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Abstract 

Mapping surface mines and mine activity is integral to both environmental preservation and 

tracking industrial production. West Virginia has a long history of coal and other types of surface 

mining, but detailed spatial information representing the extent of operations is limited. In 

developing nations, such information often does not exist in any form. While field collections of 

spatial feature data relating to mine activity are costly and resource-intensive, remotely sensed 

imagery presents a readily available tool to identify and map surface mines and their footprints 

on the Earth’s surface.  

Geographically referenced raster image datasets from sensors on board satellites in space 

as well as airborne vehicles can represent wavelengths of light well beyond the range of the 

visible spectrum. These types of multispectral datasets present grids of cells on the Earth’s 

surface that each represent the luminance properties of the surface materials at clearly defined 

wavelengths of light. This study analyzed recently collected multispectral data from West 

Virginia by examining the reflectance values at each point on the ground and attempted to 

classify materials known to exist in high concentrations in large mounds or pilings that are 

typically adjacent to large-scale surface mines. By inputting the known spectral properties of 

these Earth minerals into the classification process, this study was able to automatically classify 

and map the signature features of surface mines without user input or analysis.  The automated 

classification methodology developed and tested in this study accurately identified surface mine 

locations throughout the study area in West Virginia at a rate of over 98%, and the output feature 

dataset can be implemented immediately in a comprehensive impact study of mining operations 

on the surrounding environment and populations.   

  



1 

 

Chapter 1  Introduction  

Surface mines pose a grave risk to human populations.  Surface mines introduce harmful mineral 

elements and other toxins into local drainage networks as well as the air, and contribute directly 

to higher rates of a variety of illnesses in local populations.  Alarmingly, areas designated as 

situated in surface mining zones in Appalachia have a 63% greater rate of birth defects in 

newborns (Ahern 2011).  By 2005, surface mining represented 5% of the total surface area of 

southern West Virginia (Bernhardt 2012). As the industrial practice of surface mining – and 

especially coal mining – continues to progress, industrial processes pose a significant risk to 

natural resources and the local environment. Whether the growth rate of mining operations 

increases or decreases in each year, newer mines opening, as well as continuing excavation on 

existing mines, mean that there is a greater concentration of mineral elements uprooted from 

underneath the Earth’s surface and deposited primarily in nearby stream valleys (Bernhardt 

2012). 

 This thesis classifies and maps these pilings of unearthed soils and minerals by 

incorporating elements of established methodologies, and utilizing geographically referenced 

raster data collected from aerial scanners mounted on aircraft. While such camera systems take 

many forms, and produce a wide array of different raster datasets, this study utilizes 

orthorectified, hyperspectral raster data that is both accurate (in terms of geographic reference) 

and representative of a wide and clearly defined range of light. The classifications conducted in 

this study interpret reflected light from the ground at specifically defined geographic points, 

thereby differentiating the tell-tale mineral pilings surrounding surface mines. From this, it is 

possible to represent these mines in a GIS for further analysis. Such an approach serves to 



2 

 

address a glaring gap in existing spatial data relating to surface mine activities in the United 

States, and to address a complete lack of such data in many developing countries. 

1.1 Mapping Surface Mining 

“Valley fills” are large pilings of unearthed soil that are taken from surface mines (often 

situated at the top of a hill due to a higher concentration of valuable minerals) and deposited into 

nearby basins. Such pilings occupy a significant amount of space. In 2007, they covered an 

estimated 25,178 acres in West Virginia, which exceeds 100 square kilometers (Burns 2007). 

The fact that these remnants of surface mining activity are deposited in valleys surrounding the 

hills being mined represents a major threat to the environment, as the mineral-rich contents of 

these pilings often alter the pH of streams and river networks that traverse these valleys (see 

Figure 1). Acidification of the local stream networks and the entire watershed is just one major 

environmental hazard posed by these surface mines as a direct result of sulfides and numerous 

other minerals in the unearthed soil pilings oxidizing and draining into rivers (Blahwar 2012; 

Khalil 2014). Surface mines also continue to pose a significant threat to the environment after 

they become abandoned or merely inactive, because these mineral pilings remain exposed. 
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Figure 1 Surface coal mining operation in southern West Virginia.  Tell-tale pilings of unearthed 

mineral elements surround the site, especially in depressed valleys around hilltop mines (Image 

Source:  The Columbus Dispatch, July 20, 2014) 

 

Resources available for mapping and monitoring these mines as well their respective 

footprints on the surface are limited. While state and federal agencies such as the Office of 

Surface Mining (OSM) maintain spatial databases relating to active and inactive mine locations, 

they do not track or monitor the size or footprint of surface mines. Political pressure from the 

industry, social pressure from a population that relies on the industry, as well as financial 

constraints restrict the ability of environmental protection agencies to conduct field studies in 

which laboratory samples and photographs of mine sites are collected regularly (Burns 2007).   

Remotely sensed imagery presents an invaluable tool for assessing and monitoring these 

types of surface mining operations. Orthorectified imagery from both satellite-based and aerial 

sensor platforms has been used to analyze the Earth’s surface to identify mines and establish the 

presence of either valuable or hazardous minerals (Adep 2016; Charou 2010; Clark 1999; Dalton 

2004 & 2007; Khalili 2015; Kruse 1993; Rockwell 2012; Zhang 2012). While image-based 

spatial datasets are typically coarse in resolution due to the large distances between the sensors 
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and the ground, surface mines are unique in that their signatures (that is, the large pilings of 

minerals and soils around their sites) are relatively large, and can therefore be detected even in 

datasets where pixels (the cells that make up an image representation) might measure 30 meters 

of ground sampled distance when measured on the Earth’s surface.   

1.2 Classification of Remotely Sensed Imagery 

This study tested a methodology that incorporates existing research into classifications of 

surface materials identified in geographically referenced and orthorectified raster image datasets. 

The classification of raster imagery in this study was used to detect the presence of large mineral 

pilings near surface mines automatically. Orthorectified image sources have been corrected to 

account for the changing shape of the Earth’s surface, which is typically accomplished by 

stretching and compressing parts of the image to link known control points in the captured image 

with a corresponding point in an established reference image. By linking these geographically 

defined spatial points in collected images and creating a final orthorectified layer, an image 

dataset can be imported into a Geographic Information System (GIS) and used to precisely 

measure elements on the Earth’s surface at the time that the image was collected.  

Classification of images has evolved significantly over the years that remotely sensed 

spatial data has been available. While traditional classification methods involved manually 

counting features in an aerial photograph captured from a balloon or airplane, computer 

algorithms that have the capacity to identify and differentiate materials and elements (not just 

features) can facilitate and automate the entire process. For the study of surface mines, in which 

ground reconnaissance is extremely difficult, if not impossible, due to limited resources, an 

effective and accurate classification methodology fills a glaring need in monitoring activities that 

pose a grave environmental risk.  
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1.3 Study Area 

The study area represents a high concentration of surface mining activity, both historical 

and current, and is ideally suited for this study based both on the availability of hyperspectral 

imagery data as well as the glaring need to map mines and measure the potential impact on 

surrounding populations. The study area, shown in Figure 2, is situated in the southeastern region 

of West Virginia in the Appalachian Mountains, and measures 2633.5 square kilometers. The 

population residing within the study area in 2010 is 47,705, according to the US Census Bureau.  

There are 340 total surface mines in the study area, and of these 52 were active between 2000 

and 2011, when the hyperspectral imagery was collected.   

This study utilized raster data collected from the Airborne Visible/Infrared Radiometer 

and Spectrometer (AVIRIS), which was designed and is maintained by NASA’s Jet Propulsion 

Laboratory (JPL). The AVIRIS sensor is mounted on an airplane and flown in swaths over 

planned collection areas; the data is therefore expensive to collect. Because of the density of the 

data, it is labor-intensive to process into a final deliverable raster layer that can be imported into 

a GIS. Such data is therefore limited in terms of its availability and coverage for specific 

geographic areas. In West Virginia, only four AVIRIS flights have been flown. Of these, the 

most recent flight and the one from which the largest area coinciding with surface mine locations 

was flown in July 2009. The study area was selected to match the area covered by this recent 

AVIRIS dataset. It extends from the northeast of West Virginia to the south, and as reported by 

the OSM in 2010 includes 340 active and inactive surface mines, of which 52 were in active 

operation between the year 2000 and 2011. 
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Figure 2 The study area in West Virginia.  Entire area is represented in AVIRIS hyperspectral 

image dataset collected July 14, 2009 

 

 What follows is a summary of background research relating to remotely sensed imagery, 

raster data analysis, classification, and identifying different mineral elements from such analyses. 

A fundamental analysis of the nature of spatially referenced raster datasets is essential to 

understanding the possibilities for geostatistical algorithms capable of classifying surface 

materials. A detailed description of numerous studies into classification methodologies applied to 

AVIRIS hyperspectral datasets representing areas of heavy mining operations follows. The 
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methodologies utilized in this study were shaped by the efficacy of earlier approaches. The 

methodology employed by this study is described in detail, and the results of the study as well as 

required further analysis follow.   
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Chapter 2 Related Work 

Academic and professional studies that explore classification methodologies are often made 

possible by a historical body of work relating to photogrammetry principles concerning 

orthorectification of remotely sensed ground observation and photoradiometric principles 

concerning the capture of reflected light off the ground by aerial camera systems (Clark 1990; 

Clark 1991; Dutta 2015; Heinzel 2006; Rockwell 2010). These two distinct but interrelated 

principles need to be understood to approach any methodology related to classification of digital 

raster images. As such, they are discussed in the opening section of this chapter, before a detailed 

description of how these principles apply to AVIRIS datasets specifically can follow. Finally, 

this chapter explorers how classification methods incorporating hyperspectral raster data have 

been utilized to effectively map mining operations in different parts of the world. 

2.1 Background 

While spatial data representing surface mines in West Virginia exist, detailed maps 

representing the spatial distribution of unearthed minerals do not. Further, maps representing 

mines (as well as unearthed minerals) in many countries do not exist; this represents a challenge 

not just for conservation efforts but also for government oversight and corporate management of 

mining operations. Remote sensing by airborne sensors mounted on fixed-wing aircraft provide 

previously unattainable capabilities towards mapping the presence and distribution of surface 

mines. NASA’s AVIRIS sensor provides the ability to detect specific spectral signatures from 

known minerals, soils, vegetation, and other surface materials at a well-defined spectral range. 

The datasets returned from AVIRIS collections provide the capability to classify the imagery, 

and create a rasterized map of a given area representing every surface material as a different 
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value. This eliminates the requirement to deploy researchers to the field to collect samples and 

study them in a laboratory. 

Much previous work has been focused on classifying images from the AVIRIS sensor. 

Previous studies have worked to develop classification algorithms that can identify what type of 

material is present at each precise location in a given raster grid (Clark 1999; Dalton 2004; Kruse 

1993; Mars 2003; Rockwell 2005). In short, each image is divided into rows and columns of 

pixels (or picture elements), with each square pixel bounded by precise coordinates on the 

Earth’s surface (see Figure 3). Each pixel, or cell, within the image contains precise data of the 

light captured by the sensor that was reflected from that specific spot on the ground. For a 

standard camera that captures light in the visible spectrum in the red, green, and blue bands, each 

pixel is assigned three values: one for the red band, one for blue, and one for green. These 

assigned light values typically fall within the 0 – 255 integer values for 8-bit data, where 0 

represents black and 255 represents pure white.   

 

 
 

Figure 3 Landsat 5 (Thematic Mapper) image dated 3/13/2011, with larger scale insets (b) and 

(c) shown to represent pixel composition  
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The reason that 256 integer values are so commonly used to represent light reflects the 

design of the computer systems used to process and store the data, where a bit represents either a 

1 or a 0, and a byte is made up of eight bits (28 = 256 possible variations). It is more simple and 

more conducive to effective processing to represent each light value for each pixel as a single 

byte, and in extensive historical testing and usage, 256-value light ranges seem to represent 

adequate diversity for representing and analyzing real-world scenes (Canty 2014). These three 

band values, taken together, represent a defined color for the pixel represented in the overall 

picture (Fourest 2012). For black and white (or panchromatic) images, the light values are 

collected along a single defined channel or band, typically situated in the middle of the blue, 

green, and red wavelength range. They are then presented as a 0 to 255 value (representing black 

to white with shades of grey in between – see Figure 4). With panchromatic greyscale images, as 

with photo images captured for each of the three visible light wavelength ranges, the black to 

white light Digital Number (DN) Value from 0 to 255 represents luminance for light collected at 

each specific pixel location at the time of image capture, and at the wavelength range for the 

designated band of image capture.   

 
 

Figure 4 The selected pixel (highlighted in red) represents a greyscale color value with integer 

value from 0 to 255 for this Landsat TM band 6 image, which is precisely georeferenced to the 

World Geodetic System (WGS) 1984 Datum, projected to Universal Transverse Mercator 

(UTM) Zone 11N 
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AVIRIS data is collected with the same principles of light ranges and color depth, but 

they contain more detailed definitions. Instead of 8-bit RGB depth typical of both satellite 

imagery and aerial photography, AVIRIS data picture elements represent 16-bit color depth, 

which contains 65,535 different possible DN values (216-1) for each pixel at each wavelength 

(Clark 1990). The imagery spans a multispectral range that other more ubiquitous optical sensors 

cover; common sensor platforms such as the space-borne Landsat system collect similar 

wavelength ranges, from the blue band at a 400 nanometers (nm) lower bound to the higher-

wavelength thermal infrared bands above 2,400 nm. The reason that it is common for so many 

sensors to capture a similar and broad range of light wavelength channels is that these are the 

bands at which the vast majority of earth surface materials reflect and absorb light. The term 

multispectral applies to imagery data such as these that include light values from above 

wavelength bounds of visible light, and in some cases from below the lower bound of blue light. 

The term hyperspectral refers to image data stored in raster format that contains data 

across the full multispectral range, and that is divided into a larger number of light channels 

(Jenson 2007). While satellite imagery such as datasets collected by Landsat and the Advanced 

Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) can collect broad ranges of 

spectral data across multiple wavelength band layers that are precisely georeferenced, such 

image data types are limited in that each band layer contains a relatively large spectral range of 

light values. The red band (band 3) for Landsat TM data, for example, collects light from the 630 

nm to 690 nm wavelength range and represents it as a DN from 0 to 255. While the average and 

relative spectral response for this and other wavelength channels (represented as a georeferenced 

pixel square in the raster) falls along a relatively narrow range, the overall larger range of each 

band allows for light reflected at different wavelengths to be perceived as the same or similar 
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luminance value for that given pixel (Heinzel 2006). Further, there are broad gaps between bands 

in these satellite image sensors within which many common surface materials (such as soils, 

minerals, and vegetation) reflect and absorb light.  These gaps, as well as the materials that 

reflect light within those ranges, are demonstrated in Figure 5. A hyperspectral sensor with a 

significantly higher number of wavelength band layers that collect narrower ranges of light 

reflectance allow for the sources of reflected light –the surface material that is reflecting light 

back to the sensor – to be more effectively and accurately classified (Dalton 2004).  

 

 
 

Figure 5 Landsat TM light collection for each of seven separate bands represented in green, 

while light reflectance and absorption properties for common vegetation types represented to 

show the difficulty in distinguishing similar surface elements based on multispectral image 

sensors collected broad ranges of light per layer (Heinzel 2006) 

 

With both AVIRIS raster datasets as well as other types of aerial photography, images are 

orthorectified in a processing stage prior to delivery to users that typically engage in ecological 

and other scientific studies. The sensor collects ground images in a push-broom scan, in which a 
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swath about 20 km wide (depending on the altitude flown) is captured below the aircraft as it 

travels along a pre-planned line of flight. Aerial imagery captured by the AVIRIS sensor are not 

captured as a flat projection of the Earth’s surface, but rather reflect the elevation relief that 

makes up the ground itself. Also, the images are not georeferenced until after analysts process 

them through an orthorectification process (Dalton 2004). The output of these processes is a set 

of 224 raster layers each representing a narrow band of light, with each containing arrays of 

pixels corresponding to fixed locations on the ground. This means that for each pixel cell, there 

are 224 DN integer values each representing how the ground reflected light along the respective 

light wavelength of that channel. The math operations that have previously been studied are 

carried out for each cell in the image and for each material in a spectral library (a digital file 

describing in numeric terms how every known element and mineral reflects light), where the 

bands at which specific elements reflect or absorb light are represented as number values that are 

either multiplied or divided. The returned values for each geographically defined cell determine 

the likelihood of which material is present in that location. 

2.2 Hyperspectral Image Classification 

Image classification refers to a process that interprets georeferenced surface imagery to 

map surface composition. Original approaches – such as those developed for use with legacy 

Landsat data – performed mathematical operations such as ratios that divided the DN values for 

different light bands at the same pixel location, iterated through an entire raster dataset. Ferric 

minerals, for instance, absorb light at wavelengths about the center of the Landsat TM 7 band. 

They also reflect light around the center of Landsat TM band 5. This means that for a given pixel 

that represents iron-rich elements on the ground, the DN return value represented in the band 7 

layer at that point will be low, with light absorbed and not reflected, and the DN return value 
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represented in the band 5 layer will be high (Clark 1999; Dalton 2004). Displaying band 7 for a 

given geographic area in a typical greyscale – where lower DN returns are presented closer to 

black and higher DN returns are presented closer to white – will show areas rich in iron elements 

as white, but they will show other areas as white as well, due to the fact that numerous elements 

share similar spectral reflectance properties. By creating a new raster layer through 

geoprocessing that maintains the geometry of geographically referenced rows and columns, but 

that displays the return of the band 5 value divided by the band 7 value, elements that share 

reflectance but not absorption properties will be filtered out of the display, accomplishing a 

rudimentary classification.   

With the introduction of hyperspectral imagery, which allowed for a more robust and 

more stratified range of the light spectrum to be analyzed, algorithms and methodologies have 

been developed to more accurately estimate the surface composition of a given pixel. Soft or 

fuzzy classification methods interpret larger pixels (such as the 16 m wide AVIRIS data or the 30 

m wide Landsat multispectral pixels) and gauge the proportional presence of multiple materials 

that might be present in a single cell. Classification methods also take into account the DN 

values for neighboring cells to better differentiate surface materials (Yao-hua 2012). Spectral 

Area Mapping (SAM), Spectral Discriminatory Probability (SDP), Spectral Discriminatroy 

Entropy (SDE), and Spectral Information Divergence (SID) are all algorithms that have been 

developed in the 1980s and 1990s to manipulate light reflectance values with an inputted spectral 

library to classify images sensed across a broad spectrum of light, from the visible blue, green, 

and red to the infrared and other “hyperspectral” wavelength ranges. Of these, the SID algorithm 

presents the most effective and accurate method of classifying known mineral elements (Adep 

2016). These spectral libraries are digital collections of elements and their respective light 
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properties (absorption and reflectance), typically calculated by spectrometers in a controlled 

laboratory. As with the above example of ferric minerals, mathematical operations can be carried 

out using the DN values for each pixel, and focusing on bands in the light spectrum at which 

each given material in the spectral library presents unique absorption or reflectance properties.   

The USGS Tetracorder system is an algorithm developed to compare sets of light 

absorption features for given materials based on user-defined variables. Classification methods 

such as SAM and SID have become accurate as a result of development, but when a specific 

known mineral is being search for – and the user inputs the light properties of these materials 

into the algorithm – the Tetracorder algorithm can return a much more accurate classification 

(Dalton 2004). When an unsupervised classification is processed, an output raster layer assigns 

an integer value relating to a specific material that represents the algorithms best guess for what 

material is present at that point on the Earth’s surface, or for algorithms that present different 

layers for each material in a whole spectral library, what normalized proportion that material 

makes up in that cell. For the latter forms of classifications, if a spectral library digital file 

contains tables for the light properties of 20 materials, the output of the classification process 

will be 20 raster layers, and every pixel will be assigned a float value from 0 to 1. If the value is 

0.5, that means that for the material elements designated for that raster layer, the material makes 

up 50% of the area in the geographically defined square pixel cell. With Tetracorder or similar 

algorithms, as the user inputs a smaller number elements, the process iterates through the DN 

values in the different band raster layers fewer times, and as a result of the developments made to 

the algorithm, it computes the likelihood for the presence of the inputted materials (on a scale of 

0 to 1) with greater accuracy. 
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2.3 Classifying Minerals and Mine Operations with AVIRIS Data 

AVIRIS data has also been used to map, in fine detail, the chemical properties as well as 

even soil types for broad geographic areas, such as an entire river delta after a period of intense 

flooding. Studies suggest that proportional mixtures of sand, silt, and clay, as well as mineral 

compositions within the soil, can be detected with a high degree of accuracy, based on a 

validation of AVIRIS classification against ground samples tested in a laboratory (Dutta 2015). 

Soil types can be precisely identified with the use of highly accurate classification methods such 

as the Tetracorder algorithm, along with hyperspectral imagery such as AVIRIS that is captured 

at more specific spectral band wavelength channels than other sensor platforms such as the 

spaceborne Landsat or ASTER image sensors. AVIRIS data is also collected at a finer spatial 

resolution (as little as 4 m pixel ground sample distance, depending on altitude of flight), which 

provides more a more distinct classification and a better estimate of proportional surface 

composition for each material (Rockwell 2005). Soil type can be precisely determined by 

detecting the presence of elements such as sulfur, magnesium, iron, and copper, and matching 

their proportional composition at a given point with known combinations for sand, silt, clay, and 

loam combinations thereof (see Figure 6). Laboratory spectral tests of different soil types reveal 

precisely what proportions of each base element is present, and these can be related to 

classification proportions returned by Tetracorder. 
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Figure 6 Soil composition classification displayed by type, along with vegetation, in the 

BPNM Floodway along the Mississippi River (left) and density of soil organic matter 

classified (right) from AVIRIS flight data (Dutta 2015) 

 

Similar classification approaches using AVIRIS datasets with the Tetracorder and similar 

algorithms present an ideal approach to mapping the presence of minerals on the Earth’s surface 

in areas in which large-scale surface mining operations are present. Just as chemical composition 

can be detected in soils to determine soil type using user-defined spectral parameters for each 

classification element, the presence of different mineral molecules on the Earth’s surface, as 

shown in Figure 7. Minerals are made of molecular lattices that reflect and absorb light 

differently based on the specific atoms and molecules that make them up, and as a result the light 

reflected off of different minerals can be analyzed to accurately identify them. Spatially, images 

are divided into arrays of georeferenced cells, and spectrally, the cells making up an image show 

telltale reductions in band reflectance at wavelengths where a certain material absorbs light 

instead of reflecting it (Dalton 2007). 
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Figure 7 Surface mineral classification map for Goldfield mining district in Western Nevada 

(Rockwell 2012) 

 

Classification algorithms can go a step further than merely identifying, mapping and 

analyzing surface composition of mineral elements to assess the impact of mining operations on 

the environment. Classifications of surface materials from AVIRIS data are combined with 

digital elevation models (DEMs) to analyze catchment from mine waste runoff by detecting 

precise material composition as well as drainage flow. This is possible when a small number of 

waste minerals are identified in a defined geographic region and used for classification purposes 

(Mars 2002). By converting output raster layers for classified mine waste minerals into a 

polygon feature class or as a simplified (reclassified) raster with defined integer values only, and 
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then inputting these areas into a flow analysis process with a DEM, the sources of these mine 

waste regions can be identified.   

2.4 Impact of Legislation and Role of Spatial Data Analysis 

 The study area in West Virginia is unique in that it represents a region significantly 

impacted by two pieces of legislation: The Clean Water Act of 1972 and the Clean Air Act of 

1963. Both pieces of legislation sought to protect at-risk populations near areas of dense 

industrial activity such as in West Virginia (Butler 1963). While these laws recognize the risks of 

mines and other industrial sites introducing toxic elements into the air and water networks that 

filter towards nearby populations, in areas such as southern West Virginia they have become far 

less effective in recent years. The Clean Air Act, for instance, specifically limited burning of 

sulfur-rich coal. However, the coal mined in the Appalachians has a lower sulfur content than the 

coal mined elsewhere, and an unintended consequence of the Clean Air Act was that surface 

mining operations in West Virginia expanded significantly (Hendryx 2016). Hilltop mining 

efforts that in practice are more likely to dump mineral pilings in neighboring valley and stream 

networks became more prevalent.  

 The Clean Water Act that sought to protect vulnerable downstream populations from 

such waste has been weakened significantly in the decades since its enactment. The 2005 Energy 

Act specifically exempted a variety of oil, gas and coal mining operations from protections that 

were previously in place (Lambert 2016). During this period, hilltop mining permits in West 

Virginia were issued at a greater pace than in any previous decade, according to permit data 

sourced from the federal Office of Surface Mining. Because of the expansion of these operations, 

and with only limited spatial data available for analysis, accurate image classifications can 

immediately serve to analyze the impact of these operations on neighboring populations. 
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Chapter 3 Methods 

3.1 Data Preparation 

The methodology for this study can broadly be categorized as consisting of three phases: Data 

Preparation, Classification, and Spatial Analysis. The Data Preparation phase pertains to the 

(3.1.1) integration of various spatial datasets directly required for this study, which includes the 

consolidation and conversion of these data, (3.1.2) implementation of thorough and sophisticated 

quality control measures to ensure accuracy of data and minimize error, and (3.1.3) the final 

preparation for these data into the software necessary to analyze the data effectively. Ensuring 

effective integration and quality of data is essential, if an accurate classification of materials 

within the raster dataset can be attempted.   

 The classification methodologies for this study involved classifying the AVIRIS data by 

two distinct approaches. The first was a supervised classification, in which vector polygon 

features representing a sampling of surface mine pilings were digitized and input as parameters 

for the classification algorithm. The returned layer represented areas matching the light 

properties of the points in those polygon feature areas. The second classification method was an 

automated approach, which was directed to identify areas containing significant amounts of 

Jarosite, Alunite, and Muscovite, ferric minerals typical of disturbed earth near surface mines. 

Both classification methods were judged in accuracy based on coincidence with verified vector 

data that represent precise mine locations in the study area (“ground truthing”). Data preparation 

encompasses all these processes and is vital to both classification and spatial analysis. 

3.1.1. Data Integration 

To successfully classify hyperspectral imagery and validate the respective classifications 

spatially, multiple georeferenced raster datasets were required, shown in Table 1. A 
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hyperspectral AVIRIS dataset with coverage throughout the study area and collected recently 

was sourced through NASA’s JPL geoportal (http://aviris.jpl.nasa.gov/alt_locator/). AVIRIS data 

is collected aerially in a push broom swath, which images the ground underneath the airplane 

with a variable width dependent on the lens focal length and the altitude flown. For the study 

area examined in this research, a single swath dataset provided coverage, as the study area was 

tailored to the availability of hyperspectral data that coincided with areas of heavy mining. 

Multiple swaths can be mosaicked together to examine a larger area if necessary, with an 

identical methodology employed prior to merging the raster datasets. AVIRIS data packages 

contain multiple files and extensions, to include a DEM as well as an orthorectified imagery 

dataset that is presented in a binary format. The data for each pixel includes the latitude, 

longitude, and 16-bit integer value associated with each of the 224 wavelength bands that are 

layered in the image file. These band layers can be unpacked into separate datasets for 

processing. They can also be integrated as a single binary file into a GIS such as Esri ArcMap 

with no conversion necessary and manipulated through the layer’s display properties.  In this 

study, band combinations were selected specifically to ensure data quality and that the presence 

of clouds was minimal. The band combination of 36 (centered at 657 nm), 19 (centered at 550 

nm), and 9 (centered at 482 nm) as red, green, and blue, respectively, represented the natural 

view for the image dataset. The natural view represented how the scene appeared to the naked 

human eye in the visible spectrum of light.   

 

 

 

 

http://aviris.jpl.nasa.gov/alt_locator/
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Spatial Data  Source Name 

Data 

Type 

Creation 

Date 

Scale/Spatial 

Resolution 

Size on 

Disk 

AVIRIS Image 

Cube 

NASA 

JPL f090714t01p00r12 

Binary 

File Jul 2009 16.2m 5.8 Gb 

NAIP 

Orthoimagery USGS 3708002-3708145 

Jpeg 

2000 

Oct/Nov 

2010 1m 2.7 Gb 

Mine 

Locations 

OSM 

eAMLIS WV_AOI_SurfaceMines Shapefile 2010 1:24,000 6.7 Mb 

 

Table 1 Data requirements 

 

Fine-resolution orthoimagery was used to verify the data relating to surface mines and 

mining operations. It was also used to create vectors at larger scales for application in the 

supervised classification. Fine resolution refers to remotely sensed imagery that represents a 

ground sampled distance small enough that individual features such as buildings, roads and 

industrial sites can be easily identified (typically less than three meters).  The National 

Agriculture Imagery Program (NAIP) aerially collected orthoimagery was sourced through the 

United States Geological Survey (USGS) geoportal (http://earthexplorer.usgs.gov). The imagery 

is collected at a 1 meter spatial resolution, which allows for a detailed examination of the 

surface, while encompassing the entire study area. The NAIP imagery used in this study was 

collected from October- November, 2010, and, therefore, represents the same terrain at a similar 

temporal resolution as the AVIRIS dataset used for classification.   

Vector data in the form of a merged point feature class was also required to identify both 

active and inactive surface mines in the study area. These data were vital to validating the results 

of the study classifications. They served as a “ground truth” reference in this regard. The mining 

feature data were sourced from the OSM eAMLIS service. Data is current as of 2009 and was 

created at a 1:24,000 scale. The point feature class represents both inactive and active surface 

mines, and includes coal mines as well as mineral mines (such as copper). Inactive mines were 
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included in this study because of the signature that they leave behind, e.g., large mounds of 

disturbed earth near the mine site, typically in valleys adjacent to the hilltops on which surface 

mines tend to operate. 

3.1.2. Data Quality 

Data quality protocols must be enforced for both the raster and vector datasets integrated 

for this study. For both classes of raster data, the hyperspectral AVIRIS data as well as the aerial 

orthoimagery, precise horizontal (XY) positional accuracy needed to be verified to a designated 

standard. The orthorectification, alignment, and mosaic processes were completed by the 

agencies that collected and produced these datasets (NASA’s JPL and the NAIP, respectively). 

For this study, it was crucial to gauge the effectiveness of the orthorectification by checking both 

datasets against a known standard. In this case, the Continually Operating Reference Station 

(CORS) site located in the study area and operated by the National Geodetic Survey (NGS), was 

used to confirm the horizontal position of the raster layers used in the project. A tolerance of 1 

pixel per dataset was allowed, which represented less than 16-meter horizontal accuracy for the 

AVIRIS data and 1 meter horizontal accuracy for the NAIP dataset.   

  Validating the mine feature class data was paramount to the accuracy and error 

assessment for the classification efforts. While both active and inactive surface mine points 

appeared to be accurate in terms of the presence of distinguishing characteristics in the vicinity, a 

number of inactive mines had vegetation growing over the surface of the earthen mounds nearby. 

These were included in the study for the purposes of testing the accuracy of the classification. 

This assumed that the mines were active within 11 years of the date of collection for the 

hyperspectral image dataset (from 2000 to 2011). Figure 8 displays three of the large-scale 
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surface mines located in the study area and verified with the NAIP orthoimagery that was 

collected at the same time as the AVIRIS dataset.   

 
 

Figure 8 An example of three different surface mines identified from the OSM feature class 

verified in NAIP imagery (doi Oct/Nov 2010).   

3.1.3. Data Preparation 

The first step of preparing the hyperspectral imagery dataset for classification was to 

integrate it into IDRISI TerrSet. AVIRIS data derived from the JPL file transfer protocol (FTP) 

site are compressed in .tar format. They require extraction before they can be imported into 

IDRISI using the Geospatial Data Abstraction Library (GDAL) Conversion Utility within 

TerrSet. The GDAL import process input the orthorectified image dataset (a single binary file 

after the compressed .tar folder is unpacked) and output 224 raster files in IDRISI’s native .rst 

format. These files each represent a different band of the electromagnetic spectrum, from 

approximately 365 nm wavelength at the center of the first band to 2496 nm wavelength at the 

center of the 224th band. Each raster layer produced in the .rst format therefore represents 

approximately ten nanometers of light wavelength, and within each channel represents a single 
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16-bit luminance value for each geographically referenced 16.2-meter-wide pixel cell. A small 

number (<1%) of pixels contain null values in the AVIRIS dataset used in the study. These occur 

predominantly at the edges of the raster layer where these null values default to a 16-bit value of 

-9999 on import to IDRISI it was important to set these values to 0 (the minimum luminance 

value for all pixels) in order to stretch the light values more effectively and leading to a more 

effective classification. 

The stretch function accentuates the data in each raster dataset by removing DN values 

outside of a statistical majority of reflectance values present in a layer. The function narrows the 

range of DN values and therefore creates greater variation in the presented pixels. For this study, 

properly identifying the mean DN value and standard deviation from this mean were crucial to 

stretching the respective band layers to increase the effectiveness of the classification. The bands 

were grouped into a raster group file (.rgf) and  numeric histograms were computed for the 

group. Means and standard deviations returned by the histograms were then used as parameters 

for stretch functions applied to each band, one by one.   

The stretched AVIRIS hyperspectral imagery bands were then re-grouped and processed 

through IDRISI’s screen function. The screen function detects the presence of atmospheric 

distortion by analyzing the spatial correlation of light values across an entire spectral band of 

imagery. Pixel variation outside of the normalized (0 to 1) scale of .6 as a lower threshold and 

.99 on the upper threshold indicated a high degree of atmospheric scattering. While atmospheric 

scattering of light is a topic outside of the scope of this study, for a more effective classification, 

it was necessary to identify bands that do not provide clarity and strong dynamic range. The 

screen function was processed in this study on the raster group containing the stretched AVIRIS 
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band layers, removing any bands that presented an unacceptable degree of atmospheric 

scattering.   

Two distinct classifications – supervised and unsupervised - were performed in this 

study. The supervised classification required polygon vector training sites as an input to 

represent the surface material that the classification sought to identify. The supervised 

classification served as a controlled test of hyperspectral image classification for surface mining 

operations in this study, while the unsupervised classification (based on a digital spectral library) 

served as the primary focus of the efficacy for automated identification of surface materials in a 

GIS. Given the broader dynamic range and extremely stratified hyperspectral dataset used in this 

study, fewer training sites or polygon features representing singular surface materials were 

deemed to be necessary. These training sites were digitized within the earthen mounds near 

fourteen of the identified larger-scale surface mines in the training area, using the natural view 

color composite from the AVIRIS dataset as a guide, and ensuring avoidance of non-mineral 

materials such as roads, vegetation, and man-made materials such as buildings and construction 

equipment. These polygon features were saved in a .vct format native to IDRISI, and all were 

created with attribute values of “1”, indicating identical surface composition for the supervised 

classification module.   

The AVIRIS image group was also classified with data from pre-loaded spectral libraries. These 

libraries (managed by the JPL as well as the USGS) are available for order and can be imported 

into IDRISI.  In order to perform a more targeted classification, the minerals classified were 

limited to Jarosite (KFe3+
3(OH)6(SO4)2), Alunite (KAl3(SO4)2(OH)6), and Muscovite 

(KAl2(AlSi3O10)(F,OH)2). To precisely identify these specific sulfates, the light reflectance and 

absorption features (representing each mineral’s specific spectral profile) were loaded as a 
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hyperspectral signature file into IDRISI, after which the two signature files were combined into a 

single hyperspectral signature group (.hgf extension in IDRISI) for the purpose of classification. 

3.2 Classification 

Two classifications for the AVIRIS dataset were conducted using the same hyperabsorb 

function in TerrSet. This function inputs a hyperspectral signature group (either trained from a 

vector polygon layer or collected from a spectral library) and is then processed in conjunction 

with the image group. The image groups were first classified with the training sites in a 

supervised classification, and then were classified with the minerals of Jarosite and Alunite 

loaded from the spectral library. The hyperabsorb function processes all image band layers 

within the image group at every pixel in the image dataset.  For each pixel, a likelihood of 

classification is returned in the form a “fitting” and a “depth” layer. Fitting is presented as a 

fraction, such that if the value returned is equal to 1, that pixel entirely represents the given 

mineral or material indicated in the classification. While this value might rarely equal 1 for an 

AVIRIS pixel measuring 16 meters across, a value over .5 might indicate a strong presence of 

the indicated material.  The depth layer is processed automatically as well by the hyperabsorb 

function, thereby reducing noise throughout the scene to more clearly identify the classified 

surface materials. 

The result of the hyperspectral classification processes were two sets of layers: (1) fitting 

and (2) depth - both scaled as likelihood fractions from zero to one. The overlay function takes 

these ratios a step further through visually combining them into a single raster overlay. This is 

done by dividing every pixel’s DN value in the fitting layer for each mineral by the DN value in 

the depth layer from the corresponding pixel in the depth layer. This “maximum support 

classification” step incorporates both factors of abundance of spectral similarity for a given 
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mineral, as well as the similarities in the depth areas representing absorption areas in the spectral 

curve. These two principles are represented by the fitting and depth layers, where the division of 

depth into fitting provides a single layer output representing the overall ratio (for each individual 

pixel represented in the study area) for the presence of the classified material. This is done for 

the target minerals as well as for the surfaces matching the areas digitized near mining 

operations, for the unsupervised and supervised classifications, respectively.    

For the automated classification, it was necessary to remove extraneous surfaces that 

might be identified as similar to the mineral elements targeted, but that might not intersect with 

surface mines. The reason for this extraneous classification is discussed in detail in the results 

chapter, but for the methodology it was vital to identify areas of concrete as well as water, as 

these surface materials were commonly identified as containing ferric mineral elements. The 

same automated classification used to identify the mineral elements targeted in this study was 

used to classify concrete and water, thereby creating binary raster layers representing both 

materials. To obtain the spectral signatures required for the hyperabsorb function as inputs, the 

hyperautosig function targeted 33 different classes of surface materials in the entire study area 

represented in the AVIRIS hyperspectral imagery. The hypothesis that proved correct was that 

the output – 33 different raster layers each representing an automatically distinguished spectral 

curve – could be analyzed over fine-resolution orthoimagery.  The second output of the 

hyperautosig function were the spectral curves corresponding to the output classification layers.  

Once the specific output raster layers representing concrete and water were identified, their 

corresponding hyperspectral signature files were input into the hyperabsorb function to more 

effectively classify these materials. This insured that these areas could be removed by raster 

calculation from the automated mineral classification. 
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For each of the two output layers representing the returns of the supervised and 

unsupervised hyperspectral classifications, the reclassify function was performed to identify 

areas where the queried minerals are most concentrated on the surface. Pixel values for these 

final classification layers were values from 0 to 1, representing anywhere from no trace of the 

minerals to a strong concentration. The “likelihood” reclassification for each mineral - Jarosite, 

Alunite, and Muscovite - was 0.3 and above for each mineral element. 

These binary rasters were then added together by raster calculation, and any value above 

0 was reclassified again to 1. The reasoning here was that for the final output, the strong 

presence of any of these minerals was deemed a positive indicator for the presence of a surface 

mine.  Once combined and reclassified, the data was then cleaned by removing (via raster 

calculation) the binary rasters representing concrete and water.  

3.3 Spatial Analysis 

To effectively measure the accuracy of both classification approaches, the final 

classification layers were converted from raster to polygon in ArcMap. These resulting 

classification layers may still have noise present in the form of loose pixels that converted to a 

polygon feature class and were represented as small squares. To eliminate these erroneous pixels, 

the Spatial Analyst toolset was utilized to calculate the area for each feature in the two polygon 

feature class layers. All features smaller than 400 square meters with a value of 1 (meaning 

lower concentration of minerals) were queried and deleted, and all features that were smaller 

than 200 square meters with a value of 2 (meaning higher concentration of minerals) were 

queried and deleted.  As a final measure to clean the output polygons, the smooth function was 

applied to each feature class with a tolerance of 32 meters (about two pixels from the input 

hyperspectral raster) utilizing the Polynomial Approximation with Exponential Kernel (PAEK) 
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Algorithm. While the final output raster is represented as rows and columns of square values, the 

real-world features they represent are not. In the final classifications, the pixels represent 

proportionality of the presence for the targeted minerals. Therefore, a smoothed area more 

accurately reflects the irregularly shaped earthen mounds typical of surface mines. A thorough 

analysis of the outputs of the smoothing algorithm confirmed that the results of this function 

more accurately represented the real-world features.  

An iterative search was performed through each mine location indicated in the final 

export of the prepared OSM shapefile. For each mine location, the two classification methods 

were tested as to their respective ability to detect mineral elements within a buffered distance of 

500 meters from that mine location, using the buffer and intersect functions found in ArcGIS. 

Further, to quantify and effectively establish the ratio of false returns to accurate mine sites, an 

optimized hot spot clustering function was performed on each final feature class (automated and 

supervised). Clusters (established by counting incidents within a fishnet polygon) were grouped 

as features, to distinguish individual mine locations. These clusters were then analyzed and 

counted, with clusters greater than 1,500 meters from any known mine location deemed a false 

return. 
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Chapter 4 Results 

The automated hyperspectral classification tailored specifically for the purpose of identifying 

surface mines proved to be accurate, with a correct identification of 51 out of 52 (98%) known 

surface mines in the study area. The “known surface mines” include mines that had been active 

at any point during the eleven years prior to the hyperspectral image collection date. This means 

that the automated mapping approach is able to identify older mines as well, which is especially 

important for environmental applications as large-scale surface mines can pose a substantial 

ecological risk for decades after closure.  Furthermore, the automated classification identified in 

its output polygon feature class many possible surface mines that actually represented abandoned 

mines that had been inactive for eleven years or more prior to the image collection date.  This 

further indicates the effectiveness of the classification methodology as a tool not just in 

monitoring industry, but in organizing cleanup efforts and waste control measures in other areas 

with heavy mining. 

The supervised classification proved accurate as well, identifying 50 out of 52 (96%) 

known surface mines in the area.  While the supervised classification identified and mapped 

these features with high accuracy, there was a greater amount of “noise” or false returns present 

in the output polygon feature class.  The supervised classification approach’s high degree of 

accuracy was expected, given the extensive user input in preparing an input polygon shapefile 

that represented sample surface mine pilings from around the study area.  The presence of noise 

and the reliability of the primary automated methodology used in this study will be discussed 

later in this chapter.  The mapped outputs from both the automated and supervised classifications 

for a subset of the study area are shown below in Figures 9 and 10, respectively. 
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Figure 9 Automated classification returns overlaid on Landsat ETM+ imagery, with both active 

and inactive mines represented, and 500 meter buffer from active mines. 
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Figure 10  Supervised classification returns overlaid on Landsat ETM+ imagery, with both active 

and inactive mines represented, and 500 meter buffer from active mines. 
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4.1 Data Quality Inspections 

The quality and accuracy of this study depend strongly on the quality of the input AVIRIS 

hyperspectral image dataset. With a significant reliance on the quality of a single dataset, a 

thorough inspection of quality was necessary to ensure the reliability of the results and output 

spatial data.  The horizontal accuracy of the imagery, presence of noise in the raster bands, 

atmospheric distortion that might be present in the imagery, and the presence of noise that relates 

specifically to the elements distinguished in the automatic classification all present a serious risk 

to the potential effectiveness of the algorithm being tested in this study.  If present in the data 

above a pre-determined tolerance level, these quality elements could bring any classification or 

map output produced by the study into question. 

4.1.1. Horizontal Accuracy 

 Verifying – and, if necessary, correcting the horizontal accuracy of both the AVIRIS 

hyperspectral imagery and the NAIP orthoimagery was essential to establish an effective return 

of the two different classification algorithms, and towards confirming the accuracy of those 

returns.  Both datasets were orthorectified and georeferenced in the coordinate system of UTM 

Zone 17N, with the ellipsoid and datum of the World Geodetic System (WGS) 1984. A number 

of advantages exist towards utilizing image datasets that were created using the same geographic 

reference system. First and foremost, any reprojection that might have been required could 

significantly alter the data. For the AVIRIS data especially, where each pixel in each of 224 

bands represents a 16-bit integer value, a reprojection would have meant possibly altering those 

values directly. This can occur even with a nearest neighbor resampling of raster data layers. The 

reason that an alteration takes place is that pixels, by definition, represent a small square area on 

the Earth’s surface. An area referenced in a geographic coordinate system will be tilted when 
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compared or changed to a UTM-based reference system, and correcting or changing this tilt 

necessitates using fractions of pixels. As splitting a pixel is impossible, reprojection and 

resampling algorithms will either use the value of that pixel’s neareast neighbor, or directly 

change the value by averaging the neighbor values, depending on which algorithm is utilized. 

Another clear advantage to having both image datasets projected and rectified in the WGS84 

UTM coordinate system was that the units for this coordinate reference system (CRS) is meters, 

which means that pixel mensuration is made significantly easier.   

 The accuracy of the NAIP dataset was measured against the single Continually Operating 

Reference Station (CORS) situated within the study area (in Elkins, West Virginia).  CORS 

stations are operated by the National Geodetic Survey (NGS) and provide extremely precise, 

sub-centimeter positions at fixed sites that continuously update their position, in this case every 

second.  The site at Elkins, with the site identification WVNR, is identified by the photographs in 

Figure 11, and by the precise position 38 53 44.50553, (N) 079 51 30.26994, (W) with the North 

American Datum (NAD) 1983 reference system.   

 

Figure 11 Views of GPS reference station in Elkins, West Virginia (Image Source: 

https://www.ngs.noaa.gov/CORS/) 

https://www.ngs.noaa.gov/CORS/
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 Converting this single point to the WGS84 UTM Zone 17N CRS, it is measured within 

the NAIP image dataset directly to identify any possible misalignment.  In Figure 12, this 

position is indicated in the imagery.  While a single reference point cannot speak to the 

alignment and horizontal accuracy of a relatively large orthomosaic dataset, for the purpose of 

this study, it serves to identify any potential shift present in the data.  

 

Figure 12 CORS precise coordinates represented as point over NAIP imagery 

 

 

 The NAIP image dataset is accurate to within 5 meters, which, for the purposes of this 

study, is ideal. The secondary accuracy measurement is for the AVIRIS dataset used in the study. 

An alignment of less than one pixel from the AVIRIS data with a coarser 16.2 meter spatial 

resolution to the NAIP data is essential for two reasons:  (1) so that the polygon feature class 

representing surface mine pilings digitized with the NAIP data as a reference matches the 
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AVIRIS dataset for which it serves as input in the supervised classification; and (2) to confirm 

that the hyperspectral imagery accurately reflects the corresponding positions on the Earth’s 

surface. This latter point is especially important in applications of the automated classifications 

conducted after this study is complete.  Were the data to be misaligned or shifted from known 

reference points, even an accurate classification would not properly identify surface mines in 

terms of positional accuracy.  

 Twelve readily identifiable reference points measured the difference in horizontal 

position between the AVIRIS hyperspectral dataset and the NAIP data. These reference points, 

shown in Table 1, were evenly distributed throughout the study area, and corresponded to 

durable man-made construction materials with low or no height above ground level. All twelve 

reference points, identified in the AVIRIS natural view color composite, fell within one half 

pixel (about 8 meters) of the corresponding point in the NAIP dataset. This test for horizontal 

accuracy proved that the datasets were orthorectified and projected accurately, and that further 

data quality tests could continue prior to classification. 
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Table 2 AVIRIS dataset horizontal accuracy assessment 
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4.1.2. Atmospheric Distortion 

The presence of atmospheric distortion would diminish or entirely alter any returned 

output spatial data from either classification approach. The effectiveness of the automated 

classification methodology, which is the primary focus of this study, cannot be determined 

without clarity of data. Atmospheric distortion (or scattering) would not only diminish the 

returns of the classification, but could alter the light to the extent that surface materials cannot be 

identified correctly (or might be completely misidentified) from the algorithm performed with 

the hyperspectral raster bands. For this reason, this study and similar experiments can and should 

only be attempted with data free from significant atmospheric distortion. 

The methodology tailored from background research indicates an upper limit for 

autocorrelation of .99 and lower limit of .6. This represents a clear and reliable image band. In 

the Idrisi TerrSet screen module, this autocorrelation range was applied to each of 224 bands in 

the hypspectral dataset.  All bands fell well within this range, as indicated in the autocorrelation 

curve represented in Figure 13. While this analysis confirming clarity of data corresponds with 

the fact that in the natural view imagery, very few clouds and almost no haze is apparent, there 

are instances where apparently clear data might have invisible particulate matter that might skew 

the results. Such distortion would appear in the autocorrelation analysis.  

Figure 13 Autocorrelation Analysis in Screen function for 224 bands in AVIRIS dataset 
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4.2  Results of Classification 

The automated classification returned a highly accurate polygon feature class coinciding 

with 51 of 52 surface mines in the study area.  The returned raster output layers for the 

automated classification of Jarosite and Alunite represented extremely limited coverage in the 

study area, at any classified value. Interestingly, for the overwhelming majority of the study area,  

these minerals went undetected, despite background research indicating that such minerals might 

be prevalent in mineral pilings near surface mines in terrain such as that studied in this analysis. 

Despite these limited returns, in keeping with the methodology and to rigorously test the 

algorithm, these classification raster layers were added by raster calculation to the Muscovite 

layer, which provided ample returns and seemed to highlight surface mines with greater 

percentages (over 0.25 on a normalized scale of 0 to 1) for the output fitting layer. In Figure 14 

(a), this raw output raster layer is represented in greyscale, with areas measured as having a 

greater fitness for the presence of Muscovite (as determined by a correlation with the 

hyperspectral imagery and the manually entered spectral properties for the mineral) are 

represented in white. In the binary raster reclassified in Figure 14 (b), Muscovite values over the 

level of 0.25 are shown in green, with all else shown in black. This binary raster has not been 

combined with the Alunite and Jarosite binaries, and has not been processed to account for and 

remove concrete and water values. 
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Figure 14 (a) Raw output of Muscovite Hyperabsorb automatic classification, and (b) 

reclassified (binary raster) Muscovite automatic classification 

 

 

 The classified layers representing concrete and water did not coincide with the surface 

mines in any part of the study area. This exclusion, and the apparent accuracy of this sub-

classification also performed automatically using a spectral signature developed in testing, 

mitigated what could have been a major error with the automated classification methodology. 

Had the water and concrete classifications also returned erroneous or partial areas in or around 

the surface mines, these areas would have been removed from the true mineral classification 

(again, by raster calculation), and the automated approach would have returned fewer surface 

mines in the final vectorized output. The very reason that the concrete and water classifications 

are needed to be subtracted from the output is not a false return, but the presence of these 

minerals in hard construction materials as well as drainage networks throughout the area. While 
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the presence of mineral elements in concrete and buildings is sensible, their presence in large 

traces throughout river networks speaks to the heart of the issue, that these surface mines pose a 

grave environmental threat to the greater area (in some cases many miles away from the site and 

for decades after their closure). 

 An example of the output for the automated classification approach is shown in Figure 

15. To the right, the classification polygon feature class is draped over a rendered 3D model of 

an area of dense concentration of surface mines in the central study area. The model is rendered 

with the NAIP orthoimagery draped over ASTER Global DEM elevation data, with no vertical 

exaggeration represented. In the image, one large active mine and one small active mine to the 

top and right of the image (respectively) are visible, along with an inactive mine to the left of the 

image.  All three were classified as such in the output layer. 

 

Figure 15 Output polygon feature class from automated surface mine classification, draped over 

3D model 

 

 While the supervised classification performed similarly well with a rate of 50 out of 52 

surface mines identified, the vectorized final layer represented much more than just the surface 

mines themselves. The automated classification approach was able to filter non-mineral results 

much better than the control, which, in this study, was the supervised classification. The 
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supervised approach utilized a more common methodology of creating training sites or polygon 

vector feature data representing examples of what the classification is targeting (e.g. pilings near 

these mines). The method bears repeating in the results discussion because this is the reason 

behind the returned coverage in the output feature class. Not all of the earthen pilings around 

these mines have the same material composition, and the classification algorithm does not seek 

form or shape, but spectrally similar components. Therefore, the mixture of normal, healthy soil, 

vegetation, and various miscellaneous minerals and materials in these pilings that may or may 

not be hazardous are mapped by the algorithm in the rest of the study area. While the supervised 

classification was able to accurately identify mines throughout the area at a rate of 96.2%, it also 

misidentified scattered polygons throughout the region. 

 Both classification approaches provided extremely similar results in the vicinity around 

larger mines, and especially mines that were operating at the time the hyperspectral imagery was 

collected. This similarity is especially surprising given the difference in the approaches and 

algorithms used by each method, as well as the need for substantial user input on the part of the 

supervised classification. The results of the automated and supervised classification outputs are 

overlaid on fine-resolution orthoimagery for a sample mine in the study area in Figures 16 and 

17, respectively. As with all the larger mines, both classifications are able to effectively map the 

larger earthen piles and exposed regions around the mine itself. The fine resolution orthoimagery 

in these examples has a 1 meter spatial resolution for ground sampled distance, and features are 

clearly identifiable within the raster dataset. 



44 

 

 

Figure 16 Results of automated surface mine classification, overlaid on NAIP orthoimagery 
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Figure 17 Results of supervised classification of surface mine, overlaid on NAIP orthoimagery 

 

 While the “false returns” or fragmented features away from surface mines were more 

prevalent in the supervised classification results, they were still present in the final output of the 

automated classification approach. These smaller features in the polygon feature class tended to 

represent concrete as well as the banks of rivers. The reason for the inclusion of these areas in 

the classification output are simply that these surfaces do contain one of the minerals being 
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targeted in the automated classification, but were not removed with the other areas classified as 

concrete or water. With the “cleaning” or removal by raster calculation of the areas classified as 

water, the banks of the rivers themselves where these minerals are deposited would not be 

removed because they are not water. Fragments of the concrete areas remain in the output 

because the concrete classification is not all-inclusive. Rather, as it is a diverse mixture that can 

come from a variety of material components. An example of such “false returns” is shown in 

Figure 18. 

 

Figure 18 “False returns” in automated surface mine classification 
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Chapter 5 Discussion 

The results of this project provide more than merely a validation of the methodology being 

tested, shown in Table 3. The primary measure of accuracy in this study is the intersection of 

classified surface mines in the output spatial dataset and real-world surface mines identified in 

detail by the OSM feature data. In this measure, both the automated and supervised classification 

methods proved effective.  However, significant focus was placed on the likelihood of the 

classification correctly representing a surface mine site. This latter measure assessed the ratio of 

false returns to correct ones, and in this measure the automated classification proved significantly 

more accurate than the supervised classification. The automated classification had a false return 

rate of 37.3% - significantly lower than the rate for the supervised classification, 84.7%.  

 

 
 Number of 

Active 

Surface 

Mines 

Number of 

Surface 

Mines 

Intersecting 

Classification 

(500m buffer) 

Number of 

Classified 

"Clusters" of 
Surface Mine 

Pilings 

Number of 

Classified 

"Clusters" 
Intersecting 

Known Mines 

False Return 

Percentage 

Accuracy of 

"Cluster" in 

Mapping 
Known Mines 

(1500m) 

Accuracy 

Percentage 

(Mapping 

Known 

Mines) 

 

 

 

Automated 

Classification 
52 51 67 42 37.3% 62.7% 98.1% 

Supervised 

Classification 
52 50 85 13 84.7% 15.3% 96.2% 

 

Table 3 Results of classifications and false return rates 

 

 The implications of an efficacious automated classification approach that can be used to 

map mining operations without substantial analyst input are substantial. While hyperspectral 

imaging sensors and airborne collection operations remain prohibitively expensive, it is 
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important to develop and identify valuable practical applications in order to encourage 

development and adoption. Mapping surface mines is but a single possible application. Further 

research into both similar, environmentally-oriented applications as well as commercial and 

defense mapping applications are necessary to emphasize the clear value of and potential in this 

technology (Steinitz 2016). Further research is also necessary to better understand how this 

approach to mapping and classification with hyperspectral imagery might function in different 

types of terrain and environments around the world. 

 Mapping the areas of potentially hazardous elements around surface mines can 

significantly impact practical planning and informational processes carried out to manage larger 

populations and administrative areas. An estimated 33,142 people out of a total 47,705 people 

residing within the study area live downstream from surface mine locations (based on a spatial 

analysis of the mine data as well as hydrology networks and digital elevation data).  Identifying 

specific impacts to downstream populations from the classified surface mines is just one example 

of how this study can influence such administration. The term geodesign refers to this exact 

process of design and planning on different scales that are affected by both geospatial 

information and, especially, geospatial technology (Dias, Lee & Scholten 2014; Steinitz 2016). 

Geodesign is a way for administrators, leaders, and scientific professionals that are not 

necessarily well-versed in the practical possibilities or the functions of a GIS to benefit from 

spatial data and technology.  

 This study directly serves as an example of the potential for implementation in geodesign 

as a benefit to environment and industry alike (Huang 2016; Li 2016; Steiner 2016). While this 

study focuses primarily on the most accurate classification and mapping approach possible for a 

single set of surface materials, the resulting spatial data is directly useful for planning and 



49 

 

visualization of an ever-growing problem (Huang 2016). With a supplemental methodology, the 

automated classification for surface mines tested in this study could be used to predict the impact 

from toxic elements and mine drainage on human populations around the study area (Li 2016). 

Different factors originating from the surface mine classification data directly impact 

neighboring population centers, and are extremely useful for urban design approaches and 

strategic planning when it comes to health care, emergency preparedness, and water treatment.   

5.1 Future Work 

 For all of these strategic applications, an adapted methodology oriented towards 

geodesign utilization that encompasses the classification used in this study would serve as an 

extraordinarily useful tool. What follows is a hypothetical methodology that could be used to 

take the automated classification representing surface mine pilings rich in ferric minerals and 

estimate the potential impact on both existing populations and built-up areas, as well as potential 

sites for new development. For this hypothetical methodology, the impact would be gauged 

solely in terms of water pollution impact. Water pollution impact in the instance of mine valley 

fills is created by pH imbalance and acidification created by introduction of ferric minerals to 

stream networks. 

 The hypothetical extended methodology is designed as a model in a GIS such as Esri 

ArcGIS. The inputs are: (1) the polygon feature class representing surface mines; (2) a detailed 

elevation model representing height of specific geographically referenced points in a grid above 

a standard ellipsoid or sea level; (3) a stream and river network polyline feature class with 

attribute information relating to flow volume and status as permanent or intermittent stream, as 

well as potential as source for drinking water; and finally, (4) a polygon feature class 

representing population (such as US Census district blocks that would suffice for the purposes of 
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such an impact study). A flow direction analysis processed with the elevation model as input 

would indicate (from every geographically referenced point in the study area) which direction 

water would flow. Streams would be hypothesized based on the elevation model, but the primary 

benefit for the flow direction model output would be identifying which surface mine pilings are 

in proximity of streams in the local drainage network.  For an example of a simple flow direction 

output that represents a small sample area in the study area analyzed in this project, see Figure 

19. The raster representation in the sample area shows the elevation values for raster cells on the 

left, and associated coded values output from the flow direction model on the right. Flow 

direction classifications refer to the direction that the ground is sloped, according to the D8 

model. This model assigns integer values of 1 to 8 depending on the direction the ground is 

sloped in relation to each cell’s neighbors. For example, a value of 1 represents sloping due east, 

and a value of 8 represents sloping to the southeast (Jenson and Domingue 1988). Streams would 

then be coded in the hypothetical flow model based on a value derived from the size of nearby 

mineral pilings and the distance of these pilings from the stream in question. Coded values would 

aggregate as streams merge and approach population centers. Although this is not a perfect 

representation of the impact of acidification from multiple mineral pilings draining with rainfall 

into streams over distance, for this hypothetical workflow, it adequately represents the 

proportional extent of impact from multiple mines that may be closer or further from a stream 

that is downhill. 



51 

 

 

Figure 19 Subset of study area with representation of elevation values and flow directions 

 

To conclude this hypothetical example of a methodology that would apply an effective 

and automated surface mine classification to geodesign principles, the codified stream network 

would then be related to population feature data. Streams that traverse densely populated districts 

that have a greater weight in terms of the value assigned from surface mine pilings and flow 
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would be highlighted, and the intersecting districts would be output in a separate polygon feature 

class for analysis. These districts are “at risk” in the sense that they are traversed by 

contaminated streams, and should be emphasized as targets for cleanup and treatment efforts. For 

areas with the highest population levels that are traversed by highly contaminated streams (as 

determined by the classification and subsequent flow model), the surface mine pilings 

themselves should be targeted for cleanup efforts upstream. A great deal of practical, strategic 

planning can be implemented with a methodology such as this flow model that can effectively 

and accurately predict impact on health and wellbeing for downstream populations. 

5.2 Further Research 

The accuracy of this study was rigorously tested, with 52 known mines active from 2000 

to 2011, cross-referenced in terms of proximity to polygons classified as surface mine pilings in 

the automated classification. As 51 of these active mines were correctly identified, and with 

numerous inactive mines identified as well, the study was able to demonstrate rigor and 

thoroughness in satisfying scientific accuracy. The only concern remaining for the ability of the 

classification methodology to be deployed and applied broadly to map surface mines around the 

world are considerations pertaining to the terrain used in the study area. 

 While surface mines around the world focus on the same basic minerals being exploited 

in the study area in West Virginia (such as coal and copper), the terrain and image scenes 

collected in these areas do not. For example, areas of North Africa close to the equator have an 

extremely similar prevalence of both small and large scale surface mines. However, the 

surrounding terrain is predominantly sand and rock, instead of the forested and grassy areas that 

make up the image scene used in this study. To completely satisfy scientific rigor, and to 

confidently deploy this methodology for global application, an additional study in which 
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AVIRIS or similar hyperspectral data collected over an area with dense mining activity should be 

analyzed with the same automated mine classification methodology used in this study. From this, 

the results should be measured in terms of proximity to known active mine locations.  

 While the anticipated results of this follow-up study in a desert terrain environment 

would be similar to the results of this thesis project, there may be discrepancies resulting from 

the differences in soil types and vegetation with which the minerals targeted in the classification 

are mixed. The automated classification methodology normalizes the results so that mixtures are 

taken into account and only high concentrations of minerals typical of mine surface pilings and 

valley fills are classified. Conceivably, false returns or scattered light may result from high 

concentrations of sand and certain rock. 

5.3 Applications of Research 

The methods and results of this study offer the potential for practical application in real-world 

deployment through applications conducted with amended methodologies. Real-world 

applications involve collecting and processing hyperspectral image datasets (such as AVIRIS 

data) in an area where mapping of surface mines is required. The collection and processing of 

these data are the most time and resource-intensive processes. One significant consideration in 

this study is the expense of collecting new datasets. The data used in this study was collected and 

provided by NASA as a part of their research. The primary limitation of the findings from this 

study is that new collections are extremely expensive due to the costs of aircraft, fuel, crew, and 

the costly AVIRIS sensor itself. According to the USGS Spectroscopy fact sheet (sourced at 

https://speclab.cr.usgs.gov/aboutimsp.html), these costs amount to an average of $64,000 per 

flight and $6,000 per flight hour, not counting the initial costs of establishing a flight program. 

These costs are prohibitive for many potential users of surface mine classification, such as 

https://speclab.cr.usgs.gov/aboutimsp.html
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private companies and governments of developing nations. However, the primary goal of this 

study was to test a methodology that could potentially be applied to raster spatial data 

irrespective of cost. Given the accuracy that was found in the methodology tailored for this study 

and for mapping surface mines, the algorithm and approach used is an ideal tool to have 

available as the cost of hyperspectral scanners and data collection is reduced in the future. 

Furthermore, studies such as this that demonstrate the efficacy of geoprocessing algorithms 

performed on hyperspectral data may help in motivating further development and widespread 

adoption of hyperspectral image collection and use.   

 This methodology can be employed without further development in both the United 

States and abroad to obtain a clearer picture of the spatial distribution of surface mines, and more 

importantly, of the toxic footprints they leave behind (Gurram 2016). During the research and 

data aggregation stages of this study, comprehensive mine feature classes were required in order 

to validate any classification results that were produced. While the federal OSM database 

contained detailed point information for mines in the state of West Virginia, detailed polygon 

feature classes representing mine footprints or valley fills do not exist. Such areas have been 

mapped in detail, but the polygon feature classes do not provide statewide coverage. In many 

states, they do not exist for any subset of the state. In West Virginia, mapped valley fill spatial 

data exist along the Western border, but no data is available for the study area. The automated 

classification tested in this study could provide such feature data with a minimum of user or 

analyst input, in addition to providing probable mine locations in areas that might not have even 

point feature data representing sites. In developing countries that often face graver hazards to 

human and environmental health as a result of mining operations, spatial databases and 

geoportals containing any type of mine feature data do not exist (Huang 2016). This 



55 

 

methodology would be able to provide valuable information representing the extent of mining 

operations in developing nations which could additionally help administrators and leaders 

visualize the impact of these operations. 

 The methodology employed in this study could easily be modified to accomplish a wide 

range of tasks in mapping and operational management. On a large scale, focusing on a 

particularly small and clearly defined area (such as a single industrial mining operation), a 

spectral scanner mounted on a drone could take layered image photographs of such a site at 

regular periods. If these hyperspectral scanned layers are georeferenced and classified at periods 

such as every week, the ongoing progress of a surface mine, as well as its impact on the 

surrounding environment, could be readily mapped and monitored by management.  

 Another potential project would utilize multiple flight lines or swaths of raster data 

collected under the aircraft scanner to create a wide area map of a larger site. Such a site that 

would benefit tremendously from obtaining comprehensive and up-to-date surface mine mapping 

would be a developing country that has no such data currently available (Huang 2016). An input 

dataset for the automated surface mine classification can take any size, and the only change in 

terms of processing would be time, which increases linearly with the number of raster cells or 

pixels present in the data (Fourest 2012). While developing nations would benefit tremendously 

from having a baseline feature spatial dataset representing surface mines and their footprints, 

highly developed nations with legacies of industrial mining (such as the United States and 

Australia) would also stand to benefit. Existing mine feature data and impact data could be 

updated, and in vast areas where no such polygon geometric feature data exists, foundation 

geospatial data could be created. 
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 Another application of the methodology developed for this study is a hyperspectral 

classification of other materials, as pre-defined in a spectral library such as the JPL spectral 

dataset referenced for this study. Surface materials (such as concrete and water) were already 

precisely identified from returns in automated AVIRIS classifications as a stage of development 

in the methodology of this study (Clark 1990; Clark 1999; Dalton 2004; Rockwell 2005). These 

carefully identified hyperspectral signatures could be used individually or as a group to classify 

concrete and water in another hyperspectral image dataset. Other elements could be targeted and 

mapped with the same accuracy as was demonstrated in this study. A comprehensive 

classification effort could iterate through identifying raster fitting and depth layers for each 

element in a long list, and for each mineral produce output binary raster layers. The difference 

between a methodology that classifies and maps multiple elements that comprise features (such 

as surface mine pilings) and individual minerals is that the output from an individual mineral 

classification would be composed of multiple feature types. While the output of the surface mine 

classification was a single type polygon feature class, the output of an individual mineral map 

would have a class for each element (Clark 1999). As such, the final binary raster layers for each 

individual Earth element would need to be added by raster calculation one at a time, and 

combined values would be designated as an area of high concentration of specific, multiple 

mineral elements.  

 Such an application of a similar mapping methodology would be of significant use to 

mining companies and energy exploration companies. Being able to precisely identify and target 

both rare and common minerals based on soil composition on the Earth’s surface would 

drastically reduce errors and redundancy costs in identifying new targets for exploitation. In the 

defense sector, a similar type of methodology for hyperspectral image classification that is 
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performed quickly and accurately could be employed to identify chemicals and mission targets 

as part of an Intelligence, Surveillance and Reconnaissance (ISR) effort. For example, as a part 

of drug interdiction efforts, specific plants and chemicals could be targeted and mapped reliably 

by low-flying aircraft collecting imagery with a hyperspectral scanner. In support of the 

warfighter and in support of troop protection efforts, explosive materials and unexploded 

ordinance (UXO) in given Areas of Operation (AOs) could be identified by an adapted 

methodology using georeferenced hyperspectral scans as input. 
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