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Abstract 

Looting of archaeological sites is a global problem. To quantify looting on a nationwide scale 

and to assess the validity and scope of the looting reports and modern encroachment, satellite 

archaeologist have turned to mapping looting from space. High-resolution satellite imagery has 

become a powerful tool and resource for monitoring looting and site destruction remotely and 

proves to be an independent way to cross check and analyze against varied and unreliable reports 

from media and government agencies. It is estimated that over a quarter of Egypt’s 1100 known 

archaeological areas have sustained major damage and site destruction directly linked to looting. 

The organized looting and illicit trafficking of art and antiques, known as cultural racketeering, is 

a multi-billion dollar worldwide criminal industry that thrives in Egypt during times of political 

and economic turmoil and potentially funds drug cartels, armed insurgents, and even terrorist 

networks. This study analyzes methods used to monitor site looting at the archaeological site of 

al-Lisht which is located in the Egyptian governorate of Giza south of Cairo. Monitoring damage 

and looting over time has been largely dependent upon direct human interpretation of images. 

The manual image comparison method is laborious, time consuming, and prone to human-

induced error. Recently, partially-supervised methods using deep convolutional neural networks 

(CNNs) have shown astounding performance in object recognition and detection. This study 

seeks to demonstrate the viability of using deep convolutional neural networks (CNNs) within 

the field of archaeology and cultural heritage preservation for the purpose of augmenting or 

replacing the manual detection of looting. It brings recent advancements from the field of 

Artificial Intelligence to an applied GIS challenge at the intersection of remote sensing and 

archaeology. The objective is to show that CNNs are a more accurate and expedient method for 

the detecting of looting with wide-ranging application beyond this specific research. 
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Chapter 1 Introduction 

Cultural heritage theft and small-scale looting has been a part of the history of Egypt for 

thousands of years. In recent years the looting has increased dramatically which has been shown 

to be primarily a result of economic factors. Looting in Egypt has escalated dramatically from 

economic and political instability seeing a dramatic spike with the onset of the economic crisis of 

2009 and the Egyptian Revolution of 2011. In the recession of 2009, the consumer price index 

rose and tourism fell with record numbers of unemployment reaching 36% (Parcak 2016). The 

economic crisis was then shortly followed by the 2011 Egyptian revolution known as the Arab 

Spring. During this timeframe Egypt experienced the highest overall values of both looting pits 

and encroachment (Parcak 2016). High unemployment and financial incentives have increased 

looting dramatically. An increase in looted goods flooded the underground antiquities market 

during these timeframes and were thought to be potentially used to fuel international crime from 

drug trafficking, illegal arms trafficking, and even terrorism. With archaeological site destruction 

comes the loss of the material culture from the site and the loss of the piece of history that was 

taken. Satellite Archaeologist are taking dramatic steps using satellite remote sensed imagery and 

GIS for manual and partially-supervised processing and assessment in order to gain a better 

understanding of the damage and loss and to aid the future prevention.  

This project focuses on one previously studied archaeological site of al-Lisht, Egypt. Al- 

Lisht has seen a dramatic spike in looting following the 2009 economic downturn and 2011 Arab 

Spring Revolution. This study analyzes the looted site using the manual method of detection of 

direct human interpretation of remotely sensed images monitoring/ detecting change over time. 

In an effort to improve upon the manual comparison method which is time consuming and prone 

to human-induced error, this study investigates the use of a partially-supervised method of deep 
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convolutional neural networks (CNN) for looting pit classification using high-resolution satellite 

imagery. 

1.1 Study Area 

The study area is located south of Cairo archaeological site of al-Lisht in the Egyptian 

governorate of Giza south of Cairo. Al-Lisht is the site of Twelfth and Thirteenth Dynasties 

Middle Kingdom royals and elite burials, including two pyramids built by Amenemhat I and 

Senuseret II.  

 

Figure 1: Study Area al-Lisht 

1.2  Motivation 
 

Time is running out for many cultural heritage and archaeological sites. Once a site has been 

looted there is no way to determine what exactly has been lost. It is a part of history that may 

never be known to the world. Monitoring damage and looting over time has been largely 

dependent upon direct human interpretation of images. The manual image comparison method is 
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laborious, time consuming, and prone to human-induced error (Lauricella et al., 2017) Current 

advances in deep convolutional neural networks have achieved breakthrough performance in 

object recognition and detection achieving up to 96% accuracy. This study seeks to show the 

potential to expedite the looting detection process using Deep Convolutional Neural Networks 

(CNNs). 

Monitoring of looting is complicated in that it is an illicit activity, subject to legal 

sanction (Contreras 2010). Poor or unreliable information about damage from looting has an 

impact on policy making. It enables claims that the extent of looting damage is being 

exaggerated. This allows artifacts that reach the market to be claimed as chance finds (objects 

discovered not related to the activity of illicit digging), or pre-existing collections which in turn 

do not call for strong policy making or response (Contreras et al., 2010). Additionally, it is 

difficult to monitor the effectiveness of any ameliorating policies whether direct at demand (the 

illicit trafficking of antiquities) or supply (illicit digging itself) (Contreras 2010). In an effort for 

site preservation, and for stopping the illicit trafficking of antiquities, this study hopes to identify 

the best method for monitoring, detecting, and for the prevention of looting of archaeological 

sites over time. Additionally, this study hopes to bring awareness and understanding to local 

government agencies who can use this information for counteractive measures and preventative 

policies as well as proactive measures such as community outreach programs.  

1.3 Project Purpose and Scope 

The purpose of this project is to expand and build upon CNNs methods that have been 

used for other forms of scene and object recognition and to train and apply it to the specific task 

of monitoring looting. The intent of this effort is for it to provide a more accurate and expedient 

method for looting pit detection. The scope of this project covers the previous manual methods 
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of looting detection, the use of partially-supervised methods, the use of CNNs for other forms of 

scene classification and object recognition, and lastly how CNNs were used in this study for 

looting pit detection. 

 The benefits of monitoring looting are that it provides a basis for quantification estimates 

of damage from looting. It also can allow for temporal estimates to be made of the time periods 

in which the looting occurred. Furthermore, quantifying looting in an expedient manor using the 

CNN method can potentially provide a means of assessing damage still being done to 

archaeological sites with the chance of linking the damage to the trade in illicit activities. 

Possible uses of this study and its results can aid in predictive policing. Knowing what dates and 

times the sites were looted and the economic factors that motivate them can aid in predicting of 

looting and the predicting of possible attempts in the future. Actions can be taken to protect these 

sites and provide possible monitoring of artifacts that could be illicitly trafficked making their 

way to the antiquities black market from these sites. It can also be used to hypothesize what to 

look for in the illegal international antiquities trade market and aids in the creation of an 

international watch list. Monitoring looting helps us know what types of sites have been looted 

and from what time period. This knowledge can aid in notifying international agencies such as 

US Immigration and Customs Enforcement and INTERPOL (Parcak 2016). Additional 

motivations are archaeological site discovery, looting detection, and ultimately, preservation of 

cultural heritage sites and artifacts.  
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Chapter 2 Related Work 

In satellite archaeology and remote sensing there are many methods employed for the 

investigation of looting. However, there is still a lack of investigation using CNNs with high-

resolution remotely sensed imagery for object recognition and detection that could be potentially 

used for looting detection.  This section first discusses the manual direct human interpretation of 

satellite images for looting detection. Second, it discusses other partially supervised methods and 

other CNN methods for scene classification. Third it discusses CNNs and the potential for the 

supervised deep convolutional neural networks to be trained for looting detection. 

2.1 Manual direct human interpretation of satellite images for looting detection 

In the article, Satellite Evidence of Archaeological Site Looting in Egypt: 2002-2013, 

Sarah Parcak and her team turned to the use of satellite imagery and GIS to map the looting in 

Egypt from 2002-2013. They used Google Earth Pro (GEP) to obtain satellite data from 2002-

2013. The imagery quality that was available varied over time with the changes that came in the 

initial development phases in high-resolution satellite imagery. Initially image availability was in 

the range of 20% in 2003 but changed dramatically over time increasing to around 50% in in 

2005 and 70% for 2009 to 2011 (Parcak 2016). In order to reach 100% coverage they 

extrapolated the data for incomplete coverage years (Parcak 2016).  

Looting pit encroachment on sites was then assessed between the years of 2002-2013 to 

determine the extent of the looting and the damage. They assessed the 1100 sites they surveyed 

for damage and determined that 24.3% displayed evidence of damage and looting (Parcak 2016). 

267 sites were georeferenced within ArcGIS and individual polygons were drawn over each 

looting pit and a series of larger polygons were placed over areas that had been affected by 

encroachment. Natural boundaries such as roads and rivers were used to determine the extent of 
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the perimeter for undefined sites. In the past satellite imagery did not have the resolution to do 

this, but now it is possible with GEP. Polygons were drawn around the location of the sites 

perimeter. By determining the perimeter, they were able to calculate the area of the site and the 

percentage of the site that had been looted. From the data in the research gathered by Parcak and 

her team quantifying site looting in Egypt, they were able to determine that looting in Egypt 

since 2002 did not increase steadily over time, but fluctuated dramatically with recent political 

and economic instability. By discerning and detecting the political and economic indicators that 

seem to come before the dramatic increase in looting, efforts can be made to protect 

archaeological sites that are known to be at risk.  

A previous study of the Viru Valley, Peru by Contreras in 2010, used Google Earth 

imagery as a useful tool for addressing the scale of looting damage to archaeological sites 

(Contreras 2010). As with present day concerns when using remote-sensing, they encountered 

problems with coverage, appropriate resolution, and surface visibility (Beck 2006; Ur 2006; 

Scollar et al. 2008; Parcak 2009).  The Viru Valley Study utilized remotely sensed imagery in 

conjunction with historical site surveys and then analyzed their findings using GIS analysis. 

2.1.2 Looting Pit Quantification Methods 

The method Parcak used to calculate this was inverse distance weighting (IDW). Inverse 

distance weighting is a special interpolation algorithm. Weights are proportional to the inverse of 

the distance between points and the predicted location. The IDW weighs the values from specific 

known points and uses the inverse of the distance of those points to assign and predict 

approximate weights for the unknown area within the extent of the known points (Parcak 2016). 

One of the drawbacks of this study and the IDW method is that it only indicates looting attempts 
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and does not predict if it was a successful attempt or not. There is no specific way to determine 

what has been taken and to what extent, only that a site has been looted.  

The Viru Valley, Peru 2010 study inspected the valley sites utilizing Google Earth for 

signs of obvious and extensive looting and visible pitting on aerial and satellite images. 

Correlation was made between looting pits identified in images and looting that was established 

from areas known to be badly damaged by looting utilizing survey information. Areas noted for 

looting were referenced with a polygon for later evaluation. 263 areas were identified using a 

combination of historical images, ground survey data, known looted sites, and remotely sensed 

imagery for further analysis. Once looted areas were identified, control points were selected and 

a .jpg image was downloaded from Google Earth at highest resolution possible (4800x 3229 

pixels) adjusted (contrast, brightness and color balance) for improvement of visibility of features, 

and georeferenced in ArcGIS 9.2. Areas identified as damaged by looting were used to create 

boundary polygons in ArcGIS. Resolution quality did not allow for accurate or adequate 

counting of individual pits and thus did not allow for the direct calculation of the total number of 

pits and density of pits in each site. Instead, the total looted area was approximated by bounding 

the visibly disturbed areas. This lent to multiple polygons being defined for one select site 

location. As a result of this effort, polygon shapefiles were used to calculate the looted area. 

Published literature was then consulted to identify previously mentioned looting damage and 

when the site was most likely dated to be looted. By doing so, they were able to assess possible 

types of artifacts a particular site might yield or have yielded to the illicit antiquities market 

(Contreras 2010). The research and methodology allowed for quantifying the scale of looting in 

the Viru Valley. It also allowed for the identification of recent looting. 
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2.1.3 Remote sensing for looting detection 

Previous use of satellite remote sensing in Syria dates back to 2012. Using satellite 

imagery in Syria for site looting detection and destruction. Unfortunately, most reports of war-

related destruction in Syria come from journalists, and photos and videos posted on social media 

by potentially biased actors in the conflict. The Syrian government’s Director General of 

Antiquities and Museums releases periodic reports regarding looting and site destruction but has 

been harshly criticized for being selective in reporting with political motivations. (Casana 2014). 

Previous work to document and analyze looting and damage to archaeological sites in Syria as a 

direct consequence of the ongoing civil war relied on-high resolution satellite imagery. The 

Syrian site assessment effort was based in the years 2012 and 2013 using GeoEye and 

WorldView imagery of 30 key sites. Additional free imagery was obtained from Google Earth 

and Bing Maps. Anaysis was further expanded through an imagery grant from the DigitalGlobe 

Foundation. In an attempt to safely and accurately quantify the true scale of the damage and 

looting, archaeologist and analyst turned to high-quality satellite imagery. In april of 2012, 

Quickbird imagery of the Roman city of Apamea was posted on Google Earth showing the full 

extent of the looting damage to the site from the previous 8 months. Imagery revealed that 

between July 2011 and April 2012, Apamea was intensely looted showing a pockmarked 

landscape (Casana 2014). The image was picked up and distributed around the world by media. 

Methodology for the analysis by Casana and Panhipour used freely available Google Earth and 

Bing Maps imagery, alongside GeoEye-1, and Worldview-1 and 2 imagery provided by the 

DigitalGlobe Foundation. Comparison was made between pre-war images and the most recent 

images available high resolution satellite imagery has become a powerful tool and resource for 

monitoring looting and site destruction remotely and proves to be an independent way to cross 
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check and analyze against varied and unreliable reports from media and government agencies 

(Casana 2014). 

2.1.4 Earlier Years of Remote Sensing 

Earlier years of remote sensing using satellite imagery for looting detection in Iraq date 

back to before and after 2003 war. 1900 sites were investigated for signs of looting. Limited data 

was developed from the comparison of imagery from before and after the 2003 invasion of Iraq. 

Areas of focus included archaeological sites of the Nippur area near Eridu and around Uruk. 

These sites were chosen based on the reports of significant looting in the area and that the area 

had been imaged at 60cm resolution by the DigitalGlobe Corporation (Stone 2008). The study of 

DigitalGlobe Imagery spans from 2002 to 2006. 9728km2 of imagery was examined, 0.87 

percent was occupied by archaeological sites. The total number of sites studied in the end totaled 

1949 sites. Intense looting was found to be most common close to the boundaries between settled 

areas and the desert. Conclusions determined that site selection for looting is close enough to 

draw a workforce yet far enough away to go undisturbed or noticed (Stone2008). Of the 1949 

sites examined only 743 can be seen in more than one image, of those 213 were looted 

representing 26 percent of all looting sites (Stone 2008). However, there are 348 pairs of images 

taken at different times at sites allowing for progress in looting to be determined from previous 

older activity. Of the 114 images that were imaged multiple times and imaged in 2003, 85 

percent showed evidence of fresh looting (Stone 2008). The total area of intensive looting for 

this time period adds up to 15.75km2 which is larger than all archaeological investigations ever 

conducted it Iraq at the time (Stone 2008). Spatial analysis of looting distribution suggested that 

many interesting sites at the time, were intact which were in areas that had not been as badly hit. 
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2.2 Machine Learning 

Lack of manual performance motivates research into computer assisted methods, mostly 

from machine learning and homegrown algorithms. Common methods consist of Support Vector 

Machines (SVMs), a supervised non-parametric statistical learning technique and Principal 

Component Analysis (PCA)- PCA is a statistical method for analysis of multivariate datasets. 

Benefits of SVMs are their ability to successfully handle small training datasets often producing 

greater accuracy than traditional methods, it allows for more rapid identification of pits. 

However, there are drawbacks with the kernel function and choices resulting in overfitting and 

oversmoothing. SVMs can show poor performance with noisy data. Benefits of PCA with 

multispectral satellite imagery is its ability to recombine data collected on the reflectance of 

visible and non-visible spectra of light, highlighting patterns in the landscape allowing for the 

display of looting pits. PCA with Interactive supervised classification tool in ArcGIS can define 

training polygons on pits and isolates pixels corresponding to pits. PCA allows for a more 

expedient quantification of looting patterns than manual visual inspection. A drawback of PCA 

method is the cost and availability of multispectral imagery. 

 Looting pit identification history parallels general object recognition and detection history in 

manual and machine learning. Methods like SVM and custom expert crafted methods 

(SIFT/SURF) achieved reasonable but unsatisfactory performance, (see ImageNet challenge). 

Recent findings favor usage of CNNs to SIFT/SURF, SVMs and PCAs. CNN fine-tuning yields 

competitive accuracy on various retrieval tasks and has proven to have advantages in efficiency 

over SIFT/SURF, SVMs and PCAs. 

Advent of deep convolutional neural networks and ongoing refinements have achieved an 

average of 96% and are now the dominant algorithmic approach for object recognition and 
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detection tasks (Krizhevsky et al., 2012) (Russakovsky, 2015) (Hu et al., 2015), see ImageNet 

large scale visual recognition challenge for performance data.  

2.2.1 Convolutional neural networks 

  Deep learning is a new take on specific sub-field of machine learning. It consists of 

learning representations from data which puts an emphasis on learning successive layers of 

increasingly meaningful representations (Chollet 2017). The deep in deep learning refers to the 

layers of the model standing for the idea of successive layers of representations and how many 

layers there are that contribute to the model referring to the models depth. Deep neural networks 

map inputs (images) to targets (labels) via a deep sequence of data transformations (layers) and 

the transformation is learned by exposure to the examples (Chollet 2017).  Deep convolutional 

neural networks (CNNs) architectures are typically comprised of several layers of various types 

that can be summarized into categories. (1) Convolutional layers compute the convolution of the 

input image with the weights of the network. Neurons in the first hidden layer only view a small 

image window and learn low-level features. Deeper layers view larger portions of the image and 

learn more expressive features by combining low-level features. Hyper-parameters characterize 

each layer with the number of filters to learn, spatial support, stride between different windows 

and zero padding which controls output layer size (Castelluccio et al., 2015). (2) Pooling layers 

are inserted in-between successive convolutional layers and progressively reduce the size of the 

input layer through local non-linear operations. They reduce the amount of parameters and 

computation in the network and also controlling overfitting (Castelluccio et al., 2015). (3) 

Normalization layers have the intentions of implementing inhibition schemes observed in the 

biological brain (Russakovsky et al., 2015). (4) Fully connected layers are used in the last few 

layers of the network. Neurons in a fully connected layer have full connections to all activations 
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in the previous layer. Their activations can hence be computed with a matrix multiplication 

followed by bias offset ((Russakovsky et al., 2015). By removing the constraints, they can better 

summarize the information that is conveyed by the lower-level layers in view of final decisions 

(Castelluccio et al., 2015).  

2.2.2 Deep CNN Architecture 

AlexNet, developed by Alex Krizhevsky is a groundbreaking deep CNN architecture that 

consists of five convolutional layers with the first, second, and fifth of which are followed with 

pooling layers, and three fully-connected layers as displayed in Figure 2. AlexNet success is 

attributed to its use of Rectified Linear Units (ReLU) non-linearity, data augmentation, and 

dropouts (Hu et al., 2015) (Krizhevsky et al. 2014) table 1 below. ReLU is the half-wave rectifier 

function f (x) = max (x,0) which can significantly accelerate the training phase. Data 

augmentation effectively reduces overfitting (the error in the training set is driven to a very small 

value, but when new data is presented to the network error is large). The network has memorized 

the training examples but it has not learned to generalize to new situations (Hu et al., 2015)). 

Augmentation reduces overfitting when training large CNNs, which generates more training 

image samples. Training image samples are created by cropping small-size patches and 

horizontally flipping these patches from original images (Hu et al., 2015).  
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 Table 1: AlexNet architecture layers (Pedraza 2017) 

 

The dropout technique reduces the co-adaptation of neurons by randomly setting zeros to 

the output of each hidden neuron and is used in fully-connected layers to reduce substantial 

overfitting. AlexNet has become the baseline architecture for modern CNNs by popularizing the 

application of large CNNs in visual recognition tasks (Hu et al., 2015). 

2.2.3 Caffe 

CaffeNet is aPre-trained CNN Convolutional Architecture for Fast Feature Embedding 

(CaffeNet) also called Caffe. Caffe is a fully open-source deep learning framework that allows 

clear and easy implementations of deep architectures (Penatti 2015). For convolutional neural 

networks in particular, it is one of the most popular libraries for deep learning. It is developed by 

the Berkeley Vision and learning Center (BVLC) and community contributors. It provides 

Layer Type Size Number of Kernels Number of Neurons 

Image input 224 x 224 x 3 150,528 
Convolution ll x ll x 3 96 253,440 
ReLU 
Channel normalization 
Pooling 
Convolution 5 x 5 x 48 256 186,624 
ReLU 
Channel normalization 
Pooling 
Convolution 3 x 3 x 256 384 64,896 
ReLU 
Convolution 3 x 3 x 192 384 64,896 
ReLU 
Convolution 3 x 3 x 192 256 43,264 
ReLU 
Pooling 
Fully connected 4096 
ReLU 
Dropout 
Fully connected 4096 
ReLU 
Dropout 
Fully connected 80 
Softmax 
Classification 
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possibly the fastest available implementations for effectively training and deploying general-

purpose CNNs and other deep models (Hu et al., 2015). Caffe is implemented using C++ with 

support to CUDA a NVidia parallel programming based on graphics processing units (GPU). 

Caffe uses Protocol Buffer language, which makes it easier to create new architectures. Other 

functionalities of Caffe include; fine-tuning strategizing, layer visualization, and feature 

extraction (Penatti 2015). Caffe is very similar the CNN architecture AlexNet with the exception 

of a few small modifications. CaffeNet allows for training without data augmentation and it 

allows for the exchanging of the order of pooling and normalization layers (Hu et al., 2015). 

	

Figure 2: Image Credit Hu et al., 2015. Transferring Deep Convolutional Neural Networks for 
the Scene Classification of High-Resolution Remote Sensing Imagery. The Boxes show the size 

of each feature layer and for the fully connected layers, the size of the output. 

 

2.2.4 VGG16 

VGG16 was developed and trained by Oxford’s Visual Geometry Group (VGG). It is a 

deep convolutional neural network for object recognition and has achieved very good 
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performance on the ImageNet dataset securing first and second place in the ImageNet Challenge 

in 2014. Its convolutional layers use 3x3 size its Max pooling layers use 2x2 size and it has fully 

connected end layers with a total of 16 layers (VGG16). It has increased depth using architecture 

with very small 3x3 convolutional filters and has shown that a significant improvement on the 

prior-art configurations can be achieved by pushing the depth to 16 weight layers (Simonyan et. 

al 2015). 

 

Figure 3: VGG116 Architecture 

2.2.5 Feature Extraction in Deep Learning 

The motivation behind the use of feature extraction for this study was based in how 

highly effective leveraging a pre-trained network has proven to be in deep learning while 

working with a small image dataset. Training deep learning networks from scratch takes large 

data and computational resources in order to obtain useful generalizable models (Rosebrock 

2017). Deep convolutional neural networks applied to computer vision problems generate low-
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level object recognition features (e.g. edge detection, line and curve detection) that are common 

across image classification domains. By using a CNN previously trained on a large scale image 

recognition dataset, it’s possible to bootstrap the training of a new CNN classifier using layers of 

the previously trained network architecture and weights and with a new classifier and smaller 

dataset. This process is called transfer learning. In transfer learning the general features for 

image recognition (edges, etc) are transferred to the new network which is then optimized 

against the specific image data that this study attempts to classify (looting pits). 

For looting pit image classification task feature extraction was used. The VGG16 

architecture convolutional base of the network which is trained on ImageNet was used to extract 

interesting features from this study’s own pits versus non-pit images, and then trained a pits 

verses non-pit densely-connected classifier (with only two classes) on top of these features. 

VGG16 CNN was chosen as the starting point for transfer learning. VGG16 won ImageNet 

Large Scale Image Recognition Challenge (2012). Publically available weights from training 

against ImageNet dataset of 1.4 million images were used. The VGG16 architecture was 

modified by removing the final fully-connected classification layers and applying the ImageNet 

trained weights to the remaining lower layers. Note that the weights in these layers are not 

updated as part of the training for pit classification as they already generalize for low-level object 

recognition features. This study’s own fully-connected classifier was added fit to the recognition 

task (number and size of inputs, two classes in the classification problem). The weights in this 

network are the ones optimized by the gradient descent training process as described previously. 

During training, images pass through the VGG16 ImageNet weighted base network which finds 

general image features. The outputs of the VGG16 network feed into the fully-connected layers 
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(created specifically for classifying the looting pits) which become optimized for looting pit 

image specific features over the course of training. 

Feature extraction in deep learning differ from other methods. Features extracted by deep 

neural networks are the network weights learned over training that minimize the loss function. In 

other words, a feature in deep learning is a parameterization of the weights of the network. These 

weights correspond to the patterns in the image data that lead to correct classification of the 

image. While there are techniques for visualizing what the network is “seeing” in these features, 

the outputs are contrived in the sense that the feature is the parameterization of the network (the 

set of weights) while the visualization is a given data sample filtered through those weights 

which is perhaps representative, but not the same thing. 

In contrast to deep learning methods, feature extraction in GIS, and across many domains in 

which statistical or machine learning methods are applied differ. Feature extraction is 

traditionally performed by experts that ‘hand craft’ what they (or the experts) believe to be most 

important to making a correct determination. These features tend to be human recognizable (e.g. 

nose and two eyes, or a circular sand berm). Part of what makes deep learning exciting and yet 

sometimes difficult for fields to adopt, is that the features that experts have long considered to be 

discriminatory in classification tasks are less so compared with the ‘alien’ features found in the 

data by neural networks as evidenced by the massive successes deep neural networks have 

achieved over traditional methods in recent years.  
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Chapter 3 Methodology 
 

The method used for this study uses a supervised Deep Convolutional Neural Network 

(CNN) for object recognition and detection. CNNs are hierarchical architectures trained on large-

scale data sets, which have recently shown astounding performance in object recognition and 

detection (Hu et al., 2015). The purpose of this analysis was to find a more expedient and 

accurate method with lower false-positive rates for looting detection using CNNs. 

3.1 Deep convolutional neural network analysis  

This section focuses on the processes that were used to create a dataset of looting pits that 

are representatives of the problem. These datasets were then applied to CNNs after for object 

recognition and classification. In order to perform the first task, looting pit characteristics needed 

to be defined. Looting pit selection and image acquisition choice is based on detailed 

descriptions by previous archaeological studies, descriptions, and findings. The main stages 

necessary to create a dataset of this kind are; image acquisition, looting pit selection, data 

labeling, image processing, and dataset building. 

3.1.1 Data  

Two datasets were used fir this study. The first dataset was gathered from Google Earth 

Pro (GEP). The image datasets consisted of the images of two classes; looting pits, and not pits, 

that were used to teach the machine learning classifier what the different categories looked like. 

The data set utilized satellite imagery from Google Earth Pro with a spatial resolution or ground 

sample distance (GSD) of 2.5 meters. Sets of publically-available satellite imagery from Google 

Earth Pro spanning from 2008 to 2018 were obtained of the sites al-Lisht, Dahshur, and Saqqara 

pyramid field regions of Egypt. Building upon a previous study from 2017, Algorithmic 

Identification of Looted Archaeological Sites from Space (Bowen et al, 2017), similar site 
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locations and satellite images were selected. Sites were previously selected from regions with 

multiple instances of looted burial sites, substantial expanse of open desert, and multiple 

distractors such as graveyards, modern buildings, and farmlands (Bowen et al, 2017).  

 The second dataset consists of a set of high-resolution satellite imagery of the pyramid 

fields region in Egypt granted by the DigitalGlobe Foundation. Images were captured by the 

WorldView-3 satellite at a panchromatic mean ground sample distance (GSD) of 0.30 m per 

pixel.	Collection Start = 2017-01-03T09:07:51.758306Z; Collection Stop = 2017-01-

03T09:08:17.814179Z; Country Code = ""; Number Of Looks = "1"; Cloud Cover = 0.000; 

NW Lat = 30.01341060; NW Long = 31.11287091; SE Lat = 28.45609182; SE Long = 

31.26501260. Once again, site selection was based on similar site locations. Sites were 

previously selected from regions with multiple instances of looted burial sites, substantial 

expanse of open desert, and multiple distractors. 

3.1.2 Data Labeling 

 Once the GEP looting pits were selected and the images were resized to 500 x 500 

pixels, over 300 images of looting pits were obtained. To use these images for training, they 

must be labeled.  In this stage the pits are labeled with their grid number, their site location, and 

their latitude and longitude information for location. Additionally, this task consisted of 

indicating which class they belonged to; positive or negative and pits or non-pits.  

  Once the DigitalGlobe Foundation looting pits were selected and the images were resized 

to 112 x 112 pixels, over 300 images of looting pits were obtained. To use these images for 

training, they must be labeled.  In this stage the pits are labeled with their grid location, site 

location, and their latitude and longitude information for location. Additionally, this task 

consisted of indicating which class they belonged to; positive or negative and pits or non-pits.  
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3.1.3 Dataset Building 

After gathering and labeling, two primary datasets were available with 500 samples each. 

The image datasets consisted of the images of two classes; looting pits, and not pits, that were 

used to teach the machine learning classifier what the different categories looked like. The first 

dataset utilized satellite imagery from Google Earth Pro with a spatial resolution or ground 

sample distance (GSD) of 2.5 meters.  Sets of publically-available satellite imagery from Google 

Earth Pro spanning from 2008 to 2018 were obtained of the site al-Lisht, Dahshur, and Saqqara 

pyramid field regions of Egypt. The second dataset consisted of  DigitalGlobe Foundation 

WorldView-3 imagery from 2017 with a (GSD) of 0.30m (Figure 6).  

3.2 Site Selection 

Sites selected were al-Lisht, Dahshur, and Saqqara pyramid field regions of Egypt. Site 

selection of these regions were based on and compared with previously obtained and analyzed 

images of the selected archaeological site of these regions for algorithmic identification of 

looting in these same areas. These regions were selected for this study and by previous studies 

based on their multiple instances of looted burial sites, substantial expanses of open desert, and 

for multiple distractors such as farmland, non-archaeological structures, modern graveyards, and 

military bases with bomb craters (Bowen et al., 2017). For GEP imagery, a grid system was 

used, control points were selected and a jpeg image was downloaded at the highest resolution 

possible (4800x 3229 pixels), adjusted (contrast, brightness and color balance) for improvement 

of visibility of features, with the ability to be georeferenced in ArcGIS Pro (Figure 4). Provider 

date, catalog ID # of each image and images incorporated into GEP was identified and noted for 

metadata. Images of these sites were obtained and classified to create a dataset of a collection of 

images with each individual image labeled as a data point representing a looting pit, or not a 



	

	 21	

looting pit. A uniform number of images of each category were selected. 300 Individual looting 

pit images were all labeled with site grid location (letter), site location name, location within that 

grid (upper left etc.), data point count number and data point longitude and latitude. 300 non-

looting pit images were selected from the same regions (Figure 5). Both pit and non-pit images 

were then loaded and cropped to 500 x 500 pixels in the online photo editor Pixlr and filed in an 

image data tracker. 

Figure 4: Labeling of pits Al-Lisht Google Earth Pro 

 



	

	 22	

 

Figure 5: Sample of images from dataset pits and non-pits (sand) Al-Lisht 

 

Factors of variation that were considered through this process included viewpoint 

variation, scale, variation, deformation, occlusion, illumination, background clutter and intra-

class variation. Looting pit data sets were curated with these in mind and based on previously 

selected looting locations. Any looting pit location of question was excluded from this study 

based on previously selected looting pit location. Looting pit selection, characteristics, and 

definition as well as image acquisition choices were based on detailed descriptions by previous 

archaeological studies and findings. Dataset samples were taken from each of the three pyramid 

field sites. Primary visual references for looting pit site selection include; Algorithmic 

Identification of Looted Archaeological Sites from Space (Bowen, et al. 2017) and Satellite 

Evidence of Archaeological Site Looting in Egypt 2002-2013 (Parcak et al. 2016). 
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Figure 6: Image courtesy of DigitalGlobe Foundation WV3 2017 R10C3 and R11C3 al- Lisht 
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3.3 Machine Training  

A common goal in machine learning is to achieve generalization. Models that generalize 

perform well on data that has never been seen before. The goal when training a machine learning 

model is to reduce the training loss as much as possible while ensuring that the gap between the 

training and testing loss is reasonably small (Challot 2017).  In order for the neural network to 

learn, we have to find the combination of model parameters that minimize the loss function for 

the given set of training data samples (pits vs non-pits) and their corresponding targets 

(Rosebrock 2017). The loss function is used to guide the training process of a neural network. It 

informs us what is happening internally inside the network. Ideally, training loss and validation 

loss should be close and should get smaller and smaller. However, a loss of zero leads to 

overfitting and is not desired (Ng 2016). Overfitting is the error in the training set is driven to a 

very small value, but when new data is presented to the network error is large. The network has 

memorized the training examples but it has not learned to generalize to new situations (Hu et al., 

2015).  

After building the dataset and considering the image classification problem that needs to 

be solved, selection of the loss function, the network architecture, and optimization method used 

to train the model needs to be made. For this study the use of the neural network is for image 

classification. Keeping the loss function selection in line with the nature of the task at hand, and 

following nearly all deep learning image classification problems, cross-entropy loss is selected. 

As this project is a two class project binary cross-entropy is used. Architecture selection for this 

study was done on deep convolutional neural network VGG16 architecture developed by Karen 

Simonyan and Andrew Zisserman for the ImageNet large-scale object recognition challenge 

which achieved new benchmarks in 2014 outperforming other methods and neural networks 
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(Simonyan et al., 2015). For feature extraction, VGG16 architecture was used and used publicly 

available weights from training against the Imagenet dataset. Optimization method selection is 

RMSprop. Additionally, the dropout technique was used and activation consisted of using 

Rectified Linear Unit (ReLU). The dropout technique reduces the co-adaptation of neurons by 

randomly setting zeros to the output of each hidden neuron and is used in fully-connected layers 

to reduce substantial overfitting. Rectified Linear Unit (ReLU) is the half-wave rectifier function 

f (x) = max (x,0) which can significantly accelerate the training phase. Activation is thresholded 

at zero.  

3.3.1 Binary Cross-Entropy and RMSprop Optomizer for Gradient Descent 

For this neural network, binary cross-entropy was used for a two-class classification 

problem; pits or non-pits. The loss function quantified the quality of any particular set of weight 

values for the weights in the network. It is differentiable which is what allowed for taking its 

gradient. The gradient showed how steep the function was at that time or how steeply the loss 

function was moving. The desire at that point, is to update the weights in the opposite direction 

in order to flatten the gradient. 

 The optimization strategy gradient decent is used for taking the gradient from steep to 

flat. It is the rule used to determine how much the weights (usually on an individual basis) are 

updated relative to the current gradient. RMSprop was used as the gradient decent optimizing 

algorithm. RMSprop uses the magnitude of the recent gradient to normalize the gradient 

calculations. It attempts to iteratively find weights that are slightly better at reducing the loss 

(given by the binary-cross-entropy loss function) than in the previous iteration. It is a process of 

updating parameters of the function such that the gradient gets shallower and shallower until it is 

basically flat. In turn, the loss function became smaller and smaller. 
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3.3.2 Backpropagation 

Backpropagation starts after the forward pass where inputs are passed through the 

network and output predictions are obtained. Once final loss value is obtained, it works 

backwards from the top layers to the bottom layers, applying the chain rule to compute the 

contribution that each parameter had in the loss value (Chollet 2017). This is the backward pass 

where we compute the gradient of the loss function (which includes the loss function and 

optimizer) at the final layer of the network and use the gradient to recursively apply the calculus 

‘chain rule’ to update the weights layer by layer in our network (Chollet 2017). This is also 

referred to as the weight update phase (Rosebrock 2017). Weights are adjusted layer by layer 

because changing weight values in the reverse direction has a cascading effect on weights in 

layers closer to the beginning of the network. 

Feature extraction consisted of taking the convolutional base of the previously-trained 

network, running the new data through it, and training a new data classifier on top of the output. 

The convolutional base was run over the dataset, outputting a network feature array. It then used 

that data as an input to a standalone densely-connected classifier (Challot 2017). Once features 

were extracted from these images they were then flattened to be fed to the densely-connected 

classifier. The densely-connected classifier was defined and used the dropout method for 

regularization and was trained on the data and labels that were just recorded. Training happens 

through a forward pass, calculating loss. Once loss is calculated the weights are updated through 

backpropagation. 
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Chapter 4 Results 

Looting of ancient archaeological sites continues to rise globally. Artifacts are stolen, lost 

to the black-market, or sometimes destroyed. These pieces of history are often lost to mankind 

forever. The goal of this study was to demonstrate the viability of using deep convolutional 

neural networks (CNNs) within the field of archaeology and cultural heritage preservation with 

the purpose of augmenting or replacing the manual detection of looting. It brings recent 

advancements from the field of Artificial Intelligence to an applied GIS challenge at the 

intersection of remote sensing and archaeology. Motivation is based in the need for 

advancements in the field of cultural heritage preservation with the purpose of expediting and 

aiding in the protection for ancient archaeological sites. Training is a transfer learning technique 

that employs fine-tuning of previously trained deep convolutional neural networks that have 

learned general features such as CaffeNet, AlexNet, or VGG16. The fine-tuned CNN is applied 

to our dataset and adapts the network weights for the problem at hand. Using VGG16 it was 

possible to achieve good results with 90-96% accuracy with only a few iterations.  

4.1 GEP Findings 

Ran on two GPU: NVIDIA GeForce GTX 1080 Ti, feature extraction was done on 

VGG16 architecture using publicly available weights for training against the ImageNet dataset. 

Feature extraction consisted of taking the convolutional base of the previously-trained network, 

running the new data through it, and training a new data classifier on top of the output with a 

batch size of 20 for 30 epochs.  
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Table 2:  GEP Training, Testing, and Validation Loss and Accuracy Results 

Training	 Validation	 Test	

Training	loss:	0.3871	

	

Validation	loss:	0.4158	

	

Test	loss	is	0.4187	

Training	accuracy:		0.9150	 Validation	accuracy:	0.9600	

	

Test	accuracy	is	0.9600	

	

	

 

4.1.1 Loss 

The loss function quantifies how well, or how bad the given predictor is at classifying the 

input data points in the dataset. As stated earlier, smaller the loss the better the classifier is doing 

at modeling the relationship between the input data and output class labels (Rosebrock 2017). 

Loss is cumulative per epoch. At the beginning of each epoch, loss is zero. For each calculation 

of the loss (given by the loss function) the loss is added to the loss metric on the graph.  What is 

seen over time in the plotted results in Figure: 7 below, is the total loss of training and validation 

decreasing (generally) which means the weights of the network (in this case, the fully connected 

classifier head on the convnet) are getting more accurate. However, when reading such a low 

loss of near zero, it is evident that because the weights are near perfectly tuned to the training 

and validation data, it has crossed the point where it has overfit the model which leads our model 

to have problems generalizing.  
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Figure 7: Plotted GEP Training Loss and Validation Loss 

4.1.2 Accuracy 

In this gradient decent optimization, training accuracy increases with every epoch (Figure 8), 

however a model that performs well on training data may not necessarily do well on data it has 

never seen before (generalization). Training accuracy reaches 92%, validation accuracy reaches 

96%, and test accuracy reaches 96%.  
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Figure 8: Plotted GEP Training and Validation Accuracy 

 

4.1.3 Evaluating Error, Bias, and Variance 

Bias relates to the ability of your model function to approximate the data, so high bias is 

related to under-fitting (Ng 2011). Low bias in turn relates to your models ability to differentiate 

well. A high bias percentile relates to misclassification. Variance is about the stability of your 

models response to new training examples. High variance relates to overfitting (Ng 2011). 

Measuring the error rate human level performance on looting pit classification has yet to be 

quantified. For the sake of analysis, a conservative line was taken, assuming a baseline of 1% 

error rate by a team of experts.  
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Table 3: GEP Measure of Training Error and Val Error for Calculating Bias and Variance 

Human	Error	 1%	 Human	Error	–	Train	

Error	=	7%	

	

High	Bias	

Training	Error	 8%	 Training	Error	–	

Validation	Error	=	4%	

	

High	Variance	

Validation	Error	 4%	 Validation	Error	–	

Test	Error	=	0	

Overfitting	of	

Validation	

Test	Error	 4%	 Test	Error	–	

Validation	Error	=	0	

Overfitting	of	

Validation	

 

By looking at the algorithm error on the test set and the algorithm error on the validation 

set, high bias, or high variance can be diagnosed. In this case, there is both high bias and high 

variance. Some of the high bias relates directly to the ImageNet weights because they were not 

optimized for the classes of images in this projects dataset. There is high bias because it is a 

mostly linear classifier, but it also has high variance as well because of too much flexibility. 

4.2 DGF Findings 

Ran on two GPU: NVIDIA GeForce GTX 1080 Ti, feature extraction was done on 

VGG16 architecture using publicly available weights for training against the ImageNet dataset. 

Feature extraction consisted of taking the convolutional base of the previously-trained network, 

running the new data through it, and training a new data classifier on top of the output with a 

batch size of 20 for 30 epochs. One epoch is equal to one forward pass and one backward pass of 

all the training examples. Batch size is equal to the number of training examples in one forward 

/backward pass. Results: 
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Table 4:  DGF Training, Testing, and Validation Loss and Accuracy Results 

Training	 Validation	 Test	

Training	loss:	0.3228	

	

Validation	loss:	0.2895	

	

Test	loss	is	0.3200	

Training	accuracy:		0.9275	 Validation	accuracy:	0.9200	

	

Test	accuracy	is	0.9000	

	

	

 

 

Table 5: DGF Measure of Training Error and Val Error for Calculating Bias and Variance 

Human	Error	 1%	 Human	Error	–	Train	

Error	=	6%	

	

High	Bias	

Training	Error	 7%	 Training	Error	–	

Validation	Error	=	1%	

	

Low	Variance	

Validation	Error	 8%	 Validation	Error	–	

Test	Error	=	2%	

	Some	Overfitting	of	

Validation	

Test	Error	 10%	 Test	Error	–	

Validation	Error	=	2%	

Some	Overfitting	of	

Validation	
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4.2.1 Evaluating Error, Bias, and Variance 

By looking at the algorithm error on the test set and the algorithm error on the validation 

set, high bias, or high variance can be diagnosed. In this case, there is high bias and low 

variance. Some of the high bias relates directly to the ImageNet weights because they were not 

optimized for the classes of images in this projects dataset. As bias is a measure of how well 

your model fits your data and how well it differentiates your data set, the lower the bias the 

better job it is doing at differentiating. As seen with DGF data, with high bias there is 

misclassification.  

Figure 9: Plotted DGF Training Loss and Validation Loss 

0.7 

0.6 

0.5 

0.4 

0.3 

0 

• 
• • • • • 

5 

Training and validation loss 

•• 
•• 

10 

• • •• •• ••• •• 

15 20 

• Training loss 
Va lidation lloss 

• •• • ••• •• 
25 30 



	

	 34	

 

Figure 10: Plotted DGF Training and Validation Accuracy 

 

4.2.2 DGF Accuracy 

In this gradient decent optimization (Figure 10), training accuracy increases with every 

epoch, however a model that performs well on training data may not necessarily do well on data 

it has never seen before (generalization). Training accuracy reaches 93%, validation accuracy 

reaches 92%, and test accuracy reaches 90%.  
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the total loss of training and validation decreasing epoch by epoch (figure 9) which means the 

weights of the network (in this case, the fully connected classifier head on the convnet) are 

getting more accurate. However, when reading such a low loss of near zero, it is evident that 

because the weights are tuned to the training and validation data, it has crossed the point where it 

has overfit the model which leads our model to have problems generalizing.  

This study’s solution is to assist in looting prevention and detection by showing that 

CNNs are a highly accurate and expedient method for machine learning and detecting of looting 

with wide-ranging application beyond this specific research. This study applied machine learning 

and deep learning algorithms to discover underlying patterns to its looting pit dataset which 

enabled the correct classification of data points (pits) that the algorithm had yet to encounter. The 

image datasets consisted of the images of two classes; looting pits, and not-pits, that were used to 

teach the machine learning classifier what the different categories looked like with near human 

accuracy but with a fraction of the time expenditure. 
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Chapter 5: Conclusion 

This study utilized a pre-trained deep convolutional neural network VGG16 architecture 

for feature extraction using publicly available weights for training against the ImageNet dataset. 

Feature extraction consisted of taking the convolutional base of the previously-trained network, 

running the new data through it, and training a new data classifier on top of the output. The 

convolutional base was run over the dataset, recording its output to a numpy array. It then used 

that data as an input to a standalone densely-connected classifier. The workflow of object 

recognition and image classification process with a deep convolutional neural network for 

looting pit recognition was covered and applied and yielded positive results. The applied 

methodology has shown that CNNs can be highly efficient in expediting image recognition of 

looting pits obtaining an overall accuracy of 96% with the GEP dataset and 90% accuracy with 

the DGF dataset. Thoughts behind accuracy variation of the two datasets accuracy rating are 

possibly due to image quality. The non-pit images in the DGF imagery are of a much higher 

spatial resolution (0.30m) than that of the GEP images (2.5m) leading to higher detail quality and 

a more varied non-pit dataset leading to a more complicated differentiation. GEP datasets 

training and validation errors show high bias and high variance, while DGF dataset shows high 

bias with low variance.  

Convolutional neural networks are proving to be the best type of machine learning 

models when faced with an image recognition task yielding higher and more accurate results 

than other previously used methods. They are particularly favorable when working with small 

datasets and are able to still yield decent to positive results. However, one of the drawbacks with 

small datasets consist of overfitting, but this can be mitigated with data augmentation. 
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 Future work to improve the shortcomings in performance of this CNN on this dataset 

should start with following Ng’s recommendation for deep learning workflow as outlined in his 

Nuts and Bolts of Applying Deep Learning talk from 2016, fine-tuning, and lastly visualizing 

what the convnet learned.   

Ng suggests starting by addressing high training error with high bias with the solution of 

possibly training on a bigger model, training longer, ensuring optimization is working, or moving 

to new model architecture. Once bias and training error is low, the next step is to address high 

validation error with high variance. Ng suggests possible solutions for this include obtaining 

more data, working on regularization, data augmentation or more data similar to test data or new 

model architecture. Once high validation error with high variance is low, if test set data error is 

high get more data, or possible new model architecture (Ng 2016). 

 After addressing variance and bias, the next recommendation would be fine-tuning. Fine-

tuning unfreezes a few of the top frozen layers of a frozen model base used for feature extraction 

and together trains the newly added fully-connected classifier part of the model and those top 

layers allowing for slight adjustments to the more abstract representations of the model that are 

being reused which makes them more relevant to the task at hand. Fine-tuning adapts to a new 

problem some of the representations previously learned by an existing model which helps the 

model to perform better (Chollet 2017). 

 For a final recommendation, visualizing the intermediate activation outputs that the 

convolutional neural network learned is useful in understanding how successive layers transform 

their input in order to have a better understanding of the meaning of individual filters. Deep 

learning models are often referred to as difficult to extract and present in a human readable form 

but it is possible to do so with convolutional neural networks. Visualizing the networks filters 
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helps in understanding exactly what visual pattern concept each filter in the network is receptive 

to. Heatmaps of class activation in an image can also be visualized and aid in the understanding 

of which part of an image were identified as belonging to an individual class and in doing so 

allows to localize objects in images. 

Revolutionary recent advancements in the machine learning subfield of deep learning 

have shown remarkable results in near-human level image classifications as well as in all 

perceptual problems. Deep learning and AI’s long-term picture is looking bright as it is starting 

to be applied to many problems in which it has the possible capability to be transformative to 

many fields. Archaeology is one of them. The use of deep convolutional neural networks is 

applicable and will prove to be a valuable tool for archaeological research and site preservation. 

Within the field of archaeology efforts are currently being made to use GIS, remote sensing, and 

algorithmic identification techniques to mitigate against looted archaeological sites. Building 

upon these efforts, this study acquired high-resolution satellite imagery, built its datasets, and 

was able to achieve its goal of using a deep convolutional neural network to obtain near-human 

level accuracy (90% and 96%) of looting pit detection expediting the time and the process of 

detection with the potential of broader future applications. The work done for this study using 

deep convolutional neural networks for looting pit detection is an early example of what will one 

day be dominant research modality.  
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Appendix A:  GEP Code 

import os 

import matplotlib.pyplot as plt 

import numpy as np 

from keras.preprocessing.image import ImageDataGenerator 

from keras.applications import VGG16 

from keras import models 

from keras import layers 

from keras import optimizers 

 

print("Starting image classification process...") 

conv_base = VGG16(weights='imagenet', include_top=False, input_shape=(500, 500, 3)) 

print("VGG16 base summary: " + str(conv_base.summary())) 

print("Starting training data augmentation") 

print("Starting feature extration process...") 

 

base_dir = '/home/jw/Timber_Thesis/pits_v_sand4' 

print("Using base directory for training, validation and test images: " + base_dir) 

 

train_dir = os.path.join(base_dir, 'train') 

validation_dir = os.path.join(base_dir, 'validation') 

test_dir = os.path.join(base_dir, 'test') 

datagen = ImageDataGenerator(rescale=1./255) 

batch_size = 20 

 

def extract_features(directory, sample_count): 

 features = np.zeros(shape=(sample_count, 15, 15, 512)) 

 labels = np.zeros(shape=(sample_count)) 
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 generator = datagen.flow_from_directory( 

  directory, 

  target_size=(500, 500), 

  batch_size=batch_size, 

  class_mode='binary') 

 i = 0 

 for inputs_batch, labels_batch in generator: 

  features_batch = conv_base.predict(inputs_batch) 

  features[i * batch_size : (i + 1) * batch_size] = features_batch 

  labels[i * batch_size : (i + 1) * batch_size] = labels_batch 

  i += 1 

  if i * batch_size >= sample_count: 

   break 

 return features, labels 

print("Starting feature extration process on training images...") 

train_features, train_labels = extract_features(train_dir, 400) 

print("Ending feature extration process on training images...") 

print("Starting feature extration process on validation images...") 

validation_features, validation_labels = extract_features(validation_dir, 50) 

print("Ending feature extration process on validation images...") 

print("Starting feature extration process on test images...") 

test_features, test_labels = extract_features(test_dir, 50) 

print("Ending feature extration process on test images...") 

print("Ending feature extration process...") 

train_features = np.reshape(train_features, (400, 15 * 15 * 512)) 

validation_features = np.reshape(validation_features, (50, 15 * 15 * 512)) 

test_features = np.reshape(test_features, (50, 15 * 15 * 512)) 
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model = models.Sequential() 

model.add(layers.Dense(256, activation='relu', input_dim=15 * 15 * 512)) 

model.add(layers.Dropout(0.5)) 

model.add(layers.Dense(1, activation='sigmoid')) 

model.compile(optimizer=optimizers.RMSprop(lr=2e-5),  

     loss='binary_crossentropy',  

     metrics=['acc']) 

 

print("Starting training of NN on training, validation features...") 

history = model.fit(train_features, train_labels,  

     epochs=30,  

     batch_size=20,  

     validation_data=(validation_features, 
validation_labels)) 

 

print("Ending training of NN on training, validation features...") 

 

acc = history.history['acc'] 

val_acc = history.history['val_acc'] 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

epochs = range(1, len(acc) + 1) 

 

plt.plot(epochs, acc, 'bo', label='Training acc') 

plt.plot(epochs, val_acc, 'b', label='Validation acc') 

plt.title('Training and validation accuracy') 

plt.legend() 

plt.figure() 
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plt.plot(epochs, loss, 'bo', label='Training loss') 

plt.plot(epochs, val_loss, 'b', label='Validation loss') 

plt.title('Training and validation loss') 

plt.legend() 

plt.show() 

 

print("Starting models evaluation of NN on test dataset...") 

test_datagen = ImageDataGenerator(rescale=1./255) 

test_generator = test_datagen.flow_from_directory(test_dir,  

        target_size=(500, 500),  

        batch_size=20,  

        class_mode='binary') 

 

test_loss_and_metrics = model.evaluate(test_features, test_labels) 

print("Ending evaluation of NN on test dataset...") 

print('Available test metrics: ', str(model.metrics_names)) 

print('CNN model loss and accuracy on test dataset: ', str(test_loss_and_metrics)) 

 

print("Starting prediction on test dataset...") 

predictions = model.predict(test_features) 

print(predictions) 

print("Ending prediction on test dataset...") 

      print("Ending image classification process...") 

print("Done") 
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Appendix B:  GEP Console Output 

(deeplearning) jw@Orion:~/Timber_Thesis/pits_v_sand4$ python listing_529.py  

Using TensorFlow backend. 

/usr/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 
of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 
3.6 

  return f(*args, **kwds) 

Starting image classification process... 

2018-04-05 07:15:55.763735: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU 
supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 
AVX AVX2 FMA 

2018-04-05 07:15:55.930950: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:892] 
successful NUMA node read from SysFS had negative value (-1), but there must be at least 
one NUMA node, so returning NUMA node zero 

2018-04-05 07:15:55.931228: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] 
Found device 0 with properties:  

name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.721 

pciBusID: 0000:01:00.0 

totalMemory: 10.91GiB freeMemory: 10.08GiB 

2018-04-05 07:15:56.048337: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:892] 
successful NUMA node read from SysFS had negative value (-1), but there must be at least 
one NUMA node, so returning NUMA node zero 

2018-04-05 07:15:56.048597: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] 
Found device 1 with properties:  

name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.721 

pciBusID: 0000:02:00.0 

totalMemory: 10.91GiB freeMemory: 10.75GiB 

2018-04-05 07:15:56.049326: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] 
Device peer to peer matrix 

2018-04-05 07:15:56.049347: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1051] DMA: 
0 1  

2018-04-05 07:15:56.049352: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1061] 0:   
Y Y  

2018-04-05 07:15:56.049354: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1061] 1:   
Y Y  
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2018-04-05 07:15:56.049378: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] 
Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci 
bus id: 0000:01:00.0, compute capability: 6.1) 

2018-04-05 07:15:56.049385: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] 
Creating TensorFlow device (/device:GPU:1) -> (device: 1, name: GeForce GTX 1080 Ti, pci 
bus id: 0000:02:00.0, compute capability: 6.1) 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

input_1 (InputLayer)         (None, 500, 500, 3)       0          

_________________________________________________________________ 

block1_conv1 (Conv2D)        (None, 500, 500, 64)      1792       

_________________________________________________________________ 

block1_conv2 (Conv2D)        (None, 500, 500, 64)      36928      

_________________________________________________________________ 

block1_pool (MaxPooling2D)   (None, 250, 250, 64)      0          

_________________________________________________________________ 

block2_conv1 (Conv2D)        (None, 250, 250, 128)     73856      

_________________________________________________________________ 

block2_conv2 (Conv2D)        (None, 250, 250, 128)     147584     

_________________________________________________________________ 

block2_pool (MaxPooling2D)   (None, 125, 125, 128)     0          

_________________________________________________________________ 

block3_conv1 (Conv2D)        (None, 125, 125, 256)     295168     

_________________________________________________________________ 

block3_conv2 (Conv2D)        (None, 125, 125, 256)     590080     

_________________________________________________________________ 

block3_conv3 (Conv2D)        (None, 125, 125, 256)     590080     

_________________________________________________________________ 

block3_pool (MaxPooling2D)   (None, 62, 62, 256)       0          
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_________________________________________________________________ 

block4_conv1 (Conv2D)        (None, 62, 62, 512)       1180160    

_________________________________________________________________ 

block4_conv2 (Conv2D)        (None, 62, 62, 512)       2359808    

_________________________________________________________________ 

block4_conv3 (Conv2D)        (None, 62, 62, 512)       2359808    

_________________________________________________________________ 

block4_pool (MaxPooling2D)   (None, 31, 31, 512)       0          

_________________________________________________________________ 

block5_conv1 (Conv2D)        (None, 31, 31, 512)       2359808    

_________________________________________________________________ 

block5_conv2 (Conv2D)        (None, 31, 31, 512)       2359808    

_________________________________________________________________ 

block5_conv3 (Conv2D)        (None, 31, 31, 512)       2359808    

_________________________________________________________________ 

block5_pool (MaxPooling2D)   (None, 15, 15, 512)       0          

================================================================= 

Total params: 14,714,688 

Trainable params: 14,714,688 

Non-trainable params: 0 

_________________________________________________________________ 

VGG16 base summary: None 

Starting training data augmentation 

Starting feature extration process... 

Using base directory for training, validation and test images: 
/home/jw/Timber_Thesis/pits_v_sand4 

Starting feature extration process on training images... 

Found 400 images belonging to 2 classes. 



	

	 50	

Ending feature extration process on training images... 

Starting feature extration process on validation images... 

Found 50 images belonging to 2 classes. 

Ending feature extration process on validation images... 

Starting feature extration process on test images... 

Found 50 images belonging to 2 classes. 

Ending feature extration process on test images... 

Ending feature extration process... 

Starting training of NN on training, validation features... 

Train on 400 samples, validate on 50 samples 

Epoch 1/30 

400/400 [==============================] - 1s 2ms/step - loss: 0.8846 - acc: 0.5300 - 
val_loss: 0.6629 - val_acc: 0.5000 

Epoch 2/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.7143 - acc: 0.5375 - 
val_loss: 0.6518 - val_acc: 0.5000 

Epoch 3/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.6826 - acc: 0.5300 - 
val_loss: 0.6872 - val_acc: 0.5000 

Epoch 4/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.6697 - acc: 0.5950 - 
val_loss: 0.6309 - val_acc: 0.8800 

Epoch 5/30 

400/400 [==============================] - 0s 935us/step - loss: 0.6180 - acc: 0.6675 - 
val_loss: 0.6514 - val_acc: 0.5000 

Epoch 6/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.6420 - acc: 0.6425 - 
val_loss: 0.6210 - val_acc: 0.9600 

Epoch 7/30 

400/400 [==============================] - 0s 982us/step - loss: 0.6174 - acc: 0.6900 - 
val_loss: 0.6079 - val_acc: 0.9800 

Epoch 8/30 
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400/400 [==============================] - 0s 895us/step - loss: 0.6095 - acc: 0.6750 - 
val_loss: 0.6036 - val_acc: 0.7000 

Epoch 9/30 

400/400 [==============================] - 0s 900us/step - loss: 0.5953 - acc: 0.7150 - 
val_loss: 0.6217 - val_acc: 0.5000 

Epoch 10/30 

400/400 [==============================] - 0s 946us/step - loss: 0.5781 - acc: 0.7475 - 
val_loss: 0.5890 - val_acc: 0.7000 

Epoch 11/30 

400/400 [==============================] - 0s 919us/step - loss: 0.5663 - acc: 0.7850 - 
val_loss: 0.5690 - val_acc: 0.9800 

Epoch 12/30 

400/400 [==============================] - 0s 945us/step - loss: 0.5521 - acc: 0.8125 - 
val_loss: 0.5701 - val_acc: 0.7000 

Epoch 13/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.5605 - acc: 0.7900 - 
val_loss: 0.5643 - val_acc: 0.6200 

Epoch 14/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.5513 - acc: 0.8150 - 
val_loss: 0.5392 - val_acc: 0.9800 

Epoch 15/30 

400/400 [==============================] - 0s 941us/step - loss: 0.5195 - acc: 0.8650 - 
val_loss: 0.5746 - val_acc: 0.5800 

Epoch 16/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.5164 - acc: 0.8475 - 
val_loss: 0.5212 - val_acc: 1.0000 

Epoch 17/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.4981 - acc: 0.8775 - 
val_loss: 0.5104 - val_acc: 1.0000 

Epoch 18/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.4797 - acc: 0.8650 - 
val_loss: 0.5166 - val_acc: 0.8000 

Epoch 19/30 

400/400 [==============================] - 1s 1ms/step - loss: 0.5026 - acc: 0.8625 - 
val_loss: 0.5001 - val_acc: 0.9600 
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Epoch 20/30 

400/400 [==============================] - 0s 988us/step - loss: 0.4702 - acc: 0.8975 - 
val_loss: 0.4904 - val_acc: 0.9600 

Epoch 21/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.4657 - acc: 0.8900 - 
val_loss: 0.4930 - val_acc: 0.8200 

Epoch 22/30 

400/400 [==============================] - 1s 1ms/step - loss: 0.4444 - acc: 0.8950 - 
val_loss: 0.4916 - val_acc: 0.8800 

Epoch 23/30 

400/400 [==============================] - 0s 918us/step - loss: 0.4465 - acc: 0.9000 - 
val_loss: 0.4685 - val_acc: 0.9400 

Epoch 24/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.4276 - acc: 0.9150 - 
val_loss: 0.4724 - val_acc: 0.9200 

Epoch 25/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.4222 - acc: 0.9100 - 
val_loss: 0.4505 - val_acc: 0.9600 

Epoch 26/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.4007 - acc: 0.9300 - 
val_loss: 0.4414 - val_acc: 0.9600 

Epoch 27/30 

400/400 [==============================] - 0s 935us/step - loss: 0.4027 - acc: 0.9150 - 
val_loss: 0.4329 - val_acc: 0.9600 

Epoch 28/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.4009 - acc: 0.9275 - 
val_loss: 0.4312 - val_acc: 0.9600 

Epoch 29/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.3884 - acc: 0.9400 - 
val_loss: 0.4071 - val_acc: 0.9800 

Epoch 30/30 

400/400 [==============================] - 0s 1ms/step - loss: 0.3871 - acc: 0.9150 - 
val_loss: 0.4158 - val_acc: 0.9600 

Ending training of NN on training, validation features... 

Starting evaluation of NN on test dataset... 
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Found 50 images belonging to 2 classes. 

50/50 [==============================] - 0s 484us/step 

Ending evaluation of NN on test dataset... 

Available test metrics:  ['loss', 'acc'] 

CNN accuracy on test dataset:  [0.41870951652526855, 0.95999999046325679] 

Ending image classification process... 

Done 
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Appendix C: DGF Code 

 

import os 

import matplotlib.pyplot as plt 

import numpy as np 

from keras.preprocessing.image import ImageDataGenerator 

from keras.applications import VGG16 

from keras import models 

from keras import layers 

from keras import optimizers 

from pathlib import Path 

 

print("Starting image classification process...") 

conv_base = VGG16(weights='imagenet', include_top=False, input_shape=(112, 112, 3)) 

print("VGG16 base summary: " + str(conv_base.summary())) 

print("Starting feature extration process...") 

base_dir = str(Path.cwd()) 

print("Using base directory for training, validation and test images: " + base_dir) 

 

train_dir = os.path.join(base_dir, 'train') 

validation_dir = os.path.join(base_dir, 'validation') 

test_dir = os.path.join(base_dir, 'test') 

 

datagen = ImageDataGenerator(rescale=1./255) 

batch_size = 20 

 

def extract_features(directory, sample_count): 

 features = np.zeros(shape=(sample_count, 3, 3, 512)) 
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 labels = np.zeros(shape=(sample_count)) 

 generator = datagen.flow_from_directory( 

  directory, 

  target_size=(112, 112), 

  batch_size=batch_size, 

  class_mode='binary') 

 i = 0 

 for inputs_batch, labels_batch in generator: 

  features_batch = conv_base.predict(inputs_batch) 

  features[i * batch_size : (i + 1) * batch_size] = features_batch 

  labels[i * batch_size : (i + 1) * batch_size] = labels_batch 

  i += 1 

  if i * batch_size >= sample_count: 

   break 

 return features, labels 

 

print("Starting feature extration process on training images...") 

train_features, train_labels = extract_features(train_dir, 400) 

print("Ending feature extration process on training images...") 

print("Starting feature extration process on validation images...") 

validation_features, validation_labels = extract_features(validation_dir, 100) 

print("Ending feature extration process on validation images...") 

print("Starting feature extration process on test images...") 

test_features, test_labels = extract_features(test_dir, 100) 

print("Ending feature extration process on test images...") 

print("Ending feature extration process...") 
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train_features = np.reshape(train_features, (400, 3 * 3 * 512)) 

validation_features = np.reshape(validation_features, (100, 3 * 3 * 512)) 

test_features = np.reshape(test_features, (100, 3 * 3 * 512)) 

 

model = models.Sequential() 

model.add(layers.Dense(256, activation='relu', input_dim=3 * 3 * 512)) 

model.add(layers.Dropout(0.5)) 

model.add(layers.Dense(1, activation='sigmoid')) 

 

model.compile(optimizer=optimizers.RMSprop(lr=2e-5),  

     loss='binary_crossentropy',  

     metrics=['acc']) 

 

print("Starting training of NN on training, validation features...") 

history = model.fit(train_features, train_labels,  

     epochs=30,  

     batch_size=20,  

     validation_data=(validation_features, 
validation_labels)) 

 

print("Ending training of NN on training, validation features...") 

 

acc = history.history['acc'] 

val_acc = history.history['val_acc'] 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

 

epochs = range(1, len(acc) + 1) 
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plt.plot(epochs, acc, 'bo', label='Training acc') 

plt.plot(epochs, val_acc, 'b', label='Validation acc') 

plt.title('Training and validation accuracy') 

plt.legend() 

plt.figure() 

plt.plot(epochs, loss, 'bo', label='Training loss') 

plt.plot(epochs, val_loss, 'b', label='Validation loss') 

plt.title('Training and validation loss') 

plt.legend() 

plt.show() 

 

print("Starting evaluation of NN on test dataset...") 

test_datagen = ImageDataGenerator(rescale=1./255) 

test_generator = test_datagen.flow_from_directory(test_dir,  

        target_size=(112, 112),  

        batch_size=20,  

        class_mode='binary') 

 

test_loss_and_metrics = model.evaluate(test_features, test_labels) 

print("Ending evaluation of NN on test dataset...") 

print('Available test metrics: ', str(model.metrics_names)) 

print('CNN accuracy on test dataset: ', str(test_loss_and_metrics)) 

print("Ending image classification process...") 

print("Done") 
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Appendix D: DGF Console Output 

I jw@Orion:~/Dropbox/MASTERS_THESIS_W/pits_v_sand5$ python3 listing_530.py  

Using TensorFlow backend. 

/usr/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 
of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 
3.6 

  return f(*args, **kwds) 

Starting image classification process... 

2018-04-27 18:15:33.020201: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU 
supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 
AVX AVX2 FMA 

2018-04-27 18:15:33.021330: E tensorflow/stream_executor/cuda/cuda_driver.cc:406] failed 
call to cuInit: CUDA_ERROR_UNKNOWN 

2018-04-27 18:15:33.021350: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:158] 
retrieving CUDA diagnostic information for host: Orion 

2018-04-27 18:15:33.021355: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:165] 
hostname: Orion 

2018-04-27 18:15:33.021377: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:189] 
libcuda reported version is: 387.34.0 

2018-04-27 18:15:33.021389: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:369] 
driver version file contents: """NVRM version: NVIDIA UNIX x86_64 Kernel Module  387.34  
Tue Nov 21 03:09:00 PST 2017 

GCC version:  gcc version 7.2.0 (Ubuntu 7.2.0-8ubuntu3.2)  

""" 

2018-04-27 18:15:33.021397: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:193] 
kernel reported version is: 387.34.0 

2018-04-27 18:15:33.021401: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:300] 
kernel version seems to match DSO: 387.34.0 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

input_1 (InputLayer)         (None, 112, 112, 3)       0          

_________________________________________________________________ 

block1_conv1 (Conv2D)        (None, 112, 112, 64)      1792       

_________________________________________________________________ 
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block1_conv2 (Conv2D)        (None, 112, 112, 64)      36928      

_________________________________________________________________ 

block1_pool (MaxPooling2D)   (None, 56, 56, 64)        0          

_________________________________________________________________ 

block2_conv1 (Conv2D)        (None, 56, 56, 128)       73856      

_________________________________________________________________ 

block2_conv2 (Conv2D)        (None, 56, 56, 128)       147584     

_________________________________________________________________ 

block2_pool (MaxPooling2D)   (None, 28, 28, 128)       0          

_________________________________________________________________ 

block3_conv1 (Conv2D)        (None, 28, 28, 256)       295168     

_________________________________________________________________ 

block3_conv2 (Conv2D)        (None, 28, 28, 256)       590080     

_________________________________________________________________ 

block3_conv3 (Conv2D)        (None, 28, 28, 256)       590080     

_________________________________________________________________ 

block3_pool (MaxPooling2D)   (None, 14, 14, 256)       0          

_________________________________________________________________ 

block4_conv1 (Conv2D)        (None, 14, 14, 512)       1180160    

_________________________________________________________________ 

block4_conv2 (Conv2D)        (None, 14, 14, 512)       2359808    

_________________________________________________________________ 

block4_conv3 (Conv2D)        (None, 14, 14, 512)       2359808    

_________________________________________________________________ 

block4_pool (MaxPooling2D)   (None, 7, 7, 512)         0          

_________________________________________________________________ 

block5_conv1 (Conv2D)        (None, 7, 7, 512)         2359808    

_________________________________________________________________ 
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block5_conv2 (Conv2D)        (None, 7, 7, 512)         2359808    

_________________________________________________________________ 

block5_conv3 (Conv2D)        (None, 7, 7, 512)         2359808    

_________________________________________________________________ 

block5_pool (MaxPooling2D)   (None, 3, 3, 512)         0          

================================================================= 

Total params: 14,714,688 

Trainable params: 14,714,688 

Non-trainable params: 0 

_________________________________________________________________ 

VGG16 base summary: None 

Starting feature extration process... 

Using base directory for training, validation and test images: 
/media/dropbox/Dropbox/MASTERS_THESIS_W/pits_v_sand5 

Starting feature extration process on training images... 

Found 400 images belonging to 2 classes. 

Ending feature extration process on training images... 

Starting feature extration process on validation images... 

Found 100 images belonging to 2 classes. 

Ending feature extration process on validation images... 

Starting feature extration process on test images... 

Found 100 images belonging to 2 classes. 

Ending feature extration process on test images... 

Ending feature extration process... 

Starting training of NN on training, validation features... 

Train on 400 samples, validate on 100 samples 

Epoch 1/30 

400/400 [==============================] - 0s 440us/step - loss: 0.7721 - acc: 0.5150 - 
val_loss: 0.6698 - val_acc: 0.5000 
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Epoch 2/30 

400/400 [==============================] - 0s 279us/step - loss: 0.7230 - acc: 0.5075 - 
val_loss: 0.6338 - val_acc: 0.8600 

Epoch 3/30 

400/400 [==============================] - 0s 281us/step - loss: 0.6939 - acc: 0.5750 - 
val_loss: 0.6118 - val_acc: 0.8400 

Epoch 4/30 

400/400 [==============================] - 0s 280us/step - loss: 0.6676 - acc: 0.6075 - 
val_loss: 0.5898 - val_acc: 0.8700 

Epoch 5/30 

400/400 [==============================] - 0s 275us/step - loss: 0.6373 - acc: 0.6125 - 
val_loss: 0.5660 - val_acc: 0.9000 

Epoch 6/30 

400/400 [==============================] - 0s 283us/step - loss: 0.6185 - acc: 0.6450 - 
val_loss: 0.5474 - val_acc: 0.8900 

Epoch 7/30 

400/400 [==============================] - 0s 283us/step - loss: 0.5861 - acc: 0.7075 - 
val_loss: 0.5280 - val_acc: 0.8900 

Epoch 8/30 

400/400 [==============================] - 0s 281us/step - loss: 0.5918 - acc: 0.6875 - 
val_loss: 0.5108 - val_acc: 0.8800 

Epoch 9/30 

400/400 [==============================] - 0s 275us/step - loss: 0.5400 - acc: 0.7675 - 
val_loss: 0.4956 - val_acc: 0.9000 

Epoch 10/30 

400/400 [==============================] - 0s 277us/step - loss: 0.5484 - acc: 0.7425 - 
val_loss: 0.4813 - val_acc: 0.8900 

Epoch 11/30 

400/400 [==============================] - 0s 284us/step - loss: 0.5302 - acc: 0.7675 - 
val_loss: 0.4640 - val_acc: 0.9000 

Epoch 12/30 

400/400 [==============================] - 0s 282us/step - loss: 0.5108 - acc: 0.7900 - 
val_loss: 0.4501 - val_acc: 0.8900 

Epoch 13/30 
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400/400 [==============================] - 0s 284us/step - loss: 0.4860 - acc: 0.8100 - 
val_loss: 0.4364 - val_acc: 0.9000 

Epoch 14/30 

400/400 [==============================] - 0s 279us/step - loss: 0.4807 - acc: 0.8325 - 
val_loss: 0.4254 - val_acc: 0.9000 

Epoch 15/30 

400/400 [==============================] - 0s 285us/step - loss: 0.4678 - acc: 0.8350 - 
val_loss: 0.4181 - val_acc: 0.8900 

Epoch 16/30 

400/400 [==============================] - 0s 286us/step - loss: 0.4595 - acc: 0.8325 - 
val_loss: 0.3995 - val_acc: 0.9000 

Epoch 17/30 

400/400 [==============================] - 0s 279us/step - loss: 0.4457 - acc: 0.8700 - 
val_loss: 0.3889 - val_acc: 0.8900 

Epoch 18/30 

400/400 [==============================] - 0s 281us/step - loss: 0.4339 - acc: 0.8600 - 
val_loss: 0.3797 - val_acc: 0.9000 

Epoch 19/30 

400/400 [==============================] - 0s 285us/step - loss: 0.4356 - acc: 0.8650 - 
val_loss: 0.3695 - val_acc: 0.8900 

Epoch 20/30 

400/400 [==============================] - 0s 276us/step - loss: 0.4215 - acc: 0.8750 - 
val_loss: 0.3655 - val_acc: 0.9000 

Epoch 21/30 

400/400 [==============================] - 0s 284us/step - loss: 0.4115 - acc: 0.8900 - 
val_loss: 0.3556 - val_acc: 0.9100 

Epoch 22/30 

400/400 [==============================] - 0s 283us/step - loss: 0.3947 - acc: 0.8925 - 
val_loss: 0.3431 - val_acc: 0.8900 

Epoch 23/30 

400/400 [==============================] - 0s 282us/step - loss: 0.3769 - acc: 0.8775 - 
val_loss: 0.3381 - val_acc: 0.9300 

Epoch 24/30 

400/400 [==============================] - 0s 288us/step - loss: 0.3771 - acc: 0.8925 - 
val_loss: 0.3293 - val_acc: 0.9200 
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Epoch 25/30 

400/400 [==============================] - 0s 278us/step - loss: 0.3602 - acc: 0.9150 - 
val_loss: 0.3211 - val_acc: 0.9100 

Epoch 26/30 

400/400 [==============================] - 0s 297us/step - loss: 0.3465 - acc: 0.9050 - 
val_loss: 0.3147 - val_acc: 0.9100 

Epoch 27/30 

400/400 [==============================] - 0s 283us/step - loss: 0.3451 - acc: 0.9200 - 
val_loss: 0.3074 - val_acc: 0.9100 

Epoch 28/30 

400/400 [==============================] - 0s 277us/step - loss: 0.3492 - acc: 0.8925 - 
val_loss: 0.3065 - val_acc: 0.9200 

Epoch 29/30 

400/400 [==============================] - 0s 277us/step - loss: 0.3265 - acc: 0.9050 - 
val_loss: 0.2961 - val_acc: 0.9200 

Epoch 30/30 

400/400 [==============================] - 0s 282us/step - loss: 0.3228 - acc: 0.9275 - 
val_loss: 0.2895 - val_acc: 0.9200 

Ending training of NN on training, validation features... 

Starting evaluation of NN on test dataset... 

Found 100 images belonging to 2 classes. 

100/100 [==============================] - 0s 51us/step 

Ending evaluation of NN on test dataset... 

Available test metrics:  ['loss', 'acc'] 

CNN accuracy on test dataset:  [0.3282634776830673, 0.90000000000000002] 

Ending image classification process... 

Done 

 

 


