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Abstract

The second generation of the Landscape Disturbance and Succession model
(LANDIS-II) is frequently used to understand ecological succession on the landscape.
LANDIS-II is an important simulation tool but it can be difficult to parameterize
properly in data-poor regions. By examining the spatial sensitivity of LANDIS-II, the
model’s users will have an improved understanding of the data required to properly
implement the model. Existing studies have tested the ecological sensitivity of
LANDIS-II in local geographic settings, but a robust test of the model’s spatial
sensitivity has not been completed. This research tested the spatial sensitivity of the
LANDIS-II spatially stochastic landscape model using a broad set of vegetation
communities found within the contiguous United States. Thirty spatially explicit,
equal-area, and area-weighted iterations of the spatial parameters of the LANDIS-II
model were run for a series of localities in the contiguous United States, where the
areas were defined by the spatial composition of vegetation community values.
Ecological attributes were derived from the NatureServe Ecological Systems of the
United States dataset. A test of the spatial input parameters of LANDIS-II
demonstrated that the model is aspatial under certain conditions. Furthermore,
vegetation community interactions may be effectively represented in LANDIS-II by a
series of spatially stochastic input rasters; such that assessing a locality’s vegetation
trend is possible even when spatially explicit land classification information is
unavailable, thereby facilitating long-term environmental planning in data-poor

environments.
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Chapter 1: Introduction

Overview

Landscape ecology is the spatial-centric sub-discipline of the ecological
sciences that evolved to embrace the role space and time play in the environment
(Turner 1989; Watt 1947). The field is responsible for the development of many
different types of dynamic landscape models including models with dispersion-
based drivers. In a dispersion model, an entity is represented at an initial position
and its replicates are propagated to surrounding locations during a series of time-
steps. Model parameters can be used to attenuate the dispersion process. For
instance, by defining a maximum dispersion distance, an initial entity cannot be

dispersed farther than the set distance in the model.

The representation of dynamic spatio-temporal landscape phenomena has
been an ongoing challenge for spatial modelers. A common method for modeling
these phenomena is through the snapshot method. The snapshot method represents
data through a series of raster grids, one for each time-step. Each raster grid
displays a small change on the landscape; the temporally ordered, iterative display
of these rasters allows the modeler to visualize the temporal processes acting in the
model (Pultar et al. 2009). A dispersion model adhering to the snapshot method
represents an initial entity as a single cell, or series of cells, on the initial raster. As
time progresses, new raster grids are generated that show the entity spreading to

more cells on the raster.



Most landscape models use spatially explicit knowledge to populate the input
conditions of the model. Spatially explicit knowledge is defined here as the digital
representation of the real world that maintains a recognizable depiction of the real
world’s spatial arrangement and composition. Spatial arrangement is the unique
pattern and shape of an entity or series of entities, whereas, spatial composition is
considered the proportion of area each entity occupies in a defined space. For
example, a spatially explicit dataset representing a forested landscape maintains the
shape of each forest’s boundary, as well as the same proportion of area for each

forest, in relation to the spatial extent of the landscape being represented.

The Landscape Disturbance and Succession family of models, commonly
known as LANDIS models, were developed by forest ecologists to understand forest
succession across a broad set of landscapes. LANDIS is classified as a dispersion
model adhering to the snapshot method to represent the spatio-temporal ecological
succession occurring in the model. The model operator defines a series of species
and dispersion parameters to represent various vegetation communities on the
landscape. In most (if not all) studies (Scheller et al. 2008; Scheller et al. 2011;
Scheller and Mladenoff 2005; Shang et al. 2004), species parameters are defined by
iteratively testing a set of observed and arbitrary values in preliminary LANDIS runs,
and then selecting parameters that the operator deems most representative of real
world properties. The iterative process of selecting ideal species and dispersion

parameters is known as ecological parameter optimization. While ecological



parameter optimization is common, a robust test of the model’s spatial sensitivity is

lacking.

Mlandenoff and He, the creators of the original LANDIS model, note that the
use of simulation models allow researchers the opportunity to explore the effects of
disturbance, scale, time, and ecological complexity on an environment. While both
claim LANDIS to be a valid tool for forest related research, they have stated:
“...LANDIS is not designed to predict the occurrence of a given event or change on a
single real location. The model is best viewed as a tool for projecting plausible
landscape patterns resulting from different simulated assumptions and scenarios”
(pp.159, Mladenoff and He 1999). In many ways, this statement sparked the
development of this research project because it highlights a direct need to

understand the model’s spatial sensitivity before accepting its results.

LANDIS simulation models are useful for understanding landscape level
succession for a given set of vegetation communities. In this research, a vegetation
community is considered a unique set of collocated plant species occurring on the
landscape, regardless of their spatial properties (e.g. adjacency, patchiness). LANDIS
is generally used to determine non-spatial vegetation trends acting in the model,
such as the increase or decrease of a given species’ (or vegetation community’s)
percentage-area shown in the model’s output. An example of aspatial LANDIS output
visualization is shown in LANDIS: A Spatial Model of Forest, Landscape Disturbance,

Succession, and Management (Mladenoff et al. 1996) using the APACK software



package for summarizing landscape metrics. The practice of chart and tabular
summaries of LANDIS raster output is still in use (Scheller et al. 2007), which
suggests that only non-spatial vegetation trend information is required as an output

by the model’s users.

Given that LANDIS-II is primarily an ecological tool, LANDIS-II's developers
and users have focused more on the sensitivity analysis of ecological parameters in
the model (He, Larsen, and Mladenoff 2002) instead of assessing how spatial
properties influence the non-spatial vegetation trend results. This research tested
the spatial sensitivity of the LANDIS-II landscape simulation model to understand
the influence spatial arrangement and spatial composition have on simulation
results. This study posits that LANDIS-II's spatial stochasticity allows it to accept
randomly generated spatial input parameters and produce non-spatial output
results similar to those found when spatially explicit input parameters are used.
Certainly non-spatially explicit input layers cannot be used to predict spatially
explicit trends and outcomes, but because LANDIS output results are traditionally

reported using an aspatial method, spatially explicit knowledge may not be needed.

Under this paradigm, vegetation communities acting within LANDIS-II
simulations are contained by an interaction space based on spatial reality, rather
than an explicit representation of reality itself. If this paradigm holds true, then
LANDIS-II could be used to understand vegetation trends in data-poor

environments.



The novelty of this research is the adaptive application of the LANDIS-II
model to understand its spatial sensitivity. In previous studies (Scheller and
Mladenoff 2005; Scheller et al. 2011), LANDIS-II was optimized for specific
ecological regimes using the ecological parameter optimization technique discussed
earlier, and applied to fixed, spatially explicit input layers to develop a set of non-
spatial vegetation trend results. In this research, however, the results of spatially
explicit output based on generic ecological parameters were used as an
experimental control in a sensitivity test of two different, random spatial variables.
Because non-spatial vegetation trends are based on the aggregation of spatial data
within a spatial extent, the experimental design of this research also assesses the
spatial sensitivity of three different aggregation scales: 12km?, 24km?, and 48km?.
The Chi-square statistic was used to compare the similarity between the tabular
vegetation trend patterns produced by the experimental control and both variables
individually at each scale. After all, LANDIS-II is used to provide non-spatial
vegetation succession trend information and not spatially accurate assessments of
landscape future (Mladenoff and He 1999). This exploration of the LANDIS-II model

adds to the current body of knowledge.

Furthermore, this study is in direct support of U.S. Army research operations
concerning global change, land management, and the fate of contaminants on
military installations. This research was conducted parallel to the development of a

vegetation trend database for dominant, natural, upland vegetation in the



contiguous United States. Although the larger research project is not outlined in this
study, it served as the impetus for an investigation of LANDIS-II, provided the
context for the experimental parameters used, and served as an opportunity to

further the understanding of spatially stochastic modeling.

Background

The study of spatially variant ecosystems begins with Tansley’s 1935 paper,
The Use and Abuse of Vegetation Concepts and Terms (Tansley 1935). In the paper,
the author introduces the idea of ecosystems as being a web of inter-related multi-
layered natural systems, and expounds upon the concept of succession found in
these systems. By 1935, ecologists had observed that not only do plants themselves
undergo transitional phases, but entire vegetation communities undergo a series of
transitions as well. These patterns of transition, driving one ecosystem to transgress

upon another, are referred to as succession.

Watt builds on Tansley’s work with his review (Watt 1947) of vegetation
patterns and processes. Contemporaries of Tansley used mathematical and
population models to describe, predict, and understand their world (Morris 1997).
Watt’s work is striking in that he notices the importance of spatial settings on
vegetation, and describes the dynamic phases of an ecosystem distributed on the
landscape. In the 19t century, ecologists believed vegetation and ecosystems were
distributed uniformly across the local landscape, but advances in the field pointed to

patchy distributions of ecosystems (Legendre and Fortin 1989). Although Watt’s



examples largely focus on the patchiness of micro-communities as situated on a
local hill-slope, 20t century ecologists would begin describing the spatial

relationships and ecological settings seen in the environment.

Turner (1989) articulates the development of ecological modeling from the
early conceptual understanding provided by Watt. The notion of landscape patches
in different phases of succession and the influence of scale on biogeographic
understanding are discussed in more detail as the underpinning of modern spatial
landscape models. The quantitative revolution in geography brought new statistical
methods, such as Moran’s I, for describing spatial patterns. A spatial-centric
approach to ecology became formally developed and Turner presents a strong
argument for the use of spatial ecology models over non-spatial models, which may
not capture the full range of important processes in the environment. Spatial
properties and drivers play an important role in ecosystems and should be
represented in the model environment because spatial patterns do affect real world

ecological processes.

With the advent of the personal computers becoming more available at lower
cost, the possibility of more complex modeling efforts was slowly realized.
Furthermore, ecology models became more spatial-centric and incorporated new
variables, including disturbance and human-ordered land management. Paine et al.
(1998) discuss how disturbances affect landscape succession. While ecological

communities often rebound following routine disturbances, Paine et al. note that



after a catastrophic disturbance, or series of disturbances, the landscape enters a
new ecological domain by undergoing catastrophic succession. Once this process

has occurred, ecological communities rarely rebound.

Although this research tested the spatial sensitivity of LANDIS-II without
modeling disturbances or land management decisions, the demand for these
variables within a landscape modeling package is a leading reason for the
development, evolution, and use of the LANDIS family of spatial models. Although
the LANDIS family of models is only one set of many, it is widely used to predict
species-specific response to environmental disturbances and is portable to a broad
range of landscapes and vegetation regimes (He, H. S., D. R. Larsen, and D. J.

Mladenoff 2002).

LANDIS

LANDIS is a dispersion-based system used to model dynamic ecological
succession between vegetation communities. The model internally disperses species
based on a random-seed value that determines distance and direction, provided the
new location is within the bounds set by the species and dispersion parameters.
Mladenoff et al. (1996) describe the objectives and approach used in the design and
production of the original LANDIS model. The paper provides a brief background of
the original research goals, model description, and model outputs. The creators of
the model sought to develop a model platform able to capture the spatio-temporal

evolution of large forested landscapes. The developers also desired a model capable



of dynamically modeling ecological disturbances based on spatially explicit input
data. The LANDIS developers settled on a dynamic, spatially stochastic, dispersion-

based platform capable of meeting their research needs.

He et al. (2002) present a persuasive argument for the use of the LANDIS
family of models. The authors describe LANDIS as a premier system in the ecological
modeling field and consider it the benchmark for future landscape model
development. The model is object oriented and developed in C# .Net allowing
developers to extend the capabilities of the system using a modern computing
language. The extensibility of the model through the use of open-source extension
packages is a leading reason for its prolific use (He, Larsen, and Mladenoff 2002).
The core of the model, however, remains proprietary. It is this proprietary nature

that makes the current research necessary.

LANDIS’s design as a spatially stochastic model lends itself to be a portable
and adaptable model capable of investigating a broad range of problems (He, Larsen,
and Mladenoff 2002). The pedigree of LANDIS and its many applications are
described by Mladenoff (2004), who also introduces the second generation LANDIS
model, LANDIS-II. LANDIS-II includes new features such as time-step controls, a
new dispersal method (double exponential seed dispersal), and increased

mechanistic detail within the model.



Like LANDIS, LANDIS-II's spatial drivers are dispersion based. During
successive temporal iterations of the model, species modeled in LANDIS-II are
distributed throughout the spatial input layer (initial communities layer model
parameter) based on their original position and a user-supplied dispersion
parameter. The distance and direction of a species’ dispersion from its original
location to a new location is stochastically determined. The probability that species’
establishment will occur at a new location is calculated based on the parameters
found at the new site and each species’ establishment probability. If establishment
occurs, landscape succession has occurred. The pattern created through this
iterative dispersion process is considered to be spatially stochastic, although it is

attenuated by the model’s parameters.

Schaller et al. (2007) present LANDIS-II, describing the model’s basic
assumptions, purpose, features, and architecture. The model is designed as an
object-oriented extendable landscape simulation system able to suggest a range of
vegetation succession trajectories that may occur for a given landscape. LANDIS-II
does make broad assumptions, such as, soil, elevation regime, solar angle, and
climate conditions are considered to be homogenous across the input grid. In an
effort to account for this homogeneity, many LANDIS-II users define different
ecoregions for a study area based on local microclimate and soil patterns. Each
species in each ecoregion is then assigned different, arbitrarily assigned

establishment probabilities.
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LANDIS-II is superior to LANDIS because it is designed to improve its
portability to different ecological regimes and provides greater control over its
spatio-temporal parameters. This is evidenced by the user-base discussion for
scaling-up the modeling framework to run at the regional scale (LANDIS-II User
Community 2012). Further, its modular design allows it to interact with other
spatial modeling applications (Scheller and Mladenoff 2005), ultimately influencing

the results of other models.

Ecologists have built successive generations of LANDIS by improving its
ecological parameters and adapting its geoprocessor (e.g. new dispersal method)
but the spatial nature of the model has not been robustly examined. Before
incorporating LANDIS-II into further spatial modeling workflows, LANDIS-II's
spatial sensitivity should be examined in detail. This research examined the effects
of spatial arrangement and composition within the model by performing a spatial
experiment. This experiment compared a spatially explict control case against two
spatial variables that expressed random arrangement, where each variable

expressed a different degree of spatial composition.
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Chapter 2: Methodology

Overview

LANDIS-II operates with a series of text and raster files. These files allow the
model operator to define the species-specific parameters, spatial layer parameters,
dispersion parameters, and general runtime parameters governing the model (Table
1). The model uses two spatial layers: the initial community layer that defines the
location of each species, and the ecoregions layer that (in this research) defines the
active and inactive areas in the model. These are discussed in greater detail in a

later section.

TABLE 1 - LANDIS-II INPUT FILES

Input File Purpose Type
Scenario.txt Defines overall model execution. Text File
Age-only-succession.txt Defines establishment probabilities of each species. Text File
Initial-Communities.txt Defines species’ age cohorts for each map-code. Text File
Reclass.txt Defines reclassification coefficients. Text File
Species.txt Defines species’ ecological attributes. Text File
Ecoregions.txt Defines active state of each ecoregion. Text File
Ecoregions.img Defines the areas of each ecoregion. Raster
Initial-Communities.img  Defines the areas of each vegetation community Raster

represented by its associated map-codes

The spatial experiment executed in this research included a spatial control
and two separate spatial variables. Where typical LANDIS-II studies focus on
determining optimum ecological parameters using the ecological parameter
optimization technique described earlier, this research relied on a variety of generic

ecological parameters to represent a set of localities. This decision was made for

12



three reasons. First, it is a requirement of the concurrent research involving the
development of a vegetation trend database to process a broad range of ecological
parameters. Second, the experimental results using different ecological regimes only
serves to bolster the validity of the results because ecological parameters can
remain fixed. Third, ecological parameter sensitivity is not the focus of this research,
but rather the spatial properties of the underlying datasets. Therefore, any
ecological parameters could have been used in this study, provided they remained

constant between the experimental control and variables.

For this study, ecological regimes were defined as the set of dominant,
natural, terrestrial vegetation communities within the boundaries of a given locality.
The spatial control was defined as the spatial composition and arrangement of
vegetation communities at each locality. Each variable, at each locality, was
processed by LANDIS using thirty separate iterations of the model and the results
were aggregated for more robust comparison. The spatial control variable used the
same spatial input layer, but LANDIS’s random-seed value was changed. The
random-seed value governs the stochasticity of the model, such that running
LANDIS-II with the same set of input parameters, layers, and random-seed value
always produces the same result. To produce a range of results with the same input
parameters and layers, the random-seed value must change. Running a set of thirty
iterations of each variable at each locality in LANDIS-II was determined to

effectively capture the range of vegetation trend succession occurring for each

13



instance of each variable at each locality. This acknowledges Mlandenoff’s earlier

quote and provides a stable dataset to assess vegetation trends for each variable.

The control is compared to two separate spatial variables. The first spatial
variable, area-weighted, is defined by fixed ecological spatial composition similar to
the control and random spatial arrangement. That is, the same proportion of area
for each vegetation community found in the control was represented in the area-
weighted variable and distributed randomly across the input grid. The second
spatial variable, equal-area, was defined by equal spatial composition and random
spatial arrangement. The equal-area landscape contained an equal proportion of
area of each vegetation community on the input grid, but was distributed randomly
(Figure 1). Each variable had a subset of thirty unique input grids instead of thirty
different random-seed values as noted in the control runs. Thus, for each locality
investigated, thirty control runs, area-weighted runs, and equal-area runs of the
LANDIS-II model were executed before final analysis and trend comparison

occurred (Figure 2).
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Spatially Explicit Area-Weighted

NatureServe
Land Classification

Mediterranean Calfornia Lower
Montane Black Oak-Conifer
Forest and Woodland

North Pacific Dry

l l Douglas-fir-(Madrone)
Forest and Woodland

Initial
Land Classification

Iteration Method Used

LANDIS-II ( RandomSeed(1 -> 30) ) ||

FIGURE 1- AN EXAMPLE OF THE EXPERIMENTAL VARIABLES AND ITERATIONS USED IN THIS RESEARCH

This figure diagrams the spatially explicit control and two spatial variables used to test the spatial
sensitivity of LANDIS-II in this research. The control was iterated using a series of different random-
seed values in LANDIS-II. The two variables were iterated by creating thirty different input grids.
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FIGURE 2- RESEARCH OVERVIEW

This figure diagrams the approach used to test the spatial sensitivity of LANDIS-II in this research.
Data was prepared by projecting and resampling it to a 10 acre resolution. The data was then
hexagonally tessellated into localities. Next, the vegetation communities were extracted from each

locality and filtered to produce the final set of localities suitable for processing. LANDIS-II scenarios

were generated for each spatial case, at each locality, and the results were analyzed using the Chi-

square statistic.
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The hypothesis of this research is that, significantly more often than not,
aspatial vegetation trends produced by LANDIS-II based on a spatially explicit input
control parameter (i.e. digital representation of the real environment) are similar to
trends generated using the area-weighted variable. Further, succession trends
generated using the equal-area variable produce trend results similar to the control
case significantly more often than not, but less often than the area-weighted case.
Each of these trend comparisons were assessed at three different scales to

determine the effect locality size has on each result (Figure 1).

Testing the stochasticity of the LANDIS-II model involves a significant
amount of computer resources and data handling. This research used the python
programming language and numerous site-packages. The site-package for SQLite
(SQLite3) was used to store large datasets that were easily queried. The NumPy and
SciPy site-packages were used to generate stochastic spatial arrangements and
perform the final analysis. Esri’'s ArcPy was used to load, convert, and store a variety
of raster file formats. Finally, the Python language was instrumental in the
automation of LANDIS-II simulations. A simple client-server environment for
distributing the computing load across multiple machines was developed for this
project (Figure 1). Pseudo-code used to implement many of the more complex tasks

is available in the appendicies.
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Vegetation Community Dataset

A single dataset was used to provide the foundation for the ecological
parameters used in the spatial sensitivity analysis. NatureServe’s Ecological Systems
of the United States (NatureServe 2012) provides an ecosystem classification map of
vegetation communities distributed throughout the contiguous United States
(Figure 3). The dataset is well documented and provides the list of dominant species
required to represent each vegetation community in LANDIS-II. The NatureServe
dataset has been used in conjunction with LANDIS-II in previous studies on land fire

(Scheller et al. 2008; Scheller et al. 2011).

Ecological Systems
National Land-Cover Dataset Types B Ovoicped-Medum tononsty .\ Vodteamanages Vegetaton [ Sreub-Steppe

[] Agricutture - Cuttivated Crops and irgated Agricutre [Jll Oeveioped-Open Space 4 I Vo Spociic Disturbed [ sparsely Vogetated

[ Agricuiture - Gareeal ] Owart-shrubiand I ocen Ve I o steutiand

[ Agricutture - PastuceiMay I £vorgreen Forest and Woodiand [=3] e

[ Decitucus Forest and Woodiand [ Hertacacus Wetiands [ Recenty Mined or Quarried  [__] Upland Grassiand and Herbacecus

B Ocveicped.Hoh imensty B 2200906 Troo Plantation [ swanna I Vvoocy Wottands and Riparian

I Ocveioped-Low Intensity [ Maxed Evergroen-Deciduous Forest and Woodiand [ Short Shrubland Data Source: NatureServe

FIGURE 3 - NATURESERVE DATASET: ECOLOGICAL SYSTEMS OF THE UNITED STATES

NatureServe’s Ecological Systems of the United States was used as the data source for this research. It
contains a complete land classification of the contiguous United States and identifies individual
vegetation communities and constituent vegetation species. This graphic displays a broad
classification of the dataset.
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The NatureServe dataset was prepared for further processing by first
projecting it into the Albers Equal Area coordinate system (2012a) such that each
locality contained an equal number of raster cells. The concurrent research project
had a 10-acre minimum mapping area requirement (personal communication with
Dr. Eric Britzke); therefore, the NatureServe raster was resampled from a 30-m?

spatial resolution, to a 10-acre spatial resolution using a majority-area approach.

The resampling process reduced the computational intensity of this study by
limiting the time required to calculate each locality’s vegetation community regime.
It should be noted that the 10-acre resampling procedure slightly accentuates
dominant landscape communities, which was acceptable given the research

preference toward dominant communities.

Locality Dataset

The NatureServe dataset was tessellated into three continuous hexagonal
polygon shapefiles, where each individual polygon represents a candidate locality

suitable for investigation (e.g., Figure 4).
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[ Candidate Localities

Data Source: NatureServe

FIGURE 4 - CANDIDATE LOCALITIES RESULTING FROM HEXAGONAL TESSELLATION OF THE ECOLOGICAL SYSTEMS
OF THE UNITED STATES AT 48-KM2 SCALE

The Contiguous United States was hexagonally tessellated into localities (48-km?2 shown here) to
define sets of interacting ecosystems for each locality.

A simple python script was used to tessellate the NatureServe layer using the
ArcPy site-package and its result was further refined manually in ArcGIS. First, the
script creates a series of evenly distributed points across the input dataset’s spatial
extent. The user specifies the distance between each point along each axis. In this
research, the script was executed three times using distance values of 12-kilometers,
24-kilometers, and 48-kilometers respectively to create three hexagonal grids of
varying scale. For each set of points, Thiessen polygons were generated using each
point as a Thiessen polygon centroid. The result of the process yielded three

hexagonal grids that define candidate localities at different scales. Localities were
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considered “candidate” because a series of vegetation filters had not yet been

applied to select only those localities meeting a series of target criteria.

Building a Landscape Diversity Database

Before the set of candidate localities was filtered, the vegetation community
dataset needed to be configured in a rapidly queriable manner. For each locality, the
ArcGIS Extract By Mask tool (2012b) extracted the set of NatureServe community
values found within the hexagonal extent. The ArcPy RasterToNumPyArray (2013b)
function converted the extracted result into an array suitable for evaluation using
the NumPy Site-Package (2013a). The NumPy Unique function operated on the
returned array to produce the set of unique community values found in each
candidate locality under investigation. Each community value and its associated cell
count (or area in 10-acre units) was inserted into a SQLite table. If a locality was not

contained by the data extent of the NatureServe raster, it was ignored.

By using a SQLite table, filtering landscape classification data to determine
the final set of localities can be performed through the use of SQL queries rather
than slower more complicated raster based queries. The use of a table also allows
the researcher to retain a filter identifier that specifies the criteria used to remove a

particular locality from consideration.

As byproduct of the research approach, by tallying the number of unique
communities in each locality, it was possible to create a landscape diversity map

(Figure 5).
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FIGURE 5 - LANDSCAPE DIVERSITY BASED ON THE ECOLOGICAL SYSTEMS OF THE UNITED STATES DATASET AND
THE CANDIDATE LOCALITIES AT THE 12-KM2 SCALE

The number of unique land classifications taken from the NatureServe dataset within each locality
was calculated for each scale (12-km?2 shown here). This created a landscape diversity map for
further filtering to define only dominant, upland, natural vegetation communities.

Filtering the Dataset

Each locality has its own set of vegetation communities that may be similar
to other localities’ vegetation communities, or may be a unique set of vegetation
communities found only in the locality itself. The remaining vegetation communities,
post-filter, were used to define species parameters for any given run of LANDIS-II
that used those vegetation communities. In this research, the only vegetation
communities under investigation were those that exhibit dominant, natural, and

terrestrial properties. As a result, many landscape communities contained in the
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NatureServe dataset were removed; including, agricultural lands, wetlands, barren

lands, and urban areas.

The first filter removed all landscape communities that did not represent
natural, terrestrial vegetation. Of the remaining landscape communities defined by
the NatureServe dataset, two were missing appropriate species information and

were removed.

The second filter focused on the composition of each candidate locality.
Recall that vegetation communities are the set of collocated species occurring on the
landscape as classified by NatureServe. For the given set of vegetation communities
contained by a candidate locality, the total area of each individual vegetation
community had to represent at least 3.34% of the total locality area. This minimum
area threshold was determined by calculating the total area of each vegetation
community in a locality, and dividing it by the total area of that locality, to determine
the proportional area of each vegetation community in each locality. The set of
proportional areas for all vegetation communities in all localities were binned into
thirty bins, where the first bin represented the smallest proportional areas found
across all localities. Thus, the first bin represented vegetation communities on the
local landscape considered to be non-dominant (i.e. a vegetation community
occupied less than 3.34% of the locality’s area). By removing the non-dominant

communities in each locality, only vegetation communities that were considered to
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be dominant (the targets of this research) in those localities remained, regardless of

their patchiness on the landscape.

The third filter applied acted to limit the number of communities being
evaluated. If a candidate locality had more than six unique vegetation communities
remaining after the first two filters were applied, it was removed from
consideration. Conceptually, areas of real-world landscape that exhibit more than
six different dominant vegetation communities at a given locality are highly complex
and may be driven by ecological drivers other than vegetation dispersion; such as
elevation regime or soil patterns (personal communication, Dr. Eric Britzke). Seven

localities were removed as a result of this maximum threshold filter.

Also, since there must be more than one kind of vegetation community
represented in LANDIS to fuel succession, all localities containing only one kind of

community were removed from further consideration.

The final threshold applied to the dataset ensured that candidate localities
exhibited natural, terrestrial connectivity and that the locality was dominated by
natural systems. Candidate localities were removed from further processing if the
collective set of remaining communities under investigation occupied less than 60%
of the total area of the locality. The 60% threshold was used based on the
suggestions of percolation theory (Majewski and Malarz 2008). Percolation theory is

a branch of statistical physics that explains the probability of connectivity in a lattice.
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The theory defines a set of percolation thresholds, that when met, predict the

existence of a single path between one side of a lattice and its opposing side, passing

only through cells of the same value; in this case, cells occupied by natural

vegetation.

The final set of localities used in this research were concentrated in New
England, the Appalachian Mountains, scattered areas in the Midwest, and much of
the public land-dominated regions of the Intermountain West, and open spaces of
the West Coast. Areas not included were the large expanses of agriculture and
silvicuture in the Midwest and Southeast, and the large wetland ecosystems of the

Gulf Coastal Plain and Florida (Figure 6).
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FIGURE 6 - THE LOCALITIES CONTAINING SETS OF VEGETATION COMMUNITIES USED TO UNDERSTAND THE
SPATIAL SENSITIVITY OF LANDIS-II

After the set of filters was applied to each locality scale, the remaining localities were determined to
be acceptable for analysis. The brightest green areas shown on this map are regions that were
processed for all scales considered. Lesser green shaded regions were only partially processed at
different scales.

Generating Ecological Parameters for LANDIS-II

The NatureServe documentation (2012c) provides a list of species that are
considered dominant players within each ecological community found on the
NatureServe raster (NatureServe 2012). The concurrent research provided an un-
published version of generic species attributes suitable for LANDIS-II using a
combination of expert judgment and literature review (Beane, Whitby, and Britzke

2013). LANDIS-II's species attributes are defined using the species text-file input
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parameter and govern each species’ behavior at runtime (Scheller and Domingo

2011).

LANDIS-II’s initial communities input layer is a raster file (e.g. *.img, *.gis)
that defines the spatial arrangement and distribution of vegetation communities
(Scheller and Domingo 2011). Each cell of the initial communities input raster may
contain multiple species of varying ages based on the parameters found in the initial
communities text file. In this research, these communities were identified for
localities within the contiguous United States; where each locality exhibited a given
set of vegetation communities. While the generation of initial community input

layers is discussed in a latter section, its associated map-codes are discussed here.

Vegetation communities in natural systems are composed of species at
different stages of their lifecycles (Watt 1947). To capture age diversity in the real
landscape, vegetation communities were parsed into different map-codes by the
researcher to allow species age variability to be appropriately modeled in LANDIS-II.
For each vegetation community, a set of twelve map-codes was assigned with
different age distributions to better represent the range of vegetation community
age structures found on the landscape. The age distributions were based on the
longevity of each constituent species. Each map-code represents an equal
proportion of the area each vegetation community represents in a given spatial

variable or control. The use of a longevity-based metric was chosen over a sexual-
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maturity based metric because the forestry profession has a better understanding of

a given species longevity over a species’ sexual maturity.

The distribution of input species age was set at 80%, 50%, 30%, and 10% of
each species’ longevity. In LANDIS-II, species begin to die after their age was greater
than 80% of that species’ longevity. This age class was used to represent vegetation
communities at the end of their lifecycles. The 50% and 30% of longevity age classes
were used to represent two different mid-growth stages. The 10% of longevity age

class was used to represent a community early in its lifecycle.

In the first four, out of twelve, map-codes, species ages were assigned as 80%,
50%, 30%, or 10% of each species’ longevity to create four homogenously aged
cohorts. The next four map-codes assigned sets of age classes to each species to
create map-codes with mixed ages. The sets were: 80% and 50%; 80% and 30%;
10% and 30%; and 80%, 50%, 30%, and 10%. The remaining four map-codes
randomly assigned species ages, or sets of ages, taken from the first eight map-codes.
Map-code generation was repeated for each vegetation community at each locality
under investigation. Multiple species with varying ages can occur in each cell of the
raster used to represent a spatial variable or the experimental control to comprise a

vegetation community.

LANDIS-II uses establishment probabilities to determine the likelihood that a

particular species will establish itself in a new location after dispersal (Scheller and
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Domingo 2011). Often these values are optimized for extremely site-specific studies
using the ecological parameter optimization process discussed earlier to take into
account soil and climatic conditions. Because this research tested LANDIS-II's spatial
sensitivity at thousands of different sites, all establishment probabilities were set to
0.6 (on a 0 to 1.0 scale). This ensured all species are more likely than not to establish
themselves at new locations and that succession was more likely than not to occur.
Further, by fixing the establishment probability for all species, at all localities, allows

for a clearer picture of the spatial sensitivity of the model to be produced.

The LANDIS-II ecoregion layer parameter allows the user to define different
sets of establishment probabilities for different locations on the initial communities
input layer. It also allows certain areas of the map to be considered inactive in the
model (Scheller and Domingo 2011). For the purposes of this research, areas of the
initial communities layer containing vegetation communities under investigation
were part of the “alive” region. Areas of the initial communities layer containing
land classification values not under investigation (those areas removed by the filter)
were considered part of the “dead” region. The “dead” region was set to be inactive
in the model. Once again, to simplify the ecological parameters and focus on the
spatial sensitivity of LANDIS-II the ecoregion parameter was effectively rendered

homogenous for each locality regardless of soil and microclimate.

The final ecological parameter defined by this research was each species’

reclassification coefficient. Reclassification coefficients allow LANDIS-II to
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determine which vegetation community a given cell should belong to on the initial
communities layer, based on the set of species occurring at that location. In this
research the succession trajectory of vegetation communities and not species was
assessed. In LANDIS-II vegetation communities are represented by their constituent
species, therefore, vegetation communities must be parameterized as a collection of
species in LANDIS-II. After the model disperses each vegetation community’s
constituent species, its initial community layer must be reclassified to determine the
new locations and areas where each vegetation community resides. If all species are
given equivalent reclassification values for each community, then communities have
an equal chance of being assigned to a cell if those communities happen to contain
the same species, and a species generally used for community discrimination is not
present (Scheller and Domingo 2011). All reclassification values for this study were

equal in value (set to 0.5 on a 0 to 1.0 scale).

LANDIS-II's reclassification calculation also considers species age as a
proportion of its longevity. Older species on the landscape are given higher
reclassification values in LANDIS-II by default. By structuring the parameter as
described above, a vegetation community must complete its ecological succession

before it is reclassified to a new community.

Extracting Spatially Explicit Rasters

The spatially explicit rasters required for the experimental control were

extracted using a python script that iteratively selected a given locality hexagon,
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extracted values from the NatureServe dataset using the Extract By Mask tool and
classified the resulting layer using the NumPy site-package. The classification
scheme used divides each vegetation community area into twelve zones, one for
each map-code, to represent the age mixes of each species in the vegetation
community in LANDIS-II. The map-code values were recycled between runs
representing different localities with different sets of vegetation communities.
Regions of the grid that were missing vegetation community values, or exhibited
community values that were filtered out, were given a value of zero and defined as
inactive areas using the ecoregion parameter layer in LANDIS-II. The spatially
explicit layer was processed in LANDIS-II using different random-seed values for
each run to capture the spatial variation of model results. Every extracted raster

was stored in its own uniquely named folder.

Generating Random Rasters

The area-weighted spatial variable maintains the proportion of area each
ecological community represents in a locality. The ecological community
composition was extracted from the SQLite database created during the initial phase
of this research. The spatial arrangement was generated randomly using the NumPy
Random Choice function of the NumPy site-package. The total number of cells on the
input raster was equivalent to the number of cells contained in the total area of a
given locality. Thirty different area-weighted spatial scenarios were generated for

each locality to provide a range of inputs into the model.
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The equal-area variable represents equal areas of vegetation communities in
a locality with random spatial arrangement. This dataset was generated in a similar
fashion to the area-weighted rasters; the exception being, post-filter vegetation
communities were given an equivalent amount of area on the generated raster.
Thirty equal-area spatial scenarios were generated for each locality as well. Every

random grid generated was stored in its own uniquely named folder.

Building LANDIS-II Input Text-Files

LANDIS-II is operated using a series of text-files. The LANDIS-II text-files
used as input and parameter files were generated for each uniquely named folder
containing an input raster (Table 1). These text-files were generated using object-
oriented python code that represented each text-file as a different method within a
LandisInput class. The class parsed a dictionary of model variables for each input
file passed to the script as input arguments. Then a Create method was called that
generated all of the input text-files and saved each set of text-files to its associated

uniquely named folder, containing its initial communities input raster.

An ecoregion raster was generated for each initial communities raster by
assigning a value of one to each cell that was not equal to zero. Each initial
communities raster file was read-in using the ArcPy site-package. It was then
converted to a NumPy array for further processing. Once the array was classified as

one or zero it was saved as a different filename. This created the spatial parameter
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that defined the active or inactive state of certain areas in the model (i.e. the

ecoregion parameter layer).

The model scenario was further established such that the time-step for
succession in the model occurred every 3-years. The temporal duration of the
scenario was set to 80-years to match the time horizon of the concurrent research
project. The Age Reclass Output Extension time-step was set to 40-years such that

the model output initial-state, mid-state, and end-state output.

Executing LANDIS-II

The large number of LANDIS-II runs required development of simple server
and client scripts in python to distribute the processing load across multiple
computers. First, all of the folders containing LANDIS-II input files were copied to a
network drive that all computers had access to. Because each folder represents a
different run of LANDIS-II, the server script built the list of required LANDIS-II runs
by populating a list of folders on the network file-share. Next, the server script
extended python’s SocketServer site-package and overrode the handle method to
handle each request made to the server. When a client computer signaled it was
ready to process a LANDIS-II run, the server sent a filename of a given folder on the
network share. The client copied the folder to the local machine, executed the

LANDIS-II run and copied the results back to the network file-share.

The client was also able to execute multiple runs of LANDIS-II simultaneously

by using python’s multiprocessing site-package. A pool of workers was defined such
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that each worker downloaded a LANDIS-II run and executed it in a sub-process. This
allowed the client to take advantage of the multi-core processors found on each
computer. For any given scenario of the LANDIS-II model, the average execution
time was approximately 4 seconds. The processing of all runs took nearly 200 hours

on eleven different machines.

The server and client code is shown in the Appendicies A and B.

Developing Vegetation Trends

The spatially explicit control case was represented as a hexagon due to the
tessellation method used. The spatial variables were represented as square rasters
to reduce computational complexity during variable generation. The shape of the
spatial variables is considered irrelevant because each was constructed randomly
based on a proportional representation of ecological communities. As an example,
consider a locality occupied by two habitats; Mediterranean California Lower
Montane Black Oak-Conifer Forest and Woodland, and North Pacific Dry Douglas-fir-
(Madrone) Forest and Woodland (Figure 7). This research demonstrated a slight
increase in the Mediterranean California Lower Montane Black Oak-Conifer Forest
and Woodland habitat in each spatial variable. By examining the proportional
representation of landscape succession trends in each spatial variable and
comparing it to the proportional representation of trends in the spatial control, it is

possible to demonstrate that the trends are similar.

34



Spatially Explicit Area-Weighted

NatureServe
Land Classification

Initial
Land Classification

Mediterranean California Lower
- Montane Black Oak-Conifer
Forest and Woodland

North Pacific Dry

:l Douglas-fir-(Madrone)
Forest and Woodland

Landscape
Succession

Landscape Succession

|:| No Succession

- Succession Detected

Final (80-year)
Land Classification

FIGURE 7 - AN EXAMPLE OF THE THREE DIFFERENT SPATIAL REPRESENTATIONS USED IN THIS EXPERIMENT AND
THEIR ASSOCIATED SUCCESSION AND OUTPUT

The type of succession occurring between the initial and final time steps of the area-weighted and
equal-area variables is compared to the succession occurring in the spatially explicit control. Note
that the actual analysis used an aggregation of grids at each locality to improve the robustness of the
analysis. In this example, Mediterranean California Lower Montane Black Oak-Conifer Forest and
Woodland is shown to transgress upon habitat previously defined as North Pacific Dry Douglas-fir-
(Madrone) Forest and Woodland. This succession trajectory occurs in all spatial cases. The scale
shown here is 12-km?2.

LANDIS-II outputs raster results for its initialization (year 0) and end-state
(vear 80) through the Age Reclass Output Extension. These outputs were classified
by their ecological community values. This means that the twelve map-codes
defined to generate different age cohorts and species mixes for a particular
vegetation community were assigned the same value, because they belong to the
same community. The value each community was assigned to was based on the
order it occured in the reclass text-file. Because the community values for the

initialization-state output and the end-state output were classified by LANDIS-II
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using the same method, the comparison between the two layers produced the

switching trend for each LANDIS-II run.

Because the maximum number of communities that could occur on an output
raster is six due to the initial filtering procedure, the values on the output raster
were always less than or equal to six. The initialization-state raster was multiplied
by ten and added to the end-state raster. A python script cast each raster to a

NumPy array to complete this process.

The result produced an array of values, where the first digit of each value
represents the initial state and the second digit of each value represents the final
state. Values that are zero represent inactive areas of the grid. Values that are
cleanly divisible by ten (e.g., 10, 20, 30) represent areas where all species
experienced a die-off, and succession has yet to occur. This comparison was
completed for every set of LANDIS-II output. In these experiments, ecological
disturbances were not modeled. Isolated incidences of a few cells experiencing a
die-off due to a species reaching its maximum age may occur; but in reality, discrete
ecological transitions are rarely seen in undisturbed environments and were an

artifact of the model’s representation of ecological processes.

The result of each comparison was compiled in a SQLite table. The
comparison table used scale, locality, run-type, and iteration fields to uniquely

describe each run. Values for the scale column (i.e., 12, 24, and 48) were associated
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to the spatial extent of each model run. The locality column stored the feature
identifier of the associated initial input locality. The run-type field described
whether or not the run was spatially explicit, area-weighted, or equal-area. The
iteration column held a value that noted which iteration the run represented (i.e. 1
through 30). The table also included a column for the initial vegetation community
values, final vegetation community values, and the area of each change between an
initial and final vegetation community pair. These changes represent the landscape

succession.

By storing the comparison data in a SQLite table, it is possible to perform
rapid queries for each unique set of runs. Each experimental variable and the
control were comprised of thirty individual runs to form an aggregate assessment of
vegetation trends. Aggregates were made for each combination of scale, locality, and
run-type. To generate the aggregate vegetation community succession trend, each
succession trend’s area was summed for all thirty runs and stored in an aggregation
table; such that, the original and final fields in the aggregation table represented the
total number of cells transitioning from the initial vegetation community to the final
vegetation community across all thirty iterations. An analysis of these trends
yielded the evidence necessary to partially accept and reject the research

hypotheses.
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Statistical Testing

Through the use of the SQLite and SciPy python site-packages it was possible
to perform a Chi-square analysis at each locality using the experimental control as
the expected value and each experimental variable as separate observed cases. The
SQLite table containing the aggregated values of vegetation community trends for

each locality supplied the input data for the Chi-square analyses.

Three categories of Chi-square analysis were used to compare the
experimental control to the experimental variables. The first analysis focused on the
succession trajectory of the landscape by assessing each trend as a proportion of its
initial starting area. The second Chi-square analysis considered the succession
trajectory of each trend as a proportion of the total landscape area. The final Chi-
square analysis evaluated the model end-states for each trend to determine the
overall sensitivity of the model using the end-state proportion of each vegetation

community out of the total area.

By comparing proportions instead of actual cell counts it was possible to
ignore inactive areas in the spatially explicit experimental control and focus only on

the aspect of the landscape that was of interest.

For the first Chi-square analysis at a given locality, the degrees of freedom
were defined as the total number of succession trends occurring across all spatial
cases (spatially explicit, area-weighted, equal-area) at a particular scale, minus one.

Next, the total area of the input vegetation community at its initial state divided the
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area represented by each trend. The trends generated using spatially explicit input
were compared to the trends produced in the area-weighted variable, and
separately the equal-area variable using the Chi-square formula (Figure 8). This
analysis was carried out by querying the SQLite table of aggregated data in Python,
calculating the degrees of freedom and the Chi-square statistic, and using SciPy to
determine each statistic’s associated alpha value. The results of the comparisons
were stored in a SQLite table and represented the trajectory of landscape change as

a proportion of each vegetation community’s initial state.
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FIGURE 8 - CHI-SQUARE EQUATION

The Chi-square equation was used to determine the trends produced when the experimental control
(i.e. spatially explicit case) was compared to the two experimental variables; area-weighted and
equal-area.

The second analysis was similar to the first, except that instead of calculating
the initial area proportions as a percentage of each vegetation community’s initial
state, the calculation represents the area proportion of the succession trend to the
total area of the active grid. The degrees of freedom were still defined by the
number of succession trends across all runs at a given locality. The results of this
analysis were stored in a separate SQLite table and represented the trajectory of

succession of each vegetation community as a proportion of the total area of the grid.

The final analysis compared the experimental control and variables at the

output end-state to determine the amount of equifinality that occurred in the results.
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The aggregated data for each locality was extracted from the SQLite table. The
proportion each vegetation community represented as a ratio to the total active area
of the grid at the model’s end-state was calculated. This calculation was made by
summing the areas of each vegetation community using the SQL SUM function and
the GROUP BY aggregator; these sums were further divided by the total area of the
active grid. The degrees of freedom were defined by the total number of unique
vegetation communities occurring at the end-state minus one. Next, the Chi-square
statistic was calculated between the spatially explicit experimental control and each

variable and the result was stored in a new SQLite table.

The python pseudocode used to implement these analyses may be found in

Appendix C.
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Chapter 3: Results

Recall that the first test used the Chi-square statistic to determine the
similarity between the spatially explicit case and the two spatial variables
individually. The analysis focused on the succession trajectories as a proportion of
each vegetation community’s initial area. This analysis was completed at every
locality under investigation at each scale. At the 95% confidence level, there is less
than 1% difference between the comparisons of each spatial variable to the spatial
control at any given scale; but, there is approximately a 10% difference between the
results at each scale. The results also indicate that a dataset containing random
spatial arrangements and percentage-area compositions can substitute for spatially
explicit data between 40% and 60%, or on average half, of the time. The full range of
confidence levels for the chi-square analysis was calculated due to the requirements
of the concurrent research. The full range is shown here to indicate a slightly
decreasing number of runs considered to be different from the control at increasing

levels of confidence (Figure 9).
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FIGURE 9 - SUCCESSION TRAJECTORY BASED ON INITIAL AREA OF A VEGETATION COMMUNITY

This graph displays the result of the succession trajectory analysis based on the proportion of initial
community area to the total area. It is the result of the Chi-square analysis calculated for a range of
confidence values (alpha). As confidence increases, the number of localities that have experimental
variables that are significantly different from the experimental control decreases.

The second test used the Chi-square statistic to determine the similarity
between the experimental control and both experimental variables based on the
proportion of each succession trend to the total active area in the model. This test
was also used at each scale for every locality. This analysis, as expected, yields
similar succession trajectory results as those shown in the first analysis (Figure 9).
By assessing succession trajectory as a proportion of the total area, LANDIS-II is
shown to be even less sensitive to spatial arrangement and percentage-area spatial

composition at every confidence level (Figure 10).
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FIGURE 10 - SUCCESSION TRAJECTORY BASED ON THE TOTAL AREA OF A VEGETATION COMMUNITY

This graph displays the result of the succession trajectory analysis based on the total area. It is the
result of the Chi-square analysis being calculated for a range of confidence values (alpha). As
confidence increases, the number of localities that have experimental variables that are significantly
different from the experimental control decreases.

Finally, the third test used the Chi-square statistic to determine the similarity
between the end-states of the experimental control and experimental variables. At
the 95% confidence level it is shown that the model is extremely insensitive to
spatial arrangement and percentage-area composition over 80% of the time.
Furthermore, although differences in succession trajectory were shown between
scales (Figures 8 & 9), at the 95% confidence level there is less than 5% difference
between model end-states across the three scales evaluated in this study. At the
99% confidence level there is even less difference, 4%, between spatial cases

(Figure 11).

43



100 ‘

~~~~~~~~~ Scale 12 - Equal Area

90

------- Scale 12 - Area Weighted

— — = Scale 24 - Equal Area

80
= = Scale 24 - Area Weighted

70

Scale 48 - Equal Area

Scale 48 - Area Weighted

60

50

Percent of Runs

40

30

Chart shows the percent of
20 | runsata given confidence
level that are significantly
different from the spatially
explicit control

0 l l l
0% 10% 20% 30% 0% 50% 60% 70% 80% 90%  100%

Confidence Level of Significant Difference

FIGURE 11 - END-STATE ANALYSIS COMPARING MODEL RUNS

This graph displays the result of the end-state analysis, which is a comparison between the
proportions of each community at the 80-year spatially explicit output and each experimental
variable. It is the result of the Chi-square analysis being calculated for a range of confidence values
(alpha). This graph shows a high confidence that a small percentage (e.g. <20%) of localities exhibit
differences between the experimental control and each variable.
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Chapter 4: Discussion and Conclusion
Discussion

A review of the literature on the LANDIS-II model’s use and application
suggests that the spatial sensitivity of the model has largely been untested. Although
the current research does not test every possible avenue of spatial and ecological
parameterization of the LANDIS-II model, the spatial sensitivity of the model’s
fundamental spatial function (i.e. dispersion) has been assessed for a range of
spatial and ecological settings to understand the processes acting within the model’s
proprietary core. The results suggest that LANDIS-II is a spatially insensitive model
for determining vegetation succession trends. While the model does produce a
spatial output layer, the developer and user communities both consider it to be an
imaginary representation of reality, rather than an accurate prediction of a future

end-state (Mladenoff and He 1999).

The results do have two important caveats. On further review of the
underlying LANDIS-II runs where the Chi-square statistic returned a value of zero, it
appears that localities exhibiting only grass communities experience a complete die-
off in the model. Although not scientifically sound, it occurs in all spatial cases. By
slightly adjusting the grass species parameters to have maximum dispersion
distances greater than half the cell-size (i.e. >100m) dispersion occurs and species
die-off no longer happens. Also, due to longevity values less than 80 years (the time

horizon of this analysis) it appears that the grass longevity parameter does not
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allow the grass species to survive in an undisturbed environment (one of the
assumptions in this study). While this caveat points to a flaw in the generic species
attributes used to model grass species in this research, since the same response
occurs for all spatial cases, the model can be shown to be spatially insensitive in

these instances. As such, the result is still valuable to this analysis.

The second caveat is the special case that occurs when the expected area of a
succession trend is zero and the observed succession trend area is greater than zero.
This special case was handled by adding a value of one to the expected and observed
values when performing the Chi-square evaluation. The squared difference between
the adjusted-expected and adjusted-observed value in the Chi-square statistic was
divided by the adjusted-expected value (one). This simplified the formula to be the
square of the original observed value. This case “explodes” the Chi-square results
and inflated the perceived differences between the spatial control and each spatial
variable. Thus, differences shown in the results are artificially inflated as a direct
result of the analytical mechanism used (i.e. the Chi-square statistic) and model
output is more similar than these results suggest. The Chi-square statistic was
chosen based on its low computational intensity and its ability to compare sets of
categories. Although the use of Chi-square is shown to affect the results, this is
acceptable because the elimination of the inflated values would only serve to

strengthen trends produced.
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The results of this study indicate that succession trajectories between the
experimental control and both variables are likely to increase in difference as scale
increases. This is consistent with expectation because dispersion distance
parameters for any given species cover a larger proportion of the small 12-km? grid
than the larger 24-km? grid. Further, the differences in succession trajectory are
directly related to scale as a proportion of the total active area, and as a proportion

of the initial area of each vegetation community.

Although the succession trends seem to indicate reduced similarity as scale
increases, the end-state analysis suggests that the end-states are very similar
regardless of how the underlying changes are occurring. This would suggest that
there is some degree of equifinality occurring in the model. The differences between
the area-weighted results and the equal-area results are very small, less than 1% at
the 99% confidence level for differences between runs. This end-state metric is
considered to be more important because the proportion of vegetation communities

occurring at the end-state condition is typically used to document succession trends.

In acknowledging the research results, it appears that spatial arrangement
and percentage-area composition are not a requirement of the successful use of
LANDIS-II approximately 80% of the time at the 95% confidence level, provided the
ecological communities are known. These results represent a conservative estimate,
because of the artificial inflation of the Chi-square statistic discussed earlier. Stated

differently, the Chi-square null hypothesis that the experimental control is the same
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as an experimental variable was rejected roughly 20% of the time with 95%

confidence.

The size of a given study area, however, is directly related to the method of
succession trajectory the vegetation communities undergo. The results of the first
two analyses (Figures 8 & 9) demonstrate that as processing area increases, the
difference between succession trajectories in the experimental variables and the
spatial control increase as well. Therefore, as the size of a study area increases,
succession may occur differently at different scales but the final end-state results

will be similar.

Conclusion

This research assessed the spatial sensitivity of the LANDIS-II model to
spatial arrangement and spatial composition in homogenous spatial settings (the
LANDIS-II basic assumptions). No effort was taken to capture microclimate, solar
angle, elevation, or soils using variable establishment probabilities and ecoregions
to ensure all ecological parameters in the model remain fixed. The research
approach used the aggregate of thirty runs for the experimental control and each
experimental variable. Further, thousands of different localities were assessed with
different generically parameterized dominant, upland vegetation communities.
Although the results of this research point to caveats in the generalization of
ecological parameters, to understand the spatial sensitivity of the model in a

simplified environment optimum ecological parameters were not needed.
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The first hypothesis of this research states that aspatial end-state vegetation
community succession trends based on spatially explicit parameters are similar to
results produced by parameters that maintain ecological composition but possess
random arrangement. Given the result of the end-state Chi-square analysis, this
hypothesis may be accepted. The second hypothesis of this research states that
aspatial end-state vegetation community succession trends based on spatially
explicit parameters are similar to results produced by parameters that do not
maintain ecological composition or arrangement, but exhibit less comparison than

the area-weighted case. The second hypothesis is accepted and rejected in part.

The equal-area variable did produce end-state results similar to that of the
spatially explicit control and in this sense the second hypothesis is accepted in part.
The equal-area variable, however, was not shown definitively to be more similar to
the control case than the area-weighted variable, therefore the second hypothesis is

rejected in part.

In conclusion, this research suggests that the spatial composition and
arrangement of an input layer into the LANDIS-II model may not be as important as
originally thought. These results suggest that LANDIS-II could be used to model
areas where spatially explicit information is poorly known, or in cases where
producing spatially explicit information is cost prohibitive. It is suggested that
future LANDIS-II studies assess the spatial sensitivity of their results when using

less generic ecological parameters. Future spatial tests of LANDIS-II could also be
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done to determine the effects of spatial arrangement and composition when
microclimate or soils are defined by ecoregions and variable establishment
probabilities are used in the model. Finally, successive studies may also see value in
assessing spatial sensitivity for longer time durations and different scales than used

in this research.
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Appendix A: Pseudocode for LANDIS-II Scenario Server

# load modules

import os, sys, ast, time, pickle
import threading as t

import Tkinter as tk

# set up address
HOST sys.argv[l] # user specifies 1ip
PORT 10003

# set up log file
log = r’pathTolLogFile’

# load list of LANDIS-II scenarios

# this is a python list of LANDIS-II scenario paths on the

network drive

LandisPackages=[]

with open(‘ListAsPickle’,'r') as serializedRuns:
LandisPackages.extend( pickle.load( serializedRuns ) )

HHHBHS R

# Functions #

HHHBHS R

def LOGGER( msg ):

global log

fullmsg = "{%s} %s'%(time.asctime(), msg)
with open( log, 'a') as flog:

flog.write( fullmsg )

def CONNECT():
LOGGER('Server booted...\n')
server = SocketServer.TCPServer( (HOST, PORT),
LandisHandler)
server.serve forever ()

def JOINEVENT( ip ):
LOGGER('A Node Has Been Connected @%s\n'%(ip))

HHH S

# Run List #

HHH S

class LandisRoster( list ):
def dinit_ ( self ):
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super ( LandisRoster, self )

global LandisPackages

for ix, package in enumerate(LandisPackages):
output = package+' processed'

self.append( {ix:[package, output]})

# make the pop() user friendly
def pop(self):
p = super(LandisRoster, self).pop()
LOGGER('[*] Number of Runs Remaining: %s\n'%(len(self)))
return p

LIST OF _RUNS = LandisRoster ()
LOGGER( 'TOTAL: %s\n'%(len( LandisPackages )))

class LandisHandler (SocketServer.BaseRequestHandler):
def handle(self):
global LIST_OF_RUNS

rcv = str(self.request.recv(1024))
data = ast.literal _eval( rcv.strip() )

code = data.keys()[0O]
payload = data.values()[0]

if code==0:
# show a join
JOINEVENT ( payload )

elif code==1:
# completed a package
LOGGER('[*] DONE
ID: %s\n'%(payload.keys()[0]))
else:

# send a new package
try:

pkg = LIST _OF RUNS.pop()

self.request.sendall( str(pkg)+'\n')
LOGGER (' [+] SENT
ID: %s\n'%(pkg.keys()[0]))
except:
pass
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if __name_ ==
CONNECT ()

__main__":
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Appendix B: Pseudocode for LANDIS-II Scenario Client

# load modules
import os

import shutil
import getpass
import subprocess
import signal
import sys

import socket
import time
import ast

import tempfile
import multiprocessing as mp

HH#H S

# Setup #

HH#H S

# IP of server host and number of CPU on local
HOST, POOL = sys.argv[l:]

PORT = 10003
LOCK = mp.Lock()
USER = getpass.getuser ()

WORKSPACE = os.path.join(r'C:\Users', USER, 'LandisClient')

i
# Functions #
i
def worker( run ):
global WORKSPACE, LOCK
# input looks like: {ix:[package, output]}
runNo = run.keys () [0]
landisinputdir = run.values()[0][0]
landisoutputdir= run.values()[0][1]
landisinputfiles= [os.path.join( landisinputdir, f) for
f in os.listdir( landisinputdir )]

# create workspace and outputdir
temp = tempfile.mkdtemp(suffix='_landis',dir=WORKSPACE)

if not os.path.exists( landisoutputdir ):
os.makedirs( landisoutputdir )
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# copy to workspace and outputdir

for 1if in landisinputfiles:
shutil.copy2( lif, temp )
shutil.copy2( lif, landisoutputdir )

# popen -- run landis
p = subprocess.Popen(['landis-ii',
'scenario.txt'],cwd=temp,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=True)
while True:
line = p.stdout.readline()
if 1line =='' and p.poll() !=None:
break

LOCK.acquire()
if '"Error' not in 1line and ''!=line.strip():
sys.stdout.write( '{PID:%s} %s'%(p.pid,line ))
elif 'Error' 1in line:
sys.stderr.write('[!] LANDIS
ERROR: %s\n'%( landisinputdir ))
fobj =
open(os.path.join(landisoutputdir, 'error.txt'),'w")
fobj.write(line)
fobj.close()
LOCK.release()
p.wait()
return
LOCK.release()

# wait for death
p.wait()

HEHBHHHHBHBHBHBHHRHRHBH AR HHRHBHBHB AR HHRHBH R A SRR
# If you want to do something with the landis output #
# add that code here. #
HEHBHHHHRHBHB AR AR HBHBH AR AR HBHBH AR AR HBH R AF R BB

# copy landis output to outputdir

files = [ os.path.join(temp, of) for of in ['Landis-
log.txt', 'reclass\\reclassl-0.img', 'reclass\\reclassl-
40.img', 'reclass\\reclassl-80.1img"']]
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for of in files:

shutil.copy2( of, landisoutputdir )

# delete workspace
shutil.rmtree( temp )

def Client():

global HOST,

while True:
try:

PORT, POOL

TO:

## CONNECT CLIENT ##
sys.stdout.write('[+] CONNECT

.. '"%(HOST, PORT))

thisIP =

socket.gethostbyname(socket.gethostname())

sock = socket.socket( socket.AF INET,

socket.SOCK _STREAM )

sys.stdout.write('SUCCESS!\n")

## MAKE FIRST PAYLOAD ##
data = '"{0:"%s"}'%( thisIP )
sock.connect ((HOST,PORT))
sock.sendall( data+'\n"' )
sock.close()

PROCESSES = 1list()
for node in range( POOL ):
try:
data = '{2:"Acquire"}'

## COMMUNICATE ##
sock = socket.socket( socket.AF INET,

socket.SOCK_STREAM )

sock.connect ((HOST,PORT))
sock.sendall( data+'\n' )
rcvd = sock.recv(1024)
sock.close()

received = ast.literal _eval( rcvd )

sys.stdout.write(' [*] Acquired

(%s)\n'%(node))

PROCESSES.append( received )



except:
pass

if len( PROCESSES ) > 0O:
# Process
pool = mp.Pool( POOL )
pool.map( worker, PROCESSES )
pool.terminate()
del pool

for node in range( POOL ):
data =
"{1:%s}'%( str(PROCESSES[node]) )

## COMMUNICATE ##

sock = socket.socket( socket.AF INET,
socket.SOCK_STREAM )

sock.connect ((HOST,PORT))

sock.sendall( data+'\n")

sock.close()

else:
sys.stderr.write('[!] FAIL: No Payload\n
[*] Recovering...\n")
time.sleep(10)

except:
sys.stderr.write('[!] FAIL: Connection\n [*]
Recovering...\n")
time.sleep( 10 )

if __name_=='_main__':
if not os.path.exists( WORKSPACE ):
os.makedirs( WORKSPACE )

# run client
Client()
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Appendix C: Pseudocode for Data Analysis

import sqlite3 as sql
import os,time
PATH = os.getcwd()

def FetchIter( cur ):
while True:

rows = cur.fetchmany( 1000 )
if not rows:
break
for row in rows:
yield row
def fetch( cur ):
data=[]
for item in FetchIter(cur):
data.append( item )
return data
def desc( cur ):
return map( lambda i:i[0@], cur.description)
# connect
print 'connect...'
DB = PATH + os.sep + 'data.db'
db = sql.connect(DB)

cur=db.cursor ()

# This script calculates a
each orig/final proportion
print 'Create metric 1...'
print ' -Aquire localities
cur.execute("SELECT scale,
filterid=0 GROUP BY scale,
dataset=fetch( cur )

Chi-squared measure (o-e)/e

of interest'
locality FROM dataset WHERE
locality")

dataset ) ,' localities of

print ' -There are ', len(
interest.'

records=[]

for scale, locality in dataset:

for
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cur.execute("SELECT orig, final, ratio FROM
proportion_switch WHERE scale=? AND locality=? AND
runtype="'SpatiallyExplicit'", (scale, locality))
se={}
for orig, final, ratio in fetch( cur ):
if ratio!=None:
se[(orig, final)]= ratio

cur.execute("SELECT orig, final, ratio FROM
proportion_switch WHERE scale=? AND locality=? AND
runtype="'AreaWeighted'", (scale, locality))
aw={}
for orig, final, ratio in fetch( cur ):
if ratio!=None:
aw[ (orig, final)]= ratio

cur.execute("SELECT orig, final, ratio FROM
proportion_switch WHERE scale=? AND locality=? AND
runtype="'EqualArea'", (scale, locality))
ea={}
for orig, final, ratio in fetch( cur ):
if ratio!=None:
ea[(orig, final)]l= ratio

# get all possible pairs
switches=se.keys ()
switches.extend( aw.keys())
switches.extend( ea.keys())
switches=1ist( set( switches ))
for orig, final in switches:
# get expected
if (orig, final) not in se.keys():
E=0.0
else:
E=se[(orig, final)]

# get aw observed

if (orig, final) not in aw.keys():
AW0=0.0

else:
AWO=aw[ (orig, final)]l

# get ea observed
if (orig, final) not in ea.keys():
EA0=0.0
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else:
EAO=ea[(orig, final)l

# calculate

if E==0:
# do a value shift o+tl, E+1 for calculation
AW=(AWO) **2
EA=(EAQ) **2

else:
AW
EA

((AWO-E)**2.)/float (E)
((EAO-E)**2.)/float(E)

# create rows

records.append( (scale, locality, 'AreaWeighted',
orig, final, AW) )

records.append( (scale, locality, 'EqualArea', orig,
final, EA) )

cur.execute("CREATE TABLE metric _1( scale int, locality
double, runtype string, orig double, final double, chisq
double)")

cur.executemany ("INSERT INTO metric 1 VALUES (?,?,?7,?2,?2,72)",
records)

cur.execute("CREATE INDEX metric_1 index ON metric 1l(scale,
locality, runtype, orig, final)")

db.commit()

print 'Calculate Chisquare on metric 1...'

cur.executescript(

CREATE TABLE chisquare ml( scale int, locality double,
runtype string, x2 double, k int);

INSERT INTO chisquare ml

SELECT scale, locality, runtype, SUM( chisq ) AS calc,
(COUNT(*)-1) AS degfree

FROM metric 1

GROUP BY scale, locality, runtype;

CREATE INDEX chisquare ml index ON chisquare ml( scale,
locality, runtype);
nn ll)
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db.commit()

# metric 2

print 'Create metric 2...'

print ' -Aquire localities of interest'
cur.execute("SELECT scale, locality FROM dataset WHERE
filterid=0 GROUP BY scale, locality")

dataset=fetch( cur )

print ' -There are ', len( dataset ) ,' localities of
interest.'
records=[]

for scale, locality in dataset:

cur.execute("SELECT orig, final, ratio FROM
proportion_totalarea WHERE scale=? AND locality=? AND
runtype="'SpatiallyExplicit'", (scale, locality))

se={}

for orig, final, ratio in fetch( cur ):

if ratio!=None:
se[(orig, final)]= ratio

cur.execute("SELECT orig, final, ratio FROM
proportion_totalarea WHERE scale=? AND locality=? AND
runtype="'AreaWeighted'", (scale, locality))
aw={}
for orig, final, ratio in fetch( cur ):
if ratio!=None:
aw[ (orig, final)]= ratio

cur.execute("SELECT orig, final, ratio FROM
proportion_totalarea WHERE scale=? AND locality=? AND
runtype="'EqualArea'", (scale, locality))
ea={}
for orig, final, ratio in fetch( cur ):
if ratio!=None:
ea[(orig, final)]= ratio

# get all possible pairs
switches=se.keys ()
switches.extend( aw.keys())
switches.extend( ea.keys())
switches=1ist( set( switches ))
for orig, final in switches:

# get expected
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if (orig, final) not in se.keys():
E=0.0

else:
E=se[(orig, final)]

# get aw observed

if (orig, final) not in aw.keys():
AW0=0.0

else:
AWO=aw[ (orig, final)]l

# get ea observed

if (orig, final) not in ea.keys():
EAO0=0.0

else:
EAO=ea[(orig, final)l

# calculate

if E==0:
# do a value shift o+tl, E+1 for calculation
AW=(AWO) **2
EA=(EAQ) **2

else:
AW
EA

((AWO-E)**2.)/float (E)
((EAO-E)**2.)/float(E)

# create rows

records.append( (scale, locality, 'AreaWeighted',
orig, final, AW) )

records.append( (scale, locality, 'EqualArea', orig,
final, EA) )

cur.execute("CREATE TABLE metric _2( scale int, locality
double, runtype string, orig double, final double, chisq

double)")
cur.executemany ("INSERT INTO metric_ 2 VALUES (?,?,?,?2,?2,?2)",

records)
cur.execute("CREATE INDEX metric_2 index ON metric 2(scale,

locality, runtype, orig, final)")
db.commit()

print 'Calculate Chisquare on metric 2...'
cur.executescript(
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CREATE TABLE chisquare m2( scale int, locality double,
runtype string, x2 double, k int);

INSERT INTO chisquare _m2

SELECT scale, locality, runtype, SUM( chisq ) AS calc,
(COUNT(*)-1) AS degfree

FROM metric 2

GROUP BY scale, locality, runtype;

CREATE INDEX chisquare m2 index ON chisquare m2( scale,
locality, runtype);

nn ll)
db.commit ()

print 'Create metric 3...'

print ' -Aquire localities of interest'
cur.execute("SELECT scale, locality FROM dataset WHERE
filterid=0 GROUP BY scale, locality")

dataset=fetch( cur )

print ' -There are ', len( dataset ) ,' localities of
interest.'
records=[]

for scale, locality in dataset:

cur.execute("SELECT final, ratio FROM
proportion_endstate WHERE scale=? AND locality=? AND
runtype="'SpatiallyExplicit'", (scale, locality))

se={}

for final, ratio in fetch( cur ):

if ratio!=None:
se[final]l= ratio

cur.execute("SELECT final, ratio FROM
proportion_endstate WHERE scale=? AND locality=? AND
runtype="'AreaWeighted'", (scale, locality))
aw={}
for final, ratio in fetch( cur ):
if ratio!=None:
aw[final]l= ratio

cur.execute("SELECT final, ratio FROM
proportion_endstate WHERE scale=? AND locality=? AND
runtype="'EqualArea'", (scale, locality))

ea={}

for final, ratio in fetch( cur ):
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if ratio!=None:
ea[final]l= ratio

# get all possible pairs
switches=se.keys ()
switches.extend( aw.keys())
switches.extend( ea.keys())
switches=1ist( set( switches ))
for final in switches:
# get expected
if final not in se.keys():
E=0.0
else:
E=se[finall

# get aw observed

if final not in aw.keys():
AW0=0.0

else:
AWO=aw[final]

# get ea observed

if final not in ea.keys():
EA0=0.0

else:
EAO=ea[finall

# calculate

if E==0:
# do a value shift o+tl, E+1 for calculation
AW=(AWO) **2
EA=(EAQ) **2

else:
AW
EA

((AWO-E)**2.)/float (E)
((EAO-E)**2.)/float(E)

# create rows

records.append( (scale, locality, 'AreaWeighted',
final, AW) )

records.append( (scale, locality, 'EqualArea',
final, EA) )

cur.execute("CREATE TABLE metric _3( scale int, locality
double, runtype string, final double, chisq double)")
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cur.executemany ("INSERT INTO metric_3 VALUES (?,?7,?2,?2,7)",
records)

cur.execute("CREATE INDEX metric_3 index ON metric 3(scale,
locality, runtype, final)")

db.commit()

print 'Calculate Chisquare on metric 3...'

cur.executescript(
CREATE TABLE chisquare m3( scale int, locality double,
runtype string, x2 double, k int);

INSERT INTO chisquare _m3

SELECT scale, locality, runtype, SUM( chisq ) AS calc,
(COUNT(*)-1) AS degfree

FROM metric_ 3

GROUP BY scale, locality, runtype;

CREATE INDEX chisquare m3 index ON chisquare m3( scale,
locality, runtype);
mnn )
db.commit()
db.close()
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