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Epigraph 

 

Gentle eyes 

that see so much, 

paws that have 

the quiet touch. 

 

Purrs to signal 

"all is well" 

and show more love 

than words can tell. 

 

Graceful movements 

touched with pride, 

a calming presence 

by our side. 

 

A friendship 

that will last and grow - 

small wonder 

why we love them so. 

 

- Author Unknown 
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Abstract 

Connectivity is important for biodiversity conservation because it can offset the impacts of 

habitat loss and fragmentation, allowing migration, dispersal, and adequate gene flow. Barriers 

that cut across a species range such as the United States-Mexico border wall can block dispersal 

and negatively impact gene flow between populations. It is therefore important to understand 

how to establish or re-establish wildlife corridors in order to help species survive. The focal 

species selected for this thesis project was the jaguar (Panthera onca). The study area comprised 

several ecoregions that covered portions of the United States of America (US) and Mexico. The 

jaguar’s suitable habitat was identified using a Random Forest model to predict potential 

habitats. The factorial least-cost path analysis was used to identify the jaguar’s potential 

corridors. Results predict there is good habitat for jaguars in the Sonoran-Sinaloan subtropical 

dry forest, Sinaloan dry forests, Sierra Madre Occidental, California montane chaparral and 

woodlands, Arizona Mountains forest, Sierra Madre Oriental pine-oak forests, Veracruz moist 

forests, Sierra de la Laguna pine-oak forests, Sierra de la Laguna dry forests, Tamaulipan 

matorral, and small portions of the Sonoran desert ecoregion. The jaguar's potential corridor 

modeling suggests that there were previously two high density corridors between the US and 

Mexico allowing jaguar connectivity. However, if the partially constructed border barriers are 

completed those jaguar corridors will be lost. Work on nine co-distributed mammals (orders: 

Carnivora and Artiodactyla): jaguar (Panthera onca), mountain lion (Puma concolor), ocelot 

(Leopardus pardalis), bobcat (Lynx rufus), black bear (Ursus americanus), gray fox (Urocyon 

cinereoargenteus), Mexican gray wolf (Canis lupus baileyi) Sonoran pronghorn (Antilocapra 

americana sonoriensis), and Bighorn sheep (Ovis canadensis) in the US-Mexico border 

ecoregions will continue after the completion of this work.  
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Chapter 1 : Introduction 

Establishing connectivity between species habitats is important because it can offset the impacts 

of habitat loss and fragmentation. As anthropogenic pressures continue to push species into 

isolated habitat patches it is important to understand how to establish wildlife corridors that can 

help species migrate, disperse, and maintain adequate gene flow. This chapter introduces the 

concept of landscape connectivity, highlights some of the species at risk from loss of 

connectivity in the US-Mexico border ecoregions, describes the research objectives, and thesis 

organization. 

1.1. Landscape Connectivity 

1.1.1. Habitat Loss and Fragmentation  

Current rates of species extinction are about 1,000 times greater than background rates of 

extinction and are likely underestimated (Pimm et al. 2014). The major threats that can drive 

worldwide species extinction are habitat degradation (including habitat loss and fragmentation), 

overexploitation, invasive species, climate change, pollution, and disease (Groom, Meffe, and 

Carroll 2006). Human caused habitat loss and degradation of natural habitat have large negative 

effects on biodiversity (Fahrig 2003) and are the main immediate threat to global biodiversity 

(Groom, Meffe, and Carroll 2006). Habitat destruction usually leads to habitat fragmentation 

which can significantly reduce biodiversity and damage ecosystems (Haddad et al. 2015).  

Habitat fragmentation which reduces and isolates natural habitat, despite having differing 

effects on species, is “one of the greatest threats to regional and global biodiversity” (Groom, 

Meffe, and Carroll 2006, 250). Only species that have small home ranges and whose life history 

requirements can be met within a fragment may survive in fragmented landscapes (Groom, 

Meffe, and Carroll 2006). The negative effects of habitat fragmentation include edge effects that 
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create barriers and filters that prevent some species from moving, lack of access to important 

habitat due to large distance between important habitat patches, and other effects that can 

negatively impact animal dispersal and seasonal migration. Additionally, habitat fragmentation 

can negatively impact gene flow which can contribute to a greater extinction risk (Riley et al. 

2006; Ernest et al. 2014; Wan, Cushman, and Ganey 2018). If species populations become too 

genetically isolated in fragmented landscapes, they can suffer from inbreeding and low genetic 

variation which in turn can lead to local extinction (Rudnick et al. 2012). Habitat loss and 

fragmentation threaten the ability of organisms to stay connected to one another in a landscape 

by disrupting the ability of individual organisms and their genes to move across landscapes.  

1.1.2. Connectivity 

Establishing connectivity between natural areas is one way to help counter the effects of 

fragmentation (Groom, Meffe, and Carroll 2006; Haddad et al. 2015). Landscape connectivity is 

the amount of movement made possible by the landscape composition (Rudnick et al. 2012). The 

movement which is made possible by landscape connectivity can be the movement of genes, 

propagules, individuals, and populations of species. Landscape connectivity can facilitate two 

important movement processes of species: migration (i.e. seasonal movements) and dispersal 

(i.e. to occupy previously unoccupied territory by that species). Connectivity can be further 

classified into two types: structural and functional. Structural connectivity relates to physical 

landscape characteristics and functional connectivity “describes how well genes, propagules, 

individuals, or populations move through the landscape” (Rudnick et al. 2012, 2). We can either 

identify and protect currently existing landscape connectivity or reestablish connectivity in 

fragmented landscapes to help species gain resilience to future environmental conditions that 

may put them at a greater extinction risk. Maintaining or reestablishing landscape connectivity 
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across ecoregions or continents for long periods of time is important for the long-term survival of 

species because it allows them to shift their ranges in response to climate change and other long-

term ecological changes; if change happens too fast a species may not be able to adapt (Rudnick 

et al. 2012).  

There are several modeling techniques that can be used to identify and quantify landscape 

connectivity. Cushman et al. (2013) describes several methods which can be used to estimate 

resistance including telemetry, landscape genetics, habitat quality, mark-recapture, and 

combinations of methods. Potential corridors can be identified using least-cost modeling or 

factorial least-cost paths (Cushman et al. 2013). For example, Elliot et al. (2014) used Global 

Positioning System (GPS) tracking data from dispersing African lions and resistance surfaces for 

calculating the factorial least-cost path network. Circuit theory, centrality analyses, resistant 

kernels, and network-based models are some of the other types of ways we can analyze 

connectivity (Cushman et al. 2013). Measuring functional connectivity can be achieved more 

cost effectively and with greater sample sizes using genetic approaches compared to tracking 

individual animals but the concern with genetic studies is that “current genetic patterns may not 

reflect the impact of current landscape features” (Rudnick et al. 2012, 6) and “genetic 

connectivity may be masked in some instances by local adaptation” (Rudnick et al. 2012, 6). 

Comparing resistance surfaces created with movement data to those created through landscape 

genetic analyses can be useful to evaluate the robustness of a connectivity model (Cushman et al. 

2013). How well a species can travel across a landscape can depend on many factors and is 

typically predicted using landscape resistance surfaces created by assigning values to cells in a 

raster. Simple estimates of landscape resistance might not be able to adequately predict 

resistance to movement of a specialist species or of other species with “species-specific 
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movements” with specific habitat needs (Rudnick et al. 2012, 6). Connectivity modeling needs to 

consider both functional and structural connectivity components that can ensure “long-term 

habitat shifts” (Rudnick et al. 2012, 6).  

1.2. Co-distributed Species in the US-Mexico Border Regions 

1.2.1. Border Ecoregions and Biodiversity Hotspots  

An ecoregion is defined as a geographic area that has a distinct collection of “natural 

communities that share a large majority of their species, ecological dynamics, and similar 

environmental conditions and whose ecological interactions are critical for their long-term 

persistence” (Dinerstein et al. 1995, 4). The US-Mexico border crosses eight ecoregions 

described by Dinerstein et al. (2017): (1) the California Coastal Sage and Chaparral; (2) the 

Chihuahuan Desert; (3) the Sierra Madre Occidental Pine-Oak Forests; (4) the Sonoran Desert; 

(5) the Tamaulipan Mezquital; (6) the Western Gulf Coastal Grasslands; (7) the California 

Montane Chaparral and Woodlands; and (8) the Sierra Madre Oriental Pine-Oak Forests (Figure 

1). Within these ecoregions there are five biodiversity conservation hotspots along the border, 

the Californias, Sonora Desert, Sky Islands, Big Bend, and Lower Rio Grande Valley (Defenders 

of Wildlife 2018). These biodiversity hotspots are areas of high biological diversity which are 

threatened with habitat degradation. 

1.2.2. Species at Risk Due to Border Dispersal Barriers 

Studies have found that the US-Mexico border wall threatens biodiversity. Lasky, Jetz, 

and Keitt (2011) performed the first large scale evaluation of the border ecoregions to assess the 

potential threats presented by the border dispersal barrier to species that are non-volant terrestrial 

vertebrates. They identified the California, Madrean archipelago, and Gulf coast border regions 

as having high species richness with high number of species at risk from existing border barriers  
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Figure 1 – Map of study area used for this thesis project showing US-Mexico ecoregions. 

 



 

6 

 

and from construction of potential new border barriers. They identified several amphibians, 

reptiles, and mammals for further study. Peters et al. (2018) found that the border bisects the 

geographic ranges of 1,077 native terrestrial and freshwater animals and 429 native plants. Of 

these, 62 species are listed as Critically Endangered, Endangered, or Vulnerable by the 

International Union for Conservation of Nature (IUCN). Endangered species including 

Peninsular bighorn sheep (Ovis canadensis nelsoni), Mexican gray wolf (Canis lupus baileyi) 

and Sonoran pronghorn (Antilocapra americana sonoriensis). The study also mentions “if cut off 

by a border wall, 17% of the 346 species we analyzed, including jaguar (Panthera onca) and 

ocelot (Leopardus pardalis), would have residual US populations covering 20,000 square 

kilometers or less” (Peters et al. 2018, 741). Besides border fences and walls, other 

anthropogenic threats exist along the border such as artificial night lighting and noise pollution 

that can further threaten endangered Texas ocelots by discouraging dispersal of Mexican ocelots 

into Texas (Grigione and Mrykalo 2004). GPS tracked bobcats have died due to forced dispersal 

during previous border wall construction programs (Gaskill 2011). 

1.3. Research Objectives and Thesis Organization 

How do old and new border barriers affect connectivity for sensitive borderland 

mammals? Broadly speaking, this thesis has the objective to contribute to a better understanding 

of co-distributed border ecoregion species connectivity. The aim of this study is to identify areas 

on the US-Mexico border that would disrupt cross-border connectivity for one border species 

that may be sensitive to new border barriers. To accomplish this goal, core habitat areas and 

corridors for the jaguar in the border ecoregions and surrounding ecoregions were identified 

(Figure 1). It is important to find out how new border barriers would affect connectivity for 

mammals since existing and new border barriers can disrupt migration, dispersal, and  
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adequate gene flow; specifically, in this study for the jaguar (Panthera onca). The findings can 

help with management decisions for biodiversity conservation efforts in these border ecoregions. 

To the best of my knowledge this is the first study to use the Factorial Least Cost Path (FLCP) 

modeling approach for the jaguar (Panthera onca) in this study area. The specific objectives for 

completing this study are as follows: 

1. Identify appropriate border ecoregion focal species that could be impacted by 

border barriers and that would likely serve as umbrella species. 

2. Determine the most important environmental and anthropogenic predictor 

variables that influence suitable habitat for focal mammals by doing a thorough 

literature review. 

3. Create habitat suitability maps for the jaguar (Panthera onca) by building species 

distribution models. 

4. Identify core habitat patches for the jaguar (Panthera onca) by using the resistant 

kernel method.  

5. Identify potential corridors through the factorial least cost path method. 

 The remainder of this thesis is organized as follows. Chapter 2 reviews the related 

research which others have conducted using the methods outlined above for delineating habitat 

patches and modeling potential corridors.  Chapter 3 describes the data and methods used in this 

study. Chapter 4 describes the results of the study, and Chapter 5 discusses the significance of 

these results and concludes by noting the main findings related to the focal species. 
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Chapter 2 : Related Work 

This chapter describes work on multispecies connectivity modeling and the techniques 

commonly used. The four sections that follow describe multispecies connectivity modeling, 

species distribution modeling with presence only data, potential corridor modeling methods, and 

focal species selection. 

2.1. Multispecies Connectivity Modeling  

Multispecies connectivity modeling approaches use different methods to understand how 

to best connect habitat patches in fragmented landscapes. Some studies combine methods that 

predict suitable habitat and identify potential corridors. There are different algorithms for 

predicting suitable habitat, such as the widely used maximum entropy method (MaxEnt), and 

potential corridors, such as least cost path methods.  

DeMatteo et al. (2017), for example, used MaxEnt to evaluate habitat use, habitat 

suitability, and potential species richness for jaguars (Panthera onca), pumas (Puma concolor), 

ocelots (Leopardus pardalis), oncillas (Leopardus tigrinus), and bush dogs (Speothos 

venaticus) across northern-central Misiones, Argentina. They next determined the optimal 

location for primary/secondary corridors that would link the northern-central zones of the Green 

Corridor in Misiones and identified areas within these corridors needing priority management. 

This study performed a secondary analysis that compared the multispecies corridor results with 

the jaguar’s unique requirements and effectively demonstrated that their “multispecies approach 

balanced the preferences of all five species and effectively captured areas required by this highly 

restricted and endangered carnivore” (DeMatteo et al. 2017, 1). They prefer multispecies 

approaches over a single species approach when creating corridors. They used data collected 
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with dogs that could detect scat and a DNA extraction protocol to identify species from the scat. 

The optimal locations for primary/secondary corridors were identified by overlaying the five 

species-specific least cost path and least cost corridor models. They identified a primary corridor 

with a width of 7 km and a secondary corridor with a width of 14 km. They choose the five 

aforementioned species because they were identified from scat analysis to be co-distributed in 

the study area. 

Ersoy, Jorgensen, and Warren (2019) demonstrate an approach that identifies 

multispecies networks and compared it to a previous study in Sheffield, UK. They modeled least 

cost corridors for four bird, three mammal, and three reptile species. They identified a mix of 

landcovers important for supporting a maximum number of species and proposed ways that 

current Sheffield green networks can be improved.  

Khosravi, Hemami, and Cushman (2018) identified core habitat areas and connectivity 

corridors for six species found in the same geographic area in the central Iranian plateau. They 

used an ensemble model (EM) of habitat suitability using MaxEnt, GLM, GBM, and the 

biomod2 package in R to predict potential habitats of Persian leopard (Panthera pardus 

saxicolor), Asiatic cheetah (Acinonyx jubatus venaticus), caracal (Caracal caracal), wild cat 

(Felis silvestris), sand cat (Felis margarita), and grey wolf (Canis lupus). They then use resistant 

kernels and factorial least-cost path modelling to predict important core habitats and potential 

corridors between habitat patches using the UNIversal CORridor network simulator (UNICOR) 

(Landguth et al. 2012). This program uses Dijkstra’s algorithm (Dijkstra, 1959) to solve the 

single shortest path problem from each species occurrence point to every other occurrence point 

(Landguth et al. 2012). The contribution of each core habitat to the connectivity network was 

assessed using graph network algorithms in Conefor 2.2 (Saura and Tornė 2009). The next 
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section describes species distribution modeling with presence-only data. These three 

aforementioned examples covered in this section show how species corridor modeling can be 

combined with species distribution modeling.  

2.2. Species Distribution Modeling with Presence-only Data 

Species distribution modeling (SDM) has many names including climatic envelope-

modeling, habitat modeling, environmental niche modeling, and ecological niche modeling 

(Hijamans and Elith 2017). SDMs can use species occurrences in the form of presence and/or 

absence georeferenced locations along with predictor variables (environmental, topographic, 

climatic, anthropogenic, etc.) with the goal of predicting the species distribution, abundance, 

presence, or occurrence. The outcome one ends up predicting depends on the modeling method. 

There are numerous statistical methods that can be used to produce predictions and primarily 

depend on the type of data that is available. If you have a well-defined sampling method with 

presence and absence data, you should use statistical methods that were developed to handle 

those data. If you have information only about a species presence, you should use statistical 

methods developed to handle presence-only data; however, it is possible to use a modeling 

method that requires absence data so long as you can substitute absences with background data 

(Hijamans and Elith 2017). The following review of SDM methods is restricted to presence-only 

data because these were the data available for this study. 

2.2.1. Maximum Entropy Method (MaxEnt) for modeling species geographic distributions  

MaxEnt is a maximum-entropy technique that uses a machine learning algorithm called 

sequential-update which is analogous to the AdaBoost algorithm to predict a species’ potential 

distribution (π) (Phillips, Dudik, and Schapire 2004). The potential distribution π can exhibit 

sampling bias. This can happen for several reasons such as when some locations are sampled 
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more because of easier access to them. Sampling bias will cause the distribution to be weighted 

more towards the areas and environmental conditions where species localities were sampled 

more. For this reason, π and   are best interpreted as a relative index of environmental 

suitability (Phillips, Anderson, and Schapire 2006). The unknown distribution π is estimated by 

 of maximum entropy which depends on the condition that  is equal to the empirical 

distribution  for all of the features fj (i.e.  [fj] =   [fj]) (Phillips, Dudik, and Schapire 2004). In 

reality,  is close but not exactly equal to  and the regularization equation estimates how close 

it is to the empirical value (Phillips, Dudik, and Schapire 2004). The maximum entropy 

(MaxEnt) distribution equation in which entropy is maximized is equivalent to the maximum 

likelihood Gibbs distribution equation, which is the distribution that minimizes relative entropy 

(Kullback-Leiber divergence) (Phillips, Dudik, and Schapire 2004; Phillips, Anderson, and 

Schapire 2006).  

The MaxEnt program, used for maximum entropy modelling of species geographic 

distributions (Phillips, Dudík, Schapire, nd, Ver. 3.4.1), uses the sequential-update algorithm 

“that modifies one weight λj at a time” (Phillips, Dudik, and Schapire 2004, 667) and converges 

to the optimal maximum entropy distribution. MaxEnt predicts environmental suitability (or 

habitat suitability) as a function of the environmental variables by finding the probability 

distribution of maximum entropy, which is the distribution that is as close to uniform as possible. 

It uses presence-only data (positive examples), such as from museum records and herbarium 

collections and does not require information about where species are absent (negative examples) 

(Phillips, Dudik, and Schapire 2004; Phillips, Anderson, and Schapire 2006). The MaxEnt 

models show probability distributions over pixels but pixels without species records cannot be 
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considered as places where a species is absent because it is only working with data about 

presence localities (Phillips, Anderson, and Schapire 2006).  

MaxEnt has always been freely available but its source code was not publicly available 

because it was owned by AT&T. In December 2016, MaxEnt became open-source, and a new 

version (ver. 3.4.0) was released with an update to include a default log-log (cloglog) transform 

which can be interpreted as an estimate of the probability of occurrence (Phillips et al. 2017). 

This new cloglog transform uses a maximum likelihood exponential model obtained from an 

inhomogeneous Poisson process (IPP). Although it is an unlikely assumption, if sampling effort 

is unbiased then the new raw MaxEnt output can be interpreted as the relative abundance for the 

species and the cloglog transformation converts it to the probability of species presence (Phillips 

et al. 2017) with the following equation: 

Probability of presence = 1−exp(−exp(H)pλ (z))   (1) 

The previous versions of MaxEnt used the logistic transform as the default output with the 

following equation to give an estimate of the probability of presence (Phillips and Dudik 2008): 

  Q (y = 1|z) = eHq λ 
(x(z)) / 1+ eHq λ 

(x(z))   (2) 

The logistic transform is still available in the new version. Figure 2 shows a graph comparing 

these two equations. 

The species datasets used in this study are from presence-only mammal species 

occurrence locations recorded from human observations, camera traps, telemetry, and scientific 

literature without knowledge of species absence locations. This method was proven to perform 

better than other methods that do not require absence data, such as the Genetic Algorithm for 

Ruleset Prediction (GARP), which was tested with presence-only species occurrence records for 

birds and mammals (Phillips, Dudik, and Schapire 2004; Phillips, Anderson, and Schapire 2006).  
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Figure 2 – Graph showing the distribution produced using the cloglog and logistic transforms. 

Source: Phillips et al. (2017). 

 

2.2.2. Generalized Linear Models 

In statistics, a generalized linear model (GLM) describes any model with an expected 

value (μ) of the response (dependent) variable (Y) with linear explanatory (independent) 

variables x1, x2, … xp (Upton and Cook 2014).  

The following model described in Upton and Cook (2014), is a link function where the 

parameters β1, β2,…, βp are not known:  

  g(μ) = β0 + β1x1 + … + βpxp    (3) 

Nelder and Wedderburn (1972) developed this class of GLMs which includes the mathematical 

likelihood procedure to fit models based on normal, binomial, Poisson, or gamma distributions.  
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A GLM is a generalization of ordinary least squares regression (OLS) (Hijamans and Elith 

2017). Species presence and absence (or background) data can be analyzed using logistic 

regression methods commonly used with GLMs (Hijamans and Elith 2017).  

 Species distribution modeling involves model fitting of species distributions to 

environmental variables. The environmental variables are the explanatory (predictor) variables, 

and the response variables are the species distributions. In R (R Core Team 2018), GLMs are 

fitted using a maximum likelihood procedure and related to response variables through link 

functions that allow the variance of each measurement to be a function of the predicted value 

(Hijamans and Elith 2017). These models can be fitted using the glm() function in R (Kabacoff 

2017).  Table 1 shows the different family types that can be used as part of the glm() function in 

R to fit GLMs. 

Table 1 – List of the eight family types and their associated default link functions to be used 

with the glm() function in R. The glm function has the form: glm(formula, 

family=familytype(link=linkfunction), data=). Source: Kabacoff (2017). 

 

Family Default Link Function 

binomial (link = “logit”) 

gaussian (link = “identity”) 

Gamma (link = “inverse”) 

inverse.gaussian (link = “1/mu^2”) 

poisson (link = “log”) 

quasi (link = “identity”, variance = “constant”) 

quasibinomial (link = “logit”) 

quasipoisson (link = “log”) 
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2.2.3. Generalized Boosted Models  

The Generalized Boosted Models (GBM), gbm package in R is based on Friedman’s 

(2001, 2002) gradient boosting functions such as the gradient boosting machine and Freund and 

Shapire’s (1997) AdaBoost algorithm (Ridgeway 2019). The gbm package uses the AdaBoost 

exponential loss function and Friedman’s gradient descent algorithm (Ridgeway 2019). The gbm 

package supports the Gaussin, AdaBoost, Bernoulli, Laplace, Quantile regression, Cox 

Proportional Hazard, Poisson, and Pairwise distributions. Friedman (2001, 2002) describes an 

estimation function which estimates f(x) and includes a loss function Ψ(y, F(x)) written in the 

regression function below as L(y, F(x)): 

 F* = arg min E y,xL(y, F(x)) = arg min Ex[Ey(L(y, F(x))) | x] (4) 
      F             F 

Sometimes this is written as the regression function that estimates f(x) (Ridgeway 2019): 

  f̂(x) = arg min Ey|x [Ψ(y, f(x))|x]   (5) 
                f(x) 
 

Freedman’s gradient boosting machine contains Friedman’s gradient boost algorithm. 

 The AdaBoost algorithm is a machine learning algorithm, specifically described by 

Freund and Shapire (1997) as an adaptive boosting algorithm with the goal of identifying a 

hypothesis that has a low error relative to the distribution over the training examples. The first 

hypothesis that is identified is used for obtaining the next weight vector and the process repeats 

to generate more weight vectors in an iterative process that adjusts adaptively to errors in weak 

hypotheses (Freund and Shapire 1997).  

2.2.4. Random Forests Models 

Random forests (RF) is an ensemble machine learning algorithm developed by Breiman 

(2001). The general process by which RF works is through growing an ensemble of trees, 

allowing each tree to vote for the most popular class, and finally the forest chooses the 
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classification with the most votes from all the trees in the forest. To grow the ensembles, random 

vectors are produced independent of past random vectors with the same distribution. The 

procedures implemented by Breiman’s (2001) RF algorithm are called random forests. Breiman 

(2001) provides a definition for an RF classifier as follows: 

“A random forest is a classifier consisting of a collection of tree-structured 

 classifiers {h(x, k ), k = 1,...} where the {k } are independent identically  

distributed random vectors and each tree casts a unit vote for the most popular 

 class at input x” (Breiman 2001, 6). 

Random Forests has a well-established history in many disciplines but is less commonly 

implemented in ecological studies. There are numerous benefits to implementing an RF method 

in ecology including a high classification accuracy, the ability to determine variable importance, 

the ability to model complex interactions among predictor variables, it can handle thousands of 

input variables, it is robust against overfitting, it can perform regression and classification even if 

there are missing data, and it performs well compared to other classifiers. Cutler et al. (2007) 

used data from three different species to compare the accuracies of an RF model to those of 

classification trees, a logistic regression, and linear discriminant analysis, and found RF 

performed the best.  Mi et al. (2017) found RF performed better than MaxEnt for predicting rare 

species distributions with a limited number of samples over a large area and missing data for 

several Asian crane species. Torres et al. (2012) evaluated 11 SDMs and although all generally 

had high AUC values (≥ 0.88), the RF model had the highest AUC (0.96) when testing with 30% 

of the occurrence locations. Although RF is not as commonly used in ecology compared to other 

fields it provides many advantages and studies have proven it performs better than many other 

commonly used algorithms.  
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The next section describes resistant kernel modeling, factorial least cost path modeling, 

and graph theory. These techniques can be combined with species distribution modeling with 

presence-only data as well. 

2.3. Species Connectivity Modeling  

The resistant kernel, factorial least cost path, and graph theory modeling techniques 

discussed in this section can be used to model species connectivity for either single or multiple 

species. 

2.3.1. Resistant kernel modeling  

The resistant kernel modeling (or resistant kernel estimator) approach calculates the 

expected density of dispersing individual animals in each pixel on a landscape (Cushman, Lewis, 

and Landguth 2014). The resistant-kernel estimator method is a hybrid between the kernel 

estimator method and least-cost paths which use resistance surfaces (Compton et al. 2007). To 

calculate the resistant kernel estimator a least cost kernel for each cell is first calculated. Each 

cell represents a source for dispersers, for example a vernal pool, and then all kernels in each cell 

are added together (Compton et al. 2007). Worton (1989) described the fixed kernel and adaptive 

kernel methods for estimating the utilization distribution in species home range analyses. Patch 

isolation can be influenced by distance and the type of land cover matrix (Ricketts 2001). 

Ricketts (2001) described a maximum likelihood method to estimate relative resistances of two 

types of landcover for butterfly movement. Resistant surfaces are typically created by assigning 

resistance values to land cover types, while the least-cost path (LCP) method finds the shortest 

(less) costly distance between two origins (Compton et al. 2007). A variation to the LCP method 

involves using a multidirectional approach called a least-cost kernel surface because it measures 

the functional distance from one cell (source of dispersers) to all other cells in a landscape, 
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giving a probability of dispersal (Compton et al. 2007). A cost is assigned to each cover type 

which represents a cost an animal incurs when moving across that surface. The lower the cost the 

easier it will be for an animal to move across that landscape surface.  

The UNIversal CORridor network simulator (UNICOR; Landguth et al. 2012) program is 

used for identifying species connectivity and corridors. The UNICOR program uses a modified 

version of Dijkstra’s algorithm which computes the single shortest path from all locations on a 

landscape that are specified (Landguth et al. 2012). Dijkstra’s algorithm solves two problems, it 

constructs a tree, which is a graph, that has only one path between every two nodes and finds a 

path of shortest length between two nodes (Dijkstra 1959). UNICOR version 2.0 includes the 

resistant kernel technique used by Compton et al. (2007) which predicts habitat connectivity and 

corridor paths using a resistance surface as an input. There are three advantages to using resistant 

kernels: 1) They predict and map expected movement rates for every pixel in the study area; 2) 

the scale dependency of a species dispersal ability can be used to understand the effect of 

landscape change and fragmentation; and 3) they simulate and map different geographic extents 

using a combination of species (Landguth et al. 2016). The resistant kernel method used in 

UNICOR uses the modified version of Dijkstra’s algorithm to compute the least-cost dispersal 

around every specified source cell to create expected density surfaces for dispersing individuals 

at any location on a landscape (Landguth et al. 2016). This is accomplished by creating surfaces 

of cost to movement for every specified source which is then transformed to indicate a scale 

from zero to one (Landguth et al. 2016).  

2.3.2. Factorial least cost path modeling 

A major limitation to traditional least-cost paths and corridor analysis is that there are 

only two locations considered (i.e. the source and the destination). Factorial least cost path 
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analysis is a type of least cost path method that relies on a spatially synoptic view to understand 

connectivity (Cushman, Lewis, and Landguth 2014). By adopting a synoptic view one can 

understand connectivity from multiple locations to all other locations simultaneously. In this 

way, factorial least cost path analysis helps us to better understand connectivity by calculating 

least cost paths for “thousands or millions of combinations of locations” across the study area 

(Cushman, Lewis, and Landguth 2014, 845). Figure 3 shows a factorial least cost path analysis 

where densities of all paths are shown from blue to red with red representing the lowest cost 

paths (Rudnick et al. 2012).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Example factorial least-cost path analysis. Source: Rudnick et al. (2012) 

 

 Both the resistant kernel and factorial least cost path modeling methods can be modeled 

with the UNICOR software described above. This program can be used for factorial least cost 

path modeling to calculate the least cost paths for all source pair locations and to create several 

least cost paths (Cushman, Lewis, and Landguth 2014). The corridor strength is indicated by the 
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higher grid cell values in the raster that is created. Each cell value is calculated by summing the 

number of cost paths that cross the cell (Cushman, Lewis, and Landguth 2014).  

2.3.3. Graph theory 

Graph theory is a branch of geometry that originated in 1735 when the Swiss 

mathematician Leonard Euler solved the Königsberg bridge problem that involved finding a path 

over seven bridges that traversed a river without crossing any bridge twice (Hosch 2010). Graph 

theory is now considered a branch of mathematics that is concerned primarily with the statistical 

description of static networks (Proulx, Promislow, and Phillips 2005). The modern version of the 

theorem proved by Euler can be stated as follows: “If there is a path along edges of a multigraph 

that traverses each edge once and only once, then there exist at most two vertices of odd degree; 

furthermore, if the path begins and ends at the same vertex, then no vertices will have odd 

degree” (Hosch 2010, 108). In graph theory the term graph refers to a set of vertices which are 

called points or nodes and edges which are the lines connecting vertices (Hosch 2010). A 

multigraph is one that has any two nodes connected by more than one line and the graph is 

complete when each one of its nodes is connected to every other node by a line (Hosch 2010). 

There are also paths in graph theory which can take on different routes in a graph. There are 

different types of paths (e.g. Eulerian circuits) that can be defined in graphs.  Graph theory has 

applications in many fields ranging from sociology to evolution. It has been widely used in 

biological networks (Proulx, Promislow, and Phillips 2005). It is useful for problems related to 

finding optimal paths in a graph, given different criteria, and efficient algorithms (Hosch 2010). 

Graph theory has been applied to connectivity analyses in conservation biology. In this 

case a graph represents a landscape made up of nodes, which could be habitat patches, and lines 

connecting pairs of nodes, which could represent dispersal (Urban and Keitt 2001).  
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Pascual-Hortal and Saura (2008) used a graph-based approach to determine functionally 

connected forest areas within a species distribution and identify the forest habitat areas that are 

more important for maintaining connectivity for capercaillie. With their results they provided 

recommendations that could help with the conservation of capercaillie. 

Urban and Keitt (2001) used the minimum spanning tree, a graph construct, to understand 

the relative importance of habitat patches for the Mexican Spotted Owl. They used data from 

Keitt et al. 1995, USDI Fish and Wildlife Service 1995, to demonstrate the application of 

minimum spanning trees and found that using this method, large core owl populations and their 

dispersal routes between core habitats were well maintained.  

Another study used a graphed-based approach to understand landscape connectivity 

indices for prioritizing habitat patches and corridors (Pascual-Hortal and Saura 2006). This study 

compared 10 graph-based connectivity indices which included a new index, the integral index of 

connectivity (IIC), with seven different habitat changes, such as habitat patch loss and corridor 

loss, to see how well each one could identify important landscape elements. They found 

limitations to existing indices and that the new index was more appropriate because it performed 

consistently with different habitat changes (Pascual-Hortal and Saura 2006). In a later study, 

Saura and Pascual-Hortal (2007) looked at the response from nine connectivity indices again 

including the IIC. This time the IIC came in second place and a new index, the probability of 

connectivity (PC), placed first, performing consistently across the 13 landscape properties 

measured.  

Conefor Sensinode 2.2 (CS22) (Saura and Torne 2009) is a free software package that is 

used for quantifying the importance of habitat patches. This program is based on graph theory 

and works well with geographic information systems (GIS). It can process thousands of nodes 
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and can be used with any standard computer. The time required to complete the analysis will 

depend on the computer and number of nodes that need to be processed (Saura and Tornė 2009).  

The next section describes the species which was selected from the numerous species 

found to be at risk of border barriers from prior studies.  

2.4. Focal Species Selection 

Focal species were selected based on available data from various sources and databases 

including species occurrence data from literature, museums, public organizations, human 

observations, camera traps, and genetic samples, that indicated their presence occurred across the 

US-Mexico border and from coast to coast. Menke (2008) created a mountain lion least cost path 

model (LCP) for locating potential corridors in New Mexico for this felid. The final model found 

overlap between the mountain lion LCP model of potential corridors and habitat for gray wolf, 

jaguar, swift fox, and kit fox. This thesis project focuses on the jaguar (Panthera onca) and 

covers a much larger geographic extent than Menke (2008) did. The background for this highly 

endangered species and prior modeling are described in the two subsections below that conclude 

this chapter.  

2.4.1. Jaguar (Panthera onca) Background 

The jaguar (Panthera onca) is a keystone species whose historic range once stretched 

from southwestern United States to southern Argentina, but their range is much smaller today 

(Seymour 1989) (Figure 4). They are the largest felid predator and the only remaining 

representative of the genus Panthera in the American hemisphere. Presently the jaguar 

subspecies classification is unclear. Eight subspecies have been recognized by Pocock (1939) 

and Seymour (1989) but morphological and genetic analysis do not indicate that there are 
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separate subspecies (Larson 1997, Eizirik et al. 2001, Ruiz-Garcia et al. 2006) and Larson (1997) 

recommends captive jaguars should be managed as a single species.  

 
 

Figure 4 – Map showing approximate current and historic geographic range of the jaguar 

and the range limits based on found fossils from late Pleistocene and mid Pleistocene. Source: 

Seymour (1989).

 

 The IUCN Red List classifies jaguars as Near Threatened and they have a decreasing 

global population trend (Quigley et al. 2017). Major threats to jaguars vary by geographic region 

and include habitat loss and fragmentation, retaliatory killings due to livestock depredation, 

illegal body part trade, trophy hunting, and human competition for wild meat (Quigley et al. 

2017). Threats to jaguar survival have resulted in severely fragmented populations, a loss of 

habitat connectivity at local and regional scales, a 49% loss of their historic geographic range, 
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and a 21% loss of their important prey species (white-lipped peccary) (Quigley et al. 2017). 

Morcatty et al. (2020) found the illegal body part trade for several cat species including the 

jaguar are connected to Chinese-led development in Central and South America. They found 

jaguar seizers of body parts to have increased between 2012 – 2018 and found jaguar canines 

were the most common body part. The main threats to jaguars in northern Mexico include 

“illegal predator control, illegal hunting, depletion of prey species, and habitat degradation and 

fragmentation” (Rosas-Rosas and Valdez 2010, 366). In the southwestern United States, the 

major threats appear to have been livestock settlers. According to Brown (1983), kill data from 

jaguars indicates that they were eliminated by livestock operators and predator control agents 

which is concurrent with human settlement and development of the livestock industry. Reports 

and photographs of jaguars killed in Arizona and New Mexico have been documented as early as 

1986 (Brown and López-González, 2000). There are records of jaguars occurring in the 

southwest US including California, Texas, Arizona, and New Mexico (Brown 1983).  

Jaguars have been reported to prey on more than 85 different species with their favorite 

prey reported as peccaries, capybaras, pacas, agoutis, armadillos, caimans, and turtles (Seymour 

1989). In two specific case studies in northeastern Sonora, Mexico, jaguar prey species have 

been identified but it is not possible to assume that such findings would apply to the entire state 

of Sonora. In a study area (about 400 km2) in northeastern Sonora, Mexico, where cattle ranching 

dominates, jaguars were found to prey mainly on cattle but they also preyed on white-tailed deer, 

lagomorphs, collard peccary, and coati (Rosas-Rosas, Bender, and Valdez 2008). This study 

lasted six years and comprised just 27 scat samples that were analyzed by microscope (Rosas-

Rosas, Bender, and Valdez 2008). This same study attributed confirmed killings of calfs from 

ranch records and field surveys to three individual jaguars over a period of six years, and yet 
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there was still a very high calf survival rate averaging 93.3%, since most calves were sold 

(5728/6136) (Rosas-Rosas, Bender, and Valdez 2008). Cassaigne et al. (2016) investigated the 

jaguar and puma diet in a study area of about 700 km2 which partially overlapped the study area 

of Rosas-Rosas, Bender, and Valdez (2008) using molecular analysis of opportunistically 

collected scat samples (2012-2013) and kill sites (2011-2013) from two collard jaguars and 

seven collard pumas. The study found that a variety of small prey weighing less than 15 kg made 

up the majority of jaguar kill sites (52%) (Cassaigne et al. 2016). Despite a low jaguar density in 

the study area and just five jaguar scats and kill data for two collard jaguars, they identified a 

variety of prey species which included birds, deer, calves, coati, and skunks (Cassaigne et al. 

2016).  

Important native prey for jaguars along the border have been suggested to be Cous white-

tailed deer, javelina (a.k.a. collared peccary), coati, opossum, and other medium sized mammals 

(Brown and López-González 2001). Other examples of borderland jaguar prey have been 

documented as horse, cattle, elk carrion, white-tailed deer, white-nosed coati, javelina, desert 

tortoise, frogs, and skunk (Brown and López-González 2001). Potential native prey species for 

jaguars in the southwestern United States (Arizona and New Mexico) include white-tailed deer, 

collared peccary, mule deer, coatis, skunks, raccoons, and jackrabbits (Hatten, Averill-Murray, 

and Van Pelt 2005). Potential domestic prey includes animals such as livestock and horse 

(Hatten, Averill-Murray, and van Pelt 2005).  

2.4.2. Jaguar Modeling Applications 

Tôrres et al. (2012) evaluated 11 modeling methods including MaxEnt to predict species 

distributions and test whether species distribution modeling in general could provide estimates of 

jaguar population densities in the Neotropics. They used jaguar occurrences from scientific 
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books, research papers, online databases, and field records and complied 1,409 spatially unique 

jaguar records. The cell size was 0.0417 degrees which is about 4 km2 because SDM accuracy is 

limited by “the quality of distribution data and the available climatic and topographic data sets” 

(Tôrres et al. 2012, 617). The predictor variables used to evaluate all models were precipitation 

of the coldest quarter, precipitation of the warmest quarter, precipitation seasonality (coefficient 

of variation), annual precipitation, mean temperature of the wettest quarter, mean temperature of 

the driest quarter, maximum temperature of the warmest period, minimum temperature of the 

coldest period, temperature seasonality (coefficient of variation), annual mean temperature, 

altitude and slope. The number of iterations used was 1,000 and they used pseudo-absences. All 

the models they evaluated had high AUC values (≥ 0.88), but the Random Forest (RF) model had 

the highest value (0.96) when testing a subset of 30% of the occurrence locations (Tôrres et al. 

2012). 

 Rosas-Rosas, Bender, and Valdez (2010) found that jaguar cattle kill sites in northeastern 

Sonora (study site ~ 400 km2) were positively associated with oak, semitropical thornscrub, and 

xeric thronscrub and negatively associated with upland mesquite. They also found a positive 

association of cattle kills sites with proximity to water and roads (Table 2). Other potentially 

important variables found from the type of vegetation recorded at associated jaguar kill sites in 

northeastern Sonora, Mexico (400 km2
) include semitropical thornscrub, oak patches, and 

tropical deciduous forest (Rosas-Rosas and Valdez 2010). Natural prey of jaguar also prefers 

these types of habitats including white-tailed deer, coatimundi, and collard peccaries (Rosas-

Rosas and Valdez 2010).   

 Table 2 lists important predictor variables found, study information, habitat modeling 

algorithms used, the input predictor variables, and source for the jaguar modeling studies. Many 
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of these studies use a variety of different SDM algorithms individually or in combination which 

include MaxEnt, GARP, ENFA, MD, SVM, and EM’s.  

 Important vegetation for jaguars in the borderlands is described in other non-modeling 

literature from direct observation of the biotic community from jaguars reportedly killed or 

photographed and include Sinaloan thornscrub (mostly found in Sinaloa), Madrean evergreen 

woodland (including woodlands of oak and pine), chaparral, and shrub-invaded semidesert 

grasslands (Brown and López-González 2001). In Arizona and New Mexico, it seems that 

montane conifer forest and pinon-juniper woodland might also be important for jaguars (Brown 

and López-González 2001). Other habitat that has been associated with individually studied 

jaguars with camera traps in the southwestern US includes Sonoran lowland desert, Sonoran 

desert scrub, mesquite grassland, Madrean oak woodland, and pine-oak woodland (McCain and 

Childs 2008).  

 There have been potential corridor models created for jaguars of varying scales, including 

continental, countrywide, and finer scales. Rabinowitz and Zeller (2010) created a model of 

potential corridors for the jaguar at a continental scale (or range-wide scale) using GIS and 

expert opinion to create a cost surface and identify least cost corridors connecting the 90 known 

jaguar populations from northern Mexico to northern Argentina. They identified 182 potential 

corridors ranging between 3 to 1,607 km in length. They used six datasets for creating a  
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Table 2 – Jaguar habitat modeling studies 

 
Important 

variables found 

Study information Programs used Input predictor 

variables 

Source 

Oak, semitropical 
thornscrub, and xeric 

thronscrub, proximity to 

water, proximity to roads 
(positive) and upland 

mesquite (negative) 

Location: northeastern 
Sonora, Mexico 

Extent: 400 km2 

Years: 1999-2004 
 

Occurrences: 45 

confirmed jaguar cattle 
kill-sites 

Accuracy: unknown 

MaxEnt 
 

Best model found: 

vegetation type, distance 
to permanent water type, 

and distance to roads. 

Elevation, vegetation 
cover type (primary oak 

forest, semitropical 

thronscrub, xeric 
thornscrub, disturbed 

semitropical thornscrub, 

tropical deciduous forest, 
mesquite, and disturbed 

oak forest), distance to 

roads, distance to 
permanent water sources 

(perennial streams and 

rivers, springs, ponds, 

and permanent water 

developments), elevation, 

slope, and aspect. 
 

Resolution: unknown 

Rosas-Rosas, Bender, 
and Valdez (2010). 

 

Elevation between 1,220 
and 1,829 m with scrub 

grasslands, elevation and 

biomes, distance to water 
within 10 km or 

perennial or intermittent 

water sources (caution: 
Euclidean distances 

measured in mountainous 

terrain), and terrain 
ruggedness (intermediate 

to extreme ruggedness) 

Location: Arizona 
Extent: 295,234 km2 

Years: 1901-2001 

 
Occurrences: 57 jaguar 

sightings alive or dead 

Accuracy: < 8 km (<1.7 
km to 8 km) 

ArcGIS – habitat 
suitability map 

Coarse-scaled: vegetation 
biomes (ecosystems) and 

series (defined by 

dominant or 
characteristic species), 

elevation and terrain 

ruggedness, proximity to 
perennial or intermittent 

water sources (streams, 

rivers, lakes, or springs), 
and human density. 

 

Resolution: 30 m DEM 
resampled to 1 km2 cells. 

Hatten, Averill-
Murray, and van Pelt 

(2005). 

Important variables not 

possible to obtain from 
discriminant analysis. 

 

Important variables 
obtained from 

histograms: precipitation, 

elevation, slope, and 
temperature, shrubland, 

grassland, and forest 

(females: shrubland, 
deciduous broadleaf 

forest, and grassland; but 

also, needleleaf forest 
and mixed forest). 

Location: Arizona, New 

Mexico, Texas 
panhandle, Sonora, and 

Chihuahua. 

Extent: approximately 
1.1 million km2 

Years: ~1900 -2003 

 
Occurrences: 142 (100 

male, 42 female) jaguar 

occurrence records from 
museums, photos, 

verified kills, 

universities, conservation 
organizations, interviews 

with residents in Mexico. 

Accuracy: 25km2 
 

Genetic Algorithm for 

Rule Set Production 
(GARP) 

 

3 models: 
Males + Females 

Males 

Females 

20 environmental layers 

for climate and 
landscape, including 

temperature, wetness, 

vapor pressure, frost 
days, snow 

accumulation, radiation, 

soil type, elevation, 
aspect, slope, compound 

topographic index, water 

flow, and runoff 
 

Resolution: resampled to 

25km2 pixels 

Boydston and Lopez-

Gonzalez (2005). 

From ENFA and 

MaxEnt: 
 

Prefers: Tropical rain 

forest, prey, and 
regularly flooded 

vegetation, 

Avoids: Higher 
Elevations, arid 

vegetation, and grassland 

Location: Mexico 

Extent: 1,972,550 km2 
Years: Calibration 

dataset: 1990 – 2008 

Evaluation dataset: 

2000 – 2008 

 

Occurrences: Two data 

sets: 1) Calibration:  

197 (1 data point per 

locality, 1 record of 
presence for each 5 km2) 

occurrences from 

literature, CONABIO, 

Ensemble Model (EM) 

Ecological Niche Factor 
Analysis (ENFA) 

Mahalanobis distance 

(MD) 
MaxEnt 

6 environmental and 

anthropogenic factors 
assumed to be important 

 

Dry forest, tropical rain 
forest, other forest, arid 

vegetation, grassland, 

regularly flooded 
vegetation, agriculture, 

anthropogenic 

perturbation:  roads 
(distance) and human 

population density, 

Rodríguez-Soto et al. 

(2011). 
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GBIF, MaNIS, and 
Jaguar GIS. 2) 

Evaluation: 104 from 

VHF-locations for 5 
collard adult female 

jaguars in 5 different 

regions, camera-traps 
from 8 additional 

regions. 

Accuracy: unknown 

elevation, slope, prey-
species richness. 

 

Resolution: All layers 
resampled to 1-km2 cell 

size. 

From MaxEnt: positive 
relation to risk of attack 

by jaguar: tree cover 

percentage, percentage of 
animals in free grazing 

areas, and altitude 

Negative correlation to 
risk of attack by jaguar: 

arid vegetation 

Location: Mexico 
Extent: 1,953,162 km2 

Years: 1990 – 2010 

Occurrences: 222 from 
felid attacks on livestock 

(jaguar – 152, puma – 

70) 
 

Accuracy: unknown 

Jaguar: MaxEnt, GARP-
with best subsets, and 

Support Vector Machines 

(SVM) 
Puma: MaxEnt, 

Environmental distance, 

ENFA, GARP- with best 
subsets, and GARP – 

single run 

Landscape, livestock 
management, and 

anthropogenic: 

Topographic: altitude 
and slope 

Vegetative associations 

of the National Forest 
Inventory: forest 

(conifers, oaks and 

riverside vegetation), dry 
forest, rainforests, arid 

vegetation, underwater 

vegetation, and 
agriculture 

Percent tree cover 
Livestock density, 

percentage of free 

grazing 
Human population 

density, and 

distance to paved roads. 
1 datum per pixel 

Resolution: 1 -km2 

Zarco-González et al. 
(2013). 

 

permeability matrix which was used to create a cost surface to be used in a least cost path 

analysis (Table 3). 

  Other studies have focused on countrywide scale corridor studies such as in Mexico 

(Rodríguez-Soto, Monroy-Vilchis, and Zarco-González 2013), or a biome-scale in Brazil 

(Morato et al. 2014), and for smaller study areas within countries such as Nicaragua (Zeller et al. 

2011) and Argentina (DeMatteo et al. 2017). Rodríguez-Soto, Monroy-Vilchis, and Zarco-

González (2013) used a previously created ensemble model (Rodríguez-Soto et al. 2011, Figure 

2) of the potential distribution of the jaguar in Mexico and identified jaguar management and 

conservation areas (JCMA) which they used for identifying potential jaguar corridors between 

them in their 2013 study (Table 3). The variables used for the ensemble model in Rodríguez-Soto 

et al. (2011) are listed in Table 2. This ensemble model of potential jaguar distribution in Mexico 
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was used as a cost raster or permeability map to create the potential jaguar corridors in Mexico 

(Rodríguez-Soto, Monroy-Vilchis, and Zarco-González 2013).  

 Rodríguez-Soto, Monroy-Vilchis, and Zarco-González (2013) used the inverse of the 

habitat suitability map previously created from an ensemble model (Rodríguez-Soto et al. 2011) 

as the permeability (cost raster) map. They identified JCMAs as habitat patches using the 

Corridor Designer in ArcGIS. The permeability map and habitat patches were used as inputs to 

create the potential jaguar corridors for Mexico by calculating the cost-distance of each pixel 

using Corridor Designer in ArcGIS. In contrast, Rabinowitz and Zeller (2010) assigned cost 

values to landscape layer pixels obtained from 15 jaguar experts. The cost values ranged from 0, 

which indicates no cost to jaguar movement to a value of 10, which indicates a high cost for 

jaguar movement as shown in Table 4. A final cost surface or permeability matrix was created by 

using the Raster Calculator in ArcGIS and reclassifying the output raster. They created 

movement cost grids from each of the 90 Jaguar Conservation Units (JCU) and delineated least 

cost corridors using the Corridor function from the Spatial Analysist toolbox in ArcGIS 

(Rabinowitz and Zeller 2010). 
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Table 3 – Data layers used by different studies for creating jaguar permeability matrices 

 
Study / Notes Input layers Dataset name and 

scale 

Year of data Data Source 

Rabinowitz and 

Zeller (2010) datasets 

for creating the jaguar 

permeability matrix / 
 

Extent: Continental 
(northern Mexico to 

northern Argentina) 

 

Elevation Global 30 arc-second 
elevation data set 

1 km resolution 

1996 Center for earth resources 
observation and science 

(EROS) 

Landcover type Global land cover 2000 
1 km resolution 

1999–2000 Global land cover 2000 

Percent tree and shrub 

cover 

Continuous vegetation 

fields 
500 m resolution 

2000 Global land cover facility 

Population settlements Vector map level 0 

population settlements 

1:1,000,000 scale 

1960s–1990s National imagery and 

mapping agency (NIMA) 

Human population density Gridded population of the 

world v3 

2.5 min resolution 

2000 Center for international 

earth science information 

network 
(CIESIN) 

Roads Vector map level 0 roads 

1:1,000,000 scale 

1960s–1990s National imagery and 

mapping agency (NIMA) 

Rodríguez-Soto, 

Monroy-Vilchis, and 

Zarco-González 

(2013) variables 

 

Extent: country of 

Mexico 
 

* variables for layers 

and datasets are from 
Table 1 in Rodríguez-

Soto, Monroy-Vilchis, 

and Zarco-González 
(2013), but see 

variables listed in 

Table 2 for Rodríguez-
Soto et al. (2011). 

*Vegetation cover National Forest Inventory 

1:250 000 

2001 SEMARNAT et al. 

*Human disturbance: 

Agriculture, Road network, 

and Human population 
density 

Agriculture, Road 

network, and Human 

population density 

2001, 2008, and 2005 SEMARNAT et al., 

CONABIO, and FAO 

*Protected Natural Areas 

(PNA) 

Protected Natural Areas 2007 Consejo Nacional de 

Areas Protegidas 
(CONAP) 

*Elevation Digital elevation model 2007 U.S. Geological Survey 

(USGS) 
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Table 4 – Cost values (cost to jaguar movement) obtained from 15 jaguar experts assigned to 

various landscape layers, from Rabinowitz and Zeller (2010). 

 

Landscape Layer Cost Value Landscape Layer Cost Value 

Land cover type  Tree and Shrub Cover (%)  

Tree Cover, broadleaved, 

evergreen 

0 0 – 10 9 

Tree Cover, broadleaved, 

deciduous 

0 10- 20 7 

Tree Cover, needle- leaved, 

evergreen 

1 20 - 40 5 

Tree Cover, mixed leaf Type 0 40 - 60 2 

Tree Cover, regularly flooded, 

fresh water 

2 60 - 80 0 

Tree Cover, regularly flooded, 

saline water 

2 80 - 100 0 

Mosaic: Tree cover/other 

natural vegetation 

1 Human Population Density 

(people/Km2) 

 

Shrub Cover, evergreen 2 0-20 1 

Shrub Cover, deciduous 3 20-40 5 

Herbaceous Cover 5 40-80 7 

Sparse herbaceous or sparse 

shrub cover 

6 80-160 9 

Regularly flooded shrub and/or 

herbaceous cover 

5 160-320 10 

Cultivated and managed areas 8 >320 N/A 

Mosaic: Cropland/Tree Cover/ 

Other natural Vegetation 

5 Elevation (m)  

Mosaic: Cropland/Shrub or 

grass cover 

7 0 – 1000 0 

Bare areas 8 1000–2000 2 

Water Bodies 6 2000–3000 7 

Snow and Ice N/A 3000–5000 10 

Artificial surfaces and 

associated areas 

10 >5000 N/A 

Distance from Roads (Km)  Distance from Settlements (Km)  

0 to 2 7 0–2 8 

2 to 4 4 2–4 5 

4 to 8 2 4–8 4 

80 to 160 1 8-16 1 

> 16 0 > 16 0 
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Chapter 3 : Methods 

3.1. Research Design 

The overarching research question that this study hopes to answer is: How will new border 

barriers affect connectivity for jaguars? By answering this question, it will be possible to identify 

dispersal corridors which may be disrupted by new border barriers. Additionally, these results 

can be compared to the connectivity for the eight co-distributed charismatic mammals (orders: 

Carnivora and Artiodactyla):  mountain lion (Puma concolor), ocelot (Leopardus pardalis), 

bobcat (Lynx rufus), black bear (Ursus americanus), gray fox (Urocyon cinereoargenteus), 

Mexican gray wolf (Canis lupus baileyi) Sonoran pronghorn (Antilocapra americana 

sonoriensis), and Bighorn sheep (Ovis canadensis.) All data were processed using ArcGIS Pro 

(Version 2.3.2, Esri Redlands, CA) and Google Earth Engine 2019 (GEE, Google, Mountain 

View, CA). All modeling and analysis tasks were completed using two software programs: R 

(Version 3.6.0 (2019-04-26) -- "Planting of a Tree"), and UNICOR (Version 2.0, 2016). 

The general methodology which was employed was inspired by and constitutes a 

variation to that used by Khosravi, Hemami, and Cushman (2018). This earlier study focused on 

a small geographic region unlike this thesis project which focused on a greater geographic extent 

and therefore required a revised methodology. Different species data points cover different areas 

along the US-Mexico border ecoregions which can help meet the intended goal of understanding 

how new border barriers would affect connectivity for the jaguar and several border mammals 

that may be impacted by new border barriers. The realization that the occurrence points for 

several individual species span the US-Mexico border helped define a study area. For example, 

jaguar records are found in the above mentioned US and Mexican states, but they are also found 

in Texas and northeastern Mexico. The desire to understand how the connectivity of border 
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mammals would be affected by border barriers motivated this study which followed the US-

Mexico border from coast to coast.  

Important predictor variables were identified from scientific literature for the jaguar and 

several focal mammals from relevant study sites, in, or as close as possible to the borderlands of 

US and Mexico. This approach provided a greater probability of selecting appropriate predictor 

variables for use in the chosen study area. However, literature was also reviewed for focal 

species from other geographic areas, such as Argentina, Brazil, and other central and south 

American countries. It is important to select appropriate covariates to build habitat suitability 

maps for the chosen species. Building habitat suitability maps helps to identify core habitat 

patches for specific species by using the resistant kernel method. Potential corridors can be 

identified using the factorial least cost path method, and the importance of patches and corridors 

can be assessed using graph network algorithms. 

3.2. Focal Species Datasets 

Several species of concern whose dispersal, migration, and gene flow might be impacted, 

have been identified and are listed in Chapter 1 and described in Chapter 2. The focal species are 

jaguar (Panthera onca), mountain lion (Puma concolor), ocelot (Leopardus pardalis), bobcat 

(Lynx rufus), black bear (Ursus americanus), gray fox (Urocyon cinereoargenteus), Mexican 

gray wolf (Canis lupus baileyi) Sonoran pronghorn (Antilocapra americana sonoriensis), and 

Bighorn sheep (Ovis canadensis). These species represent the mammalian orders, Carnivora and 

Artiodactyla.   

The occurrence localities that were used for the jaguar and other focal species were 

obtained from scientific literature, museums, universities, institutions, online databases, and a 

conservation organization. This includes occurrence data with GPS coordinates from 
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photographs, camera trap image/video data, scat, hair, tracks, reports, preserved specimens, 

species mortalities, genetic sampling location data, human observations, hunter harvested 

individuals, road kills, and GPS telemetry. Three main online databases were used to obtain most 

of the occurrence data: (1) the Global Biodiversity Information Facility (GBIF); (2) VertNet; and 

(3) the Jaguar Observations Database (JOD). Occurrence records were cleaned using ArcGIS Pro 

by removing occurrence points found in the ocean, records with high uncertainties, fossils, zoo 

records, duplicate records, and by examining metadata files. Final cleaned species records were 

saved in separate AcrGIS Pro geodatabases including for the jaguar which was used in this thesis 

project.  

3.3. Focal Species Covariate Datasets 

There are many studies that advocate for multi-scale optimization when modeling species 

habitats because species may respond differently to predictor variables at different spatial scales. 

Multi-scale habitat modeling refers to the scale(s) that is(are) important to an individual 

organism because of how the individual interacts with the environment. Wiens (1989) mentions 

that when studies asking the same questions are conducted at different scales their findings are 

not always consistent. Different species may respond differently at different scales which can 

lead to issues when designing nature reserves. As Wiens (1989, 385) mentions, “the very 

foundation of geography is scaling”. The term “scale” is context specific but regarding spatial 

analysis and modeling, O’Sullivan and Perry (2013) define it as a term that describes spatial 

grain, spatial extent, temporal grain, and temporal extent. Spatial grain refers to the resolution 

used to collect the data which the data (e.g. pixel, or cell size), temporal grain refers to the 

frequency used to collect the data, spatial extent refers to the total area that the dataset covers, 

and temporal extent is the date range over which the data were collected (O’Sullivan and Perry 
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2013). When considering spatial scale in ecological studies “expanding the extent of a study 

usually also entails enlarging the grain. The enhanced ability to detect broad-scale patterns 

carries the cost of a loss of resolution of fine-scale details” (Wiens 1989, 387). When spatial 

scale is increased temporal scale should also be increased since processes will operate at slower 

rates. The acquisition of occurrence data for a broad temporal range supports the large spatial 

extent chosen for this study. Finally, Wiens (1989) recommends that ecologists should adopt a 

multiscale approach to species studies.  

Several studies have found that multi-scale species models outperform single-scale 

species models in terms of predictive power (e.g., McGarigal et al. 2016; McGarigal, Zeller, and 

Cushman 2016; Timm et al. 2016; Wan et al. 2017) and provide greater predictive capacity 

(Timm et al. 2016). For models to be robust they should include a full set of “covariates relevant 

to habitat selection by the species as is possible” and at spatial scales important to the focal 

species (Timm et al. 2016, 1210). This can be accomplished by varying the bandwidth for each 

covariate and each location in ArcGIS Pro. Unfortunately scale optimization procedures are very 

rarely used in habitat modeling studies (McGarigal et al. 2016). Timm et al. (2016, 1210) 

recommends using multi-scale models to reduce “investigator-driven bias”. This author 

determined the covariates from literature reviews and discussions with species experts. This 

thesis project also used literature reviews to determine important variables and understand the 

jaguar’s ecology. Feedback for variable selection was received from Dr. Cushman. This 

approach provided a full list of the best possible variables to use and the inclusion of species-

important scale optimization provided a more robust modeling framework.  

 All covariate datasets required varying levels of preprocessing with ArcGIS Pro and GEE 

prior to implementing a multi-scale optimization method. Figure 5 shows the average human 
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population density covariate layer for the period 2000-2020. It was created using ArcGIS Pro 

Cell Statistics and 5 input rasters for the years 2000, 2005, 2010, 2015, and 2020.  A total of 52 

covariate layers were ultimately processed.  

 

Figure 5 – Average human population density for the period 2000 - 2020. Average number of 

persons per 30m pixel, 2000 – 2020. Source: GPW ver. 4 rev. 11. 

 

 Eight anthropogenic, two climate, 15 ecoregion, 10 land cover, six topographic, seven 

vegetation, and four water covariate layers were further processed at five different scales, to 

generate a total of 260 covariates. Dr. Wan’s python script was used for multi-scale optimization. 

 

0 – 0.000001 
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Results for some of the 260 covariates processed are shown in Figures 6 to 9. The univariate 

scaling of the compound topographic index (CTI) and mean annual temperature layers at 16 km 

are shown in Figures 6 and 7. Results for the univariate scaling of slope position and roughness 

layers at 8 km are shown in Figures 8 and 9. Roughness was rescaled from 1 to 10 using a log 

transform function for proper visualization of landscape features with low (1) to high (10) 

surface roughness (Figure 9).  

 The slope position, roughness, and compound topographic index were processed using 

ArcGIS Pro and the ArcGIS Geomorphometry and Gradient Metrics toolbox (Evan et al. 2014). 

Slope position calculates the scalable slope position by subtracting a focal mean raster from the 

original elevation raster based on Berry’s (2002) methodology for calculating a surface area 

ratio. Slope position values range from low (negative) to high (positive). Evan et al. (2014) 

describe roughness as a representation of a continuous raster within a specified window and this 

metric is based on the research conducted by Riley, DeGloria and Elliot (1999) and Blaszczynski 

(1997). Roughness (or ruggedness) is an estimate of terrain heterogeneity which is an important 

variable for predicting species potential habitats and densities (Riley, DeGloria, and Elliot 1999). 

It is related to the Terrain Ruggedness Index (TRI) which describes level ground to extremely 

rugged terrain. The CTI is a steady state wetness index and a function of the slope and upstream 

contributing area per unit width orthogonal to the flow direction. CTI is described by the 

following equation: 

    CTI = ln (As / (tan (β))  (6) 

where As is equal to the area value calculated as flow accumulation plus 1 multiplied by the pixel 

area in square meters.  β is the slope expressed in radians (Evan et al. 2014). 
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Figure 6 –16 km univariate scaling for the compound topographic index. 

 

 

 

Figure 7 – 16 km univariate scaling for annual mean temperature. 
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Figure 8 – 8 km univariate scaling for slope position. 

  

Figure 9 – 8 km univariate scaling for roughness. 
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3.4. Focal Species Habitat and Corridor Modeling 

The focal species suitable habitat models and corridor modeling followed the 

methodology of Khosravi, Hemami, and Cushman (2018) with some modifications. A Random 

Forest model was built and a resistance surface was created for input into the UNICOR program. 

Scale optimization was performed for each covariate layer determined to be important to the 

jaguar once the final set was determined. 

3.4.1. Random Forests  

After reviewing several commonly used SDM algorithms as described in Chapter 2 the 

Random Forests (RF) algorithm was chosen. Random forests is a machine learning algorithm 

that generates multiple tree predictors where each tree depends on the values of a random vector 

which is sampled independently and with the same distribution for all trees of a forest (Breiman 

2001). It can perform both classification and regression accurately even if there are missing data. 

The improvements to classification documented in numerous applications can be attributed to the 

growth of an ensemble of trees and “letting them vote for the most popular class” (Breiman 

2001, 5). Random Forests models will not be overfit, and they will work with large datasets of 

higher dimensionality. The growth of the trees occurs by allowing random vectors to be 

generated leading the way for the ensemble tree growth. The random vector is generated 

independently but with the same distribution as the past random vectors. The error rates 

accompanying the random selection of features to split up each node are comparable to the error 

rates of the Adaboost algorithm, but these methods are more robust when dealing with noise 

(Breiman 2001).  

The Random Forest R package “randomForest” is an ensemble machine learning 

algorithm for classification and regression which implements the Breiman (2001) random forests 
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algorithm and it is based on Breiman’s and Cutler’s Fortran code (Breiman et al. 2018). Random 

Forests was used because it is a strong classifier that uses a robust algorithm and prior studies 

have used this approach.  For example, Mi et al. (2017) found that it performed better than 

MaxEnt for predicting rare species distributions with a limited number of samples over a large 

area and missing data for several Asian crane species. Torres et al. (2012) evaluated 11 SDMs 

and although all generally had high AUC values (≥ 0.88), the RF model had the highest AUC 

(0.96) when testing with 30% of the occurrence locations. Random Forest has an established 

history and good predictive performance ability.  One great feature of MaxEnt is the capability to 

perform a jackknife analysis to identify the most important predictor variables; however, 

Random forest can use the extractor function to measure variable importance. Dr. Wan’s R script 

with a slight modification by the author was used to create the Random Forest potential habitat 

model. The author added some lines of code to make use of multiple computer cores to speed up 

the prediction map output.  

3.4.2. Calculating resistant kernels and factorial least-cost paths 

The resistant kernels and factorial least-cost paths were generated using the UNICOR 

program described in Chapter 2. Once the SDM was created for the jaguar, the habitat suitability 

model was converted to a resistance map following the methodology of Khosravi, Hemami, and 

Cushman (2018). The predicted habitat patches were then determined and a sensitivity analysis 

was performed to determine the robustness of predicted patches that reflect the dispersal abilities 

of the jaguar.  
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3.4.3. Using the graph network algorithm 

The graph network algorithm described in Chapter 2 was used next to determine the 

contribution of core areas to the network following the methodology of Khosravi, Hemami, and 

Cushman (2018).  

3.5. Model Selection, Validation, and Evaluation 

Both the receiver operating characteristic (ROC) and area under the ROC curve (AUC) 

have been widely used in SDMs to evaluate model accuracy. In general, the ROC is a curve that 

plots the true positive rate (TPR) on the y-axis against the false positive rate (FPR) on the x-axis. 

The ROC is used for visualizing the performance of a binary classifier widely used in machine 

learning.  The TPR is also known as the sensitivity (or the probability of detection) and the FPR 

is also known as “1-specificity” (or probability of false detection). The AUC summarizes the 

performance of the classifier. AUC values closer to 1 indicate better model performance 

(Phillips, Dudík, and Schapire, nd). Generally, a model is considered good if it has an AUC 

value greater than 0.75 (Elith et al. 2006). The ROC and AUC was used to determine the success 

of the models to predict occurrence patterns.   

Cohen's (1960) Kappa is a coefficient of interjudge agreement for nominal scales and has 

the following equation: 

    k = Po – Pc / 1 – Pc    (7) 

where Po is equal to the proportion of units in which the judges are in agreement, Pc is equal to 

the proportion of units in which the agreement is expected by chance, therefore k is the 

proportion of agreement after chance agreement has been removed. It can measure the agreement 

between predicted presences and absences (or pseudo-absences) with the actual presences and 

absences (or pseudo-absences) corrected for agreement that might occur only by chance. It has a 



 

44 

 

range between -1 to +1 and if the value is less than 0 this indicates that the agreement is less than 

expected by chance (or performance is no better than by random chance). Since SDMs were 

created using RF with presence-only data, a methodology like that used by Evans and Cushman 

(2009) and Mi et al. (2017) was used to validate SDMs in this thesis project. 
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Chapter 4 : Results 

This chapter describes the results for the RF habitat model, resistance surface, and the 

UNICOR corridor model for the jaguar.  

4.1. Jaguar Habitat Map 

The jaguar habitat map was modeled using 51 covariates at the optimal scale (i.e the 

lowest Out of Bag (OOB) error rates from univariate scaling). The multicollinearity test found 

three of the 51 covariates to be correlated and these were removed from further analysis. Those 

variables were the Enhanced Vegetation Index (EVI) at 16 km for all years averaged, the 

Normalized Difference Vegetation Index (NDVI) at 16 km for all years averaged, and major 

roads and links at 16 km.  The data with removed variables was found to be balanced and the 

final most parsimonious model determined with the model improvement ratio which was not 

fitting noise selected a model with 36 variables. The selected model had an Area under the ROC 

curve value of 0.852, a cross-validation Kappa value of 0.7073, a cross-validation OOB Error of 

0.147561, and a cross-validation error variance of 1.642579e-05. Figure 10 shows the final 

jaguar potential habitat map. The color gradient displays areas of high probability of occurrence 

(red) to low (blue) for the jaguar.  

Results predict there is good habitat for jaguars in the Sonoran-Sinaloan subtropical dry 

forest, Sinaloan dry forests, Sierra Madre Occidental, California montane chaparral and 

woodlands, Arizona Mountains forests, Sierra Madre Oriental pine-oak forests, Veracruz moist 

forests, Sierra de la Laguna pine-oak forests, Sierra de la Laguna dry forests, Tamaulipan 

matorral, and small portions of the Sonoran desert ecoregions. 

Figure 11 shows the results for the scaled variable importance graph (a), bootstrap error 

convergence (b), and the ROC curve (c) for the 36 selected covariates. The scaled variable  
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Figure 10 – Jaguar potential habitat map in the US/Mexico border ecoregions from the RF 

model. The color gradient shows the probability of species occurrence. 

 

importance graph (b) lists the variables scaled from less (0) to more (0.05) important for the RF 

model. The bootstrap error convergence graph (b) shows the convergence of bootstrap error 

estimates with the error on the y-axis and the number of trees on the x-axis. Lastly, the ROC 

curve (c) graphically displays the hit rate (y-axis) and the false alarm rate (x-axis). These results 

provide confidence in the RF model.  

The partial dependency plots for Pav_16km, u17_16km, and MaRd_16km and a presence 

/ absence proximity matrix are shown in Figure 12. The partial dependency plots (a) – (c) 

indicate the probability for either Pav_16 km, u17_16 km, or MaRd_16 km. The presence /  
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Figure 11 – The scaled variable importance (a), bootstrap error convergence (b), and the ROC 

curve (c) graphs for the random forest jaguar potential habitat map. 

 

 

absence proximity matrix (d) is a two-dimensional graph which plots the absences versus the 

presences used in the RF model. 

 

 

 

 

a 
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Figure 12 – Partial dependency plots (a) – (c), and (d) Presence/Absence proximity matrix. 

4.2. Jaguar Resistance Surface  

Figure 13 shows the jaguar resistance surface created using a negative exponential 

function rescaled from 1 to 100. The color gradient represents areas of high resistance (blue) to 

low areas (red) for jaguars to traverse the landscape. Areas of low resistance are assumed to 

comprise landscape features which would be easier or less costly for jaguars to traverse the 

landscape. Areas of high resistance represent a greater cost to traversal. The less costly areas in 

this jaguar resistance surface are assumed to be more favorable for use by jaguars.  

 

a b 

c d 
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Figure 13 - Jaguar resistance surface created using a negative exponential function and rescaled 

from 1 to 100. 

 

Figure 14 shows the resistance surface with the major interstate freeways, national and 

divided roads, and the border wall for reference. From this map we can see that even though 

there is habitat which is assumed to have a lower resistance for jaguars there may still be 

complete barriers or partially complete barriers to jaguar movement. For example, a complete 

barrier could be assumed to be an extremely tall border wall since this would completely block  
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Figure 14 – Map of jaguar resistance surface with major roads and the US-Mexico border wall 

overlaid. 

 

jaguar movement. Complete to partial barriers can be assumed for different types of roads such 

as interstate highways, primary national roads, or other important typically divided roads. 

4.3. Jaguar Corridor Modeling 

The jaguar's potential corridor modeling suggests that there were previously two high 

density corridors between the US and Mexico allowing jaguar connectivity. However, if the 
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partially constructed border barriers are completed those jaguar corridors will be lost. 

Additionally, only one jaguar corridor was completely unobstructed, one partially unobstructed, 

and two already blocked by previous border wall construction. The predicted corridors for the 

jaguar are shown in Figure 15. Figures 16 and 17 show where the portions of the US-Mexico 

border wall intersect the jaguar predicted corridors. Figure 16 shows the intersections and 

unobstructed areas of the previous border wall and the predicted jaguar corridors. Figure 17 

shows the new border wall with a status of “partially constructed”, previous border wall, and the 

intersections with the predicted jaguar corridors. These three maps show the color gradients from 

high (red) to low (blue) corridor density. These results suggest that if the partially constructed 

border wall goes to completion, it will block these remaining unobstructed corridors found 

between the US and Mexico.  
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Figure 15 – Map of predicted corridors for the jaguar with the US-Mexico border wall and areas 

in Figures 16 and 17 overlaid on top of the corridor density map. The US and Mexico coastlines 

are shown in green. 
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Figure 16 – The predicted corridors for the jaguar with the previous (old) US-Mexico border 

wall overlaid on top. 

 

 

 

 
 

Figure 17 – The predicted corridors for the jaguar with the new US-Mexico border wall overlaid 

on top. 
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Chapter 5 : Conclusion  

 The potential habitat for the jaguar was mapped using the best available data for two 

countries, which included occurrence records and numerous covariate datasets. Covariate 

datasets and occurrence records were carefully selected from the best available sources to 

produce habitat maps, resistance surfaces, and potential corridors. The multiscale optimization 

and RF model provided the best possible jaguar model using this available data. The FLCP 

analysis incorporated the robust Dijkstra’s (1959) algorithm to predict the best possible potential 

corridors for the jaguar.  

The choice of covariate dataset sources was based on well documented covariates and 

metadata files were carefully inspected. However, country specific covariate datasets were a 

major challenge to use because some cannot be combined and others are not of comparable 

quality. This did limit the desire to include more covariates. However, future studies can 

certainly add more and compare model results. Open-Street-Map provides free global data and 

has excellent descriptions of numerous features including roads. However, there may still be 

differences in data collection when considering the US and Mexico. Sourcing covariate datasets 

that encompass two or more countries can be a challenging task, but future work can be done by 

choosing the best available datasets with the best possible descriptions and metadata files as is 

reasonably possible.  

Several species occurrence records were carefully sourced and stored in geodatabases for 

future modeling. These other species records were found along other sections of the US-Mexico 

border and will likely produce corridors for one or more of these focal species along other 

sections of the US-Mexico border. Modeling for several species will provide more information 

about potential corridors which may be hindered by border walls and/-or roads throughout this 
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study area. The effects of using different species datasets can be compared in future research. For 

example, if more datasets become available geodatabases can be updated and it would be 

interesting to see if the outcomes change. 

Future research can be conducted to assess the core habitats for the jaguar as well as to 

include different modeling scenarios for this species. For example, scenarios with different 

dispersal barriers can be considered and modelled in future studies. In addition, different habitat 

models for the jaguar can be compared in future studies. For example, it would be interesting to 

compare a MaxEnt output as well as other model outputs to the results provided in this thesis 

project. Since covariate datasets were processed and completed to accommodate nine species, 

they could be used in future studies to model all nine species.  

The potential corridor results for the jaguar in Figure 15 show their locations 

concentrated in parts of the western and eastern portions of this study area. With only one 

previously completely unobstructed corridor and one partially obstructed corridor available it 

becomes even more important to advocate for change. Jaguar corridors are found in only a small 

area relative to the entire US-Mexico border and require specialized habitats.  

The Department of Homeland Security (DHS) was established June 2002 under the 

presidency of George W. Bush as a response to the September 11, 2001, terrorist attacks 

(https://dhs.gov). The DHS has an important and honorable duty to protect and defend the 

American people through established protocols that allow efficient information sharing between 

numerous federal departments and agencies.  The U.S. Customs and Border Protection (CBP) is 

one of the many departments collaborating with the DHS. The CBP has worthy core values with 

the intention to make the US safer. However, keeping Americans safer could extend beyond 

identifying potential threats caused by humans to include strategies to enrich and improve the 
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quality of human life by ensuring safe and resilient ecoregions within the US and across borders. 

There are numerous threatened species in many countries which affect the structure of ecological 

interactions needed for species long term persistence. Mexico has the third highest total number 

of threatened species and the US ranks six (IUCN 2021). The DHS and CBP have the potential 

to afford species in peril greater opportunities to overcome numerous threats by facilitating 

potentially important northern range expansions through potential corridors for endangered 

species such as the jaguar which is listed as endangered in both the US and Mexico. By doing so 

the connectivity of peripheral jaguar populations may improve and protect against future 

environmental conditions that may put them at a greater extinction risk. It is important to protect 

core areas, peripheral areas, and cross border connectivity to reduce a species probability of 

extinction, in this case the jaguar. The DHS and CBP could re-evaluate border barriers, including 

recently built ones because they can cut off corridors for jaguars and potentially other species. 

For endangered species it is even more critical to allow dispersal corridors given continuously 

shrinking habitats.  
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