlying geology which 

defines the existence of a large subsurface aquifer that is part of the geologic Tulare Formation.  
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DWR has prioritized groundwater basins based on factors like those previously outlined 

but emphasis in the San Joaquin Valley has been placed on irrigated acreage and the number of 

water wells present in the subbasin Water Code §10933 (b)). It may be noted that sustainability 

managed basins may still be designated as high-priority due to the emphasis further placed on the 

importance of groundwater within a subbasin and the possibility of degradation of groundwater 

and undesirable results identified in SGMA. 

1.5. Geology of the San Joaquin Valley Groundwater Systems 

The San Joaquin Valley is covered by Plio-Pleistocene alluvium sediments from former 

alpine glaciers (Miller 1989; McPherson and Miller 1990). Sediments eroded from the Sierra 

Nevada on the eastside and from the Coast Ranges on the westside and were carried via fluvial 

processes to fill in an asymmetric structural trough. These materials were deposited as alluvial 

fan, flood-basin, lake, marsh, and deltaic deposits (Miller 1971). Of the 32,000 ft thick 

sediments, an average of 2,400 ft comprises the aquifer system in the San Joaquin Valley (Page 

1961). These sedimentary deposits are comprised of unconsolidated gravel, sand, silt, and clay 

that define the Tulare Formation which is also the main aquifer with the San Joaquin Valley (Hill 

1964). These Tulare Formation sediments hold most of the groundwater reserves throughout the 

valley as these sediments filled the valley floor from the Temblor range in the west to the Sierra 

in the east. Additionally, numerous lenses of fine-grained sediments (e.g. silt, sandy silt, sandy 

clay, and clay) are also present and according to Page (1973) make up over 50% of the total 

geologic formation and aquifer thickness.  

Most of the fine-grained materials have been mapped using geophysical logs, seismic 

surveys, and drill core throughout the San Joaquin Valley. The most notable lithology is the 

Corcoran Clay Member of the Tulare Formation that exists along the majority of the westside of 
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the valley (Bertoldi et al. 1991). The Corcoran Clay Member is a key component of groundwater 

hydraulics in the valley. Lees et al. (2021) have subdivided the Tulare Formation, the primary 

aquifer throughout the valley, into three different hydrostratigraphic layers: the unconfined to 

semi-confined upper Tulare (or upper aquifer), the Corcoran Clay Member, and the lower Tulare 

(or confined lower aquifer). Figure 5 displays this subdivision. Associating groundwater within 

the Tulare Formation with the upper or lower aquifer can be difficult. Through the years 

geologists have used physiography, weathering characteristics, and sediment cores to identify 

which portion of the formation water wells are drilled into (Williamson 1989).  

 

Figure 5. Hydrostratigraphy of the Tulare Formation 

 

Lateral and vertical textural variations among these three subdivisions affect the direction 

and rate of groundwater-flow as well as the magnitude and distribution of aquifer-system 

compaction, manifested as land subsidence. 

Land subsidence occurs in a particular manner that deals with the rearrangement of fine-

grained materials when preconsolidation stress is exceeded (Galloway et al. 1999). This most 
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often happens when the existing groundwater levels are lower than previous historical lows. 

Meanwhile, recoverable subsidence is when preconsolidated stresses are not exceeded and hence 

behave elastically; that is to say, that current groundwater levels remain higher than historical 

lows (Faunt et al. 2016; Narasimhan and Neuzil 2008; Terzaghi 1923). Such stresses may be 

caused by land-use changes, ill-managed aquifer recharge, and/or droughts. 

The primary concern around groundwater in the San Joaquin Valley is the decrease in 

overall subsurface storage capacity due to the gradual compaction and sinking of the ground, 

also known as land subsidence. Subsurface compaction generally tends to occur when large 

volumes of groundwater are pumped from subsurface pore space faster than natural recharge can 

replace it. Compaction occurs when sediment is unconsolidated and has high clay content (Davis 

and Poland 1957; Davis et al. 1964; Poland et al. 1975). 

It should be noted that compaction of the Corcoran Clay contributed less than 10% of the 

total subsidence, and most of the subsidence occurred in the lower aquifer. This is consistent 

with stress-strain measurements of extensometers that assess the lengthening or stretching of 

subsurface sediment and geologic rock formations due to downward movement in the subsurface 

(Poland 1975). 

Faunt et al. (2015) discovered that up to 30% of the overall subsidence occurs in the 

upper aquifer. Faunt et al. (2015) determined that lower aquifer water levels were relatively 

constant whereas upper aquifer head levels showed an overall decline. This posed an interesting 

conundrum as it was originally believed that land subsidence was only a problem at locations 

where the Corcoran Clay is present due to the confined conditions it creates in the underlying 

lower Tulare Formation (Murray et al. 2018). Figure 6 outlines the extent of the Corcoran Clay 
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as mapped by Faunt et al. (2015). Notably, the Corcoran Clay thins towards the east side of the 

valley and designates where aquifer conditions should behave as unconfined.  

 

Figure 6. Map of the thickness and extent of the Corcoran Clay 

 

Lees et al. (2021) assessed 65 years’ worth of land subsidence to ascertain the depths at 

which compaction is occurring within the San Joaquin Valley’s Tulare Formation. With the work 

of Lees et al. (2021), it is now understood that substantial subsidence can emanate from within 

the unconfined-to-semi-confined upper Tulare Formation. This becomes key in understanding 



 

 18 

how groundwater and land subsidence modeling might be undertaken within the San Joaquin 

Valley. Additionally, the findings of Lees et al. (2021) suggest that if heterogeneity is accounted 

for when spatially modeling the San Joaquin Valley, the presence of the Corcoran Clay—or the 

lack thereof, may not be as significant as previously thought when it comes to subsidence 

susceptibility.  

The subsurface geology sets the stage for groundwater extraction in the San Joaquin 

Valley. Unfortunately, excessive groundwater pumping in the San Joaquin Valley has been an 

ongoing problem since the 1920s. Gradual elevation decline or sinking of the basin’s land 

surface has occurred by as much as 28 feet (8.5 meters). Land-use changes, ill-managed aquifer 

recharge, and/or droughts compound the problem (Buis and Thomas 2017). The agriculture 

industry relies on groundwater to support the most productive region in the nation. Hanak et al. 

(2019) found that the San Joaquin Valley has an annual overdraft of roughly 2 million acre-feet 

per year. Approximately 30% of the groundwater demand is supplied from pumping 

groundwater in the San Joaquin Valley in the state of California. This makes the basin the 

second-most-pumped aquifer in the United States (USGS 2022). Additionally, this makes for 

~33 million Californians reliant on groundwater for drinking water or other household purposes. 

And ~6 million Californians are entirely dependent on groundwater for all water used (DWR 

2020).  

Pumping at this rate, with no additional wells being added to the system, and maintaining 

a constant estimate of demand growth, will greatly impact the overall subsurface storage 

capacity. As groundwater acts as a buffer to drought seasons, DWR (2020) found that 

groundwater provided 58% of the Californian water supply during the 2012-2016 drought. 

Groundwater aquifers also play a key role in California’s climate change adaptation strategy. If 



 

 19 

storage capacity is reduced due to overdraft and continued drought resulting from climate 

change, then this adaptation strategy also will need to change. However, as many researchers 

have noted, restoring balance will require a combination of new water supply investments and 

programs to manage demand—all of which also entail heavy societal and financial costs (USGS 

1969; Far and Lui 2015; Faunt et al. 2015; DWR 2022). 

As previously mentioned, most water wells in the San Joaquin Valley target the fine-

grained sediments of the lower Tulare. With the Corcoran Clay acting as a confining layer, this 

aquitard tends to deform both elastically and inelastically. Elastic deformation implies a 

temporary deformation in the sediment and rock of a formation. After the stress, or force, that is 

causing the deformation is release, the sediment and rock return to their original shape. Inelastic 

deformation does not reverse and results in permanent change in shape (Twiss and Moores 

2007). Land subsidence occurs in a particular manner that deals with the rearrangement of fine-

grained materials when preconsolidation stress is exceeded (Galloway et al. 1999). This most 

often happens when the existing groundwater levels are lower than previous historical lows. 

Meanwhile, recoverable subsidence (or inflation) is when preconsolidated stresses are not 

exceeded and hence behave elastically; that is to say, that current groundwater levels remain 

higher than historical lows. Such inflation cannot occur if the fine-grained sediments have 

already collapsed, thus making land subsidence permanent. Aquifers cannot have their original 

storage capacity restored once land subsidence has occurred (Terzaghi 1923; Narasimhan and 

Neuzil 2008; Faunt et al. 2015).  

Understanding the relationship between subsidence and groundwater extraction becomes 

essential to the future of groundwater and storage capacity in the San Joaquin Valley. The key to 

understanding falls into several categories of hydrogeologic modeling. 



   

Chapter 2 Related Work 

This chapter outlines previous research and work related to modeling groundwater systems and 

land subsidence. While modeling groundwater systems and extraction methods is a global 

challenge, the modeling of land subsidence occurs in select areas of the world, with many 

publications focused on the San Joaquin Valley. Mathematical, analytical, and numerical models 

have been rendered in 2D and 3D. Recent land subsidence modeling trends have shift from full 

3D models to global regression models that then have shifted to local regression models. 

Examples from other locations on the globe have led the way in assessing the use of 

geographically weighted regression techniques, including geographic temporally weighted 

regression models.  

 Understanding local variation in groundwater levels and subsequent land subsidence has 

grown more and more important. This study utilizes recently suggested techniques and methods 

in land subsidence modeling on the basis that not all land subsidence proliferates equally and not 

all drivers of subsidence are equally distributed. This chapter starts by outlining groundwater 

modelling techniques and then outlines the differences among models and concludes with an 

introduction to how geographically weighted regression models have been used to model land 

subsidence.  

2.1. Modeling Groundwater Systems 

When it comes to modeling groundwater there are various approaches, methods, and 

software that are available. Such models are a computational method that are an approximation 

that representing physical phenomena—in this case, hydrogeologic systems (Barnett et al. 2012). 

GSAs use many different models to depict groundwater interactions within their respective 

subbasins. Over the last several decades numerous techniques have been used in attempt to 
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analyze, predict, and evaluate land subsidence. Numerical and analytical models have been 

developed over the last 30 years to assist in this area. Many of these models are complex and 

require many personnel hours to collect and clean data to then generate a model that only 

groundwater experts may fully understand. Examples of this process include collecting drill core 

from the subsurface and assessment of recovered core to identify sections for select lab analyses. 

Lab analyses may include measurement of available pore space, measurement of permeability, 

and the recording of coarse-to-fine-grain sediment ratios, to name a few. Finally, with the ground 

truthing of lab analyses from the drill core, alignment of geophysical log measurements of 

electrical resistivity and conductivity can now be calibrated to properly integrate X, Y, and Z 

directions of these data into a 3D modelling that can be both expensive and require hours of 

computer modeling time to be sure results still match the original drill core. Now what happens 

when a new drill core is taken? Or if a water well is drilled and new geophysical logs exist 

without drill core to calibrate such measurements to? 

A simplified approach of spatial regression can be used to generate predictive models 

more quickly and accurately while also identifying the most reliable and impactful predictor 

variables for assessing patterns of land subsidence. In 2009, the USGS produced the CVHM. The 

aim of this model was to introduce subbasin water managers to how water moves in a 

hydrogeologic system. This concept would then be complemented by water modelers to make 

predictions on water moving into and out of the basin. The CVHM has a large list of parameters 

for managers and modelers alike that must be set before any predictions may be made. The list of 

data input requirements are related to geology, topography, remote sensing, climate, land use, 

soils, and chemistry, to name a few. These may come in the form of measured porosity and 

permeability from a drill core, or the total dissolved solids measured in a water sample taken 
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from the sub surface. Other data inputs may include annual precipitation, or even predictions of 

future precipitation wherein a second layer of error may be introduced into the resulting 

predictions. Due to how quickly each of these inputs can change, while coupled with the amount 

time it takes to run the model from data input to prediction output, the CVHM has not been 

updated since 2014. Coincidentally, this is also when SGMA was signed into California law. 

In the case of the existing nineteen subbasins within the San Joaquin Valley, conceptual 

models, mathematical models, and analytical models (and tools) have been utilized. Each of 

these model types requires different assumptions, datasets, and temporal information. The 

challenge is that each of these models are used to balance the checkbook of undesirable results. 

While many are great for assessing and providing rough estimates for a water budget, they are 

not all the same, and nor should they be. The geology is different. The amount of groundwater 

extraction (or drawdown) varies throughout each subbasin. Each has a different industrial 

specialization as well as different population densities that draw on the same groundwater 

aquifer of the Tulare Formation. 

Technologies like the interferometric synthetic aperture radar (InSAR), which is used to 

measure changes in land surface altitude, have been introduced to reveal, target, and monitor 

ground deformation from radar images collected by orbiting satellites (Bawden et al. 2003). A 

radar signal is produced by an orbiting satellite, that radar signal is then reflected back to the 

satellite to measure the elevation of the area of interest. InSAR images are then created through 

reference to previously recorded signals at different times and references these against the newly 

acquired data to create a surface displacement raster (Galloway 2000). Tiltmeter technology has 

also been used to assess tiny changes in the slope angle or “tilt” of the ground. This is useful in 

determining the shape or strain of the earth’s crust that results from land subsidence (Fergason et 
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al. 2015). Global positioning systems (GPS) have also been used to measure geodetic 

monuments horizontal and vertical changes in land subsidence-prone areas (Sneed and Brandt 

2013). As new technologies and data from InSAR, tiltmeter, and global positioning systems 

(GPS) are implemented to assess land subsidence, the variables of geology, engineering, and 

groundwater are coming together to complement technology in assessing land subsidence. With 

this, the simple fact that groundwater drawdown is inextricably linked to land subsidence 

remains (Sneed 2018). Geology plays a key role as pore space, clay content, sediment grain size, 

and inelastic vs. elastic deformation contribute to assessing patterns of land subsidence 

(Galloway and Burbey 2011).  

Statistical models, herein coined “quantitative methods,” tend to focus on local 

conditions, but can limit large-scale area assessments (Ali et al. 2020). Quantitative methods 

dealing with lithology type, surface impermeability, and previously mapped historical subsidence 

build a much-needed bridge of real-world, boots-on-the-ground application between the field and 

database. Yet such approaches, much like the CVHM, tend to stagnate and require large datasets 

if water resource managers and modelers desire newly refreshed predictions (Jeanne et al. 2019). 

Machine learning, artificial intelligence, and deep learning yield maps that are useful for 

subsidence prediction and mapping but can still require large training datasets and personnel 

time. 

When it comes to modeling complex geological systems, such as hydrogeologic systems, 

there tend to be several ways that this may be done. Regardless of the chosen method from 

among mathematical-analytical, mathematical-numerical, and integrated models, each starts with 

a conceptual model.  
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2.1.1. Conceptual Models 

A conceptual model is often considered the first step in understanding the groundwater 

flow system and must occur before a mathematical model can be developed. Conceptual models 

include a narrative interpretation and graphical representation of a basin based on known 

characteristics and current management actions. Conceptual models tend to not include 

quantitative values and are used for conveying complex information in an easy-to-understand 

way (Castellazzi et al. 2016).  

2.1.2. Mathematical Models 

Mathematical models, in this context, are designed to simulate groundwater flow or 

solute transport via solving an equation, or series of equations, that reasonably represent the 

physical interactions and transport processes in the subsurface. In the case of land subsidence, 

mathematical models tend to discuss both mechanisms of the effects that cause land subsidence, 

while also taking a traditional, non-spatial, statistical approach. Mathematical models differ from 

conceptual models in that they can provide quantitative estimates that can go into a subbasin’s 

water budget. Mathematical models are frequently divided into two categories: analytical and 

numerical (Bear and Corapcioglu 1981; Yue et al. 2009).  

2.1.3. Analytical Models 

Analytical models include assumptions that help to simplify complex physical systems. 

Such simplification may include topographic boundary conditions generally being limited to 

simple geometric shapes and/or aquifer properties that are often required to be homogeneous and 

isotropic. The physical configuration of such models is also typically idealized for the purposes 

of analysis and, therefore, influences related to project geometry are ignored. Often only one 

component (a measured or simulated value or relationship) of the groundwater system is 



 

 25 

evaluated at a time. Such an approach omits the evaluation of potential interactions with other 

components. In the case of this study, such a method would have the potential to ignore two-way 

(or more) interactions among pore space, drawdown, and subsidence. Such models are often like 

balancing a checkbook and include a spreadsheet that utilizes a simple equation to estimate the 

aquifer drawdown in a single location based on pumping at another location. Such scale-like 

balancing does not consider the potential influence of heterogeneity in the subsurface or the 

influence of surface water interactions (e.g. influent streams) (Walton 1979; Ahmed et al. 2020).  

2.1.4. Numerical Models 

Numerical modeling tools are widely used in groundwater flow and transport analysis to 

evaluate changes in the groundwater systems caused by changes in conditions due to changes in 

population and land use, climate change, or other factors. These numerical models allow for a 

more realistic representation of the physical system, including geologic layering, complex 

boundary conditions, and stresses due to pumping, recharge, and land use demands. Such a 

model incorporates complex basin characteristics including significant groundwater withdrawals 

and/or surface water - groundwater interactions that may be used to estimate when undesirable 

results may occur (Faunt 2009; Hanson et al. 2010).  

Numerical models have come to include Interferometric Synthetic Aperture Radar 

(InSAR), tiltmeters, and even fiber optic lines buried in the subsurface (Galloway et al. 2016; 

Ahmed et al. 2019; Guzy et al. 2020). As previously mentioned, these models tend to be complex 

and while they incorporate predictor variables that represent many possible physical phenomena 

in the real world, they often include variables that do not bring the most value to the modeling 

effort. As such, numerical models can easily be biased (Chi and Zhu 2019). 
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2.1.5. Global Regression Models 

Regression is a statistical technique that associates a dependent variable to one or more 

independent or explanatory variables. A regression model can show whether changes observed in 

the dependent variable are related with changes in one or more of the explanatory variables 

(Stapleton 2009). The most common regression technique is ordinary least squares (OLS) by 

which a linear regression model is established among all data at a global data scale. Variables in 

an OLS model tend to take on a relationship as outlined in Equation 1. 

𝑦! 	= 	𝛽" 	+	&𝑘𝛽#𝑋!# 	+	ℰ! 

Standard regression (OLS) is fixed for the study area. Within Equation 1, i represents the 

observations at a location and k represents each designated explanatory variable pertaining to 

that location. β0 represents the intercept value; βk is the kth coefficient of the independent 

variable, Xik represents annual groundwater level change and Yi is subsidence at location i. 

While OLS is a simple but powerful way to make predictions based on linear 

relationships, it fails to take into consideration the variance of variables throughout the study 

area. When areal units like water well locations, street segments, or census blocks are assessed 

with OLS, assumptions are being made that the observed values at one location are independent 

of the observed values at other locations. Recall that Tobler’s first law of geography outlines the 

concept that all things are related to each other, but things that are closer in proximity are more 

closely related than distant things (Tobler 1970). Groundwater extraction does not occur 

randomly across space as aquifers tend to be confined to a particular area. High-volume water 

wells will most often be found near other high-volume water wells. This is something that OLS 

does not take into consideration as such a method looks at all data as a whole, or global scale, 

rather than as spatially dependent (Harrell 2015).  

Equation 1. 
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When a value observed in one location depends on the values observed at neighboring 

locations, there is a spatial dependence. And spatial data may show spatial dependence in the 

variables. Why should spatial dependence occur? There are two reasons commonly given. First, 

data collection of observations associated with spatial units may reflect measurement error. This 

happens when the boundaries for which information is collected do not accurately reflect the 

nature of the underlying process generating the sample data. A second reason for spatial 

dependence is that the spatial dimension of a social or economic characteristic may be an 

important aspect of the phenomenon (LeSage 2008). 

Spatial regression is a common method to predict and quantify spatial patterns (Mitchell 

and Griffin 2021). Spatial regression methods allow one to model, explore, and investigate 

spatial relationships that in return can help explain factors that exist behind observed spatial 

patterns. As such, assessment of independent, or explanatory variables, can lend insight to rates 

of land subsidence.  

2.1.6. Geographically Weighted Regression 

Geographically weighted regression (GWR) is a local spatial statistical technique for 

exploring spatial heterogeneity or non-stationarity. GWR is powerful when relationships 

between X and Y vary by locality and thus is commonly used to predict spatial variation of a 

relationship with the dependent variable—in this case, land subsidence (Matthews and Yang 

2012).  

GWR constructs a separate OLS equation for every location within the project AOI. It 

incorporates both dependent and independent variables that fall within a searching bandwidth of 

each location. This is often termed as local regression as not all variables and their location are 

being assessed at the exact same time.  



 

 28 

GWR weighs observations in association with their proximity to what is termed i. 

Following suit with Tobler’s First Law of Geography, observations that are found closer to i 

have a stronger influence on the estimation of the parameters for that location. Equation 2 

outlines how the relationship between the dependent variable (land subsidence) and covariates 

(e.g. groundwater level) are established through homogeneity. Homogeneity in this scenario is 

defined as sharing the same relationship between the dependent variable and some, but not all, 

covariates. The ability for GWR to take into consideration different neighborhoods and how they 

change is what makes GWR fit for local regression. Here r represents each regime or regional 

regression will be performed in. For example, r = 1, 2…m (Thapa and Estoque 2012).  

 

𝑌$ =	& 	𝛽$𝑋% 	+ 	ℰ$ 
 
 

 This results in geographically weighted regression (GWR), as represented in Equation 3 and by 

which a new regression model is generated and varied at each point i. β0 (ui, vi) designates the 

coordinates of the i-th point spatially. βk (ui, vi) represents a realization of the continuous 

function at point i in space (Thapa and Estoque 2012).  

 

𝑌! 	= 	𝛽"(𝑢! , 𝑣!) +	&𝑘𝛽#	(𝑢! , 𝑣!)𝑋!# 	+ 	ℰ!  
 
 

Geographically and temporally weighted regression (GTWR) considers the temporal 

aspect of each independent variable as it influences the dependent variable through space and 

time (Ali et al. 2020; Chu et al. 2021). Geographical weighted temporal regression is an 

 

 

  Equation 2. 

Equation 3. 
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extension of GWR by which the additional dimension of time (t) is added to the already spatially 

aware regression model (Miller and Shirzaei 2015). Equation 4 shows the formulation of GTWR.  

𝑌! 	= 	𝛽"(𝑢! , 𝑣! , 𝑡!) +	&𝑘𝛽#	(𝑢! , 𝑣! , 𝑡!)𝑋!# 	+ 	ℰ!  

 

In this case, β0(ui, vi, ti) defines the intercept that now incorporates both location and time 

at i. Meanwhile, βk (ui, vi, ti) represents the estimated coefficient at each spatio-temporal 

observation (i) as it relates to variable k. As with the GWR formula, Xik, for example, will 

represent annual groundwater drawdown (or other statistically significant independent variables 

identified in the ESDA process) and Yi represent the annual groundwater drawdown and 

subsidence, respectively. In this study, k represents additional explanatory variables such as well 

depth, storativity, area, well vintage, well completion length, confining clay layer thickness, and 

lithology.  

GTWR is used to help control spatial errors and is useful in identifying areas within the 

basin where preconsolidation stresses are exceeded—something that geologic engineers and civil 

engineers alike are concerned about. The relationship between groundwater drawdown and 

subsidence via GTWR has become an accepted method for assessing elastic vs. non-elastic 

deformation (Faunt et al. 2016; Guzy and Malinowska 2020). 

 Ali et al. (2020) set time-variable Yt = (Y1,t…, Yn,t)T and Xt into a corresponding matrix of 

covariates. They go further to set an estimated coefficient matrix, βt(ui,vi), at every time period. 

Equation 5 shows the derivation of this effort.  

  

𝛽&1 (𝑢! , 𝑣!) = [𝑋&'𝑊(𝑢! , 𝑣!)𝑋&]
()	𝑋&'𝑊(𝑢! , 𝑣!)𝑌&  Equation 5. 

 

Equation 4. 
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With spatial autocorrelation a primary concern in spatial regression models, control for a 

spatial error model is likely to be needed (Chi and Zhu 2019). GWR enables researchers to 

measure and visualize variations in relationships that are unobservable in global, aspatial model, 

while also minimizing biases due to spatial errors (Fotheringham et al. 2002).  

Due to challenges associated with non-uniform hydrogeologic layers, spatial variance in 

land subsidence made the subsidence-drawdown function of Ali et al. (2020) and Chu et al 

(2018) perform poorly when assessed with OLS techniques. This is largely attributed to the 

subsidence-drawdown method being impacted by heterogeneity (Jiang et al. 2019; Sundell et al. 

2019). To overcome this, Ali et al. (2020) chose to utilize geographically weighted regression 

(GWR) to implement a linear regression model comprised of spatially varying relationships 

(Fotheringham et al. 2003). 

The benefits of GWR have recently been identified by researchers involved with land 

subsidence forecasting due to the ability to assess variable coefficients and spatial nuances 

among variables throughout the area of interest (Huang et al. 2010; Ali et al. 2020, Chu et al. 

2021). While authors have proved GWR to be a powerful tool of prediction and mapping, it has 

yet to be utilized in areas of severe groundwater depletion such as Shanghai (Sen an Xu 2011; 

Xu et al. 2016), Mexico City (Kirwan and Megonigal 2013), Bangkok (Phien-Wej et al. 2006), 

Iran (Amiraslani and Dragovich 2011), Las Vegas (Bell at al 2008; Hoffmann et al. 2001), and 

the San Joaquin Valley, CA (Faunt et al. 2016; Jeanne et al. 2019). However, and as previously 

mentioned, GWR has been successfully used in several areas of excessive groundwater 

exploitation, including the Choshui River alluvial fan (Chu et al. 2021) and in Changhua and 

Yunlin counites, Taiwan (Ali et al. 2020). 
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 As GWR does not assume relationships among variables vary across space, but rather 

identifies if there is variability across space, the technique makes it a unique and appropriate way 

to estimate geological and hydrogeological phenomena due to the non-isotropic, physical nature 

of the subsurface. The challenge with GWR is that it is not a tool for defining variables of 

influence and thus should be complemented with exploratory spatial data analysis (ESDA) 

techniques. ESDA enables one to correlate specific variables to a location while considering the 

values of the same variable within the neighborhood. Although already mentioned, this approach 

does in fact define spatial autocorrelation as ESDA goes about describing the presence (or 

absence) of spatial variation among variables (Haining et al. 1998). ESDA will allow one to 

identify the most influential variables that may then be used in the GWR process to regression on 

(Matthews and Yang 2012).  

Ali et al. (2020) utilized groundwater level observations throughout 2015 to track and 

calculate monthly groundwater level change. Building on the geoengineering concept that fine-

grained sediments tend to inelastically deform and result in land subsidence (Galloway and 

Burbey 2011), Chu et al. (2021) established reasonable estimates of land subsidence linked to 

groundwater level change from OLS regression models. This went to establish a statistical 

approach to assessing groundwater draw down and its relation to land subsidence. It should be 

noted that numerous authors had already hinted at this through observation and assessment 

among geotechnical consulting companies in practice, but few had published on this 

mathematical relationship (Chu et al. 2018; Narasimhan and Neuzil 2008; Sneed 2018; Terzaghi 

1923).  

Chu et al. (2021) built on the use of local regression technique via the use of groundwater 

level changes to predict spatial patterns of land subsidence. The work of Ali et al. (2020) and 
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Chu et al. (2021) included five hydrostratigraphic layers that are comprised of gravel, sand, and 

clay. This approach of including sediment grain size follows much of what Faunt et al (2015) has 

done with the CVHM. Aside from geological and hydrological variables, Ali et al. (2020) and 

Chu et al. (2021) also utilized land subsidence measurements from hundreds of leveling stations 

to generate land subsidence maps.  

Ali et al (2020) took the approach of regressing a two-variable linear model: measured 

land subsidence extracted from InSAR as the dependent variable and annual change in 

groundwater levels from thirty-six monitoring wells as the independent variable. They then went 

on to assess the performance of a linear model. After this, GWR was introduced to better 

understand the distribution of model coefficients. These two global and local models were 

compared yielding R2 values of 0.34 and 0.93 respectively. Ali et al. (2020) then took the 

aggregation of their variables from 2007 to 2017 temporally regress the variables. The R2 value 

yielded with a geographically temporally weighted regression model was 0.94, demonstrating 

very little improvement from the GWR models.  

Chu et al. (2021) followed the same exploratory techniques as Ali et al. (2020). The 

difference between these two studies was that Chu et al. (2021) chose to model each of the four 

aquifer layers present in the Choshui River Basin, China. Their methods did not change, as they 

developed OLS, GWR, and GTWR models for based on the presence of aquitards separating 

these four primary aquifers. The change made in aggregation to a finer, aquifer scale by Chu et 

al. (2021) showed a slight improvement on the R2 values, with an average of 0.28 for OLS, 0.97 

for both GWR and GTWR. In the end, both sets of authors concluded that without requiring a 

large and detailed hydrogeologic model, or measurements needing extensive calibration (e.g. 
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geophysical logs calibrated to drill core), spatial regression models utilizing only two variables 

offer reasonable insight into patterns of land subsidence. 

 The use variables in the form of sediment grain size, sediment type, and groundwater 

draw down established the expected relationship between predictor variables and dependent 

variable (land subsidence), but also allowed a working knowledge of the geology and 

engineering principles to help guide groundwater spatial regression modeling. This approach 

emulates Ali et al. (2020) and complements Chu et al. (2018). Chu et al. (2021) found that the 

subsidence-drawdown relationship is nonlinear.  

Since 2015 many authors have utilized Geographically weighted regression (GWR) and 

spatiotemporal techniques as a means of achieving a faster, yet highly accurate predictive model. 

This has led to a means of modeling hydrogeologic systems as they pertain to land subsidence 

(Ali et al. 2020; Hung et al. 2016; Fotheringham et al. 2015; Chu et al. 2021). Such techniques 

have yielded strong results with a root mean square error (RMSE) much lower than OLS 

methods as well as a much higher coefficient of determination. These techniques can identify 

spatial variability among explanatory variables while honoring variables’ ability to represent 

geological and engineering phenomena (Burbey 2005). 

2.2. Modeling in the San Joaquin Valley 

Modeling groundwater and land subsidence in the San Joaquin Valley has predominantly 

occur from researchers at the USGS. As mentioned throughout this chapter, the CVHM of Faunt 

et al. (2009) has been the primary instrument of prediction. The CVHM is comprised of four 

different models: the geospatial database, the texture model, the MODFLOW simulation model, 

and the numerical model.  
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The CVHM utilized a geospatial database to compile, manage, and store the large 

volumes of data for the CVHM. Much of the analysis was conducted in a GIS to generate and 

visualize outputs. However, there is another the texture model is the geologic 3D grid cell model 

that combines hydraulic properties of the subsurface with borehole drill logs, drill core, and 

geophysical tools. In truth, this has been a fully functional geologic properties model. Something 

that takes a great deal of time and effort to put together and validate. 

The next portion of the CVHM comes from MODFLOW, which is a hydrologic software 

that the USGS developed to model the flow of water over the landscape. This modelling effort 

accounts for volumes of water coming into the system (i.e. precipitation) and water leaving the 

hydrogeologic system (e.g. groundwater extraction). Much like a geologic model, MODFLOW 

inputs can take a large amount of time to collect and validate. As an example, the most recent 

model is based on water years 1962 to 2003, showing the difficult researchers and modelers have 

had in maintaining this portion of the CVHM (Faunt et al. 2015).  

 The numerical model portion of the CVHM is designed to incorporate all the outputs for 

the previous models to output predictions, including predictions of land subsidence. However, it 

goes without saying, that if one portion of the model is dated or other models’ performance are 

not to par, all of the results may be further biased.  

There have been engineering consultancies that have studied land subsidence in regions 

throughout the valley. The catch is that knowledge of their work comes by word of mouth and is 

not readily available to the public. It is for this reason that the CVHM has been the default model 

that researchers and water managers alike have turned to. However, since 2020 Stanford 

University has taken an interest in modeling land subsidence in the valley. In a publication from 

Lees et al. (2021) utilized subsidence rates and hydraulic head, or the measurement of pressure 
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above a set vertical datum, to create and validate a one-dimensional model. Their methods 

consisted of the use of subsurface groundwater flow equations for permeability and clay 

compaction equations for a small area in the Tulare Lake Subbasin. These methods are not new 

as the equations were developed by Helm (1975). In the end, Lees et al. (2021) were successful 

in simulating up to twenty-five feet of land subsidence; however, this approach is limited to 

small, survey sections.  

 Current researchers’ models take a large amount of time to collect, synthesis, and 

calibrate data inputs. At the same time, both methods have spatial or other dependencies that 

restrict a quick turnaround for land subsidence predictions. The methods explored in this study 

assess spatial regression models that are grounded in geologic and engineering principles while 

providing methods that are easy-to-update without the loss of accuracy.  
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Chapter 3 Methods 

This chapter provides an overview of the research design, including methodology, data 

descriptions, and data preparation steps. The last half of this chapter discusses the steps taken to 

implement spatial regression techniques in the form of generalized linear regression and 

geographically weighed regression. This chapter ends with an overview on how model 

performance is assessed for each spatial regression model and the accompanying results of 

coefficients, R2 values, AIC values and interpolated rasters from predicted values sourced from 

each spatial regression model.  

3.1. Research Design 

Following several key techniques from Ali et al. (2020), this study builds a spatial 

regression model to assess spatial patterns of land subsidence. To create a simple, but accurate 

regression model, ESDA is used to identify which independent variables best assist in predicting 

patterns of land subsidence in the San Joaquin Valley, CA. Ali et al. (2020) and Chu et al. (2021) 

utilized geographical weighted regression (GWR) to predict spatial patterns of land subsidence, 

while accounting for local effects in space and time, (Fotheringham et al. 2015; Huang et al. 

2010). As this study goal was to establish a more simplified but accurate model than what 

currently exists with the CVHM, the temporal aspect is focused on 2015 to 2021. This chosen 

time frame is where well records and information are the most complete and do not have the 

errors that pre-2000 data tend to exhibit.  

An annual aggregation was chosen as annual synthetic aperture radar (SAR) data are 

available from DWR within the San Joaquin Valley. These data start in 2015 and are current 

today. Having this dataset in place set the stage for the creation and testing of a productive 

spatial regression model. The final step was in this process was to compared model outputs with 
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the existing SAR data for a qualitative measurement of model accuracy. Additionally, the spatial 

regression rasters generated are subtracted from the exist SAR rasters to generate a delta map of 

differences between actual and predicted land subsidence.  

Figure 7 provides step-by-step details on the methodology and workflow followed in this 

study. This process flow diagram (PFD) gives a step-by-step look at prerequisites that were met 

before GWR was implemented. Some key takeaways come in both shape and color on the PFD. 

Green filled shapes designate the start of a process, while red filled shapes designate the end of a 

process. Any shapes that are outlined with a bold red line indicate that the current step must be 

completed before moving on to the next step in the process; in short, a decision had to be made.  

 

 

 



   

 

Fi
gu

re
 7

. S
pa

tia
l r

eg
re

ss
io

n 
pr

oc
es

s f
lo

w
 d

ia
gr

am
 (P

FD
) 



 

 39 

Yellow filled diamonds, that are also outlined in red, are decision points. This means that 

a choice must be made to generate a product. One such example is the extraction of SAR values 

from existing rasters. To further elaborate on this example, should the extracted SAR raster 

values be averaged over a certain number of cells, or should the first encountered value be used? 

Such decisions were made based on previous works with the extraction of raster values being 

conducted at the well level.  

Blue outlined shapes indicate where choices were made before further analysis may be 

done. One may note that the distribution of each variable is conducted and assessed for a normal, 

Gaussian distribution. From here all non-normal data distributions would undergo a log 

transformation. Note that there are both a decision node (outlined in red) and an action or 

function node (outlined in blue) noting choices and actions that needed to be taken in this study. 

An assessment of the data must be made and a choice to proceed or make a log transformation of 

the data must be made.  

The study’s AOI was determined based on the well data, basin prioritization and 

surrounding geophysical mountain ranges that define the San Joaquin Valley. From here, wells 

were spatially queried and identified based on be their existence within the AOI polygon. Raster 

values pertinent to depth to the Corcoran Clay, Corcoran Clay thickness, and even the subsidence 

values for each year were extracted to the well level. Issues stemming from the modifiable areal 

unit problem (MAUP) must be acknowledged. Due to the way that groundwater extraction wells 

and their accompanying data are aggregated in this research, there is no objectively recognizable 

way to reclassify these data without results being impacted. These impacts are often referred to 

as the “zoning effect” and the “size effect” (Bolstad 2016). To mitigate the negative impacts of 

MAUP, authors dealing with well data have looked to establishing neighborhoods to associated 
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well-to-well interactions through Moran’s I for Spatial and Autocorrelation (Chu et al. 2021; Ali 

et al. 2020). 

 As already emphasized for this study, the choice was made to continue a well-by-well 

association of data. This means taking the individual well back to its basic unit of measure and 

minimizing large impacts from MAUP. Well level assessment helps to avoid issues associated 

with aggregation and should coincide with local variation trends leading to the preferred method 

of areal units for assessment. While this might hint at Ecological Fallacy, the approach taken in 

this study follows previous publications and avoids dependence on any single set of aggregate-

level mapping units through incorporation of information from many different datasets (Tuson et 

al. 2020). 

 From the existing well records, the annual average groundwater levels were calculated 

and incorporated as a new data field alongside multi point extraction values. Exploratory data 

analysis was conducted to better understand the state of the data, and as previously mentioned, if 

data demonstrated a non-normal distribution, these were to be log transformed. Traditional 

statistical analyses were conducted in the form of descriptive statistics, as well as scatterplots and 

histograms.  

 As Figure 7 further outlines, exploratory spatial data analysis was conducted. And as 

previously mentioned, running a Moran’s I test was key to help identify optimal search distances 

and variance in neighborhood ranges. From here stepwise regression was conducted to identify 

key independent variables as well as to preliminarily assess how the data perform within an OLS 

model. Residual plots were generated, and linear fits were attempted.  

 Emphasis was then placed on variables that did not demonstrate multicollinearity and 

those that were determined to contribute to the regression model. From here the identified 
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independent variables were entered into the generalized linear regression (GLR) spatial statistics 

tool in ArcGIS Pro. Coefficients from this process were assessed alongside R2 and AIC values. 

Utilizing the predicted land subsidence values from MLR, IDW interpolation methods were used 

to generate a quick raster of predicted values. This will be discussed later, but it is acknowledged 

that this step may have introduced a second layer of error, but this step does follow the works of 

Chu et al. (2021) and Ali et al. (2020). The same steps were repeated for geographically 

weighted regression. Similarly, and for comparison, R2 and AIC values were recorded.  

 All model performance values were checked against Chu et al. (2018)’s results from 

subsidence modeling using SAR data. However, emphasis on spatial regression models not 

having been tested in the San Joaquin Valley is taken into consideration especially as there were 

more independent variables present in this study that came from larger datasets.  

3.2. Data Preparation 

This section will cover the selection of data for use with a spatial regression modeling, 

data formatting for processing in a spatial regression model, and execution of spatial regression 

in the form of Geographically weighted regression. 

3.2.1. Data Description 

Table 2 outlines the data used in this study and each is respectively described later in this 

section. Each dataset is available online via the USGS, CA Department of Water Resources, CA 

Sustainable Groundwater Management Act portal, and/or the California Open Data portal at no 

cost. Additionally, several datasets that are key to geology and hydrogeology studies can take on 

several forms. As an example, one dataset is defined by whether perforations are greater than or 

less than the top and base depths of the Corcoran Clay member of the Tulare Formation. As 

noted in the geologic background of the Tulare Formation, knowing if a well is pumping 
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groundwater above or below the Corcoran Clay is essential. This again defines the difference 

between a confined vs. an unconfined aquifer. However, the two key datasets are the SAR 

Annual Vertical Displacement raster data and the Annual Groundwater Well Measurement 

Stations feature class (here after referred to as the SJV Wells). These two datasets ultimately 

define the spatial and temporal points of control related to this study.
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3.2.2. Data Sources  

 Data engineering (i.e. data preparation) was a large component of this project. While this 

is not unfamiliar for those who publish and work with spatial data, it should be noted that several 

datasets in this study will be a first of their kind for the San Joaquin Valley. These data are 

derived from existing datasets available from the United States Geological Survey and the 

California Department of Water Resources. Even though each stem from publicly available data, 

that are specific to the San Joaquin Valley, CA, these data have not been brought together in a 

way that they may be used to predict land subsidence. Of special note would be those water 

production wells that are completed in the upper Tulare (unconfined aquifer) and those 

completed Lower Tulare (confined aquifer). How these two specific datasets were created is 

outlined in their respective subsection pertinent to dataset creation.  

As an additional example, some datasets are temporally aggregated. One such dataset is 

the groundwater wells themselves. This dataset contains groundwater level measurements 

through time. It contains seasonal and long-term groundwater level measurements collected by 

the CA Department of Water Resources, as well as GSAs. These data come from measurements 

that are acquired twice a year. This twice-per-year measurement is meant to capture both high 

and low values of groundwater elevations as well as seasonality in the San Joaquin Valley’s 

groundwater system. These data were used to generate an average annual groundwater level. 

Ideally, these data would be used to generate a mean monthly water level dataset, but due to the 

frequency of surveys throughout the valley, an annual mean is calculated (Ali et al. 2020). 

From here the mean annual data were used to calculate the average annual groundwater 

level change. The relationship between the independent variables and the dependent variable of 

annual land subsidence are then used to establish a spatial regression model (Ali et al. 2020; Chu 

et al. 2021).  
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Specifics around each dataset and associated variables that proliferate from them are 

outlined in the next sections. These datasets come in the form of spatially queried well locations, 

and even a designation of vertical separation between confined and unconfined portions of the 

Tulare aquifer. 

3.2.3. San Joaquin Valley Wells 

These data were the core of this study and are derived from the SJV Wells dataset 

courtesy of the California Department of Water Resources (DWR). These data came from DWR 

as a shapefile that included attribute table fields consisting of well names, well total depths, in 

feet below ground surface (bgs), and a history of water levels (bgs) from the early 1900’s to 

today.  

This dataset was spatial queried based on wells located in the San Joaquin Valley 

Boundary (AOI). Wells were spatially queried based on the AOI and were exported as a new 

feature class, thus removing all wells outside of the AOI. Furthermore, depth values that are null 

or zero were filter based on a Definition Query as such records provide no value to this study and 

represent a permitted but incomplete (i.e. not drilled) water production well. 

3.2.4. Corcoran Clay Base Depth 

 These data are a contour set of subsurface values for the base of the Corcoran Clay. This 

dataset came from the USGS and is a culmination of work from the water industry, the USGS, 

and private industry. Each of the depth measurements have been identified in drill core, 

geophysical logs, or in seismic surveys and have been used to map the extent and the depth of 

the bottom of the confining clay layer that define the confined and unconfined portions of the 

Tulare aquifer.  
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 These contour values were converted to a raster via the Topo to Raster (Spatial Analyst) 

tool in ArcGIS Pro. The output cell size was set to 100ft. All other optional tool parameters were 

set to their default. From the generated raster the Extract Multi Values to Points (Spatial Analyst) 

tool was used to extract all raster data, in this case the Corcoran Clay Base Depth, into newly 

created data fields within the San Joaquin Valley Wells feature class.  

3.2.5. Corcoran Clay Thickness 

 These data are from a raster that represents the thickness of the Corcoran Clay. This 

dataset came from the USGS. Much like the Corcoran Clay Base Depth data, this raster for clay 

thickness is comprised from work conducted in the water industry, the USGS, and private 

industry. Each of the thickness measurements have been identified in drill core, geophysical logs, 

or in seismic surveys and have been used to map the extent and the thickness that is formed 

between the top of the clay and the base of the clay define the confined and unconfined portions 

of the Tulare aquifer.  

 Also like the Corcoran Clay Base Depth data, the Extract Multi Values to Points (Spatial 

Analyst) tool was used to extract all raster data into a newly created data field within the San 

Joaquin Valley Wells feature class.  

3.2.6. Wells Completed in the Upper Tulare; Wells Completed in the Lower Tulare 

This dataset was created from a combination of spatial queries and assessment from the 

Corcoran Clay Base Depth and the San Joaquin Valley Wells datasets. While other researchers 

have implied the presence of aquitards, such as clays, can have a large impact on land 

subsidence, no San Joaquin Valley publications have attempted to separate out the upper Tulare 

and lower Tulare components of the aquifer system. This study intends to bridge this gap 

between academic publications and the actual practice of geology in the San Joaquin Valley.  
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By assessing if the top and base perforations of a well are < the Corcoran Clay base depth 

(bgs), wells were assigned to the upper Tulare. This implies that all groundwater exploitation and 

extraction was and is occurring from within the upper Tulare Formation for these wells and 

hence are part of an unconfined aquifer. A binary approach was taken to assign wells to the 

upper Tulare (“0”). These values were then assigned to a newly created data field within the SJV 

Wells Attribute Table in ArcGIS. 

The same approach was taken and if the top and base perforations are > the Corcoran 

Clay base depth (bgs); thus, the wells were assigned the lower Tulare. This implies that all 

groundwater exploitation and extraction was and is occurring from within the lower Tulare 

Formation, or a confined aquifer, for these wells. A binary approach was taken to assign wells to 

the lower Tulare (“1”). These values were then assigned to a newly created data field within the 

SJV Wells Attribute Table in ArcGIS. 

If the top and base perforations were found within both the upper and lower Tulare 

Formation, or no Corcoran Clay depth value exists, then the aquifer system is assumed to be 

unconfined where groundwater extraction is commingled between both the upper and lower 

Tulare aquifers. This also implies that there is no seal between the upper and lower aquifers and 

hence no stratigraphic differentiation is needed for such wells. 

It should be noted that each of the data in this study were created from a serious of spatial 

queries, spatial joins, average calculations, and point extraction exercises that resulted in a 

combination of data to be studied in a unique way. Each of the values combined and assessed do 

not exist in a singular USGS database nor have they previously been combined into a single 

dataset by DWR. The reason for neither agency having such a dataset could be that the depth to 

the Corcoran Clay has been maintained by one agency and the location of all water production 
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wells in the San Joaquin Valley have been maintained by a separate agency. The creation of this 

dataset is one aspect that is different from other models that do not incorporate distinct upper and 

lower stratigraphic variation within the Tulare Formation. However, Ali et al. (2020) did in fact 

separate their study into five distinct hydrostratigraphic layers, while Chu et al. (2021) assessed 

five distinct hydrostratigraphic layers. In both publications, some of these hydrostratigraphic 

layers are impacted by the presence of aquitards (i.e. thick clay layers).  

3.2.7. Annual Average Groundwater Level 

These values of groundwater measurements were added to a newly created field in the 

Wells in the San Joaquin Valley Attribute Table. These values were derived from the recorded 

measurements provided in the original source data (SJV Wells) and were calculated by summing 

the survey values for each year and dividing them by the number of surveys each well had in an 

annual timeframe. It is acknowledged that this approach is a level of aggregation that may impact 

results, but once again follows the work of Ali et al. (2020) and their aggregation as monthly 

average groundwater level.  

3.2.8. Annual Average Groundwater Level Change 

These values are part of a data field that was created in the Wells in the San Joaquin 

Valley Attribute Table. This field was created by taking the values from the annual average 

calculation and subtracting each average from one year to the next (e.g. 2016 average value – 

2015 average value). This data field may be positive, implying inflation or recharge of the 

aquifer or it may be negative, implying loss of groundwater and subsequent lowering of the 

water table. It is again acknowledged that these data contain a level of aggregation that may 

impact results, but once again follows the work of Ali et al. (2020) and their aggregation as 

monthly average groundwater level changes.  
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This data field and the Annual Average Groundwater Level are the two key data fields 

for assessing spatio-temporal patterns of land subsidence (Chu et al. 2021).  

3.2.9. Well Completion Percent Fine-grained vs. Coarse-grained Sediment 

As with the previous datasets, this dataset was turned into another Attribute Table field 

within the Wells in the San Joaquin Valley feature class. This field defines the percentage of 

fine-grained to coarse-grained material that has been recorded in completed and logged water 

production wells. Table 3 outlines the Modified Wentworth Scale that geologists use to define 

grain size of clastic rocks and sediment. This system allows one to classify sediment according to 

the size of particles (Blatt, Middleton, and Murray 1972).  

Table 3. Modified Wentworth Grain Size Scale 

 

This dataset is defined by the well-log-texture ASCII that comes from the USGS. This 

dataset contains associated depths and percentages for a lithologic model created from drill core  

throughout the San Joaquin Valley as well as geophysical resistivity logging upon the wells 

being drilled (USGS 2016). These data are added to the Wells in the San Joaquin Valley feature 

Diameter (mm) Particle Sediment Rock 
<1/256 clay 

mud claystone, mudstone, shale 

1/256 to 1/16 silt siltstone 

1/16 to 2 sand sand sandstone 

2 to 4 gravel 

gravel 
conglomerate (rounded) 

 
breccia 

(angular) 

4 to 64 pebble 

64 o 256 cobble 

>256 boulder 
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class by field calculations where values found with the range between the top perforation and the 

base perforation are averaged. This yields two new Attribute Table fields. One that contains the 

percentage of fine-grained sediments within the completed zone, as well as the average 

percentage of coarse-grained sediments within the completed zone.  

It should be noted that this dataset if complex and has a large 3D component. While the 

goal of this project is to create a quick but accurate way identify spatial patterns of land 

subsidence, it is not meant to be fully function 3D geological or lithological model. This 

approach does further introduce challenges associated with MAUP; however, previous 

researchers have been able to take depth averages to generate accurate geological models that are 

fit-for-purpose (Galloway et al. 2011; Faunt et al. 2015; Ali et al. 2020; Chu et al. 2021). The 

alternative is to build a fully function 3D model based on variogram methods which is well 

outside of the scope of this project.  

3.2.10. Well Completion Length 

This dataset is further derived from the source DWR data and is tied to the SJV Wells. 

This field that was added to the feature class Attribute Table of the SJV Wells is defined by 

taking the top perforation depth and subtracting it from the bottom perforation depth. While this 

calculated interval is in open through the entire interval, it is common practice within the fluid 

extraction industry to define a “communication interval” or completion interval based on top and 

base perforations as these perforations establish communication with the geologic formation and 

allow fluid movement from the pore space into the pumped wellbore (Fetter 2001). Where no 

such openings are present, no fluid flow or communication may occur due to cement holding the 

casing in place above and below the openings (perforations) within the subsurface. To further 
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understand this concept, the reader is encouraged to refer to Figure 4 and take note of the lines 

running perpendicular to the well casing. These are completion or communication intervals. 

3.2.11. Annual Subsidence Rate  

 Annual land subsidence, that behaves as the independent variable in the spatial regression 

model, comes from a raster mosaic dataset that may be downloaded from DWR. Via the DWR 

GIS image server, the designated time frame of this study was selected (2015-2021). This raster 

mosaic was then added to ArcGIS Pro in which the annual land subsidence rate was saved as an 

individual raster (.TIFF) for each respective year. Each of these annual rasters establishes the 

ground truth to compare the GWR results against.  

 To set the designated land subsidence value on a per well basis, the Extract Values to 

Points (Spatial Analyst) Geoprocessing tool was utilized in ArcGIS Pro. This process was 

repeated for each annual raster within the designated time frame of this study (2015-2021). This 

process was used to generate a pointset of wells with both groundwater level depths (bgs) and 

associated land subsidence from the SAR raster within the respective year.  

3.2.12. Table of Variables 

 All datasets and associated layers listed in Table 4 are available from the starting year 

listed in the table and are current through the end of 2022 when this research was conducted, and 

this study was written. 

Table 4      All datasets and associated layers listed in Table 4 are available from the starting year 

listed in the table and are current through the end of 2022 when this research was conducted, and 

this study was written. Table 4 outlines each independent variable used for viability in assessing 

spatial patterns of land subsidence in this study. As already established, these variables stem 
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from previous research, as well as professional geological experience. Each predictor variable 

holds a level of importance, but not all have been assessed together.  

 All datasets and associated layers listed in Table 4 are available from the starting year 

listed in the table and are current through the end of 2022 when this research was conducted, and 

this study was written. 

Table 4. Ten independent variables used to assess land subsidence 

Dataset Variable Originated From Source Starting 
Year 

Well Completion 
Reports 

Well depth Well shapefile DWR 

1906 
Groundwater depth Well shapefile DWR 
Annual average water level 
change*+ Well shapefile DWR 

Length of well completion+ Well shapefile DWR 

Corcoran Clay 
Layers 

Upper Tulare well completion+ Corcoran Clay layers USGS 

2009 
Lower Tulare well completion+ Corcoran Clay layers USGS 
Corcoran Clay thickness Corcoran Clay layers USGS 
Corcoran Clay depth Corcoran Clay layers USGS 

Percent Coarse-to-
Fine Grained 

Sediment 

% fine-grained material Well log ASCII USGS 
2009 

% coarse-grained material* Well log ASCII USGS 

SAR Mosaic Annual subsidence rate SAR rasters DWR 2014 
+ notates calculated value 
* notates multicollinearity present 

 

  

3.3. Exploratory Data Analysis (EDA) 

Simple analyses were conducted to assess the state of the data and associated datasets. 

This includes the generation of histograms to assess statistical distributions of the data. The 

basics of exploratory data analyses to define normality of the datasets, residual diagnoses, Q-Q 

plots, Additionally, Kolmogorov-Smirnov tests (K-S Test) was conducted to test for normality 

alongside the Jarque-Bera test. Values found to be close to zero fit a normal distribution (or close 

to one). Any value not found close to zero demonstrates a non-normal distribution of skewness in 
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the data. This was conducted in R with the use of the “tseries” library and the “jarque.bera.test” 

function (Cromwell et al. 1994). Similarly, when assessing spatial regression at a global scale 

ArcGIS Pro was used to yield another run of the Jarque-Bera statistic. More on this can be found 

in the spatial regression section of this chapter. Datasets that were found to not be normally 

distributed were to undergo a log transformation. This then allows data to be analyzed using 

Original Least Squares (OLS) when it comes to the next step involving exploratory spatial data 

analysis (ESDA) (Chi and Zhu 2019).  

Scatter plots were also generated to establish relationships such as total depth (TD) of 

water producers to surveyed groundwater depth. Additionally, groundwater depth to land 

subsidence were also plotted in scatterplot form. This approach brought the aspect of traditional 

statistics into the analyses. While these tend to be aspatial, each scatterplot and histogram was 

used to define strong and weak linear relationships between and among variables. It may also be 

noted that while such approaches are commonplace among GIS practitioners, as well as among 

geologists and engineers, there are no known publications that should the strength of linear 

relationships among such variables in the San Joaquin Valley; thus, the generation of a scatter 

plot matrix brought great insight about each explanatory variable as it association with land 

subsidence in the San Joaquin Valley.  

For each dataset, descriptive statistics such as mean, median, minimum, and maximum 

values were generated and assessed. The generation of descriptive statistics allowed further 

assessment of each variable’s group of prosperities (Frost 2020). 

3.4. Exploratory Spatial Data Analysis (ESDA) 

The next steps were to perform ESDA to examine the spatial distribution of each 

variable. This included looking for global and local outliers, finding global and local trends, and 
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the examination of local variation as it coincides with spatial autocorrelation. Keeping in mind 

that this step in the process was to focus on multivariate datasets, it was also designed to 

establish both the neighborhoods of the individual wells and to determine the effective global 

and local search radius for each neighborhood (Griffith 1987). 

The establishment of the neighborhoods is based on conducting a Moran’s I Test. This 

was done using the “ape” library in R (Bivand et al. 2013). From here, the neighborhoods could 

be established as could the spatial weights matrix to help to correct for over-parameterization. 

This process allows explanatory variables to be dropped to then focus on the dependence 

relations that exist among observations and the variable Yi (i.e. land subsidence) (Chi and Zhu 

2019).  

3.5. Multiple Linear Regression 

Multiple linear regression (MLR) using OLS is often used to assess relationships between 

two or more variables, making it a candidate for assessing prediction functionality of continuous 

variables such as of land subsidence. MLR generates a model of variables to assist in 

understanding and quantifying variable relationships (Mitchell and Griffin 2021). It was with the 

ability to predict and quantifying multiple variables on a global level that MLR was used to 

assess patterns of land subsidence.  

MLR, as with many forms of linear regression, can yield many statistics that help in 

assessing variables’ relationships with each other. Each step, function, and statistical test 

outlined here was repeated for each annual dataset from 2015 to 2021. The Breusch-Pagan test 

was used for assessing existence of homoscedasticity (or heteroscedasticity) in the data. That is 

the assessment of non-constant standard deviations among independent variables. This too was 

initially conducted in R via the “lm” function alongside the “bptest” function (Breusch and 
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Pagan 1979). As with the normality test, the test of heteroscedasticity was again assessed in 

ArcGIS Pro via the use of the General Linear Regression Geoprocessing tool via the Koenker 

(BP) Statistic. These statistical tests were conducted in both ArcGIS Pro and in R as the initial 

runs in R were to assess variables as part of the EDA process.  

Residuals were assessed for spatial biases in the form of errors and spatial lag via the use 

of the “spatialreg” library in R (Bivand et al. 2021). This step helps to build a relation between 

the response variable within an areal unit (i.e. the well location) that consists of a weighted 

average of the response variables at neighborhood areal units (Anselin 1988).  

This exercise yields Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) comparisons of the models and explanatory variables. The variables that are the 

most impactful, based on AIC and BIC results, were assessed and low performing explanatory 

variables were removed from consideration in the spatial regression model. The explanatory 

variables that were strong performs and helped to keep a low AIC were retained for use in global 

and local spatial regression models. Variables that were retained after assessment of the AIC 

values included total well depth, top perforation depth, well completion length, upper vs. lower 

Tulare completions, annual groundwater level, change in groundwater level, percent fine-grained 

material, percent-coarse grained material, Corcoran Clay thickness, depth to Corcoran Clay. 

Such results suggested that base perforation depth remain out of the spatial analyses for better 

model performance.  

The Generalized Linear Regression (in the Spatial Statistics toolset) Tool was utilized in 

ArcGIS Pro. This tool can be used to assess continuous data relationships between two or more 

data attributes. Generalized Linear Regression (GLR) tool tends to take on the form of OLS 

when normally distributed, continuous datasets are assessed (Esri 2022). It must be noted that 
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GLR is inherently an aspatial regression tool as it takes on the form of a global regression model 

(Nelder and Wedderburn 1972). Additionally, GLR in the Esri toolbox is different from GLM in 

traditional statistics. For this study, GLR was used as it is an ArcGIS Pro tool that behaves like 

OLS despite the confusion in Esri’s choice to name the tool in the contrary. 

The explanatory variables that did not demonstrate multicollinearity were entered as the 

explanatory variables for MLR. Of course, subsidence was the dependent variable. In ArcGIS 

Pro, MLR is powerful in that it simultaneously produces measures of model performance 

(AICC), measure of goodness of fit (R2), overall model statistical significance (Joint F-Statistic 

and Joint Wald Statistic as well as the Koenker (BP) statistic), and indicators of normality for 

residuals (Jarque-Bera statistic). Each of these was recorded for comparison with the local 

regression model. 

Along with the above statistical measures, features classes of the residuals and 

standardized residuals were produced. These were subsequently mapped in ArcGIS Pro and 

assessed alongside model performance diagnostics.  

3.6. Geographically Weighted Regression 

The annual GWR models created in this study were generated in ArcGIS Pro. The inputs 

for the model included all explanatory variables that demonstrated no multicollinearity in the 

ESDA stage. The annual groundwater change was to be expected to one of the explanatory 

variables based on results from previous studies, albeit at a different location on the globe (Chu 

et al. 2018; Ali et al. 2020; Chu et al. 2021).  

Within ArcGIS Pro, three different regression models may be considered. For this study 

Continuous (Gaussian) Model Type was chosen. This model type is effective when taking into 

consideration a range of values such as depth to groundwater level or even well total depth. As 
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determined by the name, the data used in this model type need to be normally distributed and 

data belong to a continuous data type (Mitchell and Griffin 2021).  

Using the Moran’s I Test results, the Neighborhood Type input was set to “Distance 

Band”. As the effective distance for each neighborhood has been determined through ESDA 

efforts, this justified the use of “Distance Band” when establishing the GWR model 

Finally, the local weighting scheme was set to Gaussian as it assigns a weight of one to 

the regression feature and the surrounding neighbors, i and j respectively (see Equation 4 from 

the previous sections within Chapter 3 for a quick refresher as to why this is established in this 

manner) (Fotheringham et al. 2022).  

This same process was conducted for the designated timeframe of this study (2015-2021). 

The most influential variables were be maintained, and all parameters were kept consistent for 

every annual dataset.  

The report output for GWR in ArcGIS Pro yields model diagnostics comparable to OLS. 

These include model diagnostics pertinent to measures of model performance (AICC), measure 

of goodness of fit (R2), Sigma-Squared, Sigma-Squared MLE, and effective degrees of freedom. 

Each of these was recorded for comparison with the global regression model. Of note, each of 

the GWR results in the form of AIC, R2, and adjusted R2 are averaged as there are numerous 

results for the study area.  

3.7. Model Comparison  

After having constructed global and local regression models for predicting land 

subsidence, the performance of each model was assessed for accuracy. Each global regression 

model’s AICC value was compared to each local regression AICC. The same was done for each 

model’s coefficient of determination (R2 and adjusted R2). This was done in a simple table 
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comparison of values but was also assessed through the mapping of each global regression 

model’s R2 values and residuals as well as each local regression model’s R2 values and residuals. 

It is thought that strong performing models for predicting land subsidence will agree with Chu et 

al. (2018)’s results of R2 values greater than 0.3 and generally no greater than 0.94.  

An additional step included using the predicted land subsidence values from the GWR 

results, as well as the predicted land subsidence values from the MLR model results to run 

interpolation of predicted land subsidence values with the use of Inverse Distance Weighting 

(IDW). IDW is an accepted interpolation method for temporally based groundwater drawdown 

mapping (Fetter 2001; Galloway and Burbey 2011; Ali et al. 2020; Chu et al. 2021). However, 

there is an opportunity to improve upon this interpolation method for land subsidence results. 

Unfortunately, such a study is not in the scope of this research so the accepted method of IDW 

was used. The parameters that were used for IDW mapping of subsidence include a smoothing 

factor or 0.5, and output cell size of 100m (328 ft). Again, this emulates the work of Chu et al. 

(2021), but it is also noted that this visual comparison has likely introduced a second layer of 

error into the assessment of model performance. After this simple raster math subtraction was 

conducted between the original SAR datasets and the global regression model predictions. The 

same was done between the original SAR datasets and the local regression model predictions. 

The resulting delta rasters were then taken back to EDA through the generation of a histogram of 

the delta values. This allows a good assessment of the summary statistics while also showing 

how these data are distributed and if there is an acceptable range of error which is +/- 0.02 ft as 

established by Chu et al. (2018).  

While this study is not about interpolation methods, the thought was that following Chu 

et al. (2021) and Ali et al. (2020) in the use of IDW would in fact yield a raster that can be 
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visibly compared to the annual SAR data. This visual comparison is to “see” the impacts of the 

values predicted alongside the quantitative regression diagnostics model performance indicators. 
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Chapter 4 Results 

This chapter outlines patterns identified in geographically weighted regression (GWR) and 

statistical diagnostics of GWR spatial regression models. GWR accurately models land 

subsidence patterns based on key geological and engineering-based variables. GWR performs 

better than OLS models. Global regression techniques, such as OLS and spatially lagged models, 

were not as effective in assessing land subsidence patterns in the San Joaquin Valley. While such 

models have been successful at a global scale, such are not as impactful as local regression 

models like GWR. GWR further shows that proper predictor variables can have the greatest, 

positive impact when assessing land subsidence patterns.  

4.1. Exploratory Data Analysis Distributions and Trends 

 The frequency curve of each predictor variable was assessed for similar values, with 

some being higher and some lower, for a normal distribution of the classic symmetrical bell 

curve. With this effort, values associated with each variable were determined to cluster around 

the center of the curve. This implies whether each predictor variable was normally distributed or 

not. Figure 8 shows distributions of variables associated with the 2017 dataset. 
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 Assessing each distribution of both explanatory variables and the predictor variable (land 

subsidence), led to the use of the Jarque-Bera test to test the normality. Recall that for p-values 

of the test > 0.05 implies a normal distribution of the data. Similarly, a p-value of the test < 0.05 

implies data with a distribution that is not normal. 

Table 5 outlines the Jarque-Bera test p-values and implied level of statistical significance for the 

2017 dataset.  

Table 5. The Jarque-Bera test results for candidate variables 

Dataset P-value 
Land Subsidence 0.7254 
% Fine-grained Material 0.1941 
% Coarse-grained Material 0.6681 
Well Completion Length 0.382 
Top Perforation Depth 0.5661 
Base Perforation Depth 0.8378 
Well Total Depth 0.8375 
2017 Groundwater Level 0.4921 
Groundwater Level Change 0.1832 
Upper vs. Lower Tulare 0.6922 
Depth to Corcoran Clay 0.8847 
Corcoran Clay Thickness 0.06922 

 

 Such an aspatial assessment of these data show no statistically significant variable is 

present. Therefore, the model residuals were normally distributed or significantly biased. This 

also implies no data transformation is required among the associated variables (i.e. there is no 

need for a log transformation). For the 2017 dataset, as shown in Table 5 and exhibited in Figure 

8, the Corcoran Clay Thickness comes close to being statistically significant. This makes sense 

due to the variability in thickness of this aquitard throughout the San Joaquin Valley. Several 

other geological factors, that show spatial patterns of their own, may also influence this variable 
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as outline in Chapter 3 (e.g. erosion and non-deposition). However, this variable remains 

normally distributed with no need for a data transformation. Except for these two variables, all 

explanatory and dependent variables are normally distributed with p-values > 0.05. The average 

of p-values for all variables from 2015 to 2021 is 0.474 further demonstrating a normal 

distribution of each variables’ underlying values.  

 When assessing spatial regression models, the dependent variable, in this study land 

subsidence, also needs to be of a Gaussian distribution. Such a distribution is best when 

modeling spatial phenomena and patterns at global (OLS) and local (GWR) scales. Figure 9 is a 

histogram of the subsidence variable from the 2017 dataset that displays a normal distribution. 

 

 

Figure 9. Histogram of land subsidence from 2017 
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 When displayed in a scatter plot matrix, the linear relationship among each combination 

of both dependent and independent variables is exhibited. Complementing Table 5, Figure 10 

outlines the R2 values of each variable comparison in blue boxes on the upper right half of the 

figure. R2 are posted inside these blue boxes. One may note how well total depth and well 

completion length have a high R2 value (0.59). Yet land subsidence (this study’s dependent 

variable) and well total depth (an independent variable of this study) have a low coefficient of 

determination (0.19) showing a large variance between these two variables.  

 Among the scatterplots in Figure 10, it is easy to identify that there is not a direct and 

single linear fit that can easily represent all the variables, as a two-way combination, at a global 

scale. However, it may be noted that all of the best-fit trends appear to be positive, and no 

variable combinations exhibit a negative relationship.  

 Of the histograms, most notably are those associated with the depth to the Corcoran Clay, 

the upper vs. lower Tulare, and the Corcoran Clay thickness variables. Both histograms 

associated with the Corcoran Clay appear to exhibit bimodal distributions. However, and as 

previously mentioned, traditional statistics have shown that the Corcoran Clay thickness is not 

statistically significant. And even though the upper vs. lower Tulare variable operates as a 

categorical dataset, it still exhibits a normal distribution.  

 The coefficients of determination, or R2, that are in the blue shaded boxes Figure 10 show 

the strength of relationships for two-way variable combinations. As previously mentioned, there 

are variables that demonstrate a good correlation when combined, but there are also variables 

that demonstrate very weak measurements of variance for the dependent variable as it is 

explained by the independent variable. A good example of this is the R2 value of 0 between the 
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depth to the Corcoran Clay and the total well depth. In short, neither of these variables can be 

used to predict the other.  

 Keeping these relations and distributions in mind, the next few sections will outline how 

these variables are spatially distributed and how these explanatory variables are used to predict 

patterns of land subsidence.  
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4.2. Local Cluster and Outlier Trends 

 Table 6 shows results from the Moran’s I for spatial autocorrelation and the resulting 

search distances for the overall clustering of groundwater wells. Keep in mind that the search 

distances yielded through this process were utilized for each annual dataset when GWR was 

assessed. The incremental z-score graph yielded the values found in Table 6 for suggested search 

distances. 

Table 6. Moran's I suggested search band distances 

Year Search Distance (ft) 
2015 27004.2384 
2016 27004.2384 
2017 38670.74796 
2018 27004.2384 
2019 33994.90988 
2020 84566.24516 
2021 84564.56668 

 

With these search distances, a larger cluster of high subsidence values were identified by 

the Anselin Local Moran’s I statistic for almost all wells located on the west side of the San 

Joaquin Valley in 2017. These values are displayed in light red in Figure 11 and are likely 

associated with high values of aquifer recharge and inflation. However, a rim of low-high 

outliers is present around this region, which likely signifies groundwater extraction wells 

associated with agricultural crop irrigation. The light blue values indicate low-low clusters by 

which there is a low clustering of wells exhibiting small amounts of subsidence. Grey values to 

the northwest of Merced and to the west of Modesto are well locations that had no statistically 

significant land subsidence or inflation in 2017. 
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Figure 11. Map of land subsidence clusters and outliers, 2017 

 

 High-high clusters made up 32% of the subsidence clusters (912 out of 2,815) for the 

2017 dataset. Meanwhile, low-low clusters made up 44% of the subsidence clusters (1,246 of 

2,815) for the 2017 dataset. 16% of the subsidence clusters were found to not be statistically 

significant (444 of 2,815) for the 2017 dataset.  

 As Figure 11 indicates, there are small amounts of high-low and low-high outliers found 

throughout the valley. Only 1% of all the well locations were outliers with high values 

surrounded by low values (15 out of 2,815). Most of these low-high outliers are found in the 

southern portion of the valley and are mostly west of Bakersfield. In assessing these locations, it 

may be noted that these values are not related to oil or gas extraction which that region is known 
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for. Rather, like the rest of the data in this study, are related to high volumes of groundwater 

extraction for crop irrigation that led to higher rates of subsidence in 2017. The remaining high-

low outliers were previously identified in areas showing inflation due to aquifer recharge. High-

low values accounted for 7% of the clusters and outliers from the 2017 dataset (198 out of 

2,815). Figure 12 explores the breakdown of outliers and clusters further. This Moran’s 

scatterplot further demonstrates the clustering of high-high values as one would expect to see 

what looking at localization of land subsidence due to groundwater extraction in an agriculturally 

rich valley.  

 

Figure 12. Moran's scatterplot of land subsidence values, 2017 

 

 Figure 12 further illustrates the point that neighboring water wells exist in areas of 

similarly high or low rates of land subsidence. One may note that the low-low both figures 

demonstrate clusters of subsidence throughout the San Joaquin Valley. One must further keep in 
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mind that low values indicate rates of elevation drop or subsidence. Something that would be 

expected in large portions of the valley. Such low-low clustering that is observed does in fact 

show subsidence occurring throughout the study area. The next question is at what level of 

variability exists among these subsidence clusters?   

 Visual spatial patterns of land subsidence trends and relationships are explored in a more 

quantitative way among the previously outlined global regression analyses. Further refining of 

such spatial pattern may be found in the next section pertaining to local regression analyses.  

4.3. Global Relationship Trends  

 Global regression was assessed without the inclusion of spatially lagged explanatory 

variables. This was done through OLS and through the creation of a single, global model of each 

variable being used to predict land subsidence. The OLS for 2017 explanatory variables yielded 

a single variable that is not considered to be a statistically significant variable. That variable was 

associate with groundwater level change in 2017 that has a p-value of 0.3095. All the other nine 

explanatory variables were found to be statistically significant. Table 7 presents summary results 

for each explanatory variable and its measure of strength when regressed with land subsidence. 

Table 7 is a more in-depth version of Figure 10 that shows other simple regression statistics. 

Table 7. Summary of two-variable regression results, 2017 

Variable P-Value R2 Adj R2 Std. Error t-Statistic f-Statistic 
Groundwater 
Level Change 0.3095 0.0003 9.61E-06 0.12842 1.016 1.033 

Groundwater 
Level 2017 2.348E-06 0.006457 0.006168 17.494 4.729 22.6 

% Fine Grain 
Sediment 2.2E-16 0.0601 0.05983 1.6924 14.82 219.6 

% Coarse Grain 
Sediment 2.2E-16 0.061 0.05983 1.6924 -14.82 219.6 

Completion 
Length 2.2E-16 0.1286 0.1284 34.62 22.54 508 
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Top Perforation 
Depth 2.2E-16 0.1757 0.1755 30.771 48.18 733.7 

Base Perforation 
Depth 2.2E-16 0.1832 0.1829 58.094 27.78 771.6 

Well Total Depth 2.2E-16 0.2009 0.2007 65.11 29.41 865.2 
Upper vs Lower 
Tulare 2.2E-16 0.04851 0.04823 0.054602 13.14 172.8 

Corcoran Clay 
Thickness 0.4484 0.0002043 -

0.0001511 0.5233 75.943 0.5749 

Depth to Top 
Corcoran Clay 2.2E-16 0.3469 0.3467 3.894 99.97 1494 

 

 As Table 7 shows, the t-statistic yields a significant change in magnitude, mostly in the 

positive direction, but with one variable, percent coarse-grained material in the negative 

direction. The t-values are significant as each variable’s absolute value is higher than 1.96 (|t| ≥ 

1.96).  

 Table 7 goes on to show that f-statistics associated with each variable tend to be large, 

again apart from the groundwater level change variable. One must keep in mind that the larger 

the number, the larger the dispersion of data from the mean. The variables top perforation depth, 

base perforation depth, and total well depth display the largest ration of variance, or dispersion, 

than any of the other variables.  

 The recorded standard errors show large values (> 0.9). The variables that are an 

exception to large standard error include all values related to well depths (e.g. top perforation 

depth, base perforation depth, and total well depth) and groundwater level depths for 2017. It 

should be noted that that once again the variable associated with groundwater level change has a 

lower standard error.  

 Finally, R2 values, as well as the adjusted R2 values, were relatively low for each variable 

in the OLS model. The highest recorded R2 value was 0.2009 in the 2017 dataset. This estimate 

of movement between dependent and independent variable was associated with total well depth. 
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Figure 13 exhibits plotted values as they pertain to residuals vs fitted, Normal Q-Q plot, and 

standardized residuals. One may note the deviation from a linear fit on all three graphs. 
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The residuals vs. fitted values plot shows no direct linear correlation among variables. 

Assessing the spread of the data on the plot shows that there is some homoscedasticity for 

residuals from 0.0 to 0.2. These also follow what starts as a linear trend for the matching fitted 

values from -0.2 to -0.1. From there, these data exhibit high levels of heteroscedasticity further 

implying a non-linear model at the global scale. This is further emphasized with the red best-fit 

line being non-linear.  

The normal Q-Q plot are assessing a possible normal distribution of the standardized 

residuals over the theoretical quantiles. As values on this plot in the lower left do not show sets 

of quantiles aligning with the dashed best-fit line, it may be said that these quantiles do not come 

from the same distribution—namely, they do not come from a normal distribution at least when 

assessed at the global scale. There is a short time in which the quantiles do follow a linear trend. 

This is noted on the x-axis between -1 to ~1 where the compared quantiles plot on the dashed 

linear fit line. It also appears that around 95% of the data lie below 2.80.   

 When assessing the standardized residual vs fitted values plot, the measure of the strength 

of the difference between observed and expected values of a linear model is shown. In this case, 

much like with the residuals vs. fitted values, there is no linear relationship exhibited. In fact, the 

standardized residuals show a large separation between the linear model’s observed and expected 

values. Once again, this demonstrates that a large, global model may not be the best approach to 

prediction land subsidence.  

4.3.1. Multiple Linear Regression (MLR) 

 Global linear regression was further assessed via the use of Generalized Liner Regression 

(GLR) in ArcGIS Pro. One must keep in mind that MLR is intended to model the dependent 

variable based on a grouping of independent or explanatory variables (Mitchell and Griffin 

2021). While this approach follows an attempt to fit a continuous model (OLS), it considers all 
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explanatory variables in a single snapshot as opposed to unique, individual variable comparisons 

(i.e. lone explanatory variable compared to dependent variable). Figure 14 exhibits the 

standardized regression residuals of MLR for the 2017 dataset. Note that the dark red values 

signify higher negative values from the standard deviation, while the darker blue signifies higher 

positive values from the standard deviation. Figure 14 further emphasizes where large error 

residuals reside. In the case of both maps, west of Lemoore and south of Merced tend to have 

largest residual errors. 

 

Figure 14. Map of 2017 MLR residuals and standardized residuals 

 A summary of OLS diagnostics results for 2017 is provided in Table 8. This table 

includes the coefficient, robust SE, robust t, robust Pr, and variance inflation factor (VIF). As 

previously mentioned, a VIF >5.0 indicates multicollinearity. For this reason, the annual 

groundwater change variable was removed from the analysis as all but one year demonstrated 
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multicollinearity with the dependent variable of land subsidence. OLS diagnostic results for all 

years (2015-2021) may be found in Table 8.  

Table 8. Summary of OLS diagnostics, 2017 

Variable Coefficient Robust SE Robust t Robust Pr VIF 
2017 Intercept -0.160512 0.010603 -15.138003 0.000000* -------- 
Total Well Depth 0.000024 0.000007 3.584269 0.000358* 3.726871 
Well Completion Length 0.000022 0.000011 2.033164 0.042121* 2.557095 
2017 Groundwater Level -0.000156 0.000015 -10.254633 0.000000* 1.355889 
Depth to Corcoran Clay 0.001209 0.000152 7.967612 0.000000* 1.093304 
Corcoran Clay Thickness 0.000375 0.000013 29.571774 0.000000* 1.664723 
% Fine Grain Material -0.000626 0.000077 -8.096861 0.000000* 1.152584 
Up vs. Lower Tulare 0.021195 0.006339 3.343754 0.000854* 2.179722 

 

As VIF is mentioned here, it should be noted that when the independent variables were 

entered into the GWR Geoprocessing tool in ArcGIS Pro, a multicollinearity error was thrown. 

Assessing each variable individually in the GWR tool, allowed groundwater level change, top 

perforation depth, and percent coarse-grained sediment to be identified as exhibiting 

multicollinearity. This was particularly interesting as all VIF measurements had up to this point 

had no indication of multicollinearity., and as is only identified with the annual groundwater 

change variable. The choice was made to move forward with the remaining explanatory variables 

of well completion length, annual groundwater level, percent fine-grained sediment, depth to 

Corcoran Clay, Corcoran Clay thickness, and upper vs. lower Tulare aquifer completion, each is 

reflected in the results that follow. 

Closely tied to the VIF in Table 8, are the joint F-statistic, joint Wald statistic, Koenker 

(BP) statistic, and Jarque-Bera statistic. Table 9 exhibits each of these statistical results that 

pertain to OLS model diagnostics. The Jarque-Bera statistic have previously been addressed to 

assess multicollinearity among variables and assessment of normal vs. non-normal distributions. 
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Most notably are the degrees of freedom and the numbers of observations for each OLS 

assessment. As previously mentioned, the error degrees of freedom are independent pieces of 

information that are used in estimating coefficients. For precise coefficient estimates, especially 

in regression testing, one should have many degrees of freedom as to have more observations for 

each model term. This is desired in any regression model and allows for more availability to 

calculate the desired coefficients. Each year analyzed demonstrates large degrees of freedom and 

should have resulted in a valid calculation of coefficients. Again, note how the degrees of 

freedom in Table 9 greatly exceed the number of observations. 

Table 9. Summary of OLS Results for all annual datasets 

Year 
Number of 

Observations 
Degrees of 
Freedom 

Joint F-
Statistic 

Joint Wald 
Statistic 

Koenker 
(BP) Statistic 

Jarque-Bera 
Statistic 

2015 2820 72812 122.841 1153.328 147.439 3797.019 
2016 3286 73278 161.800 1171.711 183.536 5445.731 
2017 2768 82759 260.612 2033.425 132.651 434.332 
2018 3096 83087 72.035 641.122 125.710 13690.234 

  2019 1771 81762 18.876 166.498 106.255 2787.450 
2020 1517 71509 124.501 448.850 219.968 1735.485 
2021 1552 71544 167.955 682.999 199.268 1765.461 

       
 

 The joint Wald statistic for each year is well above zero and implies that the variables 

used in the MLR model are valid and should be included in the model. 2019 shows up as having 

the lowest joint Wald statistic (166.4987), but even with this value, it implies that all variables 

should remain in the model to assist with model fit.  

The joint F-statistics for each year are valid and thus allow one to trust the Koenker (BP) 

statistic. However, as each of the F-statistic values are relatively high, each year’s group average 

is more spread out than the variability of the data within each group. Here, the differences in the 

data averages likely reflect differences that exist at the population level in the data. 
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The Koenker (BP) statistic does not yield a value that is statistically significant (<0.05) 

for any of the years assessed. This would imply that there is stationarity present in the model and 

that the independent variables vary or fluctuate throughout the study area in relation to land 

subsidence. This further alludes to the fact that a local regression model is likely to help improve 

predictions.  

 Table 10 yields the end results of MLR and exhibits the AICc values from global 

regression.  

Table 10. MLR AICc estimated prediction error values 

Year AICc 

2015 -1616.5047 
2016 -2337.7899 
2017 -3802.4281 
2018 -4387.8372 
2019 -4455.4981 
2020 -2437.5007 
2021 -1894.7676 

 

 AICc values from the MLR annual models estimates the quality of each model, relative 

to each of the other model’s results. Here it may be noted that the 2018 and 2019 models contain 

the lowest error and hence are the better of the seven models created through the MLR process 

for each annual dataset. These values are compared to the GWR results over the next couple of 

sections, but a direct AICc comparison is made in section 4.5.  

4.4. Geographically Weighted Regression and Patterns of Land Subsidence 

 Local regression in the form of GWR included all previous independent variables 

assessed with MLR. With GWR, all measured values performed better than in the global 

regression model. From the previous section one may recall that the R2 value for the 2017 dataset 
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was 0.430417 (adjust R2 of 0.428766). The MLR model had an AICC of -3802.42091. As 

opposed to the GWR model that yielded an R2 value of 0.8384 and an AICC of -6913.942 for the 

2017 dataset. The negative AICC indicates a lower degree of information loss as opposed to a 

positive AICC (Baguley 2012). Table 11 exhibits GWR model diagnostics for each annual 

dataset (2015-2021).  

Table 11. GWR model performance diagnostics by year 

2015  2016 
R2 0.9044  R2 0.8956 
AdjR2 0.8871  AdjR2 0.8773 
AICC -6765.8909  AICC -7128.8269 
Sigma-Squared 0.0048  Sigma-Squared 0.0047 
Sigma-Squared MLE 0.0041  Sigma-Squared MLE 0.004 
Effective Degrees of 
Freedom 2388.0913 

 

Effective Degrees of 
Freedom 2499.3111 

     
2017  2018 

R2 0.8384  R2 0.9106 
AdjR2 0.8227  AdjR2 0.8954 
AICC -6913.942  AICC -10594.457 
Sigma-Squared 0.0046  Sigma-Squared 0.0017 
Sigma-Squared MLE 0.0042  Sigma-Squared MLE 0.0015 
Effective Degrees of 
Freedom 2521.6353 

 
Effective Degrees of 
Freedom 2646.2194 

     
2019  2020 

R2 0.8439  R2 0.8033 
AdjR2 0.814  AdjR2 0.7917 
AICC -8208.716  AICC -4096.7792 
Sigma-Squared 0.0008  Sigma-Squared 0.0038 
Sigma-Squared MLE 0.0007  Sigma-Squared MLE 0.0036 
Effective Degrees of 
Freedom 1667.2951 

 
Effective Degrees of 
Freedom 1432.5391 

     
2021    

R2 0.7987    
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AdjR2 0.7869    
AICC -3385.6421    
Sigma-Squared 0.0064    
Sigma-Squared MLE 0.0061    
Effective Degrees of 
Freedom 1465.8185 

   
 

4.4.1.  Geographically Weighted Regression Coefficients 

Mapped coefficients for independent variables for the 2017 dataset are part of the 

capstone of GWR as such maps offer insight to the factors that contribute to the outcome of the 

dependent variable. The key here is to assess how spatially consistent the relationship between 

dependent and explanatory variables are. Mapped coefficients show the distribution of variation; 

that is, how much variation is present and where, among these variables.  

 On assessing the distribution of completion length coefficients as shown in Figure 15, 

2,122 locations exist with little variance in completion length when assessing patterns of land 

subsidence. This large clustering of locations is notably located in the Westside Subbasin. As 

previously mentioned, the majority of subsidence found int the 2017 SAR data may also be 

found in this subbasin. A large cluster of coefficients in this subbasin is not surprising and is 

likely attributed to well owner’ desire to chase dropping groundwater levels with longer 

completions along the well bore. There is a degree of variance in the Modesto area as values 

change from the southside, through central portions of Modesto, and again on the north side of 

Modesto. It is also of note that little variation in completion length occurs south of Tulare and to 

the northwest of Bakersfield; however, there is a degree of variance between the Tule Subbasin 

and the Kern County Subbasin.  
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Figure 15. GWR completion length coefficients map, 2017 

 

The Corcoran Clay thickness coefficients tend to follow spatial trends that are indicative 

of the lateral extent of the clay itself and are exhibited in Figure 16. Coefficients in the Westside 

Subbasin, west of Lemoore, contain negative coefficients implying that as the Corcoran Clay 

increases in thickness, subsidence decreases. However, one must keep in mind that negative SAR 

data tells us that there is inflation or uplift occurring in the area, so we must think the reverse of 

what regression coefficients would normally tell us. More simply stated, as the Corcoran Clay 
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decreases in thickness, land subsidence is in fact increasing. This concept fits with what Lees et 

al. (2021) discovered in their hydraulic head modeling, that is that the presence of the Corcoran 

clay does influence subsidence, but it does not mean that such a presence of fine-grained 

sediment should be ignored in unconsolidated sandy aquifers. These coefficients also align with 

Faunt et al. (2015)’s discovered that up to 30% of the overall subsidence occurs in the upper 

unconfined portion of the aquifer.  

 

Figure 16. GWR Corcoran Clay thickness coefficients map, 2017 
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 To further emphasize the importance of the Corcoran Clay, coefficients associated with 

the depth to the clay show similar clustering as the thickness of the clay. The big difference here 

is that around half of the coefficients exhibit a positive relationship so that as the depth to the 

Corcoran Clay, when it is present, increases, the amount of subsidence also increases. This is 

demonstrated in Figure 17. This positive relationship is most notable in the notorious Westside 

Subbasin. Negative coefficients exist around Modesto and even to the south and west of 

Bakersfield.  

 

Figure 17. GWR depth to Corcoran Clay coefficients map, 2017 
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 The importance of fine-grained sediment has been discussed throughout this study. 

Assessing the percentage of fine-grained sediment coefficients to land subsidence continues to 

demonstrate what the water industry and academia have discussed; that is that as the volume of 

fine-grained sediment increases, the amount of land subsidence will also increase. This is best 

shown in the Westside Subbasin where all coefficients are positive as exhibited in Figure 18. 

These coefficients change as one moves to the northeast where values between Fresno and 

Merced exhibit a negative relationship. The area around Modesto also shows negative coefficient 

values. The same can be said for Bakersfield. Some of this may be geologically related as the 

deposition of fine-grained sediments occurs in quite water, such as those of the base of the 

ancient Tulare Lake.  
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Figure 18. GWR percent fine-grained sediment coefficients map, 2017 

 

 For the groundwater level coefficients, it comes as no surprise that clustering continues in 

and around subbasins. In the Westside Subbasin, a negative relationship exists. This too is not a 

surprise as the mechanics of decreasing groundwater levels with increase the amount of land 

subsidence occurring. This again fits with the fact that groundwater drawdown is inextricably 

linked to land subsidence (Sneed 2018). Coefficient values around Modesto continue to show a 

negative relationship between groundwater level and land subsidence. This negative relationship 
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is also exhibited to the northwest of Bakersfield, but changes to a positive relationship to the 

southwest and is shown in Figure 19.  

 

Figure 19. GWR groundwater level coefficients map, 2017 

 

 One of the interesting spatial distributions of coefficients comes in the form of the upper 

vs lower Tulare well completions that is shown in Figure 20. 
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Figure 20. GWR upper vs. lower Tulare coefficients map, 2017 

 

Figure 21 takes another perspective of the upper vs. lower Tulare coefficients through a 

zoomed in look at coefficient values in the Westside Subbasin.  
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Figure 21. Distribution of upper vs lower Tulare completion coefficients on the westside 

 

These coefficients translate from showing a negative relationship to a stronger and 

stronger positive relationship moving north. This is also interesting to see as the large variance 

among variables across this region further demonstrates why GWR is a great tool to help 

optimize land subsidence predictions.  

 Finally, the well depth coefficients also exhibit an interesting spatial distribution of 

relationships as is shown in Figure 22. 
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Figure 22. GWR well depth coefficients map, 2017 

 

The majority of well depth coefficients demonstrate negative relationships. On the westside, 

among the Westside, Pleasant Valley, and Kettleman Plain Subbasins, such a relationship would 

imply that as wells increase in depth land subsidence decreases. Figure 23 is a zoomed in view 

along the westside of the study area and shows this spatial distribution of coefficients.  
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Figure 23. Distribution of well depth coefficients on the westside 

 

 It could go without saying, but this relationship is likely attributed to the water industry 

chasing the groundwater levels deeper and deeper. Without any amount of recharge occurring in 

the aquifer, largely due to drought, subsidence will continue to increase as lower groundwater 

levels are chased.  

4.4.2. Geographically Weighted Regression Coefficients of Determination 

Mapped local R2 values for each GWR model show that the largest variance in 

coefficient of determination appears along the far westside of the San Joaquin Valley. This 

would be in areas around and near Bakersfield and even further west on the Kettleman Plain 
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Subbasin. This is where the project AOI is not filled in for the project area due to Kettleman 

Hills and Kettleman Dome.  

 For the 2015 model, the lowest R2 values are located to the east of Fresno and to the 

immediate west of Bakersfield. There are several locations on the far west of the valley, such as 

in the Kettleman Plain Subbasin, where low R2 values may also be found as shown in Figure 24.  

 

Figure 24. Local R-squared GWR model value maps, 2015 
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For the 2016 model, the highest R2 values are located northwest of Lemoore and south of 

Merced and are exhibited in Figure 25. Such high values appear to be highly clustered and have 

the tendency to be > 0.70. The lowest R2 values of the 2016 GWR model are located east of 

Fresno and on the far west of the study area in the Kettleman Plain Subbasin. South and west of 

Bakersfield has a tendency for R2 values to be around 0.50. It may be noted that this area was 

also an area where 2016 SAR subsidence values showed little variance and few related values. 

 

Figure 25. Local R-squared GWR model value maps, 2016 
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For the 2017 model, the highest R2 values may be found throughout the central portion of 

the San Joaquin Valley (i.e. between Fresno and Lemoore up into Modesto). These higher values 

tend to be >0.80. One may note that there are higher values (>0.80) follow a similar trend 

southwest of Tulare as shown in Figure 26.  

 

Figure 26. Local R-squared GWR model value maps, 2017 

 

The lowest values of the 2017 model are located northwest of Bakersfield and are <0.30. 

Some lower values (<0.60 >0.50) may be found west of Lemoore and show some spatial 
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variability despite having had large, high value clusters in the previous two years’ GWR results. 

This also complements the Anselin Local Moran’s I cluster and outlier analysis from the 

previous section of this chapter. Figure 27 shows the statistical distribution of 2017 values. 

 

 

Figure 27. Histogram of GWR local R-squared values, 2017 

 

For the 2018 GWR model, the highest R2 values are located, once again, west of 

Lemoore. For the 2018 dataset, GWR R2 values are higher (>0.80) on the interior of the clustered 

datapoints near Lemoore. The highest R2 values (>0.90) appear down the central axis of the 

valley. Figure 28 shows the spatial distribution of the 2018 coefficients.  



  

 95 

 

Figure 28. Local R-squared GWR model value maps, 2018 

 

The lowest values (<0.30) of the 2018 model are located between Stockton and Modesto. 

The Bakersfield area is not exempt from local low values as that region yielded values that are 

similar to the 2017 GWR model. These values tend to be <0.60 on the southside of Bakersfield 

and <0.30 to the north.  

For the 2019 model, there were fewer data points utilized in the analysis, thus yielding a 

larger distribution of the coefficient of determination, as shown in Figure 29. The highest R2 
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values are located around Merced. Some higher values (>0.80) may be found north of Lemoore, 

but values that are <0.50 are also closely tied into the area making for a larger distribution of 

variability among R2 values for 2019. 

 

Figure 29. Histogram of GWR local R-squared values, 2019 

 

The lowest values of the 2019 model are located around the Bakersfield area. Many of 

these values echo what was previously established in prior years (e.g. 2016, 2017, and 2018). A 

new area of low values (<0.20) shows up to the southwest of Modesto in the 2019 GWR model 

as shown in Figure 30.  
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Figure 30. Local R-squared GWR model value maps, 2019 

 

For the 2020 model, the highest R2 values (>0.80) are located between Fresno and 

Lemoore as Figure 31 demonstrates. There are some relatively higher values north of Bakersfield 

and south of Tulare. One thing to note here is that there are next to no data around Tulare to the 

east and to the west. Once again, fewer data points were collected likely due to the onset of the 

COVID-19 pandemic. Groundwater levels were not collected during that time, or at least wells 
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have no records, due to the pandemic. The lowest R2 values of the 2020 model are again found 

south of Bakersfield.  

 

Figure 31. Local R-squared GWR model value maps, 2020 

 

For the 2021 model, the R2 values are very similar to the 2020 dataset and output as 

shown in Figure 32. The highest R2 values (>0.80) are again found between Fresno and Lemoore. 

The similar missing data points should be noted as with the prior year, although visually, there 

several more points around Tulare in 2021. The only other notable change appears around 
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Bakersfield; in particular, to the south, where values have improved to >0.60. The lowest 2021 

values (<0.3) have improved since 2020 from <0.20 to <0.30. These values may be found 

between Stockton and Modesto. 

 

Figure 32. Local R-squared GWR model value maps, 2021 

 

Model accuracy, based on coefficients of determination, was poorest for all years in the 

southern portion of the San Joaquin Valley, near Bakersfield. Since 2018, model accuracy was 

found to be poor along the on the northwest edge of valley just west of Modesto. The final area 
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of low model accuracy may be found near Kettlemen City. GWR model accuracy was highest 

(local R2 >.90) west of Lemoore as well as in the central region of the valley between Lemoore 

and Fresno. The central region of the valley averaged 92%, well above that of OLS at 28% for all 

years assessed. This area coincides with higher rates of subsidence, as well as lower groundwater 

level values. The existing variation among independent variables may account for the accuracy 

in the central region and even west of Lemoore. This is noted as locally weighted regression 

requires a certain amount of spatial variation in the independent variables, which may also 

explain the pattern of poor performance in areas like that of Modesto and Bakersfield. 

 This is complemented by the mapped standardized residuals shown in Figure 33. Note 

how the standardized residuals with higher standard deviations (red and dark blue) generally 

indicate that key variables are missing. However, as these data were engineered to have all 

strong performing variables, it is more likely that sudden, unexpected spatial variation has 

appeared among locations with higher standard deviations. This has likely led to the model 

incorrectly predicting the output (Esri 2022).  
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Figure 33. GWR standardized residuals, 2017 

 

4.5. Model Performance and Assessment 

As a measure of model performance, AICC values were assessed and recorded. Both 

MLR and GWR models for each year assessed yielded AICC. These, along with coefficients of 

determination, are the key assessors used in this study to gauge each model’s accuracy.  
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4.5.1.  AICC Assessment and Performance 

The AICC values are a way to determine how well a model fits the data the model came 

from (Bevans 2022). As Table 12 shows, GWR outperformed MLR by almost triple the AICC 

values year-to-year. 

Table 12. AICC performance by model and year 

Year MLR AICc GWR AICc 
2015 -1616.50466 -6765.8909 
2016 -2337.789855 -7128.8269 
2017 -3802.428091 -6913.942 
2018 -4387.837165 -10594.4572 
2019 -4455.49805 -7120.5861 
2020 -2437.500709 -4096.7792 
2021 -1894.767591 -3385.6421 

 

 While both MLR and GWR have had the same number of variables, and the exact same 

variables, it should be noted that each has been well grounded with hydrogeologic, engineering, 

and statistical knowledge and best practices.  

4.5.2. Coefficient of Determination Assessment and Performance 

Up to this point R2 values have been discussed on a one-off basis. In fact, the focus on the 

example dataset for 2017 has been to compare both OLS and GWR models. Such a comparison 

between these two models has shown a drastic increase in goodness-of-fit. To echo this once 

more, the multiple R2 value for the 2017 MLR model was 0.43417 (adjusted R-squared of 

0.428766). The R2 value of the 2017 GWR model was 0.8384 (adjusted R-squared of 0.8227). 

The improvement between the models is almost two times what it was initially. Table 13 further 

emphasizes this for each annual dataset and for each model.  
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Table 13. Comparison of coefficient of determination for MLR and GWR models 

Year MLR R2 MLR AdjR2 GWR R2 GWR AdjR2 
2015 0.234182 0.232276 0.9044 0.8871 
2016 0.25679 0.255203 0.8956 0.8773 
2017 0.430417 0.428766 0.8384 0.8227 
2018 0.157312 0.155129 0.9106 0.8954 
2019 0.078938 0.074756 0.8439 0.8154 
2020 0.366101 0.36316 0.8033 0.7917 
2021 0.432287 0.429713 0.7987 0.7869 

 

 The average R2 value for MLR is 0.27943243 (adjusted R2 of 0.27700043). The average 

GWR R2 value is 0.85641429 (adjusted R2 of 0.8395). One might note that MLR had a 

particularly difficult time fitting the data to a global linear regression model (R2 of 0.078938). 

Whereas the GWR model for 2019 had the fourth highest local R2 value (0.8439).  

4.5.3. Visual Comparison of Model Results 

 This next section goes back to the SAR data provided by the DWR and takes a look at the 

actual and predicted values in raster form. As previously outline, this approach is done knowing 

that there are other layers of complexity and error that may be introduced by adding interpolation 

of the predicted values to the outputs of this study. As also outlined in the methodology, values 

that were deemed to be “good” or “sufficient” (i.e. R2 >0.60) were used to generated 

interpolation products. Figure 34 displays the IDW interpolation of land subsidence from 2017 

GWR predicted values.  
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Figure 34. IDW interpolation from GWR predictions, 2017 

 

 Figure 34 also displays the overall count for each local R2 value in the legend. That count 

may be found in parentheses. For the 2017 dataset, only 5 points (<1%) had an R2 value < 0.20. 

Notably, 88% of the total count of R2 values are >0.60. Based on the accompany R2 values, there 

appears to be good data coverage throughout the San Joaquin Valley. Enough that perhaps, one 

might feel confident in the small number of lower R2 values that are scattered throughout the 

valley.  

 In Figure 35, the predicted and interpolated output is put next to the original 2017 SAR 

data that the dependent variable was initially derived from. The left map in Figure 35 is from the 

2017 GWR model of which the model’s predicted values have been interpolated from the IDW 
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algorithm. The map on the right is of the original 2017 SAR raster dataset of which the land 

subsidence (dependent variable) was derived from. All SAR maps of land subsidence may be 

found in Appendix E – Original SAR Land Subsidence Maps. Interpolated GWR predicted land 

subsidence maps for years 2015-2021 may be found in Appendix J – GWR Predicted Land 

Subsidence Maps. 

 

Figure 35. 2017 GWR and SAR land subsidence maps 

 

 Qualitative observations about these two maps would lead one to note that there appears 

to be an overprediction of land subsidence around the Fresno area in 2017. While the R2 values 

in the area are >0.80, many are in fact >0.90, yet the brighter reds and yellows signifying uplift 

bleed into the east of the study area. This is a great example of a secondary error from 

interpolating predicted values to great a raster. Nonetheless, Figure 36 shows the quantitative 

difference between these two rasters.  
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Figure 36. Difference map of SAR and GWR predictions, 2017 

  

The absolute maximum difference between the 2017 SAR data and the interpolated GWR 

prediction values is |0.33 feet|. This value is a negative value that would show a maximum 

difference of -0.33 feet by which the GWR prediction and interpolation is overestimating the 

amount of subsidence. The average difference between these rasters is -0.0019 feet. Figure 37 

displays the distribution of the delta values between these two rasters. One may note a very 

normal distribution in delta values. Additionally, two standard deviations contain most of the 

delta values. Such values are between -0.05 feet and 0.06 feet.  
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Figure 37. Histogram of delta values between subsidence rasters, 2017 

 

Once again, it must be noted that this approach adds two levels of error to the predictions 

and requires further investigation for the best practice in interpolating predicted values from a 

spatial regression model. Such was not in the scope of this study.  
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Chapter 5 Discussion and Conclusions 

Patterns and spatial distributions of land subsidence in the San Joaquin Valley were examined 

and explored through multi-variate analyses, global regression models, and local regression 

techniques. The use of experiential knowledge pertinent to hydrogeology and engineering 

practices were combined with spatial regression modeling techniques to yield an effective, easy-

to-update, and accurate model for assessing land subsidence patterns in California’s San Joaquin 

Valley.  

GIS spatial analytics and exploratory data analyses of land subsidence in relation to key 

hyrdrogeologic and engineering variables such as total well depth, statistical distribution of fine-

grained sediment, and the presence of a large aquitard such as the Corcoran Clay all have 

environmental impacts on predicting the spatial patterns of land subsidence. While each of the 

nine variables assessed in this study prove to be influential, global regression methods give 

insight to spatial autocorrelation and spatial clustering of similar values as well as the 

identification of outliers. Quantitative and qualitative analyses of the spatial distribution of 

variable coefficients have identified regions in the San Joaquin Valley that may be light in data 

quantity and quality. Such regions have also been key in identifying where local regression 

models may fall short and where global regression models completely missing the mark when it 

comes to predicant spatial patterns in land subsidence. Based on the requirements of the 

Sustainable Groundwater Management Act (SGMA), local spatial regression models can assist 

Groundwater Sustainability Agency (GSAs) and Groundwater Sustainability Plans (GSPs) with 

the management and use of groundwater to avoid the potential “undesirable result” of land 

subsidence. 
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This chapter summarizes the results, shortcomings, and potential future solutions to 

finetune spatial regression models for predicting land subsidence. Regression model results and 

areas of improvement are discussed and related to areas identified for improvement and/or model 

adaptations.  

5.1. Hydrogeologic and Engineering Impacts 

 Previous studies have not fully integrated experiences from the practice of hydrogeology 

and engineering with that of academic concepts. The methodology in this study have integrated 

the best of both worlds with what may be considered a successful and reliable outcome. As 

demonstrated with the AICC values from both global and local spatial regression models, 

including each identified variable is key in grounding the statistical concepts with real world 

application. One may note that the inclusion of each independent variable yielded a higher AICC 

for the spatially lagged model as well as the GWR model. AICC had little to no improvement as 

the suggested independent variables were removed. In fact, the best performing AIC proliferated 

from the 2019 GWR model with an AIC of -8208.716. With poorest performing AIC stemming 

from the 2015 OLS model with an AIC of -1616.5047, it goes to show the large difference the 

models make, but also what difference the key independent variables play.  

When assessed at the local scale, subsidence is based on a multitude of local factors, 

including overexploitation, water level drawdown, geology, and water year type (California 

Department of Water Resources 2022). These sedimentary deposits are comprised of 

unconsolidated gravel, sand, silt, and clay that define the Tulare Formation (Hill 1964). 

Additionally, numerous lenses of fine-grained sediments (e.g. silt, sandy silt, sandy clay, and 

clay) are also present and according to Page (1973) make up over 50% of the total aquifer 

thickness.  
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Most of the fine-grained materials have been mapped using geophysical logs, seismic 

surveys, and drill core throughout the San Joaquin Valley. Most notably, and most spatial 

widespread, is the lithologic unit of the Corcoran Clay Member of the Tulare Formation that 

exists along the majority of the westside of the valley (Bertoldi et al. 1991). The Corcoran Clay 

Member is a key component of groundwater hydraulics in the valley. Lees et al. (2021) have 

subdivided the Tulare Formation, the primary aquifer throughout the valley, into three different 

hydrostratigraphic layers: the unconfined to semi-confined upper Tulare (or upper aquifer), the 

Corcoran Clay Member, and the lower Tulare (or confined lower aquifer). Associating 

groundwater extraction and the ramifications of land subsidence within the Tulare Formation 

would be impossible without identification of confined and unconfined portions of the aquifer 

system.  

Ali et al. (2020) and Chu et al. (2021) had even gone so far as to differentiate among the 

confining layers in their study. Having this understanding and knowing that aquitards have such 

a large impact on groundwater systems, it makes sense to include such layers and their spatial 

distribution throughout the San Joaquin Valley in any land subsidence analysis. 

 Furthermore, including the Corcoran Clay thickness and percent of fine-grained material 

within the Tulare aquifer itself lends itself to the engineering of differential compaction that was 

mentioned in the introduction of this study. Including the general principle of compaction as it 

occurs when sediment is unconsolidated and has high percentages of fine-grained sands, silts, 

and clays cannot and should not be removed from the equation when assess land subsidence 

(Davis and Poland 1957; Davis et al. 1964; Poland et al. 1975). Yes, even the spatial distribution 

of fine-grained material and thickness of aquitards have lent to a better understanding of the 

spatial patterns of land subsidence within the San Joaquin Valley.  
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5.2. Regression Successes 

Once the key variables that are geologically and engineering based were established, the 

exploration of regression models was able to be established. The process of establishing a 

regression model was accomplished through relations among variables per Chu et al. (2021) and 

Ali et al. (2020). As noted in this study’s methodology, a key difference between this study and 

those emulated includes the use of more variables that are based both in the real world and in the 

practice of groundwater extraction. The relationship between annual subsidence the independent 

variables was formulated, and the spatial patterns of subsidence were subsequently estimated. 

With this, local regression in the form of GWR performed better than global regression in the 

form of MLR. This was anticipated based on the work of Chu et al. (2018). The R2 and AIC 

values demonstrated that locally weighted regression performs in a manner that is sufficient for 

estimating patterns of land subsidence throughout the San Joaquin Valley.  

Low coefficients of determination continually appeared in the GWR model on the far 

west boundary of the study area, as well as to the south end of the valley to the west and to the 

south of Bakersfield. In the southern portion of the valley, one may note that annual SAR land 

subsidence values tend to be very similar, almost to the point that the grid values for each year’s 

raster are not correctly represented. This apparent lack in data quality may be what led to low 

coefficients of determination in this region.  

The local regression model (GWR) coefficient maps demonstrated large and consistent 

patterns of land subsidence through the central axis of the valley. This same segway tends to 

hold the higher R2 values for each annual local regression model. It should also be noted that 

inflation to the west of Lemoore also shows strongly in large clusters. These same clusters tend 

to exhibit R2 values that are > 0.70.  
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The results of the local and global regression models, when compared, are similar to that 

of Chu et al. (2021), Chu et al. (2018) and Ali et al. (2020). While these authors utilized the 

relationship between land subsidence and groundwater level change through time, groundwater 

level change demonstrated multicollinearity and was not fully assessed at the local level in this 

study. Furthermore, due to the direct, linear connection between the percent of coarse-grained 

sediment and the percent of fine-grained sediment, coarse-grained sediment was removed from 

the local regression analysis. This variable also demonstrated multicollinearity when 

constructing a GWR model in ArcGIS Pro. Other variables that had similar challenges were the 

top perforation depth and base perforation depth. Both variables were directly connected to each 

well’s completion length. As mentioned in this study’s methodology, the completion length 

variable was calculated from top and base perforation depths. However, each of these three 

variables did not show multicollinearity when looking at VIF results. Each VIF value was larger 

than 1.0. ArcGIS Pro was able to catch the redundancy of each removed variable that would have 

otherwise led to an unstable regression model (Esri 2022).  

While Chu et al. (2021) utilized IDW to generate a raster of their predicted land 

subsidence values, a secondary level of error is being introduced through the use of such 

interpolation methods. As previously mentioned, the purpose of this study is not to explore 

concepts of interpolation as it pertains to groundwater modeling or land subsidence patterns. 

Rather, the use of IDW in this study follows a consist method by which predicted land 

subsidence values have been explored (Chu et al. 2018; Chu at el. 2021; Ali et al. 2020). 

Interpolation methods allow a qualitative look at model results and can be used to visually assess 

strong and weak performance in a spatial regression model. This is especially true when 

compared side-by-side with the SAR land subsidence dataset.  
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Taking observations around interpolated surfaces further, the generated delta rasters of 

this study also show areas where either more data are needed or where the underlying model data 

need to be refined. Such refining may come in the form of a larger clustering of groundwater 

measurements in specific areas (e.g. west of Modesto). Worded in another way, more spatial 

clustering of groundwater level measurements may help establish better predictions with the 

spatial regression model. This would show stronger results in both the R2 values and in 

interpolation methods in those areas that currently demonstrate relatively weak performance.  

The exploration of homoscedasticity and the ability for GWR to assess dependent 

variable variation allows one to contrast seemingly small changes from one groundwater well to 

the next while attaining high confidence in predicting land subsidence. This study’s approach can 

be used to show spatial patterns of land subsidence through space and time even as each 

independent variable changes through that same space and time.  

5.3. Further Development 

The results of spatial analysis and local spatial regression models demonstrated that even 

on a well-to-well basis there are large differences in land subsidence patterns. For this reason, it 

is strongly suggested that the nine subbasins be assessed separately from the San Joaquin Valley 

as a whole. This became very clear when low R2 were showing up south of Bakersfield as well as 

on the western edge of the valley near Kettlmen Hills. Make such subdivisions not only caters to 

local GSPs but also may enable modelers to incorporate localized aquitards that are not as 

spatially widespread as the Corcoran Clay. This also implies that more localized hydrogeological 

systems and variables, if the data are readily available, may be incorporated into the spatial 

regression model and yield higher confidence in the coefficient of determination for each well 

location. 



  

 114 

In the spirt of continuous improvement that this study was based on, there are several key 

items that might be included in future analyses. One such variable would be the inclusion of 

volumes of water extracted at groundwater well locations. It is unfortunate that such data are not 

readily available via DWR, RWQCB, USGS, or GAMA. As subbasin through the San Joaquin 

Valley work on meeting the statutes of SGMA, such volumes are likely to become easier to 

access and may be an even more impactful independent variable in predicting land subsidence.  

Furthermore, working with groundwater agencies, such as DWR and RWQCB, to assess 

recharge effects and hydrodynamic lag based on groundwater draw down (i.e. groundwater level 

change through time) and resulting subsidence could be considered. This comes at a risk of 

overcomplicating even local regression models. Thus, the effectiveness of using few, but well 

established, independent variables should still relevant. Doing so will guarantee an easy to 

update, but highly accurate model for predicting patterns of land subsidence.  

5.4. Conclusion 

The goal of this study was to explore and predict the spatial distribution of land 

subsidence through spatial regression models in California’s San Joaquin Valley. Spatial data 

analysis incorporated autocorrelation that is masked by typical statistical analyses. Additionally, 

a global regression model failed to incorporate variability among independent variables 

throughout the valley. Spatial analyses at a local scale provides insight to spatial variability 

among variable coefficients.  

The use of a spatial regression model within a GIS enables GSAs to incorporate better 

land subsidence predictions into their groundwater sustainability plans. Incorporating newly 

drilled wells, their associated depths, completion lengths, as well as notation of completion in the 

upper or lower Tulare makes spatial regression model predictions easy to update and accurate 
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enough to make GSP adjustments with the valley and throughout subbasins. Further 

improvements that include refined completion intervals, updated groundwater measurements (as 

per SGMA), and the integration of volumes of water extracted may help GSAs avoid undesirable 

results. Therefore, this method can be used efficiently for land subsidence management and 

might be widely used for subsidence estimation solely based on experiential hydrogeology and 

engineering variables. As noted above, the quality of each independent variable affects the 

estimation accuracy of land subsidence. Yet this spatial regression model can be relevant in 

terms of SGMA and land subsidence regulation.  
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Appendix A – Summary of OLS Regression Variable Coefficients 

*Indicates a statistically significant relationship 

Variable Coefficient Robust SE Robust t Robust Pr VIF 
2015 Intercept 0.029543 0.01447 2.041646 0.041269* -------- 
Total Well Depth -0.000002 0.00001 -0.193992 0.84619 3.797276 
Well Completion Length -0.000012 0.000014 -0.799482 0.424066 2.724941 
2015 Groundwater Level 0.000133 0.000019 7.178395 0.000000* 1.389416 
Depth to Corcoran Clay -0.000218 0.000015 -14.248787 0.000000* 1.865914 
Corcoran Clay Thickness -0.000784 0.000161 -4.87007 0.000002* 1.774136 
% Fine Grain Material -0.002617 0.000202 -12.971017 0.000000* 1.0709 
Up vs. Lower Tulare 0.049965 0.009337 5.351401 0.000000* 2.105291 
2016 Intercept -0.003831 0.012478 -0.307051 0.758835 -------- 
Total Well Depth 0.00001 0.000009 1.008106 0.313466 3.900945 
Well Completion Length -0.000014 0.000014 -0.97842 0.327925 2.673596 
2016 Groundwater Level 0.000373 0.000017 22.223439 0.000000* 1.392284 
Depth to Corcoran Clay -0.001942 0.000175 -11.079092 0.000000* 1.065782 
Corcoran Clay Thickness -0.00035 0.000014 -24.690774 0.000000* 1.72856 
% Fine Grain Material -0.000534 0.000117 -4.560865 0.000007* 1.208554 
Up vs. Lower Tulare 0.040189 0.007846 5.121859 0.000001* 2.152318 
2017 Intercept -0.160512 0.010603 -15.138003 0.000000* -------- 
Total Well Depth 0.000024 0.000007 3.584269 0.000358* 3.726871 
Well Completion Length 0.000022 0.000011 2.033164 0.042121* 2.557095 
2017 Groundwater Level -0.000156 0.000015 -10.254633 0.000000* 1.355889 
Depth to Corcoran Clay 0.001209 0.000152 7.967612 0.000000* 1.093304 
Corcoran Clay Thickness 0.000375 0.000013 29.571774 0.000000* 1.664723 
% Fine Grain Material -0.000626 0.000077 -8.096861 0.000000* 1.152584 
Up vs. Lower Tulare 0.021195 0.006339 3.343754 0.000854* 2.179722 
2018 Intercept 0.021678 0.009533 2.273947 0.023021* -------- 
Total Well Depth 0.000014 0.000006 2.457641 0.014027* 3.787331 
Well Completion Length -0.000015 0.000009 -1.700012 0.089239 2.625466 
2018 Groundwater Level 0.000152 0.000012 12.440421 0.000000* 1.355912 
% Fine Grain Material -0.001437 0.000135 -10.613741 0.000000* 1.097181 
Depth to Corcoran Clay -0.000157 0.000009 -16.639823 0.000000* 1.659258 
Corcoran Clay Thickness -0.000363 0.000094 -3.878788 0.000117* 1.201381 
Up vs. Lower Tulare 0.02254 0.005606 4.02056 0.000067* 2.184942 
2019 Intercept -0.054736 0.006505 -8.414983 0.000000* -------- 
Total Well Depth 0.000037 0.000007 5.638191 0.000000* 3.484539 
Well Completion Length -0.000032 0.000011 -2.945419 0.003276* 2.870938 
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2019 Groundwater Level 0.000071 0.00001 7.032167 0.000000* 1.509999 
% Fine Grain Material -0.000589 0.000098 -5.990892 0.000000* 1.018384 
Depth to Corcoran Clay -0.000003 0.000011 -0.273684 0.784366 1.232173 
Corcoran Clay Thickness 0.000115 0.000054 2.119753 0.034153* 1.320275 
Up vs. Lower Tulare 0.001292 0.0045 0.287129 0.774056 1.966936 
2020 Intercept 0.111662 0.0137 8.150752 0.000000* -------- 
Total Well Depth -0.00004 0.000012 -3.463482 0.000564* 3.245993 
Well Completion Length 0.00001 0.000018 0.558697 0.576459 2.885067 
2020 Groundwater Level 0.000131 0.000018 7.268299 0.000000* 1.454729 
% Fine Grain Material -0.001483 0.000156 -9.506363 0.000000* 1.053744 
Depth to Corcoran Clay -0.000384 0.000023 -16.832402 0.000000* 1.335624 
Corcoran Clay Thickness -0.000491 0.000124 -3.966258 0.000085* 1.216716 
Up vs. Lower Tulare 0.010778 0.00725 1.486724 0.137312 1.958827 
2021 Intercept 0.133876 0.014829 9.028173 0.000000* -------- 
Total Well Depth -0.000022 0.000013 -1.688206 0.091584 3.230477 
Well Completion Length 0.000004 0.000022 0.186596 0.851995 2.808253 
2021 Groundwater Level -0.000023 0.00002 -1.187614 0.235168 1.630424 
% Fine Grain Material -0.00258 0.000181 -14.260905 0.000000* 1.066257 
Depth to Corcoran Clay -0.000484 0.000024 -20.26942 0.000000* 1.711205 
Corcoran Clay Thickness -0.000115 0.000152 -0.755654 0.449962 1.777817 
Up vs. Lower Tulare 0.013586 0.008655 1.569676 0.11671 1.917885 
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Appendix B - R Code for EDA 

# Calling Spatial Data in R (sp) 
# SSCI 594b EDA Code 
 
# Subsidence and Groundwater in the San Joaquin Valley CA 
 
# call packages from library 
library(sp) 
library(rgdal) 
 
#load R Excel reader package 
library(readxl) 
 
# call data in Excel and name vector / variable 
SJB <- read_excel("/Volumes/GoogleDrive/My 
Drive/USC/MSGIST/Thesis/Datasets/2017TESTforMorans.xlsx") 
 
# check field headers 
head(SJB) 
 
#check the number of rows 
nrow(SJB) 
 
# check the number of columns with recorded data 
ncol(SJB) 
 
# check variable names of each data field of each layer 
names(SJB) 
 
#call dataset into sp package 
str(SJB) 
class(SJB) 
data = data.frame(SJB) 
 
# set XY data to dataframe 
coords = data.frame( 
 x=SJB$LONGITUDE, 
 y=SJB$LATITUDE 
) 
 
# plot cooridnates from dataframe 
plot(coords,pch=21, bg="lightblue", xlab = "Longitude", ylab = "Latitude", main = "Lat & Long 
Locations of Water Wells - SJV") 
grid(nx= NULL, 
   ny= NULL, 
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   lty = 2, col= "dark grey", lwd =1) 
 
coordinates(data) = cbind(coords$x, coords$y) 
 
#get summary stats 
summary(SJB) 
 
#### Plot Histograms 
 
hist(SJB$SUBSIDENCE_RATE, xlab = "Subsidence (ft)", main = "Distribution of Land 
Subsidence (2017)", xlim = c(-1, 0.5), ylim = c(0, 1000), breaks = 15) 
hist(SJB$PERCENT_FINE, xlab = "Percent Fine Grain Sediment (%)", main = "Distribution of 
Percent Fine Grain Sediment (2021)", xlim = c(0, 100), ylim = c(0, 500), breaks = 15) 
hist(SJB$PERCENT_COARSE,xlab = "Percent Coarse Grain Sediment (%)", main = 
"Distribution of Percent Coarse Grain Sediment (2021)", xlim = c(0, 100), ylim = c(0, 500), 
breaks = 15) 
hist(SJB$COMPL_LENGTH,xlab = "Completion Lengths (ft)", main = "Distribution of 
Completion Lengths (2021)", xlim = c(0, 2500), ylim = c(0, 2500), breaks = 25) 
hist(SJB$PERF_TOP_DEPTH, xlab = "Depth of Top Perforation (ft bgs)", main = "Distribution 
of Top Perforation Depths (2021)", xlim = c(0, 2000), ylim = c(0, 2000), breaks = 25) 
hist(SJB$PERF_BASE_DEPTH, xlab = "Depth of Base Perforation (ft bgs)", main = 
"Distribution of Base Perforation Depths (2021)", xlim = c(0, 3000), ylim = c(0, 2000), breaks = 
25) 
hist(SJB$WELL_DEPTH, xlab = "Total Depth (ft bgs)", main = "Distribution of Total Well 
Depths (2021)", xlim = c(0, 3000), ylim = c(0, 2000), breaks = 20) 
hist(SJB$GWLEVEL_2017, xlab = "Groundwater Depth (ft bgs)", main = "Distribution of 
Groundwater Depth (2021)", xlim = c(-10, 1500), ylim = c(0, 1500), breaks = 15) 
hist(SJB$GW_LEVEL_CHANGE, xlab = "Groundwater Level Change", main = "Distribution of 
Groundwater Level Change (2021)", xlim = c(-50, 50), ylim = c(0, 3500), breaks = 10) 
hist(SJB$UP_LOW_TULARE, xlab = "Upper:Lower Tulare", main = "Distribution of Upper vs. 
Lower Tulare Well Completions (2021)", xlim = c(0, 1), ylim = c(0, 3500), breaks = 10) 
 
hist(SJB$DEPTH_COR_CLAY, xlab = "Depth (ft bgs)" , main = "Distribution of Top Corcoran 
Clay Depths (ft bgs)", xlim = c(0, 1000), ylim = c(0, 500), breaks = 15 ) 
hist(SJB$COR_CLAY_THICK,xlab = "Thickness (ft)" , main = "Distribution of Corcoran Clay 
Thickness", xlim = c(0, 150), ylim = c(0, 700), breaks = 15 ) 
 
##hist(SJB$SUBSIDENCE_RATE,xlab = "Land Subsidence (cm)", main = "Distribution of 
Land Subsidence (2021)", xlim = c(-1.5, 0.5), ylim = c(0, 1500), breaks = 15) 
 
### Jarque Bera Test for Normality ### 
 
# call package from library 
 
library(tseries) 
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# run normality test 
# p-value < 0.05 = not normal 
# p-value > 0.05 = normal distribution 
dataset <- rnorm(SJB$SUBSIDENCE_RATE) # null 
jarque.bera.test(dataset) 
 
dataset <- rnorm(SJB$PERCENT_FINE) # null 
jarque.bera.test(dataset) 
 
dataset <- rnorm(SJB$PERCENT_COARSE) # null 
jarque.bera.test(dataset) 
 
dataset <- rnorm(SJB$COMPL_LENGTH) # null 
jarque.bera.test(dataset) 
 
dataset <- rnorm(SJB$PERF_TOP_DEPTH) # null 
jarque.bera.test(dataset) 
 
dataset <- rnorm(SJB$PERF_BASE_DEPTH) # null 
jarque.bera.test(dataset) 
 
dataset <- rnorm(SJB$WELL_DEPTH) # null 
jarque.bera.test(dataset) 
 
dataset <- rnorm(SJB$GWLEVEL_2017) # null 
jarque.bera.test(dataset) 
 
dataset <- rnorm(SJB$GW_LEVEL_CHANGE) # null 
jarque.bera.test(dataset) 
 
dataset <- rnorm(SJB$UP_LOW_TULARE) # null 
jarque.bera.test(dataset) 
 
dataset <- rnorm(SJB$COR_CLAY_THICK) # null 
jarque.bera.test(dataset) 
 
dataset <- rnorm(SJB$DEPTH_COR_CLAY) # null 
jarque.bera.test(dataset) 
 
#### KS test for normality #### 
 
# Note that p<0.5 means the data are not normally distributed 
# Note that p>0.5 means the data are normally distributed 
ks.test(SJB$PERCENT_FINE, 'pnorm') 
 
# ks.test(SJB$PERCENT_COARSE, 'pnorm') 
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# ks.test(SJB$GWLEVEL_2021, 'pnorm') 
 
### Log Transform Non-Normal Distributions #### 
 
# Check existing data frame 
data = data.frame(SJB) 
data.frame(SJB) 
 
# Add named column to data frame and perform log transformation 
SJB$logsubsidence=log(SJB$Subsidence) 
 
#check resulting data field and frame 
data.frame(SJB) 
 
### Rerun histogram of log transformed data fields from data frame 
hist(SJB$logsubsidence, xlab = "Subsidence (ft)", main = "Histogram of Log Transformed 
Subsidence - SJ Basin", xlim = c(-1.5, 0), ylim = c(0, 3000), breaks = 13) 
 
# Log Transformation of Groundwater Depth data 
 
# Add named column to data frame and perform log transformation 
SJB$logdepth=log(SJB$GSE) 
 
#check resulting data field and frame 
data.frame(SJB) 
 
### Rerun histogram of log transformed data fields from data frame 
hist(SJB$logdepth, xlab = "Groundwater Depth (ftbgs)", main = "Histogram of Log Transformed 
Groundwater Depth - SJ Basin", xlim = c(0, 10), ylim = c(0, 3000), breaks = 20) 
 
### Make scatter plots ### 
 
#plot data for first run in preparation for background "underlay" color 
plot(SJB$GWLEVEL_2017, SJB$SUBSIDENCE_RATE, main = "Subsidence / Groundwater 
Depth (2017)", xlab="Groundwater Depth (ft bgs)", ylab="Subsidence (cm)", pch=21, bg="light 
blue") 
 
# set background color "underlay" 
rect(par("usr")[1], par("usr")[3], 
   par("usr")[2], par("usr")[4], 
   col = "gray96") 
 
# add a new plot area in current graph 
par(new= TRUE) 
 
# plot selected data in scatterplot 
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grid(nx= NULL, 
   ny= NULL, 
   lty = 2, col= "dark grey", lwd =1) 
par(new= TRUE) 
plot(SJB$GWLEVEL_2017, SJB$SUBSIDENCE_RATE, main = "Subsidence / Groundwater 
Depth (2017)", xlab="Groundwater Depth (ft bgs)", ylab="Subsidence (cm)", pch=21, bg="light 
blue") 
### Boxplots for Groundwater wells ### 
 
# set parameters for alternating boxplot colors by y~group 
# las = 2 changes the label direction while cex.axis = 0.5 changes the axis labels' font size 
boxplot(SJB$GWLEVEL_2017~SJB$BASIN_NAME, 
data=data.frame(SJB$GWLEVEL_2017), col=(c("lightgreen", "lightblue")), 
main="Groundwater Depth by Basin (2017)", ylab="Groundwater Depth (ft bgs)", xlab="Basin", 
las=2, cex.axis=0.5)  
 
# set background color "underlay" 
rect(par("usr")[1], par("usr")[3], 
   par("usr")[2], par("usr")[4], 
   col = "gray96") 
 
# add a new plot area in current graph 
par(new= TRUE) 
 
# plot selected data in scatterplot 
grid(nx= NA, # no grid lines 
   ny=NULL, # default grid line per label 
   lty = 2, col= "dark grey", lwd =1) 
 
par(new= TRUE) 
 
# set parameters for alternating boxplot colors by y~group 
boxplot(SJB$GWLEVEL_2017~SJB$BASIN_NAME, 
data=data.frame(SJB$GWLEVEL_2017), col=(c("lightgreen", "lightblue")), 
main="Groundwater Depth by Basin (2017)", ylab="Groundwater Depth (ft bgs)", xlab="Basin", 
las=2, cex.axis=0.5)  
 
### Boxplots for Subsidence Monitoring Network ### 
 
# set parameters for alternating boxplot colors by y~group 
# las = 2 changes the label direction while cex.axis = 0.5 changes the axis labels' font size 
boxplot(SJB$GW_LEVEL_CHANGE~SJB$BASIN_NAME, 
data=data.frame(SJB$GW_LEVEL_CHANGE), col=(c("lightcoral", "lightgoldenrod1")), 
main="Groundwater Level Change by Basin (2017)", ylab="Groundwater Level Change (ft)", 
xlab="Basin", las=2, cex.axis=0.75)  
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# set background color "underlay" 
rect(par("usr")[1], par("usr")[3], 
   par("usr")[2], par("usr")[4], 
   col = "gray96") 
# add a new plot area in current graph 
par(new= TRUE) 
 
# plot selected data in scatterplot 
grid(nx= NA, # no grid lines 
   ny=NULL, # default grid line per label 
   lty = 2, col= "dark grey", lwd =1) 
 
par(new= TRUE) 
 
boxplot(SJB$GW_LEVEL_CHANGE~SJB$BASIN_NAME, 
data=data.frame(SJB$GW_LEVEL_CHANGE), col=(c("lightcoral", "lightgoldenrod1")), 
main="Groundwater Level Change by Basin (2017)", ylab="Groundwater Level Change (ft)", 
xlab="Basin", las=2, cex.axis=0.75)  
 
### Plot 3D Scatter Plot #### 
 
# call library 
library(rgl) 
# plot X, Y, Z data 
# By default, plot3d() uses square points, which do not appear properly when saving to a PDF.  
# For improved appearance, the example above uses type="s" for spherical points, made them 
smaller with size=0.75, and turned off the 3D lighting with lit=FALSE (otherwise they look like 
shiny spheres) 
 
plot3d(SJB$LONGITUDE, SJB$LATITUDE, SJB$GWLEVEL_2015,  
    xlab = "Longitude", ylab = "Latitude", zlab = "Groundwater Depth (ft)", 
    type = "s", size = 0.25, col="lightblue", lit = FALSE) 
 
# plot x, y, z subsidence data 
plot3d(SJB$LONGITUDE, SJB$LATITUDE, SJB$SUBSIDENCE_RATE,  
    xlab = "Longitude", ylab = "Latitude", zlab = "Subsidence (ft)", 
    type = "s", size = 0.25, col="red", lit = FALSE) 
 
##attempt to add segments to each water depth -- makes things too messy 
##segments3d(interleave(SJGW$LONGITUDE, SJGW$LONGITUDE), 
##     interleave(SJGW$LATITUDE, SJGW$LATITUDE), 
##    interleave(SJGW$GSE), min(SJGW$GSE), 
##   alpha = 0.4, col= "blue") 
 



  

 131 

Appendix C - R Code for ESDA 

#### Moran's I for Spatial Autocorrelation ### 
### Spatially Lagged Model ### 
 
### Set Neighborhood for Large Pointset #### 
 
# call libraries 
library(rgdal) 
library(spdep) 
library(readxl) 
library(ape) 
 
# read and alias dataset from Excel 
SJB <- 
read_excel("/Volumes/GoogleDrive/MyDrive/USC/MSGIST/Thesis/Datasets/2017TESTforMor
ans.xlsx") 
# Check data field titles and categories  
head(SJB) 
 
# Make data a spatial dataframe 
coordinates(SJB) <- ~ LONGITUDE + LATITUDE 
 
# set inverse distance weights matrix 
well.dists <-as.matrix(dist(cbind(SJB$LONGITUDE, SJB$LATITUDE))) 
 
# 1 divided by values in the matrix  
well.dist.inv <- 1/well.dists 
 
# create a matrix where each-off diagonal [i,j] is equal to 1/distance between point i and point j 
diag(well.dist.inv) <- 0 
well.dist.inv[1:5, 1:5] 
 
# Calculate Moran's I (note that I am not too sure if this step is needed here) 
Moran.I(SJB$SUBSIDENCE_RATE, well.dist.inv) 
 
# Use K nearest as a criteria for non-polygon vectors (ie points) 
 
knea <- knearneigh(coordinates(SJB), longlat = TRUE) 
neib <- knn2nb(knea) 
 
# Print output of the nearest neighbors  
neib 
par = (mar=c(0,0,0,0)) 
plot(SJB, border="grey") 
plot(neib, coordinates(SJB), add=TRUE, col="red") 
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### Global Moran's I ### 
# assign weights as listed object  
#create a spatial weights using nb2listw() using the default option of row standardization 
(style="W") and binary weights (style ="B") 
SJBW <- nb2listw(neib, style = "W", zero.policy = TRUE) 
lw <- nb2listw(neib, style = "B")  
head(SJB) 
 
# Assess the weight of the first polygon's neighbors type 
lw$weights 
 
# Compute weighted neighbor mean subsidence values 
# not needed to run the moran or moran.test 
# Compute the average neighbor subsidence value for each polygon or spatially lagged values  
inc.lag <- lag.listw(lw, SJB$SUBSIDENCE_RATE) 
inc.lag 
 

# Plot relationship between spatially lagged neighbors and subsidence  
# Fitted line is part of the OLS model  
 
plot(inc.lag ~ SJB$SUBSIDENCE_RATE, pch=16, asp=1) 
M1 <- lm(inc.lag ~SJB$SUBSIDENCE_RATE) 
 

# plot regression line (OLS) 
abline(M1, col="red") 
 
# Print the slope of the regression line (or variance) for Moran's I coefficient 
coef(M1) [2] 
 
# Compute the Moran's I statistic  
I <- moran(SJB$SUBSIDENCE_RATE, lw, length(neib), Szero(lw)) [1] 
I 
# Perform a hypothesis test  
# testing if the subsidence values are randomly distributed across each basin following a 
completely random process  
# this can be tested with an anlytical method and stochastic method: Monte Carlo method 
 
# Analytical Method 
# Note thtat -1 is perfect clustering of dissimliar values (ie perfect dispersion) 
# Note that 0 is no spatial autocorrelation  
# Note that +1 indicates perfect clustering of similar values  
moran.test(SJB$SUBSIDENCE_RATE, lw, alternative = "greater") 
 
# Moran's I plot of Subsidence 
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moran.plot(SJB$SUBSIDENCE_RATE,listw=nb2listw(neib, style="C")) 
 

### Spatial Lag Model ### 

#be sure to open library for spatial regression before running the script below the library call 
library(spatialreg) 
 
#Here if you look at the Coefficients part of the result, all of my 6 regression coefficients are 
tested statistically significant (against 0).  

#For example, my feemp coefficient is -0.5187 with standard error 0.0114. The Z-test statistic (z-
score) is -45.5902 and the p-value is smaller than 2.2E-16. 

#This tells us that a 1% increase in the female employment rate is associate with a 0.5187% 
decrease in the poverty rate when all other explanatory variables are held constant.  

m3_lag <- lagsarlm(SJB$SUBSIDENCE_RATE ~ SJB$WELL_DEPTH + 
SJB$PERF_TOP_DEPTH + SJB$PERF_BASE_DEPTH + SJB$COMPL_LENGTH + 
SJB$GWLEVEL_2017 + SJB$PERCENT_FINE + SJB$PERCENT_COARSE + 
SJB$DEPTH_COR_CLAY + SJB$COR_CLAY_THICK + SJB$GW_LEVEL_CHANGE + 
SJB$UP_LOW_TULARE, data = SJB, listw = lw, type = "lag", zero.policy = TRUE) 

summary(m3_lag, correlation=FALSE) 
#Extract estimated regression coefficients and the corresponding 95% confidence intervals to a 
table of three columns, one for the estimated regression coefficients  
# and the other two for the lower and upper limits of the 95% CI. 
cbind(coefest= coef(m3_lag), confint(m3_lag)) 
 
# plot residuals against fitted responses 
plot(m3_lag$fitted.values, m3_lag$residuals, xlab="Fitted Values", ylab="Residuals", main 
="Residuals vs Fitted", cex=0.1) 
ab <- lm(m3_lag$fitted.values ~m3_lag$residuals) 
 
abline(ab, lty=2, col="red") 
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Appendix D - R Code for Spatial Regression Models 

### OLS Model ### 
 
 
#load R Excel reader package 
library(readxl) 
 
# call data in Excel and name vector / variable 
SJB <- read_excel("/Volumes/GoogleDrive/My 
Drive/USC/MSGIST/Thesis/Datasets/2017TESTforMorans.xlsx") 
 
# check field headers 
head(SJB) 
 
# run lm test for Groundwater Level Change and Subsidence Rate 
OLS = lm(as.numeric(SJB$GW_LEVEL_CHANGE)~as.numeric(SJB$SUBSIDENCE_RATE), 
data=SJB) 
 
# plot OLS model 
plot(OLS) 
 
# get pvalues and R2 values 
summary(OLS) 
 
# print p-value 
summary(OLS)$coefficients[,4]  
 
# print r2 value 
summary(OLS)$r.squared 
 
summary(OLS)$adj.r.squared 
 
#### GWLEVEL_YEAR and SUBSIDENCE RATE OLS and Plots 
 
# lm test for groundwater level 
OLS = lm(SJB$GWLEVEL_2017~SJB$SUBSIDENCE_RATE, data=SJB) 
plot(OLS) 
 
# get pvalues and R2 values 
summary(OLS) 
 
# print p-value 
summary(OLS)$coefficients[,4]  
#print r2 value 
summary(OLS)$r.squared 



  

 135 

 
#### Percent Fine and SUBSIDENCE RATE OLS and Plots 
 
# lm test for groundwater level 
OLS = lm(SJB$PERCENT_FINE~SJB$SUBSIDENCE_RATE, data=SJB) 
plot(OLS) 
 
# get pvalues and R2 values 
summary(OLS) 
 
# print p-value 
summary(OLS)$coefficients[,4]  
 
#print r2 value 
summary(OLS)$r.squared 
 
#### Percent Coarse and SUBSIDENCE RATE OLS and Plots 
 
# lm test for groundwater level 
OLS = lm(SJB$PERCENT_COARSE~SJB$SUBSIDENCE_RATE, data=SJB) 
plot(OLS) 
 
# get pvalues and R2 values 
summary(OLS) 
 
# print p-value 
summary(OLS)$coefficients[,4]  
 
#print r2 value 
summary(OLS)$r.squared 
 
#### Completion Length and SUBSIDENCE RATE OLS and Plots 
 
# lm test for Completion length 
OLS = lm(as.numeric(SJB$COMPL_LENGTH)~as.numeric(SJB$SUBSIDENCE_RATE), 
data=SJB) 
plot(OLS) 
 
# get pvalues and R2 values 
summary(OLS) 
 
# print p-value 
summary(OLS)$coefficients[,4]  
#print r2 value 
summary(OLS)$r.squared 
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#### Perf Top Depth and SUBSIDENCE RATE OLS and Plots 
 
# lm test for top perf depth 
OLS = lm(as.numeric(SJB$PERF_TOP_DEPTH)~as.numeric(SJB$SUBSIDENCE_RATE), 
data=SJB) 
plot(OLS) 
 
# get pvalues and R2 values 
summary(OLS) 
 
# print p-value 
summary(OLS)$coefficients[,4]  
#print r2 value 
summary(OLS)$r.squared 
 
#### Perf Base Depth and SUBSIDENCE RATE OLS and Plots 
 
# lm test for perf base depth 
OLS = lm(as.numeric(SJB$PERF_BASE_DEPTH)~as.numeric(SJB$SUBSIDENCE_RATE), 
data=SJB) 
plot(OLS) 
 
# get pvalues and R2 values 
summary(OLS) 
 
# print p-value 
summary(OLS)$coefficients[,4]  
#print r2 value 
summary(OLS)$r.squared 
 
#### Well Depth and SUBSIDENCE RATE OLS and Plots 
 
# lm test for well total depth 
OLS = lm(SJB$WELL_DEPTH~as.numeric(SJB$SUBSIDENCE_RATE), data=SJB) 
plot(OLS) 
 
# get pvalues and R2 values 
summary(OLS) 
 
# print p-value 
summary(OLS)$coefficients[,4]  
#print r2 value 
summary(OLS)$r.squared 
 
#### Upper vs Lower Tulare Completion and SUBSIDENCE RATE OLS and Plots 
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# lm test for upper vs lower Tulare 
OLS = lm(SJB$UP_LOW_TULARE~as.numeric(SJB$SUBSIDENCE_RATE), data=SJB) 
plot(OLS) 
 
# get pvalues and R2 values 
summary(OLS) 
 
# print p-value 
summary(OLS)$coefficients[,4]  
#print r2 value 
summary(OLS)$r.squared 
 
 
#### COR_CLAY_THICK and SUBSIDENCE RATE OLS and Plots 
 
# lm test for upper vs lower Tulare 
OLS = lm(SJB$COR_CLAY_THICK~as.numeric(SJB$SUBSIDENCE_RATE), data=SJB) 
plot(OLS) 
 
# get pvalues and R2 values 
summary(OLS) 
 
# print p-value 
summary(OLS)$coefficients[,4]  
#print r2 value 
summary(OLS)$r.squared 
 
 
#### DEPTH_COR_CLAY and SUBSIDENCE RATE OLS and Plots 
 
# lm test for upper vs lower Tulare 
OLS = lm(SJB$DEPTH_COR_CLAY~as.numeric(SJB$SUBSIDENCE_RATE), data=SJB) 
plot(OLS) 
 
# get pvalues and R2 values 
summary(OLS) 
 
# print p-value 
summary(OLS)$coefficients[,4]  
#print r2 value 
summary(OLS)$r.squared 
 
#### Test for Multicolinearity #### 
 
#call library  
library(car) 
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#Fit the regression model (looking at values close to zero to see if it makes sense to include the 
variable) 
lm(SJB$SUBSIDENCE_RATE ~ SJB$WELL_DEPTH + SJB$PERF_TOP_DEPTH + 
SJB$PERF_BASE_DEPTH + SJB$COMPL_LENGTH + SJB$GWLEVEL_2017 + 
SJB$PERCENT_FINE + SJB$PERCENT_COARSE + SJB$DEPTH_COR_CLAY + 
SJB$COR_CLAY_THICK + SJB$GW_LEVEL_CHANGE + SJB$UP_LOW_TULARE, 
data=SJB) 
 
# check for multicollinearity 
 
#place variables in data frame 
df <- data.frame(as.numeric(SJB$WELL_DEPTH), as.numeric(SJB$PERF_TOP_DEPTH), 
as.numeric(SJB$PERF_BASE_DEPTH), as.numeric(SJB$COMPL_LENGTH), 
as.numeric(SJB$GWLEVEL_2017), as.numeric(SJB$PERCENT_FINE), 
as.numeric(SJB$PERCENT_COARSE), as.numeric(SJB$DEPTH_COR_CLAY), 
as.numeric(SJB$COR_CLAY_THICK), as.numeric(SJB$GW_LEVEL_CHANGE), 
as.numeric(SJB$UP_LOW_TULARE), SJB$SUBSIDENCE_RATE) 
 
#create correlation matrix for data frame 
cor(df) 
 
#calculate the variance inflation factor (VIF) for each predictor variable in the model 
# vif was run for each variable until no aliased variables (ie multicollinearity) were present 
vif(lm(SJB$SUBSIDENCE_RATE~SJB$WELL_DEPTH + SJB$COMPL_LENGTH + 
SJB$GWLEVEL_2017 + SJB$PERCENT_FINE + SJB$DEPTH_COR_CLAY + 
SJB$COR_CLAY_THICK + SJB$GW_LEVEL_CHANGE + SJB$UP_LOW_TULARE)) 
 
###### Regression Model Selection by AIC ##### 
 
#Fit the regression model (looking at values close to zero to see if it makes sense to include the 
variable) 
 
m1=lm(SJB$SUBSIDENCE_RATE ~ SJB$WELL_DEPTH + SJB$PERF_TOP_DEPTH + 
SJB$PERF_BASE_DEPTH + SJB$COMPL_LENGTH + SJB$GWLEVEL_2017 + 
SJB$PERCENT_FINE + SJB$PERCENT_COARSE + SJB$DEPTH_COR_CLAY + 
SJB$COR_CLAY_THICK + SJB$GW_LEVEL_CHANGE + SJB$UP_LOW_TULARE, 
data=SJB) 
summary(m1) 
 
cbind(coefest=coef(m1), confint(m1)) 
 
#regression model selection 
#stepwise (newer model) that adds a penalty for each useless variable 
m2=step(m1) 
summary(m2) 
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#removes one variable each time to see what variable has the least and largest impact 
#we are actually applying BIC even though the output says AIC as the k adjusts (number of 
variables) the values 
 
n <- nrow(SJB) 
m3 <- step(m1, k=log(n)) 
summary(m3) 
 
#regression model diagnostics 
par(mfrow=c(1,2)) 
plot(m3, which=c(1,2), cex=0.1) 
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Appendix E – Original SAR Land Subsidence Maps 
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Appendix F – Moran’s I Clusters and Outliers Maps 
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Appendix G – MLR Global Variable Coefficients Maps 
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Appendix H– MLR Predicted Land Subsidence Maps 
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Appendix I – GWR Local Regression Residual Maps 
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Appendix J – GWR Predicted Land Subsidence Maps 
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