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A B S T R A C T

Understanding the ecological consequences of conservation policies on wildlife is critical for species conserva-
tion and policy implementation. China began to call for establishing a national park system in 2013 and used
national parks as the predominant feature for its system of protected areas in 2019. Payment for ecosystem
services (PES) and relocation constitute two important management strategies in new Chinese national parks and
protected area system. To better understand the potential outcomes of such programs, we studied the winter
foraging distribution of the threatened Black-necked Crane (Grus nigricollis), a flagship species of plateau wet-
lands, in Dashanbao Protected Area, SW China. Field survey data were combined with environmental variables
and land use maps to model winter foraging habitat with respect to human settlements subject to PES and
relocation. High suitability for foraging was mapped in the core zone around crane roosting sites, villages, and
far from disturbance (e.g. main roads). Aiming at converting farmland to wetland, the payment for ecosystem
services programs increased probability of occurrence of cranes by changing land cover in appropriate areas
relative to crane roosts and other spatially distributed variables. Surprisingly, areas within 1 km of villages were
recognized as highly suitable foraging habitats for cranes, which depend on waste grain in farmland in winter,
revealing the potential risk of relocation-induced food shortage for wintering cranes. We argue that as an ef-
fective strategy in improving wildlife habitat, PES should be encouraged and relocation programs that change
the existing long-term established human-wildlife interactions should be implemented only under full under-
standing of these relationships. As a pioneer study of the effects of conservation policy on wetland ecosystems in
China, this study could shed light on conservation management for such ecosystem and species showing high
dependence on a human modified environment. Future work should also focus on the social effects of these
conservation strategies, especially relocation, during national park planning in China.

1. Introduction

Establishing Protected Areas (PAs) is considered an effective action
to safeguard against habitat destruction, biodiversity decline, and
ecosystem services degradation (Xu et al., 2017). Approximately

15.00% of the world’s terrestrial area and 7.91% of marine areas are
established PAs (UNEP-WCMC and IUCN, 2016, 2019). Seventy percent
of the world’s protected areas, however, are inhabited by increasing
human populations (Wang et al., 2013), which makes it impossible to
avoid anthropogenic disturbances, such as human settlements
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(Behdarvand et al., 2014), agriculture, and ecotourism (Ellenberg et al.,
2006). These increasing anthropogenic pressures in PAs have ex-
acerbated the conflict between wildlife conservation and human ac-
tivity (Bennett et al., 2017; McShane et al., 2011).

Between establishment of the first nature reserve in 1956 and 2018,
China designated 2750 nature reserves that cover more than 14.86% of
its terrestrial area. These reserves have played a crucial role in slowing
biodiversity loss (MEE, 2019). China has, however, the world’s largest
human population living in PAs (W. H. Xu et al., 2016; W. G. Xu et al.,
2016), and more than 21.4% of vertebrates are threatened (MEE,
2017), partly due to ineffective governance by different administrative
authorities, increasing anthropogenic disturbance, and habitat de-
struction (Huang et al., 2019; Wang, 2019; W. H. Xu et al., 2016; W. G.
Xu et al., 2016). To improve conservation effectiveness, establishment
of national parks as a central feature of the Chinese natural PA system
has been initiated by creating new large national parks and re-
classifying outstanding natural reserves as national parks to unify an
administrative structure to manage and protect natural beauty, ecolo-
gical integrity, and biodiversity.

In 2017, the document “Overall Plan for Establishing National Park
System of China” (the Overall Plan) and in 2019 “Guidelines on the
establishment of Chinese protected area system using national parks as
the predominant feature” were released (China State Council and
CCCPC, 2017, 2019). The plan established “ecological protection first”
and “strictest protection” principles in national park planning. To meet
these principles, managers proposed to eliminate human activities by
resettling residents outside the core area of parks (ecological relocation
programs), and to unify management of collective and private land by
financially compensating local land holders (payment for ecosystem
services programs, PES) across the planning national parks. Ecological
relocation together with PES would result in the world’s largest eco-
logical resettlement program and substantial conservation expending
increase in the coming decades. The social and ecological consequences
of this program to both human and wildlife are still not well studied
(Su, 2019; Torri, 2011; Tuanmu et al., 2016). In this study, we in-
vestigated the ecological consequences (e.g. habitat provision) of these
policies on a globally threatened species, Black-necked Crane (Grus
nigricollis; IUCN, 2019) in Dashanbao Protected Area (“Dashanbao”),
SW China. Dashanbao has already implemented a pilot payment for
wetland ecosystem service (PWES) program and has plans for a large-
scale relocation project in the coming years. We ask: (a) did the PWES
program have positive effect on foraging habitat of the bird (e.g. in-
crease occurrence possibility) and (b) if so, how was this achieved, and
(c) what were the potential effects of the conducted PWES and coming
relocation program on wintering Black-necked Crane.

2. Methods

2.1. Study area

The study was conducted in the Dashanbao Protected Area
(103°14′55″–103°23′49″E, 27°18′ 38″–2°29′15″N), northeastern
Yunnan province, China (Fig. 1). Covering 19200 ha, Dashanbao was
established in 1990 to protect Black-necked Crane and its wintering
habitats (Zhong and Dao, 2005), and it was listed as a Ramsar Wetland
of International Importance in 2004 (Ramsa, 2018). In 2016, the site
was designated as a pilot Chinese National Park by the Yunnan pro-
vincial government.

The Black-necked Crane is notable as a flagship species of the pla-
teau wetland ecosystem (Harris and Mirande, 2013; Song et al., 2014)
and is endemic to Qinghai-Tibet Plateau and Yunnan-Guizhou Plateau
in China, supporting ~96% of the world population of ~10,000 birds
(Li, 2014; Pankaj et al., 2014). Dashanbao is the most important stop-
over and staging site (Kong et al., 2014), and the biggest wintering
grounds (with the maximum population exceeding 1600 individuals) of
wintering Black-necked Crane along the eastern migration route (Li and

Yang, 2003; Yang and Zhang, 2014). Every year, the cranes arrive at
Dashanbao at the end of October or in early November in the first year;
and leave at the end of February or in early March (Kong et al., 2014).
Dashanbao provides an abundance of marsh and swamp habitat and
four reservoirs supplying shallow water habitat for Black-necked Crane
roosting. The surrounding wetlands, farmlands and grasslands serve as
foraging habitats for the birds (Kong et al., 2008).

As one of the two pilot sites of the PWES program in Yunnan
Province, Dashanbao implemented a 4-year (2015–2018) wetland
compensation program costing 20 million YUAN for improving wetland
ecosystem services and habitat quality for Black-necked Crane. One of
the most important actions was compensation for local farmers with
governmental funds to prohibit them farming and grazing on PWES
areas and to restore wetland habitat for cranes by paying land holders
economic incentives (260 YUAN/mu; mu is Chinese unit of area, fifteen
mu equals one hectare) in the first 4-year round. This program began in
March 2015, and six separate areas of about 350 ha farmland had been
converted to wetland at the end of 2016 (Fig. 1). A large-scale ecolo-
gical relocation program, combined with a poverty alleviation reset-
tlement program, has been planned for 2020, in which more than
10,000 local residents would be moved out of Dashanbao. The core
zone has been proposed as the targeted relocation area by managers. In
2017, 10,129 people lived in the core zone, which encompasses 45.2%
of the reserve (Fig. 1).

2.2. Black-necked Crane occurrence data

In winter, cranes usually forage in groups in the daytime and roost
at common sites at night (Johnsgard, 1983). Four nocturnal roosting
sites in shallow water of three reservoirs were recorded in the study
area. With the line transect method, we recorded daily occurrence sites
of Black-necked Crane between 09:00 and 18:00 (Kong et al., 2008,
2011). We located every flock within the field of vision of 8 × 42 bi-
noculars from high points with a good view along the line transects. All
line transects were located in the core zone of the Dashanbao reserve,
covering 96 km (Fig. 1), and encompassing the known foraging habitats
of the species. The width of the transects varied with visibility (Kong
et al., 2018). We checked the line transects with a 4 × 4 vehicle. Field
studies were conducted before PWES program implementation in the
middle of two wintering periods (December and the following January
2013–2014 and 2014–2015), in consideration of population stability
during this timeframe (Kong et al., 2014). We recorded one location for
each flock, given the non-independence of each bird in the flock
(Thomas and Taylor, 1990). All crane locations were marked in Google
Earth on a mobile phone. Each location was considered as a foraging
site because foraging behavior takes up 60–80% of the daily time
budget of the species in winter (Kong et al., 2008). In total, 114 fora-
ging locations were recorded Table 1.

2.3. Environmental and anthropogenic variables

Environmental and anthropogenic variables were selected based on
their potential influence on the foraging distribution of wintering Black-
necked Crane, which are influenced by climate, physical environment,
and human disturbance (Kong et al., 2011; Han et al., 2017). Climate
data were downloaded from the WorldClim database Version 2 (Fick
and Hijmans, 2017). Six climatic variables were considered (Appendix
Table 1). The physical environment was characterized by topographic
factors, land cover, and natural resources related to Black-necked Crane
foraging (e.g. roosts and water). Seven topographic variables were
evaluated as the potential candidate variables. A 30-m resolution digital
elevation model (DEM) was downloaded from ASTER Global DEM
(USGS, 2018), from which we extracted or computed elevation (ELE),
slope (Slope), Topographic Position Index (TPI), Terrain Ruggedness
Index (TRI), Ruggedness (Rug), Standard Deviation of Elevation (SDE),
and Slope Variability (SV). Eight land cover (LC) types of farmland (FL),
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forest (FO), marsh (MA), grassland (GL), water area (WA), woodland
(WL), and buildings and developed land (BD) were extracted from the
land use map of 2013 and 2017 from Yunnan Service Center, Chinese
National Survey and Planning Administration. We used three variables
to measure anthropogenic pressure: distance from main road (MRdis),
distance from secondary road (SRdis), and the distance from villages
(VILdis). We also measured the distance of each crane flock to the
roosting sites (Rdis) and the nearest water resource (Wdis). All distance
data were generated using Euclidean distance. Buildings and developed
land were considered as unavailable habitat for the Black-necked Crane
in winter as previous studies documented (Kong et al., 2018, 2011). All
variable layers were converted into 30 m2 grid cells according to their
original resolution (Appendix Table 1). We used ArcGIS v. 10.5 (ESRI,
2016) to prepare spatial data and do raster analyses.

2.4. Model selection and evaluation

By combining georeferenced species occurrence data and environ-
mental conditions, species distribution models (SDM) have been used
widely as a numerical tool for understanding environmental determi-
nants of species presence across space and time to assess changes in
habitat provision (Liu et al., 2017; Na et al., 2018; Phillips and Dudik,
2008). MaxEnt, by applying a machine-learning technique that imple-
ments maximum entropy modeling of species niches and distributions,
is a favorably performing SDM model (Elith et al., 2006; Torabian et al.,
2018). It has been widely used in studies from modeling potential
spatial distribution (Behdarvand et al., 2014; Jiao et al., 2016) to
evaluating project effects on habitat provisioning for species (Liu et al.,
2017; Zhang et al., 2018).

We used Maxent version 3.4.1 (Phillips et al., 2017) to predict po-
tential effect of PWES and ecological relocation on Black-necked Crane
by modeling occurrence probability of the bird under different sce-
narios. Pairwise Pearson’s correlation coefficients (r) were used for all
candidate variables to quantify collinearity. Any two sets of variables
were delimitated in model construction when their correlation was over
0.7 to avoid adverse effects of collinearity (see Appendix Table 2 for
details; Nüchel et al., 2018). The area under the ROC curve (AUC) was
used to measure the quality of ranking of sites by using the rank-based
statistics (Fielding and Bell, 1997). Models with an AUC value above
0.75 are considered potentially useful (Elith et al., 2006; Phillips and
Dudik, 2008). We also ran the jackknife test the relative importance of
variables for model performance (Phillips et al., 2006), as AUC may
weigh omission and commission errors equally, and be highly influ-
enced by the geographical extent to which models are carried out (Lu
et al., 2012).

2.5. Data analysis and habitat mapping

For understanding the effect of relocation of human populations on
suitable habitat, we examined the relationship between Black-necked
Crane foraging habitats and distance to villages. To explore the effect of
the PWES program on habitat provisioning for Black-necked Crane, we
predicted occurrence probability (OP) before (in 2013) and after (in

Fig. 1. Predicted distribution (occurrence probability) of wintering Black-necked Crane in 2013 (right map) in Dashanbao Protected Area (left upper map) and its
location in China (left bottom). The Core Zone has been proposed as the targeted relocation program area.

Table 1
Percent contribution and permutation importance for the predictive variables of
wintering Black-necked Cranes distribution model.

Variables Permutation importance Percent contribution

Rdis 46.1 39.5
VILdis 13.4 10.1
MRdis 8.6 4
Tavg 7.8 3.4
Wdis 6.6 3.2
Slope 5.9 4.4
Wind 3.3 10.3
SRdis 2.7 2.1
SDE 2.3 3.1
LC 2 15.4
TPI 1.3 4.4

Rdis refers to euclidean distance to roosting sites; VILdis refers to euclidean
distance to villages; MRdis refers to euclidean distance to main road; Tavg re-
fers to mean of monthly average temperature in December and January; Wdis
refers to euclidean distance to water area; Wind refers to mean of monthly wind
in December and January; SRdis refers to euclidean distance to secondary road;
SDE refers to Standard deviation of elevation; LC refers to land cover; TPI refers
to Topographic Position Index.
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2017) program implementation. We ran predictive models for 2017
(scenario 2017), which used the habitat quality relationships defined by
the 2013 model and substituted the 2017 land cover as changed by the
PWES program for the 2013 land cover. We categorized habitat suit-
ability for Black-necked Crane, as defined by occurrence probability,
into four classes: (1) highly suitable, OP ≧ 90%; (2) moderately sui-
table, 66% ≦ OP < 90%; (3) marginally suitable, 33% ≦ OP < 66%;
and (4) unsuitable, OP < 33% (Zheng et al., 2016).

To avoid overfitting or incorrect predictions caused by a biased
sampling scheme, we split the study area into a training area and a
projection area (Kassara et al., 2014). Considering that environmental
and anthropogenic variables buffer effect on bird, the input area was
delimited by the survey area, measured as a 2000-m buffer outside the
Black-necked Crane occurrence points and the survey transect route to
approximate visibility of the birds across the landscape (Kong et al.,
2011). Models developed within this survey area were then projected to
the whole study area. To derive suitability and predictive maps, the
final models were run 10 times with cross-validate as the replicated run
type.

3. Results

3.1. Foraging distribution

With a high AUC value of 0.827, our model indicated that Black-
necked Crane mainly distributed in two conjunctive areas around re-
servoirs where roosts were located in the central of the reserve and in
several small separate patches around villages. Moreover, most of these
distribution areas were located in the core zone (see Section 3.4 for
details, Fig. 1).

3.2. Factors affecting spatial distribution

The distance to roosts (46.1% of permutation importance) and to
villages (13.4% of permutation importance) were the top two variables
affecting foraging distribution of wintering Black-necked Crane
(Table 1). Cranes showed a high occurrence probability (≧60%) in the
500 m areas around villages (Fig. 2), and nearly all (98%) highly sui-
table habitat (OP ≧ 90%) of the birds distributed within 1 km of vil-
lages. The distance to main roads, temperature and water played rela-
tively uniform roles in shaping the foraging distribution of cranes, with
more cranes occurring in moderate areas away from disturbance (main
road) and near water (Fig. 2).

Distance to roost (39.5%) and land cover (15.4%) contributed the
most to model construction, and cranes were detected with higher
probability in marsh habitat and lower wind speed areas (Fig. 2).

3.3. PWES effects on habitat provision

We found increased OP for Black-necked Crane both in the whole
study area and in the program implementation areas following PWES
implementation. For the entire protected area, we detected a slight
increase in OP from 0.18 in 2013 to 0.19 after the PWES program in
2017.

As to the six areas where the PWES program was conducted, a slight
OP increase (from 0.67 to 0.69) was discovered after the PWES program
in 2017 (Fig. 3; Appendix Table 3). PWES resulted in moderately sui-
table habitat (66% ≦ OP < 90%) increasing by 31.7 ha and unsuitable
habitat (< 33%) decreasing by 158.6 ha at the end of 2017 (Fig. 3;
Appendix Table 4).

3.4. Potential effects of ecological relocation program on habitat provision

Relocation of human populations would dramatically reduce agri-
cultural land use. Our models indicated that in the core zone, the tar-
geted area for the planned ecological relocation program, contains

80.4% of all suitable foraging habitat (OP ≧ 33%) for Black-necked
Crane, including 83.6% of highly suitable and 64.3% of moderately
suitable habitats in the reserve (Fig. 3). For these suitable foraging
habitats in the core zone, 26.9% are farmland (2340 ha), constituting
25.2% of highly suitable area in the reserve.

4. Discussion

We explored the ecological effects of two national park planning
policies, PES and ecological relocation on habitat provision for the
vulnerable Black-necked Crane with a species distribution model. This
is the first spatially explicit prediction on wildlife habitat provisioning
based on landscape change of the recently implemented PWES program
in China. The results can help predict the ecological consequences of
ongoing and forthcoming large-scale national park planning on wildlife
habitat. With the use of model calibration through splitting data
(Merow et al., 2013) and collinearity tests (Renner et al., 2015) to avoid
overfitting and reducing uncertainty, our models performed well with
high AUC values and were consistent with our field observation of the
Black-necked Crane in recent years in Dashanbao. Habitat modeling
indicated that the Dashanbao PWES program increased the quality and
quantity of available habitat but revealed a risk of relocating residents
from the PAs.

4.1. PWES effects on Black-necked Crane habitat

Our result indicates that probability of winter occupancy by Black-
necked Crane increased slightly throughout Dashanbao as a whole after
the PWES program, although the effectiveness of this program seemed
limited due to an extremely low percentage for the whole study area
(< 0.02%). Since PWES program was implemented, agricultural culti-
vation or grazing activities began to be prohibited on PWES sites. This
led to an increase of wetland, which is the most preferred habitat for
wintering Black-necked cranes (Kong et al., 2011). Surveys not included
in this study showed that the population of Black-necked Crane in-
creased from 1131 in 2013 to 1433 in 2017, which is consistent with
our models and could be the combined results of the habitat restoration
of the PWES program and other conservation measurements, e.g. en-
trance limitation of tourists. Our research is limited by a lack of fora-
ging distribution data on Black-necked Crane occurrence after the
PWES program. Nevertheless, the habitat modeling approach is avail-
able for conservation managers to predict the outcomes of policy
choices before program implementation and to bridge scientific re-
search and decision-making (Xu et al., 2014).

4.2. Potential effects of ecological relocation

In contrast to prevailing wisdom that wildlife avoids human set-
tlements, the occurrence probability of wintering Black-necked Crane
increased near villages. The positive association with villages is likely a
result of a benefit associated from available food resources (Bishop and
Li, 2002; Dong et al., 2016). Cranes benefit from the open spaces cre-
ated across subsistence agricultural landscapes as well as the bountiful
waste grain left after harvest (Austin et al., 2018). Moreover, a previous
behavioral study also showed that Black-necked Crane spent more time
feeding in farmland than other habitats (e.g. marsh, grassland and
water area; Kong et al., 2011). In contrast with intensified human-
wildlife conflict caused by large carnivores, species like Black-necked
Crane and Crested Ibis (Nipponia nippon) that rely heavily on anthro-
pogenically produced habitat are more likely to coexist with humans
(Namgay and Wangchuk, 2016; Zheng et al., 2018). Many species rely
heavily on humans for survival (Lenda et al., 2012), especially in winter
when the food resource is limited (Namgay and Wangchuk, 2016).
Relocation of human settlements may threaten protected wildlife food
resources through cropland abandonment, and even exacerbate ecolo-
gical and conservation problems by breaking existing human-wildlife
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coexistence relationships (Fan et al., 2015; Schwartz et al., 2012; Su,
2019). Considering the majority (80.4%) suitable foraging habitat in
the targeted relocation areas in our study, without steps to replace the
habitat value provided by farmland for foraging cranes, the relocation
program would reduce overall available habitat for Black-necked
Crane. Case studies in other contexts have demonstrated that resettle-
ment programs can fail to achieve conservation goals and even pose
new threats to threatened species (Colchester, 1997; Lashorchix and
Koshari, 2009).

4.3. Variables affecting crane foraging distribution

Distance to roosts was identified as the most important environ-
mental variable in the model, with wintering Black-necked Crane
showing a foraging distribution within 2 km areas centered around
roosting sites. The result mirrors Kong’s (2011) finding that 73% of the
wintering birds scattered in areas within 2 km from the roosts, and
nearly all birds (99%) could be detected within 2 km from roosts in
another reserve in Huize, NE Yunnan, China (Kong et al., 2018).
Foraging near the communal roosts is an energy saving strategy for

crane species (Alonso and Alonso, 1992). Another explanation for the
close proximity to the roost of Black-necked Crane is that there is plenty
of preferred marsh habitat (Kong et al., 2011, 2018; Liu et al., 2010).

Black-necked Crane mostly prefer shallow marsh, followed by
farmland due to food availability and physiological demand, as sup-
ported by previous studies (Kong et al., 2011). Shallow marsh areas are
used for social behavior and for providing invertebrate food sources,
while farmland is the most important upland habitat for Black-necked
Crane obtaining waste grains for over 80% of its diet (Dong et al.,
2016). Similarly, in Tibet and Bhutan, farmland provides a large
amount of food for wintering Black-necked Crane (Bishop and Li, 2002;
Namgay and Wangchuk, 2016). Other habitats, like forest and wood-
land were likely to be less important for Black-necked Crane foraging
because they lack appropriate food resources and have limited open
space for flying (Kong et al., 2011).

Our results suggest that Black-necked Crane foraging habitat dis-
tribution is influenced by anthropogenic disturbance, and the response
varies by different anthropogenic elements. The probability of occu-
pancy increased with distance from main roads but decreased with
distance from villages. Na et al. (2018) similarly found that Red-

Fig. 2. Response curves of environmental variables to occurrence probability of wintering Black-necked Crane in 2013. The curves show the mean (red line) with one
standard deviation (blue areas) generated by the cross-validated models with 10 replicate runs. Red histograms with blue and cyan shades indicate mean ± one
standard deviation for categorical variables of land cover: farmland (FL), marsh (MA), water (WA), grassland (GL), and forest (FO).
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crowned Cranes (Grus japonensis) had a negative association with dis-
tance to roads, consistent with roads constituting a primary anthro-
pogenic disturbance in PAs (Harmsen et al., 2010).

5. Conclusions and implications

Our study demonstrated that PES can be a preferable conservation
strategy for species conservation and should thus be encouraged.
Relocating all inhabitants outside the core zone in PAs to avoid human
activities, however, should not be the default position. Relocation of
long-standing human communities has been criticized among con-
servationists and managers in the national park system dating back to
Yellowstone, USA (Brüggemann et al., 1997; Hutton et al., 2005). In-
stead, any relocation effort should be informed by a careful under-
standing of specific species responses to human activities to avoid un-
intended consequences.

Future work should also focus on the social dimensions of con-
servation strategies for China’s national parks e.g. research on how
ecological relocation and ecological compensation affect local people’s
livelihood and welfare.
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