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ABSTRACT 

 

Vernal pools are rare, seasonal pools that form in landscape depressions and create temporary 

habitat for many floral and faunal taxa.  In California, as much as 90% of historic vernal pool 

area has been displaced by agriculture and urbanization.  Pools are commonly inhabited by 

endemic, threatened, and endangered plants and animals, and are critical breeding areas for 

California tiger salamanders (Ambystoma californiense) and fairy shrimp (Linderiella 

occidentalis).  Seasonal inundation and desiccation are driving factors behind the biotic 

community structure around pools, both spatially and compositionally.   

At Fort Ord, California, a rare subset of vernal pools occur perched atop relict sand dunes 

in an arid chaparral environment. Fifteen vernal pools have been previously identified within the 

base’s historic firing range impact area.  At least 45 other lowland meadows within the impact 

area meet pool topographic requirements and were evaluated for their potential to be vernal 

habitats.  This thesis proposes an object-based method of extracting vegetative patterns from 

VHSR Ikonos and WorldView 2 satellite imagery, to compare persistence in vegetative patterns 

over time.  Classification results from three aerials collected over an 80-year interval were 

subjected to a geospatial change analysis, and used to make short- and long-term comparisons of 

known vernal meadows to themselves and other meadows in the study area.  Two new metrics, 

the Persistence Index and Weighted Intervals Persistence Index, were created for this study.  

These indices normalize changes in geometric properties, enabling comparisons between known 

vernal areas and study sites, and between self-same sites sampled at different times.  PI and WIPI 

results were consistent with the results from other analyzed metrics.   
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Strong persistence in several study sites, comparable to that of the known vernal areas, 

likely indicates latent presence of a seasonal hydric regime and an elevation-based hydrological 

gradient.  The results of this study show that there is no statistically significant difference 

between the way that vernal and other meadows change shape and size over time.  This result 

means that a number of lowland meadows in the impact area may have active or dormant vernal 

pools because the two groups cannot be empirically differentiated from one another.  This study 

also positively confirmed the presence of at least five previously unrecognized vernal areas 

through the detection of water in multiple aerial images.  These findings merit further on-the-

ground investigation, as well as a geographical reconsideration of current conservation efforts. 

 



1 
 

 

CHAPTER 1: INTRODUCTION 

 

Vernal pools are ephemeral wetlands that are geographically isolated from other water bodies 

and inundated only on a seasonal basis.  They provide habitat for a rich variety of endemic, 

threatened, and endangered taxa of flora and fauna (Bauder 2005; Burne 2001; Carpenter, Stone, 

and Griffin 2011; Keeler-Wolf et al. 1998; Lathrop et al. 2005; Reed and Amundson 2007; Stone 

1992; Van Meter, Bailey, and Grant 2008; Van Thomme 2011; Zedler 1987).  Though variations 

of vernal pools occur worldwide, in most cases these environments have been drastically reduced 

in number (Bauder 2005; Burne 2001; Carpenter, Stone, and Griffin 2011; Gibbes et al. 2010; 

Keeler-Wolf et al. 1998; Kneitel 2014; Mattoni and Longcore 1997).   

The primary threats to all temporary wetlands are urban and agricultural development 

(Bauder 2005; Cormier 2001; Cutler 2006; Keeler-Wolf et al. 1998).  In California alone, as 

much as 90% of vernal habitat has been lost to development and farmland (Ferren et al. 1996; 

Keeler-Wolf et al. 1998; Tannourji 2009).  Of these remaining few, a rare subset exist in isolated 

depressions amongst thickets of cismontane central maritime chaparral, a narrowly distributed 

plant community with drought- and fire-resistant characteristics.  An even more uncommon 

subset of chaparral vernal pools, many of which may now be dormant or extinct, can be found 

within the relict sand dunes of Monterey Bay’s Fort Ord.  Because they are unusually unique and 

occur inside an area of heavily restricted access, it is critical that these rare but diverse habitats 

be identified for study and conservation. 

Fort Ord’s vernal pools occur in both oak savanna and chaparral landscapes.  Vernal 

pools in the base’s northern zones typically develop in large, flat plains.  These plains alternate 
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between grasslands and oak groves, and are densely dotted with large gopher mounds (mimas) 

(Cox 1986; Reed and Amundson 2007).  By contrast, vernal pools at the southern end of the base 

are found isolated in grassy lowland depressions amongst dense stands of manzanita 

(Arctostaphylos spp.) chaparral.  In such circumstances, competition for space is intense and in 

many locations there is a sharp break between upland chaparral and grassy lowland meadow 

habitats.  Vernal pools in particular develop strong, lasting vegetative patterns in and around 

their margins because of the intermittent flooding to which their plant communities are 

subjected.  Likewise, non-vernal meadows in the area appear to resist the encroachment of 

chaparral recruits as well, but the explanation as to why is less-readily apparent.   

Patterning characteristic of vernal vegetation is also evident in some non-vernal lowland 

meadows and raises the possibility that these meadows may have some latent potential to act as 

vernal pools.  It is possible that these areas are, or once were, ephemeral wetlands that have not 

been previously recognized.  The simplest explanation for the similarity in patterning is that the 

same underlying process is happening in both types of location.  That is, soil moisture gradients 

are dictating the local floral distributions.  This project primarily asked whether persistent 

vegetation patterns could be measured and correlated to an inundation regime.  Specifically, have 

the shapes and sizes of vernal meadows changed over time in a way that is significantly different 

than that of non-vernal meadows?  How then would it be possible to quantify and compare such 

changes?  Moreover, are there remaining vernal meadows that have gone unnoticed or been 

missed in previous site surveys that are discoverable using the methods demonstrated here?   

One objective of this study was to create a single index number, henceforth referred to as 

the Persistence Index (PI), to encapsulate the gross degree of size and shape change an ecological 

patch undergoes over time.  To make this evaluation, which required very high resolution aerial 
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photography and fine-scale classification, a method of object-based image analysis was 

employed.  The resulting classification outputs were analyzed at the patch level for a variety of 

shape and size metrics.  Changes in metric values were computed over short-term (10-year) and 

long-term (70-year) difference intervals.  The degrees of change in several key metrics were then 

combined and normalized in a novel equation to create the Pl value for each study site.  A 

comparison of PI distributions for known vernal and non-vernal meadows was used to determine 

if any differences between the two populations existed.  If water is the factor controlling the 

vegetation patterns in lowland meadows, as hypothesized, the relative magnitudes and variances 

in PI values were expected to be significantly smaller for those areas that pool vernally, as 

compared to those that do not.  

1.1 Aerial Wetland Surveillance 

Wetlands are frequently surveyed using flyovers and aerial image data.  Panchromatic (B&W), 

colorized infrared (CIR), and true-color aerial imagery have all been employed to this end 

(Burne 2001; Carpenter, Stone, and Griffin 2011; Cutler 2006; Stone 1992; Tiner 2003).  Manual 

image interpretation via a stereoscope is a well-established but laborious method (Burne 2001; 

Drägut and Blaschke 2006; Fallon 2013; Lathrop et al. 2005; Stone 1992).  More recently, 

supervised and unsupervised algorithms for automatic image classification have been developed, 

and in the past several decades used routinely for wetlands surveying (Cutler 2006; Cormier 

2001; Dissanska, Bernier, and Payette 2009; Fallon 2013; Frohn et al. 2009, 2012; Gibbes et al. 

2010; Lichvar et al. 2006). Most of these perform pixel-based classifications on images that offer 

no better than 15-30 m resolution (e.g. Landsat TM and ETM+ datasets).  Because some vernal 

pools may be smaller than three meters across (Zedler 1987), an alternative approach amenable 

to use with higher resolution datasets, such as OBIA, is necessary. 
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Medium (15–5 m), high (5–1 m), and very high spatial resolution (<1 m) (MSR, HSR, 

VHSR, respectively) satellite imagery in many spectral channels is now routinely available 

through missions like Quickbird, Ikonos, WorldView-2, and SPOT-5.  These higher resolution 

images present highly-complex spectral components that confound typical pixel-based 

classification processes (Blaschke 2010; Burnett and Blaschke 2003; Corcoran, Winstanley, and 

Mooney 2010; Mallinis, Pleniou, and Koutsias 2010; Thompson and Gergel 2008; Yu and Zhang 

2008).  By comparison, object-based classification has been demonstrated to be highly accurate, 

but is still an area of ongoing research and development (Corcoran, Winstanley, and Mooney 

2010; Drägut and Blaschke 2006).  OBIA utilizes texture, color, and spatial orientation to first 

segment (outline), then classify objects in an image (Blaschke 2010; Burnett and Blaschke 2003; 

Corcoran, Winstanley, and Mooney 2010; Drägut and Blaschke 2006; Hsu, Chua, and Pung 

2000; Johansen et al 2007; Mallinis, Pleniou. and Koutsias 2010; Yu and Zhang 2008).  OBIA 

has been used to classify wetland areas, as well as to map vegetation patterns in landscapes 

(Blaschke 2010; Cutler 2006; Dissanska, Bernier, and Payette 2009; Fallon 2013; Frohn et al. 

2009, 2012; Gibbes et al. 2010; Johansen et al. 2007; Lichvar 2006; Mayer et al. 1997).  This 

thesis demonstrates a technique for integrating OBIA results with the analytical power of a 

Geographic Information System (GIS) to extract vegetation patterns around potential and 

confirmed vernal lowland meadows, and measure changes in those patterns over time.  Historic 

and contemporary aerial and satellite imagery were used to measure spatial persistence and 

compare vernal lowlands with other lowland meadows.   

1.2 Wetlands and Vernal Pools at Fort Ord  

Fort Ord (Figure 1) occupies a plateau of relict Pleistocene and Holocene sand dunes on the 

southeastern crescent of California's Monterey Bay (Smith et al. 2002).  The former U.S. Army  
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Figure 1: Fort Ord MRS-BLM Restricted Site 

 

base is a 28,000 acre (~45 square mile) CERCLA Superfund site with legacy pollution left over 

from nearly 100 years of intense military activity (EMC Planning Group 2012; EMC Planning 

Group and EDAW, Inc. 2001a; LFR, Weston Solutions, and Westcliffe Engineering, Inc. 2008).  

While under Army control, over 8,000 ha (approximately 20,000 acres) of undeveloped 

wilderness were restricted and used for historic firing ranges and training areas.  Much of that 

wilderness is in the impact area (Figure 1), and remains entirely off limits because it is still 

polluted with dangerous munitions and unexploded ordnance.  Ironically, the restricted area is 

also habitat for several important ecosystems with significantly reduced ranges, including central 



6 
 

 

Figure 2: Previously Confirmed (ID # 80C02) Versus Previously Unconfirmed (ID # 80P03) Vernal 
Pool Meadows (Source Imagery: USGS EarthExplorer, Google Earth, 8/25/2014) 

 

maritime chaparral and collocated vernal pools (Burleson Consulting, Inc. 2006; Keeler-Wolf et 

al. 1998).  An unintentional consequence of the Army’s 75 year occupation of the land is that 

many of the Fort Ord vernal pools have been protected from development (Bauder 2006; Keeler-

Wolf et al. 1998; Van Meter, Bailey, and Grant 2008), as can often happen with natural 

landscapes near to noxious land uses (Longcore and Rich 2008).  Yet, the Army’s treatment of 

the land may have also led to a shift from natural wetlands and vernal pools to stock ponds and 

artificial pools formed in artillery craters (Keeler-Wolf et al. 1998; Smith et al. 2002).   

As visible from medium- and high-resolution imagery, there remain many depressions in 

the restricted area’s landscape that are marked only as meadows or grasslands, but which bear a 

strong visual resemblance to already-mapped vernal areas.  Some of these grasslands (bottom 

row, Figure 2) were confirmed as vernal pools during this analysis, through multiple water 

sightings and extreme visual similarities.  Other non-pooling meadows with similar appearances, 

if they exist in lowland depressions, may themselves be dormant vernal areas.  As such, they 

should be examined thoroughly to assess their hydrologic potential.   
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 Vernal pools, as well as much of their constituent biota, are protected by both federal and 

state statutes, and they are recognized as highly valuable habitat areas for freshwater crustaceans 

and amphibians (Keeler-Wolf et al. 1998; Kneitel 2014; TetraTech and Ecosystems West 

Consulting Group 2014; USFWS 2005; Zedler 1987, 2003).  At present, military installations 

with de facto wilderness refuges, like that at Fort Ord, offer the best opportunity to reclaim and 

restore vernal areas (Cooper and Perlman 1997; Keeler-Wolf et al. 1998; USFWS 2005).  

Because vernal pools at Fort Ord are protected sites, knowing the locations of them is vital to any 

conservation efforts.  They are critical habitat and breeding areas for endangered, threatened, and 

special status species like the California tiger salamander (Ambystoma californiense), fairy 

shrimp (Linderiella occidentalis), and Contra Costa goldfields wildflowers (Lasthenia 

conjugens) (Burleson Consulting, Inc. 2006; Keeler-Wolf et al. 1998; Lathrop et al. 2005; LFR, 

Weston Solutions, and Westcliffe Engineering, Inc. 2008; Smith et al. 2002; USFWS 2005; 

Wang et al. 2011).  Some other vernal pool species may be largely endemic to Fort Ord.  

Identifying new vernal pool habitat areas would thus be a critical boon to local and statewide 

conservation efforts.   

 The specific definition of a vernal pool varies regionally, since they occur in a variety of 

landscapes all over the globe (Bauder 2005; Burne 2001; Carpenter, Stone, and Griffin 2011; 

Lathrop et al. 2005; Keeler-Wolf et al. 1998; Mattoni and Longcore 1997; Reed and Amundson 

2007; Stone 2002; Van Meter, Bailey, and Grant 2008; Van Thomme 2011; Zedler 1987).  In 

general, vernal pools are ephemeral waterbodies that collect in a depression in the landscape 

during late winter and early spring rains.  They persist for at least two months, providing critical 

habitat for local flora and fauna, and then slowly desiccate during the hot months of summer 

(Burne 2001; Cormier 2001; Stone 1992).  Importantly, because they are not permanent, they 
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cannot support fish populations that would otherwise predate upon the invertebrates and 

amphibians that breed in vernal waters (Burne 2001; Lathrop et al. 2005; Munoz et al. 2009; 

USFWS 2005; Zedler 2003).  Pools can range in size from 1 m2 to 36 ha, but are generally less 

than 1 m deep (Keeler-Wolf et al. 1998; USFWS 2005).  They lack inlets and outlets, and either 

trap water with an impermeable horizon of clay or bedrock, or sit low enough to be below the 

surface level of a perched water table (Bauder 2005; Burne 2001; Lathrop et al. 2005, Stone 

1992).  Often, a characteristic array of wildflowers will colonize the margins of a pool, making 

them detectable even after surface waters are gone (Burne 2001; Burleson Consulting, Inc. 2006; 

USFWS 2005; Van Thomme 2001; Zedler 1987).  

1.3 Scope 

Fort Ord vernal pools are part of the Fort Ord Core Area (Figure 3), a subzone of the larger 

Central Coast vernal pool region (USFWS 2005).  In the Fort Ord Core Area, vernal pools occur 

in three basic environments: (1) in steep valleys supporting oak woodlands and annual grasslands 

to the southeast; (2) in oak woodland savannas in the north; and (3) amongst the xeric (arid) 

sandy soils and central maritime chaparral of the southwest relict sand dunes (Smith et al. 2002).  

It is the last variety of pools that concern this study, as they reside in an uncommon vernal 

environment that has been altered by human actions.  For this research, vegetative alliances 

described in the literature assisted in the identification of potential pool locations (Burleson 

Consulting, Inc. 2006; Jones & Stokes Associates 1992; Keeler-Wolf et al. 1998; USFWS 2005; 

Zedler 1987).  The identification framework created here for characterizing dry or dormant pools 

in coastal chaparral will be useful in informing future attempts to use remote sensing similarly in 

other locations.   
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Figure 3: The Fort Ord Core Area (USFWS 2005) 

 

 A literature review uncovered no attempts to quantify Fort Ord’s extinct or dormant 

vernal pool systems with aerial or remote sensing data.  Although aerial imagery has been used 

elsewhere for vernal pool detection several times in the past, these studies have focused 

primarily on the identification of temporary waterbodies (Burne 2001; Carpenter, Stone, and 

Griffin 2011; Lathrop et al. 2005; Stone 2002; Van Meter, Bailey, and Grant 2008).  Because 

Fort Ord has Mediterranean weather patterns (mild, moist winters and prolonged dry summers), 

however, its vernal pools exhibit variable hydrological cycles.  In some years they may not fill 

with surface water at all, which makes water an unreliable indicator.  Many organisms that use 
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vernal habitats in California are drought and fire adapted, and it is possible for pools to be 

dormant for decades before re-establishing themselves when appropriate conditions return 

(USFWS 2005; Van Dyke and Holl 2003; Van Dyke, Holl, and Griffin 2001).   

 This ability for vernal pools to lie dormant is particularly relevant at Fort Ord, where 

military activities have altered the landscape.  Many of the natural vernal pools may have been 

degraded while, at the same time, artificial ones were being inadvertently created.  Historical 

images therefore provide a baseline for calculating changes in confirmed and potential vernal 

pool sites, and OBIA offers an alternative method for examining the lasting effects of water and 

disturbance on plant communities in and around vernal pools.   

 Several ground studies have mapped portions of the base’s extant vernal pools, but they 

do not agree entirely on the locations of vernal pool meadows (Burleson Consulting, Inc. 2006; 

Jones & Stokes Associates 1992; LFR, Weston Solutions, and Westcliffe Engineering, Inc. 2008; 

Tannourji 2009).  Aerial imagery provides a different perspective not afforded to samplers 

working in situ.  Landscape features such as the boundary between terrestrial and edge flora, 

depressions and swales, seasonal wildflowers, and mima mounds are strong indicators of the 

presence of latent hydric soil (Bauder 2000; Cormier 2001; Cutler 2006; Keeler-Wolf et al. 1998; 

Reed and Amundson 2007; TetraTech and Ecosystems West Consulting Group 2014; USFWS 

2005, Wang et al. 2011; Zedler 1987, 2003), but may not always be discerned from the ground.  

While each of these indicators can be extracted using OBIA; this thesis primarily focused on 

mapping locations and characteristics of the boundaries of terrestrial-edge species (Burleson 

Consulting, Inc. 2006; Burne 2001; Keeler-Wolf et al. 1998; Montrone 2013; Reed and 

Amundson 2007; Zedler 1987).  This boundary zone is typically represented by a band of 

constituent plants that undergo the most environmental stress of any in the localized vernal pool 
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Figure 4: PVP Site 70P14 Vegetative Persistence and Hydrology Indicators (Photo Credits: Top 
Center, WorldView 2 2011; Bottom Right, C. Hanley 2015; All others, Google Earth) 

 

community (Bauder 2000; Montrone 2013; Tannourji 2009; Zedler 1987).  The boundary zone is 

an extreme environment that is highly vulnerable to alterations in hydrologic regime, making it 

an excellent indicator of change-over-time.   

 The underlying premise for this study was that vernal pools create a lasting imprint on the 

local environment.  This imprint is difficult to erase, even through burning, bulldozing, or 

bombing.  For example, a lowland meadow persists over an eight year time-series of photos, in 

spite of surrounding disturbance and encroaching chaparral (Figure 4).  The center and right-

hand panes show verdant springtime conditions that, upon close inspection, demonstrate vernal 

indicators like damp soil and wildflowers.  The site shown (ID# 70P14) is not a confirmed vernal 

pool; whether or not it has vernal hydrology is unknown.  It is, however, representative of other 

PVP in appearance and floral composition.  It may be a relict or dormant pool site that is still 

imprinted on the land because of an ongoing subterranean hydrologic regime.   
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When a vernal pool disappears permanently due to a change in hydrology, it is possible 

for its physical signature to persist in the landscape for years or decades.  This project advanced 

the hypothesis that vegetation patterns that persist in spite of repeated disturbances can be 

combined with topographical data to determine the historic extent of vernal pool systems at Fort 

Ord.  The methodology adapted previously developed object-based image extraction techniques 

to identify and analyze potential vernal pool sites.  The process whereby relict vernal pool areas 

were detected through OBIA is extensible to future studies of a similar nature.  Discovering new 

sites in this manner can provide an avenue for better understanding California’s coastal vernal 

pool ecosystems.  Using the evidence produced by this study, researchers will be able focus 

survey effort on sites with the highest probability of having a vernal pool hydrology to collect 

soil and plant samples, which can then be used to verify the predictions.  Finally, this thesis has 

produced the first comprehensive database of Fort Ord impact area vernal pool locations, which 

will be immediately useful in instructing continued conservation and future restoration efforts.    
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

 

Wetlands are important national resources with high ecological, economic, and social value 

(Gibbes et al. 2010; Haas, Bartholomé, and Combal 2009).  Remote sensing data has a long 

history of use in the inventory and delineation of wetland resources, at both continental and 

regional scales.  Virtually every type of remote sensing data has been employed to study wetland 

areas.  Because wetlands are often in remote, inaccessible places covering vast stretches, the 

acquisition of ground evidence might be impractical, or even impossible in many instances 

(Cormier 2001; Haas, Bartholomé, and Combal 2009; Munoz et al. 2009; Stone 1992).  Remote 

sensing provides a solution to this problem and has proven to be a valuable tool for studying and 

mapping wetlands worldwide.   

 In resolutions ranging from low to very high, aerial and satellite imagery provide wide 

coverage, time-series data, and the ability to study remote sites ex situ.  In particular, the 

availability of historic aerial imagery and satellite data collected at regular return intervals makes 

possible change assessments, and the detection of geographically isolated temporary waterbodies 

(e.g. vernal pools).  It is common practice in this field to use the presence of water in an image as 

a wetland indicator (Burne 2001; Carpenter, Stone, and Griffin 2011; Dissanska, Bernier, and 

Payette 2009; Frohn et al. 2009; Yu and Zhang 2008).  However, because temporary isolated 

waterbodies are ephemeral, they may not be flooded at the time of imaging (Andrew and Ustin 

2008; Bauder 2000, 2005).  Fort Ord is a case in point, as the majority of photos reviewed for 

this project were taken while the landscape did not contain water features.  Hence, other 

indicators were needed to remotely detect vernal pools.    
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Figure 5: Flyover Aerial of a Large Fort Ord Vernal Pool, 21 February, 2015 (Photo Credits: C. 
Hanley) 

 

2.1 Vernal Pools 

Vernal pools, like those found in woodlands (Figure 5), are a rare type of isolated ephemeral 

wetland.  They are characterized physically as topographical depressions that flood seasonally 

and lack inlets or outlets (Bauder 2005; Burne 2001; Carpenter, Stone, and Griffin 2011; 

Cormier 2001; Kneitel 2014; Stone 1992).  Inundation typically lasts two to six months and is 

followed by a lengthy desiccation period (Burne 2001; Cormier 2001; Stone 1992).  Most pools 

trap water because they are either located on a shallow or exposed sill of bedrock, or underlain 

with a shallow clay aquitard (Carpenter, Stone, and Griffin 2011; Cormier 2001; Keeler-Wolf et 

al. 1998; Mayer et al. 1997; Montrone 2013; Smith et al. 2002; USFWS 2005, Zedler 1987, 

2003).  In some cases, pool bottoms may extend below the surface elevation of a locally perched 

water table (Ferren et al. 1996; Keeler-Wolf et al. 1998; Smith et al. 2002; Zedler 1987, 2003).   
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 Biologically, vernal pools are richly diverse temporary habitats, and many pool taxa are 

specially adapted to their use (Bagella, Caria, and Zuccarello 2010; Burleson Consulting, Inc. 

2006; Burne 2001; EMC Planning Group and EDAW, Inc.2001b; Tannourji 2009; USFWS 

2005; Van Thomme 2001; Zedler 1987).  California’s vernal pools are known to be habitat for an 

assortment of endangered or threatened species of endemic flora and fauna.  Such organisms 

have evolved to rely heavily upon specific ephemeral sites (Cormier 2001; Cutler 2006; Frohn et 

al. 2012; Gordon et al. 2012; Keeler-Wolf et al. 1998; Kneitel 2014; Lane, D’Amico, and Autrey 

2012; Tannourji 2009; USFWS 2005).  For instance, amphibians and freshwater crustaceans use 

vernal pools for breeding because their ephemeral nature precludes the presence of fish that 

would prey upon them and otherwise compete for resources (Burne 2001; Cormier 2001; 

Lathrop et al. 2005; Munoz et al. 2009; USFWS 2005; Zedler 2003).  In addition, mammals use 

vernal pools as watering holes (Zedler 1987), migratory birds for temporary stopovers and 

breeding (Van Thomme 2001), and some plants are entirely restricted to the harsh environments 

of pool basins or edges (Rhazi et al. 2006; Tannourji 2009; Zedler 1987).   

 The inundation regime drives the structure of pool vegetation such that it often results in 

three distinct, concentric vegetative bands (i.e. aquatic, edge, and terrestrial plant taxa), although 

in some cases the banding may be non-concentric or fragmented (Bagella, Caria, and Zuccarello 

2010; Keeler-Wolf et al. 1998; Montrone 2013; Schlising and Sanders 1982; Tannourji 2009; 

USFWS 2005).  Because pool soils have a cyclical hydrological regime, their moisture content 

varies greatly throughout the year.  Soil moisture also varies along an elevation gradient.  The 

lowest local elevations flood first and for the longest, while higher elevations receive shorter-

duration flooding that begins later in the year and ends earlier (Bagella, Caria, and Zuccarello 

2010; Bauder 2000, 2005; Cormier 2001; Fernández-Aláez, Fernández- Aláez, and Bécares 
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1999; Rhazi et al. 2006).  Both the timing and the duration of the inundation affect the 

development of pool vegetation, especially the location, size, and continuity of bands (Bagella, 

Caria, and Zuccarello 2010; Keeler-Wolf et al. 1998; Kneitel 2014; Rhazi et al. 2006; Zedler 

1987).   

2.2 Vernal Pools at Fort Ord 

It could be argued that certain of Fort Ord’s vernal pools are amongst the rarest of all varieties, 

and not just because they are part of the remaining 10% of California’s historic cohort.  These 

pools exist perched on a plateau of relict sand dunes that is uncommon in itself (Mattoni and 

Longcore 1997, Smith et al. 2002) and exhibits moderately to well-drained soil with little or no 

natural surface runoff (Smith et al. 2002).  The local climate type is Mediterranean, which has a 

very limited worldwide distribution.  Similarly, the dominant upland vegetation type, coastal 

central maritime chaparral (visible in the foreground of Figure 6), is a threatened ecosystem 

endemic to only a few small areas of California (Van Dyke and Holl 2003; Van Dyke, Holl, and 

Griffin 2001).  In this environment, eggs and seeds of pool taxa can lay dormant within the soil’s 

seedbank, awaiting the return of water before reviving (Gordon et al. 2012; USFWS 2005; Van 

Dyke and Holl 2003; Van Dyke, Holl, and Griffin 2001; Van Thomme 2001, Zedler 1987).  This 

dormancy can last years or decades, and is critical in ensuring survival of pool species since 

hydric regimes may vary greatly from year to year and pool to pool (Gordon et al. 2012; USFWS 

2005).  In some years, as has been observed by the author, pools do not fill at all (Andrew and 

Ustin 2008; Bauder 2000).  Vernal pools in California have also been demonstrated to have high 

within pool and pool to pool variation in terms of community structure (Bagella, Caria, and 

Zuccarello 2010; Barbour et al. 2003; Gordon et al. 2012; Rhazi et al. 2006; Tannourji 2009).   
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Figure 6: Mixed Chaparral and Oak Landscape inside the Restricted Area (Photo Credits: C. 
Hanley) 

 

 Central maritime chaparral is drought-resistant, woody vegetation dominated by 

manzanita (Arctostaphylos spp.) and coyote brush (Baccharis pilularis) (Smith et al. 2002; 

TetraTech and Ecosystems West Consulting Group 2014; Van Dyke and Holl 2003; Van Dyke, 

Holl, and Griffin 2001).  At Fort Ord, the chaparral is also interspersed with Coast Live Oak 

(Quercus agrifolia), Monterey Pine (Pinus radiata), coastal sage scrub, and small lowland 

meadows (TetraTech and Ecosystems West Consulting Group 2014).  Although this region of 

California is both drought- and fire-prone and local plant taxa are well-adapted for it, current 

drought conditions are severe and the burn regime has been unnatural for 100 years or more 

(EMC Planning Group and EDAW, Inc.2001a; LFR, Weston Solutions, and Westcliffe 
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Engineering, Inc. 2008; Smith et al. 2002).  A shift towards either climax terrestrial communities 

(e.g. mature chaparral or oak woodland) or disturbance species (e.g. invasive annuals grasses) 

should be measurable in the landscape at Fort Ord, in light of the current circumstances.  If the 

size and shape of meadow areas exhibit measurable consistency over time, then water is likely 

playing a role.  Regularly flooded soils can only support certain plant species, at the exclusion of 

all others (Bauder 2000, 2005; Tannourji 2009; Zedler 1987, 2003).  Included on the exclusion 

list are terrestrial floral species such as chaparral plants, coast live oaks, and invasive annual 

grasses.  In the absence of water and in the face of disturbance, vernal pool species should be 

locally extirpated in favor of the aforementioned terrestrial species.   

 Several ground studies of Fort Ord vernal pools have been conducted, most pursuant to 

the Fort Ord Reuse Plan (Burleson Consulting, Inc. 2006; Jones & Stokes Associates 1992; LFR, 

Weston Solutions, and Westcliffe Engineering, Inc. 2008; Tannourji 2009).  These studies have 

variously characterized local flora and fauna, mapped the extents of known pools, and surveyed 

for characteristic species such as California tiger salamanders and fairy shrimp. No two studies 

are in agreement about the quantity or locations of vernal pool sites, however, and no remote 

sensing work has been conducted in this regard.  Moreover, although some studies have 

discussed factors that have degraded vernal habitat at Fort Ord, there are few specific site 

locations described in the literature.  The quantity and locations of degraded and lost vernal pools 

at Fort Ord are unknown.  Sources of degradation include water diversions to holding ponds, 

erosion due to road and trail cuts, cratering from large explosions, soil contamination from 

remaining ordnance, and changes in climate (Keeler-Wolf et al. 1998; Smith et al. 2002).  The 

study area, as described in the methods section, has 15 previously confirmed vernal pool sites 

and approximately 51 other lowland meadows that were viewed as having the potential to be 
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dormant or relict vernal pools.  Henceforth, this document will refer to all previously known 

vernal pools as confirmed vernal pools (CVP).  All other lowland meadows in the study area will 

interchangeably be referred to as either study sites or potential vernal pools (PVP) (sensu Burne 

2001).  

2.3 Remote Sensing of Wetlands and Vernal Pools 

To classify vernal pools visually, images are usually selected based on optimal flyover time 

(generally spring, leaf-off imagery taken in wet years) (Burne 2001; Carpenter, Stone, and 

Griffin 2011; Cormier 2001; Lathrop et al. 2005; Stone 1992; Van Meter, Bailey, and Grant 

2008).  Time-series studies have either examined multiple images from the same year to verify 

sites by measuring inundation time, or assessed change between different years (Burne 2001; 

Frohn et al. 2012; Stone 1992).  B&W and CIR images are preferred over true color photos 

because water has a much more distinct spectral signature in B&W and CIR (Burne 2001; 

Cormier 2001; Frohn et al. 2009; Lane, D’Amico, and Autrey 2012; Lathrop et al. 2005; Stone 

1992; Van Dyke and Holl 2003; Van Meter, Bailey, and Grant 2008).  Supplementary 

topographic and soil data from a GIS are routinely utilized to verify that PVP meet the basic 

physical requirements of a vernal pool (Burne 2001; Carpenter, Stone, and Griffin 2011; Cormier 

2011; Haas, Bartholomé, and Combal 2009; Lichvar 2006; Munoz et al. 2009; Stone 1992; Van 

Meter, Bailey, and Grant 2008; Yu and Zhang 2008).  The typical scale range employed in this 

type of manual classification varies form 1:30,000 to 1:4,800 (Burne 2001; Carpenter, Stone, and 

Griffin 2011; Cormier 2001, Stone 1992). 

2.3.1 Surveying Wetlands Using Image Analysis 

More recently, automatic classification using pixel- and object-based extraction algorithms have 

been shown to produce similarly accurate results with less subjectivity (Burnett and Blaschke 
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2003; Corcoran, Winstanley, and Mooney 2010; Drăgut and Blaschke 2006; Hsu, Chua, and 

Pung 2000).  Supervised and unsupervised pixel-based classifications are often used on low to 

medium resolution data (Blaschke 2010; Haas, Bartholomé, and Combal 2009; Thompson and 

Gergel 2008).  They are most effective when areas to be classified are locally homogenous and 

single-scale (Burnett and Blaschke 2003; Drăgut and Blaschke 2006; Johansen et al. 2007).  

Pixel-based classification schemes are well-developed, and used in many applications beyond 

wetlands research.  Their limitation for use in land cover analysis stems from the advent of HSR 

and VHSR data, which exhibits increased heterogeneity at finer scales (Blaschke 2010; Burnett 

and Blaschke 2003; Corcoran, Winstanley, and Mooney 2010; Mallinis, Pleniou, and Koutsias 

2010; Thompson and Gergel 2008; Yu and Zhang 2008).  Frohn et al. (2011) attempted to 

overcome this problem with sub-pixel classification of isolated wetlands and vernal pools, using 

Landsat ETM+ hyperspectral data (30–15 m spatial resolution).  They demonstrated better than 

87% producer’s and 97% user’s accuracies.  Conversely, Fallon (2013) used EO-1 Hyperion 60 

m resolution hyperspectral data to perform sub-pixel classification of spectral endmembers in 

channeled scablands, with only limited success.   

 High resolution imagery is more spectrally complex than low resolution because of the 

increased detail (Burnett and Blaschke 2003; Coburn and Roberts 2004; Corcoran, Winstanley, 

and Mooney 2010; Frohn et al. 2009; Johansen et al. 2007).  Spectral information alone cannot 

sufficiently describe images in which small objects and textures are resolvable.  Object-based 

classification algorithms combine spectral data with texture, spatial context, size, and shape to 

first segment an image into homogenous polygons, then merge the polygons into objects and 

classify them according to some set of knowledge-based semantics (Baatz and Schäpe 1999; 

Blaschke 2010; Dissanska, Bernier, and Payette 2009; Forestier et al. 2012, Halounova 2004; 
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Hsu, Chua, and Pung 2000; Johansen et al. 2007; Mallinis, Pleniou, and Koutsias 2010; 

Smeulders et al. 2000; Yu and Zhang 2008).  The divide that separates spectral interpretation 

from semantic interpretation is called the semantic gap; it represents the difference between 

automatically and manually extracted information (Dissanska, Bernier, and Payette 2009; 

Forestier et al. 2012; Smeulders et al. 2000).  Object-based classification can be used to make the 

semantic gap smaller (Forestier et al. 2012).  OBIA processes are built to mimic the manner in 

which the human eyes and brain interpret visual information, and have been demonstrated to 

produce more accurate results than pixel-based spectral analyses (Baatz and Schäpe 1999; 

Blaschke 2010; Hsu, Chua, and Pung 2000).   

 Frohn et al. (2009) demonstrated a technique for accurately distinguishing isolated 

wetlands using OBIA on medium resolution Landsat-7 imagery.  More typically, high resolution 

data from satellite missions like Quickbird, Ikonos, WorldView 2, and SPOT-5 are used for 

OBIA.  In another approach, historical B&W aerial photographs were subjected to OBIA by 

Dissanska, Bernier, and Payette (2009) to analyze changes in peatlands and patterned fens.  

Cutler (1998) applied OBIA to distinguish homogenous landscape areas for potential inclusion in 

a sampling pool.  Random OBIA polygons were then chosen for comparison between field data 

and high-resolution satellite imagery.  OBIA has also been applied more broadly in 

environmental science to classify topographic landform types (Drăgut and Blaschke 2006), forest 

and riparian habitat (Johansen et al. 2007), heterogenous and fragmented temperate rainforests 

(Thompson and Gergel 2008), type and age class of forest stands (Coburn and Roberts 2004), 

and vegetation patterns in African savannas (Gibbes et al. 2010).    
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CHAPTER 3: METHODOLOGY  

 

This chapter details the process by which this thesis was constructed and the research it describes 

executed.  Descriptions of the selection of the study area and period are provided first in Section 

3.1.  Section 3.2 provides an overview of the study design and details previous scientific studies 

that were particularly influential to the research described here.  The next three sections, in 

sequence, discuss the system used to explore, pre-process, and segment/classify the datasets.  

Finally, the change analysis approach that was used is documented in Section 3.6. 

 The methods described below draw heavily upon previous scientific studies of chaparral 

ecosystems, remote wetlands surveillance techniques, and image analysis algorithms.  

Nonetheless, the route from concept to execution required much trial-and-error, a trait common 

to object-based image analyses (Fallon 2013; Frohn et al. 2009; Yu and Zhang 2008; Zhang and 

Maxwell 2006).  Many details of the development of the segmentation and classification process 

trees have been omitted here for brevity’s sake, and because they are inconsequential to the 

outcome of this analysis.  The landscape patterns are easily enough discerned that similarly 

accurate OBIA results could be achieved in multiple ways.   

Real-world objects vary in size, shape, texture, spectral signature, and spatial context, so 

OBIA must account for these factors (Baatz and Schäpe 2000; Dissanska, Bernier, and Payette 

2009).  However, humans are able to classify visual objects immediately and discretely, without 

consciously considering such things.  For example, we know an automobile when we see one; 

our brains automatically classify motorcycles, sedans, and trucks into this category even though 

they do not look similar.  It is much more difficult for computer software to do the same equally 
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well.  Thus, according to Baatz and Schäpe (2000), the human eye is the ultimate judge of image 

classification results.  OBIA attempts to mimic the human ability to classify objects, in imagery 

and video (Blaschke 2010; Hsu, Chua, and Pung 2000).  Whereas pixel-based analyses utilize 

non-spatial histograms that suffer from lost spatial information, object-based systems are better-

suited to handle the inherent spatial complexity of VHSR imagery (Hsu, Chua, and Pung 2000).   

3.1 Selection of Study Area and Time-Period 

This project’s study extent includes the majority of the historic impact area, along with the 

interim action ranges and the Seaside munitions response area.  In total, the 2,578 ha (6,371 

acres) area is bounded by Eucalyptus Road to the north, General Jim Moore Boulevard to the 

west, South Boundary Road to the south, and Impossible Canyon to the East.  This location, also 

known as MRS-BLM, was chosen because its terrain and dominant vegetation are distinctive 

compared to the majority of the base’s grounds.  Vernal pools in the impact area exhibit more 

visually obvious vegetation patterns than those found elsewhere on Ft. Ord.  The primary upland 

vegetation is central maritime chaparral occasionally interspersed with coastal sage scrub, coast 

live oak trees, and mixed conifer stands (Burleson Consulting, Inc. 2006; Smith et al. 2002; 

TetraTech and Ecosystems West Consulting Group 2014; Van Dyke and Holl 2003).  Lowlands, 

by contrast, are typically grassy meadows (TetraTech and Ecosystems West Consulting Group 

2014).  The climate is Mediterranean and prone to severe drought (Bauder 2000, 2005; Smith et 

al. 2002; USFWS 2005; Van Dyke, Holl, and Griffin 2001).  The two soil complexes comprising 

the study area are Baywood and Arnold, both of which are varieties of well-drained relict sand 

dunes approaching 100 m deep (EMC Planning Group and EDAW, Inc.2001b; TetraTech and 

Ecosystems West Consulting Group 2014; Smith et al. 2002).  Of note, however, is the fact that  
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Figure 7: Study Area Extent 

 

vernal soil samples taken within the study area by Burleson Consulting Inc. (2006) showed a 

predominant association with clay rich, low-permeability Antioch soils.   

The study area (Figure 7) is about 2.4 km (1.50 mi) to 8.3 km (5.15 mi) from the 

coastline.  The vertical range covers only around 215 m, from 60 to 275 m above mean sea level, 

but contains significant microtopographic relief.  The area generally decreases in elevation from 

north to south and from east to west.  However, the microtopography is such that hills and 

valleys appear to occur isotropically in localized areas, independently of elevation.   
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 Image data were used for either exploratory or analytical purposes, depending on the 

type.  Exploratory data were any historical aerial or satellite images that provided context or 

assisted in framing the study.  There were three primary sources for exploratory images: the U.S. 

Army Base Realignment and Closure (BRAC) office at Fort Ord, the USGS EarthExplorer tool 

(earthexplorer.usgs.gov/, last accessed 25 September 2014), and Google Earth Pro 

(https://www.google.com/earth/, last accessed 31 March 2015).  Data types included MSR B&W 

photos, low resolution CIR, and VHSR multispectral satellite imagery.  Exploratory data were 

used to count and log historic inundation events, provide research context, support decision-

making processes, and assess physical site characteristics.  In most instances, exploratory images 

lacked complete metadata and did not include sensor information, spatial or spectral resolutions, 

or acquisition dates.  In some cases they were not georeferenced.  Yet they still provided a 

wealth of information and the opportunity for limited analysis.  Unexpectedly, the images were 

utilized to confirm that certain PVP are in fact CVP (Figures 2 and 8). 

3.1.1 Criteria for Selecting Analytical Datasets 

Analytical data included two raw VHSR multispectral satellite datasets and one high resolution 

panchromatic aerial photograph.  The project received a student research grant through the 

commercial vendor DigitalGlobe and the DigitalGlobe Foundation that provided the requisite 

data free of charge.  The images were selected based upon the following six criteria: 

1. Complete coverage of the study area; 

2. Minimum of 10 years separation between datasets; 

3. Maximum cloud cover of 1%; 

4. Image acquisition date in late winter or early spring; 

https://www.google.com/earth/
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Figure 8: Exploratory Aerials Used to Confirm Site ID # 80P03 as Vernal (Photo credits, clockwise 
from top left: Google Earth, USGS EarthExplorer, C. Hanley, WorldView 2) 

 

5. Panchromatic resolution finer than 1.0 m; and 

6. Multispectral channels available. 

 Of the datasets from which to choose, one Ikonos (0.82 m panchromatic, 3.28 m blue, 

green, red, red edge, yellow, coastal, and near infrared) and one WorldView 2 (0.50 m 

panchromatic, 2.00 m blue, green, red, red edge, yellow, coastal, near infrared 1, and near 

infrared 2) dataset were selected.  The Ikonos data was acquired 07 February, 2001, while that 

from WorldView 2 was obtained ten years later, on 15 April, 2011.  Both presented 0% cloud 

cover and 100% aerial coverage of the study area.  The analysis was restricted to the red, blue, 

green, and near infrared channels (NIR) for each multispectral dataset.  The panchromatic aerial 
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mosaic was taken in 1941, and is of unknown but sufficiently high resolution to warrant 

inclusion as a baseline image for this study; it appears to have been resampled to a pixel 

resolution of 0.5 m.   

 Although the datasets did not have identical spatial resolutions, the OBIA was performed 

separately on each and the change analysis was based on vector polygons.  Therefore all data 

were assumed to be functionally comparable in spite of the minor discrepancies in pixel scale.  

Positional differences that could not be resolved through georeferencing and geometric 

corrections were ignored because the final change analysis was based upon the geometry of 

polygons, not their absolute real-world positions.  To wit, a change in polygon size or shape 

implies a change in boundary location, even if the precise coordinates of the new and old 

locations are not accurately known. 

3.2 Study Design 

This study began as an investigation of historical aerial imagery.  It was rapidly evident that 

while the combination of anthropogenic disturbances and natural processes lead to short-term 

dynamism, at the landscape level the processes are largely deterministic.  This study is based on 

the hypothesis that water explains the apparent tendency for localized climax communities to 

remain geographically bound, rather than expanding when disturbance presents an opportunity to 

do so.   

 An initial assumption that water would rarely be visible in historical aerials of the study 

area proved to be incorrect.  Although looking for visible water surfaces directly is simpler and 

in line with approaches that have already been established in previous studies, this seemed 

poorly suited for use at the Fort Ord study area because the region is so arid.  As fact would have 

it, numerous photographs show water surfaces in at least a few of the known vernal pool sites.  
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Surprisingly, water features were confirmed at five additional locations more than once (see 

Figures 2 and 8).  These PVP locations also exhibited some of the same vegetative patterns as 

those visible around CVPs. 

Such vegetation patterns were quantified in each analytical image, using Trimble 

eCognition Developer 9.0 for segmentation and classification, and ArcMap 10.3 for pre- and 

post-processing and analysis.  The final datasets were also parametrically analyzed in IBM SPSS 

Statistics 21.  These patterns were used as a proxy for water in the environment because plants 

must be specially adapted to survive in flooded soil.  In theory, the way plant communities 

develop in areas with steep hydrologic gradients should be notably different than the way the 

same constituent species come together in the absence of standing water.   

 The postulate for this thesis is that relict or dormant vernal pool sites are still 

discoverable between historic and contemporary imagery, because the vegetation patterns in and 

immediately surrounding them appear strongly persistent.  In this view, isolated lowland 

meadows with margins that are fixed in time and space are that way because of seasonal 

flooding.  The persistence of vegetation patterns is not typical of a highly disturbed environment, 

such as the study area.  The history of continual disturbance (e.g. fire, mastication, explosions, 

mowing, road and trail cuts, water diversions, and bulldozing) should be enough to shift the 

whole landscape toward a more homogenous state, via both primary and secondary forms of 

succession (Bauder 2000, 2005; Gopal 1986; TetraTech and Ecosystems West Consulting Group 

2014; Van Dyke and Holl 2003; Van Dyke, Holl, and Griffin 2003).  If meadow islands are 

permanent fixtures, it could be because some underlying process or processes are helping 

maintain the status quo.  The presence of water at or just below the soil’s surface could surely  



29 
 

 

Figure 9: Oblique Camera Angle of CVP (ID # 80P07) from Google Earth Pro 

 

account for such patterning, because it would restrict the nearby vegetation types to a much 

narrower cohort.   

CVP site locations (n = 15) were compiled using previously published studies and maps 

as source information.  An additional five meadows regularly developing water features were 

also noted, bringing the CVP total to 20.  PVPs (n < 51) were identified through a manual 

examination of satellite imagery, aerial photographs, Google Earth Pro, and the digital USGS 

topographical base layer available through ArcGIS Online.  Data exploration was primarily 

conducted with a dual approach that included the simultaneous use of ArcMap 10.3 and Google 

Earth Pro.  Preliminary utilization of Google Earth included visual scrutiny of the study area, 

logging of historic inundation events using the timeline feature, and 2.5D visualization of the 

study area.  Google Earth is excellent for studying spatial relationships when used in a decision-

support role (Haas, Bartholomé, and Combal 2009; Jiang et al. 2012; Wang et al. 2011).  For 

instance, the camera can be panned, tilted, and rotated (Figure 9) to view different perspectives  
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Figure 10: Analytical Rasters, Side by Side After Pre-processing 

 

of image rasters draped over a 2.5D fine-scale model of the Earth’s surface topography, and the 

vertical axis can be stretched by up to a factor of three.   

Raster images were pan-sharpened and clipped to the boundaries of the study area before 

being uploaded into eCognition and subjected to OBIA.  Figure 10 shows the three analytical 

rasters in B&W (1941, far left) and true color (2001 and 2011, from center to far right), as they 

appeared after the completion of post-processing.  In a manner conceptually similar to that of 

Zhang and Maxwell (2006), the primary Model Object (MO) was determined to be the outermost 

edge of a study meadow, wherever chaparral and meadow habitats converged.  Convergent 

regions typically constituted the boundary between upland and lowland vegetation types.   

This study demonstrates a method for tracking changes in upland/lowland boundaries to 

allow a comparison between vernal pool-containing and other meadows.  An ad hoc 

segmentation algorithm based on the Fractal Net Evolution Approach (FNEA), developed by 

Baatz and Schäpe (2000), was created for each set of rasters, after which supervised and visual 

methods were used to classify the image segments (Baatz and Schäpe 2000; Blaschke 2010; 

Halounova 2004; Mallinis, Pleniou, and Koutsias 2010).  Objects were classified with input from  
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Figure 11: Site 80C03, the Single Study Area Vernal Pool Visible from Public Roads (Photo 
Credits: C. Hanley) 

 

various components of the available feature space (discussed later in Section 3.5).  Finally, the 

fully classified set of objects were exported to shapefiles and uploaded back into ArcMap.  The 

patch analyst extension (Rempel, Kaukinen, and Carr 2012) was used to calculate area, perimeter 

(PERI), perimeter-to- area ratio (PAR), shape index (SI), and fractal dimension (FD).  Patch 

metrics were then used to compare short- and long-term changes in CVP and PVP boundaries.   

Attempts were made to collect ground evidence to verify OBIA results, but only one 

vernal meadow, 80C03 (Figure 11), is visible from a road or access point open to the public.  A 

request to access the restricted zone was denied due to unsafe conditions relating to unexploded 

ordnance and munitions.  Instead, a low-altitude flyover in a Piper PA-28 Cherokee was 

conducted above the study area on 21 February, 2015.  The route traversed was an approximate 

north-south sawtooth pattern spanning the full extent of the study area.  In flight, full HD video 
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of the ground was recorded from a GoPro HERO 3 digital camera mounted to the underside of 

the right wing, as photographs were taken from the cockpit.  Conditions were clear and bright, 

with a flight time of 42 minutes at an altitude between 250 and 400 m above sea level. 

3.3 Data Exploration 

Persistent spatial patterns at the interface between meadow areas and chaparral habitats, mima 

mounds, and the regular occurrence of oak stands nearby, are noticeable landscape features 

common to many time-series images of the study area.  Any location with a lasting meadow was 

initially considered for inclusion as a study site.  Unlike other areas of Fort Ord, where oak trees 

mix with invasive annual grasses to create savanna ecosystems, the grassy lowland meadows in 

the study area invariably have no growth of oak trees within their margins.  Interestingly, many 

meadows appear to coincide with small oak groves within the upland vegetation at their southern 

and western peripheries.  By contrast, oaks tend to appear as isolated individuals throughout 

much of the remainder of the upland ecosystem.   

 A digital USGS topographic 10 m contour map, marked with depressions and drainage 

areas, was used to locate and log the locations of low spots in the landscape (n = 69) in an 

ArcGIS point feature class.  The point file was converted to KML format, uploaded into Google 

Earth Pro, and used to confirm the physical feasibility of indicated sites.  From the combination 

of topographical data and historical visual information, 54 PVPs were included in the first 

iteration.   

 Upon review of all the available datasets, it was determined through water sightings that 

the number of CVPs should be increased to 19, while the number of PVPs varied from image to 

image.  The discrepancy in PVP count was due to disqualifications mediated by extreme 

disturbance.  Namely, prescribed burns and mastications just prior to the 2001 and 2011 image   
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Table 1: Summary of Study Meadow Counts by Type and Year  

Type 1941 2001 2011 
 
     CVP sites 

 
18 

 
17 

 
18 

     PVP sites 41 38 7 

     Unique sites* 4 2 2 

*Unique sites appear only in a single analytical image. 

 

acquisition dates left more than 50% of the study area too denuded to perform accurate OBIA.  

For the purposes of this research, a minimum regrowth time of at least eight years was needed to 

see the re-establishment of a distinct upland/lowland boundary.   

 Recent disturbances were equal cause for jettisoning both CVP and PVP sites, except 

where a visible water feature existed in the analytical image.  Sites were also eliminated when 

they did not persist from 1941 to 2001, or were not present in the 1941 image.  The 2011 data 

included two unique sites, both of which are vernal pools.  However, only one of these is a 

previously confirmed CVP.  The study sites are summarized by year and type in Table 1. 

3.4 Pre-Processing 

Raw analytical data were projected and georeferenceed immediately upon acquisition.  This 

study utilized the projected coordinate system WGS_1984_UTM_Zone_10N.  The multispectral 

analytical images were pan-sharpened in ArcMap using a combination of their multispectral and 

panchromatic bands, with Gramm-Schmidt transformations.  The default channel weights were 

chosen with respect to the sensor of acquisition.    
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`  
Figure 12: 1941 B&W Raster Reassembled mosaic, Post-geometric corrections 

 

Prior to export, attempts were made to correct alignment issues between the three 

datasets.  Since the panchromatic picture contained clear mosaic errors and the Ikonos data was 

acquired off-nadir, the WorldView 2 imagery was selected as the base layer to which the others 

were aligned.  It was impossible to eliminate every alignment error, but most were significantly 

reduced.  The Ikonos data was corrected using georeferenced control points.  Control points were 

also used to align the 1941 raster, but the image contains some minor registration issues that are 

unresolvable due to slight mosaic misalignments.  All attempts were made to correct the errors 

by first clipping the geotiff raster along the original mosaic lines, which are clearly visible in 

Figure 12, then georeferencing the new pieces and reassembling the mosaic.  However, some 

distortion remained, in spite of these efforts.   
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Figure 13: NDVI Comparison, 2001 Ikonos (left) versus 2011 WV2 (right) 

 

The final pre-processing step performed in ArcMap was the creation of a Normalized Difference 

Vegetation Index (NDVI) band, which combines the Red and near-infrared (NIR) channels to 

create a new channel that is useful in assessing the health and state of vegetation (Fallon 2013; 

Highfield, Ward, and Laffan 2008).  Red light is absorbed by chlorophyll during photosynthesis, 

while near infrared wavelengths are reflected by healthy plant cells.  Most commonly, the 

brighter regions in Figure 13 coincide with areas of healthy flora.  The NDVI band was 

calculated according to the standard NDVI equation:  

     
       

       
 

Image layers were mixed in eCognition using trial-and-error.  The approach focused on 

the creation of clear visual distinctions between the most important image objects, like meadow 

margins, oak trees, and chaparral stands.  The final weighted layer mixture was a variant of a 

weighted bands CIR mix.  The mix included red, green, blue, NIR, NDVI, and panchromatic  

(1) 
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Figure 14: Novel False Color Composite of Ikonos 2001 Imagery 

 

channels in order to enhance the separation between the feature spaces of different object classes, 

with each color gun having up to four layers used in combination (Figure 14).   

 Halounova (2004) recognized the need to perform signature space enhancement, doing so 

by using Gauss and median filters to reduce the amount of overlap in the spectral signatures of 

classes.  Similar separation was achieved here manually, via noise-reducing contrast stretches 

produced with either inverse or negative gamma equalizations.  An example of the novel false 

color composite mix, as it appeared when applied to the 2001 imagery, is visible in Figure 14.  In 

the center of the inset is a CVP with a band of Dead Transition (orange) around the meadow 
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(purple).  Oak trees are visible as blue objects, while the chaparral appears teal.  Roads, bare 

ground, and fire break are the darkest objects visible.   

3.5 Segmentation and Object-Based Classification 

Typical OBIA workflows employ the Fractal Net Evolution Approach, which Baatz and Schäpe 

(2000) introduced commercially in eCognition software, followed by a Nearest Neighbor (NN) 

classification (Figure 15).  FNEA has since been referenced numerous times in the literature, 

particularly in conjunction with multiresolution segmentation (Blaschke 2010; Burnett and 

Blaschke 2003; Halounova 2004; Mallinis, Pleniou, and Koutsias 2010, Smeulders et al. 2000).   

In segmentation, grayscale texture is used to create polygons known as segments that 

represent homogenous regions.  Multiresolution segmentation involves segmenting an image at 

multiple resolutions, in order to fuse homogenous lower level sub-objects into higher level model 

object classes.  The result is a tessellation of polygons spanning the image extent, with each 

texture-based polygon ideally containing adjacent pixel groupings that represent cohesive real-

world objects.  Subsequently, classification of the segmented objects is performed.  A NN 

algorithm (Blaschke 2010; Halounova 2004; Smeulders et al. 2000; Yu and Zhang 2008) is the 

most commonly applied classification technique.  NN classifies horizontally across an image, 

assigning segments as semantic objects according to their spectral signatures, densities, and 

spatial contexts.  The classification parameters one chooses to employ can be optimized in 

eCognition, but it is often easier to make the choices on a trial-and-error basis instead.  The 

results of a simple linear FNEA and NN classification are depicted in Figure 15.   

3.5.1 Fort Ord OBIA 

Segmentation usually requires some supervision through the input of texture training areas, 

manual adjustments to segment boundaries, or the creation of additional dissolves not triggered   
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Figure 15: Typical Linear FNEA and NN Workflow 

 

by the chosen algorithm (Dissanska, Bernier, and Payette 2009; Halounova 2004).  Though 

object-based classification cannot be performed without first segmenting an image (Baatz and 

Schäpe 2000), it is possible to iterate through cycles of merging, re-segmenting, and re-

classifying portions of an image to improve result accuracy.  Several iterations may be necessary 

because noise in the image data can negatively impact segmentation if it occurs on a similar 

spatial scale as an object’s texture (Baatz and Schäpe 2000).  Per Zhang and Maxwell (2006), the 

segmentation of sub-objects can ultimately effect the drawn accuracy of the model objects.  Thus 

it is preferable to over-segment the image with smaller polygons and merge upwards, stopping 

before the MO is merged with other objects.   

 The Fort Ord imagery was analyzed using a derivative of the FNEA approach that 

included a top-down, bottom-up scheme.  Model objects were segmented and classified 

iteratively, going both forward and backwards as necessary.  This multi-directional tactic 

allowed the small number of PVP and CVP sub-objects to be selected and merged into model 
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objects and classified manually, ensuring that lowland features and their boundaries were 

extracted with the highest precision possible.  There was a conscious tendency to err on the side 

of commission and occasionally include adjacent sub-objects whenever the original segmentation 

was incorrect, as lowlands were later unclassified and re-segmented at a finer scale to improve 

the accuracy of the results.  Spectral- and shape-related thresholds were then utilized to classify 

the remainder of the image because feature space optimization and the NN algorithms were 

computationally intensive and time-consuming.  The cost in time was doubly important since the 

entire OBIA was constructed from scratch for each image, using trial-and-error.   

 To illustrate how thresholds were used, consider two equivalent road segments.  Due to 

any number of chromatic aberrations or variations in the objects themselves, each road segment 

may attenuate differing proportions of a given wavelength of light.  The reflected portion of said 

wavelength gives the object brightness in that color.  Thus one road segment may have a 

brightness in the blue band, for instance, that overlaps the signature space of another object class 

while the other road segment does not.  Adding a second threshold for another band, such as red, 

allows the first threshold to be adjusted while still excluding another object class that overlaps in 

blue (provided there is signature space separation in the new band). 

While NN classification would have been easier to execute on a conceptual level, and the 

method described herein required more effort and direct input from the user, it also achieved 

much more accurate classification results.  The scheme was refined using incremental changes in 

threshold values.  Moreover, a shapefile of burn area polygons was created in ArcMap, exported 

to eCognition, and used to classify burn areas in the 2011 image.  Integration of the two data 

streams significantly reduced the time required to perform the OBIA, as well as improved the 
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accuracy.  Finally, the accuracies were assessed using error matrices created from Test and 

Training Area (TTA) masks, which were constructed from a carefully selected group of samples.   

3.5.2 Semantic Considerations 

Prudence dictates that segmentation and OBIA results must be visually inspected to ensure that 

classifications match the semantic knowledge base (Dissanska, Bernier, and Payette 2009).  

However, experience has shown that the semantic structure of the study is equally, if not more, 

important in producing accurate results.  Choosing the optimal number of classes and naming 

them aptly was not easy to accomplish.  The imagery was exclusively comprised of wilderness or 

natural landscapes, which increased the challenge because clear physical, as well as semantic, 

distinctions between object classes were often hard to achieve.  For example, it was necessary to 

ask where the boundaries between transitional vegetation and lowland grasses were when a 

gradient existed rather than a break.  Likewise, how many oak trees constituted an oak grove, or 

what was the appropriate classification of a study site that had water features but was not a 

previously confirmed vernal pool?  What if object classes existed in one image but not others?  

These were some of the questions that needed answers. 

Clearly, object class semantics are paramount to OBIA success.  In this case, a structure 

was required that could be applied equally to every image in the time-series sequence.  The Fort 

Ord impact area time-series presented many challenges because there was a high-degree of 

variation inherent in several object classes.  For example, the “Invasive” class (Figure 16) 

included both iceplant (Carpobrotus edulis) and pampas grass (Cortaderia jubata), which differ 

considerably in texture and appearance.  Another class, “Upland,” likely encompassed anywhere 

from one to several species of Arctostaphylos manzanita, coyote brush, Monterey ceanothus 

(Ceanothus cuneatus var. rigidus), and chamise (Adenostoma fasciculatum).  “Upland” probably   
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Figure 16: Iceplant and Pampas Grass Comprised the "Invasive" Class (Photo Credits: C. Hanley) 

 

also included some unsegmented oak trees, small patches of bare ground, invasives, and the 

occasional coastal sage scrub community.  Overall, there are more than 1,000 plant species that 

have been identified on the base, meaning that most categories had a catch-all component similar 

to the invasive and upland classes (BLM 2010).  Table 2 details the overarching semantic 

structure employed during the analysis, as it was run in eCognition.  Classes that related to 

lowland structures, such as Live Transition, Dead Transition, Lowland, and Water were later 

reclassified in ArcMap into a supra class, termed “Lowland Complex” (not described in Table 2).  

Although it was at times difficult to differentiate between within-meadow classes, it was rarely 

difficult to establish the lowland-upland boundary.  Consequently, it was deemed appropriate to 

analyze lowlands as complexes, rather than at the constituent level.  However, OBIA and 

classification required a more granular approach that necessitated the additional classes to reduce 

the semantic gap.    
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Table 2: Object Class Names, Acronyms, and Descriptions 

Class Name Description 
 

Bare Ground/Dirt Track (BG) 

 

Unpaved roads, tracks, paths, trails, and bare ground 

Building Buildings or similar human structures 

Dead Transition (DT) Band of grey (dead or senescent) upland vegetation 

surrounding vernal meadows 

Fire Break/Burn (FB) Any area that had been recently cleared of vegetation, 

but was not bare ground (e.g. recent burns, fuel breaks, 

youngest chaparral age classes) 

Invasive (IV) Typically iceplant or pampas grass 

Live Transition (LT) Areas where dead transition was reviving or chaparral 

was recruiting into meadow areas 

Lowland (LL) Local depression, grassy zone inside or adjacent to 

Dead/Live transition where water features may or may 

not develop 

Oak Tree (OT) Individual oak trees and groves 

Paved Road (PR) Any pavement, asphalt, or gravel surface 

Upland (UP) Chaparral vegetation that had reached minimum age 

class of 8 years 

Upland Prairie Any grassland not located in a lowland depression 

Water (W) Visible water features 

 

3.6 Analyzing Change 
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From eCognition, the user is able to access and export over 100 spectral, geometric, or class-

related metrics.  However, these data were not used because the vernal pool analysis was not 

spectral in nature.  More importantly, post-hoc corrections performed in ArcMap would have 

rendered eCognition’s geometric values incorrect.  The spatial metrics described below in this 

section were therefore calculated using ArcMap after post-hoc corrections had been made.   

 The change analysis approach that is presented in this section is novel in the sense that, 

unlike the other components of this study, it was not guided by previously published research.  In 

essence, the ad hoc development of the change analysis arose from the problem of quantifying 

the spatial differences between an object and later versions of itself.  Since the registration 

between the images was inexact, and the average offsets were far greater than the images’ spatial 

resolutions, performing an overlay or examining changes in centroid positions were not 

considered appropriate analytical pathways.  Instead, all lowland complexes were analyzed using 

the Patch Analyst extension, which computed values for several key geometric properties.  In 

total, five initial metrics—area, perimeter, PAR, SI, and FD—were calculated for every meadow 

site (ID codes shown in Figure 17) in each analytical image, with PAR, SI, and FD being unitless 

numbers.  A similar set of metrics was used by Backoulou et al. (2011) to evaluate island patches 

of aphid-stressed plants in wheat fields.   

Changes in the geometric properties of polygons must be evaluated with caution because 

area and perimeter do not scale equally.  Complicating the issue is the fact both segmentation 

granularity and landscape composition can lead to discrepancies in object smoothness.  Changes 

in smoothness have a greater impact on perimeter than area.  One way to handle the problem is 

to calculate a shape index.  The SI equation normalizes the perimeter-to-area ratio of a polygon  
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Figure 17: Lowland Complex Site ID Numbers 

 

by comparing it to a simple shape, like a square, of equal size (Backoulou et al. 2011).  SI also 

makes the PAR metric redundant.  Instead another useful metric is the fractal dimension which, 

in simplest terms, is a measure of the degree of complexity of a shape’s outline (Backoulou et al. 

2011).  The study meadows tend to have amorphous outlines that are relatively compact and 

simple, but the smoothness can exhibit some variance over time.   

 To compare images, differences in metric values for self-same sites were derived for the 

1941–2001 and 2001–2011 intervals.  The percent change in each category was calculated as 

well.  Finally, a new metric introduced for the first time here, the Persistence Index, was 

determined for each site as follows:  

      
 

 
  

   

  
 
    
   

 
    

   
  (2) 
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where Ai = the initial area, ΔAt = the area change at time t, SIi = the initial shape index, ΔSIt = 

the change in the SI at time t, FDi = the initial fractal dimension, and ΔFDt = the change in the 

FD at time t.  Given that Ai, SIi, and FDi cannot equal or sum to zero, the range is -∞ < PI < ∞.   

PI is also unitless, and can be interpreted as the mean of the change ratio across all three 

metrics.  In theory, it can range to infinity in either direction.  Shapes with PI values very close to 

zero have undergone very little change since the previous measurement.  The index gives the 

relative degree of combined shape and size change of an object, either positive (i.e. expansion) or 

negative (i.e. contraction).   

PI can also be weighted by interval (WIPI) by dividing by the number of intervals, 

allowing for groups with a variety of temporal ranges to be compared.  For instance, 2011 WIPI 

value distributions were compared to 2001 WIPI values for self-same CVP locations, with an 

interval length of 10 years:  

      
 
 
   

   

  
 
    
   

 
    

   
 

 
 

where C = the number of intervals and C ≠ 0.  Thus WIPI for the 7 decadal intervals from 1941–

2001 is given by:  

         
 
 
   

   

  
 
    
   

 
    

   
 

 
 

Likewise, WIPI for the single decadal interval from 2001–2011 is given by:  

         
 
 
 
  

   

  
 
    
   

 
    

   
 

 
 

WIPI normalizes the persistence index for the effects of time, as the absolute value of a given 

patch’s PI would be expected to increase as time passes.   

(3) 

(4) 

(5) 



46 
 

 Patch and class level analytics were performed in both ArcMap and SPSS, including 

exploratory regression, dependent, and independent t-tests.  For comparative purposes, meadows 

were placed into one of the two previously described nominal categories, PVP or CVP.  The 

CVP category comprised both previously confirmed vernal pool meadows and those discovered 

during this research.  PVP were defined as any other persistent lowland meadow study site 

within the study area.  For the 1941–2011 interval, it was possible to compare the groups of 

CVPs and PVPs because sufficient samples existed.  However, between 2003 and 2011, 

approximately half of the study area was burned or masticated.  As a consequence, PVP sites 

were reduced from 38 to seven.  CVP sites suffered less, being reduced from 16 to 15.  Thus 

WIPI was developed to facilitate a comparison between self-same CVP sites over time.  Whereas 

the 70-year interval allowed for the comparison of two different groups—CVP and PVP—using 

the Student’s (independent samples) t-test, the 10-year interval only allowed for CVP to be 

compared with themselves using the Paired (dependent) samples t-test.   

 Spatial analytics were attempted in addition to parametric statistics, but were ultimately 

dropped when an adequate model could not be constructed using exploratory regression.  The 

datasets were not well-suited to the requirements of a regression analysis.  Redundancy in some 

of the metrics manifested itself as multi-collinearity, while spatial autocorrelation of the residuals 

and small sample sizes further confounded the test.  Moreover, a regression requires a continuous 

dependent variable, which the datasets in question did not adequately possess.  Conversely, the 

data were amenable to parametric analysis, allowing the data collected from this OBIA to be 

analyzed with only the occasional logarithmic transformation or removal of an outlier.   
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CHAPTER 4: RESULTS 

 

The results presented here are broken up into three parts.  In Section 4.1, the accuracy reports for 

the classification procedures are given, while Section 4.2 contains the key statistical outputs from 

SPSS.  The last section focuses on the observations resulting from the low altitude flyover.   

4.1 Classification Results 

Classification accuracy was assessed in eCognition using error matrices generated from TTA 

masks.  Masks were created from MO level segments, using sample sets carefully chosen to 

represent the within-class variation inherent in the data.  Error, or confusion, matrices 

(contingency tables) like the ones shown later in this section provide estimates of Type I and II 

errors on a per class basis.  Classification errors can manifest in two basic ways.  The former, 

Type I, happen when the correct action was not taken.  The latter, Type II, arise when the 

incorrect action was taken. 

Type I errors are errors of omission that occur when a pixel should have been included in 

a given class, but was mistakenly omitted instead.  Omission errors are reflected in the columns 

of a contingency table.  The sum of each column is actually the total number of pixels that 

should belong to that class in the real world, according to ground evidence.  The Producer’s 

accuracy is another way of describing Type I error, in that it gives the estimated proportion of the 

true number of pixels that were classified correctly into a given class.  For example, consider a 

situation where an image contains 100 true pixels of grass; if 75 are classified as grass and 25 
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errantly classed into another category, the omission error would be 25% and the Producer’s 

accuracy would be 0.75 (75%).   

By comparison, Type II errors are related to User’s accuracy and commission errors, and 

are interpreted from a table’s rows.  Type II commission errors are those that result from a pixel 

being classified into a class to which it does not belong.  The way to distinguish between Type I 

and II errors is to recall that, for a given class, some proportion of pixels were not included that 

should have been (Type I) while other pixels were included that should not have been (Type II).  

Type II errors are caused when pixels are falsely counted in the class being examined.  In the 

same manner that Producer’s accuracy relates to Type I error, the User’s accuracy is an alternate 

expression of Type II error.  In essence, the User’s accuracy gives the relative likelihood that 

someone visiting a pixel’s real-world location would actually find the expected class of object.   

4.1.1 1941 Panchromatic Classification and Accuracy 

Classifying the 1941 B&W image required the fewest object classes, since its lower resolution 

and lack of color made classification to a higher granularity impossible.  Only classes that were 

easily and unmistakably identifiable were included in the image semantics.  The object classes 

included were Upland (UL), Fire Break/Burn (FB), Lowland (LL), Bare Ground/Dirt Track 

(BG), Oak Tree (OT), and Live Transition (LT).  With this semantic scheme, it is possible that 

undetectable errors may have occurred if Dead Transition (DT) and Invasive (IV) objects were 

present in the image, as they were not incorporated in the class structure.  Both classes would 

have been counted in the LT class by mistake.  Such a determination would be impossible to 

make, however, without ground evidence—which does not exist for the 1941 dataset.   

Figure 18 presents the classification results and Table 3 follows with the error matrix for 

the 1941 panchromatic image.  A visual examination of the output map shows that the   
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Figure 18: 1941 Panchromatic Image Classification Results 

Table 3: Error Matrix (Contingency Table) for 1941 Panchromatic Classification 

CLASS UL FB LL BG OT LT SUM 

UL 8,904,365 0 0 0 0 0 8,904,365 

FB 0 149,975 0 0 0 0 149,975 

LL 0 0 598,688 0 0 0 598,688 

BG 0 0 0 72,254 0 0 72,254 

OT 0 0 0 0 37,731 0 37,731 

LT 0 0 0 0 0 325,437 325,437 

SUM 8,904,365 149,975 598,688 72,254 37,731 325,437 10,088,450 

 
Prod. 1 1 1 1 1 1 1 
User 1 1 1 1 1 1 1 
Overall 1       
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classification proceeded with a high degree of accuracy.  On the other hand, the error matrix 

overestimated the accuracy in calculating 0% types I and II errors for each object class.  Since 

perfect classification performance is highly improbable, the accuracy results shown in Table 3 

are dubious.  The real accuracy could not have been 100%, but the reason for the overestimate is 

unclear.  Nonetheless, the vector output results easily pass inspection when scrutinized with the 

human eye.  It is reasonable to expect that the true accuracy may still be on par with the 2001 

and 2011 results, which both exceeded 98% overall. 

4.1.2 2001 Ikonos Classification and Accuracy 

The 2001 Ikonos imagery was significantly more complex than the B&W from 1941.  An 

additional six classes were needed, doubling the total from the first OBIA (Figure 19, next page).  

The combination of multispectral bands and increased spatial resolution led to an improved 

ability to distinguish between classes.  However, the gain in sensitivity is also what necessitated 

the expansion of the semantic structure.  The original MO classes were maintained, and six new 

classes were added, including Building, Dead Transition, Invasive, Paved Road (PR), Upland 

Prairie, and Water.  Only three of the newly added classes were considered during the accuracy 

assessment.  Building, upland prairie, and water objects were not evaluated in the error matrix 

because their occurrence rates were disproportionately low.  In all, there were five classified 

building objects and one each of upland prairie and water, out of a total of 10,643 object 

segments.  Since these three classes together occupied less than 0.1 percent of the total image 

area, their bearings on the overall accuracy of the OBIA were negligible.   

 The accuracy estimates produced using the remaining nine classes were very high (Table 

4, next page), equaling the accomplishments of Frohn et al. (2011).  Visually, the classification  
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Figure 19: 2001 Ikonos Image Classification Results 

Table 4: Error Matrix (Contingency Table) for 2001 Ikonos Classification 

CLASS LL UL DT BG FB OT PR LT IV SUM 

LL 68,186 0 0 0 0 0 0 0 0 68186 

UL 0 1,515,886 0 1,928 14,210 1,145 0 0 0 1533169 

DT 0 0 15,530 0 0 0 0 0 0 15530 

BG  0 0 0 53,842 13,113 0 0 0 0 66955 

FB 0 0 0 2,328 87,514 0 0 0 0 89842 

OT 0 100 0 0 0 159,154 0 0 0 159254 

PR 0 0 0 0 0 0 49,956 0 0 49956 

LT 0 0 0 0 0 0 0 21,648 0 21648 

IV 0 0 0 0 0 0 0 0 9,285 9285 

SUM 68,186 1,515,986 15,530 58,098 114,837 160,299 49,956 21,648 9,285 201,3825 
 

Producer 1 0.9999 1 0.9267 0.7621 0.9929 1 1 1  

User 1 0.9887 1 0.8042 0.9741 0.9994 1 1 1  

Overall  0.9837          
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results showed an exceptional degree of fidelity to the original image.  Like the 1941 results, 

there were some ostensibly error-free classes, such as Lowland, Paved Road, Live Transition, 

and Invasive.  However, these results are somewhat more believable because those classes were 

either classified manually or, in the case of Paved Road, had a sizable separation in feature 

space.  The most confusion transpired amongst the Upland, Oak Tree, Bare Ground/Dirt Track, 

and Fire Break/Burn classes.  BG and FB pixels were most often confused for one another, with 

each class lending to the majority of Type I and II errors in the other.  Consequently, the BG 

User’s accuracy of 80.42% and the FB Producer’s accuracy of 76.21% were significantly lower 

than those of the other classes.  Upland, for instance, demonstrated high User’s and Producer’s 

accuracies (98.87% and 99.99% respectively), in spite of a slight propensity toward commission 

errors involving BG, FB, and OT pixels.  Oak tree objects and their shadows were known 

confounding factors as they were too small and numerous to reliably segment as individuals.  

Not surprisingly, it was not unheard of for the occasional oak tree to go entirely unsegmented.  

Typically these oaks were encompassed within a larger upland object, which is reflected as Type 

I error for the Oak Tree class and Type II error for the Upland class.   

4.1.3 2011 WorldView 2 Classification and Accuracy 

The 2011 semantic structure had an extra class included, that of Athletic Field, to accommodate 

the addition of two small sod grass fields in an athletic compound at the southern tip of the study 

area.  As there were numerous water features visible in this image (Figure 20), the Water class 

was incorporated into the classification accuracy assessment (Table 5).  The Athletic Field, 

Building, and Upland Prairie classes were ignored for reasons similar to that of the 2001 

evaluation.  Altogether, 10 classes were included in the error matrix for the 2011 dataset, with 

nine being common to the 2001 image and six common to all three years.   
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Figure 20: 2011 WV2 Image Classification Results 

Table 5: Error Matrix (Contingency Table) for 2011 WV2 Classification 

CLASS LL DT BG UL FB PR OT W LT IV SUM 

LL 235,207 0 0 0 0 0 0 0 0 0 235,207 

DT 0 38,977 0 0 0 0 0 0 0 0 38,977 

BG 0 0 170,946 0 25,099 0 0 0 0 0 196,045 

UL 0 0 0 1,556,450 0 0 0 0 0 0 1,556,450 

FB 0 0 0 0 3,209,234 0 0 0 0 0 3,209,234 

PR 0 0 0 0 0 117,178 0 0 0 0 117,178 

OT 0 0 0 0 0 0 168,586 0 0 0 168,586 

W 0 0 0 0 0 0 0 106,129 0 0 106,129 

LT 0 0 0 0 0 0 0 0 33,479 0 33,479 

IV 0 0 0 0 0 0 0 0 0 44,999 44,999 

SUM 23,5207 38,977 170,946 1,556,450 3,234,333 117,178 168,586 106,129 33,479 44,999 5,706,284 

 
Prod. 1 1 1 1 0.9922 1 1 1 1 1  

User 1 1 0.8720 1 1 1 1 1 1 1  

Overall  0.9956           
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Figure 21: Landscape Conversion to Disturbance, from 2001 to 2011 

 

The WV2 imagery presented a unique set of challenges for OBIA because widespread 

disturbance effects were visible throughout the study area (Figure 21).  The disturbances were 

due to recent prescribed burns and manifested in a gradient of immature upland vegetation.  The 

most recent and severe disturbances were concentrated at the northeast corner of the study area.  

Within the disturbed zone, immature upland chaparral graded from youngest to oldest in a 

westerly direction, echoing the chronology of the previous decade’s land management practices.  

The total area of Fire Break/Burn class grew from an estimated 155.62 ha (384.54 acres) in 2001 

to 1,350.32 ha (3,336.73 acres) in 2011, nearly an order of magnitude increase.  In 2011, Fire 

Break/Burn coverage increased to about 52% of the study area, up from a modest 6% in 2001.   
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As so much of the study area had been mowed, masticated, or burned in the 10-year 

interval between datasets, the classification scheme was necessarily arbitrary.  The most 

reasonable course of action was to set a criteria for minimum growth years, and place any areas 

that failed to reach the age-restriction into the Fire Break/Burn category.  Doing so meant that, in 

2011, FB was a class that included upland, lowland, invasive, and transitional vegetation.  

Segments not already classified as Oak Tree, Bare Ground/Dirt Track, Paved Road, or Water 

were classified into the FB class wherever they intersected a polygon shapefile of relevant 

controlled burn sites, or otherwise contained indicative visual cues (e.g. an obvious recent 

vegetation disturbance). 

While painstaking care was applied to ensure the most accurate OBIA possible, the 

arbitrary nature of the FB class seems to have led to another overestimate of the procedure’s 

performance.  Like the results from 2001, the 2011 error matrix showed a similar, but less 

extreme tendency toward confusing FB with BG.  The other classes again exhibited 

overestimated accuracies of 100%.  The estimated overall accuracy of 99.56% is therefore 

believed to be higher than the true value as well.   

4.2 Statistical Results 

The Patch Analyst extension was used to derive the base geometry metrics described in Chapter 

3, Section 6 (Area, Perimeter, PAR, SI, and FD), which were then used calculate PI, WIPI, 

percent area change, and percent perimeter change.  Metrics were computed per lowland 

complex, for each year of analysis.   

 Since so many PVP areas were eliminated from the 2011 classification, the full short- and 

long-term analyses were not comparable.  Therefore, the statistical analysis for each was 

conducted differently.  For the 70-year interval, sufficient PVPs (n = 26-31, depending on 
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outliers) and CVPs (n = 16) were available to be able to compare the two as separate groups 

through independent samples t-tests.  At the 10-year scale, there were not enough PVPs (n = 5) 

to enable their inclusion.  Instead, 14 self-same CVPs were compared using dependent samples t-

tests.  Two sites, 70C29 and 80C11, presented water features but were eliminated because they 

were within burn areas.  In this manner, a short- and long-term comparison of geometric changes 

in CVP sites was achieved.  For PVP sites, only a comparison between these and CVP sites at the 

70-year scale was possible.  The results are summarized below, and a series of maps 

documenting more complete results are included in the appendices at the end of this document.   

4.2.1 70-Year CVP/PVP Comparison 

To evaluate CVP and PVP at the 70-year time scale, the two populations were compared using 

independent samples t-tests.  Metric values measured in 1941 and again in 2001 were used to 

calculate the change in each for every site.  The analysis included the following six metrics: 

1) Change in Fractal Dimension (Δ_FD) 

2) Change in Shape Index (Δ_SI) 

3) Change in Perimeter-to-Area Ratio (Δ_PAR) 

4) Percent Area Change (%Δ_AREA) 

5) Percent Perimeter Change (%Δ_PERI) 

6) Log base 10 of Persistence Index (Log(PI)) 

Area change and perimeter change were expressed in terms of a percentage to normalize 

them, since they do not scale equally.  Persistence indices were transformed into normal 

distributions by a base 10 logarithmic transformation with a positive shift of 0.25.  Table 6 

provides the full set of group statistics.  Table 7 summarizes the t-test results, including Levene’s 

Test for Equality of Variances.  The remaining graphical outputs, such as the box and whisker   
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Table 6: Group Statistics for 70-Year CVP/PVP Comparison 

Metric Type N Mean Std. Deviation Std. Error Mean 

Δ_FD 
PVP 31 .0342 .1101 .0198 
CVP 17 .0546 .0886 .0215 

Δ_SI 
PVP 31 .9358 1.6836 .3024 
CVP 17 1.0426 1.4661 .3556 

Δ_PAR 
PVP 28 .0150 .0792 .0150 
CVP 16 .0168 .0418 .0105 

%Δ_AREA 
PVP 26 22.7111 50.4222 9.8886 
CVP 17 33.5210 45.2974 10.9862 

%Δ_PERI 
PVP 27 40.1622 53.0898 10.2171 
CVP 17 65.7299 67.5221 16.3765 

Log(PI) 
PVP 29 -.3612 .2871 .0533 
CVP 16 -.2874 .1879 .0470 

 

Table 7: Independent T-test Results for 70-Year CVP/PVP Comparison 

 

 
 
 

Equal 
Variances 

Levene's 
Test for 

Equality of 
Variances 

t-test for Equality of Means 

 

95% Confidence 
Interval of the 

Difference 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Diff. 

Std. 
Error 
Diff. Lower Upper 

Δ_FD 
Assumed .725 .399 -.655 46 .516 -.0204 .0311 -.0830 .0423 

Not   
-.698 39.477 .489 -.0204 .0292 -.0794 .0386 

Δ_SI 
Assumed .420 .520 -.219 46 .827 -.1067 .4863 -1.0856 .8721 

Not   
-.229 37.148 .820 -.1067 .4668 -1.0524 .8389 

Δ_PAR 
Assumed 2.298 .137 -.081 42 .936 -.0017 .0212 -.0449 .0414 

Not   
-.095 41.848 .925 -.0017 .0183 -.0386 .0351 

%Δ_AREA 
Assumed .039 .844 -.715 41 .479 -10.8099 15.1233 -41.3520 19.7322 

Not   
-.731 36.919 .469 -10.8099 14.7811 -40.7616 19.1418 

%Δ_PERI 
Assumed 1.524 .224 -1.400 42 .169 -25.5676 18.2689 -62.4358 11.3005 

Not   
-1.325 28.246 .196 -25.5676 19.3023 -65.0911 13.9559 

Log(PI) 
Assumed 3.214 .080 -.923 43 .361 -.0738 .0800 -.2351 .0875 

Not   
-1.039 41.572 .305 -.0738 .0711 -.2173 .0696 
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Figure 22: Box and Whisker Plots with Outliers, Comparing PVP to CVP, for Each Analyzed 
Metric 

 

plots shown in Figure 22, are included in the appendices and were used to help ensure that each 

population met the assumptions of normality.  The boxplots show the range of values for PVPs 

(leftmost box in each plot) and CVPs (rightmost box), for each metric analyzed in the study.  The 

horizontal black bars represent, in order from lowest to highest, the minimum observed value, 

the first quartile, the median, the third quartile, and the maximum observation.  The box itself 

highlights the interquartile range, while the small black circles depict outliers.  Extreme outliers 

were removed prior to the final analysis. 

The most important statistics provided are the means, standard deviations, and standard 

error means from Table 6, along with the p-values given by the Levene’s Significance and the t-

test Significance (2-tailed) in Table 7.  A significant Levene’s statistic (p ≤ 0.05) would indicate 

that the assumption of equal variances was violated, necessitating the use of lower rows of values 
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(labeled “Not”).  However, equal variances were met across all categories, so the upper rows 

(labeled “Assumed”) were used.  For values of Significance (2-tailed), a p-value of 0.05 or less 

would have indicated a significant difference in the PVP and CVP means.   

There were no data categories with a statistically significant 2-tailed p-value at a 95% 

confidence interval.  In fact, no metric would have passed at a 90% confidence interval either.  

The means, standard deviations, and standard error means appear to be comparable between site 

types as well, particularly for the transformed PI and the changes in FD, SI, and PAR.  The 

percent changes in area and perimeter were non-significant as well, but did display greater 

relative discrepancies.  Nonetheless, by the metrics and methods applied here, the CVP and PVP 

populations are indistinguishable from the vantage point of geometric change.   

4.2.2 Short- and Long-Term Changes in Self-Same CVP Sites 

CVP were compared to themselves in order to check for geometric instabilities that might have 

been discoverable at a finer temporal scale.  The reasoning was that environmental variability 

might cause lowland boundaries to exhibit short-term spatial dynamism, with them eventually 

converging to a mean location as a result of geographic restrictions.  Water could be the cause of 

such a restriction, but drought and climate instability might lead to variation only evident on 

shorter time scales.   

Since the 2011 image contained so few PVP sites, a comparison using these data would 

have led to a dataset that was too small to be analyzed.  To ensure a larger sample size, PVPs 

were eliminated from the short- and long-term comparison.  The remaining CVPs were matched 

against their self-same sites, and compared at 10- and 70-year intervals.  The change in approach 

necessitated a shift from independent to dependent sample t-tests.  Logarithmic transformations 

similar to those previously described were used to create normal distributions, and the Weighted 
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Intervals Persistence Index was substituted for the non-weighted PI to normalize for interval 

length: 

1) Log base 10 of change in FD, 10-year minus 70-year (Log(ΔFD10) – Log(ΔFD70)) 

2) Log base 10 of change in SI, 10-year minus 70-year (Log(ΔSI10) – Log(ΔSI70)) 

3) Log base 10 of change in PAR, 10-year minus 70-year (Log(ΔPAR10) – Log(ΔPAR70)) 

4) Percent Area Change, 10-year minus 70-year (%ΔAREA10 – %ΔAREA70) 

5) Percent Perimeter Change, 10-year minus 70-year (%ΔPERI10 – %ΔPERI70) 

6) Weighted Intervals Persistence Index, 10-year minus 70-year (WIPI_10 – WIPI_70). 

The results of this part of the analysis are harder to interpret, mainly because they seem to 

conflict with one another.  The group statistics given in Table 8 show that, on average, CVP area 

decreased over the shorter but increased over the longer of the two intervals.  Interestingly, 

perimeter change increased over both intervals instead of similarly decreasing over the short-

term.  Percent area and percent perimeter change are cumulative, so the absolute value of either 

mean would be expected to greater over the longer interval.  Area should change the most, as it 

scales faster in both directions when a polygon changes size.  Accordingly, it is unclear how 

mean perimeter grew while mean area shrunk over the short interval.  WIPI, on the other hand, 

was stable across both time periods. 

 The primary values of interest for the results of the dependent sample t-test presented in 

Table 9 are found in the significance (2-tailed) column.  Like the previous t-tests, a 95% 

confidence interval for detecting differences in means is indicated by p ≤ 0.05.  Not surprisingly, 

percent area and percent perimeter changes showed significant differences between the two time 

intervals (p = 0.003 and p = 0.018, respectively).  Even slow growth (positive or negative) would 

eventually lead to the same kinds of results.  By contrast, low, stable WIPI values over both   
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Table 8: Group Statistics for Short- and Long-term Self-Same CVP Comparisons 

Pair   Mean       N Std. Deviation    Std. Error Mean 

Log(ΔFD10) – Log(ΔFD70) 
-.0775 14 .0239 .0064 
-.067 14 .0476 .0127 

Log(ΔSI10) – Log(ΔSI70) 
.2076 14 .6954 .1858 
.4160 14 .2363 .0632 

Log(ΔPAR10) – Log(ΔPAR70) 
-1.0979 14 .2253 .0602 
-1.2209 14 .5270 .1409 

%ΔAREA10 – %ΔAREA70 
-6.5806 14 15.6050 4.1706 
41.3330 14 43.3527 11.5865 

%ΔPERI10 – %ΔPERI70 
15.6284 14 33.6389 8.9904 
77.4321 14 65.7887 17.5828 

WIPI_10 – WIPI_70 
.0501 14 .1330 .0356 

.0474 14 .0333 .0090 
 

Table 9: Dependent Samples T-test Results for Short- and Long-Term CVP Comparisons 

  

 Paired Differences 

t df 
Sig. (2-
tailed) Mean 

Std. 
Deviation 

 

95% Confidence 
Interval of the 

Difference 
Std. 

Error 
Mean Lower Upper 

Log(ΔFD10) – 
Log(ΔFD70) -.670 13 .514 -.0106 .0591 .0158 -.0447 .0235 

Log(ΔSI10) – 
Log(ΔSI70) -.935 13 .367 -.2084 .8343 .2230 -.6901 .2733 

Log(ΔPAR10) – 
Log(ΔPAR70) .760 13 .461 .1229 .6051 .1617 -.2265 .47233 

%ΔAREA10 – 
%ΔAREA70 -3.693 13 .003 -47.9136 48.5477 12.9749 -75.9442 -19.8830 

%ΔPERI10 – 
%ΔPERI70 -2.714 13 .018 -61.8037 85.2204 22.7761 -111.0085 -12.5989 

WIPI_10 –  
WIPI_70 .066 13 .949 .0027 .1532 .0410 -.0858 .0912 
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intervals are likely attributable to an overall stability in size and shape.  Put another way, a small 

WIPI means that the spatial appearance of a shape has changed little over time.  When the 10-

year and 70-year WIPI means are so similar (p = 0.949), and so small (  10 = 0.0501,   70 = 

0.0474), the interpretation is that size and shape are temporally fractal.  That is, regardless of the 

length of the time interval, the sizes and shapes of the polygons appear unchanged.  

The most vexing results are the non-significant differences between intervals in the FD, 

SI, and PAR change tests.  Since the datasets were log transformed, their means are not useful in 

understanding the directionality of the changes.  However, since each is also a cumulative 

metric, a longer interval should result in more change.  Counterintuitively, similarity in FD, SI, 

and PAR changes over both intervals means that change was happening more quickly during the 

shorter time period.  Such a result supports the idea that short-term dynamics are juxtaposed with 

long-term stability. 

4.2.3 Performance of PI and WIPI 

The Persistence Index equation was created to provide a useful description of wholesale changes 

in polygon dimensions, including area, shape index, and fractal dimension.  The Weighted 

Intervals Persistence Index makes it possible to compare PI values across unequal time intervals.  

The Persistence Index equation minimizes the effect of minor changes so that major changes 

stand out more.  PI can be likened to the human eye, which is able to gloss over minor 

differences in a polygon to see that the underlying shape is still the same.   

 In the first analysis, the performance of PI was in keeping with the other results.  The 

logarithmic transformation came at the price of lost directional knowledge because all the PI 

values were first shifted to ensure none were less than zero.  The shift was necessary to perform 

the transformation, but it also filtered out information about whether change was in the form of 
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expansion or contraction.  Still, the finding that the PVP and CVP groups were not different was 

consistent with the findings of the analysis at large.  Conversely, the results of the second 

analysis were cryptic.  With the other results pointing to an overall increase in change over the 

short-term, the absolute value of WIPI would be expected to increase too.  Yet the differences 

between the two intervals was non-significant.  The 10- and 70-year WIPI values are mapped in 

Figures 23 and 24.  The WIPI results can easily be reconciled with the area and perimeter results 

because the latter two are cumulative while the former is not.  Since WIPI is normalized for the 

effects of time, it effectively tracks the change rate while area and perimeter changes are 

considered in gross. Hence a constant rate of change would give both a constant WIPI and 

changes in area and perimeter.   

 Reconciliation between WIPI and the other metrics is challenged by the fact that the 

index describes a slow, constant rate of change.  FD, SI, and PAR changes indicate a different 

trend.  They instead show that change appears to have sped up over the 10-year period.  The 

reasons for the discrepancy in the results are unknown.  One possible explanation is that WIPI is 

less sensitive to small changes in metric values that are more easily discerned by one of the more 

focused metrics.   

4.3 Flyover Observations 

Even the highest resolution aerial photography cannot substitute for the understanding an in situ 

visit can impart.  Despite the fact that a request for ground access to the study sites was denied, 

the airspace above Fort Ord is not restricted and low-altitude flyovers are permitted.  The 

primary goal in performing a flyover was to put real eyes on the study sites.  Since the only 

vernal pool visible from a public road was inundated at the time of this study, there seemed to be  
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Figure 23: 70-Year WIPI for Self-Same CVP Sites 

 

Figure 24: 10-Year WIPI for Self-Same CVP Sites  
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Figure 25: Erosion Scars Assisted in the Confirmation of Site ID# 80P07 as a CVP (Photo Credits: 
C. Hanley) 

 

a reasonable possibility of other sites being inundated as well.  The flyover was the only 

opportunity to collect ground evidence to verify classification results. 

During the flight, there were seven CVP sites noted with visible water surfaces, along 

with an eighth site possessing a large erosion gully leading directly into its center.  Of the seven 

sites with water in them, two were CVP confirmed for the first time during this study.  The 

eighth site was a PVP that had a detectable water feature in 2011 to go along with the erosion 

drainage evident during the flyover, the combination of which was compelling enough to cause 

the type to be switched to CVP prior to the final SPSS analysis.  Figure 25 shows the erosion 

feature (circled in red) in the eighth site (ID# 80P07) from opposite angles, with the aircraft wing 

visible in the foreground of the photo on the left. 

Overall, the flyover confirmed several ideas that were considered during data exploration.  

First, one of the justifications used for reassigning PVPs as CVPs was the frequency of water 

sightings.  The observation was made that certain PVPs had confirmed water features more often  
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Figure 26: Inundation Frequencies, Compiled from a Review of 21 Historic Aerial Images 

 

than some known vernal pools.  By extension, it was also obvious that inundation did not occur 

equally across the landscape, nor predictably with time.  In other words, there appeared to be no 

relationship between the filling of one pool and the filling of another in a given photo.  The 

flyover substantiated the idea that some pools fill more often than others, or at least hold water 

for longer.  Notably, when not inundated, CVP look superficially similar to PVP.  Total 

inundation frequencies were calculated after the flyover for 21 historic and contemporary images 

(including flyover data), the results of which are presented in Figure 26. 

A few PVPs, particularly toward the western margins, appeared to be converting into 

uplands.  Most, however, were verdant grasslands that visibly stood out amongst the various age 

classes of chaparral.  By the time of the flyover, around 75% of the study area’s mature chaparral  
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Figure 27: CVP Site 80C01 Timeline Showing Persistent Dead Transition (DT) Vegetation Band 
(Data Sources: Google Earth 2015; DigitalGlobe Foundation 2014; US Army BRAC 2014) 

 

had been removed.  After burning or mastication, the only vegetation left standing were oak 

trees.  Based on photographic evidence, it will take an estimated 8–10 years for the study area to 

return to a measurable state again, and 2–3 times as long as that for the chaparral to reach full 

maturity, when it can become decadent and exceed 5 m in height.   

Unfortunately, the flyover did not settle matters of identifying invasive and dead 

transition species.  The expedition did nothing to refute the assertion that the invasive class 

contained only pampas grass and ice plant, but neither did it provide confirmation.  Dead 

transition vegetation, on the other hand, was given this name for the lack of a better description.  

The only new information provided by the flight was that dead transition appears to come from a 

taller species than first anticipated.  The consistent shape and size of the DT band around some 

CVP is so striking that it almost looks artificial (Figure 27).  At the risk of being speculative, it 

seems at least plausible that DT is a remnant of very old chaparral that was never removed 

during previous land management regimes.  A mechanical clearing of the surrounding brush 
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Figure 28: Major Erosion Scars Divert Surface Waters within the Study Area (Photo Credits: C. 
Hanley) 

 

could account for the smooth shape and consistent size, with the cleared areas slowly maturing 

into healthy chaparral again while the remaining plants buffering the lowland eventually senesce 

and die.   

Certainly, vegetation removal is not the only anthropogenic scar visible on the landscape.  

The flyover revealed that wide, deep erosion gullies now crisscross the study area.  These gullies, 

visible as ragged gashes in Figure 28, clearly alter the way that water flows through the 

environment, and could be responsible for changing or stopping inundation regimes in nearby 

lowlands.  There also exist many leftover vehicles, buildings, bunkers, and rifle pits spread 

throughout study area that are sources of pollution, as well as physical disturbances.   
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

 

In the Fort Ord study area, lowland complexes are akin to Burnett and Blaschke’s “island 

patch[es] in a sea matrix” (2003, p. 238).  For them to exist, they must combat the slow 

encroachment of maritime chaparral.  This thesis pursued the explanation as to why lowland 

meadows, in the absence of a known vernal pool, are able to persist and not be swallowed up in 

the sea of upland vegetation by which they are surrounded.  The evidence put forth here indicates 

that the upland-lowland border interactions are spatially stagnant.  That is, when not artificially 

disturbed, they change very little whether measured over short or long time intervals.  Lowland 

grasses do not invade manzanita or chamise chaparral, likely because the shrubs are allelopathic 

and poison the surrounding soils (Van Dyke, Holl, and Griffin 2001).  On the other hand, 

persistent annual hydric cycles are the most plausible explanation as to why chaparral is repelled 

from the vernal and non-vernal pool lowlands with equal vigor.   

According to the data presented here, the border interactions that vernal and non-vernal 

pool lowlands have with upland chaparral are similar, in terms of their spatial context.  The 

empirical numbers confirm the observation that CVPs and PVPs are more than just superficially 

similar.  PVPs respond in similar ways to the same environmental pressures as CVPs.  That is 

not to suggest that all PVPs in the study are really vernal pools.  Rather, vernal pools are 

probably common amongst the PVP group, in order for them to exhibit such holistic similarities 

to CVPs.  To be sure, directly spotting water or visiting a site in person are the best, if not the 

only, ways to confirm that a PVP site is actually a vernal pool.  Nonetheless, the evidence 

suggests that most of the PVP sites must at least exhibit damp soil conditions that favor the 
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development of grasslands, while simultaneously repelling upland vegetation.  A few may 

actually display surface pools of water under the correct climatic conditions, although this is 

speculation based on suggestive but ultimately inconclusive visual evidence.  Since the region is 

currently in the midst of a severe and prolonged drought, the likelihood of ascertaining the truth 

in the near future is low.  If disturbances have re-routed water away from areas that were once 

vernal pools, they may now be relict or dormant instead.  Dormancy is nevertheless reversible, so 

it is worthwhile to examine the feasibility of restoring the ecological potential of such areas.   

In the field of ecology, it has been said that when the same phenomenon occurs in two 

places, the root cause is likely the same.  Similarly in geography, the closer two instances of a 

phenomenon are in space, the more similar they are likely to be in character.  Bearing these 

adages in mind, a collective of logic, observation, and empirical evidence stand in support of the 

assertions made in the closing paragraphs of this document.  What follows now is the final 

discussion of the meaning behind the results this study produced.  Though there are multiple 

possible interpretations, the principle of parsimony (Occam’s razor) instructs that the simplest, 

most succinct explanation is the best.  In this case, the best explanation is that water is the 

driving environmental force behind lowland vegetation patterns in Fort Ord’s MRS-BLM zone.  

The final arguments as to why are presented below.  

5.1 On OBIA Accuracy 

Converting raw image data into useful intelligence requires considerable domain knowledge of 

the subject matter being interpreted.  Image interpretation demands much technical skill of the 

analyst as well.  Naturally, the results of an image analysis need to somehow be vetted post-hoc 

to judge their quality.  Where the object-based extraction algorithms used in this study differ 

from those typically described in the literature is in the use, or lack thereof, of the nearest 
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neighbor approach.  NN uses object class samples, select feature space components, and a 

horizontally moving window to evaluate object pixels and their spatial relationships.  To reduce 

the semantic gap, the methods used to segment and classify the Fort Ord imagery employed a 

higher-degree of supervision than is typical of NN.  Consequently, the manual adjustments made 

to segments and class assignments somewhat negated the efficacy of generating an error matrix, 

which is better suited to estimate the performance of automatic classification algorithms.   

 In terms of the accuracy assessment itself, experience has proven that the cohort of 

samples inputted into a TTA mask can have an effect on the subsequent error matrix.  Accuracy 

is also tied in with segmentation performance and semantic structure, and so is subjective in 

several ways.  In the cases where MO classes were infrequently represented, occupied a small 

percentage of the total area, or incurred unusual amounts of manual intervention, the trend was to 

exhibit 100% accuracy.  In short, the overestimation of accuracy was likely to occur whenever 

the sample size was small or the classification not fully-automated.  Water features detected in 

the 2011 data illustrate this principle well, since they were rare and isolated to a few known 

areas.  There was little likelihood of a Type I or II error occurring in the water class because 

water features were classified manually, and no other objects had mixed water features in them.  

The segmentation also fared well at determining shorelines—the areas that were most susceptible 

to errors.  It is easy to understand, then, why the Water class had an estimated 100% accuracy.  

Between the ways the OBIA was conducted and the TTA samples selected, there was virtually 

no chance of detecting an error, even if it did exist.   

 While it is clear that a few errors went unnoticed in the accuracy assessment, upon 

looking at the results with the eye, it is equally clear that very reliable classifications were 

achieved.  Importantly, the boundaries of MO classes with lowland associations were thoroughly  
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examined and corrected to ensure accurate measurements would be taken.  For these reasons, the 

OBIA results were deemed appropriate for analytical use.   

5.2 Comparing 70-Year Changes in PVPs and CVPs 

The ability to observe landscape processes in action is limited to the moments when a sensor or 

an observer are present to record a snapshot.  It follows that the study of such processes must 

rely heavily on whatever evidence is left behind.  In this case, since inundation events are 

inconsistent at best, vegetation patterns were seen to be a good proxy for the presence of water in 

lowland meadows.  As many of the meadows with known vernal pools exhibit long-term spatial 

persistence in floral patterns, it was inferred that patterns in vernal pool meadows must be 

different than patterns in non-vernal meadows.  Both types of lowland complex are shown on the 

following page in Figure 29.  Suffice to say, if two things are not the same, there must be a way 

to tell them apart.  A belief that this difference exists is what compelled this analysis.   

 Although CVPs and PVPs are similar in many respects, they do differ greatly in the 

singularly important category of confirmed water sightings.  Notwithstanding the obvious 

difference, many non-vernal lowlands bear the hallmarks of a hidden hydric soil regime.  The 

initial data exploration uncovered two different types of pattern that were associated with vernal 

lowlands.  One involved the way in which some vernal pools had wide margins of dead 

vegetation that clearly defined the meadow’s perimeter and appeared to never move.  This 

patterning may not be natural since it was not evident in all CVPs, nor in most other lowland 

study sites, but certain PVPs did exhibit the same conditions.  Coincidently or not, these few 

PVP were subsequently confirmed to be vernal pools after numerous logged water sightings 

enabled their proper reassignments as CVPs.  In so doing, the second type of pattern emerged as 

the fixed nature of upland/lowland boundaries was observed.    
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Figure 29: PVP and CVP Complexes in 1941 (top) and 2001 (bottom)  
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CVPs and PVPs were compared at the population level across six size- and shape-related 

metrics, using the independent samples t-test.  The test compares the means of two populations 

for a given parameter, provided that the datasets are normally distributed and display equal 

variances.  To accept the hypothesis that CVPs and PVPs in the study area are fundamentally 

different is to reject the null hypothesis that they are the same.  Statistically speaking, rejecting a 

hull hypothesis with a 95% confidence interval (p ≤ 0.05) is making the statement that there is 

less than a 5% probability that the pattern evident in the data is the result of chance.  Accepting 

the null hypothesis does not denote the same thing as does rejecting it, though.  The former 

simply acknowledges that any differences in the two populations are not significant enough to be 

thought of as different with 95% confidence, while the latter states that, with 95% confidence, 

the two populations are significantly different.  Rejecting a null hypothesis is therefore a stronger 

statistical statement.  That said, accepting the null hypothesis for all of the metrics is a strong 

result in itself.  It is clear that in the context of shape and size changes, statistical differences 

between the PVP and CVP sites are not evident in these data. 

 Indeed, there must be a difference in plant patterning around meadows containing and 

not-containing vernal pools.  The distributions of 70-year SI and FD differences for CVPs and 

PVPs were not expected to be similar.  That fact that they were not different still supports the 

original assertion of this thesis though; namely that water is the ultimate arbiter of plant 

distributions at the upland-lowland interface.  The preponderance of evidence presented in the 

scientific literature supports this notion as well.  P-values for SI and FD of 0.514 and 0.397, 

respectively, suggest these datasets are undoubtedly alike.  The similarity is confirmed by the 

results of the PI t-test.  Although a log transformation was required, the p-value of 0.781 

underscores the similarity of the two distributions.  From these data, there is no reason to suggest 
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that boundary changes occur differently in PVP meadows than in CVP meadows.  These results 

are compelling, and difficult to attribute to anything other than flooded lowland soils that sharply 

give way to xeric upland conditions at slightly higher elevations.   

5.3 Comparing Short- and Long-Term Patterns of Change in Self-Same CVPs 

The rate of change analysis for self-same CVP produced inconclusive results.  The meaning 

behind the results could be something as profound as an unforeseen ecological mechanism, or as 

mundane as variation in the smoothness of drawn boundaries.  Even occasional edge effects 

caused by road cuts might have been enough to throw off the results (visible as long, thin, 

whitish features adjacent to several lowlands illustrated in Figure 30, next page).  The data 

provides little insight into what is really happening.   

 Qualitatively, it is apparent that, year after year, CVPs have similar appearances as past 

versions of themselves.  Some images show that there are locations where stretches of a CVP 

boundary may move slightly back and forth.  There are also almost always well-defined portions 

of the depression where upland or transitional vegetation break in long, smooth, stationary arcs.  

The arc-like pool edges appear virtually unmoved over time, the imprint of a flood cycle that has 

continued for millennia.  Mima mounds within pool margins also create small depressions 

between them that can harbor lesser vernal pools in years that lack enough rainfall to fill the 

greater pool to capacity.  Even though the distributions and characteristics of transitional 

vegetation vary from pool to pool, there is always a central region that is the flood zone within 

which only grass can survive.  As the neighboring chaparral matures but is unable to encroach 

upon the flood zone, the vernal meadow appears to be cut into the surrounding brush, as if it has 

been carved into the land surface itself.  
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Figure 30: PVP and CVP Complexes in 2001 (top) and 2011 (bottom)  
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 In a very real sense, pool boundaries are inscribed on the landscape.  Yet, typical 

meadows encompass more than just the flood zone.  Usually there is a subtly elevated terrace 

where grasslands eventually grade into transitional or upland vegetation.  These elevated areas 

are presumably affected by the flooding as well.  During inundation, the water table rises enough 

to be above ground in the flood zone, and should be close to the surface at slightly higher 

elevations nearby.  Thus the flooding effects more than just the areas that are visibly submerged.  

Upland vegetation may suffer as much for being near a pool as it would for being in one.  It is 

logical to assume that, in drier years without surface pools, the water table may still rise enough 

to create the damp soil conditions necessary to rebuff upland encroachment.   

 The observed consistency of vernal meadow margins is supported by the mean 

differences in WIPI, but does not match the results from the other metrics.  The performance of 

PI in the 70-year analysis lends it credibility as a measurement.  However, low standard errors 

and standard error means across the board in the self-same comparison suggest that none of the 

data is random.  Since the visual appearance of the study sites denotes both short- and long-term 

stability, as does the WIPI t-test result, the sensible conclusion is that CVPs are geometrically 

stable over an indefinite time frame.  The most likely explanation for the remaining results is that 

they have been interpreted incorrectly, possibly because the relationships between the metrics is 

more complicated than expected.  The numbers are too self-consistent to be discounted, but they 

also do not match the most obvious explanation.  Therefore, there is likely a mistake in final 

interpretation of the meaning.   

5.4 Sources of Error 

In any research endeavor, there are opportunities for errors to inject uncertainty into the results.  

Even in a well-designed study there are avenues by which errors can arise.  For instance, the 
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photographs that were used in this analysis were not perfectly co-registered.  It is possible that 

distortions, particularly in the base photograph from 1941, resulted in classifications that were 

not true to life at the time.  Yet, such an error would actually be all the more reason to accept the 

results of this study, since unequal distortion across an image would lead to a more randomized 

pattern of change in the data than was actually present.  In regards to the 1941 photo specifically, 

the individual mosaic tiles were not all of equal spatial resolution.  Prior to its use here, however, 

the entire mosaic had clearly been resampled to a 0.5 m pixel size. 

 The most likely place for error to have occurred would have been in the image analysis.  

Both segmentation and classification require thorough examination to eliminate gross errors, but 

for large rasters, optical revue is only practical on a cursory scale.  Fortunately, since lowland 

meadows and the immediately adjacent upland chaparral were the only targets of the analysis, 

manually scanning for and correcting errors was feasible.  The highest probability for error in the 

entire study was in the classification semantics and their individual applications.  The landscape 

was much more mixed in the later images than first anticipated, owing greatly to disturbances 

and successional vegetation.  There were instances where determining the proper classification 

for an object was difficult without ground evidence.  Inputs from higher resolution imagery (0.25 

m) added marginal clarification, but also led to a point of diminishing returns as the objects 

became more and more spectrally mixed.  In point of fact, a slight reduction in resolution of the 

segmented image might have improved results more because objects would have appeared more 

blurry at the edges.  The blur would have had an anti-aliasing effect that would generalize the 

appearance of objects and their boundaries.  Increasing resolution does the opposite; objects turn 

spectrally intricate and become fractal at their edges.   
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 Resolution discrepancies may have also accounted for the unexplained growth in mean 

perimeter that contrasted with the shrinkage of the mean area for CVPs at the 10-year interval.  

The higher resolution image acquired in 2011 made it possible to more accurately segment the 

irregular edges of many meadows, which would have had a much greater effect on measures of 

perimeter than area.  Moreover, this effect was probably exacerbated by minor changes in plant 

composition at meadow boundaries.   

 Another problem related to boundary edges come from edge effects.  Edge effect, in 

essence, is the influence an environmental type has on its neighbors, which typically penetrates 

some distance into the neighboring landscapes and affects their ecosystems.  There are two 

potential manifestations of edge effect that were probable in this study.  The first, the edge effect 

happening at lowland/upland boundaries, was the primary focus of this research.  Where the 

slope angle was the steepest, the edge effect was narrow.  Simply put, the transitional band 

between upland and lowland vegetation had a thin width when the soil moisture gradient (i.e. 

slope angle) was steep.  When the slope angle was lower, as was often the case in the upper 

terrace of a meadow, the soil moisture gradient was obviously shallower and the transition band 

was wider and visibly more diverse.  The identities of transitional flora were not known for 

certain at the time of this writing, making it difficult to create an adequate name in the 

classification scheme.  Suspected constituents included annual and native grasses, sandmat 

manzanita (A. pumila), chamise, Monterey ceanothus, poison oak (Toxicodendron diversilobum), 

ice plant, and pampas grass.   

 The other type of edge effect of concern here is evident in areas where a road has been 

maintained close enough to the boundary of a lowland to become part of the edge itself.  Most of 

the time, the road is cut just inside or just outside of a boundary, as opposed to right up against it.  



80 
 

Either way, the result is sometimes a narrow band of upland sandwiched between a road and a 

lowland, or vice versa; both grass and chaparral that are caught in the middle are subjected to 

extra environmental pressure from the isolation and the nearby road.  In the end roads were not 

judged to be problematic enough to account for them in this study, but they easily could have 

contributed some error, especially to falsely support the findings of geometric stability presented 

herein.   

 The true identities of the lowland grasses might also be a source of error, as there is 

undoubtedly some mixture of non-vernal, non-native species combined with natives.  The native 

grasses themselves may be of either vernal or non-vernal varieties, as well.  Since this study 

treated all grasses equally, there is a deeper level of granularity to be sought after.  Imagery was 

available to this study with sufficiently high accuracy to identify individual grass and possibly 

even indicative wildflower species.  Such an effort in the future could provide definitive 

evidence for vernal pool presence in the absence of water, yet was unachievable here because 

commensurate ground evidence did not exist and could not be acquired.   

 Finally, the ground evidence that was captured during the flyover brought to light a type 

of classification error that was unanticipated.  The severity of erosion gullies, and their ostensible 

coincidence with roads and trails, made it clear that many of the linear structures classified as 

Bare Ground/Dirt Track were better classified into a separate erosion category.  Yet, since Bare 

Ground was not considered in the statistical analysis, unclassified erosive features probably did 

not skew the results.  At the same time, there can be no question that the true classification 

accuracies for the 2001 and 2011 analyses were marginally lower than estimated.    
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5.5 Final Thoughts 

There exists a phenomenon that prevents chaparral and oak trees from encroaching upon the 

bottoms of lowland depressions in the Fort Ord study area.  For known vernal pools, the reason 

is self-evident.  The cyclical presence of water in the form of seasonal flooding prevents upland 

vegetation from competing in the lowland areas.  Thus the vernal lowlands are able to exist as 

grassy meadow islands surrounded by a dense matrix of manzanita and coast live oak.   

 This study has provided reasonable argument that a similar hydric process is occurring in 

many of the other lowland sites as well.  Five previously unrecognized vernal pools have been 

discovered and reported for the first time here (Figure 31).  Each of these sites now requires 

consideration as protected wetland habitat for California tiger salamander, fairy shrimp, and 

Contra Costa goldfields wildflowers.  Tiger salamanders in particular require a 2 km upland 

habitat buffer, so the importance of these findings should not be overlooked.   

In addition, a wide variety of empirical and observational evidence has been provided to 

warrant a more extensive study of the PVP sites at Fort Ord.  On average, CVP and PVP margins 

change about the same amount over time.  They both appear as lush and verdant grasslands 

during the spring if no water features are present, and each repels the encroachment of upland 

vegetation equally well.  The similarities between PVPs and CVPs are noteworthy.   

A strong case has been made that there remain vernal pools in the Fort Ord study area 

that are as yet unrecognized.  Other PVPs studied here could be the remnants of lost vernal 

pools, having suffered too much nearby disturbance to become vernally active of late, but 

maintaining a hydric soil cycle that keeps them still thriving as grasslands.  This study was 

unable to identify relict CVPs specifically without seeing an inundation event or collecting 

ground evidence in situ.  In the absence of direct confirmation, future studies should focus  
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Figure 31: Five Previously Unconfirmed Vernal Sites within MRS-BLM 

 

efforts toward assessing the PVPs with similar vegetative persistence as CVP.  Such studies 

would be particularly impactful if they combined soil moisture testing to check for latent hydric 

potential with observations of flora.  Sites identified as having unusually damp soils may be good 

candidates for restoration efforts aimed at returning the land to a more natural state.  Soil 

samples could also be collected for ground evidence, to be included in a spectral analysis that 

uses remote sensing data to compare vernal and non-vernal soil compositions.   

 The remote sensing study of Fort Ord’s vernal and non-vernal lowlands presented in this 

thesis was, to the author’s knowledge, the first of its kind.  This work presented a method for 

integrating historic and contemporary remote sensing data with GIS and parametric statistics,  
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Figure 32: The First Ever Comprehensive Map of MRS-BLM Vernal Sites 

 

to achieve a novel, spatiotemporal perspective on the interactions between upland and lowland 

plant communities.  Additionally, a new metric, the Persistence Index, was created from patch 

data derived in a GIS.  PI was demonstrated to be a valid blanket descriptor of the degree of 

change in patch geometry.  Over a 70-year period at Fort Ord, vernal meadow patches changed 

about the same amount as non-vernal patches, indicating an underlying similarity between them.  

Finally, through incidental observation, five new vernal pools were discovered and identified 

during the image exploration and analysis portion of the study.  In Figure 32 these five, along 

with all 15 other known vernal pools in the impact area, have now been compiled to reveal the 

first complete map of vernal sites within the MRS-BLM boundaries.  The work the map 
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represents was applied for the first time here, but it should not be the last effort.  If the legacy of 

this project is to simply be a link in the chain that advances the field of spatial ecology with 

clarity, then it will have achieved its prime directive.   
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APPENDIX A: SUPPORTIVE IMAGERY 

  

Figure 33: PVP Site 70P05 Displays Floral Persistence Similar to that of Study Area CVP (Source 
Imagery: Google Earth, C. Hanley—bottom right)  
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Figure 34: Previously Unconfirmed CVP 80P03 (bottom row) Was Flooded During the Flyover 
While Known CVP 80C02 Was Not (Source Imagery: USGS EarthExplorer, Google Earth, C. 

Hanley—top and bottom) 
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Figure 35: Comparative Shoreline Shapes for Known and Previously Unconfirmed CVP (Photo 
Credits: C. Hanley) 

  

Figure 36: Inundated CVP Site 11P01 (Previously Unknown), Likely Created by Disturbance 
(Photo Credits: C. Hanley)  
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Figure 37: Enlargement of Erosion Drainage Scar in Site ID# 80P07 (Photo Credits: C. Hanley)  
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APPENDIX B: ENLARGEMENTS OF CLASSIFICATION RESULTS 

 

Figure 38: Enlargement of 1941 Classification Results  
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Figure 39: Enlargement of 2001 Classification Results  
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Figure 40: Enlargement of 2011 Classification Results  
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APPENDIX C: MAPS OF MEASURED METRICS 

 

Figure 41: Lowland Complex FD Changes by Type, 1941-2001 

 

Figure 42: Lowland Complex FD Changes by Type, 2001-2011  
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Figure 43: Lowland Complex SI Changes by Type, 1941-2001 

 

Figure 44: Lowland Complex SI Changes by Type, 2001-2011  
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Figure 45: Lowland Complex PAR Changes by Type, 1941-2001 

 

Figure 46: Lowland Complex PAR Changes by Type, 2001-2011  
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Figure 47: Lowland Complex PI Values by Type, 1941-2001 

 

Figure 48: Lowland Complex PI Values by Type, 2001-2011  
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Figure 49: 70-Year WIPI for Self-Same CVP 

 

Figure 50: 10-Year WIPI for Self-Same CVP   
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Figure 51: Lowland Complex Percent Area Changes by Type, 1941-2001 

 

Figure 52: Lowland Complex Percent Area Changes by Type, 2001-2011  
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Figure 53: Lowland Complex Percent Perimeter Changes by Type, 1941-2001 

 

Figure 54: Lowland Complex Percent Perimeter Changes by Type, 2001-2011  
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APPENDIX D: EXPLORATORY STATISTICS RESULTS 
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Figure 55: Exploratory Statistics for Change in FD, 1941-2001
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Figure 56: Exploratory Statistics for Change in SI, 1941-2001  
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Figure 57: Exploratory Statistics for Change in PAR, 1941-2001  
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Figure 58: Exploratory Statistics for Log(PI), 1941-2001 
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Figure 59: Exploratory Statistics for % Area Change, 1941-2001 
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Figure 60: Exploratory Statistics for % Perimeter Change, 1941-2001  
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Figure 61: Exploratory Statistics Self-Same CVP FD Differences 

 

Figure 62: Exploratory Statistics Self-Same CVP SI Differences 
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Figure 63: Exploratory Statistics Self-Same CVP PAR Differences 

 

Figure 64: Exploratory Statistics Self-Same CVP WIPI Differences 
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Figure 65: Exploratory Statistics Self-Same CVP % Area Differences 

 

Figure 66: Exploratory Statistics Self-Same CVP % Perimeter Differences 


