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Abstract 

Defining place in health studies has been a crux for researchers as the definition of neighborhood 

is often regarded as adaptable to study needs and/or the preferences of the researcher. Health 

researchers commonly rely on measures of neighborhood that default to any number of 

predefined spatial administrative units, providing a relatively quick and cost-effective means to 

accessing and categorizing population data within a geographic area of interest. This approach to 

inferring population statistics assumes that median values for variables are relatively evenly 

disbursed across specific geographic areas of varying sizes. 

This thesis explores how research outcomes may be affected by the choice of geographic 

reporting zones. The primary research goal of this study was to compare geographic reporting 

zones within the State of Arizona and to determine how the choice of neighborhood would 

influence the resulting values for three commonly utilized social determinants of health; median 

household income, numbers of children and the elderly, and the percent Native American 

population. This study used administrative boundaries at the county, census tract, and census 

block group levels from the 2000 Decennial Census and examined if and what variation occurred 

within the resulting outcomes for differing reporting zones within the State of Arizona.  

The results of this thesis demonstrate that outcomes cannot be generalized across 

administrative units, that spatial aggregation will affect final outcomes, and that the choice of 

spatial reporting zone may produce widely different estimates for the same variable within a 

given geographic area. This thesis provides the foundation for future work investigating how 

choice of neighborhood can affect outcomes for small area studies and sets the framework for 

exploring what effects neighborhood definition might have on estimates of social determinants of 

health when proximity buffers are applied.  



 

1 

 

Chapter 1 : Introduction 

People are constantly trying to define space. We assign invisible spatial boundaries and lines to 

the oceans, the Earth, and even the cosmos. Collectively, we tend to hold these boundary lines as 

quasi-physical representations of belonging. These artificial boundaries represent claim status, 

power, cultural identification, and give inhabitants a sense of place. Boundary zones are 

powerful proclamations representative of people and place. Historically, assigning boundary 

delineations to an area was an authoritative act. We are taught from an early age to acknowledge, 

generally respect, and not question these unseen lines of boundary delineation that fill our daily 

routines (Goodchild 2018). Some of these boundaries are often unknowingly assigned: such as 

census areas, ZIP codes, voting precincts and school districts. Some of these boundary lines are 

fixed; as in national and state borders. Some we simply accept; such as county boundaries, 

property lines and street networks. Other boundary lines are more unclear; for example, 

determining where the exact geographical break occurs along a demographic transition, or where 

a disease outbreak is likely to occur next. Science and governments are constantly using spatial 

delineations as measures of process. Possibly nowhere is the issue of boundary delineation more 

important than in the realm of spatial epidemiology and human health. Disease does not respect 

these quasi-physical boundaries of place - it is often indiscriminate without regard towards the 

places or people it affects (Flowerdew et al. 2008).  

The merging of GIScience and epidemiology has given rise to a growing branch of health 

research examining where and how human well-being is affected by the local context which is 

often delineated by the surrounding spatial patterns and their boundaries. Geography is treated as 

a potentially direct correlate of human health and well-being in this view of the world by 

geographers, sociologists and other social scientists (e.g. Matthews and Yang 2013; Jankowska 
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et al. 2014). Epidemiologists now regard GIS as a powerful tool in evaluating disease occurrence 

and transmission throughout specific areas. This new area of health research merging geography, 

sociology, and epidemiology is intent on delivering new methods for analyzing the correlations 

between population, health, and place (i.e. geography).  

The emergence of GIS in health research has allowed researchers the ability to 

reconceptualize boundary delineations and evaluate subjects in localized areas, especially as it 

applies to examining the health outcomes connecting people and the environment. Health 

researchers designate small area boundaries encompassing a subject of interest as a given study 

zone. These spatial zones, known as neighborhoods, are vitally important for understanding 

population health patterns as a function of location.  

The conceptualization and measurement of neighborhood has yielded a dilemma of grand 

proportions for researchers. An individual’s perceived definition of neighborhood often varies 

significantly from a researcher’s delineation of the same vicinity. Within health research, this 

meaning of locale can vary greatly from one study to another depending on what measures and 

considerations are selected in defining that neighborhood.  

Selecting data derived from differing measures or interpretations of a neighborhood, or 

points within, can sometimes generate substantially different results yielding uncertainty in the 

final reporting. The attempt to circumvent reporting uncertainty has led researchers on a quest 

for the ultimate method in depicting the representativeness of a population. Multiple problems 

arise in data reporting when spatial linkage inferences between and within boundary zones and 

point observations are inappropriately applied. Researchers have attempted to use numerous 

methods including multilevel analysis as a means of dealing with this uncertainty; however, 

although beneficial in addressing some aspects of uncertainty, all forms of spatial analysis are 
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still subject to classical and emerging spatial problems requiring deliberation in study design 

and/or data analysis (Robertson and Feick 2018).  

As the scale or extent of a study area changes, corresponding details of that area also 

change. For example, when the scale of a study area gets larger, some details become 

indiscernible (Openshaw and Alvanides 2001). Also, moving a neighborhood boundary line may 

change the dynamics of the area under study causing a change in demographics and geography 

that may affect the relationships being examined and thus the resulting outcomes (Foster and 

Hipp 2011). The reporting issues caused by utilizing different spatial areas of different sizes 

and/or scales is commonly recognized as the modifiable areal unit problem (MAUP) (Tatalovitch 

et al. 2006; Swift et al. 2014; Robertson and Feick 2018).  

Sharing some likeness to but separate from the MAUP are the problems associated by 

using static boundaries for analysis. Constraining the measure of an individual within a health 

study to a predefined static boundary, often assigned by an administrative unit, does not 

represent the true measure of a subject’s dynamic traverse and exposures through time and space 

(i.e. potentially spanning multiple administrative boundaries over a given temporal period). This 

inferential error results in a measurement problem recognized by researchers as the uncertain 

geographic context problem (UGCoP) (Kwan 2012b; Robertson and Feick 2018).  

Further complicating the issue of data uncertainty caused by spatial misreporting is an 

issue brought to the forefront by technological advances and public accessibility to GIS 

applications. This problem, the uncertain point observation problem (UPOP), results from 

misreporting point locations and subsequently incorrectly linking them to areal units enabling 

users to develop aggregated spatial inferences erroneously (Robertson and Feick 2018).  
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The conventional assignment of subjects to a predefined measured contextual unit 

(MCU) (e.g. administrative boundary) is not usually indicative of the true contextual unit (TCU) 

affecting those individuals and thus potentially creates ecological or atomistic fallacies within the 

final reporting. Ecological fallacies make incorrect inferences about individuals based off 

aggregated measures at the ‘group-level’; whereas, an atomistic fallacy makes incorrect 

assumptions about an aggregated population based from measures at the ‘individual-level.’ Any 

time an analysis utilizes data between higher and lower level aggregations, that data becomes 

vulnerable to some form of fallacy (Kwan 2012b; Robertson and Feick 2018). The following 

diagram (Figure 1) demonstrates the interrelationships that exist within various methods of 

neighborhood delineation and analysis.  

 

Figure 1. Relationships between issues affecting the spatial analysis of neighborhood (Source: 

Robertson and Feick 2018) 

 

 The Ecological Fallacy and Modifiable Areal Unit Problem 

There are misreporting issues to consider when analyzing discrete socioeconomic and 

demographic data collected at an administrative level yet applied to individuals in small area 

studies. The resulting uncertainty creates an ecological fallacy which is found in data where 
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assumptions for the microscale (i.e. individual) are collected at the macro scale (i.e. ‘group 

level’) but inferred per individual (Swift et al. 2014; Robertson and Feick 2018). This leads to 

the necessity to account for both micro- and macro-levels with some multilevel analysis to bridge 

the gap and circumvent or minimize ecological bias (Schule and Bolte 2015; Strominger et al. 

2016; Robertson and Feick 2018). The ecological fallacy, however, is also present in multilevel 

analysis which affects both static and dynamic neighborhood evaluations that use aggregated 

data for individual inference (Figure 1). This renders both the modifiable areal unit problem and 

the uncertain geographic context problem vulnerable to the ecological fallacy (Robertson and 

Feick 2018).  

The misreporting issues that are introduced by utilizing data from differing spatial 

aggregations is commonly recognized as the MAUP (Tatalovich et al. 2006; Swift et al. 2014; 

Robertson and Feick 2018). This fact and the accompanying complexity render acknowledgment 

of the MAUP within health studies to often be little more than a footnote or caveat (Root 2012; 

Swift et al. 2014). The practice and problem of ignoring the MAUP and utilizing aggregated data 

is that information is lost in the process of aggregation which results in misreporting (Openshaw 

and Alvanides 2001). The lack of consideration of the MAUP can undermine otherwise sound 

methodology simply by the uncertainty that might be introduced by not accounting for it.  

Some spatial analysis methods are superior in escaping or minimizing the MAUP. The 

often-cited examples include political administrative units which utilize zone aggregation and 

‘official zoning systems,’ such as the hierarchical census units consisting of blocks, block 

groups, and tracts used within the U.S. (Openshaw and Alvanides 2001).  

The MAUP is additionally complicated by the need to also consider the potential effects 

of the UGCoP and the UPOP (Robertson and Feick 2018). Although similar in context, both are 
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unique aspects of neighborhood delineation and each requires specific consideration (Kwan 

2012b). 

 The Uncertain Geographic Context and Uncertain Point Observation    

Problems 

The UGCoP is to be considered when examining neighborhood because the boundary and scale 

issues addressed by accounting for the MAUP do not account for the contextual uncertainty 

associated with the dynamic activity space of an individual within a given neighborhood's 

population. The definition of the neighborhood by administrative boundaries or buffers does not 

account for the social characteristics within neighborhoods that can influence health outcomes 

(Kwan 2012b). Accounting solely for the MAUP can still distort results when the potential 

effects of the UGCoP are ignored because the individual mobility behaviors within a population 

are rarely limited to conventionally used neighborhood boundaries. People’s daily routines often 

span multiple types of boundary areas within a given spatiotemporal period. Throughout the 

course of a day spatial behaviors are diverse and dynamic frequently spanning or are affected by 

multiple locales of different administrative boundary types, often simultaneously (Matthews 

2011, 35-54).  

Recent research has demonstrated that measures of an individual’s actual daily traverse 

usually cover greater geographic areas than the conventional static neighborhood definition that 

is used. The result of not accounting for the UGCoP is often misreporting due to mismatched 

units of analysis, inadvertently omitting important exposure information, and introducing the 

ecological fallacy. The typical geographic boundaries used to delineate neighborhoods can over- 

and/or under-estimate the real exposure effects experienced by an individual’s activity space. 

Additionally, an individual’s activity space consisting of their daily routine, and less frequent 
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trips, may significantly affect that person’s perception of neighborhood. Neighborhood 

perception is an important consideration for researchers as it can provide insight into potential 

exposures occuring throughout a person’s daily routine that may not be adequately represented 

by analyzing spatiotemporal traverse patterns alone (Chaix et al. 2009; Kwan 2012b; Jankowska 

et al. 2017).  

Equally important is the spatial uncertainty introduced by the UPOP. The error presented 

by the UPOP occurs with a mismatch in point observation location data between the MCU and 

TCU reported at the individual level as a basis for group level inferences, making UPOP subject 

to the atomistic fallacy (Figure 1). The UPOP can result in incorrect aggregated population 

characterizations by introducing error and uncertainty in the association between where and how 

a point observation is created and connected to a neighborhood (Robertson and Feick 2018). 

Another consideration in identifying how a neighborhood is to be defined for a study, yet 

often unacknowledged across health research, is that just as the dynamics of people change over 

a diurnal period, so do places. The human dynamics influencing an area such as a city street or 

park may be very different over the course of 24 hours causing a range of potential exposures. 

The issue of time and space, and the activity of both people and places, can greatly affect 

exposure outcomes within a given neighborhood. The often overlooked effects of temporal 

exposures over hours, days, seasons, and/or years should be considered when selecting how a 

neighborhood is to be determined (Xia et al. 2006; Matthews and Yang 2013). Often the physical 

neighborhood dynamics of place are not accurately represented using data from administrative 

sources, leaving the spatiotemporal aspect and effects of place unacknowledged (Yiannakoulias 

2011; Delmelle 2016). 
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 Rurality 

Another substantial challenge in designating neighborhood within health studies has to do with 

the special characteristics of rural areas. Rurality is a challenge for health researchers examining 

environmental contextual influences. Rural communities often have low population densities, 

generally isolated within or disbursed across larger geographic regions. Infrastructure measures 

vary, and frequently street networks are minimal. Administrative boundaries are commonly used 

as aggregated proxies of rural neighborhoods and do not reflect the geographic actuality of a 

local area. Small area studies in rural settings are prone to ecological bias caused by aggregation 

issues, scale effects and inconsistent measures and considerations of neighborhood (Rousseau 

1995).  

 Congruence  

Incompatible and mismatched geographic units present a substantial problem for researchers and 

complicate the conundrum caused by spatial problems and fallacies. Administrative boundary 

types vary in size, can be nested within one another, might overlap, and sometimes share little to 

no commonality with one another – yet all are used to represent place. When data from differing 

types of boundary systems are overlaid and used together (e.g. spatial interpolation), data is lost 

or erroneously created resulting in misreporting and uncertainty. These geographic zones have 

been created for various distinct purposes by differing governmental agencies, sometimes 

arbitrarily, and facilitate the most convenient and sometimes only means of data acquisition for 

researchers (Eagleson 2002; Mennis 2003).  

To complicate matters, the selection of these units for health research is often equally 

arbitrary. Furthermore, researchers may be limited in data availability for a given area, requiring 
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the use of a geographic unit that might not be the most representative of a subject (Diez Roux 

2001; Eagleson 2002; Chaix et al. 2005; Santos et al. 2010; Robertson and Feick 2018).  

 Thesis Objective 

This thesis set out to examine and compare the descriptive statistics which result from using 

aggregated data for various neighborhood contexts, similar to what is commonly done in current 

health research. The best available geographic units were used to generate measures of 

neighborhood and the potential pitfalls that are likely to follow from using this approach to 

measure geographic variability for a large region.  

The State of Arizona was selected because of its size, socioeconomic and demographic 

diversity, and the various population reporting methodologies used for different sub-populations 

in the state. Arizona’s population dynamics with its urban and rural distribution and unique racial 

and ethnic diversity offer numerous sampling scenarios. Data were derived from Federal and 

State reporting for the general population as well as American Indian reporting areas. 

 Thesis Organization 

The next chapter, Chapter Two, details the most common methods used to define neighborhood 

in health research within the U.S. This related work sets the framework for the neighborhood 

differentiation methods that were used in this thesis. Chapter Three details the methodology for 

how this study was conducted. This chapter describes the data sources and spatial analysis that 

was performed. Chapter Four details the results and how the variables of interest varied across 

the state as a function of both the geographic variability and/or the ways in which geographic 

units for collecting and representing people in various parts of the state varied from one another. 

Finally, Chapter Five discusses the significance of these results and the implications for planning 

neighborhood selection strategies in future work. 
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Chapter 2 : Related Work 

The integration of GIS into epidemiology and health research has become a powerful instrument 

for analysis and demonstration of the spatial distribution and movement of populations, disease, 

health services and their infrastructure. GIS platforms have allowed health researchers the 

accessibility to spatial tools that readily enable the measurement of various dimensions 

examining the relationships between health and place (Rushton 2003). The area attributes of a 

place, in health research, are often categorized within the boundaries of a neighborhood defined 

as some measurable assignment to a geographic locale (Diez Roux 2007). The method of 

neighborhood delineation has created a quandary for researchers as the measure and use of a 

neighborhood, and its relevance to a given topic, is arbitrarily determined within a study design 

and non-specific within any given scientific field (Boscoe and Pickle 2003; Duncan et al. 2014; 

Perchoux et al. 2016). Researchers have struggled to determine what the best means of 

delineating neighborhood are, as different definitions are known to present varying outcomes 

even within the same vicinity and which method to use for a given study is customarily left to the 

discretion of the researcher (Diez Roux 2001; Swift et al. 2014). The majority of studies that 

have examined the role of boundary selection for neighborhood have focused on pre-determined 

administrative units which are not necessarily representative of the population and/or area of 

interest (Diez Roux 2007; Santos et al. 2010, Foster and Hipp 2011). Recent research into 

neighborhood definition has also examined the role of the perceived environment in defining 

neighborhood. Such studies are subjective, examining the activity spaces of an individual and 

utilizing self-reporting from subjects and ground truthing within an area of interest (Perchoux et 

al. 2016; Kirby et al. 2017). The validity of the classical fixed boundary study is now challenged 

against sliding boundary studies, and the quest and argument continue as to how a neighborhood 
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should be defined (Chaix et al. 2009). Few studies, however, have examined the variation and 

problems caused by this fluid definition of neighborhood. This chapter sets out to review the 

methodologies used for neighborhood delineation and explores the various issues associated with 

the selected definitions.  

 Administrative Boundaries  

Administrative boundaries are government-defined and universally recognized jurisdictional 

divisions of geography (Chang 2010). How a type of administrative boundary zone is defined 

varies from one country to another, but their purposes are the same and serve as a way for 

political administrations to organize infrastructure, political elections, community and 

emergency services, and often by happenstance, the contextual data residing within geographical 

units (Sabel et al. 2013). Administrative boundaries have been predominantly used as a measure 

for and proxy of neighborhood for health studies (Diez Roux 2007; Santos et al. 2010). In the 

U.S., administrative boundaries are categorized by State, County (or Parish, the geographical 

equivalent to a county, within the State of Louisiana), District (school district, voting precinct, 

and separate judicial district), ZIP code and Census (Mu et al. 2015). For this thesis, 

administrative neighborhoods are examined at the county, census, and American Indian Area 

levels (Figure 2).  

Health researchers are often limited to using data collected at the administrative level for 

small area studies such that neighborhood effects are aggregated using differing geographic 

scales and extents (Leite et al. 2015). The use of data collected and analyzed at different scales 

within a study may become subject to both the ecological fallacy and the MAUP by introducing 

significant potential bias into a given study (Tatalovich et al. 2006; Swift et al. 2014).  
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Figure 2. Administrative boundary types discussed in this thesis 

 

These fixed boundary zones can be additionally problematic as they regularly are not 

representative of the true contextual environment and often do not correlate to the actual study 

area of interest (Chaix et al. 2005; Tatalovich et al. 2006; Root 2012; Perchoux et al. 2013). 

Population distribution and geographic obstacles, such as water and terrain or barriers created by 

the built environment, may have significant effects on data reported for a given administrative 

boundary (Santos et al. 2010).  

Administrative boundary areas have further limitations as these zones are generalizations 

of the populations they encompass at each level and they may not account for the within zone 

variability. Furthermore, scale plays a critical role in the final reporting, especially in small area 

studies. Leite et al. (2015) states that it has been speculated that the scale used in a study often 

dictates the population inferences determined by researchers, where health is reflected as being a 

function of social and economic factors in larger reporting areas, and a result of the individual in 
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small areas. Small areas are susceptible to small, limited sample size which can misrepresent and 

misreport the actual variance in a population by potentially leaving out people within that 

population that fall outside the sampling such as minorities, children, and the elderly (Institute of 

Education Sciences, National Center for Education Statistics 2018b). Administrative boundary 

units may not convey the actual geographic and human variability of a neighborhood (Santos et 

al. 2010).  

2.1.1. State and County Level 

Within the administrative boundary system of the U.S., state and county territories are the main 

geographic building blocks for data reporting from the U.S. Census (US Census Bureau 1990).  

State borders are temporally static boundaries. These lines of delineation do not move and are 

not adjusted over time to account for population and/or urban expansion. County lines, however, 

are not always permanent and their boundaries can change over time. Counties can experience 

‘substantial changes’ where borderlines are moved, also new counties can be created, or existing 

counties ‘deleted’ (U.S. Census Bureau 2016). Data collected and standardized at state and 

county levels are often not practical for small area studies because of the introduced ecological 

fallacy (Swift et al. 2014; Robertson and Feick 2018). 

2.1.2. Census Level 

The U.S. Census is a decennial survey that counts every resident of the country by constitutional 

mandate. Counts and demographic information are collected by a combination of mailed 

questionnaire and ground truthing by census workers to ensure complete (100%) coverage of all 

areas. Census information is compiled nationally at block, block group, and tract levels (U.S. 

Census Bureau 2010c).  
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Census data is used for statistical purposes by both the government and the public, 

private, and not-for-profit sectors. The government uses census data to identify geographical 

areas in need of infrastructure and community services and to allocate federal support programs 

and funding for those communities deemed as worthy recipients by the reported population 

statistics. The Census is also used to determine how many seats within the House of 

Representatives each State can hold. Census data is available publicly; however, personal 

information reported per household address is not available to the public. Only count data per 

administrative unit is available for “public” use (U.S. Census Bureau 2010c). 

In 2010, the U.S. Census Bureau revamped their questionnaire procedure changing the 

way population data is gathered and reported. Previously, the decennial census utilized both 

short and long forms of questionnaires to collect population information. The short form contains 

basic demographic questions consisting of ‘name, sex, age, date of birth, race, ethnicity, 

relationship and housing tenure.’ The long form questionnaire was sent by random sampling to 

an estimated one of every six households and contained additional detailed socioeconomic 

questions (U.S. Census Bureau 2010c, 2018a).  

In 2010, the U.S. Census switched to using only the short form and eliminated the long 

form. In place of the long form the U.S. Census implemented the American Community Survey 

(ACS), enacted in 2005, that collects detailed demographic and socioeconomic data monthly, 

compiled and reported annually, with the goal of collecting continuously updated population 

information for all areas across the U.S. The ACS questionnaire uses random sampling 

throughout the U.S. to collect detailed population information from a ‘small percentage’ of 

households and does not collect data from the same household more than once every five years 

(U.S. Census Bureau 2014, 2018a).  
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The ACS has become an important instrument for the U.S. Census Bureau’s efforts to 

maintain up-to-date, continuous, population estimates and is a valued resource for providing 

small area statistics to data users. Census statistics are ever-changing however, and data from one 

reporting decennial census to another can produce substantially different estimates. The temporal 

challenges with the decennial census means many have come to regard the ACS as the solution 

because the data presented provides a snapshot of dynamic population information available for 

small area evaluations during the time between census reports. The issue of sample size is not 

often considered when ACS data is reported or utilized. ACS data is the result of a small 

percentage sampling versus the decennial census complete population sampling. The data 

collection methodology for the ACS creates an inherent atomistic fallacy within the data reported 

by how it uses non-majority data and creates statistical assumptions for the whole based on those 

values (Sabel et al. 2013; U.S. Census Bureau 2014; Roberson and Feick 2018). 

The ACS provides researchers a convenient option to review annual population estimates 

for small areas at the ‘census tract and block group’ levels. These small area statistics were 

previously only available from the decennial census report. The adoption of the continuously 

collected ACS, in place of the traditionally used long-form collected once every ten years, is 

often used by researchers as an interim resource for representing changing population conditions 

across the country in between decennial reporting’s, notwithstanding potential sampling bias 

(U.S. Census Bureau 2014).  

Census tracks are nested within counties and are the larger of the two divisions. Census 

tracts generally follow observable physical characteristics and consist of populations ranging 

from 2,500 to 8,000 residents (US Census Bureau 1990). Census tracts were initially designed to 

represent areas with similar socioeconomic and demographic characteristics. Since census tract 
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inception, however, population dynamics throughout the country have changed resulting in 

census tracts that are no longer homologous relative to one another.  

Census block groups are nested within census tracts and represent the smallest published 

spatial division of the Census, with populations under 2,500 residents. These areas often have 

physical geographic boundaries and have been considered valuable for their use in small area 

studies (US Census Bureau 1990). Census block groups are often thought to be representative of 

neighborhood; however, their boundaries are administratively defined and may have no 

relevance to the local culture or functionality of a specific zone.  

Matthews (2018) has noted that ‘there is a centralized thought throughout the health 

sciences that census data defines neighborhood.’ This generalization has led researchers to use 

census data as representations of place in health studies with little regard to the actual functional 

neighborhood. Census areas are relatively arbitrary with little regard to the actual practicality, 

contextual effects, or social structure within a neighborhood creating potential misreporting and 

error when used in health research (Sharkey and Faber 2014).  

The ability to access a wide array of population data at these predefined administrative 

units makes census and ACS information the most easily accessible and cost-effective data 

resource for health researchers (Foster and Hipp 2011; U.S. Census Bureau 2018a). Census and 

ACS data are often used as a rudimentary proxy for neighborhood. Although Census data is 

considered 100% coverage, it is assigned to administrative census units that are subject to 

MAUP effects, miscount, and other non-sampling errors. The ACS is also assigned to 

administrative census units; however, in contrast to decennial census reporting, the ACS uses a 

relatively small sampling of the entire population introducing potential misreporting error. and 

although the ACS is commonly used for population insight between census reports it may be 
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only somewhat representative of current population dynamics. The ACS sampling methodology 

utilizing small sample size also means some measures of population characteristics may not be 

reliable making the resulting data subject to the atomistic fallacy (Spielman and Logan 2012; 

Robertson and Feick 2018). Additionally, administrative census units are subject to boundary 

adjustments as their populations change between census periods creating incongruent boundary 

zones. Utilizing aggregated census and ACS data can lead to misreporting caused by the bias 

introduced from zonal effects, the MAUP, the atomistic fallacy, and by using estimated and 

continuously changing population information (Openshaw and Alvanides 2001; Diez Roux 2007; 

Kwan 2012b).  

2.1.3. ‘Nonstandard’ Administrative Unit Areas 

The U.S. Census Bureau also tabulates data for administrative units that fall outside of the 

conventional census grouping levels. These special localities have been created for different 

reasons than standard census areas and consequently share no geographic connection to 

administrative census boundaries. These special zones were created either independently from or 

in joint effort with the U.S. Census Bureau; however, the U.S. Census Bureau does compile data 

within these areas (U.S. Census Bureau 1990).  

2.1.3.1. ZIP Code 

Zone Improvement Plan (ZIP) code divisions are completely independent of other types of 

administrative boundaries. ZIP codes do not correspond with census tracts but instead were 

devised by the U.S. Postal Service (USPS) as a means of identifying the primary mail delivery 

system area associated with a municipality or postal office. The system was devised by the 

Postmaster General to accommodate increasing mail flow to growing populations across the U.S. 

and follow a network of mail delivery routes throughout a neighborhood (US Census Bureau 
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2018c). ZIP codes evolve with a neighborhood as it grows and are an independent zoning system 

that are frequently spatially incompatible with other types of traditional administrative 

boundaries.  

ZIP Code Tabulation Areas (ZCTAs) are reported by the U.S. Census Bureau as spatial 

delineations of USPS routing zones. These reporting areas are designated by determining the 

most recurrent ZIP code inside of a census block and then delegating it to the entire census 

block. ZCTAs are often different than the actual ZIP code they represent. Additionally, very 

rural areas may not have a ZIP code assignment, leaving a void in ZCTA coverage (US Census 

Bureau 2018c).  

2.1.3.2. School Districts 

School districts are administrative units created and determined by local governments and 

maintained in joint effort between the U.S. Census Bureau and the National Center for Education 

Statistics (NCES), a part of the Institute of Education Sciences within the U.S. Department of 

Education (U.S. Census Bureau 2018b; Institute of Education Sciences, NCES 2018c). School 

districts are independent from standard census areas and serve as a demographic and economic 

measure of the school-aged population inside the geographic area within district boundaries. 

School district boundaries are updated biennially by the U.S. Census Bureau’s Geography 

Division for socio-demographic reporting and are used to create spatial layers for census 

TIGER/Line files (U.S. Census Bureau 2018b).  

School districts are boundary ‘catchment’ areas that dictate which area schools residents 

can attend (Institute of Education Sciences, NCES 2018b). The NCES uses school district data 

compiled from both the ACS and the decennial census for their Education Demographic and 

Geographic Estimates (EDGE) program (Institute of Education Sciences, NCES 2015).  
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The EDGE program uses geographic information to inform policy makers and the public 

about the correlation between schools and the people and area they serve. The EDGE program 

compiles data to create school district locales, used to classify school districts into four 

categories; urban, suburban, town, or rural and three subsequent subtypes. The function of the 

EDGE locale is to provide spatial data for research and analysis that gives researchers the ability 

to customize detailed investigations of the dynamics occurring between the social and physical 

properties of a locale area (Institute of Education Sciences, NCES 2015).  

The EDGE locale boundary function also offers a ZCTA locale file where researchers 

can assign ‘NCES indicators’ to ZCTAs for use with TIGER/Line files. The ZCTAs are 

determined by the boundaries of the NCES locales (Institute of Education Sciences, NCES 

2018a).  

School districts are not static and are relatively arbitrarily defined. They often conflict 

with other types of administrative units such as counties, census tracts, and ZIP codes. The 

potential incompatibility of school districts with other administrative unit types causes school 

districts to sometimes have multiple, simultaneous, spatial unit assignments, i.e. spanning 

multiple counties and/or having varying ZIP codes within the same school district (Institute of 

Education Sciences, NCES 2018c). The use of mismatched spatial units may automatically 

introduce bias by potentially creating or eliminating important data (Eagleson 2002). Combining 

potentially mismatched spatial units with aggregated ACS data adds to uncertainty and creates 

significant possibilities for misreporting and error.  

2.1.3.3. American Indian, Alaska Native, and Native Hawaiian Areas (AIANNHAs) 

The U.S. Census Bureau collects and provides population data for Native American Indian lands 

situated throughout the U.S. as well. The Bureau of Indian Affairs (BIA), a branch of the U.S. 
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Department of the Interior (DOI), keeps a record of American Indian tribes and maintains 

governance over tribal affairs. The U.S. Census Bureau compiles population data from Indian 

area census reporting zones for the collection and quantification of populations within tribal 

geographic boundaries and off-reservation trust lands (U.S. Environmental Protection Agency 

2016; U.S. Census Bureau 2010a).  

Tribal areas known as American Indian Reservations (AIRs) and off-reservation trust 

areas are Federally and/or State recognized Indian use territories independent from any other 

form of administrative boundary. The geographic boundaries of AIRs reside within the borders 

of the U.S. and were determined on an individual tribal basis by final tribal treaties or judicial 

orders agreed upon with the appropriate State Government(s) and the Federal Government. Each 

tribe has governing authority over their people which consists of their independent tribal 

governments, local laws, and boundary zones. The U.S. Federal Government maintains ultimate 

federal jurisdiction over AIRs (U.S. Census Bureau 2010a).  

Federal AIR borders can span all forms of classical administrative boundaries including 

state and county borders (U.S. Environmental Protection Agency 2016). State AIRs have a 

government-appointed intermediary that determines and reports State recognized tribal 

boundaries to the U.S. Census Bureau. State AIRs cannot cross State boundaries but can cross 

county lines (U.S. Census Bureau 2010a) 

The U.S. Census Bureau works with tribal government agencies to annually identify and 

update reservation boundary lines and features through the Boundary and Annexation Survey 

(BAS). The main function of the BAS is to make certain that legal tribal boundaries are 

documented correctly so that population data is accurately recorded and reported to local, tribal, 

county, and federal agencies (US Census Bureau 2017).  
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The Tribal Statistical Areas Program (TSAP) is a decennial survey that provides tribes 

the option of delineating physical boundaries within their specific AIR to create tribal Census 

tabulation areas. TSAP data is utilized by the U.S. Census Bureau and the American Community 

Survey (ACS) to provide statistical socioeconomic and demographic data for tribal, federal and 

state agencies. Tribes can designate boundary lines creating the reporting areas for each State 

identified tribal statistical area (SDTSA), Tribal designated statistical area (TDSA), Tribal 

census tract, and Tribal block group (U.S. Census Bureau 2010b; U.S. Department of Homeland 

Security 2017).  

The U.S. Census Bureau designates a unique numeric tribal census code, alphabetically 

by tribe, for each federal AIR across the U.S. independent from any non-reservation coding 

system. Additionally, Federal Information Processing Series (FIPS) and American National 

Standards Institute (ANSI) codes are also assigned, and are unique, to each tribe by State. 

Although appointed alphabetically by State, federal AIRs for the same tribe can have completely 

different FIPS codes if they cross a State line (U.S. Census Bureau 2010a).  

 Buffer Zones  

GIS serves as a valuable tool for facilitating the ability to measure proximity around subjects of 

interest (Perchoux et al. 2013). Proximity zones measure the extent of a neighborhood's 

environment and commonly use buffers as a measure of locality (Faber and Sharkey 2015). 

Buffers allow researchers flexibility to examine neighborhood exposures at an individual level in 

contrast to being constrained by data aggregated at the scale of traditionally used administrative 

boundaries (Spielman and Logan 2012; Matthews and Parker 2013).  

There are several types of buffers used in health research. Three of the more common 

buffer methods are circular, street network, and activity space. Figure 3 compares circular and 
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network buffers (Chaix et al. 2009). Ego-centric buffers are often considered the best approach at 

representing a subject’s immediate neighborhood relying on aggregated proxies combining 

contextual characteristics of place with an individual’s geocoded location as a representation of 

physical address (Spielman and Logan 2012; Matthews and Parker 2013). 

Within these different types of buffer zones, boundaries may be sharp or fuzzy depending 

on methodology (Chaix et al. 2009; Spielman and Logan 2012). Buffer sizes are subjective and 

are often determined by following those used in prior research. Measurement within a buffer 

zone may be linear or not and may not always account for obstacles created by physical 

surroundings (Leite et al. 2015).                                                  

 

Figure 3. Circular and network buffers around a point of interest (Source: Hall et al. 2007) 

 

 

 



 

23 

 

2.2.1. Circular  

Circular buffers create an isotropic neighborhood defined by a specified distance extending out 

equally in every direction from the center (Chaix et al. 2009). Frequently, circular study zones 

are used in health research as a means of quantifying factors within a specified boundary 

distance. These ego-centric zones are often a preferable, all-inclusive, measure of the relevant 

neighborhood and are used as an alternative to fixed administrative delineations representative of 

a locale (Perchoux et al. 2013).  

Circular buffer sizes are not standard or fixed, allowing researchers to adjust the sizing to 

whatever threshold deemed most appropriate for a study (Hall et al. 2007). There is no consensus 

as to what the buffer size should be; however, recent health studies have used a radius of half a 

mile around a specific point of interest (Perchoux et al. 2013). Research has shown however that 

the buffer size selected directly affects the reported functionality of a buffer zone for land use 

(Strominger et al. 2016).  

Circular buffers around a point of interest can introduce bias into a study depending on 

what type of contextual variable is being measured. Isotropic neighborhoods can be valuable for 

examining environmental and epidemiological exposures around a point of interest; however, 

they may have limited efficacy in assessing health issues influenced by an individual’s daily 

traverse.  

Often circular buffers utilize Euclidian distance as a measure of contextual variables 

within a neighborhood. This straight-line distance is measured from point A to point B and 

commonly referred to ‘as the crow flies’ which generally does not account for barriers 

introduced by physical geography or the built environment. Many of the aspects relating to 

health research do not pertain to exposures occurring ‘as the crow flies’ (Chaix et al. 2009; Hall 

et al. 2007). Euclidian distance does not account for the interaction between population and 
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physical environment; however, its usefulness and relevance depend on what proxy is being 

calculated. Notwithstanding these potential problems, health research frequently uses circular 

buffer areas and straight-line distance as a measure of proximity (Foster and Hipp 2011). The 

built environment, street networks, and physical geography can directly affect the walkability 

and otherwise traversable extent of a neighborhood (Boruff et al. 2012; Perchoux et al. 2016). 

2.2.2. Network 

Street network buffers are line-based and defined by some measure of the road system from a 

feature of interest (Hall et al. 2007). Street network buffer sizes, like circular buffers, are not 

standardized and threshold distances vary depending on study purpose. Areas experiencing 

higher population densities have demonstrated the need for an increase in buffer size compared 

to lesser populated areas (Perchoux et al. 2016).  

In contrast to circular buffers, street network buffers are theorized to be a more accurate 

representation of neighborhood since they provide a course of navigable passage around and 

through the physical and built environment (Hall et al. 2007). Street network buffer zones are 

often considered a more human-oriented means of measuring neighborhood as they reflect routes 

of regular commute and use, translating to routine environmental exposures at an individual level 

(Perchoux et al. 2013).  

Past research has attempted to operationalize network buffers by street pattern, viewing 

major roadways as buffer zone borders and minor road systems as potential routes of traverse 

within a neighborhood. Use of this methodology, although centrally important to the concept of 

neighborhood and the use of street networks as buffer zones for analysis, is considered a building 

block for delineating neighborhood units (Cutchin et al. 2011). It is theorized that using minor 

street network connectivity as a measure of social interactions representative of the 
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neighborhood will reduce measurement bias by minimizing intra-neighborhood variability and 

amplifying neighborhood differentiation (Foster and Hipp 2011). 

Network distances in urban settings often use a grid-based, Manhattan method, of 

distance measurement where the distance between points A and B is determined using right 

angles along an axis or on a grid. Manhattan distance is different from Euclidean and network 

distance because Manhattan distance is the measure of the two right-angle sides of a triangle 

(Apparicio et al. 2017).                                                                                                                

This method is commonly used to measure two points on a municipality map and often 

represents ‘city block distance’ (Charreire et al. 2010). Grid networks can be a useful measure of 

traverse and walkability in certain environments; however, their usefulness is limited to regular 

and relatively close urban street networks. When used in environments with sparse or irregular 

street networks, grid networks can introduce substantial measurement error (Hall et al. 2007).  

Street-based buffer zones are often identified as walkability zones, usually determined 

from preceding studies to be within a 15-minute walk from a residence or feature of interest, 

translating to roughly 1,000 m from the point of interest (Hall et al. 2007; Perchoux et al. 2016).  

Street network buffer distances are commonly determined by a researcher and 

subsequently, they do not provide accurate representations of the actual physical area, or 

direction, most frequented by a resident. Street network buffers have a multitude of applications; 

however, they are not always realistic of an individual’s daily traverse exposures or the 

anisotropic nature of human routine (Chaix et al. 2009; Perchoux et al. 2016).  

2.2.3. Activity Space & Perceived Environment  

One of the primary limitations to the classical measures of neighborhood is their inability to 

represent the true dynamic nature of the human element. Traditional measures of neighborhood 
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focus on place of residence and are defined by either fixed administrative boundaries or set 

buffers theorized as representative of a resident’s daily exposures. This conventional view of 

neighborhood neglects that the human routine is not static but more often variable and changing 

(Macintyre et al. 2002; Matthews and Yang 2013).  

Twenty-first century society has created an increasingly mobile culture (Chaix et al. 

2009; Matthews and Yang 2013). Economy and opportunity have added to the transient nature of 

residence. The incorporation of and advancements in GIS and related geospatial technologies 

now provide health researchers with new methods of capturing the complex dimensions of life 

outside an individual’s dwelling (Perchoux et al. 2013).  

The concept of activity space follows a person’s daily traverse, spatially and temporally, 

assessing direct and potential exposures relative to that individual (Kwan 2012b; Perchoux et al. 

2013). The range of actual exposures an individual experiences throughout their average daily 

routine and traverse are often far greater than what has been deemed by classical measures of 

neighborhood (Chen and Kwan 2015).  

Activity spaces tend to demonstrate a directionally oriented neighborhood composed of 

residential, public, and institutional places. Activity spaces vary by age group and residential 

type based on socioeconomic status (Perchoux et al. 2013). Current methodologies commonly 

utilized in recording an individual’s routine activity space include GPS tracking, reporting 

through questionnaires, self-reporting, or other means of volunteered geographical information 

(Matthews and Parker 2013; Perchoux et al. 2013). Geoprocessing tools are then employed to 

evaluate data and create representative activity spaces (Perchoux et al. 2013).  

The perceived neighborhood can be highly subjective often differing from an actual 

traversed activity space by encompassing areas thought of as preferable even if outside of a 
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person’s true realm of daily use (Flowerdew et al. 2008; Perchoux et al. 2016). The issue of 

differentiated geographic delineations between individual activity spaces is further complicated 

by the temporal aspect affecting a perceived or actual neighborhood (Kwan 2012b). The 

variability of this form of spatial evaluation creates scale and zonal effects which can introduce 

congruence problems and aggregation bias (Swift et al. 2014). 

2.2.4. Dasymetric Mapping 

Dasymetric mapping is an area-based mapping technique that constructs population information  

from multiple aspatial, areal, and linear datasets (Holt et al. 2004; Swift et al. 2014). Dasymetric 

maps use ancillary data to create dimensional zones of measure disaggregated from the confines 

of administrative boundaries. Dasymetric mapping shares similarities with choropleth mapping 

techniques with some substantial differences (Mennis 2003; Mennis and Hultgren 2006; Nelson 

2010).  

The use of ancillary data in dasymetric mapping creates a more realistic depiction of real-

world attributes compared to choropleth maps. Dasymetric maps follow existing spatial patterns 

and are not subject to the contrasting population differences often depicted in the arbitrarily 

defined administrative boundaries used in choropleth mapping (Figures 4 and 5) (Mennis 2003; 

Nelson 2010).  

Figures 4 and 5 demonstrate the contrast between choropleth and dasymetric mapping 

techniques. Figure 4 shows how choropleth maps depict population density throughout a county 

using traditional administrative boundaries. The choropleth maps show distinct, sharp variations 

in area population density between administrative boundary zones and are likely not 

representative of the actual population distribution over those areas. Figure 5 depicts the same 
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county using dasymetric mapping. The use of ancillary data creates a more probable 

representation of that county’s actual population distribution throughout the area (Nelson 2010).  

 

 
 

Figure 4. Guilfrod County, North Carolina census tract and block group population density  

(Source: Nelson 2010) 

 

 

 

 
Figure 5. Dasymetric map of Guilford County, North Carolina population density               

(Source: Nelson 2010) 
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Dasymetric mapping also shares close similarities with areal interpolation as its function 

is to transform geographic data from one boundary system to another (Mennis 2003; Mennis and 

Hultgren 2006). The inherent problem of utilizing different boundary systems together is the 

inability to analyze and combine data of differing boundary types together without losing and or 

biasing the data where population counts are neither fabricated nor eliminated in the final results 

(Eagleson 2002; Mennis 2003). A spatial discrepancy, as is found in trying to use incompatible 

boundary systems, can also be a result of temporal effects as is often experienced when 

comparing census data from different reporting periods (Zandbergen and Ignizio 2010). 

An additional complication is that ancillary data often contain geographic and/or attribute 

errors, further biasing results and can be difficult to account for because of contextual effects. 

Associating population data with area attributes can be problematic and can introduce 

uncertainty that is usually not included in reporting (Nagle et al. 2013).  

Dasymetric mapping attempts to alleviate these situations by utilizing aggregated data 

and transforming those values by combining it with ancillary data by reaggregation into smaller 

spatial zones that more closely depict the actual population distribution throughout a given area, 

as was illustrated on Figures 4 and 5 (Mennis and Hultgren 2006).  

Dasymetric maps are helpful in illustrating heterogeneity within a specific population and 

are a valuable means of visualizing cluster events throughout a geographic area (Barrozo et al. 

2016). Dasymetric mapping is also theorized as providing a truer representation of populations 

dispersed throughout small areas, such as block group population distribution in both urban and 

rural environments, making this technique a valuable tool for researchers conducting small area 

studies (Mennis 2003; Mennis and Hultgren 2006).  
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Chapter 3 : Methods and Data Sources 

The state of Arizona was chosen as the study area for this thesis because of the population 

distribution and diversity found throughout the state. This type of population dispersion was an 

important factor in being able to show how choosing varying forms of neighborhood for a study 

can affect the reporting outcomes. Administrative boundaries at the county, census tract, and 

census block group levels were compared to evaluate what reporting differences existed between 

reporting types for specified variables. Within these variables, specific populations of concern 

were identified and focused on to determine if and how these neighborhood variations lead to 

poor representation of specific population groups. The temporal aspects of this study used U.S. 

Census Bureau data from 2000 and 2015. The 2000 decennial U.S. Census was utilized for the 

majority of the analysis as it was the last census using 100 percent reporting. The 2010-2015 

ACS estimates published in 2015 were used in the latter part of the study for further comparison 

as it was the last ACS to include data for areas within the state that only report once every five 

years (as is common for AIRs). Census tracts and census block group boundaries were also 

adjusted for the appropriate temporal period, as boundary changes affected the delineation of 

reporting units used by the ACS. The population variables examined were median household 

income, age, and ethnicity. Data were downloaded from the U.S. Census Bureau. Microsoft 

Excel 2016 was utilized for data conversion from .csv and file format preparation. ArcGIS 

Desktop (versions 10.5.1 and 10.6) were used for data analysis.  

 Study Area 

The state of Arizona is the sixth largest state in the U.S., covering a total area of 113,990.30 

square miles. There are 15 counties and by 2010 the U.S. Census Bureau reported there being 

1,526 census tracts and 4,178 census block groups dispersed throughout the state (U.S. Census 
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Bureau 2015). The state is also home to 22 federally recognized American Indian Nations. 

Figure 6 shows the largest of the aforementioned geographic units in the study area. The maps in 

Figure 6 also show the study area by (a) Arizona counties; (b) census tracts; (c) census block 

groups; and (d) AIR’s with their associated area’s minimum, mean, and maximum geographic 

extent.  

The U.S. Census Bureau estimated the Arizona population in July of 2017 to be at 

7,016,270 (U.S. Census Bureau 2018d). Approximately 68% of the state’s population is located 

within the Phoenix Metro area (Maricopa County), and 15% in the Tucson Metro area (Pima 

County). That leaves the remaining 17% dispersed throughout the predominantly rural, 

remaining 13 counties. The variability found throughout the state provides important insight into 

how neighborhood delineations might affect outcomes in both traditionally examined 

metropolitan zones as well as in less frequently studied rural areas where aggregation issues may 

have a greater effect.  

 Hypothesis 

Data acquired from the U.S. Census Bureau is a common resource for health researchers. These 

data are reported per administrative unit. The null hypothesis presented and assumed in many 

research studies is that median values for variables are relatively unchanging, and equivalent, 

regardless of the administrative unit utilized. The null hypothesis used for the current study 

offers that aggregation has little statistical relevance throughout a geographic neighborhood, 

regardless of population dispersion. The alternative hypothesis presented in this thesis is that 

actual values vary across administrative units and that aggregation can affect resulting outcomes. 

This variability dictates that that consideration of how a neighborhood is selected is important 

and affects how outcomes are reported. 
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(a) 

 

                          (b)                                             (c)                                             (d) 

 

 

 

 

 

Figure 6. Area maps by: (a) Arizona counties; (b) census tracts; (c) census block groups; and (d) 

AIR’s. The colors show the geographic extent by minimum, mean, and maximum areas for each 

administrative unit. 
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The hypothesis is tested using three variables that are commonly used in research as 

social health determinants: Median household income, vulnerable population represented by the 

percentage of children and the elderly, and ethnicity represented by percentage of Native 

American population. These variables were then examined at three different administrative units 

to evaluate how and if there are significant variations in terms of their estimation depending on 

the size of the geographic reporting unit.  

For this thesis the administrative units used were county, census tract, and census block 

group. The results presented in Chapter 4 examine decennial census data from the last 100 

percent reporting period (i.e. 2000 - 2010) and investigates what variation occurs for selected 

variables within differing administrative units. The second phase of this analysis that is briefly 

referred to in Chapter 5 examined the variability of selected variables using ACS data for three 

of Arizona’s 15 counties. The first ACS reporting that fulfills the needs of this study is from the 

period 2010-2015. 

 Data Sources 

Shapefiles and attribute data was downloaded from the U.S. Census Bureau and imported into 

ArcGIS (Table 1). Initially, Esri Business Analyst was used; however, it was determined that 

Esri utilized numerous sources for their reports and values, potentially confounding results. This 

required sourcing data exclusively from the U.S. Census Bureau’s American Factfinder for data 

consistency. This was crucial to ensure that the appropriate reporting survey type (decennial vs. 

ACS), administrative unit, and temporal period was used for each of the variables examined in 

this thesis. 
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 Table 1. Census data sets and sources. 

Dataset 

 

Description File Type Data Type Temporal 

Reporting 

Period 

Source 

Counties 

 

Arizona county boundaries .shp files Vector data 

(polygon) 

Vintage: 2007 

(for 2000 

Census)  

2015 

U.S. Census Bureau 

TIGER/Line files 

U.S. Decennial Census 

ACS 2015  

Census Tracts Boundary lines for all census 

tracts in Arizona 

.shp files Vector data 

(polygon) 

Vintage: 2007 

(for 2000 

Census)  

2015 

U.S. Census Bureau 

TIGER/Line files 

U.S. Decennial Census  

ACS 2015 

Census Block 

Groups 

 

Boundary lines for all census 

block groups within Arizona 

.shp files Vector data 

(polygon) 

Vintage: 2007 

(for 2000 

Census)  

2015 

U.S. Census Bureau 

TIGER/Line files 

U.S. Decennial Census  

ACS 2015 

Demographic 

Profile 

 

Reporting for population by age 

group per administrative unit 

.csv converted 

to .xlsx and 

.dbf 

Vector data 

(discrete, 

point)  

2000 

2015 

U.S. Census Bureau 

2000 Census; 

Demographic Summary 

file 1 

ACS 2015 

Ethnicity 

 

Separate datasets reporting Non-

Hispanic & Hispanic ethnicity 

counts per administrative unit 

.csv converted 

to .xlsx and 

.dbf 

Vector data 

(discrete, 

point)  

2000 

2015 

U.S. Census Bureau 

2000 Census; Ethnicity 

non-hispanic; Hispanic 

Ethnicity 

Summary file 1 

ACS 2015 

Median 

household 

income 

 

Median household income per 

administrative unit 

.csv converted 

to .xlsx and 

.dbf 

Vector data  

(discrete, 

point)  

2000 

2015 

U.S. Census Bureau 

2000 Census; Summary 

file 3  

ACS 2015 
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Data from the 2000 decennial census was determined to be the last decennial census to 

use 100 percent reporting and that would accurately represent population dynamics for this 

analysis. The boundaries for census reporting units were also different in 2000 as compared to 

the 2010 decennial Census and later ACS tabulations. The U.S. Census Bureau converted all 

2000 boundary files to shapefile compatible format in 2007 requiring usage of a 2007 vintage 

file for acquisition of the 2000 boundary shapefiles (Table 1).  

The 2010-2015 ACS data was utilized for the second phase of analysis in this thesis. The 

appropriate temporally corresponding vintage shapefiles were also downloaded to support this 

part of the analysis (see Table 1 for additional details). 

 Methodology 

Data were downloaded from the U.S. Census Bureau website. Variable data were selected per 

administrative unit within Arizona, downloaded as a .csv file and converted to Excel files. 

Spreadsheets were then designed in Excel and imported into ArcGIS Desktop. In ArcGIS, the 

Excel files were converted into database files that were then joined with their corresponding 

administrative units (see Figure 7 for workflow). 

Administrative boundaries for three commonly used census reporting units were utilized 

for comparison. Arizona’s 15 counties were the basis for examining health determinant variables 

and if and how results varied between the census reporting unit that were used. Three census 

reporting units were used in this study: County level, Census Tract level, and Census Block 

Group level. All of the maps displayed throughout the thesis use the UTM Zone 12N map 

projection; however, transformations were conducted using ArcGIS, ArcToolbox Data 

Management toolset to convert to the most appropriate visualization projection from the U.S. 

Census Bureau source data which utilized GCS North American 1983. 
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Figure 7. The workflow 

This study examines the geographic variability of three variables that are commonly used 

in health studies: (1) Wealth by median household income; (2) race and ethnicity, the percent of 

the population that was Native American in this instance; and (3) vulnerable population (the 

percent of population) over age 65 and under age 16 in this instance.  

The data for these three social determinants of health were imported into ArcGIS and 

threshold values were determined for each variable. Then scatterplots were built for each 

variable and color coded by threshold bracket. Scatterplots were used to evaluate thresholds set 

at ≥ 125%, ≤ 75%, and ± 25% of the corresponding county and census tract values. The 
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calculations were conducted using ArcGIS and selecting by attributes where the formulas for 

each variable threshold were as follows:  

A. County median values as reported by the U.S. Census Bureau were used for counties and 

census tracts using the following rates.  

(1) ≤ 75%: Census Tract value ≤ (.75*County value)  

(2) ≥ 125%: Census Tract value ≥ (1.25*County value)  

(3) ± 25%: CT value ≥ (.75*County value); and ≤ (1.25*County value) 

where the three classes used to classify the census tract values express the variability 

relative to the county estimates for each variable and where < 75% is depicted throughout 

in blue, > 125% is depicted throughout in red, and ± 25% is depicted throughout in green.  

B.  The same approach was also used for census tracts and census block groups using the 

following rates:  

(4) ≤ 75%: Census Block Group value ≤ (.75*Census Tracts value) 

(5) ≥ 125%: Census Block Group value ≥ (1.25* Census Tracts value) 

(6) ± 25%: CBG value ≥ (.75*CT value); and ≤ (1.25*CT value) 

where the three classes used to classify the census block group values express the 

variability relative to the census tract estimates for each variable and where < 75% is 

depicted throughout in blue, > 125% is depicted throughout in red, and ± 25% is depicted 

throughout in green.  

The resulting units classified as outliers were grouped by county using population as a 

basis for the groups. Group I contain the two most populated counties in the state, Maricopa and 

Pima with populations of 3,072,149 and 843,746 respectively. Group II consists of seven 

counties with modest populations ranging from 97,000 to 179,000:  Pinal, Yavapai, Yuma, 
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Mohave, Cochise, Coconino, and Navajo. Lastly, Group III contains the six most rural and least 

populous counties with totals ranging from 8,000 to 69,000: Apache, Gila, Santa Cruz, Graham, 

La Paz, and Greenlee. There were no counties with a population that fell between Groupings.  

Graphs were made for each variable by county to describe the variability from threshold 

values representing units classified as outliers and introduced by the choice of census reporting 

unit. Maps were also prepared but are displayed for just six of Arizona’s 15 counties in the thesis 

itself. Two counties from each of the aforementioned groups were selected for this purpose as 

follows:  Maricopa and Pima in Group I, Coconino and Pinal in Group II, and Apache and Santa 

Cruz in Group III.  

The following chapter reports the results and reveals information that has far reaching 

consequences for health researchers who want to learn how their choice of census reporting unit 

may potentially influence the resulting outcomes of studies that consider social determinants of 

health. 
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Chapter 4 : Results 

This chapter is detailed by section and investigates how the spatial measurement of a locale can 

affect the geographic reporting of health determinants. Three independent variables are 

compared at three commonly utilized variations of neighborhood: county, census tract, and 

census block group. In 2000, Arizona possessed 15 counties, 1,108 census tracts, and 3,570 

census block groups. Following are the trends discovered when examining each variable by 

neighborhood for that temporal reporting.  

 Median Household Income 

Median Household Income is a significant indicator of human well-being and a key health 

determinant. Theoretically, median household income reflects a household’s ability to access 

resources, such as sustenance and medical care, and indicates overall quality of life.  

4.1.1. County Level 

Median Household Income by county is displayed in Figure 8. The values demonstrated are as 

reported by the U.S. Census Bureau’s 2000 decennial census. Arizona is depicted throughout this 

thesis at a scale of 1:4,275,000.  

The counties demonstrating the highest median household incomes, depicted on the map 

in red, have multiple factors contributing to their higher incomes (Figure 8). Maricopa County 

contains the greater Phoenix Metro area, the largest metropolitan area in Arizona. The greater 

Phoenix Metro is a major service hub not just for Arizona but also the entire southwestern U.S. 

providing population and infrastructure to support an economy that can provide higher wages 

and thus higher household incomes in comparison to the State’s rural areas. Coconino and 

Greenlee, the remaining two counties demonstrating high median household income, reflect their 
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affluence from industry. Median household income in these counties is not necessarily associated 

with high population or service areas.  

 

Figure 8. Median Household Income for each Arizona county 

 

The counties in green represent the mid-level classification and for the purposes of this 

thesis follow the State of Arizona’s Median Household Income. There are seven counties that 

comprise this level, making this grouping the largest of the three classes for the variable. 

The counties with the lowest median household incomes, colored blue on the map, have 

limited service centers and county populations that did not exceed 100,000 (Figure 8). These five 

counties are more rural in nature and do not possess any substantial form of industry. Services 

are limited and few even across large geographic areas. Additionally, these counties also have 

substantial portions allotted as Native American Tribal Areas (Figure 6d).  
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County Median Household Income varies considerably from the low economic class 

(counties in blue) to the high economic class (counties in red). The counties in blue are primarily 

the most rural; however, rurality does not dictate income level as Coconino and Greenlee 

counties are largely rural and yet are still classified as two of the State’s wealthiest counties. The 

most populous county, Maricopa County, is also one of the most prosperous.  

4.1.2. Census Tract Level 

Viewing median household income by census tract provides an entirely different perspective of 

the household income distribution throughout the various counties and the State of Arizona 

(Table 2). A comparison of Figures 8 and 10 reveals that census tracts with median household 

incomes classified as outliers > 125% (depicted in red) and < 75% (depicted in blue) are 

relatively confined to specific areas within each county and are not equally distributed 

throughout those counties.  

Three counties; Maricopa, Pima, and Santa Cruz counties, exceed the States’ average of 

52.2% of census tracts classified as outliers (Table 2). Two of these counties, Maricopa and Pima 

contain the two largest metropolitan areas within the State, the Phoenix and Tucson Metros, 

respectively. Maricopa County has a population of 3,072,149 and Pima County has a population 

of 843,746. Santa Cruz County, however, has a relatively low county population of 38,381 and is 

the smallest county in terms of area within Arizona (U.S. Census Bureau 2015). 

The remainder of the counties fall under the 52.2% state average; however, five counties 

have fewer than 20% of their census tracts classified as outliers (Table 2). Four of these counties 

fall between 12.5 and 20%. Graham County has a population of 33,489 with 12.5% of its census 

tracts classified as outliers. Yavapai has a population of 167,517 with 15.4% of its census tracts 

classified as outliers. Mohave contains a population of 155,032 and has 16.7% of its census tracts 
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classified as outliers, and Gila has a population of 51,335 with 20% of its census tracts classified 

as outliers.  

Table 2. Counts and percentages of census tracts with median household incomes ≤ 75% and ≥ 

125% of county median values. 

County Population No. of census 

tracts 

No. of census 

tracts with 

MHI 

Nos. and % of outlier census 

tracts * 

Apache 69,423 14 14 5 + 1 = 42.9 

Cochise  117,755 21 21 4 + 5 = 42.9 

Coconino  116,320 28 27 8 + 5 = 46.4 

Gila 51,335 15 15 2 + 1 = 20 

Graham  33,489 8 8 1 + 0 = 12.5 

Greenlee  8,547 3 3 0, 0  

La Paz  19,715 6 6 0 + 2 = 33.3 

Maricopa  3,072,149 663 659 181 + 194 = 56.6 

Mohave  155,032 30 30 3 + 2 = 16.7 

Navajo  97,470 23 23 6 + 3 = 39.1 

Pima  843,746 198 198 52 + 70 = 61.6 

Pinal  179,727 33 32 9 + 4 = 39.4 

Santa Cruz  38,381 7 7 2 + 2 = 57.1 

Yavapai 167,517 26 25 3 + 1 = 15.4 

Yuma  160,026 33 32 6 + 6 = 36.4 

Totals 5,130,632 1,108 1100 296 + 282 = 52.2 

* No. of census tracts with MHI <75%, >125%, and the sum of the two classes of outliers as a 

percentage of total. 

 

Greenlee County, with the smallest population in the State of 8,547, was the only county 

in Arizona that did not have any census tracts classified as outliers (Table 2).  

The remaining seven counties fall into the mid-level classification with the percentages of 

census tracts exceeding the county thresholds ranging from 33 to 46% (Table 2). These counties 

are as follows: La Paz County, the least populous within this category with a population 19,715 

and 33.3% of the census tracts classified as outliers; Yuma County, the second most populous 

county with a population of 160,026 and 36.4% of the census tracts classified as outliers; Navajo 

County with a population of 97,470 and 39.1% of the census tracts classified as outliers; Pinal 

County, the most populous county in this grouping with a population of 179,727 and 39.4% of its 
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census tracts classified as outliers; Apache County, the poorest county in the State with a census 

tract median household income average of $21,497.29 and a population of 69,423 and 42.9% of 

its census tracts classified as outliers; Cochise County with a population of 117,755 and 42.9% 

of its census tracts classified as outliers; and lastly, Coconino County, the wealthiest in this 

grouping, with a median household income of  $39,066, a population of 116,320, and 46.4% of 

its census tracts classified as outliers.  

Two counties within Arizona contain 70% of the state’s census tracts. These counties are 

Maricopa and Pima with 663 and 198 census tracts, respectively. Government apportioning of 

spaces by population dictates that the metro areas have smaller reporting units to account for 

their higher populations.  

Comparison between county and census tract is implemented by evaluating how median 

household income is reflected within specified thresholds of the county median income, 

classifying values outside of these threshold values as outliers (Table 2 and Figure 9). Red dots 

in Figure 9 reflect census tracts that have values ≥ 125% of their county’s median value, 

indicating areas that exceed county median incomes (similar to Figure 8). Blue dots indicate 

those census tracts that have a value ≤ 75% of their county’s median value, denoting less wealthy 

areas that may be susceptible to poverty. Green dots show which census tracts are within ± 25% 

of their county’s median value. Figures 9 and 10 reveal that median household income is not 

spread equally across a county and is specific to census tracts within those counties.  

Figure 9 reports the variability by census tract and county graphically and reveals that 

Arizona possesses some very wealthy census tracts in some counties as well as some very poor 

census tracts. Furthermore, by examining the graph it is evident that some of these extremes are 

found within the same county, e.g. Maricopa County (Figure 10b). 
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Figure 9. Median household income by census tract within each county. 

 

Figure 10a visually demonstrates the geographic structure of the variability found using 

the state’s census tracts as the reporting units. The greater Metro areas are also shown at a larger 

scale to reveal the census tract variability within these zones (Figures 10b and 10c).  

Figure 10b shows part of Maricopa County’s variability in and near the greater Phoenix 

metro region. The large zones that are the poorer areas of the county are the furthest from the 

greater metropolitan area. Pima County demonstrates the highest variability within the state 

(Table 2 shows 61.6% of the census tracts classified as outliers). This county demonstrates a 

high amount of variability and a segregation of economic classes at the census tract level where 

the greater Tucson metro area shows distinct groupings of low, middle and high economic 

classes (Figure 10c). Again however, as with Maricopa County, the census tracts that 

demonstrate the highest incomes are in or near to the greater Metro area with distant census 

tracts almost all colored blue
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Figure 10. Median Household Income for each Arizona Census Tract (a) and the Phoenix Metro (b) and Tucson Metro areas (c). 

 

(a) (b) 

(c) 
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Santa Cruz County, a relatively sparsely populated county (population of 38,381), shows 

people of wealth near to neighboring Pima County’s Tucson Metro area. The census tracts that 

show the highest median household incomes also fall around the major transportation corridor 

(not shown) from Tucson to Mexico. The higher incomes are also likely representative of the 

regions other historic industry, mining. Cochise County, (population 117,755), bordering Santa 

Cruz County also shows considerable variability (42.9% of the census tracts classified as 

outliers, Table 2). The wealthiest areas, however, are located near the transportation corridor, 

which provides economic opportunity. The remaining parts of the county reflect largely average 

median household incomes, with remote zones being the least wealthy.  

Apache, Navajo, and Coconino Counties (with populations of 69,432, 97,470, and 

116,320, respectively) have the largest geographic areas dedicated as Native American 

Reservation Areas (AIRs) and percentages of census tracts classified as outliers ranging from 

39.1% (Navajo) to 46.4% (Coconino). These counties are diverse, largely rural with few resource 

centers, and economically affected by unique challenges not found in other parts of the state.  

Yavapai County has a relatively high population (167,517) with few census tracts 

classified as outliers (15.4%). The wealthiest census tracts are located near the primary resource 

community, Prescott, providing infrastructure and services. The least wealthy fall between 

Prescott and AIRs.  

4.1.3. Census Block Group Level 

Median household income was also examined at the census block group level. Census block 

groups classified as outliers are significant when comparing census tract to census block group 

because of the increase in spatial units at census block group level going from 1,108 census 
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tracts and partitioning those locales into 3,570 “neighborhoods” as represented by census block 

groups.  

Group I consists of Maricopa and Pima Counties, respectively (Figures 11-12). Maricopa 

County contains most of the Phoenix Metro area and is the highest populated region in the state. 

Pima County encompasses the Tucson Metro area, and although considerably smaller than 

Phoenix Metro, is the second largest metropolitan area in Arizona.  

Scatterplots vary from one another as the number of census tracts and corresponding 

census block groups differ based on county population (Figures 11-14). The scatterplots show 

census block groups classified as outliers around the median census tract values. Maricopa 

County (Figure 11) contains 663 census tracts and 2,113 census block groups, whereas Pima 

County (Figure 12) contains 198 census tracts and 617 census block groups.  

Census block groups classified as outliers exceed 24% in both Maricopa and Pima 

Counties. Figure 11 shows numerous outliers ≥ 125% of the corresponding census tract value, 

indicating specific census block groups of wealth, as well as some census block groups with 

income ≤ 75 % of the corresponding census tract values, indicating relatively impoverished 

areas. The two Metro areas differ as Pima County and the greater Tucson Metro area do not 

demonstrate the same extremes of Median Household Income evident in Maricopa County and 

the greater Phoenix Metro area, by both census tract and census block group (Figures 11 and 12).
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Figure 11. Group I, census block group Median Household Income by  

census tracts 1-333 (a) and census tracts 334-663 (b) in Maricopa County. 
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Figure 12. Group I (Continued), census block group median household income by census tract in Pima County. 
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Group II includes the seven Arizona counties with medium sized populations and 

between 21 and 33 census tracts. These seven counties, in order of highest to lowest populated 

county, are Pinal, Yavapai, Yuma, Mohave, Cochise, Coconino, and Navajo Counties 

respectively (Figures 13a-d and 14e-g). Each of the counties in this grouping have several census 

block groups with incomes exceeding ≥ 125% of the corresponding census tract. Pinal, Yavapai, 

Yuma, and Coconino Counties include census block groups with zero values which indicate 

census block groups which lacked sufficient resident reporting income data (Figures 13a-c and 

14f).  

Four of the seven counties reported outlier census block groups over the state average of 

24.8%. Those counties were Coconino (34%), Pinal (31%), Navajo (29.7%), and Cochise 

Counties (27.8%). The remaining three counties that fell under the state average were Yuma 

(24.5%), Yavapai (18.6%), and Mohave (16.8%) Counties (Table 3).  

Coconino County, the county that had the largest number of outliers, also had the highest 

outlier census block group median household income, with two outlier census block groups 

reporting > $80,000 (Figure 14f). Mohave County, the county with the smallest number of 

outlier census block groups, had the lowest census block group median household income within 

Group II with no outlier census block groups reporting > $50,000 (Figure 13d).  
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Figure 13. Group II, census block group Median Household Income by census tract for: (a) Pinal; (b) Yavapai; (c) Yuma; (d) Mohave 

Counties. 
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Figure 14. Group II (Continued), census block group Median Household Income by census tract for: (e) Cochise; and (f) Coconino; 

and (g) Navajo Counties. 
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Group III includes the counties with the smallest populations, (< 70,000) which contain 

between three and 15 census tracts. All counties in this grouping have at minimum one census 

block group that exceeds the  ≥ 125% threshold; however, Greenlee County (Figure 14f) does 

not have any census blocks groups ≤ 75% of the corresponding census tract median value. None 

of the Group III census block groups exceed $60,000 annual median household income.  

There is lesser amount of variability when census block groups are used in place of 

census tracts (Table 3) than exists between census tracts and county median values (Table 2). 

The largest numbers of census block groups classified as outliers occurred in Apache (46.3%), 

Coconino (34%), and Santa Cruz (65%) counties. Greenlee (12.5%), La Paz (17.4%), and 

Mohave (16.8%) counties had the least number of outliers. The two counties containing 

Arizona’s metro areas, Maricopa and Pima, are the closest to the State’s average.  

Table 3. Counts and percentages of census block groups with median household incomes ≤ 75% 

and ≥ 125% of census tract values. 

County Population No. of census 

block groups 

No. of census 

block groups 

with MHI 

Nos. and % of outlier 

census block groups * 

Apache 69,423 54 54 11 + 14 = 46.3 

Cochise  117,755 72 72 10 + 10 = 27.8 

Coconino  116,320 106 104 18 + 18 = 34 

Gila 51,335 55 55 7 + 4 = 20 

Graham  33,489 27 27 2 + 3 = 18.5 

Greenlee  8,547 8 8 1 + 0 = 12.5 

La Paz  19,715 23 22 2 + 2 = 17.4 

Maricopa  3,072,149 2,113 2,088 301 + 206 = 24 

Mohave  155,032 101 101 8 + 9 = 16.8 

Navajo  97,470 74 74 13 + 9 = 29.7 

Pima  843,746 617 617 93 + 56 = 24.1 

Pinal  179,727 116 111 15 + 21 = 31 

Santa Cruz  38,381 20 20 7 + 6 = 65 

Yavapai 167,517 86 85 10 + 6 = 18.6 

Yuma  160,026 98 97 14 + 10 = 24.5 

Totals 5,130,632 3,570 3,535 512 + 374 = 24.8 

 

* No. of census block groups with MHI <75%, >125%, and the sum of the two classes of outliers 

as a percentage of total. 
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Figure 15. Group III, census block group median household income by census tracts for (a) Apache, (b) Gila, (c) Santa Cruz, (d) 

Graham, (e) La Paz, and (f) Greenlee Counties in Arizona.
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The scatterplots show how median household income was distributed throughout counties 

in 2000 using census tracts and census block groups as the geographic reporting unit. When 

census block groups are used in place of census tracts, the trends discovered often change, as 

seen in Figures 16-19. The color scheme remains the same throughout where red depicts census 

block groups with ≥ 125% above the Median Household Income in the corresponding census 

tracts, green indicates census block groups with Median Household Income values within ± 25% 

of the corresponding value and blue represents census block groups with Median Household 

Income values that are ≤ 75% of census tract value.  

The two counties in Group I with the highest populations in Arizona are displayed in 

Figures 16 and 17. The counties are depicted at a scale of 1: 2,000,000 for the county maps and 

the Metro areas are depicted at a scale of 1:700,000 in the Metro area inset maps. As 

neighborhoods become smaller using census block groups as the reporting unit, the Median 

Household Income estimates display patterns that were indiscernible at the county and census 

tract levels.  

The Maricopa County maps reproduced in Figure 16 show how the Median Household 

Income would be over-and/or under-estimated depending on how a neighborhood is defined. 

When median household income is examined at the census block group level and compared to 

the corresponding census tract estimate, the census block group estimates tend to display patterns 

of wealth and poverty dispersed throughout the greater Metro area and surrounding rural areas.  

The Pima County maps reproduced in Figure 16 also show differences resulting from 

how Median Household Income is reported. Figure 16a depicts low income census tracts in the 

south-central part of the Tucson Metro area and high-income areas to the west, north, and east, 

which cover more than 50% of the Metro area. Figure 16b shows how those distributions are 
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representative of specific census block groups and not the standard across large portions of the 

greater Tucson Metro area. 

Group II is represented in Figure 18 by Coconino and Pinal counties. At the census tract 

level, Coconino County shows a small central area of higher Median Household Income, a 

pronounced area of low income to the east, and large areas falling near the county mean (Figure 

18a). The map which shows Median Household Income by census block group on the other hand 

reveals a dissimilar, varied and dispersed pattern throughout the county (Figure 18b). 

The Pinal County maps reproduced in Figures 18c and 18d show different locations of 

high and low incomes using census tracts and census block groups as reporting units 

notwithstanding the presence of mid-range values covering much of this county.  

Group III (Figure 19) is represented by Apache and Santa Cruz counties. Apache County 

contains census tracts classified as outliers at the north and southern ends of the county (Figure 

19a) but the substitution of census block groups for census tracts reveals a diverse pattern of 

Median Household Income values dispersed throughout the county (Figure 19b).  

Santa Cruz County reveals similar trends (Figures 19c and d). At the census tract level 

Median Household Income is split regionally (Figure 19c). High income census tracts are found 

in the northern and eastern portions of the county, with a large mid-range area in the southwest 

and one small area of low income values within the midrange in the southcentral part of the 

county. Figure 19d once again shows that using Census Block Groups as the reporting unit 

produces a more varied and dispersed pattern of Median Household Income across the county 

and/or individual census tracts. 
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Figure 16. Group I, Median Household Income in Maricopa County by: (a) census tract; and (b) census block group. Both pairs of 

maps show the entire county on the top with the greater Phoenix Metro highlighted and shown at a larger scale on the bottom. 
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Figure 17. Group I (Continued), Median Household Income in Pima County by: (a) census tract; and (b) census block group. Both 

pairs of maps show the entire county on the top with the greater Tucson Metro highlighted and shown at a larger scale on the bottom.
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Figure 18. Group II, Median Household Income in: (a) Coconino County by census tract; (b) 

Coconino County by census block group; (c) Pinal County by census tract; and (d) Pinal County 

by census block group. 
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Figure 19. Group III, Median Household Income in: (a) Apache County by census tract; (b) 

Apache County by census block group; (c) Santa Cruz County by census tract; and (d) Santa 

Cruz County by census block group. 
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 Children and the Elderly 

The children (< 16 years old) and elderly (≥ 65 years old) represent the more vulnerable 

population given that this group often requires more public services than the non-vulnerable 

population, such as school, medical, and transportation. For the purposes of this study, 

vulnerability is conveyed by percent.  

4.2.1. County Level 

The size of the vulnerable populations by county is shown in Figure 20. The counties with the 

highest percentages of children and the elderly are predominantly rural and with one exception, 

cover the northern two-thirds of Arizona. The three counties that display the lowest vulnerability 

are dispersed and six of the eight counties that comprise the southern third of the state have 

similar percentages of children and elderly to the State of Arizona as a whole (Table 4).  

 

Figure 20. Vulnerability represented by the percentages of children and the elderly by county in 

the State of Arizona.
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4.2.2. Census Tract Level 

The percentages of children and the elderly by census tract are displayed in Figure 21 for the 

whole state as well as the Phoenix and Tucson Metro areas, respectively. The maps provide a 

stark contrast to the regional values displayed at the county level in Figure 20. As Figure 22 

demonstrates, there are many census tracts with estimates < 75% (depicted in blue) or ≥ 125% 

(depicted in red) of the values at the county level. The most conspicuous outlier was a Census 

Tract in which all of the residents were 65 years or older, notwithstanding the county (Coconino) 

was one of the least vulnerable counties in Arizona.  

Table 4 shows there were fewer census tracts classified as outliers when evaluating 

Vulnerability in place of Median Household Income in most of Arizona’s counties as well as the 

state as a whole.  

Table 4. Counts and percentages of census tract Vulnerability ≤ 75% and ≥ 125% of county 

median values. 

County Population No. of census 

tracts 

No. of census 

tracts with 

Vulnerability 

Nos. and % of outlier census 

tracts * 

Apache 69,423 14 14  0 + 2 = 14.3 

Cochise  117,755 21 21  1 + 1 = 9.5 

Coconino  116,320 28 27  6 + 7 = 46.4 

Gila 51,335 15 15  0 + 2 = 13.3 

Graham  33,489 8 8  1 + 2 = 37.5 

Greenlee  8,547 3 3  0,0 

La Paz  19,715 6 6  1 + 3 = 66.7 

Maricopa  3,072,149 663 658  57 + 138 = 29.4 

Mohave  155,032 30 30  0 + 1 = 3.3 

Navajo  97,470 23 23  0 +1 = 4.3 

Pima  843,746 198 198  18 + 52 = 35.4 

Pinal  179,727 33 31  2 + 7 = 27.3 

Santa Cruz  38,381 7 7  0,0 

Yavapai 167,517 26 24  0 + 3 = 11.5 

Yuma  160,026 33 33  4 + 15 = 57.6 

Totals 5,130,632 1,108 1,098 90 + 234 = 29.2 

* No. of census tracts with Vulnerability <75%, >125%, and the sum of the two classes of 

outliers as a percentage of total. 
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Figure 21. Maps showing the percentages of children and the elderly for 

each Arizona census tract (a) and the Phoenix Metro (b) and Tucson Metro (c) areas.

(a) (b) 

(c)  



 

64 

 

Table 2 shows how 52.2% of the census tracts were classified as outliers for Median Household 

Income, whereas just 29.2% of the census tracts were classified as outliers for percentages of 

children and the elderly (Table 4).  

 

Figure 22. Arizona census tract estimates within each county for the percentages of children  

(≤ 16 years) and the elderly (≥ 65 years). 

 

4.2.3. Census Block Group Level 

When Census Block Group was used as the geographic reporting unit, in place of Census Tract, 

the pattern continued to change. Figures 23-27 show the census block groups classified as 

outliers around the census tract values. The distributions of high and low estimates around 

census tract values display which counties contained varying numbers of children and the elderly 

over short distances. Coconino County included several census block groups in a single census 

tract with all residents > 65 years as expected (Figure 26f).  
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The metrics summarized in Table 5 show that the outliers increased when using census 

block groups in place of census tracts, as compared to the pattern with county and census tract 

values. Table 5 reports that 45.1% of the census block groups were classified as outliers, 

compared to the 29.2% of the census tracts reported in Table 4.  

Seven of the counties exceeded the State average of 45.1%: Maricopa (45.9%) and Pima 

(52.7%) in Group I, and La Paz (56.6%), Pinal (68.1%), Graham (70.4%), Yuma (78.6%), and 

Santa Cruz (85%) in Groups II and III. Table 5 also denotes the sparse population of Greenlee 

County in Group III and how it had no census block groups classified as outliers. 

Figures 28-31 demonstrate how census tract and census block group outliers for 

Vulnerability are dispersed across the 15 counties and the State of Arizona as a whole. 

Depending on the geographic reporting unit examined, differing patterns of vulnerability emerge. 

When the counties in Group I are visualized at the census tract level, large census tracts 

classified as outliers (≥125%) are found at some distance away from the Metro areas (Figures 

28a and 29a). When the reporting unit becomes smaller, at the census block group level, patterns 

showing areas with high percentages of children and elderly are seen within the Metro areas 

(Figures 28b and 29b).  

Group II and Group III shows counties that are largely rural with distinct patterns of 

vulnerability that reflect proximity to economic centers in both census tracts and census block 

groups (Figures 30a-d and 31a-d).
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Figure 23. Group I: Census block group Vulnerable Population by census tracts 1-333 (a) and census tracts 334-663 (b) in Maricopa 

County. 
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Figure 24. Group I (Continued): Census block group vulnerable population by census tract in Pima County.
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Figure 25. Group II: Census block group vulnerable population by census tract for: (a) Pinal; (b) Yavapai; (c) Yuma; (d) Mohave.  
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Figure 26. Group II (Continued): Census block group vulnerable population by census tract for: (e) Cochise; (f) Coconino; and (g) 

Navajo counties. 
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Figure 27. Group III: Census block group Vulnerable Population by census tracts for: (a) Apache; (b) Gila; (c) Santa Cruz; (d) 

Graham; (e) La Paz; and (f) Greenlee Counties.
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Table 5. Counts and percentages of census block group Vulnerability that are ≤ 75% and ≥ 

125% of the corresponding census tract values. 

County Population No. of census 

block groups 

No. of census 

block groups with 

Vulnerability 

Nos. and % of outlier 

census block groups * 

Apache 69,423 54 54 2 + 0 = 3.7 

Cochise  117,755 72 72 23 + 2 = 34.7 

Coconino  116,320 106 106 21 + 5 = 24.5 

Gila 51,335 55 55 20 + 0 = 36.4 

Graham  33,489 27 27 16 + 3 = 70.4 

Greenlee  8,547 8 8 0, 0 

La Paz  19,715 23 22 12 + 1 = 56.5 

Maricopa  3,072,149 2,113 1,102 901 + 69 = 45.9 

Mohave  155,032 101 101 18 + 0 = 17.8 

Navajo  97,470 74 74 8 + 2 = 13.5 

Pima  843,746 617 617 311 + 14 = 52.7 

Pinal  179,727 116 113 71 + 8 = 68.1 

Santa Cruz  38,381 20 20 17 + 0 = 85.0 

Yavapai 167,517 86 85 7 + 2 = 3.7 

Yuma  160,026 98 98 76 + 1 = 34.7 

Totals 5,130,632 3,570 2,554 1,503 + 107 = 45.1 

* No. of census block groups with Vulnerability <75%, >125%, and the sum of the two classes 

of outliers as a percentage of total. 
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Figure 28. Group I, Percent Vulnerable Population in Maricopa County by: (a) census tract; and (b) census block group. Both pairs of 

maps show the entire county on the top with the greater Phoenix Metro area highlighted and shown at a larger scale on the bottom. 
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Figure 29. Group I (continued), Percent Vulnerable Population in Pima County by: (a) census tract; and (b) census block group. Both 

pairs of maps show the entire county on the top with the greater Tucson Metro area highlighted and shown at a larger scale on the 

bottom. 
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Figure 30. Group II, Percent Vulnerable Population in (a) Coconino County by census tract; (b) 

Coconino county by census block group; (c) Pinal County by census tract; (d) Pinal County by 

census block group. 
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Figure 31. Group III, Percent Vulnerable Population in: (a) Apache County by census tract; (b) 

Apache County by census block group; (c) Santa Cruz County by census tract; and (b) Santa 

Cruz County by census block group.  
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 Native American Population 

Ethnicity is also a commonly studied health determinant as it is indicative of specific needs 

within certain populations and/or spatial zones. The overall Native American population in 

Arizona is relatively small yet significant, evident by the presence of 22 Federally recognized 

AIRs that cover a large proportion of the State, as well as the strong cultural identity that their 

presence represents in terms of Arizona’s history and heritage.  

4.3.1. County Level 

Figure 32 displays the county distribution of the State’s Native American population by 

percentage. The two counties in red, denoting the counties with the highest Native American 

populations, are counties where approximately half of their total area is AIRs. The counties in 

blue and green also contain AIRs, however, apart from Pima County, the reservations tend to be 

smaller in physical area and are more dispersed throughout these counties. 

 

Figure 32. Native American Population by percent for each Arizona county. 
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4.3.2. Census Tract Level 

The scatterplot in Figure 33 shows Native American census tract populations compared to 

county population values. Census tracts are colored to highlight census tracts classified as 

outliers (where < 75% of census tracts classified as outliers are depicted in blue, > 125% of 

census tracts classified as outliers are depicted in red, and ± 25% of census tracts classified as 

outliers are depicted in green) and show that numerous census tracts in multiple counties across 

the state have Native American population of 50% or more. Eight of the 15 counties have one or 

more census tracts with Native American census tract populations at or near 100%. 

Figure 34 shows the census tract Native American population distribution relative to 

county values across Arizona. When the spatial reporting unit is decreased from county to census 

tract, large numbers of census tracts and therefore areas are classified as outliers. The numbers in 

Table 6 confirm this result, showing that 50% or more of the census tracts in every county were 

classified as outliers and 75% or more of the census tracts in 11 of 15 counties were classified as 

outliers (i.e. with substantially smaller or larger Native American populations, than the 

appropriate county as a whole).  

 

Figure 33. Arizona Census Tract estimates within each county for Native American population 

by percentage. 
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Figure 34. Native American Population by Percentage for each Arizona census tract (a) with separate maps showing the Phoenix 

Metro (b), and Tucson Metro (c) areas.

(a) (b) 

(c) 
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Table 6. Counts and percentages of census tract Native American Population by percentage 

examining outliers ≤ 75% and ≥ 125% of county median values. 

County Population No. of census 

tracts 

No. of census tracts with 

Native American 

population 

Nos. and % of 

outlier  

census tracts * 

Apache 69,423 14 14 3 + 4 = 50.0 

Cochise  117,755 21 21 3 + 11 = 66.7 

Coconino  116,320 28 27 5 + 22 = 96.4 

Gila 51,335 15 15 2 + 13 = 100.0 

Graham  33,489 8 8 1 + 7 = 100.0 

Greenlee  8,547 3 3 0 + 2 = 66.7 

La Paz  19,715 6 6 2 + 4 = 100.0 

Maricopa  3,072,149 663 656 71 + 476 = 82.5 

Mohave  155,032 30 30 2 + 25 = 90.0 

Navajo  97,470 23 23 11 + 12 = 100.0 

Pima  843,746 198 198 10 + 170 = 90.9 

Pinal  179,727 33 31 4 + 28 = 97.0 

Santa Cruz  38,381 7 7 0 + 5 = 71.4 

Yavapai 167,517 26 25 4 + 18 = 84.6 

Yuma  160,026 33 32 2 + 23 = 75.8 

Totals  5,130,632 1,108 1,096 120 + 820 = 84.8 

* No. of census tracts with Native American Population by % < 75%, > 125%, and the sum  

of the two classes of outliers as a percentage of total. 

4.3.3. Census Block Group Level 

The scatterplots in Figures 35-39 show the Native American census block group population 

percentages relative to the corresponding census tract values, with colors showing the same 

outlier groupings as earlier. The scatterplots show how the distribution of the Native American 

population numbers vary across the state when different spatial reporting units are chosen. 

The scatterplots for Group I (Figures 35 and 36) show that although these counties are the 

two highest populated counties in the State, only three census tracts in Maricopa County had 

Native American populations of > 25%. Table 6, however, indicates that that the number of 

census block groups classified as outliers were relatively high in both Maricopa (69.1%) and 

Pima (63%) counties.  
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Figure 35. Group I: Census block group percentage Native American population by census tract for Maricopa County: (a) census 

tracts 1-333; and (b) census tracts 334-663. 
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Figure 36. Group I (Continued): Census block group percentage Native American population by census tract in Pima County.
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The scatterplots in Figures 37, 38 and 39 show several of the counties with medium-sized 

and small populations have one or more census block groups with large Native American 

populations (see Figures 37a, 38f and g, and Figures 39a, b, and c for examples) and that the 

switch from census tracts to census block groups highlights numerous outliers, or census block 

groups with relatively high or low Native American populations relative to the corresponding 

census tract estimates. 

The three counties with the most census block groups classified as outliers were La Paz 

(73.9%), Gila (74.5%), and Graham (81.5%) and those with the lowest number of census block 

groups classified as outliers were Apache (14.8%), Navajo (36.5%), and Greenlee (50.0%). All 

but Navajo County are in Group III, the group with the smallest populations across the State. 

Navajo County is the least populated county in Group II. 

Table 7 indicates that there were fewer outliers going from census tract to census block 

group (65.9%) than there was going from county to census tract (84.8%) (Table 6) for this 

variable. The total number of census block groups classified as outliers is still substantial 

compared to the first two variables examined when switching the geographic unit from census 

tract to census block group: Median Household Income, Table 3 (24.8%) and Vulnerability, 

Table 5 (45.1%).  

The maps in Figures 40-43 visually demonstrate the outliers when switching the 

geographic reporting units from census tract to census block group and how the patterns vary by 

county, population, and AIRs. The Group I counties, Figures 40 and 41, exhibit an increase in 

variability at the census block group level and the inset maps show that the outliers are especially 

evident in the metropolitan areas in both counties. The Group II counties, Figure 42, demonstrate 

similar patterns switching from census tract to census block group.  



 

83 

 

 

             

 

Figure 37. Group II: Census block group percentage Native American Population compared to census tract percentage Native 

American Population for: (a) Pinal; (b) Yavapai; (c) Yuma; (d) Mohave. 
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Figure 38. Group II (Continued): Census block group percentage Native American Population compared to census tract percentage 

Native American Population for: (e) Cochise; (f) Coconino; and (g) Navajo counties. 
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Figure 39. Group III: Census block group Native American population by percentage compared to census tract Native American 

population by percentage for: (a) Apache; (b) Gila; (c) Santa Cruz; (d) Graham; (e) La Paz; and (f) Greenlee Counties. 

 

 



 

86 

 

The Group III counties in Figures 43, visually demonstrate the modest numbers of census block 

groups classified as outliers compared to the more populated counties. 

At the census tract level, there is little diversity within reporting zones, as seen in Figures 

40-43, and there are sizable percentages of census tracts classified as outliers (Table 6). As the 

reporting unit becomes smaller, variability becomes evident, especially in and around AIRS, 

throughout Metro areas and economic centers. 

Table 7. Counts and percentages of census block group Native American population by % ≤ 

75% and ≥ 125% of census tract values. 

County Population No. of census 

block groups 

No. of census block 

groups with Native 

American population 

Nos. and % of 

outlier census block 

groups * 

Apache 69,423 54 54 3 + 5 = 14.8 

Cochise  117,755 72 71 17 + 33 = 69.4 

Coconino  116,320 106 102 25 + 41 = 62.3 

Gila 51,335 55 51 19 + 22 = 74.5 

Graham  33,489 27 26 9 + 13 = 81.5 

Greenlee  8,547 8 8 2 + 2 = 50.0 

La Paz  19,715 23 22 8 + 9 = 73.9 

Maricopa  3,072,149 2,113 1,915 594 + 867 = 69.1 

Mohave  155,032 101 100 16 + 43 = 58.4 

Navajo  97,470 74 74 15 + 12 = 36.5 

Pima  843,746 617 578 140 + 249 = 63.0 

Pinal  179,727 116 104 27 + 49 = 65.5 

Santa Cruz  38,381 20 15 1 + 10 = 55.0 

Yavapai 167,517 86 83 19 + 34 = 61.6 

Yuma  160,026 98 92 23 + 45 = 69.4 

Totals 5,130,632 3,570 3,295 918 + 1,434 = 65.9 

* No. of census block groups with Native American population <75%, >125% of the 

corresponding census tract value, and the sum of the two classes of outliers as a percentage of 

total. 
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Figure 40. Group I, Percent Native American in Maricopa County by: (a) census tract; and (b) census block group. Both pairs show 

the entire county on the top with the greater Phoenix Metro highlighted and shown at a larger scale on the bottom. 



 

88 

 

 

 

Figure 41. Group I (Continued), percent Native American in Pima County by: (a) census tract; and (b) census block group. Both pairs 

of maps show the entire county on the top with the greater Tucson Metro highlighted and shown at a larger scale on the bottom.
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Figure 42. Group II, Percent Native American population in: (a) Coconino County by census 

tract; (b) Coconino County by census block group; (c) Pinal County by census tract; and (d) 

Pinal County by census block group. 
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Figure 43. Group III: Percent Native American population in: (a) Apache County by census 

tract; (b) Apache County by census block group; (c) Santa Cruz County by census tract; and (d) 

Santa Cruz County by census block group.
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Chapter 5 : Discussion and Conclusions 

County, Census Tract, and Census Block Group estimates were compared for three commonly 

used social determinants of health. County estimates are often used by researchers and officials 

to broadly describe population health. This study tested the efficacy of this supposition.  

The findings show that county areas, whether small or large in geographic extent and 

with rural and/or metropolitan populations, provide very generalized population descriptions and 

as such subject the resulting assumptions and/or the statistical interpretations to both MAUP 

affects and ecological fallacy. Rurality, often identified by geographic population density, can 

also be denoted by perception-based attributes such as regional lifestyle choices, and also 

cultural factors. Geographic areas considered rural within Maricopa and Pima Counties may not 

experience the geographic isolation found in some of the low population density counties such as 

those in Groups II and III; however, the residents may still experience limited infrastructure and 

are equally subject to ecological bias introduced by aggregation issues. Rurality is therefore 

found to affect resulting research outcomes in the gamut of rural settings as inconsistencies in 

neighborhood definition subject data to potential misreporting error.  

When social determinants of health are examined at the census tract and census block 

group levels, nuances within larger geographic areas of the county begin to appear. Depending 

on the social determinant of health under examination and the geographic reporting unit used, 

this variability can sometimes be considerable. This variability occurs regardless of what data 

compilation method is utilized and proved present in the 2000 Decennial Census, as 

demonstrated in Chapter 4, and the 2010-2015 ACS data, as demonstrated in Table 8 below. 

 The total number of geographic reporting units changed between the 2000 Decennial 

Census and the 2010-2015 ACS creating not only potential MAUP effects but also congruency 
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issues. Table 8 compares data between the two reporting’s for three counties, one from each of 

the aforementioned groupings: Maricopa (Group I); Coconino (Group II); and Apache (Group 

III) Counties. Census block groups classified as outliers increased in two-thirds of the 

comparisons with the most significant change being in Maricopa County where the Median 

Household Income estimates increased from 24% in the 2000 Decennial Census to 63.6% in the 

2010-2015 ACS.  

The 2000 Decennial Census was used for this project; however, temporal issues have 

consequences as this static portrait of population means that the estimates that were derived are 

somewhat dated. Nonetheless, the ability to use this Census reporting was extremely beneficial 

in being able to conduct the spatial unit investigations and comparisons to evaluate if population 

reporting techniques might affect research outcomes.  

 

Table 8. Specific county variability comparisons at Census Block Group Level between 

decennial census data and ACS data. 

 

(a) 2000 Decennial Census 
County No. of census 

block groups 
Median Household 
Income - Estimates 
<75% or ≥125% of 
census tract values 

Vulnerability 
comparison - Estimates 
<75% or ≥125% of 
census tract values 

Native American 
Population - Estimates 
<75% or ≥125% of 
census tract values 

Apache 54 46.3 3.7 14.8 

Coconino 106 34 24.5 62.3 

Maricopa 2,113 24 45.9 69.1 

 

(b) 2010-2015 ACS 

 

 

County No. of census 
block groups 

Median Household 
Income -  Estimates 
<75% or ≥125% of 
census tract values 

Vulnerability 
comparison - Estimates 
<75% or ≥125% of 
census tract values 

Native American 
Population - Estimates 
<75% or ≥125% of 
census tract values 

Apache 55 27.3 7.3 18.2 

Coconino 98 46.9 32.7 62.2 

Maricopa 2,505 63.6 19.5 85.3 
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The thesis project used three separate means of visualizing variability across the spatial 

units studied. Each method built on the other; however, all contributed to the variability 

assessment in the following ways. 

Threshold values were used to identify the places where the social determinant of health 

estimates varied by ≥ 25% from the previous estimate at the next highest level of aggregation 

(i.e. county for census tract and census tract for census block group). This means of visualizing 

areas with little or no change (green ± 25% of median values) and ≥ 25% change (blue 

represented as median values classified as outliers < 75% and red represented as median values 

classified as outliers > 125%) across different geographic reporting units were used on all maps 

and scatterplots to unlock spatial patterns that might otherwise not be apparent. The choice of 

this approach was used to highlight the sensitivity of the social determinants of health estimates 

to the choice of geographic reporting units across the State of Arizona.  

The scatterplots graphs were essential for analyzing the actual values behind the map 

visualizations. The scatterplots provided intricate insights as to how many spatial units fell inside 

or outside the previously noted thresholds. The color coding of spatial units per threshold bracket 

helped as a visual aid to assess the range of variability documented within this thesis. The 

scatterplots along with the maps revealed the true variability present within Arizona and 

provided story lines that might otherwise not have been evident when looking at a table of values 

or a map by itself. 

The maps, on the other hand, provide intricate insights into the locations across the state 

where the choice of geographic reporting unit fell inside or outside the previously noted 

thresholds. This information is helpful in showing these parts of the state where social 
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determinants of health vary over short distances as well as places where similar characteristics 

cover large areas.  

This study has demonstrated that in general, the variability in social determinants of 

health increased as the number of spatial units increased. As spatial units were examined at 

differing sizes, and units over a given area were increased by spatial partitioning, the percentages 

of census units classified as outliers outside of a median value range also changed as indicated in 

the summary tables (Tables 2 - 8) throughout Chapters 4 and 5. This finding suggests that the 

null hypothesis should not be accepted since the results showed that social determinants of health 

estimates changed and affected research results as smaller (census tracts) and smaller (census 

block groups) geographic reporting units were used in place of counties.  

This thesis therefore sets a basis for future work to continue in the exploration of how 

choice of neighborhood effects research outcomes in health studies. Further investigation into 

neighborhood effects might include study into what social determinants of health are the most 

likely to show the greatest variability across geographic reporting units such as those across 

Native American Indian Areas. Additionally, of interest is if and how the independent social 

determinant of health variables as selected for this thesis, might be connected and if there is any 

overlap of spatial patterning within areas classified as outliers.  

Future work might also use this project as a basis to explore how proximity buffers are 

affected by the choice of geographic reporting units for acquisition of census data. Specifically, 

how those buffers might report what population has potential exposure to a pollution source, e.g. 

a target population within a certain distance to a major roadway or gas and oil well. 

Environmental exposure assessments are frequently dependent on proximity factors which are 

directly influenced by choice of neighborhood making further investigation on how 
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neighborhood is defined for health research of vital importance for health researchers and 

professionals. 
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