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Abstract 

The Salton Sea is the largest body of water in the State of California and has experienced a 

decline in water quality within the last fifty years. This inland body of water serves as a reservoir 

for agricultural runoff and maintains high concentrations of pesticides and nutrients that place 

surrounding communities and ecological environments at risk. As a result of the degradation and 

eutrophic state of the Salton Sea, it is important to identify historical trends and methodologies 

that can be used for future water quality assessments. Traditional water quality assessments are 

conducted onsite and require extensive financial and human resources. In order to mitigate some 

of these costs while continuing to monitor water quality, more efficient assessment techniques 

must be explored. This study explores one such technique by examining the use of remote 

sensing techniques and the Normalized Difference Chlorophyll Index (NDCI) to assess 

chlorophyll-a concentrations in the Salton Sea from 2002 to 2020 using Landsat 5 TM and 

Landsat 8 OLI imagery. To assess the accuracy of this method, the NDCI is compared against 

two-band and three-band algorithms proposed by literature. Results indicate that the NDCI has 

largely underestimate chlorophyll-a concentrations within the Salton Sea and has incorrectly 

suggested small variations across the temporal range. Linear regression results further reveal a 

weak linear regression between NDCI, 2BDA and 3BDA values and in-situ measurements.  
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Chapter 1 Introduction 

The Salton Sea is the largest body of waterbody in the State of California, spanning 

approximately 340 square miles between the Riverside and Imperial counties (Cantor and Knuth 

2019; Carpelan 1958). Deviations in weather conditions, increasing water demand and 

unprecedented water drought episodes have contributed to the altering landscape of Southern 

California (Cohen 2019; Doede and De Guzman 2020; Johnston et al. 2019). In addition to local 

policies, environmental factors have contributed to the receding shoreline and poor water quality 

(WQ) of the Salton Sea. Scholars and government agencies have categorized the Salton Sea as an 

ecological disaster. This classification is attributed to its eutrophic state and uncommonly high 

concentration of nutrients that have contributed to the collapse of multiple fish populations 

(Bradley, Ajami, and Porter 2022; Forsman 2014; Riedel 2016). The Salton Sea faces an 

uncertain future, as the termination of water deposits from the Colorado River, its increased 

reliance for agricultural drainage and rising interest for lithium extraction within its lakebed. 

Thus, the continued monitoring of the Salton Sea’s WQ is critical and calls for the adoption of 

efficient monitoring methods. The aim of this study is to (1) use the Normalized Difference 

Chlorophyll Index (NDCI) to assess historical chlorophyll-a concentrations within the Salton Sea 

from 2002 to 2020, and (2) assess the accuracy and performance of this method against two-band 

(2BDA) and three-band (3BDA) algorithms. 

The remainder of this chapter is sectioned into four sections. Section 1.1 provides a 

historical overview of the Salton Sea, including how the modern-day Salton Sea was formed. 

Section 1.2 discusses the motivations behind this work, including the need for more extensive 

data collection within this waterbody. Section 1.3 provides a general overview of the 
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methodology that was implemented within the study. Lastly, section 1.4 outlines how the 

remainder of the remainder of the thesis is structured and formatted.  

1.1.  Salton Sea Overview 

 The Salton Sea is an inland body of water that is situated in Southern California, 

approximately 35 miles north of the US-Mexico border and 32 miles south of the Coachella 

Valley (Figure 1) (Cohen, Morrison, and Glen 1999; Doede and DeGuzman 2020). The 

waterbody has a maximum depth of 51 feet and a surface area of 340 square miles (Cohn 2000; 

King et al. 2011; Tompson 2016). The closed basin is bounded by multiple mountain ranges, 

including the Santa Rosa, Chocolate, Peninsular and Orcopia mountains (Tompson 2016).  

 Geologically, the Salton Sea lies 200 feet below sea level and atop the Salton Trough 

(ST). The ST is a rift valley formed along the San Andreas fault that is filled with high tectonic 

activity (Cohen, Morrison, and Glenn 1999). The movement of the Pacific and North American 

plates have formed local geothermal hotspots around the Salton Sea. These hotspots can exceed 

680 degrees Fahrenheit in depths greater than 8,000 feet (Ajala et al. 2019; Tompson 2016). 

Multiple earthquakes have been documented within the region, the largest occurring within El 

Centro in 1940 and measuring 7.1 on the Richter scale (Cohen, Morrison, and Glenn 1999). The 

ST also lays above a deeper underground sink that extends more than 20,000 feet and is 

composed of alluvial deposits (Cohen, Morrison, and Glenn 1999). In 1997, the volume of 

groundwater was estimated to range between 1.1 to 1.3 billion acre-feet (Tompson 2016). The 

water remains inaccessible owing to its high depth and salinity levels (Tompson 2016).  
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Figure 1. Salton Sea vicinity 

 Historically, the Colorado River periodically inundated parts of the Salton Sink, also 

called the Salton Basin, and creating a vast, intermittent lake. The ancient Lake Cahuilla had a 

surface area of approximately 2,200 square miles and an estimated evaporation rate of 1.52 to 

2.05 meters per year (Waters 1983). When left undisturbed, the lake would take approximately 

47 to 64 years to evaporate completely (Laylander 1997; Rockwell, Meltzner and Haaker 2018). 

Through the examination of historical records dating between 1774 and 1750, researchers 

confirmed this timeframe as the last time the Colorado River had naturally streamed into the ST. 

Expedition records dating between 1771 and 1776 confirmed the absence of the lake in later 
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years due to the high heat caused by the desert climate (Cohen 2019; Rockwell, Meltzner and 

Haaker 2018). Despite this arid climate and limited supply of irrigated water, the Salton Basin 

has a prolonged history of human settlement that dates back 12,000 years, including modern-day 

Torres Martinez Desert Cahuilla Indians and the Cabazon Band of Mission Indians (Cohen, 

Morrison, and Glenn 1999; Cohn 2000; Delfino 2006). Native American groups were able to 

reside and prosper within this dry climate due to the availability of fish and respite the recurrent 

bodies of water brought forth.  

 

Figure 2. Ancient Lake Cahuilla 
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The expansion of irrigation within the region commenced in 1901 with the construction 

of a massive canal system. The $150,000 investment by George Chaffey to the California 

Development Company was used to build irrigation canals that would facilitate the transfer of 

water deposits from the Colorado River to the Imperial Valley (Cannon 2022; Kershner 1953). 

California Development Company had lain the framework of a canal system that required 

additional enhancements, as the irrigation canals were frequently obstructed by silt and 

sediments (Cohen, Morrison, and Glenn 1999). During the Winter of 1904 to 1905, the Colorado 

River experienced heavy rain and snowmelt that resulted in three floods overflowing into the 

Alamo Canal (Ross 2020). The modern-day Salton Sea was formed between 1905 and 1906 

when floodwaters originating from the Colorado River ruptured an irrigation canal in the 

Imperial County and proceeded to flow into the Salton Sink for 18 months (Cohen 2019; 

Tompson 2016). At the height of the flooding, nearly 6 billion cubic feet of water was discharged 

into the Salton Basin (Cohen, Morrison, and Glenn 1999; Kennan 1917). 

Despite its rapid formation, the Salton Sea quickly became a critical habitat for migrating 

birds and an area of interest (AOI) for real estate developers. The Colorado River floods 

naturally populated the waterbody with fish. In the 1950s, the California Department of Fish and 

Game introduced additional fish populations, including corina, sargo and croaker fish 

(Associated Press 2015; Riedel 2016; Sheikh and Stern 2020; Taylor 2018; Tompson 2016). The 

introduction of additional fish populations and continual water deposits from the Colorado River 

cemented the Salton Sea as a recreational lake. At its tourism peak, the Salton Sea boasted more 

visitors than the Yosemite National Park, including celebrity guests Frank Sinatra and the Beach 

Boys (Clouse 2016; Gutierrez 2009; Picone 2021; Vizzo 2017). All these activities pointed to a 

thriving tourist site that could serve as a sister location to the Palm Springs area. By the 1990s, 
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an evident decline in fish populations pointed toward a deteriorating environment caused by the 

declining WQ in the Salton Sea.  

Throughout most of the 20th century, Salton Sea water levels were maintained through 

water deposits originating from the Colorado River and agricultural drainage from surrounding 

agricultural communities. The modern-day Salton Sea would have followed the same 

evaporation trajectory as Lake Cahuilla had it not been designated by President Coolidge as an 

agricultural sump in 1924 (Cohen 2019). Toward the end of the 1990s, the State of California 

was pressured by Wyoming, Utah, Colorado, Nevada, New Mexico Arizona, and the Federal 

government to decrease water consumption originating from the Colorado River (Cohen 2019). 

The Colorado River is the largest provider of water to California, as it supplies more than 60 

percent of the water used by the Southern California region, see Figure 3 (Forsman 2014). The 

Law of the River annually allocates California around 4.4 million acre-feet of water and this base 

allotment was exceeded between 1983 and 1996 (Cohen, Morrison, and Glen 1999; Forsman 

2014). The State of California had taken advantage of apportionments that went unused by other 

states and was consequently instructed by the Secretary of Interior to develop a plan to reduce 

Colorado River water consumption.  

In 2003, Coachella Valley Water District, Imperial Irrigation District, San Diego County 

Water Authority, and the Metropolitan Water District of Southern California mutually signed the 

“Quantification Settlement Agreement” (QSA) that diverted Colorado River water resources 

from the Salton Sea to the San Diego County (Tompson 2016; Forsman 2014; Cohen, Morrison, 

and Glenn1999). Colorado River water deposits into the Salton Sea decreased by 10 percent and 

completely halted in 2018 (Levers, Skaggs, and Schwabe 2019). Prior to the QSA, the Salton Sea 

was already experiencing high levels of salinity due to the evaporation of water and 
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concentrations of salt. As a terminal lake, the Salton Sea does not have any physical outlets and 

loses water volume through evaporation. An estimated 1.35 million acre-feet of water were 

deposited annually into the Salton Sea to maintain water levels, 75 percent of which stems from 

agricultural drainage (Cohen, Morrison, and Glenn 1999).  

 

Figure 3. Colorado River basin 

According to the Imperial Irrigation District, the Salton Sea basin can experience 

temperatures exceeding 100 degrees Fahrenheit and generate conditions that allow for high 

annual evaporation rates. Roughly 1,300,000 acre-feet of water evaporates annually from the 

Salton Sea and scholars predict this amount will increase with ongoing climate changes, 
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primarily due to the effects of increasing drought episodes and decreasing precipitation rates 

(Cohen, Morrison, and Glenn 1999; Marshall 2017). Figure 4 illustrates precipitation rates within 

the Salton Sea between 1914 to 1994. The average annual precipitation rate of three inches per 

year are too low to offset the annual evaporation rate of five feet per year (Cohen, Morrison, and 

Glenn 1999; Hughes 2020). The reduction in contributing water resources and increased 

dependence on agricultural runoff has led the waterbody to shrink in size and experience poor 

WQ effects which impact wildlife and surrounding communities. In 2020, the State of California 

ceased WQ monitoring in the Salton Sea, and it has since become the responsibility of local 

agencies and non-profit organizations to continue assessing its WQ.  

 

Figure 4. Precipitation on the Salton Sea between 1914 to 1994. Source: Cohen et al. 1999 

1.2. Motivations 

Interest and motivation for this research project stems from the unique circumstances that 

have led to the decline in the overall WQ of the Salton Sea and the complex dynamics that stem 

from the Coachella and Imperial valley regions. 
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1.2.1. Human Health  

In combination with lower precipitation rates, the QSA has accelerated the shrinking of 

the Salton Sea and increased exposure to lakebed sediment (Parajuli and Zender 2018). The 

Salton Sea has served as a reservoir for agricultural runoff and the exposed lakebed sediment is 

enriched with pesticides that date back to the 1930s, such as dichlorodiphenyltrichloroethane and 

aldrin (Kim, Kabir, and Jahan 2017). The health and well-being of communities surrounding the 

Salton Sea is of great importance, especially when they have historically been inhabited by 

underserved population groups. In 1970, 57 percent of the total population in Imperial Valley 

self-identified as White and 36 percent identified as Hispanic (Mead 2016). By 2010, the 

Imperial Valley boasted a population of 180,000 and 74 percent of the population identified as 

Hispanic.  

Farzan et al. (2019) also determined that communities situated within close proximity to 

the Salton Sea had a higher percentage of asthma prevalence among children (22.4%) than other 

communities in the United States (US) (8.4%). This occurrence was largely associated to the 

receding lakebed that resulted in approximately 40 to 80 tons of dust being released into 

neighboring areas. The small particulates originating from the lakebeds are miniscule and easily 

respirable by humans, consequently affecting the respiratory health of people in nearby 

communities.  

1.2.2. Lack of State Action 

 In recent years, the State of California has encountered a lot of criticism surrounding their 

lack of organized efforts to address and improve the ongoing conditions of the Salton Sea. The 

state has held multiple meetings and considered various proposals to identify a sustainable 

management plan that will address rising concerns. In 2018, the State of California released a 10-
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year management plan centered on aquatic habitat restoration and dust suppression around the 

edge of the Salton Sea. Although this initiative is a step forward, the plan is centered around 

smaller areas and does not address the overarching dilemma of poor WQ. In order to propose any 

larger scale mitigation efforts, there is a need for WQ data to be accessible. At the moment, WQ 

assessments are predominately performed at onsite locations and require a large workforce to 

collect water samples. Since January 2020, the State of California, and Bureau of Reclamation 

(BoR) have ceased WQ monitoring of the Salton Sea. Local entities and non-profit organizations 

have taken it upon themselves to perform WQ assessments and fill the gap left by these 

government agencies.  

1.2.3. Economic Development 

Since 2018, the State of California has held multiple discussions regarding the possibility 

of extracting lithium mineral from the Salton Sea Basin. In March 2020, the California Energy 

Commission released a report that outlined the proposed project and stated this venture would 

produce nearly 600,000 tons of lithium per year that could result in $7.2 billion project (Ventura 

2020). The demand for lithium-ion batteries has increased since 2008 due to their use within 

electric vehicles and power grids (Agusdinata et al. 2018). The State of California recently 

passed a law that would require all sales of passenger vehicles within the state to be electric 

vehicles by 2035. Beyond California, it is estimated that the global demand of lithium will 

steadily increase and exceed the resources available by 2025 (Wanger 2011).  

At the time of writing this thesis, the California Energy Commission is requesting bid 

proposals from companies to determine the best approach in extracting lithium using geothermal 

technology which may reduce some environmental impact; however, many environmentalists 

have already expressed major concerns (Gammon 2022). Most of the environmental impacts are 
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centered on polluting water sources, increasing carbon dioxide emissions, and creating a water 

table reduction that may lead to a drier lakebed in the Salton Sea. 

1.2.4. Gap in Current Literature  

The study will help build upon progress made within the spatial sciences, as it explores 

the application of NDCI in assessing chlorophyll-a concentration using Landsat 5 Thematic 

Mapper (TM) and Landsat 8 Operational Land Imager (OLI) imagery. The NDCI has been 

assessed using Landsat 8 OLI imagery, but studies have not incorporated Landsat 5 TM to 

conduct a temporal analysis. The study also creates a framework that can be reproduced across 

other bodies of water and across different temporal ranges. The research benefits local 

community members by highlighting shrinkage rates and poor WQ in the Salton Sea. Moreover, 

the study aims to address a scientific gap in the literature surrounding WQ within the Salton Sea. 

The majority of the current literature in the Salton Sea is centered on salinity levels and the rate 

in which the body of water is shrinking. Very few studies attempt to apply semi-empirical 

indices to assess WQ parameters. Lastly, the results of this study and studies alike can aid local 

agencies in assessing the Salton Sea and inform policy.  

1.3. Methodological Overview  

The methodology adopted in this study can be segmented into three different sections. 

The first section consisted of evaluating peer-reviewed articles to identify common trends and 

methodologies used to assess chlorophyll-a concentrations within inland bodies of water. Upon 

analyzing the literature, semi-empirical modeling methods were deemed suitable for conducting 

temporal analysis of chlorophyll-a concentrations in the Salton Sea. Semi-empirical indices, such 

as the NDCI, are useful since they can be reproduced and compared across different bodies of 

water and temporal ranges. In the second section, the study focused on the application of the 
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NDCI across the Salton Sea. This step entailed the use of Landsat 5 TM and Landsat 8 OLI 

imagery to capture the selected temporal range (2002 to 2020). The third section assessed the 

accuracy and performance of the NDCI by running multiple linear regressions against other 

notable two-band (2BDA) and three-band (3BDA) algorithms. The 2BDA and 3BDA were 

selected based on peer-reviewed articles that demonstrated comparable or better results than the 

NDCI in assessing chlorophyll-a presence using Landsat imagery.  

1.4. Thesis Overview  

The thesis is comprised of five organized chapters. Chapter 2 provides a comprehensive 

literature review of related work centered on WQ assessments, remote sensing (RS) modeling 

approaches and RS indices for WQ assessments. Chapter 3 describes the data sources and 

provides an overview of the methodology adopted within the study. Chapter 4 summarizes the 

findings from the adopted methodology and applied analysis. Lastly, Chapter 5 discusses the 

results, identifies limitations of the study and outlines future work. 
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Chapter 2 Literature Review 

In this chapter, a survey of the literature related to traditional sampling methods, RS imagery in 

WQ assessments, WQ parameters and RS data is presented. The findings of the literature were 

used to inform the methodology and the direction of the overall study.  

2.1. Traditional Water Quality Monitoring and Assessment Methods 

Water shortages and low precipitation rates have historically been documented by early 

civilizations and have contributed to the adoption of water management practices aimed at 

preserving water resources (Behmel at al. 2016; Neary, Ice, and Jackson 2007). In the 20th 

century, the concept of water management gained renewed interest owing to population growth 

and limited access to natural resources. In 1972, the US enacted the Clean Water Act, which 

regulated the discharge of pollutants into US waterbodies and established WQ standards (Keiser 

and Shapiro 2019). In 1992, the United Nations Earth Summit introduced the Integrate Water 

Resource Management (IWRM) process to participating nations (Saravanan, McDonald, and 

Mollinga 2009; Savenije and Van der Zaag 2008). IWRM is a framework that promotes 

equitable and sustainable approaches to managing water and land resources. Savenije and Van 

der Zaag (2008) state that there is an emerging consensus on IWRM and water management 

necessitating an integrated approach, but there remain some issues that are unresolved. Biswas 

(2008) analyzes existing literature surrounding IWRM and identified 41 components that would 

need to be integrated to water resource management, including WQ, water demand, economic 

factors, ground water estimates, municipal water activities and land related issues. Although 

Biswas (2008) disputes the ability for this approach to be truly implemented there has been an 

increase in Water Quality Management Plans (WQMPs) within the past thirty years.  
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WQPMs are long-term programs designed to monitor aquatic environments, in order to 

better respond to emerging problems and assess developing water trends (Behmel et al. 2016; 

Bartram and Ballance 1996). WQPMs require standardized WQ assessments and continual 

evaluation of all monitoring activity. Behmel at al. (2016) and Strobl and Robillard (2008) 

outline eight different elements necessary for the implementation of WQMPs. These include (1) 

identifying program objectives, (2) determining location of sampling sites, (3) selecting relevant 

WQ parameters, (4) defining sampling frequencies, (5) calculating necessary human and fiscal 

resources, (6) establishing logistics and quality control checks, (7) launching data distribution 

platform and (8) assessment on use of public data distributed. Madrid and Zayas (2007) concur 

on the importance of these elements, but also include sampling as an additional element.  

Madrid and Zayas (2007) also highlight the importance of maintaining sampling 

equipment, following post sampling procedure and maintaining clear record-keeping of samples 

collected. Figure 5 illustrates the various processes and considerations associated with collecting 

a water sample. WQ assessments are an integral part of WQPMs and consist of both data 

collection and data analysis processes. Traditional WQ assessments predominately use water 

sampling as part of their data collection process in combination with laboratories to conduct 

measurements of the collected samples. According to Madrid and Zayas (2007), water samples 

must abide by strict processing requirements to maintain the integrity of specimen and ought to 

be representative of the environment being evaluated. There are two kinds of water sampling 

approaches concerning the time a sample is collected, discrete and composite samples (Cassidy 

et al. 2018; Matamoros 2012). Discrete or grab samples are single samples collected within a 

single container. These types of samples represent the chemical composition of the waterbody at 

a given time and place and are primarily used when temporal considerations are not of 
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importance. In contrast, composite samples consist of multiple samples collected within 24 hours 

and combined within a single container.  

 

Figure 5. Sampling plan. Source: Madrid and Zayas 2007 

Traditional water sampling methods for chemical pollutants include spot, instrumental 

and extraction sampling (Cassidy et al. 2018; Madrid and Zayas 2007). Spot or bottle sampling is 

a peer-reviewed method that has been widely adopted for governing and legislative efforts 

(Madrid and Zayas 2007). Spot sampling consists of individuals taking manual water samples at 

onsite locations using a bottle to extract the water. This approach is predominately used within 

surface waters, as individuals would be required to be onshore or on a boat. To ensure there is 

minimal cross contamination, the bottle is rinsed multiple times with the surface water prior to 

collecting the final sample (EPA 2017; Madrid and Zayas 2007). After the water sample has 

been extracted, the water undergoes instrumental analysis within a laboratory or onsite location. 

Water samples transported to laboratories are stored within a cooler at 4 to 6 degrees Celsius to 

ensure the temperature does not breakdown the contaminants during transit (EPA 2017). To 
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extract water samples from waters that exceed 0.5 meters, the bottle is open upon entry and 

lowered to the desired depth using a rope or cable (Madrid and Zayas 2007). 

Although conventional sampling methods have become the norm within WQMPs, they 

have discernable limitations. Spot sampling can be categorized as being discrete, as it consists of 

taking a singular water sample at a given location and time (Cassidy et al. 2018; Matamoros 

2012). This approach fails to reflect intermittent contamination and can be susceptible to quality 

control errors (Gagnon et al. 2007; Madrid and Zayas 2007). Because traditional sampling 

methods are conducted manually, they require high financial and human resources that limit the 

frequency of testing and the number of sampling sites. There are also concerns on the type of 

instruments that are used to measure water samples, given that they can vary across long-term 

programs and between laboratories. Schaeffer et al. (2013) and Madrid and Zayas (2007) agree 

that WQMPs should adopt novel approaches and emerging tools to conduct water monitoring. 

Some of these new approaches include using onsite sensors, RS imagery and online monitoring 

systems.  

2.2. Water Quality Parameters  

This section outlines different WQ parameters that are of importance to any WQ assessment. 

WQ is a measurement that allows us to determine the chemical, biological and physical 

characteristics of water in order to assess any degradation on WQ. These measurements allow 

the assessment of degradation on WQ. WQ indicators can be further categorized into subgroups, 

including chemical (e.g., dissolved oxygen, pH, organic compounds, and nutrients), biological 

(e.g., algae and bacteria), physical (e.g., temperature, turbidity, clarity, color, and salinity), and 

other (odor, color, and floating material). These subgroups are important to differentiate, as 
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screening tests will vary according to the selected WQ parameter and the overall objective of the 

study (Gholizadeh, Melesse, and Reddi 2016; Gorde and Jadhav 2013; Usali and Ismail 2010). 

 Stakeholders and local agencies have an avid interest in identifying WQ parameters that 

are best suited for a given body of water, as they are often adopted and standardized within local 

WQMPs. The selection of WQ parameters is dependent on the conditions surrounding the AOI 

and publications released. Multiple studies have been conducted around the Salton Sea to 

determine its physical and chemical compositions. Local and state agencies have equally 

conducted their own assessments, yet much of the data and findings remains unpublished 

(Holdren and Montano 2002). The earliest publication conducted on the Salton Sea regarding 

WQ dates back to the MacDougal publication of 1907. The journal examined major ion 

compositions including sodium chloride, magnesium chloride, magnesium sulphate, potassium 

sulphate, calcium sulphate, magnesium sulphate and calcium carbonate against other sources of 

sea water and determined high levels of salinity within the Salton Sea (Holdren and Montano 

2002; MacDougal 1907). Publications thereafter centered on the concentrations of nutrients, 

metals and pesticides and have contributed to local WQMPs and WQ parameter selections. 

2.2.1. Suspended Sediments 

The US Environmental Protection Agency defines “suspended sediments” as fine 

inorganic specks of silt and clay that measure less than 0.063 millimeters. Also included are fine 

sands between 0.63 to 0.25 millimeters and other grainy matter found within the water column 

(Droppo 2001; Spehar, Taylor, and Cormier 2002). According to Ritchie, Zimba and Everitt 

(2003), suspended sediments are the most common water pollutant within the surface of 

freshwater systems. Traditional water assessments measure concentrations of suspended 

sediment by collecting water samples and transporting them to labs.  
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2.2.2. Chlorophyll and Algae  

Chlorophyll is a green pigment and natural compound that allows plants to absorb 

sunlight and undergo photosynthesis (EPA 2022; Ritchie, Zimba, and Everitt 2003). There are 

two types of chlorophyll: chlorophyll-a and chlorophyll-b. Chlorophyll-a is the primary pigment 

of photosynthesis and it absorbs orange and violet light between 430 to 660 nanometers (Martin 

2019). Chlorophyll-b is an accessory pigment that absorbs light between 450 to 650 nanometers. 

This pigment is not always present within the photosynthesis process and will pass absorbed 

light to the primary pigment (Martin 2019). Chlorophyll-a is often used as an indicator of algae 

growth and has been adopted in WQ assessments to manage eutrophic bodies of water. 

Eutrophication refers to high concentrations of nutrients in a lake, river or other bodies of water 

(Ansari et al. 2010; Dorgham 2014; Lin et al. 2021; Qin et al. 2013). Algae are native to 

freshwater systems, but excessive amounts result in high plant-life density and occasionally dead 

oxygen zones or loss of aquatic life (Ansari et al. 2010; Bhateria and Jain 2016; EPA 2022; 

Dorgham 2014).  

2.2.3. Temperature 

Temperature is a physical WQ indicator that measures the thermal energy of a 

constituent. Thermal energy is the movement of molecules and atoms and can be transmitted 

between constituents as heat (Ling et al. 2017; Raman et al. 2017; Verones et al. 2010). The 

transfer of heat to water bodies can occur by means of natural phenomena or human activity; 

excessive amounts are thermal pollution (Bhateria and Jain 2016; Raman et al. 2017; Ritchie et 

al. 2013). Outside of measuring thermal energy, high temperatures can decrease dissolved 

oxygen levels and regulate the type of aquatic species that reside in a river or lake (Bhateria and 

Jain 2016; Vasistha and Ganguly 2020). 
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2.2.4. Salinity  

 Salinity is a physical WQ indicator that measures dissolved salt concentrations in a 

waterbody (EPA 2022b; Wang and Xu 2012). Salt originates from three main sources: (1) 

evaporated ocean water, (2) landscape weathering and (3) other environmental settings, such as 

drainage water and road salts (Dailey, Welch, and Lyons 2014; Obianyo 2019; Nielsen et al. 

2003). Small quantities of water are suitable for aquatic life and plants, but higher amounts 

negatively affect the viability of eggs and marine plant seeds (Nielsen et al. 2003). Compared to 

oceans, inland waters have lower salinity levels and higher variations in salinity due to seasonal 

water deposits, evaporation rates and precipitation frequency (Gholizadeh et al. 2016). Hua 

(2017) performed a WQ assessment on the Malacca River in Malaysian and determined that high 

salinity pollution resulted from pesticide usage in nearby rubber and oil plantations. This study 

echoes numerous studies conducted around the Salton Sea, which conclude that salinity pollution 

was largely attributed to pesticide usage and nearby agricultural practices (Bradley et al. 2022; 

Cohen 2019; Gao et al. 2022).  

2.3. Water Quality and Remote Sensing  

Multiple academic studies have reported on the effectiveness of using RS techniques and 

tools to better monitor WQ (Madrid and Zayas 2007; Schaeffer et al. 2013; Usali and Ismail 

2010). RS as process for obtaining information on an object, AOI or through the use of satellites 

and sensors that are able to measure reflected and emitted radiation (Gholizadeh, Melesse, and 

Reddi 2016; Usali and Ismail 2010). In the past decades, there have been advancements in 

sensors, satellites and modeling approaches used in WQ assessment. The following subsections 

explore these topics further.  
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2.3.1. Sensors and Satellites Used for Water Quality Assessments 

 Technological advancements and public-facing NASA missions have made RS imagery 

readily available. However, it has not been commonly incorporated into WQ assessments and 

overarching WQMPs. The selection of RS imagery for water assessment is largely dependent 

upon the satellites and their associate multispectral sensors; other factors to consider include 

temporal range and spatial resolution. RS sensors measure the physical properties of an object or 

environment through the emission of heat, radiation, sound, light or motion (Gholizadeh, 

Melesse, and Reddi 2016; Sanderson 2010; Zhu et al. 2018).  

 Sensors can be categorized into two broad categories, airborne and spaceborne sensors. 

Airborne sensors are mounted on aircrafts (i.e., helicopters, balloons, or aircrafts) and were first 

introduced in 1859 when Gasper Felix Tourmachon captured the first aerial image of Paris on a 

hot air balloon (Waghmare and Suryawanshi 2017; Zhu et al. 2018). Aerial sensors are flexible 

instruments better suited for smaller waterbodies, as they require smaller pixel sizes (Gholizadeh, 

Melesse and Reddi 2016). Costs associated with airborne data can drastically increase as the 

surface area increases—standard cost of 350 dollars per square mile—and is one of the main 

impediments within its broader application in WQ assessments (Chipman, Olmanson, and 

Gitelson 2009; Gholizadeh, Melesse, and Reddi 2016).  

 Spaceborne or satellite sensors are aboard spacecrafts and satellites orbiting the earth’s 

atmosphere (Gholizadeh, Melesse and Reddi 2016; Roy, Behera and Srivastav 2017). Satellite-

derived data have lower associated costs and are more readily available, given fixed revisiting 

time frames. In terms of spatial resolution, satellite data tends to be coarse to moderate and 

ranges between 30 to 120 meters. Table 1 contains common spaceborne sensors and satellites 

used in WQ assessments, such as SPOT-5, MODIS, Landsat, Terra and Sentinel 2. Table 1 was 

compiled based on data from Gholizadeh, Melesse and Reddi (2016) and this literature review.  
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2.3.2. Remote Sensing Modeling Approaches 

The use of RS imagery in WQ dates to the 1970s with the work of Ritchie et al. (1974). 

The study focused on the use of RS techniques to identify and estimate the presence of  

suspended sediment within six Mississippi reservoirs (Ritchie et al. 1974; Usali and Ismail 

2010). The study resulted in the following empirical equation:  

                                           𝑌 = 𝐴 + 𝐵𝑋     or      𝑌 = 𝐴𝐵!                                                   (1) 

where Y is the RS measurement (i.e., reflectance, energy, radiance), X represents the WQ 

parameter and A and B are empirically derived factors (Ritchie, Zimba, and Everitt 2003). This 

empirical equation was then adopted by other researchers to examine various WQ parameters 

such as suspended matter, algae, and temperature. Beyond the development of empirical 

equations, RS techniques have continued to evolve and now include semi-empirical, analytical 

and semi-analytical models. These models are bio-optical algorithms that determine the 

concentration of nutrients using both optical qualities and in-situ WQ parameter measurements 

(Topp et al. 2020).  

Empirical models remain the most common RS approach, as it involves fitting a linear 

regression between in-situ WQ measurements and spectral bands (Topp et al. 2020; Wang and 

Yang 2019). These models are highly dependent on the availability of in-situ data to validate the 

accuracy of the model and are rarely used across large temporal and spatial resolutions (Wang 

and Yang 2019). Gholizadeh, Melesse and Reddi (2016) argue that empirical models are not 

suited for all WQ parameters, especially those that rely on multispectral sensors that can yield 

ambiguous results. For example, researchers have long debated on the use of empirical methods 

to assess chlorophyll-a concentrations. Existing spectral satellites have difficulty differentiating 

between suspended sediments and chlorophyll-a spectral signals when large amounts of 
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sediments are present within eutrophic bodies of water. Wang and Yang (2019) conducted a 

literature review of current research using RS techniques for WQ assessments in China and 

determined that chlorophyll-a was the highest WQ indicator examined using empirical models. 

Figure 6 illustrates the number of publications for different indicators among different model 

types. 

 

Figure 6. Modeling methods used in remote sensing. Source: Wang and Yang 2019 

  In contrast, semi-empirical methods use spectral band index values rooted in physical 

measurements to retrieve WQ parameters from RS imagery (Lednicka and Kubacka 2022; Mejia 

Avila, Torres-Bejarano, and Martinez Lara 2022; Topp et al. 2022). These models are designed 

to augment the spectral properties of the WQ indicators and reduce noise from other parameters. 

Since semi-empirical models are based on physical properties, model users are expected to have 

prior knowledge of sensors, spectral bands, and inherent optical properties (IOPs) to select 

appropriate RS imagery (Topp et al. 2022). IOPs are the scattering and absorption characteristics 

of water and suspended material (Lee 2006). Semi-empirical models are low cost and can be 

easily reproduced across different spatial and temporal scales (Mejia Avila, Torres-Bejarano and 
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Martinez Lara 2022). Wang and Yang (2019) and Topp et al. (2022) identified chlorophyll-a, 

suspended sediments, turbidity, and cyanobacteria as the most common WQ indicators used in 

semi-empirical modelling. 

 Both analytical and semi-analytical models are physics-based. They determine WQ 

concentrations by modeling surface water reflectance through IOPs of water and atmosphere 

(Gholizadeh, Melesse, and Reddi 2016; Topp et al. 2022). Analytical approaches are best suited 

for analyzing features that have distinct absorption values. Hence, they are not suited for 

measuring dissolved oxygen or suspended sediments whose absorption values can vary. Given 

that in-situ WQ measurement are used to parameterize semi-analytical models, they are often 

more accurate and thus more commonly used for assessing in inland bodies of water (Morel and 

Gordon 1980; Topp et al. 2020). However, due to their complex nature and high data 

requirements relative to empirical models, analytical models have lower application within WQ 

assessments (Wang and Yang 2019).  

2.3.3. RS and Water Quality Parameters 

In this section, an overview of RS techniques used to assess WQ parameters is provided. 

WQ parameters discussed within this section include suspended sediments, chlorophyll, 

temperature and salinity.  

2.3.3.1. Suspended Sediments 

There has been a growing consensus among researchers on the use of RS techniques to 

monitor suspended sediments. Current sensors and satellites (e.g., Landsat, IRS, and SPOT) are 

able to detect and quantify their optical signals, including Landsat, IRS, and SPOT (Sherman, 

Houser and Baas 2013; Usali and Ismail 2010). Because the quantity of signal returned from a 

sensor is correlated to the surface area of a particle, it can provide rough approximation of 
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suspended sediment concentrations (Sherman, Houser, and Baas 2013). To determine the optimal 

wavelength for use, researchers need to monitor in-situ measurements. Many studies have 

developed distinctive algorithms to establish a relationship between the concentration of 

suspended sediments and reflectance using in-situ data. However, since the algorithms are rooted 

in in-situ measurements, they cannot be repurposed for different bodies of water or even within 

large temporal scales for the same water body. Despite variance between studies, wavelengths 

between 700 and 800 nanometers have appeared to be the most effective in capturing suspended 

sediments (Ritchie, Zimba, and Everitt 2003; Usali and Ismail 2010). Figure 7 illustrates the 

relationship between reflectance and wavelength, as affected by the varying concentration levels 

of suspended sediments (Ritchie, Zimba, and Everitt 2003). 

 

Figure 7. Relationship between wavelength and reflectance for suspended sediment 
concentrations. Source: Ritchie, Zimba, and Everitt 2003 

2.3.3.2. Chlorophyll 

Wang and Yang (2019) consider chlorophyll-a as the most studied WQ indicator in 

inland bodies of water and claim it is widely assessed across all RS models. In contrast, 
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Brezonik, Menken and Bauer (2005) and Ritchie, Zimba and Everitt (2003) claim most RS 

studies employ empirical models centered on the relationship between chlorophyll and 

reflectance values. Chlorophyll-a absorptions occur at shorter wavelengths, between 450 to 475 

nanometers and between 650 to 680 nanometers (Ritchie, Zimba, and Everitt 2003). Figure 8 

illustrates the relationship between wavelength and reflectance for differing chlorophyll 

concentrations. However, researchers are in agreement that existing satellites, such as SPOT and 

occasionally Landsat, sometimes have limitations to assessing chlorophyll concentrations. Strong 

signals emanating from suspended sediments can block chlorophyll-a reflectance. This 

occurrence is more prominent in bodies of water with low water volume and small surface areas.  

 

Figure 8. Relationship between wavelength and reflectance for chlorophyll concentrations. 
Source: Ritchie, Zimba, and Everitt 2003 

2.3.3.3. Temperature  

In RS studies, researchers employ thermal sensors aboard planes or rely on satellite 

imagery from MODIS and Landsat to measure temperature (Gholizadeh, Melesse, and Reddi 

2016; Ritchie, Zimba, and Everitt 2013). Thermal infrared data incorporates middle wavelengths 
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ranging between 3 to 5 micrometers and long infrared wavelength ranging between 7 to 14 

micrometers (Scafutto and de Souza Filho 2018; Wu et al. 2019).  

2.3.3.4. Salinity 

 Similar to other WQ indicators, RS techniques can assist in monitoring water salinity 

using microwave wavelengths. Salinity is correlated with water conductivity. Changes in 

conductivity can be captured through microwave radiations (Lewis and Perkin 1978; Vinas 

2012). Gholizadeh, Melesse and Reddi (2016), Ramadas and Samantaray (2018), Wang and Xu 

(2012), and Vinas (2012) identified numerous RS satellites suited for salinity, including Landsat, 

Aquarius, SEASAT and SMOS. 

2.3.4. Remote Sensing Indices  

 In recent years, the use of semi-empirical methods and spatial indices to assess WQ 

parameters has increased. A spectral index is an equation that combines pixel values from more 

than one spectral band in multispectral images (Tran, Reef, and Zhu 2022). Spectral indices are 

derived from simple band ratios that use adding and subtracting bands to highlight targeted 

features and reduce environmental effects. Common spatial indices employ normalized 

difference, in which the band ratio is standardized by the sum of the two bands selected as shown 

in the following equation:  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	 = 	"!#	""
"!%	""

                                        (2) 

where Bx is the first selected band and By is the second selected band. This method ensures that 

the spatial index layer ranges between -1 and 1. Band ratios without standardization can vary in  

range and can be difficult to compare among one another.  
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 There is an array of spatial indices that have been developed to highlight water bodies 

and WQ parameters, while filtering out surrounding landcover. One of the most common is the 

normalized difference water index (NDWI), which uses two separate equations to identify water 

in RS imagery. The first equation employs shortwave infrared (SWIR) and near infrared 

channels (NIR). It was first introduced by Gao (1996) and is expressed as follows:  

𝑁𝐷𝑊𝐼	(𝐺𝑎𝑜	1996) = 	&'(#)*'(
&'(%)*'(

                                                   (3)  

Gao’s NDWI can assess water content within vegetation, as NIR and SWIR have a high 

correlation with vegetation water content (Gao 1996; Gao et al. 2015; Xu 2006). The second 

NDWI equation was introduced by McFeeters (1996). It employs NIR and green bands as shown 

in the following expression: 

𝑁𝐷𝑊𝐼	(𝑀𝑐𝐹𝑒𝑒𝑡𝑒𝑟𝑠	1996) = 	 +,--.#&'(
+,--.%&'(

                                          (4) 

McFeeter’s NDWI highlights waterbodies by amplifying the reflectance of water using the green 

band and minimizing the reflectance of NIR seen in vegetation and other landcover types 

(McFeeters 1996; Xu 2006). This expression produces an index in which water features have 

high values and non-water feature have low or negative values, see Table 2. The NDWI has been 

used to extract bodies of water and is especially useful when the water surface area fluctuates 

through seasons or years. 

 Table 2. McFeeter’s NDWI Pixel Range 
Range Land use/Landcover Type 
-1.00 to -0.30 Drought, non-water surface 

-0.30 to 0.00 Moderate Drought, non-water surface 

0.00 to 0.20 Flooding 

0.20 to 1.00 Water Surface 
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Xu (2006) argues McFeeter’s NDWI generates positive values for urban-made structures and 

proposed the modified NDWI (MNDWI). The MNDWI equation uses middle infrared (MIR) 

and green bands as shown in the following equation: 

𝑀𝑁𝐷𝑊𝐼 = 	 +,--.#/'(
+,--.%/'(

                                                        (5)  

According to Xu (2006), the MNDWI can generate higher values for waters of bodies, given the 

MIR’s ability to absorb a higher percentage of light than NIR. The MNDWI should also produce 

lower pixel values for urban areas and structures (Nugroho 2013; Xu 2006). Nugroho (2013) 

assessed the NDWI, MNDWI and the new water index (NWI) to identify inundated areas within 

Java Island. The NWI was introduced by Yang et al. (2011) as a method for identifying and 

extracting bodies of water using the following equation: 

𝑁𝑊𝐼 = "01-#	(&'(%/'(3%/'(4)
"01-%(&'(%/'(3%/'(4)

                                                 (6)  

Nugroho (2013) concluded that McFeeter’s method provided more accurate results when 

compared against MNDWI and NWI. Similarly, Ali et al (2019) determined the usefulness and 

accuracy of using NDWI and MNDWI in extracting bodies of water, including those located in 

urban areas. In contrast, a study conducted by Jiang et al. (2021) determined that NDWI may not 

be suitable for identifying and extracting waterbodies that are frozen or are extremely large. 

Despite some reservations, the use of NDWI to extract bodies of water is a continued practice 

when assessing WQ parameters (Ali et al. 2019; Garg, Aggarwal, and Chauhan 2020; Haibo et 

al. 2011; Yue et al. 2020). 

 Aside from water indices used to identify and extract bodies of water, there has been a 

large development in RS algorithms used to assess WQ parameters, including chlorophyll-a.  

The majority of RS algorithms for chlorophyll-a have employed red and NIR channels, given 

that studies have shown blue and green band algorithms show inaccuracies when assessing 
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inland bodies of water with high turbidity (Mishra, Schaeffer, and Keith 2014). Mishra and 

Mishra (2012) developed the NDCI using red-edge and red bands as shown in the following 

equation: 

𝑁𝐷𝐶𝐼 = 	 (-6	768-#(-6
(-6	768-%(-6

                                                            (7) 

 The spectral index was modeled after the normalized difference vegetation index 

(NDVI), which was initially introduced by Tucker (1979). The NDCI uses a spectral range that 

lies between 665 and 708 nm. This maximizes chlorophyll-a sensitivity and addresses several 

limitations found when using the 748 to 778 nm spectral range (Kamerosky, Cho and Morris 

2015; Mishra, Schaeffer, and Keith 2014). The use of band ratio standardization ensures that the 

NDCI values not only range between -1 and 1, but also address seasonal variability. It was 

initially assessed using the Medium Resolution Imaging Spectrometer sensor aboard the 

ENVISAT and has since been tested across different sensors and satellites, including Landsat 8, 

Sentinel-2 and Worldview-3 (Buma and Lee 2020; Watanabe et al. 2015). Given that not all 

sensors have the capacity to capture RS imagery utilizing a red-edge band, the formula has been 

amended in multiple studies. The red edge band has been replaced with the NIR band and 

essentially models the NDVI as shown in the following equation: 

𝐴𝑚𝑒𝑛𝑑𝑒𝑑	𝑁𝐷𝐶𝐼 = 	&'(#(-6
&'(%(-6

                                                     (8) 

 In the RS community, there is a growing consensus that NDCI estimates chlorophyll-a 

concentrations more accurately when using Sentinel-2 versus Landsat-8 and WorldView-3 

imagery (Beck et al. 2016; Caballero et al. 2020; Karimi, Hashemi and Aghighi 2022; 

Ogashawara and Moreno-Madrinan 2016). This consensus is largely attributed to the red-edge 

band that is present within Sentinel-2. However, there have been studies that demonstrate the 

usefulness of using Landsat imagery to apply NDCI. Buma and Lee (2020) assessed the use of 
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2BDA, 3BDA, florescence line height (FLH) and NDCI using Landsat 8, WorldView-3 and 

Sentinel-2 imagery on Lake Chad, Africa. Figure 9 contains the algorithms used to derive 

chlorophyll-a concentrations in Lake Chad. They determined that the four algorithms had an 

average R2 of 0.74 when using Seninel-2 data. The 2BDA had the lowest R2 value at (R2 = 0.60) 

and the 3BDA had the highest (R2 = 0.95). This value was in contrast with Landsat 8 that had an 

overall R2 of 0.78, a slightly higher R2 than Sentinel-2 data. The Landsat 8 performance 

diagnostics also revealed that 3BDA (R2 = 0.89) and NDCI (R2 = 0.75) performed better than 

2BDA (R2 = 0.71) and FLH (R2 = 0.73).  

 

Figure 9. Algorithms to assess chlorophyll-a concentrations. Source: Buma and Lee 2020 

 Watanabe et al. (2015) conducted a similar assessment using only Landsat 8 imagery to 

determine chlorophyll-a concentration within a water reservoir in Brazil. The study examined 

various two-band and three-band models proposed by literature, including NDCI and the 2BDA 

performed within the Buma and Lee (2020) study (see Figure 10). Their findings revealed that 

the NIR-Red, NIR-Green and NIR-Blue ratios generated high R2 values and demonstrated their 

sensitivity towards detecting chlorophyll-a concentrations. The NDCI had one of the lowest R2 

at 0.39, which contrasted greatly with the findings of Buma and Lee (2020). In terms of fitting 

the models, Watanabe et al. (2015) concluded that all algorithms illustrated satisfactory fits, 
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however, they underestimated the actual concentrations and were unable to accurately capture 

the correct trophic state. The NIR-Green ratio had the poorest results and NIR-Red (linear and 

polynomial) yielded the best fit. Watanabe et al. (2015) states the algorithms may be affected by 

the trophic state of the water feature and might display better results when used with other bodies 

of water. Overall, the benefit of continuing to use Landsat imagery to assess chlorophyll-a 

concentrations centers on its temporal range, given Sentinel-2 only launched in 2015. 

 

Figure 10. Algorithms used to assess chlorophyll-a concentrations using Landsat 8 OLI. Source: 
Watanabe et al. 2015 
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Chapter 3 Methods 

The objective of this study is twofold: (1) use a semi-empirical RS index to perform a temporal 

analysis of chlorophyll-a presence between 2002 and 2020, and (2) assess the efficacy of the 

NDCI against 2BDA and 3BDA using linear regressions. Historically, WQMPs have been 

implemented using traditional WQ assessment methods that require high financial and labor 

resources. The use of NDCI to assess chlorophyll-a presence can help alleviate some of the 

resource requirements in WQMPs. The application of NDCI, 2BDA and 3BDA for WQ 

assessments have been examined in multiple studies and have proven to be comparable with 

empirical methods (Buma and Lee 2020; Das, Kaur, and Jutla 2021; Mishra and Mishra 2012; 

Xu et al. 2019a; Xu et al. 2019b). 

 This chapter summarizes the data and methodologies necessary for performing a 

temporal analysis of the Salton Sea using the NDCI. Section 3.1 provides a detailed description 

of the in-situ measurements and RS data sources. Section 3.2 expands on how the two datasets 

were prepared for use, including data cleaning, coordinate system projections and mosaicking RS 

imagery. Section 3.3 summarizes the application of NDWI to extract bodies of water and the 

application of NDCI to view chlorophyll-a presence in the Salton Sea. Lastly, Section 3.4 

explains the linear regression assumptions and the application of linear regressions to assess the 

performance of NDCI against 2BDA and 3BDA. Figure 11 displays a general overview of the 

methodology. 
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Figure 11. Overview of methodology 
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3.1. Data Description  

 The monitoring of WQ within inland waterbodies requires particular consideration to 

satellite imagery, as cloud coverage and atmospheric radiation can be impediments to assessing 

surface reflectance. Satellite imagery is the primary data type that is used within the study, while 

the in-situ chlorophyll-a measurements will serve to assess the use of the NDCI against 2BDA 

and 3BDA. Table 3 provides a brief overview of the imagery and in-situ data, including short 

descriptions and source specifics. 

3.1.1. Landsat Imagery 

The Landsat collection was established in 1972 with the launch of Landsat 1 and was 

predominantly inspired by the Apollo moon missions that resulted in early land surface images 

of the Earth (Irons and Dwyer 2010; Williams, Goward, and Arvidson 2006). According to the 

USGS, the main objective in establishing a RS satellite program was to allow civilians and 

scientists the opportunity to further explore the natural resources found within the planet 

(Goward et al. 2006; Loveland and Dwyer 2012). The satellite program was initially met with 

contention by the Department of Defense, which had concerns regarding near-real time RS data 

being readily available to the public. From a foreign relations perception, the Department of 

Defense was apprehensive of openly monitoring other countries without their explicit consent. 

Ultimately, the RS program was adopted, and it has since become the longest serving satellite 

program.  
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Since the successful launch of Landsat 1, the National Aeronautics and Space 

Administration has launched seven successful Landsat satellites (i.e., Landsat 2, Landsat 3, 

Landsat 4, Landsat 5, Landsat 7, Landsat 8, and Landsat 9) (Wulder et al. 2022). Landsat 6 

launched on October 5, 1993, from the Vandenberg Air Force Base in California, but failed to 

Landsat 5 is the longest operating RS satellite. Landsat 5 orbited for 28 years and captured 2.5 

million images before being discontinued in 2013 (Wulder et al. 2022). Similar to is predecessor, 

Landsat 5 carried aboard the Multispectral Scanner (MSS) and TM sensors. The MSS captured 

four spectral bands between 0.5 to 1.1 micrometers, whereas the TM sensors added mid-range 

infrared bands. In contrast, Landsat 7 carries the Enhanced Thematic Mapper Plus (ETM+) that 

offers higher quality products and the addition of a panchromatic band with a 15-meter 

resolution. In May 2003, the Scan Line Corrector, a mechanism responsible for the line of sight 

of the satellite, malfunctioned and was unable to be repaired (Scaramuzza and Barsi 2005). As a 

result, RS images in Landsat 7 are duplicated and follow a zig-zag pattern along the ground. 

Landsat 8 was launched in February 2013, and it carries two sensors, the OLI and the Thermal 

Infrared Sensor (TIRS) (Wulder et al. 2019; Wulder et al. 2022). The OLI contains nine spectral 

bands, including SWIR and panchromatic bands. Similar to other Landsat satellites, Landsat 8 

OLI has a 16-day repeat cycle and a 30-meter spatial resolution. Landsat 9 is the latest satellite to 

be launched and it contains improved versions of the OLI and TIRS sensors. 

 The Landsat collection provides RS data to public users at different levels of processing 

and resolution. WQ studies commonly use level-1, level-2 or modified versions of level-1 and 

level-2 to assess surface reflectance and temperature values. Level-1 products consist of raw data 

products that are derived from the satellite sensors and have not undergone any processing or 

corrections. This minimal level of processing is common in the research community, given that it 
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allows users the flexibility to select the correction methodology best suited for their study. In 

contrast, level-2 data products have undergone radiometric and atmospheric corrections. These 

corrections often entail converting digital numbers to radiance and radiance to top of atmosphere 

(TOA) reflectance.  

Due to the spatial, spectral, and temporal resolution requirements, this study employs 

Landsat Analysis Ready Data (ARD) that has been pre-processed, corrected and is ready to use. 

ARD data was developed by Global Land Analysis and Discovery and is processed using the 

following four steps for surface reflectance values: (1) conversion to TOA, (2) quality 

assessment of observations, (3) reflectance normalization and (4) temporal aggregation of images 

into 16-day composites (Potapov et al. 2012; Dwyer et al. 2018). Typical Landsat images have a 

spectral reflectance range from 0 to 1, but this process rescales the range from 1 to 40,000. This 

normalization of spectral values allows images originating from different Landsat satellites to be 

compared against one another.  

 Landsat 5 TM and Landsat 8 OLI U.S. ARD spanning from 2002 to 2020 (i.e., 2002, 

2005, 2008, 2011, 2014, 2016 and 2020) was acquired using the USGS EarthExplorer. Landsat 7 

ETM+ data was not employed within the study, given visible scanline errors within the AOI 

impeded the extraction and analysis of the waterbody. The selection of Landsat imagery was 

dependent on the following criteria: (1) RS image needed to be collected less than 16 days from 

when the in-situ measurements were collected, (2) RS image needed to fall between May and 

August to align with high temperatures, and (3) cloud coverage could not exceed 10 percent of 

image tile. Exceptions to the criteria were made in 2002, 2014 and 2020. In 2014, RS imagery 

surrounding the day of in-situ measurement collection had excessive cloud coverage and the 

selected RS imagery was collected 26 days prior to in-situ data. In 2020, in-situ measurements 



39 
 

were collected only in January of that year and were consequently incorporated in the study. 

Lastly, note that in-situ measurements were not collected by the BoR until 2004 and as such, no 

in-situ measurements were obtained for 2002. The selection for RS imagery for this year was 

guided by the preset May to August range, the month of July was selected.  

3.1.2. In-Situ Data 

As part of the Salton Sea Reclamation Act of 1998, the BoR was directed by the 

Department of Interior to investigate feasible options to manage salinity and water elevation at 

the Salton Sea (Cohn 2000; Sheikh and Stern 2020; Vessey 2000). The intention behind the act 

was to preserve fish and wildlife, increase recreational opportunities and aid in overall economic 

development of surrounding areas. The legislation was approved with the understanding that the 

Salton Sea would remain a reservoir for irrigation drainage. In collaboration with the Coachella 

Valley Water District and the Salton Sea Authority, the BoR collects quarterly water samples 

from preselected sampling stations located in and around the Salton Sea. As documented by the 

BoR, the samples are manually collected at mid-water depths using a YSI meter and the spot 

sampling method. The YSI meter can measure conductivity, water temperature, dissolved 

oxygen and salinity in real-time. Selenium, nitrogen, phosphorous, chlorophyll-a and other 

nutrients are measured at nearby laboratories.  

In-situ measurements of the Salton Sea spanning between 2004 to 2020 were acquired 

from the BoR site. The study uses in-situ values collected between May and August for the 

following years: 2005, 2008, 2011, 2014, 2016 and 2020. The selected month range ensures that 

in-situ measurements are being captured during the hottest months within the region, in order to 

assess maximum values. Evaporation and temperature are correlated, and high temperatures 

cause higher evaporation rates that result in higher nutrient concentrations (Roland et al. 2012). 
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Table 4 provides a summary of in-situ measurements and Landsat imagery data collection dates 

and the date difference between them. 

Table 4. In-Situ and Remote Sensing Data Collection 

3.2. Data Preparation 

Given that the AOI spans across multiple RS imagery tiles, there were a few steps that 

needed to be implemented prior to applying NDWI and NDCI. Similarly, the in-situ data is 

formatted as a .csv file with multiple sheets that needed to be condensed and formatted prior to 

being imported into ArcGIS Pro 2.9.2. This section explains how the different datasets were 

prepared for use. 

3.2.1. Landsat Imagery 

Landsat 5 TM and Landsat 8 OLI surface reflectance data spanning from 2002 to 2020 

were acquired through USGS EarthExplorer. The EarthExplorer interface allows public users to  

acquire RS imagery based on desired parameters, including satellites, sensors, temporal range, 

and cloud coverage percentage. The selected RS data for this study was downloaded in .TIFF file 

format via a compressed folder. The .TIFF files were unzipped upon download and imported into 

ArcGIS Pro 2.9.2. Attributing to the extended temporal range of this study, RS imagery 

Year Landsat Satellite Satellite Collection 
Date 

In-Situ  
Collection Date Date Difference Known Limitations 

2002 Landsat 5 TM 07/04/2002 N/A N/A In-situ data not 
available prior to 2004 

2005 Landsat 5 TM 06/26/2005 06/21/2005 05-Days Missing latitude and 
longitude values 

2008 Landsat 5 TM 08/21/2008 08/20/2008 01-Days  

2011 Landsat 5 TM 06/11/2011 06/02/2011 09-Days  

2014 Landsat 8 OLI 06/19/2014 05/28/2014 22-Days Exceeds 16-Day 
criteria due to cloud 
coverage 

2016 Landsat 8 OLI 05/23/2016 06/06/2016 13-Days  

2020 Landsat 8 OLI 01/11/2020 01/14/2020 03-Days In-situ data only 
collected in January 
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originating from Landsat 8 OLI and Landsat 5 TM imagery were used to capture all the 

preselected years. These two satellites have different sensors aboard and render RS bands with 

differing spectral ranges. Accordingly, the bands imported into the geographic information 

software are dependent on the year and associated satellite. For Landsat 5 TM imagery (i.e., 

2002, 2005, 2008 and 2011), Band 1, Band 2, Band 3, and Band 4 were introduced. For Landsat 

8 OLI imagery (i.e., 2014, 2016 and 2020), Band 2, Band 3, Band 4, and Band 5 were imported. 

Table 3 provides the spectral ranges of bands originating from Landsat 5 TM and Landsat 8 OLI.  

At the time of import, the coordinate system for all raster band layers had not been 

predefined and were consequently projected to the NAD 1983 (2011) State Plane California VI 

(WKID: 0406) coordinate system. The Californian coordinate system is based on the North 

American Datum of 1983 and the Lambert conformal projection. The coordinate system divides 

the State of California and its counties into 6 different zones. Given that the Salton Sea extends 

across both the Riverside and Imperial counties, Zone IV of the California State Plane was 

selected for use.  

 After the RS bands had been projected, similar RS bands in a given year were combined 

into a single raster using the Mosaic tool. Figure 12 illustrates the mosaicked process of 

combining two raster layers into a singular raster layer.  

 

Figure 12. Mosaicked band 2 (2002) 
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3.2.2. In-Situ Data 

The data was obtained from the BoR Lower Colorado Region website and downloaded in 

.csv file format. The original dataset contains multiple WQ parameter measurements taken at the 

various sampling stations, including depth, temperature, dissolved oxygen, pH, turbidity, 

chlorophyll-a, total dissolved oxygens, total suspended solids, calcium, magnesium, sodium, 

alkalinity, nitrate, salinity and phosphorous. Water samples were collected at multiple sampling 

stations, however, only six stations consistently provided data for the specified temporal range. 

Among those six stations, only three stations (SS1, SS2 and SS3) were in the Salton Sea. The 

other three stations were located at offsite locations, such as the Alamo River (AR), New River 

(NR) and Whitewater River (WWR). Note that these are streams of water that drain into the 

Salton Sea. Figure 13 illustrates the study area and the location of the different sampling stations.  

 The original in-situ dataset was modified to include only chlorophyll-a measurements 

that originated from SS1, SS2 and SS3 and spanned between May and August (January 2020 

being an exception). For sampling events that captured two chlorophyll-a measurements, the 

average of the two measurements was recorded. This process allows us to capture a more 

accurate representation of the chlorophyll-a concentration. Moreover, the selected 2005 sampling 

event had missing latitude and longitude values that were replaced with values from the prior 

sampling event. The latitude and longitude for sampling stations vary slightly within each 

sampling event, less than one quarter of a mile.  

After the in-situ dataset had been reformatted, it was uploaded as a single table into 

ArcGIS Pro 2.9.2. The table was then converted to a point feature layer using the XY to Point 

tool. This geoprocessing tool can generate a point layer based on latitude, longitude and z values 

obtained from a .txt or .csv file. Once the points had been created, they were projected to the 
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NAD 1983 (2011) State Plane California VI (WKID: 0406) coordinate system to ensure that all 

the new point features aligned with the raster data layers.  

 

Figure 13. Sampling stations 

3.3. NDWI, NDCI, 2BDA and 3BDA 

This section introduces the application of NDWI, NDCI, 2BDA and 3BDA. After the RS 

imagery data had been projected and mosaicked, the NDWI expression was applied to extract the 

body of water. In recent years, the Salton Sea has experienced a decline surface area and the 

NDWI method allows for the water feature to be accurately delineated, see Figure 14. Surface 

area results will be discussed further in Chapter 4. The Raster Calculator tool was used to 

perform the NDWI expression, see the following equations: 

𝑁𝐷𝑊𝐼9:.6;:<	=	>/ =	":.6	4#":.6	?
":.6	4%":.6	?

                                                 (9) 
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𝑁𝐷𝑊𝐼9:.6;:<	@	A9' =	
":.6	B#":.6	=
":.6	B%":.6	=

                                          (10) 

This process generated a new NDWI raster layer that enhanced water surfaces and ranged from -

1 to 1, see Table 2. To extract the extent of the body of water, the raster layer needed to be 

converted to a binary layer prior to being converted to a polygon feature. Before proceeding with 

these steps, the symbology of the raster layer needed to be altered from stretch to classify. 

Classify symbology allocates a color to each group of values and allows users to determine the 

number of classes and method to which the values will be grouped. This additional step was 

necessary to facilitate the reclassification process that would need to occur thereafter. Through 

the use of two classifications and the manual method, water features were classified into a 

separate grouping from vegetation and other land surfaces.  

 

Figure 14. Salton Sea surface area 
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After modifying the symbology, the NDWI values were reclassified to 1 and 2 values. 

The reclassified layer was subsequently converted to a polygon layer, pixels with similar values 

were grouped into individual polygons. This step facilitated the selection of the body of water 

and its export as a new feature layer. The executed layer consisted of a water boundary for a 

specific year. The new water boundary layers were then used to clip the initial mosaicked raster 

layers to the extent of the body of water.  

 Once the mosaicked raster layers had been clipped, the next step consisted of assessing 

the presence of chlorophyll-a in the Salton Sea. This was implemented using the following NDCI 	

formulas within the Raster Calculator tool: 

 𝑁𝐷𝐶𝐼9:.6;:<	=	>/ =	":.6	?#":.6	B
":.6	?%":.6	B

                                              (11) 

 	
𝑁𝐷𝐶𝐼9:.6;:<	@	A9' =	

":.6	=#":.6	?
":.6	=%":.6	?

                                             (12) 

The tool rendered a layer consisting of NDCI values that ranged from 1 to -1. To ensure that all 

years were comparable, the symbology was altered from stretch to classify. The classifications 

were determined based on the distribution of the NDCI values across the different years (see 

Appendix A for distributions).  

 To assess NDCI differences between the years, NDCI differencing was applied using the 

following expression: 

∆𝑁𝐷𝐶𝐼 = 𝑁𝐷𝐶𝐼C3 − 𝑁𝐷𝐶𝐼	D4                                               (13) 

The subtraction of pixels generated a raster layer that ranged from -1 to 1, zero values indicated 

no change. Positive values indicated negative change and negative values indicated positive 

change in chlorophyll-a presence.  
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 The NDCI was then compared against other 2BDA and 3BDA to assess its accuracy and 

performance. Watanabe et al. (2015) and Buma and Lee (2020) compared the NDCI to various 

2BDA and 3BDA and their findings revealed NIR-Red, NIR-Green, NIR-Blue and 3BDA had 

generated higher adjusted R-squares than the NDCI. Higher adjusted R-square values are 

indicative of good model fit and 2BDA and 3BDA were therefore incorporated within the study. 

The NIR-Red ratios were calculated using the following equations: 

𝑁𝐼𝑅 − 𝑅𝑒𝑑9:.6;:<	=	>/ =	":.6	?
":.6	B

                                              (14) 

𝑁𝐼𝑅 − 𝑅𝑒𝑑9:.6;:<	@	A9' =	
":.6	=
":.6	?

                                             (15) 

The Raster Calculator tool was then used to calculate the following NIR-Green expressions:  

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛9:.6;:<	=	>/ =	":.6	?
":.6	4

                                             (16) 

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛9:.6;:<	@	A9' =	
":.6	=
":.6	B

                                            (17) 

 
After the NIR-Green expression had been applied across all years, the NIR-Blue equation was 

applied:  

𝑁𝐼𝑅 − 𝐵𝑙𝑢𝑒9:.6;:<	=	>/ =	":.6	?
":.6	3

                                             (18) 

𝑁𝐼𝑅 − 𝐵𝑙𝑢𝑒9:.6;:<	@	A9' =	
":.6	=
":.6	4

                                            (19) 

 
Lastly, the Raster Calculator tool was used to calculate the following 3BDA suggested by Buma 

and Lee (2020): 

3𝐵𝐷𝐴9:.6;:<	=	>/ =	":.6	3#":.6	B
":.6	4

                                        (20) 

3𝐵𝐷𝐴9:.6;:<	@	A9' =	
":.6	4#":.6	?

":.6	B
                                       (21) 
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3.4. Global Regressions 

Regression analysis is a statistical method used to assess the relationship between 

dependent and explanatory variables. Linear regressions were performed for NDCI, NIR-Red, 

NIR-Green, NIR-Blue and 3BDA. The regression models will assess the accuracy in which 

NDCI estimates chlorophyll-a concentrations in the Salton Sea and how it performs against the 

other 2BDA and 3BDA. The linear regressions were performed in ArcGIS Pro 2.9.2 and the 

program requires the dependent and independent variables to be within the same dataset. 

Because raster values will need to be extracted and conjoined to the point layer, a neighborhood 

operation was performed on the raster layers prior to the extraction of values. This additional 

step will ensure that the extracted values represent the average value of 3 x 3 neighborhood cells 

(rectangle shape), instead of a singular point. After this step had been completed, a spatial 

analyst tool was used to extract the raster values to the sampling points and the raster values 

were recorded in the attribute table of the output feature layer. 

To perform a linear regression, it is recommended that the dataset contain at least ten data 

observations for each independent variable. The in-situ dataset only captured chlorophyll-a 

measurements from three sampling sites that were directly on the Salton Sea. This meant that 

each year (excluding 2002) had three data points observations that could contribute to the linear 

regression and would individually not meet the observation criteria. To address this limitation, 

the data points across all years were stacked within a single table. The new table was created in 

Microsoft Excel, reimported into ArcGIS 2.9.2, and projected accordingly to the NAD 1983 

(2011) State Plane California VI (WKID: 0406) coordinate system. 
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3.4.1. Linear Regression Assumptions 

There are four linear assumptions that can affect the output results of a model. The first 

assumption is linearity, and it assumes the relationship between dependent and independent 

values is linear. The second assumption is homoscedasticity, and it assumes equal variance in the 

residuals. The third assumption is no multicollinearity, and it assumes independent values are not 

correlated within one another. The last assumption is the Gaussian distribution of error terms, 

and it assumes residuals are normally distributed.  

 In an attempt to assess whether the dataset meets the linear assumptions, explanatory data 

analysis was conducted on all variables. The dataset was constructed around in-situ data 

measurements and the algorithm ratios were extracted and subsequently adjoined to the dataset. 

Table 5 provides a summary statistic of all the variables, and it includes their minimum, 

maximum, mean, median, standard deviation and sample size. Average chlorophyll-a is the 

independent variable for all the regression models, and it has the largest range of values from 

4.15 to 256.56. The median and mean value are widely apart at 46.64 and 72.98 respectively and 

suggest high variance. In contrast, all the dependent variables tend to have smaller ranges 

between their minimum and maximum values. The sampling size of all variables is on the 

smaller side with 18 samples; however, it meets the 10 observations per variable threshold. 

Table 5. Summary of Statistics 

Variable Type Minimum Maximum Mean Median Std. Deviation Sample Size 
NDCI Dependent -0.05 -0.01 -0.02 -0.01 0.01 18 

NIR-Red Dependent 0.88 0.97 0.95 0.96 0.02 18 

NIR-Green Dependent 0.81 0.95 0.92 0.93 0.37 18 

NIR-Blue Dependent 0.92 1.00 0.96 0.96 0.02 18 

3BDA Dependent -0.03 0.97 0.31 -0.00 0.46 18 

Avg. Chlorophyll Independent 4.15 265.56 72.98 45.64 72.98 18 
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Scatterplots are commonly used to evaluate the linearity assumption. They are able to 

provide insight into the relationship between variables and can be used to identify the degree of 

linearity and slope. Figure 15 displays the relationship between the NDCI and average 

chlorophyll-a variables. The R2 for these two variables is low at 0.01 and it indicates that the 

relationship between the variables is not linear. Based on the distribution of points, the slopes 

appear to be negative with strong gaps between the values.  

 

Figure 15. Relationship between average chlorophyll-a and NDCI 

When we examine the relationship between NIR-R and average chlorophyll-a, the 

relationship appears to be non-linear, see Figure 16. The R2 is 0.01 and the points distribution 

suggests a negative slope with large gaps between values. There are also outliers that indicate 

large and small average chlorophyll-a values.  

 

Figure 16. Relationship between average chlorophyll-a and NIR-Red 
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Figure 17 displays the relationship between NIR-G and average chlorophyll-a. The R2 in 

this relationship is 0, indicating no linearity between the independent and dependent variables. 

The distribution of points also suggests the slope is near 0. When compared to NIR-Red, both 

2BDA demonstrate the same outliers within the independent variable.  

 

Figure 17. Relationship between average chlorophyll-a and NIR-Green 

Figure 18 illustrates the relationship between NIR-B and average chlorophyll-a. The R2 

in this relationship is 0 and it indicates there is no linearity between the variables. Compared to 

the other 2BDA, NIR-Green has a more scattered distribution making it difficult to assess 

whether it has a negative or positive association.  

 

Figure 18. Relationship between average chlorophyll-a and NIR-Blue 

Lastly, Figure 19 illustrates the relationship between 3BDA and average chlorophyll-a. 

The R2 in this relationship is 0.33 and the clustering of points at opposite ends suggests a 
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bimodal distribution. Compared to NDCI and 2BDA, 3BDA has a larger gap between values and 

no clear association. 

 

Figure 19. Relationship between average chlorophyll-a and 3BDA 

The scatterplot findings align with the individual histograms of the variables shown in 

Figure 20. In the figure, the NDCI, NIR-R and NIR-G values skew largely to the right. In 

contrast, average chlorophyll-a and NIR-B tend to skew to the left. The 3BDA values are 

bimodal, as data is clustered away from the mean and median. Non-linear relations are normally 

addressed by transforming the independent or dependent variables using a linear transformation.   
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Figure 20: Histograms of variables 

The distribution of error terms were evaluated using quantile-quantile plots. Figure 21 

illustrates that the error terms are not normally distributed across the majority of the variables. 

NDCI, NIR-R, NIR-B and NIR-G have larger gaps between values and are lightly tailed. They 

also have a comparable number of outliers within third quadrant. In regard to 3BDA and average 

chlorophyll-a, the error terms are heavily tailed and more rightly skewed, respectively.  
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Figure 21. Quantile-Quantile plots of variables 

As previously described, an assumption of linear regression is no multicollinearity among 

the independent variables. In this study, each linear regression was ran with one independent 

variable and one dependent variable. This means that there was no correlation among the 
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independent variables, as there was only one. This assumption is normally assessed using the 

variance inflation factor.  

 To address the issue of linearity and distribution, the independent and dependent 

variables were transformed using linear transformations. Negative values and outliers were taken 

into account when selecting the box-cox transformation for the dependent variables. For the 

independent variable, a logarithm transformation was used to correct the skewness of the 

variable values. Despite the transformations, the R2 for majority of the variables remained low. 

For example, NDCI and NIR-Red increased to an R2 of 0.08. While NIR-Green rose to a value of 

0.21 and 3BDA maintained an R2 of 0.33. NIR-Blue maintained a low R2 after transformation 

with 0.02. Collectively, the R2 are low and still demonstrate the low linearity between the 

variables. To further offset low linearity, outliers were removed from the dataset. The alternative 

solution would be to include additional data points to fill in the large value gaps, but this was not 

readily available.  

3.4.2. Linear Regression  

The Generalized Linear Regression is a tool that can be used to fit continuous, binary and 

count models. The linear performs an array of diagnostic tests that help us understand whether 

the model is useful or if there is additional work to be done (Esri n.d.). The first diagnostic 

examines the significance and robustness of explanatory variables. The second diagnostic 

observes the coefficient of each explanatory variable to ensure they capture the relationship you 

are expecting, whether it be positive or negative. The third diagnostic assesses whether the model 

includes redundant variables through the computation of the variance inflation factor (VIF). The 

fourth diagnostic considers the distribution of the model’s residuals through the Jarque-Bera test. 
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The fifth diagnostic evaluates the overall performance of the model through adjusted R2 and 

Akaike’s information criterion (AIC).  

For the linear regression, the NDCI values were imputed as the dependent variable and 

the in-situ chlorophyll-a measurements as the independent variable. Each data observation was 

examined using a continuous model (ordinary least squares). Ordinary least squares is a 

continuous model used estimate coefficients and model the relationship between dependent and 

explanatory variables (Esri n.d.). The process was repeated for NIR-Red, NIR-Green, NIR-Blue 

and the 3BDA. Linear regression results are summarized in Chapter 4. 
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Chapter 4 Results 

This chapter presents chlorophyll-a patterns identified in the temporal analysis and the results of 

the linear regression analysis. NDCI values, NDCI changes and linear regression results are 

quantified, tabulated, and spatially presented in maps across the temporal range of the study. 

Section 4.1 describes chlorophyll-a presence in the Salton Sea from 2002 to 2020 and evaluates 

the NDCI differences across those years. Section 4.2 describes the linear regression results of 

NDCI, 2BDA and 3BDA.  

4.1. Temporal Analysis of Chlorophyll-a Presence using NDCI  

This section explores how chlorophyll-a concentrations temporally fluctuated and 

steadily increased throughout the years. The NDCI was used to assess chlorophyll-a 

concentrations in the Salton Sea and the raster layers range between -1 and 1. Higher values 

represent higher concentrations of chlorophyll-a in the waterbody. Table 6 illustrates the 

correlation between NDCI values and in-situ chlorophyll-a (μg/L) concentrations. These pixel 

ranges and associated concentrations were first introduced by Mishra and Mishra (2012) and 

were used in this study to quantify chlorophyll-a concentrations within the Salton Sea.  

While NDCI values range from -1 to 1, the symbology of each NDCI map was chosen to 

highlight changes in pixel values. The symbology classifications were based on the distribution 

of pixel values across all years. The symbology was then applied to all NDCI layers to ensure 

they are comparable against one another. Moreover, Table 7 was adopted from Tas, Can and 

Koloren (2011) to explain the correlation between chlorophyll-a concentrations (μg/L) and 

trophic states.  
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Table 6. NDCI Pixel Range (Adopted from Mishra and Mishra 2012) 

 

In addition to calculating NDCI values for all years, NDCI differences were calculated 

between two selected years (e.g., 2002 and 2005). The NDCI difference layers also had their 

symbology modified based on pixel value distribution. Pixel values depicted in shades of blue 

experienced a decrease in chlorophyll-a concentrations from the first year to the second year. 

Whereas pixel values depicted in shades of red experienced an increase in chlorophyll-a 

concentration from the first year to the second year. Darker hues for either color translated to 

higher pixel differences and lighter hues to minimal or no pixel difference. 

Table 7. Chlorophyll-a and Trophic States (Adopted from Tas, Can and Koloren et al. 2011) 

4.1.1.  Chlorophyll-a Presence in 2002 

In 2002, the Salton Sea extended 365.71 square miles. A total of 1,052,428 pixel values 

were assessed for NDCI. The pixel values had a range of 0.24, a minimum of -0.18 and a 

NDCI Range Chlorophyll-a Range (μg/L) 
-1.00 to -0.10 <7.5 

-0.10 to 0.00 7.5 to 16 

0.00 to 0.10 16 to 25 

0.10 to 0.20 25 to 33 

0.20 to 0.40 33 to 50 

0.40 to 0.50 > 50 

0.50 to 1.00 Severe Algae Bloom 

Trophic State Levels  Average Max 
Ultraoligotrophic <1 < 2.5 

Oligotrophic <2.5 <8 

Mesotrophic 2.5 – 8  8 - 25 

Eutrophic 8 - 25 25 -75 

Hypereutrophic > 25 >75 
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maximum of 0.05. The pixel values also had a mean of -0.31 and a median of -0.02. As shown in 

Figure 22, most of the visible pixel values are less than -0.02. According to the pixel range 

introduced by Mishra and Mishra (2012), the chlorophyll-a concentration should range between 

7.5 to 16 μg/L. Chlorophyll-a concentrations that range between these values tend to indicate 

eutrophic bodies of water, high nutrient concentrations and condensed plant populations. 

Although, the NDCI values are minimal there is discernable differences at the mouths of the 

WWR, AR and NR. NDCI values are noticeably higher in AR and NR and may be indicative of 

higher agricultural runoff water and higher pesticide concentrations. In contrast, the WWR has 

smaller NDCI values along its cove and the higher NDCI values are constrained to the shoreline.  

 

Figure 22. NDCI 2002 
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4.1.2. Chlorophyll-a Presence in 2005 

In 2005, there is a slight reduction in the Salton Sea with a surface area of 364.62 square 

miles. A total of 1,049,292 pixel values were assessed in the NDCI. The range is 0.24, the 

minimum is -0.17 and the maximum is 0.06. Compared to the 2002 pixel values, the range 

remained the same and the overall NDCI range moved by 0.01 or less. The mean is -0.03 and the 

median is -0.02, indicating a chlorophyll-a concentration that ranges between 7.5 to 16 μg/L. In 

Figure 23, one can also detect a small plume of higher NDCI values located northwest of the AR 

and these values range between 0.01 and 0. At the WWR mouth, values range between 0.02 to 

0.06, indicating a chlorophyll-a concentration of 16 to 25 μg/L. The AR and NR also appear to 

demonstrate higher concentrations, especially when compared the rest of pixel values in the 

Salton Sea.  
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Figure 23. NDCI 2005 

 Figure 24 illustrates the NDCI difference amid 2002 and 2005 and 48 percent of all the 

pixel values fall within the 0.00 to 0.05 array. This range indicates that there was an overall 

decrease or no change in NDCI values between 2002 and 2005. The larger reduction of pixel 

values occurred alongside the northern and western shorelines of the Salton Sea. Less than 4 

percent of NDCI values had pixel changes that differed more than -0.05. 
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Figure 24. NDCI difference from 2002 to 2005 

4.1.3. Chlorophyll-a Presence in 2008 

 By 2008, the Salton Sea had been further reduced in size with a surface area that 

extended 356.61 square miles. For the 2008 NDCI assessment, a total of 1,026,255 values were 

evaluated. The range of these values is 0.34, the maximum is 0.06 and the minimum is -0.28 

(Figure 25). From a visual perspective, 2008 appears to have NDCI values that are mainly less 

than -0.02 with smaller areas fluctuating between -0.02 and 0. Based on the NDCI pixel range, 

chlorophyll-a concentrations still range between 7.5 to 16 μg/L. When we observe the rivers 

mouths, a noticeable difference is their overall reduction in surface area and lower NDCI values. 

There is however a visible area surrounding the perimeter of the Salton Sea that appear to have 

elevated NDCI values compared to the rest of the extent.  
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Figure 25. NDCI 2008 

Compared against 2005 values, the range has grown by 0.10 values and the maximum has 

grown by 0.03 values (Figure 26). Whereas the differentiation between 2002 and 2005 had lower 

NDCI values along the west shoreline of the Salton Sea, the 2005 and 2008 differentiation reveal 

that there has been an increase in NDCI values within this year range. 
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Figure 26. NDCI difference from 2005 to 2008 

4.1.4. Chlorophyll-a Presence in 2011 

In 2011, the Salton Sea further reduced in size to 352.32 square miles. A total of 

1,013,895 pixel values were processed for the NDCI, the range was 0.19, the minimum was -

0.12 and the maximum was 0.06. The mean and median pixel value for this year was -0.01. 

Compared to previous year, 2011 has the shortest range at 0.19 and the smallest maximum at 

0.19. The maximum value of 0.06 has remained consistent between 2008 and 2011. NDCI values 

across the extent of the waterbody appear to have risen and broaden from <0.02 to a range 

between -1 and 0 (Figure 27). When we examine the pixel count per classification, 44 percent of 

all NDCI values fall within the -0.02 to -0.01 range and 17 percent fall between -0.01 to 0. In 
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terms of the WWR, AR and NR mouths, there is a notable decrease in NDCI values. This is 

especially true when compared to the original 2002 values.  

 

Figure 27. NDCI 2011 

 In Figure 28, the NDCI values from 2008 and 2011 were differenced and the majority of 

the Salton Sea extent is shaded in light red and blue shades. This suggests that NDCI values 

between 2008 and 2011 largely remained the same and if they deviated from the previous year, it 

was by less than 0.05 pixel values. The dark red plume at the southern part of the Salton Sea 

implies that there was a higher increase in NDCI values from 2008 to 2011. 
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Figure 28. NDCI difference from 2008 to 2011 

4.1.5. Chlorophyll-a Presence in 2014 

For 2014, a total of 997,611 pixel values were assessed for the NDCI, given that the 

surface area of the Salton Sea extended only 346.66 square miles. The range for these pixels was 

0.24, the minimum was -0.17 and the maximum was 0.06. These values deviate only by 0.01 

from the original NDCI values in 2002. However, in 2014 there are three notable NDCI ranges: -

1 to -0.02, -0.02 to -0.01 and -0.01 to 0. The -0.02 to -0.01 had the largest surface area at 44 

percent and this differentiates from previous years that had overall lower NDCI values (Figure 

29). When we examine the river mouths, AR and NR continue to have lower NDCI values and 

WWR continues to display more elevated ranges. Seen as most of the values remain below 0, 

chlorophyll-a concentration should continue to range between 7.5 to 16 μg/L.  
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Figure 29. NDCI 2014 

In comparing 2011 to 2014, it is evident that there has been a general decline in NDCI 

values along the southern shoreline (see Figure 30). This may be linked to lower water deposits 

or lower nutrient concentrations within the southern water streams, given that high nutrient 

concentrations prompt the production of algae bloom and chlorophyll-a. The remainder of the 

Salton Sea extent experienced smaller deviations from 2011 NDCI values. 
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Figure 30. NDCI difference from 2011 to 2014 

4.1.6. Chlorophyll-a Presence in 2016 

In comparison to the previous year, the Salton Sea in 2016 had a decreased surface area 

of 341.10 square miles. A total of 981,626 pixels were assessed for NDCI and the mean and 

median was -0.03 and -0.02 respectively. The range for this year increased to 0.31from 0.24 in 

2014. The minimum value was -0.17 and the maximum value was 0.10, indicating that there 

were areas within the Salton Sea that had chlorophyll-a concentration between 15 to 25 μg/L. 

NDCI values largely ranged between -1 to 0, most of the -0.02 to -0.01 pixels were located at the 

northern portion of the Salton Sea (Figure 31). NDCI values for AR and NR appear to remain the 

same to 2014, whereas WWR illustrates an overall decrease in NDCI values. Along the lower 
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west shoreline, there also appears to be an increase in NDCI values from the -0.02 to -0.01 range 

to the -0.01 to 0 range.  

 

Figure 31. NDCI 2016 

In Figure 32, we can examine NDCI difference between 2014 to 2016, the difference in 

NDCI values does not appear to be too great. Although not visible to eye, the largest difference 

occurred at the southern eastern area of the Salton Sea. In this area, there was a difference of 

0.10 pixel values from the previous year. 
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Figure 32. NDCI differenced from 2014 to 2016 

4.1.7. Chlorophyll-a Presence in 2020 

 By 2020 the Salton Sea had a surface area of 326.75 square miles, the majority of its 

NDCI values range from -0.02 to -0.0. These values indicate a continual chlorophyll-a 

concentration of 7.5 to 16 μg/L. A total of 940,317 pixel values were assessed in the NDCI, the 

range is 0.27, the minimum is -0.19 and the maximum is 0.08. In contrast to early years, the AR 

has NDCI values less than -0.02. Both the NR and WWR had higher NDCI values along their 

shoreline (Figure 33). In the middle of the Salton Sea, we can also discern small areas with 

higher chlorophyll-a concentrations.  
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Figure 33. NDCI 2020 

  The quantifiable difference between 2016 and 2020 reveals a large increase in 

chlorophyll-a concentrations within the southern portion of the Salton Sea (Figure 34). Note that 

this is the same area that experienced a decline in NDCI from 2014 to 2016. 
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Figure 34. NDCI differences from 2016 to 2020  

 NDCI difference values from 2002 to 2020 reveal that there has been a general increase 

in chlorophyll-a concentrations within the Salton Sea (Figure 35). The majority of the variation 

between these years is minimal, as it fluctuates between 0 to 0.05 values. However, these 

findings indicate that the Salton Sea is largely eutrophic and that the overall chlorophyll-a 

concentrations are slowly rising. The northern and western areas of the Salton Sea experienced 

the greater change in water quality, value differentiations were as high as -0.10. We can also see 

that the southern portion of the Salton Sea experienced a slighter decrease in NDCI values, 

specifically around the AR mouth. 



72 
 

 

Figure 35. NDCI differences from 2002 to 2020 

4.2. Assessment of NDCI against 2BDA and 3BDA  

 Table 8 provides a summary overview of the linear regression. The NDCI regression 

model demonstrated a weak linear fit between the dependent and independent variable, meaning 

that the independent variable was unable to add value to the model. This regression model had an 

AIC2 value of -104.40 and higher AIC2 values are indicative of poor model performance; 

regardless if the value is negative or positive. The NDCI regression also had a small R2 of -

0.0005 that indicates a low level of correlation between variables. Because the p-value for 

average chlorophyll-a was greater than the significance level of 0.05, we fail to reject the null 

hypothesis that the coefficients are not zero.  
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Table 8. Summary of Linear Regression Results 

 
 For NIR-Red, the intercept is 0.9737 and the coefficient is -0.0021. This means that an 

increase in average chlorophyll-a results in a 0.0021 decrease in NIR-Red values. The standard 

error is 0.0021 and it suggests that the sample population does not deviate too largely from a true 

mean population. The t-value is -0.9836 and the p-value for the coefficient of average 

chlorophyll -a is 0.35. Since the p-value is greater than the significance level of 0.05, the variable 

is not statistically significant, and we are unable to reject the null hypothesis that the coefficient 

is not zero. The AIC2 for NIR-Red is -87.25 and it indicates a relatively poorer model compared 

to NIR-Blue model. The R2 is low at -0.0043 and it suggests that the model is doing a poor job at 

explaining the variance of the dependent variable.  

 Unexpectedly, out of all the regression models NIR-Green had the highest R2 at 0.13. The 

AIC2 value remains larger than the NIR-Blue model, which had the lowest AIC2 out of all the 

models. In a study conducted by Watanabe et al. (2015), NIR-Green had the lowest R2 compared 

to the rest of the NIR-based 2BDA. The 3BDA model had an R2 of 0.0036 and while it remains 

low, it was the model with the second highest value. It was difficult to assess the performance of 

the NDCI model against the rest of the regression models, when the R2 were negative, and the 

independent variable proved to statistically insignificant.  

 Table 9 provides a list of the in-situ measurements and their associated NDCI values. The 

table also includes the expected NDCI range given the in-situ measurement and the correlated 

Band Ratios Intercept Coefficient Std. Error t-Statistic P-Value R2 AIC2 
NDCI  0.9866  -0.0007 0.0011 -0.9661 0.3547 -0.0055 -104.4077 

NIR-Red (2BDA)  0.9737 -0.0021 0.0021 -0.9836 0.3511 -0.0043 -87.2594 

NIR-Green 
(2BDA)  

1.9503 -0.0029 0.0017 -1.7151 0.1143 0.1392 -92.9739 

NIR-Blue (2BDA) 0.9640 0.9640 0.0044 0.5193 0.6138 -0.0648 -68.2995 

3BDA 0.0049 -0.0341 0.0003 -1.0250 0.3240 0.0036 -79.1229 
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trophic state based on the in-situ measurements. When we compare the NDCI and in-situ 

measurements, it is evident that the NDCI underestimated the chlorophyll-a concentrations and 

assigned incorrect NDCI values. Chlorophyll-a concentrations that varied more than 95μg/L 

were assigned the same NDCI values. Between 2005 and 2008, we can see that Salton Sea had 

the highest fluctuation in chlorophyll-a concentrations. Based on these limited in-situ 

measurements, we can conclude that the Salton Sea is moving toward a hypereutrophic state 

versus a eutrophic state.  

Table 9. Comparison of NDCI and In-Situ Measurements 

Year  In- Situ Chlorophyll-a 
Concentrations (μg/L) 

Measured NDCI 
Value 

Expected NDCI 
Range 

In-Situ Trophic 
State 

2005 229.44 -0.05 0.50 to 1.00 Hypereutrophic 

2005 265.56 -0.02 0.50 to 1.00 Hypereutrophic 

2005 171.26 -0.02 0.50 to 1.00 Hypereutrophic 

2008 20.34 -0.04 0.00 to 0.10 Eutrophic 

2008 4.16 -0.02 -1.00 to -0.10 Mesotrophic 

2008 6.26 -0.06 -1.00 to -0.10 Mesotrophic 

2011 10.56 -0.01 -1.00 to -0.10 Eutrophic 

2011 17.57 -0.01 0.00 to 0.10 Eutrophic 

2011 11.07 -0.01 0.00 to 0.10 Eutrophic  

2014 112.70 -0.01 0.50 to 1.00 Hypereutrophic 

2014 47.79 -0.02 0.20 to 0.40 Hypereutrophic 

2014 42.91 -0.02 0.20 to 0.40 Hypereutrophic 

2016 26.66 -0.02 0.10 to 0.20 Hypereutrophic 

2016 46.87 -0.02 0.20 to 0.40 Hypereutrophic 

2016 44.42 -0.02 0.20 to 0.40 Hypereutrophic 

2020 71.56 -0.02 0.50 to 1.00 Hypereutrophic 

2020 130.69 -0.02 0.50 to 1.00 Hypereutrophic 

2020 53.96 -0.02 0.50 to 1.00 Hypereutrophic  
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Chapter 5 Discussion 

This study conducted a temporal analysis of chlorophyll-a concentrations within the Salton Sea 

from 2002 to 2020. The study also assessed the use of NDCI against 2BDA and 3BDA using 

linear regression models. The contributions of this work lie within developing a more holistic 

and efficient approach towards monitoring, predicting and safeguarding bodies of water. The use 

of RS imagery to conduct WQ assessments, as opposed to traditional WQ methods, ensures 

greater temporal and spatial coverage. The use of RS imagery can also aid policymakers and 

community members in avoiding the high costs associated with conventional water sampling 

methods while still making progress in monitoring and improving WQ. The results demonstrate 

the potential of incorporating RS imagery in WQMPs, but they still show the value in the 

continued collection of in-situ measurements. The linear regression findings revealed that the 

NDCI underestimated chlorophyll-a concentrations by a wide margin. The significance of these 

findings is that they highlighted the challenges and limitations of using RS imagery in WQ 

assessment. The remainder of this chapter summarizes the main findings from the temporal 

analysis and the linear regression models. A discussion of known limitations and challenges 

within the study are also presented. Lastly, areas of potential future work and analysis 

application are identified and discussed. 

5.1. Discussion of Results  

The temporal analysis evaluated chlorophyll-a concentrations in the Salton Sea. This 

process generated NDCI values for all the years considered within the selected temporal range 

(i.e., 2002, 2005, 2008, 2011, 2014, 2016 and 2020). The NDCI values primarily ranged between 

-0.02 and 0.02. This NDCI range indicates that the Salton Sea has maintained concentrations 

between 7.5 to 17 µg/L and 16 to 25 µg/L from 2002 to 2020. These chlorophyll-a 
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concentrations are in agreement with values measured in other eutrophic bodies of water and are 

indicative of poor WQ within the Salton Sea, specifically in relation to eutrophication (Mishra 

and Mishra 2012; Setmire et al. 2000). A eutrophic condition refers to an environment that is 

enriched with nutrients and experiences high plant life density and dead oxygen zones (Cohen 

2019; Setmire et al. 2000). The eutrophic state of the Salton Sea was an expected outcome, given 

that it has served as an agricultural drainage since 1924 (Cohen 2019). Nevertheless, the extent 

of eutrophication of the Salton Sea is alarming and has led to a large decrease in diversity of 

aquatic life, increase in overall turbidity and has reduced the lifespan of the waterbody.  

In terms of related work conducted on the Salton Sea, a study by Setmire et al. (2000) 

examined inflow, nutrient, and chlorophyll-a concentrations in the Salton Sea from 1968-69 and 

1999. The study findings revealed chlorophyll-a concentrations averaged 25 µg/L, indicating that 

the Salton Sea had reached a eutrophic state as early as then. In 1999, the NR accounted for 46 

percent of the inflow into the Salton Sea, the AR accounted for 32 percent and the WWR 

accounted for 6 percent. Setmire et al. (2000) and Cohen (1999) recognized areas surrounding 

the AR, NR and WWR experienced higher chlorophyll-a concentrations (an average of 70 µg/L) 

compared to the rest of waterbody. The temporal trends found in this study illustrate minimal 

variation of NDCI pixel values and indicate chlorophyll-a concentrations did not exceed 25 

µg/L. Interestingly, when examining the difference in concentrations between 2002 and 2020, it 

is evident that there has been a decrease in inflow from the AR and NR and increase in WWR. 

Areas that were near the rivers experienced the highest change in in NDCI pixel values over the 

years, but changes were less than 0.10 values. This means that the temporal analysis was unable 

to identify areas that measured concentrations equal to or exceeding 70 µg/L.  
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Another goal of this study was to evaluate the performance of the NDCI in estimating 

chlorophyll-a concentrations and assessing its performance against other band ratio algorithms. 

This process generated statistical summaries for the NDCI, 2BDA and 3BDA models. None of 

the linear regression results had p-values less than 0.05 to signify statistical significance of the 

independent variable. The adjusted R2 for all the models was near 0 and it failed to indicate a 

strong linear relationship between the independent and dependent variables. This finding 

suggests Landsat imagery may not be suitable for estimating chlorophyll-a concentrations in the 

Salton Sea using NDCI, 2BDA and 3BDA.  

The conclusions of this study can build upon previous works in this space and more 

insights can be gained when comparing these results against those found in similar studies. In the 

RS community, Sentinel-2 imagery has long been favored to assess chlorophyll-a presence due 

to the inclusion of the red-edge band. Buma and Lee (2020) evaluated the performance of NDCI, 

2BDA, 3BDA and FLH using Sentinel-2 and Landsat 8 OLI imagery. Their findings revealed 

that NDCI (R2 = 0.75) and 3BDA (R2 = 0.89) performed relatively better than FLH (R2 = 0.73) 

and 2BDA (R2 = 0.71) when using Landsat 8 OLI imagery. When compared against Sentinel-2 

imagery, NDCI and 3BDA had higher correlations with Worldview-3 measurements. Buma and 

Lee (2020) findings deviate from those of this study, given that the adjusted R2 for NDCI was -

0.0055 and 0.0036 for 3BDA. The difference in results can be attributed to the use of 

Worldview-3 values in Buma and Lee (2020), while this study relied on the use of in-situ 

measurements.  

 Watanabe et al. (2015) conducted a study using Landsat OLI imagery and in-situ 

measurements to examine multiple two-band and three-band models, including NIR-R, NIR-G 

and NIR-B. Their findings revealed that the 2BDA (i.e., NIR-Red, NIR-Green and NIR-Blue) 
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performed better than the NDCI (R2 = 0.39). Most of the band ratios demonstrated acceptable 

model fits, but the linear regression models underestimated chlorophyll-a concentrations and 

incorrectly designated the associated tropic state. In this study, the NDCI values of the point 

features were compared against the in-situ measurements. This evaluation revealed that the 

NDCI also underestimated chlorophyll-a concentration in the Salton Sea by a wide margin. 

Points that had high chlorophyll-a concentrations (>70 µg/L) were given the same NDCI values 

as those that had low chlorophyll-a concentrations (> 5 µg/L). This finding shows limitations in 

the use of RS imagery and emphasizes the importance of having a large enough dataset of in-situ 

measurements to assess spatial indices. Moreover, the findings reveal that chlorophyll-a 

concentrations have fluctuated greatly between 2002 and 2020. Since 2011, the sampling stations 

have consistently recorded concentrations that exceed 25 µg/L and point toward a 

hypereutrophic Salton Sea.  

5.2. Limitations and Challenges 

Several limitations and challenges exist within this study, which lead to uncertainty in the 

results. A well-known constraint to performing traditional WQ assessment is the data collection 

process and the high associated costs. The original in-situ dataset was constructed by the BoR, 

which performed quarterly water sampling events at the Salton Sea from 2004 to 2020. In 

WQMPs, the WQ data collection process is usually pre-planned as it requires assembling a 

workforce and gathering water sensing equipment. The pre-planning process does not always 

extend to the final product and a known limitation in this study was the data quality of the in-situ 

dataset. The original dataset contained multiple data entry errors, including missing values, 

duplicated items and unstructured data formats. The study had initially planned to evaluate the 

Salton Sea every three years, beginning in 2002 to 2020. Missing values from the year 2017 
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made it difficult to maintain the intended temporal range. The original dataset also contained 

entries for all the sampling events conducted since 2004. The location of the sampling events 

varied across years and this inconsistency made it difficult to evaluate a single area temporally.  

The second limitation of this study also results from issues in data-availability and is 

centered on the limited in-situ sampling size. The study evaluated six years (i.e., 2005, 2008, 

2011, 2014, 2016 and 2020) of in-situ measurements, which only had three consistent sampling 

stations across all these years. This meant that between all six years, a total of only 18 data point 

were acquired for the study. The large fluctuation in chlorophyll-a concentrations means that the 

limited sampling size had a large range of values. When the data was being examined to meet 

linear assumptions, the scatterplots would identify maximum and minimum values as outliers. 

The values were removed in multiple iterations to increase the linearity between independent and 

dependent variables, but new outliers would then emerge. This limitation could have been 

mitigated had there been additional points to fill in the large gaps between in-situ values.  

The third limitation of the study is the discrepancy between the days the RS imagery and 

in-situ data were collected. The study used linear regressions to better understand the relationship 

between band ratio values and in-situ measurements. It was important for the RS imagery to be 

collected within a similar time window to when the in-situ data collection occurred to ensure 

higher accuracy of assessment. However, when the in-situ measurements were collected, they 

were not intended to be used in conjunction with satellite imagery and the data collection process 

did not take into account cloud coverage, scanline errors or revisit intervals for Landsat satellites, 

which are important considerations for RS imagery This meant that RS imagery selected for the 

study were not always aligned with the days in which the in-situ measurements were collected, 

which introduced large uncertainty in the final results.  
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The final limitation of this study was the temporal range of the analysis. The temporal 

range spanned between 2002 to 2020 and required an RS program that was established prior to 

2002. This limited the options in choice of RS programs that were publicly available and could 

be used within the analysis. The only program that met all criteria was Landsat imagery, 

however, this study showed the limitations of its use for WQ assessment. Sentinel-2 imagery 

could have been an option because it incorporates a red-edge band, but it was not established 

until 2014.  

5.3. Future Work 

Assessing chlorophyll-a concentrations is only one step in performing a complete WQ 

assessments on a body of water. There is a large array of WQ parameters that are spectrally 

active and can be assessed using RS imagery and RS techniques. Some of these spectrally active 

WQ parameters include temperature, turbidity, salinity, and suspended sediments (Topp et al. 

2022). This project can serve as a framework for future studies that can conduct WQ studies 

using other parameters, as the analytical methods and workflows can be easily replicated. The 

semi-empirical component of the NDCI means that the algorithm is not dependent on in-situ 

measurements and can be reproduced in other bodies of water and across multiple temporal 

ranges. The framework can also be implemented when using other spatial indices, as they will 

require similar map algebra expressions. From a policy perspective, these analytical methods and 

workflows can be beneficial to local government and non-profit organization that seek to create 

more sustainable WQMPs.  

Finally, future research can build upon this study by incorporating new satellite imagery 

from other RS programs. For instance, the original NDCI expression contains a red-edge band 

that captures the 748 to 778 nm spectral range. The red-edge band was replaced with a NIR band 
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when the NDCI was used with Landsat imagery. Thus, there is value in evaluating whether the 

original NDCI expression can accurately assess chlorophyll-a presence within the Salton Sea. 
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