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ABSTRACT 

Precision agriculture in practice utilizes GIS far less effectively than it should. My work at a soil 

consulting company has shown that part of the problem is that the literature does not show an 

effective way of analyzing soil through GIS that is both scientific and able to be used by those 

associated with agriculture. The thesis aimed to answer two questions: (1) Are there significant 

differences between a multiple year composite yield and a single year and if so, are these 

significant enough to have an impact on normal operations? (2) Are the areas where such 

differences occur related to slope?  Six fields were used for this study: Dob Along G, Emmert, 

Harstad, Merkt’s, Pribnows, and Stefoneks located near New Richmond, Wisconsin. Three years 

of yield data were used for each field and slope data was created using LiDAR from St. Croix 

County. These yield data were interpolated using standard industry practices. A single year was 

compared to composite years to determine what differences, if any, exist between them. Each 

year and the composite had actual and predicted values compared using the difference of means 

statistical test to validate the success of the interpolation. A DEM was created from LiDAR and 

this was used to create a slope map of each field. This slope map was used to divide the yield 

points by five slope classes: 0 -1°, 1-2°, 2-3°, 3-5°, and >5°. The mean yield and variation was 

then compared for each class to determine any patterns associated with slope values. The results 

show that where there is significant variation between single years of yield data the composite 

will fail. The difference between the composite and a single year is useful in identifying which 

fields are causing the composite to fail and eliminating them. Slope did not consistently correlate 

to changes in yield or variation. Dob Along G, Emmert, and Harstad showed no correlation, 

while Merkt’s, Pribnows, and Stefoneks showed decreasing yield and increasing variation as 

slope increased.  
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CHAPTER 1: INTRODUCTION 

Precision Agriculture is a practice in agricultural that examines and manages a section of farm 

rather than its whole. It uses various tools, especially rigorous soil testing, to provide a detailed 

understanding of the soil on a single farm or a section of that farm. This allows for variable-rate 

fertilizer recommendations, based on soil testing, to improve particular areas while using the 

least amount of fertilizer. The use of a Geographic Information System (GIS) within this process 

is under-utilized. Primarily it’s use is reactive, as a final test to understand the effects of the 

previous year’s fertilizer recommendation. The yield data taken from farmers is made into a map 

that demonstrates the overall performance of a specific farm. If a farm is under-performing this 

indicates a need to revise future recommendations. However, since yield maps are not used to 

make recommendations, these are generally just stored for possible later use. 

1.1 Digital Soil Maps 

There has been some effort to create digital soil maps (DSMs) that combine attributes like soil 

type, weather pattern, and chemical composition in a GIS to demonstrate the overall fertility of 

an agricultural region or to predict its production. The most notable example is the regional soil 

map created by the Natural Resources Conservation Service (NRCS) that describes the general 

soil types within a specific area, e.g. the Iowa Regions Map in Figure 1.  

 There has been substantial research put into the creation of predictive DSMs that have 

established methodologies and data needs for their creation (Zhu et al. 2001; McBratney, Santos, 

and Minasny 2003). Models like Scorpan (McBratney, Santos, and Minasny 2003) use a variety 

of attributes from numerous sources to provide a detailed and complete regional DSM and 

complicated techniques to ensure the accuracy of the final output. The NRCS uses traditional 

techniques to construct a similar map that relies on expert knowledge and surveying methods.  
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Similar methods have been used in the creation of digital methods by capturing and using expert 

knowledge (Zhu et al. 2001). These approaches are used to create a comprehensive map at the 

regional level that is ineffective in modern precision agriculture which uses information at the 

sub-farm level to make recommendations.  

 Comprehensive regional DSMs fall short of this goal in two ways: (1) the detail is 

intended for a region, so it is not precise enough to be used for even a single farm, let alone a 

section of that farm; and (2) the attributes used in the creation of these maps are too numerous, 

creating extraneous information that can make such a map confusing or cumbersome for direct 

precision application.  

1.2 Management Zones 

In order to change this, there have been numerous attempts to create functional management 

zones for farmers (Fleming et al. 2000; Fleming, Heermann, and Westfall 2004; Fridgen et al. 

2004). These maps are designed to delineate zones based on soil attributes to better organize a 

farmer’s field for fertilizer application. Figure 2 offers an example of a three-zone management 

map based on imagery, electrical conductivity, and yield (Fridgen et al. 2004). Figure 3 shows an 

additional example of management zones based on phosphorous levels.  

Figure 2: Example of fertilizer management zones based on imagery, electrical 

conductivity, and yield. Source: Fridgen et al. (2004). 
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Some of these authors have expressed concerns about the use of these kinds of maps 

because of changes that can occur due to topographic effects and climate changes that can affect 

the productivity of a field over time (Schepers et al. 2004). However, these techniques are not 

generally used in practice, due to the difficulty of obtaining and updating the attributes used to 

create these zones.

 

Figure 3: Map illustrating the creation of management zones based on phosphorous levels. 

Eight areas representing differences in phosphorous levels are simplified into three zones 

(http://www.innovativegis.com/basis/pfprimer/Appendix_A/Appendix_A.htm) 

1.3 Motivation 

Consultants and farmers have direct access to critical details for the creation of management 

zones from soil sampling. This means that a predictive map does not have to show all of the soil 

http://www.innovativegis.com/basis/pfprimer/Appendix_A/Appendix_A.htm
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information, but only requires the attributes necessary to contribute to the soil management 

process. Rather than creating something new that can already be extrapolated from soil sampling, 

additional attributes can be used to supplement these data. These attributes must correlate with 

necessary information and provide enough detail to develop a predictive map. Researchers have 

documented DEMs and imagery related to information like chemical composition and yield (e.g. 

Varvel, Schlemmer, and Schepers, 2004; Dobos et al. 2000).  

My research aims to utilize techniques related to yield maps and Light Detection and 

Ranging (LiDAR) to explore their potential for use in precision agriculture. The emphasis will be 

on the accuracy of single- and multiple-year yield maps and if the slope generated from LiDAR 

can explain the differences between these maps. The underlying assumption is that in some cases 

a single year yield map is sufficiently accurate to characterize the yield of a field and that slope is 

an indicator of where single year maps fail due to higher variability from year to year and less 

accuracy overall.  

1.4 Thesis Organization 

The remainder of this thesis consists of four chapters. The second chapter explores background 

information on precision agriculture, DSMs, yield maps, and LiDAR data in an effort to explain 

the importance of these supplemental data and their use. The third chapter describes the 

techniques that were used to demonstrate the effectiveness of the yield maps and LiDAR data for 

documenting the fertility needs on the study farm fields. The fourth chapter presents the results 

obtained with this methodology and compares the results with individual years of yield data. The 

fifth and final chapter notes the conclusions that can be drawn from these results and discusses 

their implications for precision agriculture. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

Digital soil mapping in general and precision agriculture in particular have been studied for more 

than 50 years. A variety of approaches have been proposed for transferring traditional soil 

mapping to digital methods. Traditional soil mapping methods were created to form a general 

overview of regions and so were inherently generalized and therefore inappropriate for use in 

precision agriculture, which has begun to dominate the agricultural industry.  

This change in agricultural methods requires new mapping designs that are more specific 

and precise in character. Traditional soil maps use discrete areas to mark general soil zones, yet 

in reality this is not the case. Methods, such as kriging, have been used to change these into 

continuous classes by allowing the general soil lines to become fuzzy (McBratney, De Gruijter, 

and Brus 1992).  This process also allows for some prediction of classes as these intermediary 

soil types bridge the gap between the general soil types already known. Similarly, Bragato 

(2004) has proposed using fuzzy modeling techniques on traditional soil maps to produce soil 

zones that are not separated by simple lines but fade into one another. This characterization of 

the soil more closely resembles the real-world and bridges the gap between the traditional and 

the digital.  

The utilization of other resources that relate to attributes characterizing soil can enhance 

the quality of smaller scale maps. Satellite information was found in some ways to eliminate the 

need for traditional soil laboratory work to characterize the general composition of soil 

regionally (Nanni and Demattê 2006). Dobos et al. (2000) utilized a DEM to enhance regional 

satellite information because satellite data alone have too few details to characterize soil type. 

These techniques are a good start to moving from traditional to digital methods, but precision 

agriculture requires far more detail. 
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The use of management zones offers a new way of looking at a digital soil map. These 

zones are created within a single farm and are characterized by a large amount of testing that 

allows for different management techniques (fertilizer, irrigation, etc.) depending on the needs of 

a specific zone. Some approaches have used a variety of attributes obtained through digital and 

physical means, including soil brightness, electoral conductivity and yield, to delineate these 

zones (Schepers et al. 2004). These kinds of approaches require changes to zone management 

depending on season and climatic variation.  

This chapter covers the related information and literature for this thesis. Section 2.1 will 

give an overview of precision agriculture, Section 2.2 will detail digital soil maps including 

attributes used in their creation and their use in practice, and Section 2.3 will detail the use of 

Light Detection and Ranging (LiDAR) in creating DEMs. These sections will highlight precision 

agriculture as the subject of this thesis, overview the process of creating DSMs as a way of 

developing which attributes would work with this thesis, and discuss the application of LiDAR 

to show how it might be used to create some of these attributes.  

2.1 Precision Agriculture 

Precision Agriculture is designed to increase the efficiency of a total farm by dividing that farm 

into sections and applying different fertilizer and management practices to ensure the best yield 

at the lowest cost. The idea is to create greater efficiency between fertilizer use and the possible 

benefits. This is especially important for managing the environmental impact of agriculture, 

limiting fertilizer to the least needed diminishes fertilizer run-off and the detrimental 

environmental effects associated with mining and applying fertilizer (Schieffer and Dillon 2013). 

Schieffer and Dillon (2013) have suggested using governmental policy in the form of taxes or 

credits to minimize fertilizer use. In order to maximize the benefit-to-cost ratio, 
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recommendations, analysis, and experimental fertilizer are used in combination to reduce cost 

while still allowing for the maximum growth of crops in a given area (McBratney et al. 2005). 

Generally, this is accomplished by grid sampling a farm and using laboratory testing to 

determine the chemical composition of each grid cell individually. These grids can vary in size 

depending on the desired level of precision. The tests performed on each grid sample can vary 

but typically look at the levels of potassium, phosphorous, organic matter, zinc, and the acidity 

of the soil. Once these values are determined an agronomist makes recommendations based on 

these values for a whole field, management zone, or individual grid cell. This can depend on the 

size of the field, management practices, and fertilizer type. Finally, yield values are collected to 

determine the effectiveness of the recommendation and assess the quality of the farm after each 

season. This process is illustrated below in Figure 4.  

2.1.1 Soil Sampling 

Soil sampling is a major source for determining the type and quality of soil information. It is 

important that this information be accurate; however, over-sampling is cost prohibitive with 

limited practical benefits (Fortunati, Banff, and Pasturenzi 1994).  The method of sample 

Soil sampling

•Spring, summer, and fall periods

•Several years between samplings

Laboratory Testing

•Chemical Composition

•Variable-rate recommendations

Fertilizer Application

•Pre-plant and post-plant

•Uniform or variable-rate

•Based on farm divisions

Assessment

•Grower Feedback

•Yield Analysis

•Plant Response

Figure 4: Example of precision agriculture process from beginning to end. As 

shown, this process is centered on fertilizer use. 
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collection can be based on a grid superimposed on the landscape, soil type, management zone, or 

farm unit.  

Of these, gridded soil sampling is the most common as it requires the least amount of 

guess work and can be part of a streamlined sampling process, e.g. no expert knowledge is 

needed to acquire large numbers of samples. Sample locations can consist or random samples 

within a grid, a diamond patterned, or a systematic unaligned grid (Wollenhaupt and Wolkowski 

1994). These techniques are illustrated in Figure 5. The diamond patterned methods shift the 

sampling points by connecting four grid sampling points in a diamond shape, while the 

systematic unaligned grid uses a random number table to generate the x, y coordinates for the 

sample location within each grid. Both of these methods allow for a more randomized approach 

to sampling that does not require composite samples. The grid approach offers the most 

variability but commonly accepted practice is a 2.5-acre square grid. Figure 6 shows an example 

of composite sampling based on such a grid size. 

Figure 5: Examples showing the diamond pattern and systematic unaligned grid methods 

to sample soil. Adapted from Wollenhaupt and Wolkowski (1994). 



 

10 

 

The type of soil sampling methods used can greatly affect the results because, regardless 

of the number of samples taken, it still provides only a snapshot of the soil. However, this 

snapshot diminishes as the number of samples per unit area increases, so that smaller grid sizes 

give more specific results. 

 
Figure 6: Example of soil sampling methods. This figure shows the use of multiple samples 

at each grid point to create a composite sample 

(http://cropwatch.unl.edu/ssm/soilsampling)  

The quality is also affected by when and where the sample is taken within the overall 

area. Fertilizer is applied in bands, to help reduce fertilizer use (Beyrer and Below 2014); if this 

is the case, the characteristics of samples taken within a band or outside of one will vary greatly. 

Finally, the time at which a sample is taken can greatly affect the result; for example, if a sample 

http://cropwatch.unl.edu/ssm/soilsampling
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is taken before any new fertilizer has been applied the results will be different than when it is 

taken after the fertilizer was applied.   

2.1.2 Fertilizer Recommendations 

Fertilizer recommendations are based on laboratory testing of the soil samples. These are 

performed or managed by an agronomist who interprets the results. Each sample receives its own 

recommendation based on the tests results. Different fertilizers are used to manage deficiencies 

in key composition values. For example, potassium chloride (potash) is used to add potassium to 

the soil. The most important of these values are potassium, phosphorous, and pH content; 

however, other values can be used for a more in-depth assessment, e.g. zinc, magnesium, 

nitrogen, or calcium.  

These values are rated, e.g. very low to very high, which correlate with different levels of 

fertilizer use. These recommendations can be based on expert knowledge, scientific analysis, or 

both. An example of a recommendation based on chemical values is shown in Table 1. The 

values in the table show that differences in nutrient levels are interpreted as high, medium, or 

low, and that the recommendations are based on what is already added to a field, e.g. straw. This 

process is usually only performed once every several years, as the expense can be greater than 

the return if performed more frequently.  

Table 1: Example of fertilizer recommendations based on phosphorous and potassium on 

rice farms in Indonesia 

Nutrient P  

(mg P2O5*100g-1) 

K  

(mg K2O*100g-1) 

Fertilizer 

(kg*ha-1) 

Sp-36 KCl  

     Without 

straw 

Straw 

Added 

Low <20 <10  100 100 50 

Medium 20-40 10-20  75 50 0 

High >40 >20  50 50 0 

Adapted from Sulaeman et al. (2012) 
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 Fertilizer rates can be applied as a single or variable rate. A variable rate takes the within-

field variability into account rather than just applying a uniform fertilizer to the field. A variable 

rate program is not always used for all fertilizer applications. For example, nitrogen is generally 

applied at a uniform (single) rate, due to the limited availability of nitrogen tests.  

2.1.3 Yield Assessment 

Yield is usually assessed through the use of yield monitors. These monitors record the amount of 

crop taken at a specific point when a combine harvests the crop. Based on the mass flow, speed, 

moisture content and GPS position, yield is calculated for a specific location and is then used to 

generate a yield map for the whole field. These points are only precise to the width of the 

combine and its speed. A faster speed can cause incorrect readings to occur which is dependent 

on the type of combine that was used. This can be a powerful tool for assessing the results of 

fertilizer changes or to detect problem areas in a particular field; however, it does have some 

limitations. 

 The size of the harvester combine makes a difference in accuracy as a smaller, research 

combine covers a smaller area and is therefore more precise than a regular sized combine. The 

yield monitor itself requires routine calibration and monitoring by the combine driver to ensure 

the best results. Even in the most ideal circumstances error can be up to 10 percent of yield. If 

the necessary steps are not followed or the driver is inattentive the error generated can make the 

yield map useless. This is seen as large gaps in the yield data or inaccurate readings of yield. 

Since most yield monitors are used by farmers who are not technicians, the precision of yield 

monitoring can vary greatly depending on the field, harvester, and/or farmer.  

 The yield map is generated from the thousands of points captured with the yield monitor. 

The number of points varies greatly depending on the size of the field and harvester combine. 
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Generally, this is normalized as bushels per acre and three or more classes are given colors 

ranging from red to green to indicate bad or good yields, respectively in comparison to the 

overall yield strength of the field. Figure 7 shows an example of a yield map normalized in this 

way with six value ranges. 

Figure 7: Example of a yield map showing six ranges of values that are normalized by 

bushels per acre (http://www.ptprecisionag.com/products__services) 

2.1.4 Use of a Soil Survey 

In practice, the soil survey is used as a way to provide a general overview of a farm by showing 

the types of soil located there. The soil survey that is typically used was created by the USDA in 

the 1970s. These maps show discrete classifications of soils by region. Each soil classification 

http://www.ptprecisionag.com/products__services
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comes with a description of its appearance, structure, and depth. These soil surveys were 

developed before precision agriculture became popular and, therefore, are insufficient for use 

with it. The survey can give a general indication of what soils can be found in the area but are 

not specific or precise enough to depict or differentiate the conditions found in a single field. 

This is why they are used only to provide a general overview and not included in variable-rate 

recommendations.   

2.2 Digital Soil Maps 

More comprehensive approaches than the soil survey have been proposed that take more factors 

into account to create complete digital soil maps. A prime example of this process is the Scorpan 

method that utilizes information on soil, climate, organisms, topography, age, and location to 

create a complete soil map of a desired region (McBratney, Mendonça Santos, and Minasny 

2003). This approach considers a large number of attributes and uses complex geostatistical 

techniques to create a final map.  

Another example is SoLIM which attempts to eliminate the use of traditional soil maps 

through the inference of soil types from the environmental factors that create them and the 

similarity of soils near one another (Zhu et al. 2001). Both Scorpan and SoLIM produce a 

regional soil map that is based solely on mathematical principles and digital information (e.g. 

Figure 8). However, these methods are very complicated and require many attributes to complete 

the map.  

Fleming et al. (2000) describe an approach that is applicable to precision agriculture, 

specifically, variable rate fertilizer recommendations based on grid sampling. Their approach 

describes the use of aerial photographs, topography, and farmer knowledge to create site-specific 

management zones where different rates of fertilizer could be applied. These methods were 
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found to be effective in determining zones but could not entirely eliminate the grid sampling 

method for determining the fertilizer rate required to maximize production. This approach uses 

far fewer attributes but also illustrates that soil sampling is currently unavoidable. 

 

Figure 8: Comparison of (a) SoLIM-derived soil map; and (b) a conventional soil map in 

Lubrect, Montana. Source: Zhu et al. (2001) 

Scull et al. (2003) reviewed predictive mapping techniques, including geostatistical, 

statistical, decision tree analysis, and expert systems. However, the authors noted that despite 

these advances, more work needs to be conducted to bridge the gap between GIS methods and 

their use in soil science. This observation illustrates that a variety of tools are available, but that 

they are not being fully utilized.  

2.2.1 Attributes related to digital soil mapping 

In order to understand how a digital map works, it is important to consider the attributes that 

form the components of that map. Fuzzy K or c-means clustering is a technique that allows for 

the more accurate depiction of soil classes. De Bruin and Stein (1998), for example, used this 

approach to describe the soil landscape by using attributes derived from a DEM, including slope, 

aspect, and curvature. 
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The DEM itself has considerations that need to be addressed to ensure its effective use. 

Thompson, Bell, and Butler (2001) considered different levels of information and combinations 

from other sources. They found that important information was lost as the resolution was moved 

from 10 to 30 m and that more information is lost as different sources of elevation data are used 

together. Smith et al. (2006) also explored the effects of neighborhood size and resolution on the 

accuracy of the soil map, and found that a more accurate DEM does not necessarily produce 

more accurate soil maps because the quality of the soil map will also depend on the type of 

landscape (flat or steep) and a correctly determined neighborhood size.  

Yield can play an important role in determining the quality of soil. High yield indicates 

that the soil is producing the optimal number of bushels. Kasper et al. (2003) showed that yield is 

far more effective when combined from multiple years of yield data, due to climate variability. 

This was especially helpful in dry years, but may not be as helpful in wet years.  

2.2.2 Digital soil maps in practice 

There are relatively few examples of potential map creation strategies and their use in 

agricultural practices. Behrens and Scholten (2006) show how DSM techniques have been 

applied to soil maps in Germany, including the Scorpan process discussed above. They 

demonstrate that it is easier to apply these techniques in smaller countries and that an effective 

regional map can be created, as shown in Figure 9. 

Precision agriculture has seen most of its practical use in the creation of management 

zones. For example, Mann, Schumann, and Obreza (2011) delineated citrus productivity zones. 

While this does not relate directly to the crops in this project it shows that zones can be created 

by looking at related attributes, i.e. yield, canopy volumes, and soil color. Most importantly, 

Fridgen et al. (2004) have created a software platform called the Management Zone Analyst  
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(MZA) that automatically creates zones for agricultural fields. It uses a model that combines 

electrical conductivity, slope, and elevation with the fuzzy c-means clustering algorithm (Figure 

10). This that it is possible to define management zones that can be created to manage specific 

areas of a farm. However, methods of determining electrical conductivity are expensive, time-

consuming, and not fully developed.  

  

Figure 9: Example of a regional DSM as used in Germany. Source: Behrens and Scholten 

(2006) 
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Figure 10: Demonstration of Management Zone Analyst software that shows the inputs 

(top) and examples of 2, 4, and 6 created zones from these inputs. Source: Fridgen et al.  

(2004) 
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2.3 Light Detection and Ranging (LiDAR) 

LiDAR is an active remote sensing application that sends laser pulses from a satellite or aircraft 

and receives that light back giving a range based on the time it takes the pulse to return. This can 

be done either by profiling or scanning the ground. Profiling sends just a single pulse in one 

direction at a time, whereas scanning sweeps the laser back and forth to cover large amounts of 

area. Pulses can be sent very quickly, up to 100,000 per second in some cases, generating large 

datasets (Hopkinson and Chasmer 2008). These datasets are commonly used to create high 

resolution digital elevation models (DEMs).  

LiDAR point clouds refer to the raw points that represent the ranges from each pulse. 

Visually these points are not very useful because of the large number of points over a relatively 

small area. This is why these points are used to create a DEM that visually depicts differences or 

changes in elevation for a chosen area. Esri (2013) presents a guide to do this that consists of 

converting the LiDAR points into a multipoint and finally into a terrain dataset. The accuracy of 

the dataset is dependent on the distance between the LiDAR points and the choices made in its 

creation. This process is further explained in Chapter 3.  

 LiDAR derived DEMs have been shown to be more accurate than those derived from 

topographic maps, even those provided by the U.S. Geological Survey (USGS) (Shi et al. 2012). 

A comparison of the slope gradient produced by Shi et al. (2012) of a 1-m and a 5-m LiDAR 

compared with a 10 m USGS DEM is shown below in Figure 11. Although the limited 

availability of LiDAR can make it impossible or expensive to use in certain regions, it is 

becoming more widely available and a better alternative to traditional DEMs. 

 This chapter demonstrated the use and benefits of precision agriculture; however, digital 

soil maps were shown to be ineffective if used with it. The use of yield in DSMs demonstrate 
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their usefulness in predicting the output of a farm. LiDAR was shown to be a possibility for 

creating a sufficiently accurate DEM for precision agriculture. Chapter 3 uses yield interpolation 

techniques to analyze the effectiveness of composites (combinations of multiple years of data) to 

predict past yield and examine the process of creating a DEM from LiDAR to assess its 

applicability in precision agriculture. Finally, a derivative slope map was created from the above 

DEM and analyzed in relation to yield to determine if a relationship exists.   

  
 

Figure 11: Comparison of the slope gradient calculated with (a) 1-m LiDAR derived DEM; 

b) 5-m LiDAR derived DEM and (c) 10-m USGS derived DEM. Source: Shi et al. (2012) 
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CHAPTER 3: METHODOLOGY  

The data used in this thesis are based in a rural section of St. Croix County, Wisconsin. It is 

located to the south of New Richmond, west of Hudson, and east of Glenwood City. Figure 12 

illustrates the location of the farms used in this study. It follows County Road G and is mostly 

characterized as hilly with some flat areas. Figure 13 shows an aerial view of the terrain. From 

the photograph it is easy to see the variation in terrain with the numerous lakes, rivers, and 

vegetation.  

Figure 12: Overview of the study area. Individual fields from left to right are Stefoneks, 

Merkt’s, Harstaad, Dob Along G, Pribnows, and Emmerts. 

Paul Schottler, a farmer with various fields in this area, provided the yield data for six of 

his fields.  These fields are discussed in detail in Section 3.1. The observations for these fields in 

Section 3.1 were provided by an agronomist. This included three years’ worth of information for 

CR - G 

· 
New Richmond 
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each field as well as an aerial view of each individual field along with a photo taken from each 

site in Spring 2015. The data provided were unprocessed, containing a table with attribute 

information for each yield point that will be discussed below in Section 3.2. 

Figure 13: Aerial overview of the study area. The area is characterized by numerous rivers 

and lakes, in addition to farmland and woodlands.  

LiDAR data for the study area was obtained from the Planning and Land Use Department 

of the St. Croix County Government Center. This data consists of only the unprocessed point 

cloud and was used to derive associated elevation data.  LiDAR data is discussed in further detail 

below in Section 3.3.  
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3.1 Overview of Fields in Study Area 

3.1.1 Dob Along G 

Dob Along G is a 312-acre field that is characterized by a gently sloping and mostly flat 

landscape. Figure 14 shows an aerial view of the field with an outline of the border and a 

photograph taken of the field in Spring 2015. There is a north-south oriented crest that lines up 

roughly with the household on the north end of the property. It is bordered by County Rd. G to 

the north, 160 St. to the east, 140 St. to the south, and a separate field on the west. Figure 15 

shows an example of the yield data for this field. This yield data is the composite with a thin 

lower section containing moderate yields and the large upper area showing high yields with 

moderate to low yields along the edges. There are also thin strips with missing data.                      

 

Figure 14: (a) Photograph of Dob Along G taken in 2015 and (b) an aerial view of the 

field with the boundary in blue 
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Figure 15: Example of a cleaned yield maps generated using Yield Editor for Dob Along G. 

The classification breaks have blue representing poor yield, green moderate yield, and red 

high yield (in bushels per acre). 

3.1.2 Emmert 

Emmert is a 68-acre field that is characterized as a mostly flat field with some gently sloping 

area. This field has limited soil variability throughout. Figure 16 shows an aerial view of the field 

with an outline of the border and a photograph taken of the field in Spring 2015. This photo 

shows the field edge and a knoll located at the north-central end of the field. It is bordered by 

190 St. to the east and otherwise surrounded by separate fields on its other sides.  

Figure 16: (a) Aerial view of Emmert with the boundary in blue and (b) a photograph 

of the field taken in 2015 
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Figure 17 shows an example of the yield data for this field. This yield data is the 

composite with a somewhat rectangular shape with little differences in the yield except for some 

lower yields around the edges. 

 

Figure 17: Example of a cleaned yield points generated using Yield Editor for Emmert. The 

classification breaks have blue representing poor yield, green moderate yield, and red high 

yield (in bushels per acre). 

3.1.3 Harstad 

Harstad is a 135-acre field that is characterized by a large amount of variability in soil with many 

hills and small flat areas. Figure 18 shows an aerial view of the field with an outline of the border 

and a photograph taken of the field in Spring 2015. There is an east-west crest that travels from 

the southeastern side to the house located in the southcentral section of the field. This crest 

marks a boundary line between a mostly flat area in the south and an extremely hilly area in the 

north. The remainder of the field is moderately hilly with no flat areas and high variability in soil 

type as can be seen by the color difference. It is bordered by a forested area to the north, 

residential land to the east, 130 Ave. to the south, and separate fields and forests to the west. 

Figure 19 is an example of cleaned yield data for this farm. 
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Figure 19: Example of a cleaned yield maps generated using Yield Editor for Harstad. The 

classification breaks have blue representing poor yield, green moderate yield, and red high 

yield (in bushels per acre).  

Figure 18: (a) Aerial view of Harstad with the boundary in blue and (b) a photograph of 

the field taken in 2015 
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3.1.4 Merkt’s 

Merkt’s is a 90-acre field that is characterized by moderate soil variability with a few hills and 

ridge lines. Figure 20 shows an aerial overview of the field with its boundary in blue. It is 

bordered by 160th Ave to the north, residential areas to the west, and trees on the other sides. 

Access was limited so no pictures were obtained for this field. Figure 21 is an example of a 

cleaned yield for the farm.  

 

 

 

Figure 20: Aerial view of Merkt’s with the field boundary in blue 
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3.1.5 Pribnows 

Pribnows is a 360-acre field with limited variability, a gently sloping landscape and crest just 

west of the building on the south side. Figure 22 shows an aerial view and photograph of the 

field taken in Spring 2014. It is bounded by 160th St to the east, 140th to the south, County Rd G 

to the North. Additionally, there are fields and trees to the north where the field moves away 

from the County Road.  

Figure 21: Example of a cleaned yield maps generated using Yield Editor for Merkt’s. 

The classification breaks have blue representing poor yield, green moderate yield, and 

red high yield (in bushels per acre). 

Figure 22: (a) Aerial view of Pribnows with the field boundary highlighted 

in blue and (b) a photograph taken of the field in Spring 2014. 
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Figure 23 is an example of cleaned yield data for the farm. 

3.1.6 Stefoneks 

Stefoneks is a 240-acre field that is separated in two by 85th St. It is best characterized by a 

highly variable landscape that show large differences between the two halves. It is obvious that 

this field has only one name because of management purposes and not because it represents a 

homogenous field. The east side of the field features a ridge line in the center of the field with 

gentle slopes flowing from there to the east side. The west side of the field is a continuation of 

the ridge line with flat areas to the north of the ridge and gentle slopes flowing to the west. On 

the far west there is a series of knolls.  There are also variations in the soil color at the southwest 

end. Figure 24 shows an aerial view of the field and a photograph of it taken in Spring 2014. The 

field is bounded on the south by 140th Ave., farm fields to the east, trees in the northwest, 

another field to the northeast, and residential areas with trees in the southwest corner. Figure 25 

is an example of cleaned yield data for the farm.   

Figure 23: Example of a cleaned yield maps generated using Yield Editor for Pribnows. 

The classification breaks have blue representing poor yield, green moderate yield, and red 

high yield (in bushels per acre). 
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Figure 24: (a) Photograph of Stefoneks taken in Spring 2014 and (b) aerial imagry with the 

field boundary in blue 
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3.2 Working with Yield Data 

The fields obtained from Nick Schottler came in the form of shape files. In order to correctly 

process this data, the table had to be exported into a spreadsheet and manipulated there. Once the 

data was imported into Excel the columns needed to process yield in the USDA Yield Editor 

were placed in the correct order. This allows for errors in the data to be removed by this editor.  

Once this data has been processed in the editor it is ready to be imported back into ArcGIS. The 

editor already properly links each data point to the proper UTM projection, in the case zone 15N. 

Finally, the yield data is interpolated using the accepted practice which relies on the inverse 

distance weighted (IDW) with distance squared interpolation method. This final process shows 

the result that a farmer will look at to evaluate his or her yield.  

 

 

 

Figure 25: Example of a cleaned yield maps generated using Yield Editor for Stefoneks. 

The classification breaks have blue representing poor yield, green moderate yield, and red 

high yield (in bushels per acre). 
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3.2.1 Yield Table 

Yield data was acquired in the form of thousands of georeferenced points that vary in quantity 

based on the size of the field and calibration of the yield monitor. For example, Dob Along G has 

over 4,600 unprocessed yield points to consider. This data comes in the order that the yield 

monitor provides it. An example of a truncated list of these data points is provided in Table 2 for 

Dob Along G.  

Table 2 Raw Yield Data from Dob Along G recorded in 2012 

FID Product Swath 
Width (ft) 

Elevation (ft) Time (date) Yield 
Volume 
(bu/ac) 

Speed 
(mph) 

Crop Flow 
(V) 

15599 CORN 30.1 1040.8 2012-10-16 184.89 5.02 3398.20 
15600 CORN 30.1 1040.8 2012-10-16 185.20 4.97 3368.53 
15601 CORN 30.1 1040.7 2012-10-16 154.57 5.99 3388.79 
15602 CORN 30.1 1040.8 2012-10-16 186.33 4.97 3388.79 
15603 CORN 30.1 1040.7 2012-10-16 186.38 5.00 3409.08 
15604 CORN 30.1 1040.6 2012-10-16 185.18 5.02 3401.58 
15605 CORN 30.1 1040.6 2012-10-16 187.30 4.94 3389.34 
15606 CORN 30.1 1040.6 2012-10-16 186.12 4.99 3402.00 
15607 CORN 30.1 1040.5 2012-10-16 166.26 5.02 3054.05 
15608 CORN 30.1 1040.4 2012-10-16 168.98 4.99 3088.60 
15609 CORN 30.1 1040.3 2012-10-16 169.70 4.99 3101.86 
15610 CORN 30.1 1040.3 2012-10-16 171.09 4.97 3113.11 
15611 CORN 30.1 1040.3 2012-10-16 171.13 4.99 3129.84 
15612 CORN 30.1 1040.2 2012-10-16 169.58 4.99 3099.84 
15613 CORN 30.1 1040.1 2012-10-16 167.48 5.02 3076.52 

 

As can be seen from the table there are instances where units for a column are not given. 

These must be determined based on a reasonable suspicion of what units correspond to the 

number in that column based on common practice and magnitude. For example, a typical swath 

width on a combine is 30 ft so the column labeled swath width is clearly in feet. This table also 

shows data that can help remove erroneous points. For example, if the speed suddenly varied 

from its relatively stable 5 mph this would be an indication that the yield monitor was picking up 

routine shifts in the combine that were not meant to be monitored.  
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Once these fields have been exported from the shape file into a table the columns need to 

be made to match the format used by the Yield Editor which is shown below in Table 3. The data 

must appear in this exact order with the correct units in order for the software to correctly 

process the data. The Yield Editor than removes points based on user selections and manual 

edits. The Yield Editor will automatically check the data from the table to determine automatic 

limits on various elements including but not limited to flow delay, velocity (maximum and 

minimum), minimum swath, and yield (both minimum and maximum). The listed filter 

selections above were used to clean the data. Attributes related to yield are chosen based on the 

user crop choice and position based on the user input UTM zone.  

The Yield Editor was next used to remove erroneous points by looking for excessive low 

or high yield values and other anomalies associated with the data. This cleaned yield data was 

then by imported back into ArcGIS to complete the yield analysis.  

Table 3: Column Data Names and Units for Import 

Column Name Units 

Longitude decimal degrees 

Latitude decimal degrees 

Flow pounds per second 

Time seconds 

Logged Interval seconds 

Distance inches 

Swath inches 

Moisture percent wet 

Adapted from Yield Editor 2.0 Manual 

3.2.2 Yield Interpolation 

The yields were interpolated using the IDW technique with distance squared because this is the 

most commonly used technique to visualize the thousands of yield points available from a yield 

monitor. This was done with the IDW tool using a radius of 5 m and the smooth neighborhood 
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function. This tool finds whatever points lie within this radius and uses these to compute the 

value of a cell. The smooth neighborhood function makes sure that points closer to the center of 

the circle carry greater weight than those further away. The class ranges for the interpolation 

were broken down into six evenly distributed classes between 0 and 300. The upper limit was 

chosen because it represents an optimal maximum yield to stop at. The interpolation used a 

smooth nearest neighbor function to generate the raster because this is the standard approach in 

yield mapping.  

3.2.3 Composite Yield 

The composite yield is generally created by normalizing yield between zero and one through 

dividing the yield by the maximum yield a particular farm can achieve, which is determined by 

the analyst. Once normalized any number of years can be combined together, but typically three 

are considered a good number of years. This process was not strictly adhered to for this project 

because it inherently loses data in the normalization process and limits the ability to look at 

actual yields.  

The composite yield was created by combining multiple years of yield data into one yield 

interpolation. The process was the same as for a single field (as discussed above), but before the 

yield undergoes error checking, all of the uncleaned yield data is combined into one table. In this 

way no data was lost through any intermediate normalization. This also means that the Yield 

Editor may remove different points from the composite than for each year. This is because the 

editor uses a statistical technique to determine which points are removed. Differences can and 

did occur from one year to the next and the composite.  

The reasoning behind using so many yield points is that any errors that exist in a single 

year will be diminished by using multiple years of data. This thesis examines these differences to 
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look at the efficacy of this claim. Figures 15, 17, 19, 21, 23, and 25 above show the cleaned yield 

editor results for each of the six fields as viewed from within the editor.                             

3.2.4 Validation and Comparison of Yield Interpolations 

In order to validate the yield interpolations, 20 approximately equal sized grids were generated 

on each field and a control point was randomly selected within each grid. These control points 

were then removed and the interpolation run on the remaining points. The interpolated raster 

values for the location of these points were then compared to the actual values of these points 

from the original yield data.  

The difference of means statistical test was used to evaluate the significance of the 

differences for each year and the composite for all fields. The standard error and degrees of 

freedom were calculated using Equations (1) and (2) below. Finally, the test statistics was 

calculated using Equation (3) and used to find the p-value in the statistical chart. Where SE is the 

standard error, DF is the degrees of freedom, s1 and s2 are the standard deviation for the actual 

and predicted values respectively, n1 and n2 are the size of the sample for the actual and predicted 

values respectively, t is the test statistic, x1 and x2 are the mean of the actual and predicted values 

respectively, and d is the hypothesized difference between the two means. Values were 

considered significant if below 0.05 which is a standard threshold value for use with scientific 

data.  

SE = sqrt[(s1
2/n1) + (s2

2/n2)]       (1) 

DF = (s1
2/n1 + s2

2/n2)
2 / {[ (s1

2 / n1)
2 / (n1 - 1)] + [ (s2

2 / n2)
2 / (n2 - 1)]} (2) 

t = [(x1 - x2) - d] / SE        (3) 

 Once these data were validated using the above method some comparisons can then be 

made by looking at the changes in mean and variability between interpolations from all years of 
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the fields. This can help identify years where drastic changes could affect the composite and 

demonstrate where improper classification values could damage a yield interpolation.  

3.3 Constructing DEMs from LiDAR 

The LiDAR from the St. Croix Government Center came in the form of point clouds saved as 

.LAS files.  This LiDAR information was obtained by AYRES Associates in the spring of 2014. 

AYRES is an engineering and architectural company that has geospatial and GIS related services 

to clients. The provided processed DEM has a nominal point spacing of one meter with a vertical 

tolerance of 0.61. However, the raw point cloud was used in order to fully explore the process of 

DEM creation. The data was separated into cells of points that correspond to latitude and 

longitude. Each yield dataset had one to four cells of LiDAR data associated with it depending 

on its size and location. A DEM of each field was created with these point cloud data.  

3.3.1 Creation of DEM 

In order to create a DEM from LiDAR, the grid cells associated with a field are extracted and 

transformed into multipoint vector data. This simply transforms the raw LiDAR points into a 

usable format. A terrain dataset was created using this multipoint data with an average point 

spacing of one meter. One meter was chosen because it represents the most accurate dataset that 

can be created with the LiDAR available. The terrain dataset is a triangular irregular network 

(TIN) with different levels of detail called pyramids. These pyramids are for visualization 

purposes only as the most detailed level is used to create the DEM. Basically the terrain dataset 

is an intermediate step before the creation of the final DEM. The spacing between LiDAR points 

is dependent on the data provided. In this case the data provided from St. Croix County was 

described in its metadata as having a nominal point spacing of one meter. The example terrain 
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for Dob Along G is shown in Figure 26. It can be changed to greater levels of tessellation to 

increase efficiency if less accurate data is required.  

Once the terrain has been created it is visibly inspected for errors and transformed into a 

raster. This raster is the DEM and is a digital representation of the elevation in the area. The 

difference between the DEM and the terrain dataset is that the terrain is constructed with 

triangles while the DEM is constructed with squares. The DEM allows for easier visualization, 

manipulation, and classification of the data. This DEM is shown in Figure 26b. As can be seen 

from the elevation dataset there is some noise associated with the data. For example, there is a 

small area included in the DEM that differs from the terrain located in the northwest of Dob 

Along G. Man-made structures can have a direct impact on the quality of the DEM as well.  

 

Figure 26: (a) Terrain in 25 m classes; (b) a 5 m DEM raster of Dob Along G study area. 
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3.3.2 DEM Derived Attributes 

The DEM can be used to construct derivative maps of various other associated attributes; for 

example, slope, aspect, and elevation contours. This project used DEM data to create slope maps 

that were used for visual analysis. The slope map better characterized how the elevation varied 

across each of the study fields.  

 The slope map was created directly from the DEM as the rate of change in percent. The 

class breaks used in these derivative slope maps are very important because a small change in 

slope could have a great impact on yield. Also, if not correctly symbolized the slope map will be 

mostly monotone on such a flat surface. An example of this output is shown in Figure 22. For the 

purposes of this thesis five slope classes were chosen: 0°, > 0°- 1°, > 1° - 2°, > 2° - 3°, > 3° - 5°, 

and > 5°. These ranges emphasize small changes in slope.  

Figure 27: Slope raster based on the 5 m DEM with class breaks that emphasize the 

variations in slope. 
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3.4 Final Analysis Steps 

All of the methods and data described in Sections 3.1 through 3.3 were next used to answer two 

questions: (1) Are there significant differences between a multiple year composite yield and a 

single year and if so, are these significant enough to have an impact on normal operations? (2) 

Are the areas where such differences occur related to differences in slope?  

3.4.1 Differences between single year and multiple-year yields 

The yields in each of the six fields were interpolated using the above methods four times, once 

for three single years and once for these years combined. These results were compared against 20 

randomly selected control points to demonstrate the efficacy of this approach and the full results 

were then used to compare the single year and multiple-year yields. Finally, yield difference 

rasters were created highlighting the differences between the single and multiple-year 

interpolations to show the areas where the most significant differences were located. This 

workflow was implemented to answer the first question. 

3.4.2 Impact of slope on yield differences 

For the second question, a DEM was created for each farm using the LiDAR procedure discussed 

above. This DEM was in turn used to create a degree slope map with five categories of slope. 

The first category containing only 0° slope values was removed as no field had members 

included in this category. This final slope map was then compared to the yield difference rasters 

created above to identify whether the increased yield differences were associated with those parts 

of the field with higher slopes.  

The results are reported in Chapter 4 and their significance is discussed in Chapter 5.  
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CHAPTER 4: RESULTS 

The results are presented for each of the six farms in three steps (i.e. sections). The first 

compares predicted and measured yields to assess the efficacy of IDW as an interpolation 

method for yields on the six fields. The second compares a single year to a composite year yield 

in order to show if a single year offers similar guidance to the composite yield output. The third 

compares the difference between the composite and single year yield to the slope value to 

determine which slope values, if any, accompanied the largest differences in yield values.  

4.1 Yield Interpolation Evaluation 

The predicted values from the interpolation were compared with the actual values from 20 yield 

points within each field. These points were chosen randomly within grid squares in each field 

excluding a 10 m buffer inside the field boundary. This approach generated a spatially stratified 

set of test points for each field and also minimized any edge effects associated with the field 

boundary.  

Table 4 shows the yield mean for each year in each field along with the composite. The 

difference between each pair of means is also shown. This difference was used as to judge the 

efficacy of the interpolation. The composite yields for four of the six fields (highlighted in 

yellow in Table 4 below) shows how IDW struggled to predict yields using three years of data 

that was passed through and filtered by the Yield Editor, thereby contradicting the usual pattern 

in which larger volumes of data improves the efficacy of interpolation.   

Table 5 shows the yield values for Harstad in 2014 to demonstrate how small differences 

in the mean can mask substantial yield volatility for individual locations (as illustrated by the 

actual and predicted yields for the grid cells shaded in yellow). Similar results occurred for all 

six fields in 2014 although Harstad shows the most significant differences and although this 
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Table 4: Interpolation evaluation showing the actual and predicted means and standard 

deviation (SD) of the yields at 20 location in each year and the composite. Possible 

Interpolation failures are highlighted in yellow. 

FIELD YEAR SD ACTUAL  PREDICTED SD DIFFERENCE 

DOB ALONG G 2012 26 190 189 20 1 

2013 40 176 168 27 7 

2014 46 159 153 20 6 

All 31 202 197 21 5 

EMMERT 2012 19 194 189 10 5 

2013 34 88 86 16 2 

2014 63 117 128 39 10 

All 19 194 116 32 79 

HARSTAD 2012 45 159 164 26 5 

2013 42 79 80 30 1 

2014 51 132 122 22 10 

All 42 79 121 31 41 

MERKT'S 2012 37 159 157 20 2 

2013 27 54 61 13 7 

2014 51 100 98 30 2 

All 27 54 98 26 43 

PRIBNOWS 2012 20 190 187 13 3 

2013 27 88 89 24 2 

2014 32 172 170 18 2 

All 27 88 148 18 60 

STEFONEKS 2011 20 197 194 11 3 

2012 21 173 178 10 5 

2013 66 152 151 48 1 

All 21 173 171 31 2 

  

would not impact single field evaluations, it could greatly impact precision agriculture 

recommendations.  

Finally, as a check to see if these results are significant, a difference of means statistical 

test was used to generate a p-value and evaluate whether or not the reported differences were 

significantly different from zero. This p-value indicates that a result is significant if it is less than 

0.05. Table 6 shows a summary table for these values with statistically significant results (i.e. 

differences) highlighted in yellow. As can be seen, yields for four of the six composites show 

statistical significance. This result occurred because the composite is not simply a combination 
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Table 5: Example of comparison between actual and predicted yield values for Harstad 

2014 with the significant differences highlighted in yellow 

ID Actual Predicted 

1 145 167 

2 23 66 

3 161 126 

4 89 137 

5 187 119 

6 154 143 

7 41 117 

8 186 140 

9 148 101 

10 124 129 

11 176 116 

12 74 120 

13 105 121 

14 189 138 

15 90 75 

16 142 123 

17 123 112 

18 179 129 

19 105 119 

20 202 136 

  

of the three cleaned years but a combination of the unclean points that were then cleaned by the 

Yield Editor together. If one year is drastically different from the other two, then the composite 

fails to predict yield values. Normally, drastically different years would be removed by the 

analyst before a composite is made.  

4.2 Yield Interpolation Results 

The similarities and differences between the interpolated individual year and the composite 

yields are presented in three parts below. The first part shows all of the interpolated yields for 

each year and the composite in each field. The second part shows yield difference rasters for the 

composite and each year. 
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Table 6: Difference of Means Statistical Test Results. Possible failures of interpolation are 

highlighted in yellow. 

Field  Year P Value Significant 

Dob Along G 2012 0.899332 No 

  2013 0.500536 No 

  2014 0.572421 No 

  All 0.540056 No 

Emmert 2012 0.272875 No 

  2013 0.806777 No 

  2014 0.537597 No 

  All 1.21E-10 Yes 

Harstad 2012 0.689998 No 

  2013 0.958383 No 

  2014 0.405363 No 

  All 0.001136 Yes 

Merkt's 2012 0.814679 No 

  2013 0.320121 No 

  2014 0.91044 No 

  All 8.78E-06 Yes 

Pribnows 2012 0.524044 No 

  2013 0.809683 No 

  2014 0.809867 No 

  All 1.38E-09 Yes 

Stefoneks 2012 0.55353 No 

  2013 0.360466 No 

  2014 0.942276 No 

  All 0.801536 No 

 

The third part reports the mean and coefficient of variation for each year and the composite and 

also includes a discussion of yield between years and fields as a way to characterize the strength 

of the yield for a particular field and the changes that can occur within it. 

4.2.1 Yield Interpolation 

The interpolated yield maps for these fields reproduced in Figures 28-33 were constructed using 

yield data acquired from 2012 to 2014 (except for Stefoneks which includes data for 2011-2013).   
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Figure 28: Yield Interpolations for Dob Along G from 2012 to 2014 and a composite yield 

for all three (in bushels per acre). 
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Figure 29: Yield Interpolations for Emmert from 2012 to 2014 and a composite yield for all 

three (in bushels per acre). 
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Figure 30: Yield Interpolations for Harstad from 2012 to 2014 and a composite yield for 

all three (in bushels per acre). 
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Figure 31: Yield Interpolations for Merkt’s from 2012 to 2014 and a composite yield 

for all three (in bushels per acre). 
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Figure 32: Yield Interpolations for Pribnows from 2012 to 2014 and a composite yield 

for all three (in bushels per acre). 
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Figure 33: Yield Interpolations for Stefoneks from 2011 to 2013 and a composite yield for 

all three (in bushels per acre). 

4.2.2 Yield Difference Rasters 

The single year interpolations were then subtracted from the composite to create three difference 

yield difference rasters for each of the six fields. These yield difference rasters show how the 

estimated yield for each year in each raster cell differed from the composite. Figures 34 - 39 

show the three yield difference rasters created using this method.   

Dob Along G and Stefoneks have the most consistent results with a composite that did 

not fail the significance test. These maps also show the most variation in negative and positive 

differences that are generally centered around the middle. The remainder of the fields show the 

differences where the composite failed the significance test.  Generally, these fields show 

negative differences for the first year, positive results for the second year, and mixed results for 
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the final year. The first year consistently performed the worst for these four fields and the 

composite would likely perform better if this particular year was removed.  

Figure 34: Maps showing the difference between the single year and the composite yields 

(in bushels per acre) for Dob Along G. It has five categories with a count of the number of 

cells within the category.
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Figure 35: Maps showing the difference between the single year and the composite yields 

(in bushels per acre) for Emmert. It has five categories with a count of the number of cells 

within the category. 

(bu/ac) 

(bu/ac) 

(bu/ac) 



 

52 

 

 

(bu/ac) 

(bu/ac) 

(bu/ac) 

Figure 36: Maps showing the difference between the single year and the composite yields 

(in bushels per acre) for Harstad. It has five categories with a count of the number of cells 

within the category. 
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Figure 37: Maps showing the difference between the single year and the composite yields 

(in bushels per acre) for Merkt’s. It has five categories with a count of the number of cells 

within the category. 
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Figure 38: Maps showing the difference between the single year and the composite yields 

(in bushels per acre) for Pribnows. It has five categories with a count of the number of cells 

within the category. 
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Figure 39: Maps showing the difference between the single year and the composite yields 

(in bushels per acre) for Stefoneks. It has five categories with a count of the number of cells 

within the category. 

4.2.3 Yield Summary 

Table 7 shows the summary metrics for the six fields included in this study. The mean and the 

coefficient of variation are reported in bushels per acre. The mean gives an idea of the overall 

yield capability of a field, this is useful in accessing the general quality of the field, and the 

coefficient of variation gives an idea of the variability of yield within a field. 

 This table shows that all of the fields produce low yields. A good yield from a field 

would be 300 to 400 bu/acre. It is clear that Dob Along G and Stefoneks show the most 

consistent yield across the three years. The yield of the other four farms plummeted in 2013 and 

Merkt’s and Harstad also recorded low yield in 2014. The lowest coefficient of variation was  

(bu/ac) (bu/ac) 
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Table 7: Mean and coefficient of variation for all six fields 

Field Metric 2012 2013 2014 2012-2014 

Dob Along G Mean 179 156 151 183 

Coefficient of  

Variation 

.164 .251 .234 .186 

Emmert Mean 185 86 130 124 

Coefficient of 

Variation 

.083 .237 .294 .214 

Harstad Mean 161 79 118 112 

Coefficient of 

Variation 

.179 .407 .279 .251 

Merkt’s Mean 151 61 96 91 

Coefficient of 

Variation 

.183 .357 .361 .274 

Pribnows Mean 181 84 155 136 

Coefficient of 

Variation 

.100 .290 .236 .203 

Stefoneks* Mean 188 173 149 165 

Coefficient of 

Variation 

.115 .121 .338 .206 

* Stefoneks results are for 2011-2013 

reported for all six fields in the first year of record and generally, relatively large variations were 

associated with low yields. These results suggest that the fields which perform poorly also 

display great variation in yield which is most likely due to either landscape variation across the 

field and/or low fertility soils. The slope results help to clarify whether one or both of these 

explanations are applicable.  

4.3 Yield and Slope Comparison Results 

The DEM and slope classes for all six fields are summarized in Figures 35 through 40. The 

ranges of elevation found in each DEM differ depending on the range and variability of elevation 

found in each field. The slope, however, is displayed with a series of consistent classes to allow 

for comparison between fields. There is also a count of the number of cells in each slope 

category.  
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Figure 40: DEM and slope class map for Dob Along G created from LiDAR 

 

 

Figure 41: DEM and classified slope map for Emmert created from LiDAR 
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Figure 42: DEM and slope class map for Harstad created from LiDAR 

 

Figure 43: DEM and slope class map for Merkt’s created from LiDAR 
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Figure 44: DEM and slope class map for Pribnows created from LiDAR

 
Figure 45: DEM and slope class map for Stefoneks created from LiDAR 
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The mean and coefficient of variation for yield is summarized by slope class for each 

field of each year and the composite in Table 8. The number of cells belonging to each class is 

shown as well.  

Table 8: Slope and Yield Comparison 

Field Slope 

class 

No. of 

Cells 

Metric 2012 2013 2014 2012-

2014 

Dob Along G 0-1 123,229 Mean 186 160 148 189 

 CV .146 .253 .251 .175 

 1-2 233,696 Mean 181 159 152 185 

 CV .160 .247 .232 .182 

 2-3 143,345 Mean 175 153 153 178 

 CV .173 .246 .221 .189 

 3-5 40,353 Mean 171 146 150 173 

 CV .169 .245 .224 .191 

 > 5 4,015 Mean 155 132 140 151 

 CV .149 .282 .248 .197 

Emmert 0-1 18,295 Mean 186 81 121 119 

 CV .091 .256 .363 .255 

 1-2 45,471 Mean 187 85 130 124 

 CV .081 .239 .302 .222 

 2-3 36,219 Mean 185 .87 134 126 

 CV .074 .223 .27 .199 

 3-5 16,216 Mean 181 89 134 126 

 CV .076 .225 .241 .171 

 > 5 1,922 Mean 164 86 126 119 

 CV .101 .246 .206 .177 

Harstad 0-1 26,231 Mean 167 86 118 116 

 CV .151 .442 .267 .248 

 1-2 50,413 Mean 163 78 119 113 

 CV .174 .421 .284 .256 

 2-3 49,149 Mean 164 77 119 112 

 CV .168 .377 .281 .244 

 3-5 64,466 Mean 162 78 118 112 

 CV .169 .391 .281 .248 

 > 5 45,638 Mean 152 79 116 110 

 CV .216 .413 .272 .255 

Merkt’s 0-1 14,451 Mean 163 61 108 100 

 CV .121 .310 .338 .241 

 1-2 25,196 Mean 161 61 102 96 

 CV .134 .341 .341 .256 

 2-3 24,515 Mean 159 62 96 93 

 CV .146 .345 .335 .255 

 3-5 43,084 Mean 153 62 95 91 
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 CV .165 .348 .343 .253 

 > 5 49,501 Mean 138 60 91 86 

 CV .222 .389 .390 .305 

Pribnows 0-1 168,781 Mean 184 85 158 138 

 CV .085 .252 .228 .187 

 1-2 248,935 Mean 184 86 158 138 

 CV .091 .272 .230 .196 

 2-3 142,485 Mean 181 85 154 135 

 CV .097 .304 .233 .203 

 3-5 61,229 Mean 171 76 146 125 

 CV .122 .375 .258 .235 

 > 5 8,792 Mean 151 64 133 111 

 CV .169 .439 .300 .287 

Stefoneks 0-1 65,961 Mean 194 178 152 169 

 CV .104 .109 .325 .199 

 1-2 113,919 Mean 176 176 152 168 

 CV .111 .111 .325 .198 

 2-3 89,727 Mean 189 174 151 166 

 CV .109 .111 .330 .205 

 3-5 113,919 Mean 185 170 149 163 

 CV .112 .121 .343 .206 

 > 5 62,282 Mean 177 164 140 155 

 CV .129 .143 .359 .209 

 

 Dob Along G shows yield generally decreasing with slope but with no consistent pattern 

in terms of variability. Emmert has few steep slopes and no evident pattern in yield or variability. 

Harstad has a large number of cells spread out over all the slope classes but yields and variability 

behaved similarly across all slope classes. Merkt’s shows decreasing yield corresponding with 

increasing variability as the slope increases. The same is true for Pribnows and Stefoneks.    
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CHAPTER 5: DISCUSSION AND CONCLUSION 

This thesis project tackled an exceedingly difficult topic because both natural and human factors 

can affect the yield and its variability through space and/or time. Most precision agriculture 

applications fuse two or more data sources and types (elevation, soil attribute(s), yield, etc.) and 

use interpolation to integrate these disparate datasets across space and/or time. The efficacy of 

this type of approach for interpolating yields and trying to clarify the role of slope, if any, was 

taken up for the work at hand.  

5.1 Yield Interpolation Results 

The yield interpolation provided some interesting results. The validation results showed that the 

composite gave accurate representations of yield only when all years used had similar averages 

and variability; for this reason, Dob Along G and Stefoneks have accurate composites, while the 

remaining fields each have a year that served as an outlier compared to the others.  

The difference maps created by subtracting the composite from each year were a good 

way to identify these outliers. Normally, when creating these composites, an agronomist or 

researcher will look at each year and remove a year’s results if the interpolation looks drastically 

different. This could not be done here because only three years of yield data were available. The 

difference map is a viable way to objectively remove outlier years without resorting to a 

subjective test. All that would need to be decided is how much a field can be different from the 

composite in order for it to be removed. Just as importantly, the presence of variability might be 

used to justify the use of maps from the previous year and to avoid the use of composite yield 

maps altogether. 

The yield interpolation itself can provide a great description of the field. Higher yield 

values come from those fields with more uniform soil. More variability is seen where the yield is 
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lower but this variability does not necessarily correlate with slope. This is probably due to a 

more complicated relationship between yield and slope than was assumed in this thesis project. It 

should be noted that the fields used here are hilly with poor soils so many of the judgments and 

descriptions can only be extended to similar types of fields. Another area with flat or nearly flat 

landscapes and better soils may have vastly different characteristics and relationships. 

Overall, this section answers the first question: Are there significant differences between 

a multiple year composite yield and a single year and if so, are these significant enough to have 

an impact on normal operations? The answer is it depends on the farm in question. In some 

cases, like Dob Along G and Stefoneks, the yield data is consistent enough that one year could 

be used instead. However, where the composite fails there is no way to avoid using the previous 

year’s result to guide the next year’s strategy.  

The alternative answer to the two aforementioned strategies may be the removal of 

problem years while using one of the remaining years as a “best fit” year. However, there are 

many factors that can create the so-called “problem” years, from equipment failures to 

environmental and climate factors. If the former, these years can and should be eliminated; if the 

latter, it would be questionable to remove these years if the purpose of the interpolation is to 

characterize the field. Likely, this will have to be determined on a case-by-case basis where more 

complicated fields are paid more attention than those that are simpler.  

5.2 Slope and Yield Comparison 

The results for the slope and yield comparison are equally interesting. Here it can generally be 

seen that there was little to no change in variation or yield between slope classes. This 

demonstrates that for slope values between 0 - 5° there was little to no effect on yield.  



 

64 

 

Considering this grade includes slopes that would normally be considered as special 

conditions for an agricultural field it is safe to say that slope on its own does not significantly 

affect yield. It also can be said that slope cannot be used to represent landscape changes without 

additional data to supplement it. One suggestion for complementary data would be one or more 

soil properties within a field since these might help to better characterize the landscape.  

The two fields that should some signs of changes at the > 5° slope class, Merkt’s and 

Pribnows, displayed some of the highest variability in yields. This could indicate frequent slope 

changes across the field, although Stefoneks also has frequent changes in slope. This result could 

mean that for some fields steep slopes could indicate drop offs in yield. It is, however, a mystery 

as to why these fields in particular show this kind of result when the yields in three other fields 

were relatively stable. 

Overall, this section answers the second question: Are the areas where such yield 

differences between the composite and a single year occur related to slope differences? The 

answer is a resounding no. There were four fields where this was true and only half of these 

indicated any changes in yield as slope increases and these changes only occur at very steep 

slopes. This result might have occurred for many reasons. Most likely, the slope by itself could 

not account for complicated landscapes where a variety of factors play significant roles.  

As discussed above in Section 5.1, supplementary information could help to clarify these 

relationships, but how much and what form requires further research. One important reason that 

this could have failed is because this data was taken from a working farm and not from one used 

for research. This is important because a farmer can see the slope on his field and decide to 

account for problems associated with it by adding more manure or fertilizer in specific areas. The 
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purpose of this thesis was to look at the results from actual farms and this may have greatly 

impacted the ability to answer the second question.  

5.3 Final Thoughts 

While the results of this thesis are mixed as far as the expected result is concerned, some 

interesting results were discovered throughout the work at hand. The potential for misuse of 

composite yield maps is probably the most significant. Without proper scrutiny a yield map can 

give a very false impression of the field. Moreover, the general practice so far has been to 

subjectively remove years that look like outliers (i.e. years that look significantly different than 

the others). This thesis offers an approach to objectively determine which years could be 

removed. This should be used with caution, however, as sometimes years that differ from the 

others may provide valuable yield information.  

Finally, slope is not a sole factor for determining problems with yield. The landscape as a 

whole needs to be characterized in more detail by using more data to supplement the data 

picture, and there may be some value at looking at steep slopes and determining if there is a 

special relationship between yield and slopes that are both steep and highly variable. 
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