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x Abstract 

 The dangers of lead poisoning have posed a real threat to the population of the United 

States since the turn of the century. It has a cumulative effect in the human body and can 

therefore build up over time, even with low dose exposure. Children are especially susceptible to 

lead exposure due to their increased absorption rate of the metal and the lasting health issues that 

can persist throughout their lives. Minority communities with low socioeconomic status are 

especially vulnerable to exposure because they are more likely to live in close proximity to lead 

pollution sources, older homes, and have lower rates of toxicity screenings. Poisoning occurs 

primarily when lead is ingested through lead-based paint, lead contaminated water pipes, dust, 

and soil. Older cities across the United States are particularly prone to have populations with 

increased blood lead levels because lead was a common building material in the early 1900s. 

Milwaukee, Wisconsin is one such historical city where around 40% of the city’s active 

residential water service lines are constructed of lead. This study quantifies how many people are 

at risk for lead poisoning based on the existence of lead service lines in their buildings by census 

tract. Given the deeply segregated history of Milwaukee, an issue that still plagues the city to this 

day, this study also examines the relationship between the number of at-risk people per census 

tract and a variety of socioeconomic indicators. Dasymetric mapping techniques as well as 

regression analysis were used to shed light on this environmental justice issue in Milwaukee. 

Results show that the number of at-risk people in a census tract has a positive linear relationship 

with the race, education level, and poverty status of neighborhoods. In the context of 

Milwaukee’s demographics, the issue of lead exposure due to LSL disproportionately affects 

poorer communities of color. 
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1  
Chapter 1  Introduction  

The fight for environmental justice and equity is an ongoing battle across the nation. The 

Environmental Protection Agency of the United States defines environmental justice as the effort 

to provide environmental equity for all through implementation, enforcement, laws, regulations, 

and policies (US EPA 2014). Too often those in minority social groups – i.e., those of low 

socioeconomical status, racial minorities, or the unemployed – experience higher levels of 

environmental toxicity (Maantay 2002). The causes of these inequities, also known as 

environmental burdens, can include poor air quality, proximity to polluting industry, old lead 

water mains, or lack of funding to expand green spaces for greater access (Emer et al. 2020). The 

city of Milwaukee, Wisconsin is one of the many major urban centers where these environmental 

inequities are starkly apparent. The city has a long history of environmental justice issues such as 

increased asthma rates, childhood lead poisoning, and lack of access to green space within poor 

black and brown communities (Small 2019; Collins 2011).  

In 2020, issues of environmental inequity were exacerbated with the advent of Covid-19 

and the realization that mostly poor black and brown communities were disproportionately 

affected by the virus. The CDC has listed discrimination, access to healthcare, occupation, 

education/wealth/income gaps, and housing as social indicators for the increase in risk these 

minority groups face when infected by the virus (CDC 2020). The low-income population of 

Milwaukee often relies heavily on state run health programs such as BadgerCare and the Special 

Supplemental Nutrition Program for Women, Infants, and Children (WIC) for medical 

screenings, treatments, and education. Due to the current pandemic, many of these health centers 

have limited office visit availabilities. Not only have these closure contributed to the already 
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2 poor access to health care facilities, but it also prevented many minority communities from 

receiving vital information about the dangers of Covid-19 and how to prevent the spread of 

infection.  

A further consequence of lack of access to medical centers is a 34% decrease in lead 

screenings in the city (Dang et al. 2021). Given the worsening state of this health crisis, and 

Milwaukee’s recent initiative to replace all lead service lines (LSL) (Jannene 2020), the 

examination of where these remaining lead pipes exist in the city, how many people are at risk 

for lead poisoning from these pipes, and their spatial correlation with neighborhoods of various 

socioeconomic statuses would ideally prove useful information to both city and health officials 

as well as environmental justice advocates. Therefore, the aims of this project will be two-fold. 

The first goal is to determine which census tracts in Milwaukee have the greatest number of 

people directly exposed to LSL, and therefore have higher risk for lead poisoning, by creating a 

dasymetric map of the city’s population distribution and relating the population density with the 

corresponding number of lead service lines that need to be replaced. The second goal is to 

characterize regions of the city with high levels of lead exposure risk with racial and 

socioeconomic indicators by creating bivariate correlation matrices.  

The targeted audience of this study would be policy or decision makers within the 

community, as well as grassroots organizations fighting for change. It would provide a tool of 

reference that could help inform them of the neighborhoods that would benefit from intervention 

to mitigate harmful environmental burdens. This project would also be accessible to the wider 

public as an educational tool that could potentially inspire them to become involved in 

community projects whose goals are to combat the impacts of environmental injustice or to 

contact their local government officials to incite change in harmful policies.  
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3 1.1. Study Area: Milwaukee, Wisconsin 

The study area of this project is the city of Milwaukee in Wisconsin. Founded in 1846, 

Milwaukee has a population of roughly 590,000 and is located on the western banks of Lake 

Michigan (Figure 1) (“U.S. Census Bureau” 2019). The city is known for a plethora of 

breweries, Harley Davidson motorcycles, and being the home of the 2021 NBA Champions, the 

Milwaukee Bucks. Unfortunately, the city also has a reputation for being one of the most 

segregated cities in America. Due to systemically racist policies, such as red-lining, Milwaukee 

is one of the most racially and socioeconomically divided in America (Lynch and Meier 2020). 

Studies have been done about the increased exposure to lead toxicity, lower air quality, and 

inaccessibility to healthy foods in these neighborhoods. Several studies have been conducted 

highlighting the disparity between affluent neighborhoods and poorer neighborhoods in 

Milwaukee with respect to access to green space, childhood exposure to lead, and inequities with 

transport access (Emer et al. 2020; Heynen et al. 2006; Milwaukee Environmental Justice Lab 

n.d.).  



 

4 
 

4 

 

Figure 1: City boundary of Milwaukee, Wisconsin. 

1.1.2 Milwaukee and Lead 

 The issue of lead poisoning in the city of Milwaukee is a long-standing problem that 

medical professionals, city leaders, and activist groups have been fighting for years. Being an 

older city, Milwaukee has a good number of homes that were built in the late 1800s to the early 

1900s, a time where lead was a common construction material. The pipes that brought water to 

homes were made of lead, and lead-based paint was the go-to for decorating homes (City of 

Milwaukee 2016). Despite spreading awareness across the U.S. about the dangers of lead 

poisoning, especially among small children, Milwaukee continued to have a higher than the 

national average of children with elevated blood lead levels (BLL) based on data collected by the 

Milwaukee Health Department’s (MPH) Childhood Lead Poisoning Prevention Program 

(CLPPP) (Public Health Foundation 2020). As a response to this alarming statistic, the 

Community Lead Outreach Project was started in 1995 by the Sixteenth Street Community 
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5 Health Center. Their goal was to decrease childhood lead poisoning by reaching out to the 

poorest communities in the city that live in the oldest homes. The project was successful in 

achieving this goal and health studies from the time showed a decline in children testing positive 

for elevated BLL from 46% to 23% over the years 1996-1999 (Schlenker et al. 2001). As of 

2019, 9-10% of children in Milwaukee test positive for elevated BLL. 

 The Community Lead Outreach Project provided a strong case for the importance of 

primary intervention when it came to reducing childhood lead poisoning. They found that 

parental education as well as fostering close relationships with the communities they were 

working with helped contribute to the overall success of the project (Schlenker et al. 2001). 

Despite all the progress Milwaukee has made to reduce childhood lead poisoning, the fact 

remains that exposure to lead is a persistent threat to the overall health of the city’s residents. To 

date, no such study has been conducted attempting to estimate the actual number of people 

exposed to lead via lead service lines, nor has research examining the correlation between lead 

exposure and socioeconomic indicator variables within neighborhoods. Considering there are 

still over 70,000 active residential lead service lines, this study could be useful for the decision 

makers of the city, lead-free activist organizations, and for the general public as a tool to educate 

themselves about an issue that impacts their daily lives.   

1.2. Environmental Inequity 

The causes of environmental exposure disparities are not as simple as residential 

segregation of minority communities. It is an issue that is deeply engrained into the fabric of 

society through years of discriminatory legislation and social conditioning. From the era of Jim 

Crow to the deeply problematic policy of redlining, racial discrimination in laws has lasting 

consequences today. In cities like Chicago and Milwaukee, neighborhoods can be distinguished 
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6 based on their racial make-up as a result of redlining in the 1960s. Since black and brown people 

were denied mortgage loans to buy property is certain parts of the city, they were forced to 

specific areas where they could afford housing. Often the parts of the city that were available 

were undesirable for the affluent society because they were near polluting factories. Based on 

proximity to hazardous byproducts coming from these factories, the minority population that 

were forced to settle in the neighborhood become exposed to environmental toxins at higher rates 

(Shrader-Frechette 2002; Hillier 2003; Lester 2018).  

From an economic standpoint, environmental inequities – access to urban green spaces 

for example – can be linked to the capitalistic commodification of these elements. Urban forests 

have become part of the process of production where those who can afford to “consume” more of 

the commodity are able to dictate where these spaces are introduced. Therefore, the distribution 

of the green spaces become uneven and neglected in the parts of a city that are of a lower 

socioeconomic status (Heynen et al. 2006). Commodification of urban spaces is likely at the root 

of many cases of environmental injustices minority communities face. The reality is people with 

low socioeconomic status in society lack the financial and social resources to combat their 

adverse environmental exposures (Kelly-Reif and Wing 2016). The task of mitigating these 

hazards is left to local and federal governments who, in the best-case scenario, can commission 

studies to be carried out to identify the exact issue at hand and the most effective strategy to 

combat the environmental injustice. 

1.2.1 Quantifying and Analyzing Environmental Injustice 

When studying communities to identify environmental injustice, there are three 

components that are regarded. First, there is an exposure assessment for locations within a 

geographic region. Second, there must be some way to quantify sociodemographic variables 
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7 across the whole geographic region in question. And third, there is a presence of disease or other 

detriments to human health in the region (Waller et al. 1997). The methods behind studying the 

cause and effects of environmental injustice have become more sophisticated over the years. 

From collecting health data incorporating remote sensing and machine learning, the research on 

this subject has expanded significantly since its inception amongst the Civil Rights movement in 

the 1960s. The development of remote sensing technology increased data resources for 

environmental justice analysis by providing highly detailed views of urban landscapes. These 

data can be used to analyze multiple environmental burdens such as heat islands, air pollution, 

and access to green spaces (Weigand et al. 2019). Researchers have utilized principal component 

analysis (PCA) to create neighborhood deprivation indices based on social data taken from the 

US Census Bureau. Once these indices are created, regression analysis is used to examine 

correlations between the spatial phenomena being studies and neighborhoods that have low 

deprivation index scores. The results of the analysis can then be visualized on a map of various 

spatial scales and a hotspot analysis can be used to identify areas of potential intervention 

(Padilla et al. 2014). 

A major consideration when assessing a geographic area for exposure to an 

environmental toxin is the appropriate level of spatial scale. The modifiable areal unit problem 

(MAUP) can be an issue when choosing the appropriate scale at which to conduct the analysis 

(Mennis 2003). If the spatial resolution is too big, the nuances of the environmental phenomena 

being studied can be lost. If the resolution is too fine, particularly in the case of census data, one 

runs the risk of having data with high levels of error and thus skewing the results of the analysis. 

Specifically in health studies, it is understood that environmental justice health issues are often 

spatially autocorrelated. It is therefore critical to understand and consider MAUP and its roll in 
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8 potentially skewing the results of aggregated data by introducing spatial bias (Swift, Liu, and 

Uber 2008). Researchers can ensure that their results are as accurate, valid, and transparent as 

possible by maintaining the integrity of their methods and disclosing limitations in existing data.  

1.3. Lead Toxicity 

In the late 1800s, lead became the industry standard for the construction of water 

distribution pipes in the United States due to its ability to corrode at a slower rate than iron, as 

well as its superior malleability. Despite the slower corrosion rate, lead is still prone to break 

down over time. These particulates eventually leach into the water supply, and the residents who 

consume the contaminated water see a rise in their blood lead levels (BLLs) (Brown and 

Margolis 2012). The dangers of lead service lines (LSL) have been widely known with articles 

being published about their toxic effects as early as 1859. However, lead was too convenient of a 

material source to prohibit from its use to be mandated until 1986 when Congress passed the 

Safe Drinking Water Act Amendments (Rabin 2008). Despite this ban, hundreds of thousands of 

Americans are still at risk for lead poisoning due to existing lead service lines. In Milwaukee 

specifically, upwards of 70,000 residential structures still have LSL in use (Lewis et al. 2017).  

When Milwaukee’s original water services lines were placed in the early 1900s, they 

were made out of lead. In 2017, Milwaukee launched an initiative to raise awareness about the 

dangers of lead poisoning and to replace the lead laterals, the pipes that bring water to homes 

from the water main (Milwaukee Water Works n.d.). Due to the Covid-19 pandemic, the city has 

fallen far behind in their goal to replace all the city’s lead laterals and is now projected to 

complete the project in 70 years (Jannene 2020). This delay is ultimately the most harmful to 

those in the lowest socioeconomic classes, primarily racial minority communities, in Milwaukee 

(Emer et al. 2020).  
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9 1.3.1 Blood Lead Levels and Exposure 

Lead poisoning has a cumulative effect on the human body. The Centers for Disease 

Control (CDC) have stated that the maximum threshold of BLL is five micrograms per deciliter 

(μg/dL), however no amount of lead is safe for the human body, especially in young children 

(CDC 2021; Miranda et al. 2002). The general symptoms of short-term lead poisoning include 

abdominal pain, constipation, exhaustion, headaches, irritability, loss of appetite, memory loss, 

tingling in hands and feet, and feeling weak (CDC 2020). The long-term effects of lead exposure 

are similar to the short-term effects but also include mood disorders, decreased fertility, and 

difficulties concentrating. Arguably the more alarming and damaging impacts of lead poisoning 

occur in young children. Exposure to lead has been linked to developmental delay, learning 

difficulties, weight loss, hearing loss, and seizures (Mayo Clinic 2019). These symptoms can 

severely impact a child’s quality of life, long past the time of their initial exposure. Research has 

shown that even low-level exposure can have adverse effects on cognitive development in 

children (Hou et al. 2013). In other words, children with lead exposure show decreases in their 

IQ scores and academic achievement when compared to children not exposed (Sorensen et al. 

2019). 

Children and adults can be contaminated with lead poisoning by means of paint, soil, 

dust, air, and water (Lynch and Meier 2020). Children who are exposed to lead in the United 

States usually live in a structure that was built prior to 1940, an era where it was common to use 

lead as a construction material in both the water pipes as well as in the paint (Chisolm 1971). 

Despite legislation and efforts to minimize the risk of lead contamination through water 

consumption, 10-20% of children and 40-60% of infants’ lead intake can be traced to potable 

sources (Rabin 2008). Studies have proven that childhood lead exposure is a spatially correlated 
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issue. These exposures also tend to disproportionately impact communities of color, especially 

those communities with families living below the poverty line or with low socioeconomic status 

(Oyana and Margai 2007). Due to lack of resources, communities with a low socioeconomic 

status are also more likely to be unable to afford the cost of replacing their LSL even if they 

wanted to (Sampson and Winter 2016). 

1.3.2 Lead Service Lines 

 Lead service lines (LSL) are water pipes that run from the water main to the house 

(Figure 2). As mentioned earlier, lead was the most common construction material in the late 

1800s to early 1900s. Unless replacements have occurred, areas of the city that were built around 

this time will have LSL that supply the houses with water from the main line. According to 

Milwaukee’s water department, the water that leaves the water treatment facilities contains no 

lead. However, lead can leach into the water simply transporting water using an old LSL 

(Milwaukee Water Works 2021). According to Milwaukee Water Works (MWW), the city’s 

water supply has been in compliance since 1996 with the EPA’s 1991 Lead and Copper Rule 

(LCR) – legislation that sought to regulate lead and copper levels in drinking water. To be 

compliant with the LCR, there must be less than 15 parts per billion (ppb) concentration of lead 

found in tap water (US EPA 2015). While 15 ppb of lead is an extremely low concentration, it is 

a consensus that no level of lead is safe to consume. The EPA has recently updated the LCR to 

include earlier intervention to detect lead in communities’ drinking water, push for complete 

LSL replacements as opposed to partial replacements, require lead level testing at schools and 

childcare facilities, and to make the locations of existing LSL available to the public (US EPA 

2020). The obvious and most logical solution to preventing lead exposure by LSL is to replace 

the whole service line.  
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Figure 2: Water service line graphic (Denver Water 2021). 

1.4. Thematic Mapping 

When studying a spatial phenomenon, researchers often aggregate their data into polygon 

areal units, such as census tracts. From there, a thematic choropleth map can be generated to 

determine any spatial patterns in the mapped phenomena. Choropleth maps assume that the data 

are spread homogenously across the chosen areal unit. When studying population related data, it 

is known that the data are more heterogeneously dispersed. Further, it can prove challenging to 

choose the optimal areal unit to aggregate the data to begin with. Government drawn boundaries 

can be arbitrary and are for administrative or political reasons. They often do not have any 

relation to any underlying spatial occurrence – i.e., crime rates, public health issues, and land use 

(Maantay et al. 2007). It is important to note that policies are put in place to protect the privacy 

of people when data can contain sensitive information. For this reason, it can be difficult to 

obtain accurate data at a detailed level (Kennedy and Kennedy 2004).  

Dasymetric mapping, first developed in the early 1900s as an alternative thematic 

mapping technique to choropleth maps, involves the division of data into homogenous zones that 

represent the underlying statistical surface (Eicher and Brewer 2001). Population density within 

census tracts is a prime example of the potential issues with arbitrary unit partitioning. 
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Populations within a census tract are assumed to be homogenously distributed across the areal 

unit. Depending on the size of the areal unit, this can lead to fallacious analytical claims that do 

not accurately represent the population distribution within the unit (Mennis 2003). 

Administrative boundaries drawn for bureaucratic purposes can often mask the underlying issue 

being studied. Therefore, when studying environmental justice issues that emphasize the 

importance of accurate population distribution, it is critical that a reliably detailed spatial scale is 

used. Dasymetric mapping techniques can redistribute the population within an aerial unit like a 

census tract by disaggregating the population data and repopulating it with ancillary data (such as 

residential parcels). This provides a much finer spatial resolution and more precisely represent 

the actual population distribution within the study area (Eicher and Brewer 2001; Maantay et al. 

2007).  

1.5. Racial and Socioeconomic Correlations with Environmental Justice 

When traveling through any major city in the United States, it is usually quite apparent 

which areas of town are wealthier than others. Just by means of observation, one can 

differentiate between these neighborhoods by their cleanliness, property values, access to healthy 

and a variety of grocery stores, etc. Drive-by observations aside, researchers have developed 

ways to quantify the socioeconomic disparities in order to perform meaningful analysis on either 

the reasons for such stark differences within one city or the impacts of these divides, both direct 

and indirect, on peoples’ lives. Research has determined that certain social indicators, such as 

race, unemployment, poverty, and education level, tend to aggregate at the neighborhood level 

(Messer et al. 2006). With this understanding, there can be a multitude of variables that can 

indicate economic disadvantage. It is a complex, multi-faceted issue where one or many of these 

social indicators are linked to disparities in public health (Eicher and Brewer 2001). Studying the 
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relationship between socioeconomic variables and the at-risk population for lead exposure in 

Milwaukee can provide greater context and insight into the underlying issues that are 

contributing to this environmental inequity.  

Correlation analyses are used in environmental justice studies to examine relationships 

between a dependent variable and explanatory socioeconomic factors (Jerrett et al. 2001; 

Raddatz and Mennis 2013). According to Tobler’s first law of geography, “everything is related 

to everything else, but near things are more related than distant things” (Tobler 1970, 236). The 

concept of spatial autocorrelation as outlined by Tobler’s famous law can pose problems to 

spatial statisticians when attempting to run regression or correlation tests because their base 

assumption lies in the independence of the observations and errors (Chakraborty 2011). 

Therefore, it is highly important to take spatial autocorrelation and multicollinearity between 

variables into account when running correlation tests because of the bias they create in the data.  

In the following chapter, studies related to the topics of environmental justice, lead 

poisoning, dasymetric mapping techniques, and regression analyses will be explored. Concepts 

will be reviewed, methodology outlined, and a case for the justification of this study will be 

addressed as well.  
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Chapter 2 Related Work 

The damaging effects of ingesting lead are not as recent a discovery as one might think. Texts 

from the second century BC suggest that Hellenistic physicians were aware of the toxic effects of 

high lead exposure. It was not until the Industrial Revolution when the chronic effects of lead 

exposure were made known to the larger medical community (Riva et al. 2012). Within the last 

80 years, research about the damages of lead poisoning, as well as about sources of lead 

exposure has exploded. The literature on the subject has expanded from a medical perspective to 

encompass environmental points of view. Legislation was introduced in the 20th century to 

restrict the use of lead-based materials in construction to help lower exposure rates among the 

population. Overall, the instances of lead poisoning and exposure have significantly decreased 

since the Industrial Revolution due to enhanced research and awareness (Brown and Margolis 

2012; Chisolm 1971; Rabin 2008).   

Issues of lead in the water and the links to environmental justice have been extensively 

researched for the past century. The literature has revealed that lead exposure disproportionately 

affects minority communities across America (Sampson and Winter 2016). Public attention to 

this injustice increased following the Flint, MI water crisis in 2016. The outcry of poor black and 

brown communities, the ones most impacted by lead exposure, was finally gaining national 

attention (Butler et al. 2016). Other cities, including Milwaukee, began to put renewed efforts 

into their clean water programs and removing remaining lead service lines (Jannene 2020; Public 

Health Foundation 2020; Wisconsin DNR 2021). In 2017, Milwaukee’s water department 

announced an initiative to replace all remaining LSL in the city. Unfortunately, circumstances 

like Covid-19 have drastically slowed their progress toward their goal. The delays mean that 
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Milwaukee’s residents, particularly historically black and brown neighborhoods, will continue to 

be at-risk of poisoning from exposure to lead in their water supply.  

The following chapter explores the related literature researching lead exposure from a 

historical and environmental justice lens. It also explores the ways in which dasymetric mapping 

can be used to accurately estimate the number of people at-risk. Finally, examples of regression 

analysis will be explored to show how these techniques can help shed light onto the underlying 

patterns of toxicity exposure in relation to socioeconomic factors.  

2.1 Environmental Justice: Milwaukee 

Milwaukee has been the case study for environmental justice issues for many years. It is a 

city where the social divisions between neighborhoods are starkly apparent and have root in 

years of divisive public policy. Mary Collins published a study in the American Journal of Public 

Health in 2011 called “Risk-Based Targeting: Identifying Disproportionalities in the Sources and 

Effects of Industrial Pollution.” The most notable point in this study is the fact that Collins’s 

study area was the City of Milwaukee. The aim of her study was to prove that industrial pollution 

from a few key polluters in the region disproportionally affects low-income and minority 

communities. She used the risk screening environmental indicators model to conduct her 

methodology. She first assessed the efficacy of the current mode of monitoring environmental 

burdens in the community, the Environmental Justice Strategic Enforcement Assessment Tool 

(EJSEAT). Although it contains 18 variables in its assessment process, race is excluded from the 

method. The study sought to add race as a variable in the EJSEAT and include more specific data 

to effectively measure environmental justice concerns within Milwaukee. Her methodology for 

calculating race and socioeconomic class dissimilarity by using percentages will most likely be 

used in this project, as both will be examined as a social context indicator (Collins 2011).  
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A 2013 health report for Milwaukee conducted by the Center for Urban Population 

Health found significant health disparities between the socioeconomic classes within Milwaukee. 

One of the categories that disproportionately affects the lower socioeconomic class is childhood 

lead poisoning (Greer et al. 2013). Lead poisoning is a serious issue because it is a cumulative 

toxicant that can affect multiple systems in the body. Small children are especially susceptible 

because they absorb four to five times more lead than adults when ingested (WHO 2019).  

2.2 Lead and Water   

Studies in the United States examining the toxicity of lead in the drinking water supply 

can be traced back as early as 1845 (Brown and Margolis 2012). Despite the fact that many US 

cities were voting to move away from using lead for water pipes by the 1920s, the national 

plumbing codes continued to approve lead as a viable material source until well into the 1980s, 

around the time Congress passed the Safe Drinking Water Act Amendments (Rabin 2008). With 

all these efforts to ensure safe, toxin-free water for all, the Environmental Protection Agency still 

allows up to 15 parts per billion (ppb) of lead in drinking water (US EPA 2016). The EPA, in 

partnership with the Centers for Disease Control (CDC), recognizes that no amount of lead is 

safe in the human body, especially in children (US EPA 2016). There is a worldwide consensus 

on this view (WHO 2019). An added layer to the environmental issue of lead exposure is 

observing which communities are most at risk. It has been proven time and time again that lead 

poisoning disproportionately affects minority communities throughout the United States (Brown 

and Margolis 2012; Lewis et al. 2017; Butler et al. 2016; Rabin 2008; Sampson and Winter 

2016). 
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2.2.1 Flint, Michigan Water Crisis 

A landmark example that occurred within the past decade is the Flint, Michigan water 

crisis. The case in Flint was overwrought with regulation violations and false reporting. The 

House Committee of Oversight and Government Reform formed a bipartisan conclusion that the 

city officials had been negligent in their duties to ensure the safety and health of its residents 

(Chaffetz et al. 2016). It was revealed that after the city switched water sources, high levels of 

lead began to be reported in the city’s drinking water.  

When conducting lead and copper rule (LCR) sampling, reports found that the Flint’s 

water treatment plant improperly collected samples from homes that were not at high risk for 

lead contamination. On top this sampling error, the Michigan Department of Environmental 

Quality gave faulty instructions to the residents of the town, telling them to pre-flush their taps 

before the sample collected (Butler et al. 2016). This is against the protocol for LCR sampling 

and skewed the city’s reported lead levels. A major justification for the delayed and poor 

response of the local government to intervene is the direct result of the economic and racial 

makeup of the city. The population of Flint is 62.6% people of color and 41.6% of individuals 

live below the poverty line (Butler et al. 2016).  

The BLLs of children under five were compared before and after the change in water 

source for the city, and significant increases in elevated BLLs were recorded. Overall, the results 

showed that 2.4% of children had elevated BLLs before the change, and 4.9% were recorded to 

have elevated levels after the fact (Hanna-Attisha et al. 2015). In areas identified with high water 

lead levels, the jump went from 4% to 10.6%. The same study compared these results against 

socioeconomic disadvantage scores and found the areas with elevated BLLS to be statistically 
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positively correlated with areas with high levels of socioeconomic disadvantage (Hanna-Attisha 

et al. 2015).  

2.3 Dasymetric Mapping 

 When analyzing spatial phenomena utilizing census data, it has become common practice 

to use dasymetric mapping techniques to gain an accurate visualization of the topic of study. The 

boundaries used in census data are meant to serve government purposes and are not always ideal 

when creating a map to study population distribution as an example (Mennis 2003). Traditional 

choropleth mapping assumes the data are spread evenly across the chosen areal unit. In the case 

of census boundaries, which are drawn with no consideration to any sort of spatial subject, 

thematic maps can be misrepresented, and the underlying pattern masked (Maantay et al 2007). 

 There are several different ways to approach dasymetric mapping depending on the 

subject matter being mapped and the research question. A common approach for disaggregating 

population is areal interpolation. Areal interpolation involves the transfer of data from a source 

dataset to a target dataset of overlapping areal units. It is assumed that population is distributed 

evenly across the source layer. When estimating the population based on the overlap between the 

source and target zones, the ratio of the overlap between the two datasets is applied to the 

population of the source zone, thus yielding the estimated population of the target zone (Maantay 

et al. 2007). The simplest version is a binary method of areal interpolation that can be used to 

estimate population density based on land-use data that filters out regions of uninhabitable land 

(Eicher and Brewer 2001). 

 There are some shortcomings with areal interpolation methods for population 

disaggregation. For one, areal interpolation operates under the assumption that all residential 

areas have homogenously distributed population density (Maantay et al. 2007). Residentially 
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zoned areas in a municipality do not necessarily have even population density throughout, 

therefore a similar fallacy in the analysis could occur to if one used the census boundaries as the 

areal unit of disaggregation. The spatial resolution of land-use data may not be as fine-tuned as it 

needs to be to present a true representation of population distribution over a given area. When 

seeking to build as true of a representation as possible for population distribution within a city, a 

more refined approach must be taken that is able to disaggregate population data to the finest 

possible resolution possible.   

2.3.1 The Cadastral-based Expert Dasymetric System 

 The Cadastral-based Expert Dasymetric System (CEDS) was first introduced by Maantay 

et al.’s (2007) study comparing its novel methodology against different, more established, 

dasymetric mapping techniques. Notably, the researchers compared their CEDS disaggregation 

method against simple and filtered areal weighting disaggregation methods – two of the most 

common ways to disaggregate population data. While the areal disaggregation methods use 

remotely sensed land-use data as their ancillary data, the CEDS method uses cadastral data to 

estimate population distribution. Maantay et al. (2007) developed a method that disaggregates 

data from a more general census block group level down to the tax lot level. The researcher used 

residential area (RA) and residential units (RU) as stand-ins for the population distribution in 

their calculations.  The adjusted residential area (ARA) is the total livable area within a building, 

and it is derived by multiplying the tax lot’s building area by the ratio of residential units and 

total units. The information about the RU and the calculated ARA were aggregated up from the 

tax lot level to the census block group and census track levels (Figure 3).  
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Figure 3: Visual representation of the ARA calculation  

From there, the census population data can be multiplied by the proxy population unit ratios (RU 

or ARA) to derive the final dasymetrically calculated population density. Maantay et al. (2007) 

could then determine which proxy unit (RU or ARA) was most appropriate for tract population 

estimation by a tract-by-tract basis. To perform this check, population data was disaggregated 

back down to the tax lot level, which was then aggregated back up to the block group level. By 

doing this disaggregation and aggregation for both RU and ARA proxy units, the researchers 

were able to compare the calculated block group population estimate with the census block group 

population data. Whichever proxy unit with the smallest difference between the two values was 

chosen as the preferred proxy unit for the dasymetric calculations for that census tract. The 

argument that makes the CEDS method superior to the areal interpolation disaggregation 

methods is that CEDS uses tax-lot information which is a much finer spatial resolution than 

anything that the areal interpolation methods work with. Thus, the final dasymetric population 

density result can display the nuances in human population distribution better than areal 

interpolation methods (Maantay et al. 2007). A slightly modified version of the CEDS method of 

dasymetric mapping was used in this study when calculating the number of at-risk people for 

lead exposure due to the presence of LSL.  
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2.4 Quantifying Socioeconomic Disadvantage  

Being able to provide context behind mapping spatial phenomena brings meaning to the 

analysis of the issue. The ability to answer the question “why?” in reference to the spatial event 

being visualized pushes the research in the direction of problem solving over simply pointing out 

a potentially problematic situation. Conducting correlation tests to characterize the regions where 

an environmental justice issue is occurring can provide valuable evidence to support the plight of 

the victims of such an injustice. Being able to identify areas within a city with shared attributes 

that experience environmental inequity can help decision makers and advocacy groups know 

where to target their outreach programs and solution actions.  

The literature on quantifying socioeconomic disadvantage within neighborhoods contains 

a wide variety of different methodologies. One route relies on inductive and deductive reasoning 

to select the most appropriate social vulnerability indicators. The concept would be to initially 

select the vulnerability indicator variables using deductive reasoning by researching with 

background literature. From there, the variables can be verified and selected for analysis with 

inductive reasoning – looking at current data and statistical studies that utilize the variables in 

question (Hinkel 2011). Building on Hinkel’s methodology for indicator identification, Samuel 

Rufat et al. (2015) compiled worldwide case studies on social vulnerability to floods. The 

researchers were able to identify seven social indicators based on frequency of appearance in the 

125 studied cases. These indicators were: demographic characteristics, socioeconomic status 

(SES), health, coping capacity, risk perception, neighborhood quality of life, and land tenure 

(Rufat et al. 2015). Hinkel’s (2011) method for social indicator selection is highly labor intensive 

and scrupulous research on the subject at hand. It can contextualize the indicators that are 

selected and seeks to provide a global standard for social vulnerability indicators. 
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To select the socioeconomic indicators for this study, a similar approach to Hinkel (2011) 

was taken in that extensive background research was conducted to select out appropriate SES 

indicator variables from the literature. Given the historical segregation of the city, Milwaukee 

has no shortage of socioeconomic studies as they relate to health and environmental justice 

issues. In a 2013 health report, the Center for Urban Population Health conducted a study of 

health disparities in Milwaukee by socioeconomic status. The researchers derived a SES index 

by using household median income and education data. Each zip code within the city was 

assigned a SES index score based on the calculation from the two indicator variables. The results 

of this report showed major health disparities within the city and upheld previous research 

conclusions that socioeconomic status is one of the most telling indicators of peoples’ health 

outcomes (Greer et al. 2013). A more recent study conducted by Lynch and Meier (2020) 

examined the intersection of poverty, home ownership, and race on childhood blood lead levels 

in Milwaukee. All the SES data in this study were taken from a census tract level while the 

childhood blood lead levels were measured as a continuous mean across census tracts. The 

results of Lynch and Meier’s (2020) research concluded that socioeconomic and racial minority 

neighborhoods have higher average childhood BLL. Additionally, high BLL risk greatly 

increases if the neighborhood’s population has multiple risk variables (Lynch and Meier 2020). 

These studies were just two key examples from literature studying inequities in Milwaukee based 

on socioeconomic status. Based on the precedent these studies provided, the socioeconomic 

variables used in this study are median household income, poverty status, race, ownership of the 

lived-in residence, and education level.  



 

23 
 

23
 

2.5 Environmental Justice Correlation Studies  

  Correlation research between racial and social factors and environmental justice issues 

are found in abundance within the literature. Amongst the most studied relationships is that of 

pollution with communities of color and/or those experiencing poverty (Banzhaf et al. 2019). In 

1992, researchers Mohai and Bryant found that racial and class biases are directly related to 

issues of proximity to environmental hazards. This conclusion was reached after studying sixteen 

environmental justice case studies and conducting a public perception study in the Detroit area. 

While their research showed class to be a significant factor in exposure to environmental toxins, 

race was the more strongly related factor with environmental hazard exposure (Mohai and 

Bryant 1992). Mohai and Bryant’s 1992 study was just one example of the increasing number of 

environmental justice correlation studies that have been conducted over the past two decades.  

2.5.1 Understanding Ecological Fallacy  

 Significance of racial and socioeconomic inequalities with hazard exposure vary in the 

studies, some finding the two to be strongly related, while others finding little correlation 

(Anderton et al. 1994). A major source of oversight in studies is the failure to consider ecological 

fallacy. Ecological fallacy occurs when one attempts to draw conclusions about spatial 

relationships by comparing two sets of data with different aggregation scales. Specifically, error 

is introduced when assuming variations at a larger scale are the same at a smaller, more 

individual scale (de Munck 2005). A way to help account for ecological fallacy in correlation 

analyses is to choose units of analysis as small as possible without compromising the integrity of 

the data (Banzhaf et al. 2019). The issue remains that when comparing different variables in a 

correlation calculation, the aggregation methods of the data are not guaranteed to be the same. 

One could measure estimates on the individual level, while another could represent the data 
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collectively across the chosen spatial unit. Therefore, a good practice is to describe the overall 

characteristics of the population in the region of study, especially when incorporating multiple 

social explanatory variables in the study (de Munck 2005).  

2.5.2 Hazard Proximity Methods  

 Another possible reason for the wide variation in statistical uncertainties among 

environmental justice correlation studies is a lack of standardized methodology for calculating 

environmental toxin exposure proximities. The classical approach is to define geographical units, 

such as counties or zip codes, identify those with and without the environmental burden present, 

then compare the demographic data between the two sets of units. This method of determining 

hazard exposure is referred to as the spatial coincidence approach and it assumes the population 

living in the geographic units that contain the environmental toxin are automatically closer to the 

source than those who live in units that do not contain the hazard. The logic behind the thought 

of the spatial coincidence methodology is flawed because one, it assumes a spatial unit’s 

population is evenly distributed in the distance to the hazard source and two, it does not account 

for edge effects among the neighboring units.  

 Distance-based methods of proximity analysis can account for the issues found in the 

classical, coincidence approach. With distance-based approaches, the precise locations of the 

hazards are included, and demographic variables within a set distance of the environmental 

burden from any geographic unit can be compared against those that occur farther away. In other 

words, the data are aggregated based on their closeness to the hazard locations instead of by 

more arbitrary geographic boundaries (Mohai and Saha 2006).  

 While distance-based methods of examining correlations between social and racial 

variables and an environmental injustice, it relies heavily on very fine spatial resolutions of data. 
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The level of detail that would be required to conduct an accurate study with distance-based 

methods can be difficult to obtain from public access databases. For this reason, this study will 

attempt to quantify the characteristics of the regions of the city with higher levels of lead 

exposure risk based on bivariate correlation analysis on demographic indicators obtained from 

the Census Bureau. The following chapter explains the methodology used to derive more 

accurate population distributions in the city using a dasymetric mapping technique and the steps 

of the correlation analysis using the results of the dasymetric map as the dependent variable and 

demographic data as the explanatory variables.  
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Chapter 3 Methods                                                                                                                                                                                                                                                                                         

The following chapter contains the details for the methods of this project. It begins with an 

overview of the project’s design followed by a section containing a description of the data used 

in the analysis. The last two sections go through the creation of the dasymetric map using the 

Cadastral-Based Expert Dasymetric System methodology and regression analysis using ordinary 

least squares. 

A major consideration with data selection in this study was selecting the most appropriate 

spatial resolution for the data analysis. Utilizing spatial scale that was at the finest resolution 

possible without compromising the accuracy of the data was critical to ensure the integrity of the 

analyses being conducted. Datasets that are found in the Census Bureau’s website all contain the 

variable estimates as well as a calculated margin of error (MOE) to account for variation within 

the data. The MOE from the American Community Survey data were calculated at a 90% 

confidence interval (Berkley 2017). The smallest spatial scale that population estimates, as well 

as the social indicators from the ACS could be obtained were at the census block group level. 

Upon further inspection of these data, MOE for each block group was far too high to perform 

reliable statistical analysis. In some cases, the MOE exceeded that of the data estimate itself. The 

high error found in the census block group data also disqualified it from being used to validate 

the results of the CEDS map. The next spatial scale up was the census tract data. These tables 

were much more accurate in terms of a lower MOE for each variable estimate. Therefore, the 

spatial scale for all tabular data in this study is at the census tract level.  

When it came to the explanatory variable selection for the bivariate correlation analysis, 

an inductive approach was taken. Results from previous environmental justice and health equity 

studies in Milwaukee were examined and the selection of socioeconomic indicator variables 
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were compiled as results of the research. There are statistical methods that can be used to select 

socioeconomic variables for a regression analysis, but these are beyond the scope of this study 

and are addressed in Chapter 5 of this paper. 

3.1 Project Design 

Given the historical and modern relevance of the damages lead pipes have caused in 

Milwaukee, as well as the abundance of data related to the subject, the environmental burden 

variable chosen for this study is the presence of lead water mains within the City of Milwaukee. 

As mentioned above, it is difficult to conduct an accurate measurement of exposure to a toxin if 

the population estimates that are used in the analysis are assumed to be distributed 

homogenously across a census tract. Nuances in the living circumstances of the population can 

be lost when using such a large spatial unit. Further, it is difficult to tell a precise number of 

people who are directly at-risk for lead exposure based on just the total number of LSLs still 

active in the city. This is due to the reality that one LSL does not equal one person exposed. A 

single LSL can feed water into a house or apartment complex where multiple people reside. If 

one wants to see how many people are at-risk by census tract, a simple proportion of number of 

LSL addresses to the tract population will not suffice. By using the census tract as the aerial unit 

of measure, it assumes that the populous is spread homogenously across the tract. This rationale 

is an obvious fallacy as humans disperse heterogeneously across a given space.  A dasymetric 

population distribution map is a way to solve the issue of spatial scale by disaggregating the data 

into smaller units across the study area. This involved a series of joins and field calculations to 

disaggregate and reaggregate census tract data down to city parcel resolution, then back up to 

tract data. Once the final at-risk population totals were obtained per census tract, a hotspot 
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analysis was run to find the statistically significant hot and cold spots by census/ tract across the 

city.  

The second step in this project will be to determine the relationship of certain social 

indicators and the census tracts with the highest number of people exposed to LSLs. The social 

context indicators most widely researched in environmental justice issues are low-income and 

racial minority groups (Alexeeff et al. 2012). Based on a compilation of socioeconomic 

indicators used in other environmental justice studies in Milwaukee, the final list of explanatory 

variables was as follows: median household income, poverty status within the last twelve 

months, tenure status of the property (is it being rented or is it owned by its occupants), race, and 

level of education. An exploratory ordinary least squares regression analysis was then conducted 

on the dependent variable (the number of people at-risk for lead poisoning in each census tract) 

with the above listed socioeconomic indicators as the explanatory variables. The variables 

exhibiting high multicollinearity were thrown out of the model and the remaining explanatory 

variables were run through a local bivariate relationship analysis to visualize each independent 

variable’s relationship with the dependent variable. 

3.2 Data Description and Data Processing 

The city lead pipe data was obtained from the water department’s website, which keeps 

up-to-date records of the existing pipes. These addresses were geocoded using ArcGIS Pro’s 

geocoding service and mapped as a dot density layer (Figure 4). Of the 74,225 addresses that 

were converted to points, two landed outside of the city boundary and were thus excluded from 

the study. ArcGIS Pro’s geocoding service placed all points on the street facing edge of the 

parcel boundaries. On occasion, the point was not quite inside the parcel boundary. For this 
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reason, a five-foot buffer was applied to the parcels when spatially joining the LSL points to the 

parcel polygons where if the point fell inside of the five-foot buffer, it was joined to the parcel.  

 

Figure 4: Dot density of residential addresses with lead service lines 

The census tract boundaries were obtained from the Milwaukee County’s open data 

portal in the form of a polygon shapefile. The tracts that were within Milwaukee’s city 

boundaries were selected out from the county shapefile. It was found that two of the 211 census 

tracts contained no residents so those two were excluded from the study, leaving a total of 209 
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tracts used in this study. City boundary and parcel data were obtained from the city’s open data 

portal. The parcel layer contained data about the parcel, including a field with the total building 

area of the property. The “Building_Area” field was used for the dasymetric mapping portion of 

the methods. The “Building_Area” is an attribute found in the parcel layer file and it is defined 

as “the total usable floor area of the structure in square feet” (City of Milwaukee 1999, 10). The 

residential parcels were selected out of the parcel layer using the select by attribute tool in 

ArcGIS Pro.  

The census tract population estimates and social indicator data – median household 

income, poverty status, education level, race, and tenure – were obtained from the Census 

bureau’s website using the American Community Survey (ACS) formatted as comma-separated 

values (csv) files. The race and education level indicators had data tables that contained several 

different categories within the files. The race domain was broken up into individual races that 

people identify as, and those of Hispanic origin were recorded in a separate dataset all together. 

In an effort to reduce the number of redundant variables within the study, the data for all non-

white races and Hispanic origin were combined into a people of color (POC), or non-white, 

category. So, the race indicator in this study was comprised of two variables, white and non-

white. The education level dataset also contained a multitude of categories where the ACS 

created separate columns of data for each level of education attained – from kindergarten to 

doctorate degrees. The indicator variable used in this study was the number of people with a high 

school degree or less. To create this high school or less education category, the data were 

combined in excel from kindergarten to high school or high school equivalent. All the variable 

data used in the analysis were extracted from each table and joined to a master csv file with all 
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the social indicators. This master csv file was then combined with the map of the city’s census 

tracts via a table join. Table 1 lists all the data and their sources that were used in this project. 
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 Table 1: Datasets and Sources 

 

Dataset Description Format Data Type Spatial 
Scale 

Reporting 
Period Source 

City Boundary Administrative boundary 
of the city of Milwaukee .shp Vector data 

(polygon) City limits 2021 Milwaukee Open Data 

Parcel Polygons 
Shapefile containing the 

city’s parcel polygons with 
master property file data 

.shp Vector Data 
(polygon) City Parcels 2021 Milwaukee Open Data 

Census Tracts Boundaries of Milwaukee 
County’s census tracts .shp Vector Data 

(polygon) 
Census 
tracts 2020 Milwaukee County Land 

Information Office 

Population Estimate Dataset reporting estimated 
population size .csv 

Aggregated 
census tract 
population 

Census 
Tract 2019 U.S. Census Bureau ACS 

data 

Education Level over 25 

Dataset reporting estimated 
education level attainment 
for individuals over the age 

of 25 

.csv 
Aggregated 
census tract 
population 

Census 
Tract 2019 U.S. Census Bureau ACS 

data 

Median Income 
Dataset reporting estimated 

median income level per 
household 

.csv 
Aggregated 
census tract 
population 

Census 
Tract 2019 U.S. Census Bureau ACS 

data 

Poverty Level 
Dataset reporting estimated 

household poverty status 
within the last 12 months 

.csv 
Aggregated 
census tract 
population 

Census 
Tract 2019 U.S. Census Bureau ACS 

data 

Race 

Dataset reporting estimated 
numbers of individuals 
identifying within racial 

categories 

.csv 
Aggregated 
census tract 
population  

Census 
Tract 2019 U.S. Census Bureau ACS 

data 

Hispanic/Latino Origin 
Dataset reporting estimated 
individuals that identify as 
Hispanic or Latino origin 

.csv 
Aggregated 
census tract 
population 

Census 
Tract 2019 U.S. Census Bureau ACS 

data 

Lead Service Lines 
Master list of residential 
addresses within the city 

with LSL 
.csv 

Point data 
with text field 

addresses 
City Parcels 2021 Milwaukee Water Works 
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 3.2.1 American Community Survey Margin of Error 

 To address the margin of error in the ACS data, a coefficient of variation (CV) was 

calculated for each variable dataset at a 90% confidence level using methodology outlined by 

Tufts GIS Center (Parmenter and Lau 2013).The coefficient of variation is a metric used to 

establish the reliability of the ACS data estimate and was calculated for all 209 census tracts in 

Milwaukee. First, the standard of error (SE) for each tract estimate was calculated using 

Equation 1.  

    SE		 = 		MOE	 ÷ 	1.645  (1) 

Once the SE was calculated for each census tract variable’s estimate, the CV was derived using 

Equation 2 (Parmenter and Lau 2013). 

    CV	 = (01	 ÷ 12345637) 	× 	100  (2) 

In the cases of the number of non-white people and those with or less than a high school 

education, the data for these two variables were aggregated from smaller categories within each 

of their respective datasets. The MOEs for the aggregated data variables were calculated using 

the formula in Equation 3, where the letter ‘c’ represents each individual data estimate to be 

included in the aggregation (CCRPC 2015). 

  MOE!"" 	= 	±<∑ >?1#$#   (3) 

The CVs were then categorized into high, medium, and low reliability. The thresholds used for 

each were taken from ESRI’s guidelines where high reliability CV scores are anything less than 

or equal to 12, medium CV scores are between 12-40, and low reliability scores are anything 

above 40 (Herries 2021). The totals for each reliability category were then added together and 

recorded as percenta0ges. Table 2 shows all the explanatory variables taken from the ACS and 

their respective CV reliability percentages.  
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Table 2: Coefficient of Variation Reliabilities for ACS Data 

CV 
Categories Population Rents Median 

Income 
Non-

White Owns White HS 
Education 

Poverty 
Status 

High 93.78% 73.68% 54.55% 50.24% 45.19% 43.27% 23.92% 1.91% 
Medium 6.22% 25.84% 44.02% 49.76% 51.92% 42.79% 74.16% 91.39% 

Low 0.00% 0.48% 1.44% 0.00% 2.88% 13.94% 1.91% 6.70% 

3.3 Analysis Tasks Details 

The methodology for the analysis tasks of this project were broken into two main 

sections. The first being the CEDS mapping methodology to estimate the number of 

Milwaukeeans at-risk more accurately for lead poisoning based on the presence of LSL at their 

place of residence. The second part of the study examined the relationship between the number 

of people at-risk for lead exposure per census tract with social indicators obtained from the 

Census Bureau’s American Community Survey data. The idea is to quantify the characteristics of 

census tracts that have a higher number of individuals at-risk for lead exposure. A bivariate 

correlation matrix was constructed using Microsoft Excel to determine the nature of the 

relationships between the independent, social indicator variables and the dependent, number of 

people at-risk variable.   

3.3.1 Cadastral-based Expert Dasymetric System 

The Cadastral-Based Expert Dasymetric System (CEDS) methodology was used in this 

study to create a dasymetric population distribution estimate in the City of Milwaukee. This 

method disaggregates the census tract data and redistributes the population estimates by 

assuming the number of individuals residing in a parcel is proportionate to the size of the 

building area within that parcel. It should be noted that in the original methodology put forth by 

Maantay et al. (2007), the spatial unit for disaggregation was tax lot data. In this study, parcel 
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information is used as a synonym for tax lot because the data obtained from city websites were 

named “parcels” rather than “tax lot.”  

In ArcGIS Pro, the ACS population estimates per census tract layer were joined by table 

to the county census tract shapefile. Census tracts within the city boundaries were selected out 

and created into a separate layer. In the city parcels shapefile, the parcels coded “residential” 

were selected out and spatially joined to the city census tracts layer. In the spatial join, the merge 

rule for the parcels layer was set to “sum” for the “Building_Area” (BA) field. 

 

Figure 5: First spatial join between parcels and tracts with BA summed 

The city census tracts with the BA Summed field were then spatially joined back down to the 

parcels layer.  

 

Figure 6: Second spatial join between new tracts and parcels with “BA_Sum” 

 A new field called “Building_Area_Proportion”(BA_Prop) was created and the calculate field 

tool was used to divide each individual parcel’s “Building_Area” by the tract’s “BA_Sum.” 

BA_Prop = BA / BA_Sum (1) 

 A new field, “Parcel_Population”(Parcel_Pop) was also created and calculated by multiplying 

the BA_Prop value with the tract’s population (Tract_Pop) field to yield the estimated population 

per parcel.  
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 Parcel_Pop = BA_Prop * Tract_Pop     (2) 

The lead pipe address point layer was then joined to the parcel layer containing the 

“Parcel_Population” field with another spatial join and the parcels containing lead pipes were 

selected into a new layer.  

 

Figure 7: Process for layer with only parcels with LSL 

A “sum” summarize field calculation with run for the Parcel_Pop field in the 

“Only_Parcels_with_LSL” layer to get the total estimated number of people at-risk for lead 

exposure. Parcels containing the parcel population and with a lead pipe associated address were 

spatially joined back up to the census tracts with ACS data layer with the merge rule for 

Parcel_Pop being “sum.” 

  

Figure 8: Final spatial join to yield total population at-risk for lead exposure in each census tract 

The last join yielded the final result of the dasymetric map, visualizing the estimated 

number of people at-risk for lead poisoning due to the presence of lead pipes per census tract. 
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 The field containing the estimated people at-risk was summed to yield the overall total of people 

at-risk for lead exposure for the whole city. 

 

Figure 9: Final workflow of the CEDS method 

 A Getis-Ord Gi* statistic, or hotspot analysis, was then run to highlight the statistically 

significant hot spots and cold spots of the at-risk census tracts. The tool examines each feature 

within a neighborhood of features to determine statistically significant hot and cold spots. A 

calculation of the local sum of the feature values is compared with the total sum of all the 
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 features in the study area. If the difference between the local and total sums is great enough to 

not be considered a random occurrence, a statistically significant z-score is calculated. ArcGIS 

Pro has an Optimized Hotspot Analysis geoprocessing tool which automatically calculates the 

best settings, such as an appropriate distance band value, to produce the most accurate result. The 

positive significant z-scores represent hot spot clusters amongst the features, and the negative 

significant z-scores represent cold spots. For the purposes of this study, hot spots would 

represent areas of high numbers of people at-risk for lead exposure, while cold spots would 

represent areas of low numbers of people at-risk.  

3.3.2 Bivariate Correlation Analysis 

To establish the characteristics of the census tracts with the highest number of people at-

risk for lead exposure, a bivariate regression analysis was run for seven social indicator 

explanatory variables obtained from the Census Bureau’s ACS data.  

 An exploratory ordinary least squares analysis was conducted to assess multicollinearity 

amongst the explanatory variables, as well as to see if the data were spatially autocorrelated. 

Because OLS assumes normal distribution, the data of the dependent and all seven independent 

variables were checked for a normal distribution curve. The at-risk population dependent 

variable, median household income, poverty percentage, percentage of white residents, and 

percentage of owner residents’ data were found to be not normally distributed. The square-root 

transformation was applied to all five of the not normally distributed datasets because it more 

accurately corrected for the skew in the data than a logarithmic transformation. While OLS is 

used to model explanatory variable relationships with a dependent variable, the OLS tool in 

ArcGIS Pro’s spatial statistics toolbox also includes VIF calculations for each individual 

explanatory variable. Redundancy amongst the explanatory variables can lead to difficult to 
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interpret results as well as the risk of overfitting the model. The OLS model calculates variance 

inflation factor (VIF) values for each of the explanatory variables to measure any redundancy 

(ESRI 2021). If the VIF value is too high, it would suggest said variable has multicollinearity 

with another variable. The suggested cutoff for this value is anywhere from 5-10 (Craney and 

Surles 2002). The OLS analysis revealed minimal multicollinearity amongst the explanatory 

variables as all had VIF values within the acceptable less than 10 range.  

 A Global Moran’s I test was run on the residuals of the OLS model to check if the 

variables were spatially autocorrelated. K nearest neighbors was selected as the 

conceptualization of spatial relationships parameter with 25 being set as the number of 

neighbors. The number of neighbors was derived by running the average nearest neighbor tool in 

ArcGIS Pro on the studied census tracts. The results of the Moran’s I showed the residuals were 

clustered and therefore the variables were spatially autocorrelated.  

After the exploratory OLS analysis, a bivariate correlation matrix using Pearson’s r was 

constructed for the dependent and seven independent variables in Excel. Two matrices were 

constructed, one with the explanatory variables inputted as proportions per census tract, and 

another with the actual numbers for each explanatory variable. The only explanatory variable not 

calculated as a proportion was median household income. While the at-risk population data were 

obtained through dasymetric mapping, there is no way of knowing the same distribution 

information with the explanatory variable data. Therefore, the proportions are used to 

characterize the nature of each census tract and how these characterizations relate to the number 

of people at-risk. Equation 4 is the Pearson’s r formula where r is the correlation coefficient, @% 

represents the values of the x-variable, @̅ is the mean of the x-variable values, B% is the y-variable 

values, and BC is the mean of the y-variable values. 
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 D = 	 ∑((!)(̅)(,!),-)
.∑((!)(̅)"∑(,!),-)"

  (4) 

The correlation matrix computes the Pearson’s r coefficient for each variable, dependent and 

independent, against each other thus calculating the type of linear relationship between each 

variable (Lane et al. 2013).  
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 Chapter 4 Results 

The threat of lead poisoning due to exposure from lead service lines is an issue that thousands of 

Milwaukeeans face daily. Dasymetric mapping methods help to more accurately display 

population distribution over a given aerial unit by disaggregating the population data and 

transferring it into a finer unit of analysis. The methodology explored in this study is the 

cadastral-based expert dasymetric system which uses breaks down census population estimates 

into tax lot data. The results of the dasymetric map highlighting which census tracts have the 

greatest number of people at-risk for lead poisoning are shown in this chapter. 

Cases of environmental injustices have been seen time and time again in the historically 

segregated city of Milwaukee. As shown in Chapter 2, black and brown communities in 

Milwaukee exhibit higher rates of poverty, lack of access to healthcare, and are more likely to be 

exposed to environmental toxins. To determine if the topic of lead exposure is indeed another 

environmental justice issue, bivariate correlation analyses were conducted on seven 

socioeconomic variables to examine their relationship with the number of at-risk people for lead 

exposure in each census tract. The results of the analyses are explained in this chapter. 

4.1. Dasymetric Mapping Results  

The results of the dasymetric map of number of people at risk for lead poisoning per 

census tract are based on the estimated number of residents living in a building that contains a 

lead service line. The rationale behind a dasymetric approach being often the generalized results 

of census tract data can mask an underlying environmental injustice. Figure 10 shows the 

estimates of people at-risk for lead exposure per census tract, while Figure 11 is a visualization 

of the at-risk population percentages across census tracts. A graduated color scheme was used 

with natural breaks to symbolize both maps. The results are nearly identical between the two 
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maps. The final total for the estimated at-risk population for the entire city was 296,327.13 

residents. The estimated total population of the city is 594,772 people. According to these 

findings, 49.8% of Milwaukee’s residents are getting their water from LSL and therefore are at 

higher risk for lead poisoning.  

 

Figure 10: Dasymetric map of the estimated people at-risk for lead exposure by census tract. 
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Figure 11: Dasymetric map of the percentage of at-risk people per census tract. 

Just by looking at the two maps, it is clear that there are certain areas in the city with 

higher numbers of people at-risk for lead exposure. However, a statistical significance test of 

these hot and cold spots is useful to support the initial observation. The result of the optimized 

hotspot analysis run on the at-risk population estimate per census tract map can be seen in Figure 

12. The statistically significant cold spots symbolized in shades blue, hot spots in shades of red, 

and not significant in white.  
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  Most of the cold spots can be found where there are no lead service lines present. The 

cold spots seen in the middle of the city are in the Lower East Side, Haymarket, Yankee Hill, and 

Juneau Town neighborhoods (Figure 12). When compared with the dasymetric at-risk population 

map, these neighborhoods also have a lower number of people exposed to LSL. The hotspots in 

the city can be seen on the northern and southern sides of the city center. The hotspots can also 

be seen to have higher numbers of people exposed to LSL when compared with the dasymetric 

maps. Figure 12 also labels the neighborhoods that intersect with the hot and cold spot regions of 

the city.  

 

Figure 12: Neighborhoods in the city that intersect with the hot and cold spots 
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 4.2. Bivariate Correlation Analysis Results 

In order to characterize the census tracts with high numbers of people at-risk, seven racial 

and socioeconomic variables were assessed to determine their relationship with the dependent 

variable. As explained in the methods, an OLS analysis was conducted as the initial exploratory 

step to quantify the nature of the relationship between the dependent and independent variables 

as well as assess any bias between the explanatory variables themselves. The results of the 

analysis revealed strong multicollinearity between some of the explanatory variables and an 

overall model bias as evidenced by a p < 0.01 Jarque-Bera statistic. When the residuals were run 

through a Moran’s I test, the p-value was found to be statistically significant, and the z-value was 

positive indicating the residuals are not dispersed at random but rather are found to be spatially 

clustered. Therefore, the residuals from the OLS were found to be spatially autocorrelated 

rendering the model a bias one. 

 Before the bivariate correlations were calculated, descriptive statistics of the minimum, 

maximum, mean, and standard deviation for each of the variables were determined and can be 

viewed in Table 3. 

 

Table 3: Descriptive statistics for all variables 

Variable Minimum Maximum Mean Standard Deviation 
At-Risk Pop 0.00 5174.17 1417.83 1251.22 
Non-White 6.76 100.00 64.83 27.06 

HS Education 0.59 47.67 28.61 10.45 
Owns 0.00 96.47 40.19 19.47 
Rents 3.53 100.00 59.81 19.47 

Poverty Status 2.20 59.92 26.40 14.03 
White 0.00 93.24 35.17 27.06 

Median Income 7917.00 113375.00 42320.37 17714.77 
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From there, the explanatory variables were thematically mapped against the dependent variable 

to provide an initial visualization of geographic patterns between each individual independent 

and the dependent variable. In these bivariate maps, the darker red regions show where the 

dependent and independent variable values were both high, and the lighter areas where both 

values were low. An additional element of transparency was added in the symbology where 

census tracts with higher populations were opaquer and those with lower populations more 

transparent (Figure 13). Each of the variables were symbolized in tertiles with cutoff values one 

standard deviation more and less from the mean of the dataset.   

 

 

 

   

 



 

 

 

47 
4
7
 

 

Figure 13:  Bivariate maps displaying each independent variable with the dependent variable 
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Figure 14: Legend showing the standard deviation cut-off values for each variable 

 The results of the bivariate correlation matrices can be seen in Tables 4 and 5. The first 

matrix (Table 4) was calculated using actual population estimates while the second matrix (Table 

5) was calculated using the proportions of the population estimates over the total population in 

census tract for the explanatory variables. The values with a color background are the Pearson’s r 

coefficients, while the values with a white background are the corresponding p-values. Values 

where p ≤ 0.05 are denoted with a single asterisk and those where p ≤	0.001 are denoted with a 

double asterisk. The two correlation matrices are nearly identical with which variables have 

positive and negative relationships with the at-risk population according to their Pearson’s r 

coefficient value. When comparing the at-risk population dependent variable with the seven 

explanatory variables, the only variable that differed between the two matrices was the white 

population data. When determining the relationship between the number of at-risk people with 

the number of white people, there is a weak positive correlation.  
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 Table 4: Correlation matrix between explanatory and dependent variables 

 
 

  HS MedianIncome Poverty White Non-White Owns Rents At-Risk_Pop 
HS 1.0000 0.151 0.000** 0.001** 0.0000** 0.0000** 0.0002** 0.005* 
MedianIncome -0.0997 1.0000 0.0000** 0.0000** 0.0000** 0.0000** 0.108 0.138 
Poverty 0.5428 -0.5685 1.0000 0.010 0.000** 0.051* 0.000** 0.001** 
White 0.2376 0.6298 -0.1774 1.0000 0.150 0.000** 0.002 0.3562 
Non-White 0.8181 -0.2995 0.7321 -0.0999 1.0000 0.003* 0.000** 0.000** 
Owns 0.4996 0.5954 -0.1352 0.6452 0.2066 1.0000 0.423 0.611 
Rents 0.2532 -0.1116 0.4512 0.2121 0.3399 0.0557 1.0000 0.393 
At-Risk_Pop 0.1932 -0.1030 0.2370 0.0641 0.3061 -0.0353 0.0594 1.0000 

 
 
 

Table 5: Correlation matrix between explanatory variable percentages and the dependent variable 
 
 

Column1 HS MedianIncome Poverty White Non-White Owner Rent At-Risk_Pop 

HS 1.0000 0.000** 0.000** 0.000** 0.000** 0.793 0.793 0.043 

MedianIncome -0.4745 1.0000 0.000** 0.000** 0.000** 0.000** 0.000** 0.138 

Poverty 0.3942 -0.8331 1.0000 0.000** 0.000** 0.000** 0.000** 0.122 

White -0.5829 0.7250 -0.6494 1.0000 NA 0.000** 0.000** 0.342 

Non-White 0.5829 -0.7250 0.6494 -1.0000 1.0000 0.000** 0.000** 0.342 

Owner -0.0182 0.6839 -0.6603 0.3458 -0.3458 1.0000 NA 0.431 

Rent 0.0182 -0.6839 0.6603 -0.3458 0.3458 -1.0000 1.0000 0.431 

At-Risk_Pop 0.1403 -0.1030 0.1074 -0.0661 0.0661 -0.0548 0.0548 1.0000 
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Meanwhile, the relationship with the variable when it is represented as a percentage of the 

population, it is shown to have a weak negative correlation with the dependent variable.  

This could be because there are high numbers of white residents in census tracts across the city, 

but proportionally, there are certain census tracts where white people are the overwhelming 

minority. Using percentages to represent the explanatory demographic data can standardize the 

difference in estimates across the categories. None of the p-values for the coefficients calculated 

for the explanatory variable percentages and the dependent variable returned a significant value. 

However, in the real number correlation results, high school education, poverty, and the non-

white population variables were all shown to have statistically significant relationships with the 

dependent variable.  

 When comparing the explanatory variables against each other, there were a few more 

differences between the two matrices in respect to positive and negative linear relationships. 

Further, the strength of the linear relationships between certain variables shifted between the real 

numbers and percentages. One notable example is the relationship between those with a high 

school education or less and the number of people who own their place of residence. In the real 

numbers, the two variables have a positive linear relationship with a Pearson’s r coefficient of 

0.4996. However, when the numbers are converted to percentages, the relationship between the 

two variables have a slightly negative correlation (Pearson’s r = -0.0182). The shift not only in 

the direction of the relationship from positive to negative, but also in the strength of correlation 

is a testament to the difference calculating Pearson’s r with real numbers versus percentages.  

 The results of the dasymetric mapping and analysis revealed patterns similar to other 

environmental justice research with toxin exposure and social indicators. In depth explanations 

and implication of the results will be discussed in Chapter 5 of this paper.   
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Chapter 5 Conclusion 

The two main questions that this project sought to answer were one, how many people run the 

risk of being exposed to lead due to the presence of LSL at their place of residence, and two, 

what is the relationship between SES indicator variables and the number of people at-risk per 

census tract. In response to the first question, the results of the dasymetric map of lead exposure 

risk throughout the city based on presence of LSL reveal drastic differences in number of people 

at-risk per census tract. There are significant hot and cold spots of exposure by census tract. The 

results of the regression analyses helped shed light on the answers to the second question. Non-

white individuals, those with a high school education, and those who have experienced poverty 

have a higher chance of being exposed to lead contaminated water.  

In the following chapter, the implications of the dasymetric map are discussed as well as 

the results from the bivariate correlation analyses. Understanding how one’s race and 

socioeconomic status in the community can raise the likelihood of lead exposure is a crucial step 

in the fight for environmental equity in Milwaukee. The results of this project represent just the 

beginning of understanding lead exposure due to LSL as an EJ issue in Milwaukee. The 

limitations, and there were many, are reflected on and recommendations for future research are 

presented at the end of the chapter.     

5.1. Dasymetric Map of At-Risk Populations 

The results of the dasymetric map paint a more precise picture of how many people are at 

risk for lead exposure due to the presence of lead pipes on their property. Upon visual inspection, 

there are certain census tracts that have a much higher number of people exposed to LSL, and 

these high-risk census tracts are geographically close together. Upon conducting a Hot Spot 

analysis, the hot spots and cold spots for LSL exposure are confirmed. As discussed in chapter 4, 
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the estimated at-risk population for the entire city is 296,327.13 residents out of a total 

population of 594,772. Based on these population estimates, 49.8% of Milwaukee’s residents are 

at-risk for lead exposure due to living in a residence linked to a lead service line. Nearly 50% of 

the city’s population being at-risk for lead exposure seems like a large proportion considering 

MWW’s claims that 40% of active service lines are made of lead. The final total of at-risk 

residents of Milwaukee being greater than the percentage of LSL in the city is confirmation that 

population density greatly varies in certain census tracts over others.  

The method of disaggregating the population data and redistributing the population 

estimates (as a function of proportion of building area within each parcel) yielded a more precise 

estimate of at-risk people due to the fine spatial resolution of each parcel within a census tract. 

The methods used in this study were a slight variation on the CEDS method outlined by Maantay 

et al. (2007) due to differences in data availability. The residential unit and adjusted residential 

area values put forth in the original methodology were swapped for building area data found in 

the Milwaukee parcels schema. The building area per parcel served as the proxy unit for 

population dispersion and the ratio of each parcel’s building area to the census tract’s total 

building area yielded the estimated number of people living in each individual parcel. Because 

the tract data could be disaggregated down to such a fine resolution, the nuances of population 

variance within each census tract were accounted for when totaling the number of individuals 

living in buildings with LSLs. Despite the slight variance in the methodology, the CEDS 

technique of dasymetric mapping is a highly effective way to redistribute population to reflect 

real-world situations more accurately in Milwaukee (Maantay et al. 2007).  

When examining the hot spot map, it is evident that the hot spots of the most people at-

risk for lead poisoning can be found in the northern and southern parts of the city center. 
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Focusing in on the northern neighborhoods such as Harambee, Park West, Sherman Park, and 

Franklin Heights, it can be seen that the these historically black neighborhoods are at the center 

of the hot spot area. Franklin Heights for example, saw a major rise in its African American 

population in the 1980s after the construction of the freeway led to more affluent, white residents 

to move away from the area. Today, it is one of the poorer neighborhoods in the city with a 

primarily black population (Gurda 1999; Nelsen 2016). The southern hot spots are found 

primarily in the Hispanic neighborhoods of the city. Specifically, Walker’s Point, Clark Square, 

Silver City, Burnham Park, Muskego Way, Historic Mitchell Street, Lincoln Village, Polonia, 

Southgate, and Layton Park all have majority Latinx populations (Johnson 2020). Many of these 

neighborhoods also have lower than average median household income when compared to 

Milwaukee as a whole and have less than a high school education (City-Data 2019). There is an 

isolated cold spot found in the middle of the city that intersects the Lower East Side, Haymarket, 

Yankee Hill, and Juneau Town neighborhoods. This is a far more affluent part of Milwaukee, 

with a majority white population, people with college degree educations, and median household 

incomes more than double that of the city overall (City-Data 2019). The demographic statistics 

of the neighborhoods that intersect with the hot and cold spots in Milwaukee closely reflect those 

obtained in this study and will be explored further in section 5.2 of this chapter. 

5.1.1. Considerations and Limitations 

 The dasymetric methods used in this study were a solid starting point for assessing at-risk 

populations within the city. However, there were a few considerations and limitations that should 

be acknowledged. A major limitation was access to cadastral metadata. While the City of 

Milwaukee makes their data easily accessible for anyone to download, deciphering the coded 

schema often proved a challenge. Metadata documents were found in separate locations than the 
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data portal and were unclear in referencing field codes between the documentation and the actual 

attribute table. An example is the metadata document for zoning codes for all the parcel data in 

the city. Beyond the general “residential” designation, according to the zoning ordinances 

volume two subchapter five, the residential zones within the city were broken down into 22 

subcategories. These subcategories would distinguish between single family, two family, multi-

family, etc. places of residence, but these coded categories would not always be present in the 

parcel attribute data (Legislative Reference Bureau 2020). Given the limited timeframe of this 

study, it was not possible to relate the zoning and parcel tables to then cross-reference the 

specific zoning code to estimate population distribution. Further, just because a residence is 

designated as a single-family home does not mean a single family is occupying the property. One 

of the indicators of a lower socioeconomic status is overcrowding in one’s place of residence 

(Galobardes 2006).  

5.2. Racial and Socioeconomic Correlations 

One must be vigilant when conducting research on potential correlations between 

dependent and explanatory variables. As the saying goes, correlation does not necessarily mean 

causation. The purpose of performing the bivariate correlation analyses in this study was to 

illuminate some of the social indicators that could explain the number of at-risk people exposed 

to lead in each census tract. To perform this analysis, a set of explanatory variables were selected 

from existing literature studying socioeconomic disparities within Milwaukee. Based on the 

background research, the explanatory variables selected for this study were median household 

income, poverty status, educational attainment, tenure status, and race. According to the resulting 

correlation matrices, those with a high school education, experiencing poverty, and non-white 

residents all have statistically significant positive linear relationship with the number of at-risk 
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people (Tables 4 and 5). Meanwhile, the number of white residents and wealthier census tracts 

where people are property owners are shown to have negative linear relationships (Tables 4 and 

5). The visualization of these relationships can be seen in the bivariate map series where each 

explanatory variable was mapped with the dependent variable. The overlapping variables with 

positive linear correlations follow a similar pattern to that of the hotspot analysis map. The 

results are further confirmed when examining the demographic characteristics of the 

neighborhoods that intersect the hot and cold spots described in section 5.1. Therefore, it can be 

concluded that the census tracts with higher numbers and percentages of non-white individuals, 

lower education, and low socioeconomic status are more likely to have high numbers of people 

at-risk for lead exposure due to an LSL at their place of residence.  

It tracks that the number of non-white people, high school education level, and poverty 

status would be the variables with the most impact on the number of at-risk individuals per 

census tract. The three variables are shown to have strong positive linear relationships amongst 

each other. The overlap between race and socioeconomic status is a well recorded phenomenon 

in the United States (Raddatz and Mennis 2013). In the case of Black Americans, it has been 

found that indicators such as income level, education, and occupation are not as strong at 

predicting a Black American’s socioeconomic status as it would a White American’s. This is 

most likely due to a general lack of intergenerational wealth and not seeing the same financial 

returns for higher education than White Americans (Wolff et al. 2010). In other words, the 

strongest predictor of a Black American’s socioeconomic status would be the fact that they are 

Black and navigating a world that is systemically not made for their benefit. In Milwaukee’s 

case, historically racist policies such as redlining shaped the urban geographic landscape that is 

seen today where neighborhoods are for the most part still segregated by race. Discriminatory 
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housing markets drove people of color, those of whom were primarily black, to settle in regions 

of the city where the buildings were older and therefore more likely to have LSL (Trotter 1985). 

The ripple effect of discriminatory legislation from years ago can be seen in health disparities, 

lack of social mobility, and increased exposure to environmental toxins within Milwaukee today. 

The results of this study confirm this pattern of inequity amongst poorer, less education 

communities of color within the city.  

5.2.1.  Considerations and Limitations 

 A limitation in this study was the issue of the margin of error in the ACS census tract 

data. It was found that the more people surveyed in the census tract, the lower the margin of 

error, while the inverse was true when fewer people were surveyed. While most of the tracts had 

MOE within an acceptable range, there were a few outliers with low population counts that 

caused the MOE to become very large. The coefficient of variation was calculated for each ACS 

demographic category to disclose which had higher levels of error (Table 2). The variable with 

the highest percentage of low reliability CV scores was the estimates for the number of white 

people per census tract. In future iterations, steps could be taken to further reduce the MOE by 

aggregating contiguous census tracts in areas with hot and cold spots.  

5.3 Future Study Recommendations 

The results of the current study were sufficient as an initial step when examining the 

environmental justice issue of populations within Milwaukee exposed to lead pipes. The 

questions that this study uncovered could lead to a plethora of future research in this field. For 

example, it would be interesting to construct a socioeconomic index using principal component 

analysis (PCA) to select the indicator variables from a wider range of domains. The advantage of 

this method is it keeps the decision making to a minimum and uses statistics to select out the best 
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fit variables for an SES index. Once an index is created, values can be assigned to each census 

tract based on how their SES index scores. The values can then be used to compare SES with the 

at-risk for lead exposure population data using a generalized additive model. Such methodology 

is outlined in Padilla et al. and Lalloué et al., who both researched environmental justice issues in 

relation to air pollutants in France (Lalloué et al. 2013; Padilla et al. 2014). It would also be 

interesting to compare lead exposure between lead paint and LSL within Milwaukee. According 

to a grassroots coalition called Lead Free Milwaukee, city officials have been pressing the 

narrative that lead paint is the primary source for lead exposure as opposed to lead service lines 

leaching the metal into residents’ drinking water. The coalition asserts that the city is 

downplaying the severity of the issue of lead in the water and is trying to redirect attentions and 

efforts to mitigating lead paint (Washington and Welcenbach 2019). Finally, given the recent 

revisions to the Lead and Copper Rule by the EPA, a study on the efficacy of partial versus full 

lead service line replacements on reducing lead concentrations in the water supply could be 

useful to residents of the city. When the city replaces an LSL, usually a partial replacement 

approach is carried out where the city will replace only the public portion of the LSL, and leave 

the private portion as is. Research on the effects of partial service line replacements has shown 

that in only replacing part of the LSL, more lead is found in the water supply due to the 

disturbance of the service line (Lewis et al. 2017).  

The fight for environmental equity is a long, uphill battle. In characterizing the 

neighborhoods that experience the highest levels of exposure, decision makers in Milwaukee will 

know where to focus their mitigation efforts and activist groups can know where to go to educate 

people about the dangers of lead exposure. GIS is a powerful tool that can contribute to the 

growing research on EJ through techniques such as dasymetric mapping and correlation analysis. 



 

 58 

By conducting these studies, geospatial scholars can aid in giving a voice to the voiceless. The 

fruits of their labor can empower those who want to see justice served and insure healthy 

communities worldwide.  
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