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Abstract 

Lyme disease is the most common vector borne disease in the United States. The incidence rate 

of Lyme disease has been on the rise since it was defined in 1977. From 2000 to 2016, there 

were over 18,000 cases of Lyme disease diagnosed each year. Of all the confirmed cases of 

Lyme disease in the United States, 95% occur in the Northeastern and Midwestern states. Lyme 

disease is contracted by a bite from an infected tick, Ixodes scapularis. This research aimed to 

find the hot spots of Lyme disease and the environmental risk factors, determine the counties that 

are hot spots in the Lyme disease rate and climate variables maps, and to create a model to test 

the influence of the variables. Past studies of Lyme disease created risk maps that centered on 

regression analysis. This study goes a step further to include trend analysis of Lyme disease and 

the environmental factors while considering spatial and temporal factors. 

  This study investigated the spatiotemporal trend of the Lyme disease spread rate and 

environmental factors using hot spot analyses and local Moran’s I. A space time cube of these 

factors was generated and emerging hotspots over 16 years of time period (2000 – 2015) were 

analyzed. The hot spots were used to identify the correlations of Lyme disease and climate 

factors. An ordinary least square regression was used to evaluate the relationships between Lyme 

disease and the environmental risk factors to create an inferential model of Lyme disease. Spatial 

and temporal environmental risk factors included were precipitation, minimum, mean, and 

maximum temperature, latitude, longitude, percent forest cover, and year. The variables found to 

be most significant were year, longitude, latitude, and mean temperature, and explained 14.4% 

variance of Lyme disease rate in the study area. The significant spatiotemporal environmental 

factors identified provide researchers and public health officials with updated key factors, and 

can be used to educate the general public on high-risk areas in the northeastern United States. 
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Chapter 1 Introduction 

In the United States, there have been over 480,000 confirmed cases of Lyme disease between 

2000 and 2016. This approximates to 28,000 cases each year from 2000- 2016. As the top 6th 

Nationally Notifiable Disease ranked by Central for Disease Control and Prevention (CDC) in 

2015, Lyme disease is currently the most reported vector borne disease in the United States 

(CDC 2017b). The incidence of Lyme disease is increasing. While there have been some links 

between disease hosts (e.g. Ixodes scapularis) and environmental factors, the cause of this 

incidence increase is still unknown. In order to tackle this public health issue, this project aims to 

understand the spatiotemporal relationships between the Lyme disease incidence and the 

environmental risk factors.  

1.1. Background  

 To identify the causes of the increased case numbers cases of Lyme disease, it is 

essential to understand the history and background of Lyme disease. The definition of Lyme 

disease has changed over the years, and the reporting practices have also spread and changed 

over time. While these might have directly affected the number of the cases being reported 

(Kitron and Kazmierczak 1997), the rise in Lyme disease cases is likely more than these 

reporting inconsistencies. By understanding Lyme disease’s history and host cycles, causes of 

the disease case increase can be established.  

1.1.1. History of Lyme Disease  

The first medical description of Lyme disease in the United States was not recorded until 

1977 by Steere et al. (1977). Because it was initially described in a study conducted in Old 

Lyme, Connecticut, the town was used for naming the disease. Steere et al. (1977) termed it 
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Lyme arthritis, as it was characterized by swelling and pain in joints. Prior to this, doctors had 

reported the primary symptom of Lyme disease as a case of erythema migrans, now defined as 

the initial skin rash at the site of the tick bite (Waller et al. 2007).  

While the official definition of Lyme disease has changed over the years, the list of 

symptoms resembles the original definition. The essential set of symptoms described by Steere et 

al. (1977) is the same as the classification from the CDC today (2017a, 2017c, n.d.a, n.d.b). 

These symptoms include erythema migrans, a skin rash at the site of the tick bite, recurrent cases 

of joint swelling and arthritis, lymphocytic meningitis, Bell’s palsy, headache, fatigue, heart 

palpitations, paresthesia, and a stiff neck. The Lyme disease symptoms in some cases are not 

serious and will fade in time. On the other hand, they can also result in hospitalization, especially 

with severe joint arthritis, and might return after a period of remission.  

In 1991, the CDC made Lyme disease a nationally notifiable disease. This means that 

cases are recorded and reported to health departments at the state and local levels for verification, 

and to document the location of outbreaks (CDC 2017b). As previously mentioned, the case 

definition provided by the CDC has changed over the years, which in turn allowed for 

reclassifying symptoms and for the addition of new symptoms. In this study, the CDC definitions 

from 1996 and 2008 were used in identifying the cases of Lyme disease throughout the study 

(CDC 2017a, n.d.b). The cases collected from 2000 to 2007 used the 1996 definition; the cases 

collected from 2008 to 2015 used the updated 2008 definition. 

1.1.2. Vectors of Lyme Disease 

In 1977, Steere et al. (1977) defined Lyme disease and articulated a set of symptoms. The 

exact cause of the disease at the time was unknown. It was thought the cause was an arthropod 
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vector rather than contaminated water. This initial evaluation paved the way for future studies 

and facilitated the discovery of the vector.  

In a progressive study in 1978, it was determined that ticks were correlated to the 

incidence of Lyme disease (Steere, Broderick, and Malawista 1978). By surveying residents in 

Connecticut, they found that multiple patients remembered having a tick bite at the site of the 

lesion, and one patient brought in the Ixodes scapularis (I. scapularis) tick for identification. 

Lyme disease is contracted most commonly from a bite from an I. scapularis tick infected with 

the spirochete Borrelia burgdorferi (B. burgdorferi) (Brownstein, Holford, and Fish 2003). This 

tick is prevalent in the eastern portion of the United States. Some studies, like Ciesielski et al. 

(1989), and Spielman (1994) note that there are other species in different geographic regions: I. 

pacificus is a more common vector in the western United States, and I. ricinus is a common 

vector in Europe. Except the known tick species being viable carriers of Lyme disease, there are 

no other known vectors of Lyme disease (Ciesielski et al. 1989).  

The most common tick studied is I. scapularis. For many years, I. dammini and I. 

scapularis were thought to be two separate species, due to slight differences in feeding and life 

cycles. However, additional investigations found the two species were slight evolutions of the 

same species and are now referred to as I. scapularis (Oliver 1996; Barbour and Fish 1993). In 

some cases, I. dammini, and I. scapularis were used interchangeably. From this point forward, 

they shall be referred to as I. scapularis in this project.  

1.1.3. Tick Life Cycle 

The life cycle of I. scapularis is completed in three stages: larval, nymph and adult 

stages. Figure 1 below shows the tick life cycle adapted from (Zundel, n.d.). 
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Figure 1. Life cycle of the I. Scapularis tick (Adapted from Zundel, n.d.) 

 Each stage in the tick life cycle requires a continuous blood meal, which lasts anywhere 

from 1 – 10 days. After the blood meal, the tick falls off from the host and molts. After molting, 

the tick starts to search for its next blood meal. In a tick’s life cycle, about 10% of the time is 

spent on the host and the rest is spent molting and looking for a new host (Brownstein, Holford, 

and Fish 2003). Ticks in different stages tend to feast on different hosts. When ticks are in the 

larval stage, they feed off small animals (e.g. mice). In the nymph stage, ticks feast on small and 

medium sized animals. In the adult stage, ticks feast on medium and large sized mammals, 

including humans and household pets.  

 A tick becomes infected when it feeds on a host infected by a prior bite from an infected 

tick (Ogden 2010; Spielman 1994). The tick infection is not passed transovarially (transmission 

to offspring by infection of its eggs); it has to be contracted by feeding on an infected host 

(Guerra et al. 2002). Thus, Lyme disease can only spread to areas where infected ticks or 

infected hosts inhabit.  
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1.1.4. Current Lyme Disease Prevention Methods 

The prevention methods for Lyme disease mostly revolve around personal protection. 

Orloski et al. (2001) notes that utilizing tick repellants, wearing light colored clothes to enhance 

visibility of ticks, pulling socks over the bottom of pants to protect ticks from crawling up the 

pant leg, and conducting tick checks when coming in from the outdoors are all ways to help 

prevent Lyme disease. While these methods would help with noticing a tick, and hopefully 

catching and removing the tick before being bitten, prevention methods could definitely be 

improved.  

Without accurately knowing where Lyme disease occurs, and what causes the increase of 

Lyme disease cases, it is difficult to create effective prevention methods (Brownstein, Holford, 

and Fish 2003). As suggested by Barbour and Fish (1993) and Orloski et al. (2001), the second 

common method of Lyme disease prevention, besides personal protection, is vector control. In 

order to create effective prevention methods to completely help control the vectors, it is critical 

to have a concrete understanding of how the ticks are affected by the environment, climate, and 

other variables. 

1.2. Study Scale 

The majority of cases of Lyme disease in the United States are reported in the 

Northeastern and Midwestern states. It is important to note, however, that all 48 contiguous 

states and Alaska have reported cases of Lyme disease in the past. In 2015, 95% of the 

confirmed cases were reported from Maine, Vermont, New Hampshire, New York, 

Massachusetts, Connecticut, Rhode Island, Pennsylvania, New Jersey, Maryland, Delaware, 

Virginia, Wisconsin and Minnesota (Waller et al. 2007; CDC 2017a). Because this is a sizable 

area, the spatial extent of the study area for this project was scoped down to five Northeastern 
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states. The study area consists of Maine, Vermont, New Hampshire, New York, and 

Massachusetts for their high case counts and contiguity. The study area is shown below, in 

Figure 2.  

 

Figure 2. The Study Area includes five states in the Northeastern United States 

Another important aspect of the study is its temporal scale. The CDC provides yearly 

counts of Lyme disease cases at the county level from 2000 to 2016. However, the climate data 

used for the study was only available for the years of 2000 – 2015 when the data was collected. 

The time span of this study thus matches the data availability for both Lyme disease cases and 

the environmental factors for 2000-2015.  
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The number of Lyme disease cases varies spatially and temporally. For the study area, 

there were a total of 153,486 cases of Lyme disease over 16 years (2000-2015), with 4,000 being 

reported to the state level only. Within the total of 116 counties, the average is 80 cases per 

county per year, and 1285 cases total per county over the 16 years. The maximum count was 

1720 cases for Dutchess County, New York in 2002, and the minimum count value was zero in 

multiple counties (CDC 2017a). This spatial and temporal variability in the number of cases 

makes further analysis of the relationship between the environmental variables and cases of 

Lyme disease possible. 

1.3. Motivation 

The motivation of this study is to combine Geographic Information Science (GISci) and 

epidemiology to increase the understanding of the causes and risk factors of Lyme disease. 

Spatial analysis and spatial statistics allow for identification of habitat factors and can then be 

mapped against populations to predict potential risk for disease outbreaks (Kitron 1998; 

O’Sullivan and Unwin 2010). GISci also offers tools to analyze and identify the most important 

factors in the spatial and temporal distributions of I. scapularis and the spirochete B. burgdorferi.  

The changes in I. scapularis population lead to the Lyme disease rate change over time. 

The ability to analyze the spatial and temporal distribution is integral in clarifying the 

relationships between the Lyme disease vector I. scapularis and the risk factors. Once there is a 

clear understanding of why and how the I. scapularis varies during the year and over the years, 

prediction and prevention efforts can utilize this information (Brownstein, Holford, and Fish 

2003). For I. scapularis, 90% of the life cycle is spent off the hosts, which means the climate and 

environment would have an increased significance and effect on the tick. Because of this, climate 
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was chosen as one of the factors to be analyzed in this study. To further represent the available 

habitat areas for ticks, the percent of forest cover is also included in the analysis of this study. 

1.4. Research Objectives 

The aim of this study was to investigate the spatiotemporal relationships between Lyme 

disease rate and environmental factors. To accomplish this goal, there were three main research 

objectives: 

1. Determine the locations of the hotspots of Lyme disease cases per 100,000 and of 

the environmental factors both spatially and temporally;  

2. Determine environmental hot spots that correlate to the Lyme disease hot spots in 

the county level; and 

3. Create a model to test the influence of the selected environmental factors on the 

Lyme disease incidence rate. 

 To achieve the first objective, a space time cube was created and an emerging hot spot 

analysis is conducted. The hot spots of the data, as well as the trend over the years, were 

identified. The effect of using a rate instead of a count for Lyme disease was demonstrated by 

creating maps for both the Lyme disease rate and count. The local Moran’s I was also included to 

note the spatial clusters and outliers in each of the datasets.  

 The second objective was executed by visually surveying the hot spot maps and 

observing the counties associated with multiple hot spots. This provided valuable insight on the 

relationships between the hot spots of Lyme disease and the environmental factors. The result of 

the visual correlation elucidated the relationship of an environmental factor with Lyme disease 

rate. In some cases, this correlation may not be what was anticipated.  
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 The third objective was accomplished by an ordinary least squares (OLS) regression. It 

was conducted to analyze the correlations between Lyme disease rate and environmental factors 

including precipitation, temperature, and forest coverage. In addition, a geographic weighted 

regression (GWR) was tested as it accounts for local influences in the data. The result from the 

OLS regression identified the environment factors that were significant and explanatory to the 

variance of the Lyme disease rate. The OLS regression coefficients were used to create an 

inferential model of Lyme disease rate. The data for all 16 years is used to prepare the model and 

identify the significant variables, and a residual analysis was included to determine the model 

performance.  

 Data provided by the CDC (2017a; 2017b) contained case counts for each county in the 

United States using the definition of Lyme disease at the time of year. The cases of Lyme disease 

included in the dataset are cases diagnosed during the collection period. Previously, Waller et al. 

(2007) used the Lyme disease data from the CDC from 1990 to 2000 for a risk map. This 

research provided an update of the Lyme disease data use and included a trend analysis as well. 

The environmental factors are expanded upon from the Waller et al. study for the investigation of 

the Lyme disease rate. This project also further advances the study of Lyme disease by creating 

an inferential model to further examine the relationships of Lyme disease.  

 In terms of environmental factors, the Lyme disease rate was compared to the annual 

minimum, mean, and maximum temperatures of the year, the annual precipitation and the 

percent of forest cover per county. Research by Brownstein, Holford, and Fish (2003, 2005), and 

Ogden et al. (2010), has linked temperature and land use to tick abundance and cases of Lyme 

disease. The forest cover variable is included to represent land use, specifically tick inhabited 

areas.  
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1.5. Layout 

The structure of this thesis includes five chapters, each developed based on the previous 

chapter. Chapter 2 details previous studies on Lyme disease, the current risks of contracting 

Lyme disease, the known populations with the highest risk, and the prevention methods related 

to Lyme disease contraction. Chapter 3 contains the data descriptions and the methodology used 

to analyze the data to achieve the results. Chapter 4 describes the results of the analysis and 

includes the relevant discussions related to the results. The final chapter, Chapter 5, contains the 

conclusions of the study as well as its limitations and future research investigations.  
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Chapter 2 Related Work  

Chapter 2 seeks to present relevant information on Lyme disease to support this study. The 

combination of epidemiology and ecology with GISci allows for the spatial patterns of Lyme 

disease incidence to be identifiable. The strength and accuracy of models and analysis of Lyme 

disease are stronger in cases where Geographic Information Systems (GIS) and epidemiology are 

combined (Glass et al. 1995). The full range of risk factors and causes of Lyme disease are still 

largely unknown, and further study is needed to understand them. The use of GISci allows for 

analysis and further understanding of the spatiotemporal trends. Goodwin et al. (2001) noted that 

the temporal fluctuations have a great deal of influence on the availability of ticks. The climate 

and other environmental factors also fluctuate over time, so it is important to determine the 

variables most significant factors for tick survival. When they are determined, an accurate 

prediction model can be created. 

2.1. Transmission of Lyme Disease 

The transmission of Lyme disease is dependent on the vectors of Lyme disease. In 

Northeastern United States, the vector is the I. scapularis tick. The life cycles of the tick, along 

with the exposure to B. burgdorferi spirochete (a spiral bacterium), influence the cases of Lyme 

disease. The transmission of B. burgdorferi generally occurs from the animal hosts that the 

young ticks feed on, and rarely through tick birth (Guerra et al. 2002). This means that ticks start 

off uninfected, become infected while feeding on infected animals, and then spread infection to 

their future hosts. A tick only needs to feed from an infected host once to become an infectious 

agent. Conversely, the disease can carry over from one stage of the tick life cycle to the next 

(Gilmore, Mbow, and Stevenson 2001).  
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The occurrence of Lyme disease also depends on the number of ticks available. The 

infection rate of ticks is influenced by the number of larval ticks from the previous years, the 

available hosts, and the tick survival in between blood meals (Goodwin, Ostfeld, and Schauber 

2001). Thus, the number of cases is higher in years where tick survival is unhampered. The 

climate factors are thus significant to understand tick survival in between blood meals.  

In essence, human infection depends on the tick prevalence and the exposure to ticks in 

outdoor areas. While there is the opportunity to contract Lyme disease when in an endemic area, 

Ogden et al. (2010) note that when bitten by ticks that were not engorged, the victim was less 

likely to contract Lyme disease. This is believed to be caused by the lack of a blood meal on an 

infected host prior to an individual being bitten.  

2.1.1. Current Risk 

 The analysis of the risk of contracting Lyme disease is problematic, with multiple 

complications affecting surveillance. The most widespread problem is the changing definition of 

Lyme disease. The definition of Lyme disease has changed over time to include additions from 

new research, and to limit the number of misdiagnoses or overdiagnoses (Waller et al. 2007). 

Additionally, CDC (2017c) noted that the increase of Lyme disease cases in an area might be the 

product of something other than a true increased incidence of cases. Common increases of cases 

result from the spread of reporting practices, updated reporting practices, reporting bias, and 

location of diagnosis (Waller et al. 2007). This results in uncertainty about the causes of the 

increased incidence.  

The other common problem with identifying the risk of contracting Lyme disease is the 

difference in locations between where the patient is diagnosed and where the patient is infected. 

Human travel is a typical cause of this uncertainty in geographic distribution (Brownstein, 
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Holford, and Fish 2003). Individuals may travel as short distances such as across their town, or 

further distances such as crossing multiple counties in a day. The CDC dataset used in this study 

is based on locations at time of diagnosis (CDC 2017b). The analysis based on this data will be 

contingent on probability of contracting Lyme disease based on diagnosis location.  

2.1.2. At Risk Population 

While individuals can contract Lyme disease at any age, people in certain demographics 

are more likely to contract Lyme disease. Orloski et al. (2000) studied a dataset that had samples 

with the age ranged from under 1 to 100 years old; the mean age was an average of 35-39 years 

old. Steere et al. (1977) and the CDC (2017b) noted more cases occurring in children. When the 

samples were broken down by gender, the prevalence was slightly over 50% for males. Orloski 

et al. (2000) noted 51% of the patients were men, Ciesielski et al. (1989) found 53% were male, 

and Davis et al. (1984) found 54% were male. The difference in contraction rates of the males 

and females in these studies was not substantial. Thus, males were not significantly more likely 

to contract Lyme disease.  

The main noticeable correlation between the noted demographics is the likelihood of 

spending time outdoors. The important condition in contracting Lyme disease is being in a 

habitat that supports I. scapularis. Goodwin, Ostfeld, and Schauber (2001) and Barbour and Fish 

(1993) note that human infection is contingent upon humans residing in an area where host-

seeking ticks live. Working outdoors, whether as an occupation or recreation, is more common 

among men, while being outside recreationally would support the correlation between young 

children and adults in their 30s. To help estimate the areas where Lyme disease can be 

contracted, the forest cover percent per county was included in the regression variables. Counties 
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with a higher percentage of tree canopies are hypothesized have a greater area where ticks and 

their hosts could be located.  

2.1.3. Tick Hosts 

The tick hosts are an important part of the tick life cycle, and the spread of Lyme disease. 

The most common host a tick first feeds from is the white-footed mouse (Guerra et al. 2002; 

Goodwin, Ostfeld, and Schauber 2001; Waller et al. 2007). Another common host is the white 

tailed deer. Ogden et al. (2010) brought up an excellent point, that while wild animals are often 

tick hosts, cats, dogs and even other humans are also common tick hosts. While domesticated 

animals may carry Lyme disease, it is easier to study wild animals when testing ticks for Lyme 

disease due to the increased exposure to ticks.  

Birds are another a key host population. They have an important role in transporting 

opportunistic ticks from one area to another (Spielman 1994). While deer are able to transport 

ticks as well, birds have the unique ability to carry the ticks to a non-native place and start the 

cycle of Lyme disease there. The spread of Lyme disease has occurred in this manner, shown 

through the cases now occurring in Quebec, Canada and even farther north, with more spread 

and prevalence believed possible in the future years (Ogden et al. 2010; Brownstein, Holford, 

and Fish 2005).  

It is noteworthy that, while many animals may act as hosts for the ticks, not all of them 

transfer Lyme disease. Animals that capable of carrying the Lyme disease pathogen and able to 

transmit the pathogen to a tick are termed competent reservoirs (Barbour and Fish 1993). White-

tailed deer, white-footed mice, birds, and even lizards are all common hosts for ticks, but they 

are all not competent reservoirs. The southern I. scapularis feed on lizards, which function as a 

host for ticks, are not competent reservoirs. This results in lower rates of Lyme disease in the 



15 
 

southern states. The incidence of Lyme disease is higher in the northeastern United States 

because of the prevalence of suitable hosts (Barbour and Fish 1993).  

2.2. Environmental Factors  

 The use of environmental risk factors is routine when studying Lyme disease cases and 

causes. The major risk factors evaluated in the different studies include temperature values and 

temperature aggregates, precipitation, land use, and soil type. Glass et al. (1995) linked humidity, 

temperature, slope, and land use to tick abundance. The 1998 study on vector-borne diseases by 

Kitron (1998) lists forest cover, sandy soil, and hardwoods as significant factors, based off of the 

needs of the tick hosts.  

Guerra et al. (2002) and Brownstein, Holford, and Fish (2003; 2005) use minimum and 

maximum temperatures and precipitation as main factors for Lyme disease specifically. 

Brownstein, Holford, and Fish (2003) supported the use of temperature, and note specifically that 

minimum temperature was the only variable to have a simple positive relationship with cases, 

which is believed to show the lower limit of tick habitat survivability. The maximum 

temperature was correlated to Lyme disease cases (Brownstein, Holford, and Fish (2003). Ogden 

et al. (2010) utilized temperature alone, while Waller et al. (2007) used land use, soil type, and 

moisture as their main variables. Ogden et al. (2010) included data reported at the weather 

stations, and interpolated the data to have an average temperature dataset, while Guerra et al. 

(2002) used precipitation and average temperature data available from the National 

Oceanographic and Atmospheric Administration (NOAA).  

Besides climate variables, land use was also investigated in the course of this study. The 

consideration of land use as an environmental risk factor was multifaceted. The National Land 

Cover Database (NLCD) contains data on land use and change for the contiguous United States, 
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and includes useful analysis tools (Homer et al. 2007). Investigation into the rate of land use 

change by the Multi-Resolution Land Characteristics Consortium, also MRLC, (2017) show that 

there is less than 3% change in the United States overall from 2001-2011. This supports what 

Homer et al. (2007) noted in their report on the NLCD. In an effort to utilize land use data, 

without using the categorical data available in the NLCD, Kitron (1998), and Nicholson and 

Mather (2014) use the percent of forest coverage as an estimate of land use. Nicholson and 

Mather used forest cover to estimate the areas where nymph ticks would consistently inhabit, and 

to determine suitable habitats. 

2.3. GIS and Lyme Disease  

Geospatial techniques can be used to investigate spatial and temporal trends of public 

health datasets such as the Lyme disease. GIS allows data from different sources and formats to 

be merged spatially, and analyzed as a whole (Szwarcwald et al. 2000). In the case of Lyme 

disease, the use of GIS allows various environmental factors to be included and analyzed against 

population and cases of Lyme disease (Glass et al. 1995; Kitron 1998). This can be used to show 

risk, and create predictions based on the data available.  

2.3.1. Past Studies  

Various studies undertaken on Lyme disease covered a range of data types and analysis 

methods. Many of the spatiotemporal studies used point data to study the cases or the vectors of 

Lyme disease (Ogden et al. 2010; Goodwin, Ostfeld, and Schauber 2001; Guerra et al. 2002; 

Steere et al. 1977; Glass et al. 1995). On the other hand, several studies used aggregated data, for 

both vectors and the cases (Orloski et al. 2000; Kitron and Kazmierczak 1997; Waller et al. 

2007; Ciesielski 1989). The studies that used aggregated data created risk maps on case counts 

and conducted habitat suitability analyses.  
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The spatial distribution of the pathogen B. burgdorferi is integral to increased incidence 

of Lyme disease. Unfortunately, the spatial variation of the pathogen is only available by 

studying ticks, I. scapularis, to determine the number of infected ticks and the number of 

infected tick hosts. Glass et al. (1995) note that when analyzing a large study area (at the state or 

region level), the use of environmental factors is acceptable to use in analysis rather than the 

study of ticks and the host populations. This is due to the high cost of time and money spent 

when analyzing the hosts. Thus, studying the cases per county per year is adequate when 

combined with the study of environmental factors.  

Waller et al. (2007) note there was evidence of a relationship between the increase in 

incidences of Lyme disease and the expansion of reporting practices and the refinement of the 

CDC definition of Lyme disease. Moreover, when analyzing Lyme disease cases, a major 

concern is the number of misdiagnoses, lack of diagnoses, reporting bias, and imprecise 

serological results, which means the number of confirmed cases in the CDC data may be less 

than the actual incidence rate (Kitron and Kazmierczak 1997; Waller et al. 2007). This indicates 

the presence of false negatives, and the process of verification through the CDC allows only 

confirmed or probable cases to be counted in the data counts per year.  

Most of the Lyme disease studies had focused their area of study in the northeastern 

United States, where the ticks are prevalent and the majority of cases are reported. Guerra et al. 

(2002), LoGiudice et al. (2005) and Waller et al. (2007) studied multiple states in the 

Northeastern United States and Midwest. Studies by Glass et al. (1995) and Frank et al. (2002) 

focused on one county or state in the Northeastern United States. In Ogden et al. (2010), the 

authors looked at the border of the Northeastern United States and Canada. Other studies looked 

at the United States as a whole. Orloski et al. (2001) and Ciesielski et al. (1989) studied the USA 
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as a whole, utilizing data available from the CDC. The study scales were dependent on the 

elements studied, whether it was the cases of Lyme disease or the vectors, and the availability of 

data. In instances where the data was self-collected, the study areas tended to be much smaller. 

It is important to note that each Lyme disease study is unique for the area and the scale it 

studies. While conducting Lyme disease studies at a large spatial scale is important in order to 

learn more about the disease in a specific area, there is the likelihood of an inherent fallacy being 

assumed in the study results. In the study by Brownstein, Holford, and Fish (2003), the authors 

note that the probability surface of Lyme disease for the contiguous United States had a lower 

suitability in the West Coast. They inferred the difference in the Pacific region vector was the 

cause of lower suitability; this vector was declared as the I. pacificus tick. 

2.3.2. Risk Maps 

A common analysis result for Lyme disease study is a risk map. In two studies, the risk 

maps were created by classifying the selected risk factors, performing logistic regressions, and 

evaluating the results by the chi-squared test (Waller et al. 2007; Glass et al. 1995). The concern 

with risk mapping is there is no additional trend analysis included in the study. The risk maps 

only demonstrate the probability or risk of contracting Lyme disease based on the factors. In two 

separate studies utilizing aggregated data, the results of the study consisted of a risk map, with no 

further analysis included (Kitron and Kazmierczak 1997; Waller et al. 2007). The risk map 

created in the 1997 study by Kitron and Kazmierczak (1997) is shown below in Figure 3. The 

map shows the endemicity of Lyme disease based on the occurrence of ticks in the wildlife 

surveys, and Lyme disease cases. The risk maps in Waller et al. (2007) were based on the annual 

crude incidence rates for the counties.  
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Figure 3. Sample risk map from study by Kitron and Kazmierczak (1997) 

2.3.3. Data Types and Challenges 

The Lyme disease data types used in Lyme disease studies and GIS are either point, 

polygon, or non-spatial (table form). For studies using data points of individual Lyme disease 

cases, the data was generally collected in the course of the study (Brownstein, Holford, and Fish 

2003; Guerra et al. 2002; Goodwin, Ostfeld and Schauber 2001). There are some exceptions, like 

Ciesielski et al. (1989) and Glass et al. (1995) who used point data published by the CDC. The 

point datasets by the CDC have been discontinued, and the current dataset available is a non-

spatial table with cases per county (CDC 2017b). This dataset was used in Waller et al. (2007). 

Other studies, such as Kitron and Kazmierczak (1997), Davis et al. (1984), and Orloski et al. 
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(2000), used Lyme disease data aggregated to the county boundaries (polygon form) from local 

health departments.  

 When looking at Lyme disease data aggregated to county polygons, the scope of the 

study is more regional. Kitron and Kazmierczak (1997) focused on using spatial statistics and 

GIS to correlate the county polygon aggregation Lyme disease data with the tick distribution, the 

Lyme disease case distribution, the percent of wooded areas, and the human population density. 

Waller et al. (2007) look in the Northeastern United States at the county aggregation level as 

well to compare climate and ecologic variables to county incidence, and created a risk map based 

on the analysis results.  

The major challenge in the study of Lyme disease is the lack of individual data. The 

reported data is often aggregated. Geographic aggregation is an established method of making 

data unidentifiable, while still allowing the data to be available for analysis. By utilizing 

aggregated data, the cases of Lyme disease cannot be tied back to any one individual and 

therefore the location of any individual. With the United States information health privacy laws, 

like the Health Insurance Portability and Accountability Act (HIPAA), the use of health data 

includes the need for de-identified data. Aggregation of the data is critical when using sensitive 

information, like health data and census data (Amrhein and Reynolds 1997). The benefit of using 

an aggregate dataset with limited accuracy of locations is the inherent privacy for sensitive data 

provided by aggregation (Longley 2012).  

Jelinski and Wu (1996) noted that there are ways to utilize aggregation, and one 

particular method was to highlight the rates of change in spatial analysis. This is accomplished 

by looking at the incidence rate instead of the case count, and evaluating the trend over time. The 

main concern of this is ecological fallacy, an error to solely infer the result of the analysis done 
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in the aggregated data to an individual (Longley 2012). When using a time series of data at the 

county level, the rate of change in Lyme disease cases can be evaluated by observing data 

standardized by the population of that county. Kitron and Kazmierczak (1997) and Waller et al. 

(2007) standardized the data by looking at cases of Lyme disease per 100,000 persons per year at 

the county level. The standardized rate allows for a more accurate analysis of the true incidence 

and correlation. Another aspect of using aggregated data is sometimes it is the only available 

data (Amrhein and Reynolds 1997). If there are no other options, the use of aggregated data is 

better than no data at all.  

When analyzing different datasets, the data must be in equivalent units. Holt, Lo, and 

Hodler (2004) note that it is important for data to be analyzed at the same areal unit, using 

normalization or areal interpolation to be compatible. The equivalence of data is needed to 

ensure that analyses are being properly done; otherwise the results of analysis are misleading. 

The use of areal interpolation to estimate data points is quite common with weather data, as the 

weather is not measured systematically. Instead, the data collected at the weather stations are 

averaged and interpolated to create a raster surface (Ogden et al. 2010; Brownstein, Holford, and 

Fish 2005; Guerra et al. 2002). In these studies, the use of areal interpolation for the weather data 

worked well, allowing for fairly accurate study outcomes. The climate surfaces can be used in 

analyses that require a single value per polygon by using summary statistics to determine a value 

for each polygon or unit (Brownstein, Holford, and Fish 2003). Reed et al. (1993) note that when 

using larger quadrats there are stronger correlations with the ecological aspect being measured.  

The results of the investigation of past Lyme disease studies in this section influenced the 

creation of the methods of this thesis. Many studies have been conducted on Lyme disease at 

varying aggregations, risk factors, and scales. Using the aggregated Lyme disease case data (e.g. 
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cases per county), data standardization is needed to accurately compare data across areal 

boundaries. A common method of standardizing Lyme disease cases is by the population, shown 

as cases per 100,000 persons (Waller et al. 2007). This allows for the case prevalence to be 

compared equally across areas with varying populations. 

The limitations of the past studies were taken into account to create this study. Important 

aspects included the study area, the environmental factors selected, how to best use the 

aggregated data and the study scale. These studies created the precedent that this study was based 

on. This study used aggregated Lyme disease data in conjunction with climate and land use to 

create a predictive model for the Northeastern United States at the county level.  
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Chapter 3 Methods 

The goal of this study is to understand the distributions of Lyme disease cases and their 

environmental risk factors over space and time in the Northeastern United States. As stated in 

Chapter 2, previous investigations have created risk maps in this region. The intent of this study 

was to take the risk maps a step further, and include a spatiotemporal trend analysis to elucidate 

the spatiotemporal trends of this public health threat, and to determine the influence of the 

environmental factors in an influential model for the Lyme disease risks. The full cause of the 

increase of Lyme disease cases is still unknown. Correlation between Lyme disease and 

environmental factors has shown there is a relationship between the two.  

 By analyzing the environmental risk factors for Lyme disease, the relationship between 

Lyme disease cases and the environment was elucidated. This chapter describes the data and the 

methods used for achieving this goal. The methods described were completed using Microsoft 

Excel for table formatting and Esri ArcGIS Pro 2.1.0 for the spatial analyses. Hot spot analysis 

and local Moran’s I analysis were conducted on the cases of Lyme disease and the environmental 

factors to help understand the data trends and the correlation between Lyme disease and the 

factors. The Lyme disease model was then created using a stepwise least squares regression.  

3.1.  Research Outline 

The research design flowchart in Figure 4 demonstrates the overall analysis flow in this 

study. There are two separate analysis processes. The first portion of the investigation (noted as 

the ‘Setup’ process in Figure 4) includes data acquisition and compilation, an extensive data 

exploration using spatial statistics, and building the space-time cube. The second portion is the 

spatiotemporal analysis that consists of emerging hot spot analysis, local outlier maps using local 

Moran’s I, the overall trend of Lyme disease, and a comparison of the identified hot spots. The 
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final portion was the creation and verification of an inferential model of Lyme disease rate using 

stepwise regression and residual analysis. Both OLS and GWR were tested to find the best-fitted 

model. The residuals from the model were mapped for the study region and a supplementary 

residual analysis was conducted to analyze the performance of the final model. A full 

explanation of the methods is included in the rest of the chapter.  

 

Figure 4. Research design flowchart 
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3.2. Data Acquisition and Compilation 

 There are four datasets required to conduct this study; the Lyme disease case counts, the 

yearly climate data, the forest cover percentage and the county subdivisions. The datasets fell 

into three categories: shapefile, table, and raster. The county boundaries were a polygon 

shapefile that included attributes of some demographic data. The Lyme disease cases and the 

climate data were in table forms. The forest cover data was a raster dataset, which required extra 

processing to be properly formatted before analysis.  

3.2.1. Lyme Disease  

 The Lyme disease data is assembled at the county level and published by the CDC 

annually. The dataset downloaded from the CDC website for this study was a .csv file containing 

the cases of confirmed Lyme disease in each county of the study area from 2000 to 2016. The 

dataset contained County Name, State Name, State Code, County Code, and the yearly case 

counts. The 2016 data column was ultimately deleted because of no corresponding climate data 

in that year. The state and county codes were joined together to create the Federal Information 

Processing Standard (FIPS) for each county. Table 1, below, shows a portion of the Lyme 

disease dataset. The data is precise to the reporting year but not to the date of contraction. 

Another caveat for this dataset is that the cases were reported from where they were diagnosed, 

not necessarily where they were contracted. While there is apparent uncertainty in this dataset, 

this is the best available Lyme disease data found during the research period for the region.  
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Table 1. Excerpt of the Lyme Diseases Cases Table 

Ctyname Stname STCODE CTYCODE Cases2000 Cases2001 Cases2002 
Androscoggin 

County 
Maine 23 1 0 1 2 

Aroostook County Maine 23 3 0 1 1 
Cumberland County Maine 23 5 13 14 46 

Franklin County Maine 23 7 0 0 2 
Hancock County Maine 23 9 0 6 5 
Kennebec County Maine 23 11 2 0 7 

Knox County Maine 23 13 4 1 7 
Lincoln County Maine 23 15 3 2 14 
Oxford County Maine 23 17 5 2 1 

Penobscot County Maine 23 19 2 6 10 
Piscataquis County Maine 23 21 0 1 1 
Sagadahoc County Maine 23 23 0 2 3 
Somerset County Maine 23 25 0 1 2 

Waldo County Maine 23 27 0 2 1 
Washington County Maine 23 29 1 1 2 

York County Maine 23 31 40 68 112 
Source: Centers for Disease Prevention and Control 2017a 

 The Lyme disease cases dataset required limited processing. The original coverage of this 

dataset was the entire United States of America. It was selected for the necessary records, and 

then the extraneous records were deleted so it only contained records for the study area. Next, a 

new column was inserted to contain the County FIPS. The equation used to calculate this was  

FIPS = STCODE x 1,000 + CTYCODE        eq. 1 

This created the proper 5-digit County FIPS code as the unique identifier for the county record.  

3.2.2. County Divisions 

In a geospatial study, the most important dataset is the spatial component, which includes 

the area and boundaries of the study area. The county boundaries data was a polygon shapefile 

downloaded from the US Census Bureau. It contains demographic data such as the population 

for 2010. The Census Bureau products have a 95% confidence interval (United States Census 
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Bureau 2016), so the data is as accurate as can be directly obtained and is ready to use as is after 

download.  

The county boundaries data has the spatial extent for the entire United States. The study 

area of the five northeastern states was selected and exported to a new shapefile (Figure 3). 

Except the required attribute fields - GeoID, County Name, and State Name, and the population 

total for 2010, all extraneous columns were deleted from the attribute table. The GeoID field 

represents the FIPS in a string type and allows the other datasets to be easily joined to this spatial 

dataset. This is identical to the FIPS in the Lyme disease data. 

 

Figure 5. County boundaries of the study area 
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In the attribute table of the county boundary data, the centroids of the longitude and 

latitude were calculated. After this was calculated, the shapefile was projected into USA 

Contiguous Albers Equal Area Conic. This projected coordinate system was selected for use 

throughout the entire research as it preserves area and avoids areal distortion during projection. 

As the study area spans multiple latitudes, this coordinate system also appears to be appropriate. 

3.2.3. Climate  

 Having climate data for the county level for 16 years was integral in this project. The 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group was 

selected as the data source because it publishes climate data at many levels, including the county 

level. As a subdivision of Oregon State and the Northwest Alliance for Computational Science 

and Engineering, PRISM Climate Group gathers historical climate observations from various 

sources and developed short- and long-term spatial climate datasets for the United States 

(PRISM Climate Group, 2018). The data required for this study was acquired through the data 

explorer located on the PRISM website (http://prism.oregonstate.edu). At the time of download, 

the most current data available was 2015, so the temporal extent of the study was restructured to 

the period between 2000 and 2015. 

 The data explorer on the PRISM website allows data download by coordinates with 

various criteria settings. The precipitation data was recorded in inches, and the temperature data 

was recorded in degrees Fahrenheit. According to PRISM, the county centroid coordinates were 

appropriate estimates for use (PRISM Climate Group, 2018). In the data explorer, the Annual 

Values criteria were set from 2000 to 2015 and the climate variables including precipitation, 

minimum temperature, maximum temperature, and mean temperature were selected. The PRISM 
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data was then acquired by a .csv file exported from the county attribute table in ArcGIS Pro, 

which included the counties’ centroid coordinates (latitude and longitude) and the FIPS code. 

The acquired climate dataset included the counties’ centroid coordinates (latitude and 

longitude) and the FIPS code and required a few changes before being able to use in Lyme 

disease modeling. First, the first 10 rows of the data table were metadata and were removed so 

the dataset included only the data. Moreover, the climate dataset had one row per county per 

year. In order to comply with the requirement for building a space time cube (see Section 3.3.2), 

a Date column was created with the date string in the format of 12/31/YEAR (YEAR being the 

last four digits of the year). Table 2 shows an example section of the final climate table: 

Table 2. Excerpt of the Edited Climate Table 

Name Longitude Latitude Elevation Year Date ppt tmin tmax tmean 

23019 -68.6494 45.4005 318 2000 12/31/2000 41.21 31.1 52.2 41.6 
23019 -68.6494 45.4005 318 2001 12/31/2001 26.34 32 54.9 43.5 
23019 -68.6494 45.4005 318 2002 12/31/2002 39.74 32 52.9 42.5 
23019 -68.6494 45.4005 318 2003 12/31/2003 48.1 30.7 52.1 41.4 
23019 -68.6494 45.4005 318 2004 12/31/2004 39.14 30.9 52.2 41.6 
23019 -68.6494 45.4005 318 2005 12/31/2005 67.66 32.3 53.5 42.9 
23019 -68.6494 45.4005 318 2006 12/31/2006 55.56 35.1 55.1 45.1 
23019 -68.6494 45.4005 318 2007 12/31/2007 51.14 30.6 52.7 41.7 
23019 -68.6494 45.4005 318 2008 12/31/2008 55.37 31.9 53.1 42.5 
23019 -68.6494 45.4005 318 2009 12/31/2009 50.73 31.3 52.4 41.8 
23019 -68.6494 45.4005 318 2010 12/31/2010 51.91 36.1 55.8 46 
23019 -68.6494 45.4005 318 2011 12/31/2011 52.93 33.4 54.1 43.7 
23019 -68.6494 45.4005 318 2012 12/31/2012 47.8 34.5 55.2 44.9 
23019 -68.6494 45.4005 318 2013 12/31/2013 48.89 33.1 53.4 43.2 
23019 -68.6494 45.4005 318 2014 12/31/2014 54.9 32 52.6 42.3 
23019 -68.6494 45.4005 318 2015 12/31/2015 47.06 31.7 52.8 42.2 

Source: PRISM Climate Group  

When looking at the data range of the data, there was an abnormality. For Barnstable 

County, Massachusetts, and Wayne County, New York, the climate variables were negative for 
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all years. The temperature values were set to -17966.2 °F, and the precipitation was -393.66 

inches. Upon further investigation, these values were found to be the null values input from 

PRISM. 

To estimate the missing values in the PRISM dataset, two models were created and the 

predictions were compared with the PRISM data for accuracy. When evaluating the models on a 

test site, the variance between the models and the Prism data was less than .5 degree Fahrenheit, 

so the model outputs were deemed acceptable. The Prism data used for the estimation was a 30m 

raster for each year, and each climate variable.  

To start, the two counties with missing values were selected and exported into individual 

shapefiles. The models were exactly the same, with the addition of the first model projecting the 

climate rasters to the USA Contiguous Albers Equal Area Conic coordinate system. The second 

model used the projected raster created in the first model. Multiple models were used to prevent 

the creation of multiple copies of the projected rasters. Figure 6 shows the model without the 

raster projection. In the models, the county shapefile was used to clip the raster to the county 

boundaries, and then the Calculate Statistics tool was used to find the mean of the raster cells in 

the county boundary. This was repeated for each climate variable and each year. The model 

outputs were manually transferred to the Climate dataset to replace the null values. This allowed 

for the proper values to be used during the remainder of the analyses.  
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Figure 6. Climate Estimation Model for Missing Data 

3.2.4. Forest Cover Data 

With the hosts of Lyme disease in mind, forest cover was used to represent the potential 

land cover area available for the Lyme disease contraction. The NLCD contains various land 

cover products established by the MRLC. The Forest Cover dataset was chosen from the NLCD 

for its numerical data type. This quantitative data characteristic lent itself to working with 

regressions. The NLCD 2001 Percent Tree Canopy was the version selected for all data 

regardless of the year. The data methods were updated in between updates, so the 2001 and 2011 

datasets were not compatible. Thus, there was spatial variation in the dataset, but no temporal 

variation. The forest cover data was deemed adequate for use due to the spatial variation between 

the counties in the study area. 

Downloaded as raster datasets for individual states, the NLCD datasets were merged as a 

mosaic dataset before projecting into the USA Contiguous Albers Equal Area Conic projection. 

The raster data represented the percent forest cover in a 30 m spatial resolution. This is the same 

spatial resolution as the PRISM rasters. To estimate the percent of forest cover for each county, 

the Zonal Statistics as a Table tool was used to provide the county polygons as zones with the 

zone field set as the FIPS code. This estimation was created and run using Modelbuilder in 

ArcGIS Pro. The output of the Modelbuilder was a table with all the standard statistics 
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calculated, and the mean, the averaged percent of forest cover for each county was the variable 

used for further analysis (Section 3.4.1).  

Another estimation model was tested before finalizing the model above. In this model, 

the counties included a 30-kilometer buffer (approximately 18.6 miles), to approximate areas of 

forest cover that the population may have traveled. The buffered forest cover area was divided by 

the only the area of the county, because if it was divided by the area of the whole buffer the 

percent forest cover decreased. This resulted in some counties with a percent forest cover over 

100%, so was ultimately decided against. 

3.2.5. Data Processing  

Before analysis and exploration began, the data was properly formatted and joined. The 

Transpose Fields tool was used on the Lyme disease data to combine the 16 separate year 

columns into one column named Year. The result was 16 rows per county, each with a column of 

the Lyme disease count and a year column representing the year of Lyme disease being reported.  

The second phase of data processing and preparation was to join the newly formatted 

Lyme disease data and the climate data. This was accomplished by creating a unique identifier 

for each row, a combination of the FIPS and the year. A new field was added in both tables, and 

the values were calculated by adding the two fields in one string. The FIPS-Year column was 

calculated as: 

UniqueID = FIPS x 10,000 + Year          eq. 2 

The Add Join tool was then employed to join the two tables based on the unique yearly ID. The 

result was a table with 16 rows per county, each with the cases of Lyme disease, the year of the 

disease reported, and precipitation, minimum temperature, maximum temperature, and mean 

temperature for each year.  
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The next phase of data processing and preparation was to join the data table to the County 

shapefile. This was accomplished using the Spatial Join tool. In ArcGIS Pro, the tool allows a 

one to many join. The FIPS was used as the common field to join the Lyme disease and climate 

data to the County Shapefile. Later in the study, the join field tool was used to join the mean 

percent forest cover field to the county shapefile, with the FIPS as the identifier.  

After the data was joined, the Lyme disease rate (the disease count per 100,000 county 

population) was calculated in a new column. The equation used to calculate this was: 

Lyme Disease Rate (%) = [Disease Counts / Population] x 100,000   eq. 3 

This created a normalized value for Lyme disease. By normalizing the values, it allowed for a 

more equivalent comparison across varying county populations.  

3.3. Spatiotemporal Data Analysis 

The spatiotemporal data analysis section consists of exploratory data analysis, and trend 

analysis. The exploratory data analysis was to ascertain if the data chosen was adequate for this 

study and to provide a deeper insight on the data variation. The trend analysis provided an in-

depth look at the Lyme disease rate and the environmental factors before the modeling. The set 

of data exploration methods included summary statistics, the creation of space time cubes 

followed by an emerging hot spot analysis, and a local outlier analysis for both the Lyme disease 

rate and the climate variables.  

3.3.1. Summary Statistics  

 The summary statistics were used to determine if the data was normally distributed 

before the regression analysis. This set of statistics was included to document the data properties 

for Lyme disease and the included variables. This was added after the data analysis had started 

and therefore no transformation was performed for any non-normally distributed data.  
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 The summary statistics investigated the histogram, the skewness and kurtosis, and the 

values of mean, median, and standard deviation. The histogram indicated the frequency 

distribution of the data values, with an expected normal distribution as a bell shaped curve. The 

mean and median indicate the center of distribution of the data, with the average value and the 

median value, respectively. The data distribution is more normal when the mean and median 

values are close together. The kurtosis indicated how likely the data distribution would produce 

outliers. In a normal distribution, the kurtosis is close to or equal to 3. The skewness showed the 

symmetry of the data, with an ideal value of 0.  

3.3.2. Space Time Cube 	

Space time cube was used for visualizing spatial data over a span of time in ArcGIS and 

ArcGIS Pro. Building space time cubes was integral to this study as it was utilized in a variety of 

tools, including the Emerging Hot Spot Analysis tool, the Local Outlier Analysis tool, and the 

Visualize the Space Time Cube in 2D tool. One space time cube was created with each of the 

variables, including the Lyme disease count, rate, and the climate variables, to visualize the 

variable’s spatial and temporal trend. 

 The space time cube layout is quite unique, as it contains space and time information at 

the same time. Figure 7 shows an example of the file format. The X and Y axes show the spatial 

location, while the Z axis, labeled Then to Now, represents the time periods. Each spatial 

location for each year has its own distinct bin to hold the values. Bins that are for the same 

spatial location will have the same location ID. The file format is a netCDF file.  
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Figure 7. Example of a space time cube (adapted from Esri, 2018d). 

Every variable of this study with spatial and temporal series of data available was 

included in one space time cube created using the Create Space Time Cube From Defined 

Locations tool in ArcGIS Pro. Variables with no temporal variations, like longitude, latitude, and 

percent forest cover, could not be included in the space time cube analysis. The time step interval 

was 1 year, as the interval for the Lyme disease data and the climate data is one year. As the data 

was already temporally aggregated, there was no temporal aggregation in the space time cube. 

One of the mandatory settings was available fill, which was set to fill empty bins with space time 

neighbors for the areas missing values. This is a mandatory field to be set before the tool can run; 

however the data investigation and background statistics ensures there are no missing values. 

3.3.3. Emerging Hot Spot Analysis  

 The space time cube created from Section 3.3.2 was first applied to evaluate temporal and 

spatial trends using the Emerging Hotspot Analysis tool in ArcGIS Pro. This tool calculated the 

Getis-Ord Gi* statistic for every variable per county per year, and evaluated the Gi* statistic test 

results (hot spot and cold spot trends) using the Mann-Kendall trend test. The z-scores and p-
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values from the Getis-Ord Gi* statistics determine the counties where high or low values 

spatially accumulate. The Mann-Kendall trend test assesses the temporal values to determine the 

overall trend for each county (Esri 2018a).   

 The result of the Emerging Hot Spot Analysis displays the spatial and temporal trend in 

each county in a quantifiable and understandable approach. This is imperative as it shows the 

areas that are statistically different from their surroundings. In this case, it highlights the areas 

with higher or lower Lyme disease rates, Lyme disease counts, precipitation, temperature, and 

percentage of forest cover. The emerging hot spot analysis classified the cells into eight different 

types of hot or cold spot categories, except for the areas with no statistically significant patterns 

detected. The categories of the emerging hot spot and their definitions can be seen in Table 3.  
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Table 3. Emerging hot spot classifications used in this study 

Classification Definitions 
No Pattern Detected Does not fall into any of the hot or cold spot patterns defined below. 
Consecutive Hot Spot 
 

A location with a single uninterrupted run of statistically significant 
hot spot bins in the final time-step intervals. The location has never 
been a statistically significant hot spot prior to the final hot spot run 
and less than ninety percent of all bins are statistically significant hot 
spots. 

Intensifying Hot Spot 
 

A location that has been a statistically significant hot spot for ninety 
percent of the time-step intervals, including the final time step. In 
addition, the intensity of clustering of high counts in each time step 
is increasing overall and that increase is statistically significant. 

Persistent Hot Spot 
 

A location that has been a statistically significant hot spot for ninety 
percent of the time-step intervals with no discernible trend indicating 
an increase or decrease in the intensity of clustering over time. 

Diminishing Hot Spot 
 

A location that has been a statistically significant hot spot for ninety 
percent of the time-step intervals, including the final time step. In 
addition, the intensity of clustering in each time step is decreasing 
overall and that decrease is statistically significant. 

Sporadic Hot Spot A location that is an on-again then off-again hot spot. Less than 
ninety percent of the time-step intervals have been statistically 
significant hot spots and none of the time-step intervals have been 
statistically significant cold spots. 

Oscillating Hot Spot  A statistically significant hot spot for the final time-step interval 
that has a history of also being a statistically significant cold spot 
during a prior time step. Less than ninety percent of the time-step 
intervals have been statistically significant hot spots. 

New Cold Spot A location that is a statistically significant cold spot for the final 
time step and has never been a statistically significant cold spot 
before. 

Persistent Cold Spot A location that has been a statistically significant cold spot for 
ninety percent of the time-step intervals with no discernible trend, 
indicating an increase or decrease in the intensity of clustering of 
counts over time. 

Sporadic Cold Spot A location that is an on-again then off-again cold spot. Less than 
ninety percent of the time-step intervals have been statistically 
significant cold spots and none of the time-step intervals have been 
statistically significant hot spots. 

(Source: ESRI 2018a) 

 The emerging hot spot analysis was conducted on Lyme disease data as well as the 

environmental factors. The emerging hot spot tool was run on both the cases and cases per 

100,000 population to show the importance of data normalization. The climate variable included 
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in the space time cube (precipitation and maximum, mean, and minimum temperature) were also 

tested for the emerging hot spots to view the temporal trend. Contiguity edges and corners was 

chosen for the conceptualization of spatial relationships setting in the emerging hot spot analysis 

it ensured at least one neighbor would be included in the analysis.  

3.3.4.  Local Outlier Analysis 

The second use of the space time cube was to study the local spatial autocorrelation via 

the Local Outlier Analysis tool. The Local Outlier Analysis tool calculated the local Moran’s I 

statistic to see if there are any spatial clusters or dispersion (outliers) over a time span. Similar to 

the Getis Ord Gi* statistics, the local Moran’s I identifies statistically significant clusters of high 

or low values. In addition, it also identifies spatial outliers in the data (Esri 2018b). This analysis 

was used as additional data explorations because it could identify not only hot spots, but also 

unexpectedly high or low values that contradicted the values in the surrounding counties. As the 

analysis involves both spatial and temporal distributions, the input required a space time cube 

generated as a netCDF file in Section 3.3.2. The Local Outlier Analysis identified 6 different 

trends shown in Table 4.  
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Table 4. Local Outlier Analysis Classifications 

Type Definition 

High - High Cluster Statistically significant cluster of high values 

Low - Low Cluster Statistically significant cluster of low values 

High - Low Outlier Statistically significant high value surrounded by low 
values 

Low - High Outlier  Statistically significant low value surrounded by high 
values 

Multiple Types Multiple types in one county 

No Statistical 
Significance 

No statistical trend 

Source: Esri 2018b 

The definitions of the resulting six categories from Anselin local Moran’s I are also 

included in Table 4. The first category is the High-High Cluster, meaning a county of high values 

is surrounded by the counties of high values. The second category is Low-Low Cluster, meaning 

a county of low value is surrounded by the counties of low values. The third category is High-

Low Outlier. The High-Low Outlier category means a county of high value is surrounded 

predominantly by counties with low values. The opposite is the Low-High Outlier category, 

where a county with a low value was surrounded by counties with mostly high values. When 

there are multiple types of statistically significant cluster and outliers occur in the same county 

over time, it is categorized as Multiple Types. The final category is No Statistical Significance, 

where no statistical significance of clusters or outliers is detected. 

As with the emerging hot spot analysis, this local outlier analysis was run on Lyme 

disease cases, rate, and the environmental factors. The specifications for the tool were the same 

for all versions. The number of permutations was set at 999, as the smallest possible pseudo p-

value is 0.001, the standard in statistical studies. The conceptualization of neighbors was set 
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again to contiguity edges and corners. This negated the need for a distance band but ensures at 

least a neighbor included in the analysis. 

3.3.5. Space-Time Visualization and Optimized Hot Spot Analysis 

 Using the Visualize Space Time Cube in 2D tool, the overall trend of the Lyme disease 

incidence was evaluated. This tool was established based on the results of space time cube used 

for both of the emerging hot spot analysis and the local Moran’s I. In this study, it was used to 

demonstrate the comprehensive spatiotemporal trend of the Lyme disease rate and the Lyme 

disease count. The final analysis conducted in this study was an Optimized Hot Spot Analysis of 

the forest cover variable. This tool was an alternative hot spot analysis needed for the percentage 

of forest cover, as the forest cover data did not contain a time series. The tool identified hot spots 

throughout the study area of the same time period using the Getis-Ord Gi* statistics. The 

Optimized Hot Spot Analysis tool resulted in p-values and the confidence intervals for the hot 

and cold spots. 

3.4. Regression Modeling 

The OLS regression and GWR were tested for creating the Lyme disease model. The 

modeling was included as an additional analysis to determine the significant variables of Lyme 

disease, and to determine the nature of the relationships. The OLS regression analysis has the 

ability to handle spatiotemporal datasets using a time-series attribute (e.g. year) and/or 

coordinates (i.e. latitude and longitude). The GWR tested for local spatial variations in 

subregions of the study area. For the purpose of identifying the relationships between the Lyme 

disease rate and the spatial and temporal variables, both OLS and GWR were kept in linear 

models. The models were both evaluated against a set of model criteria to determine the model 

fit and quality. 
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3.4.1. Ordinary Least Squares Regression 

The OLS was employed to examine the relationship between Lyme disease and the 

environmental variables. Lyme disease was the dependent variable and the potential independent 

variables include precipitation, minimum temperature, maximum temperature, mean 

temperature, year, percent forest cover, longitude, and latitude. These environmental variables 

were tested to see whether and how much they could explain the variance of the Lyme disease 

cases in the Northeastern USA. The year and longitude and latitude were tested to see if there 

was a spatial or temporal trend. All the factors will now be referred to as independent factors due 

to the inclusion of time and location variables in the regression. The regression equations are as 

follows: 

y = β0 + β1χ1 + β2χ2 + …+ βnχn         eq. 4 

where y represents the dependent variable Lyme disease rate, Xn represents independent variable 

n, and βn is a partial coefficient of each independent variable n. The coefficient reflects the 

relationship between the independent and the dependent variables. The result of this tool was an 

output feature class that contained dependent variable estimates and residuals, and a report. 

These outputs were important in determining the accuracy of the model.  

 The OLS Regression model was processed in a stepwise regression. The model was run 

and the results evaluated. If the model did not sufficiently satisfy the model checks, another 

regression was conducted. The following regression would remove the variable with the highest 

insignificant probability and with a variance inflation factor (VIF) over 7.5.  

 The regression was initially tested with precipitation, average minimum temperature, 

mean temperature, and average maximum temperature as independent variables. While the 

minimum and maximum temperature were selected specifically for tracking tick survivability, 
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the mean temperature was included in the regressions to observe the climatic trend. Precipitation 

was included to estimate host survival. With climate as a known strong predictor in Lyme 

disease cases, the climate trends might have affected the case incidence. The regression was run 

and then rerun, with the elimination of one variable whose partial coefficients were not 

statistically significant (i.e. p-value > 0.05) and the p-value was the highest. This process was 

repeated until all partial coefficients of the independent variables were significant.  

 It was determined that more variables were needed to enhance the model performance 

based on the model results. The variables selected were county centroid longitude (X) and 

latitude (Y), percent forest cover for each county, and year of Lyme disease cases reported. The 

centroid coordinates were included to add a spatial context, while the year was included to add a 

temporal context. The forest cover for the counties was included to provide an insight on the 

availability of areas where there could be exposure to the vectors of Lyme disease in each 

county. These new variables were chosen to fill the gaps and to increase the accuracy of the 

model.  

 The stepwise regression was attempted again with the new variable set. The set included 

year, longitude, latitude, annual precipitation, annual minimum temperature, annual mean 

temperature, annual maximum temperature, and forest cover. The stepwise regression was 

conducted with two procedures (as follows). The first time the variables were eliminated based 

on the variable or variables with the highest VIF and then the tie decided by the highest 

probability (p-value). In the second round, the variables were eliminated solely based on which 

had the highest partial coefficient p-value. 

 The regression model outputs were evaluated for the models. The first check was the sign 

(+ or -) of the coefficients, to see whether the influence of the variable on the disease rate was in 
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the expected direction. The larger coefficients showed a stronger relationship, while the smaller 

coefficients show a weaker relationship (Esri 2018c). The second check was the variable 

redundancy (or multicollinearity). This was evaluated by the VIF. Following the guideline in 

ArcGIS Help (Esri 2018c), the threshold of VIF was set to 7.5. This prevents redundant variables 

from being included in the model. If the variables explain similar portions of the model, they 

have a higher VIF. The model with VIF values equal or greater than 7.5 is likely to have the 

independent variables highly correlated to each other and thus only the models with VIFs less 

than 7.5 were acceptable. The third check was to see if the variables have a statistically 

significant coefficient. The p-value was set to 0.01, thus having a confidence interval of 99%.  

 The next three checks were to determine the overall fit and quality of the model. The 

fourth portion to verify was the significance of the Jarque-Bera statistic. This represented 

whether the regression residuals were normally distributed to satisfy the regression assumption. 

If the residuals were normally distributed, they over-predict and under-predict equally. The next 

check determined the model performance, represented by the Akaike’s Information Criterion 

(AICc) and adjusted R-squared values. The AICc represented the fit of the model in respect to 

model complexity. Low AICc were preferred. The adjusted R-Squared represented the amount of 

variance was explained by the independent variable. Thus, a higher adjusted R-Squared value 

was preferred for the higher variances of Lyme disease explained by the overall model. The sixth 

check was to test for spatial autocorrelation in regression residuals. This was to evaluate whether 

there are spatial patterns remaining in residuals and if model specification is appropriate. Finally, 

based on the model evaluation results, the best-fit Lyme disease models were chosen. 

 Among all of the model criteria, the Koenker test also served as an indicator of whether 

GWR should be applied. The Koenker test showed if the relationship between Lyme disease and 
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the independent variables was a stronger prediction in some areas and not in others. A significant 

Koenker test suggests GWR would be better suited instead of OLS regression.  

 While GWR was planned to generate a prediction model for the Lyme disease incidence, 

the model was unable to be effectively established. Independent variables could not be selected 

into a single GWR model because of the high multicollinearity between longitude, latitude, and 

year. The environmental factors also exhibited multicollinearity. While the model could be run 

successfully with individual independent variable, GWR was determined not viable for this 

study. As the result, the predictive model would instead be created based on the OLS regression.  

3.5. Residual Analysis  

 A residual analysis was conducted on the best-fitted regression models for model 

performance. The residual analysis included residual plots, statistics of the residuals, and 

mapping the residuals. The statistics of the residuals included the Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE) and the Mean Bias Error (MBE). The equations used for 

these statistics were:  

RMSE = [N-1 Σ (Pi – Oi)2]0.5         eq. 5 

MBE = N-1 Σ (Pi – Oi)          eq. 6 

MAE = N-1 Σ |Pi – Oi|          eq. 7 

where N is the total number of samples, with Pi and Oi being the predicted and original 

dependent value, respectively. As the name indicates, RMSE takes a square root for the sum of 

the squared residuals (the difference between the predicted value Pi and the original value Oi) 

then averages this value to determine how large the overall residual of the model is. The RMSE 

of zero (0) would indicate a perfect model fit without any error. An MAE is the measure of the 

average absolute difference between the observed values (Oi) and the predicted values (Pi). The 
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ideal absolute value for this would also be 0, indicating a perfect model fit with the average 

difference between observed and predicted as 0. The final statistic, MBE, gave the overall bias of 

the model. It is important to note that the positive and negative difference can cancel out, 

displaying the model uniformly over- or under-estimation. The ideal value for the MBE is 0. 
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Chapter 4 Results and Discussion 

This chapter presents the results of spatiotemporal analysis and modeling for Lyme disease cases 

and its relationships with environmental factors in Northeastern states. Discussions regarding the 

analytical results were also included. The organization of this chapter follows the similar 

structure in Chapter 3 as the analyses proceeded: Section 4.1 covers the summary statistics for 

Lyme disease and the explanatory variables. Section 4.2 includes the results and discussion of 

Lyme disease hotspots, local outliers and emerging hotspots for spatial and temporal trends of 

Lyme disease rates. Section 4.3 contains the results and discussion of hot spots of the 

environmental factors and compares them to the locations of Lyme disease hot spots. The 

comparison of the hot spots lends additional insight on the correlation between Lyme disease and 

the environmental factors. This chapter closes with the Lyme disease model and subsequent 

verification in Section 4.4.  

4.1. Summary Statistics  

The summary statistics of Lyme disease and the independent variables were included to 

be the foundation of the data investigation. Table 5 contains the overall summary statistics, 

including the mean, standard deviation, median, kurtosis, and skewness. The last column denotes 

if the data has a normal distribution.  
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Table 5. Summary statistics for regression variables 

Name Mean Standard 
Deviation 

Median Kurtosis Skewness Normal? 

Lyme Count 80.33 155.21 15 80.33 3.82 No 
Lyme Rate 52.73 106.46 15.74 54.55 5.62 No 

Precipitation 47.09 8.87 47.06 3.61 0.36 Yes 
Minimum 

Temp 
36.82 4.60 36.40 3.42 0.51 Yes 

Mean Temp 46.47 3.38 46.20 3.33 0.24 Yes 
Maximum 

Temp 
56.11 3.36 56.10 3.15 -0.10 Yes 

Forest 
Cover 

51.25 22.10 56.12 2.40 -0.63 No 

Longitude -73.49 2.65 -73.61 2.42 -0.13 No 
Latitude 43.07 1.21 42.99 2.85 0.16 No 

Year 2007.50 4.61 2007.50 1.79 0 No 
 

  The majority of the independent variables were normally distributed as expected. Of the 

five potential independent variables (precipitation, minimum temperature, mean temperature, and 

maximum temperature, and percent forest cover), only percent forest cover variable was not 

normally distributed. The longitude, latitude, and year variables were also not normally 

distributed. The examples of the histograms for precipitation and forest cover can be seen in 

Figure 8 and Figure 9. Figure 8 illustrates the overall normality of precipitation and Figure 9 

exemplifies a non-normal distribution of forest cover. 
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Figure 8. Precipitation histogram showing the normal distribution of the data 

 

Figure 9. Forest Cover histogram showing the data is not normally distributed 

The distribution of the Lyme data was also investigated in the summary statistics table. 

Both the rate and the count of Lyme disease were not normally distributed. It was not expected 

that the Lyme disease data would have a normal distribution, due to the variance in case counts 

and rate throughout the study area. For further insight on the data variance, scatterplots for 2010, 

2014, and 2015 were created (Figures 10, 11 and 12, respectively).  
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Figure 10. Scatterplot for 2010 Disease rate 

 
Figure 11. Scatterplot for 2014 Disease Rate 
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Figure 12. Scatterplot for 2015 Disease rate 

The scatterplots displayed the change over the span of one year (the change between 

2014 and 2015) and five years (the change between 2010 and 2015). The scatterplots present the 

association between population and the Lyme disease rate (Cases per 100,000 county 

population). From 2010 to 2015 there was a definite increase in cases overall, with a more 

dispersion in the lower left corner. From 2014 to 2015, there was one county with a notable 

decrease, but overall there was more cases in 2015.  

Based on the above scatterplots, many counties contain a Lyme disease rate of less than 

50 people per 100,000 population. In the scope of this study, the small number problem is not an 

issue for analysis using an OLS regression or a GWR (Meredith Franklin, personal 

communication). The small numbers (of county population) will not affect the regression results 

with the analysis methods chosen, as the OLS can handle the counties with 0 cases or a small 

number of cases.  
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4.2. Spatiotemporal Data Analysis for Lyme Disease 

The spatiotemporal data analysis for Lyme disease was the first step in understanding the 

data of Lyme disease and its spatial and temporal trends. The following sections cover 

spatiotemporal trend of Lyme disease, emerging hotspots and local outliers. 

4.2.1. Spatiotemporal trend of Lyme Disease 

The results of the spatiotemporal analysis showed the overall growth of Lyme disease 

from 2000 to 2015. Figure 13 shows the spatiotemporal trend of the Lyme disease rate. The 

overall temporal trend was an increasing incidence of Lyme disease for the majority of counties 

in the study area. The only significant opposite trend lay on the southeastern portion of New 

York. This part of the New York state had a decreasing trend in the Lyme disease rate. The 

counties with the decreasing trend were Columbia County, Dutchess County, Nassau County, 

Orange County, Putnam County, Suffolk County, and Westchester County.  
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Figure 13. Overall trend of the Lyme disease rate per 100,000 population per county 

4.2.2. Lyme Disease Hot Spots 

This subsection demonstrates the locations of the Lyme disease hot spots. The Emerging 

Hot Spot Analysis looked at the data trend for each county, and established the stability and 

strength of the trend of the time steps to determine if the county has a statistically significant hot 

or cold trend. Figure 14 displays the emerging hot spot map for the Lyme disease count. Of the 

116 counties, 90% of the counties (104 counties) were marked as no statistically significant 

patterns detected. There was only one emerging hot spot area identified, which comprised of 

both consecutive and sporadic hot spots. Recall that consecutive hot spots had two or more years 

in the start of the time period that were not significant, and every year after that was classified as 

significant. For a county to be classified as a sporadic hot spot, no cold spots could be present for 
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any years in those counties, and two or more years were not classified as statistically significant. 

Refer to Table 3 in Section 3.3.3. for the complete definitions of all the Emerging Hot Spot 

classifications in the study. Of the counties marked as a consecutive hot spot for Lyme disease, 

there was one county in New Hampshire (Hillsborough County) and six counties in 

Massachusetts (Essex County, Middlesex County, Worcester County, Norfolk County, Suffolk 

County, and Dukes County). Five counties marked as a sporadic hot spot were all located in 

Massachusetts (Hampshire County, Hampden County, Bristol County, Plymouth County, and 

Barnstable County).  

 

Figure 14. Emerging Hot Spots for Lyme disease count 

When using the Lyme disease case count as the variable, the spatial and temporal trends 

were mostly unseen (Figure 14). This was due to a multitude of the counties with small 



54 
 

population counts which tend to have small numbers of confirmed cases. By using the incidence 

rate (cases per 100,000 population), the accurate risk or probability of contracting among the 

counties was compared. The emerging hot spot for Lyme disease rate was then created to correct 

this problem (Figure 15). While the Lyme disease rate reveals more variation in the data, no cold 

spots were found for Lyme disease in either Figure 14 or Figure 15. Definitions of the different 

types of Hot Spots can be found to Table 3 in section 3.3.3.  

 

Figure 15. Emerging Hot Spots for Lyme disease rate per 100,000 

 The emerging hot spot map of Lyme disease rate per 100,000 population per county 

revealed more spatial and temporal trends (Figure 15). Not only were more variations in the 

types of emerging hot spots shown, but also more areas of emerging hot spots were found as 

well. Overall, three main areas were classified as emerging hot spot regions: The first hot spot 
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area was centrally located in the study area, consisting of 12 counties across the states of New 

York, Vermont, and Maine. These counties were Albany County, Columbia County, Greene 

County, Rensselaer County, Ulster County, Washington County, Bennington County, Rutland 

County, Windham County, Windsor County, Berkshire County, and Franklin County. There 

were five counties classified as consecutive hot spots, three counties classified as persistent hot 

spots, three counties classified as diminishing hot spots and one county classified as a sporadic 

hot spot. The persistent hot spot means the counties had been statistically significant for 90% of 

the years, and have no increasing or decreasing trend, while the diminishing hot spot means the 

counties were classified as statistically significant for 90% of the years, and have a declining 

intensity trend.  

The spread of the second and third hot spot sites were confined to the eastern seaboard. 

The second emerging hot spot area consisted of four counties located on the southeastern coastal 

counties in Maine. The counties in this hot spot were Hancock County, Knox County, Lincoln 

County, and Waldo County. All four counties were classified as consecutive hot spot. The final 

emerging hot spot area was located in the southern tip of Massachusetts. The four counties in this 

hot spot site were Barnstable County (a sporadic hot spot), Bristol County (a consecutive hot 

spot), Dukes County (an intensifying hot spot), and Nantucket County (an intensifying hot spot). 

The intensifying hot spot in the disease rate map shows the counties were statistically significant 

for most of the years, and have an increasing trend in cases. The location breakdown of the 

emerging hot spots can be seen in Appendix A.  

 When the Lyme disease rate map (Figure 15) was compared to the Lyme disease count 

map (Figure 14), the number of the study area classified as hot spots detected increased by eight 

counties (approximately 7%). There was an increase of three consecutive hot spots (10 total), a 



56 
 

decrease of three sporadic hot spots (2 total), and the addition of three persistent hot spot 

counties, three diminishing counties, and two intensifying counties. The hot spot in 

Massachusetts decrease in the Lyme disease rate map, but there were hot spots on the eastern 

coast of Maine, and the intersection of New York, Vermont and western Massachusetts. Overall 

the Lyme disease rate showed a more evident trend than the Lyme disease count.  

There was some association between the Emerging Hot Spot map for the Lyme disease 

rate (Figure 15), and the overall Lyme disease trend map (Figure 13). The location of the 

diminishing hot spot in the Lyme disease incidence map correlated with the downward trend of 

the rate trend map. Because those counties are reporting less cases each year, but still higher than 

the rest of the map, it is classified as a diminishing hot spot. Despite the scarcity of hotspots 

found in the hot spot analysis, the overall trend of Lyme disease cases in each county was 

increasing over time. 

The comparison of the Lyme disease trend map (Figure 14) and the Lyme disease count 

map (Figure 13) provided little extra information. The hot spot for Lyme disease count was 

almost completely classified as upward trend. The one exception is Dukes County on the 

southeastern portion of Massachusetts. This is the only county out of the 12 in the hot spot that 

was classified as having no trend.  

4.2.3. Local Outlier Analysis of Lyme Disease  

The Local Outlier analysis was included as a supplementary analysis for the 

spatiotemporal trend of Lyme disease in Section 3.3.5. Figure 16 shows spatial clusters and 

outliers of the Lyme disease case count in the study area. There were 71 counties (62%) 

categorized as Only Low-Low Cluster, meaning counties with low disease counts surrounded the 

county with low disease counts. The spread of the Low-Low cluster paralleled the dispersion of 



57 
 

the no pattern detected category in the Lyme disease count. The Only High-High cluster on the 

local outlier map followed a similar pattern as the consecutive and sporadic hot spot in the 

emerging hot spot map. There were a total of 21 counties classified as High-High Cluster. The 

nine counties in the Multiple Types category were intermittently scattered throughout the study 

area. They were noted as having no spatiotemporal trend detected in the Emerging Hot Spot 

Analysis. The four counties marked as Only Low-High Outlier generally corresponded to the 

counties marked as no pattern detected except Dukes County, Massachusetts, which was marked 

as a consecutive hot spot. The other three Low-High Outlier counties, Cheshire County in 

Vermont, Franklin County in Massachusetts, and Bronx County in New York were all located 

next to a hot spot. The definitions and explanations of the different categories are in Table 4.  

 

Figure 16. Local spatial clusters and outliers for Lyme disease cases 
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Surprisingly, the Local Outlier Analysis map for the Lyme disease rate has a different 

distribution of values (Figure 17). The pattern of the 13 Multiple Types counties paralleled the 

outline of the consecutive hot spot fairly well, with a few extra counties identified in this 

category. As with the Lyme disease rate, the Only Low-Low Cluster tracked the outline of the no 

detected pattern category. There were 80 counties (69% of the total counties) under this 

classification. Eleven counties were classified as Only High-High Clusters, which followed the 

other hot spot locations similarly. One county (Delaware County in New York) classified as a 

Low-High Outlier was located next to a few High-High Clusters, and was detected as a hot spot 

in the hot spot map.  

 

Figure 17. Local spatial clusters and outliers for Lyme Disease Rate 
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There were minor differences between the Local Outlier maps for the count and rate of 

Lyme disease. In the Local Outlier map for Lyme disease rate (Figure 17), a smaller number of 

counties were marked as High-High Cluster in Massachusetts, which were classified as High-

High Clusters in the Local Outlier map for the disease count (Figure 16). The other major 

difference was the increase of nine counties, or 8% of the number of counties, marked as Low-

Low Cluster in the Local Outlier map of the rate compared to that of count. 

4.3. Spatiotemporal Data Analysis for Environmental Factors 

The following subsections describe the result of the spatiotemporal data analysis for the 

environmental factors. The results for climate characteristics are included in Section 4.2.1 (for 

precipitation) and Section 4.2.2 (for temperature). The result of the Emerging Hot Spot is shown, 

followed by the Local Moran’s I result. Section 4.2.3 contains optimized hot spot map for the 

forest cover data. At the end of each section is a comparison of the Lyme disease maps and each 

environmental factor. Any correlation between the maps was not taken as the cause of the Lyme 

disease hot spots; rather, the correlations were noted to evaluate if they have a positive or 

negative relationship. The basis of this process was to assess if there was any temporal trend 

through the data that was occurring in the same locations as the Lyme disease hot spots.  

4.3.1. Precipitation 

The annual precipitation data had a definite cold temporal trend during 2001 to 2015. 

Figure 18 shows the Emerging Hot Spots for precipitation. Interestingly, there were no temporal 

hot spots. In the western portion of New York, there was a decrease in precipitation over the time 

period. Several counties in this region (Niagara County, Orleans County, Monroe County, 

Genesee County, Livingston County, Ontario County, Yates County, Seneca County, Schuyler 

County, and Steuben County) were persistent cold spots that have been a statistically significant 
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cold spot with no increasing or decreasing trend for 90% of the time period. Several counties 

with decreasing precipitation trend surrounded the persistent cold spots. These sporadic cold spot 

included nine counties (Wyoming County, Allegany County, Jefferson County, Wayne County, 

Cayuga County, Cortland County, Tompkins County, Tioga County, and Chemung County). 

Besides western New York, three neighboring counties in Vermont (Grand Isle County, 

Chittenden County, and Washington County) were sporadic cold spots and two counties in east-

central New York (Schoharie County and Schenectady County) were oscillating cold spots, 

meaning there were decreasing precipitation trends in the final time period with a historical hot 

spot at one point during 2001 and 2015. No statistical significant trends (hot spots or cold spots) 

were detected for the rest of the study areas.  

 

Figure 18. Emerging Hot Spots for Precipitation 
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The local outlier analysis revealed in Figure 19 provided interesting insight into the 

precipitation trend. The majority of the map, 68 counties, was classified as multiple types, which 

shows the precipitation for those counties varied over the years. There was a distinct linear trend 

of the spread of this value through the study area. There was a collection of five counties in 

central New York that are classified as high-high cluster (Madison County, Otsego County, 

Oneida County, Herkimer County, and Fulton County). There was also one county in Vermont 

(Bennington County) and seven neighboring counties in Massachusetts (Essex County, Norfolk 

County, Bristol County, Middlesex County, Suffolk County, Plymouth County, and Barnstable 

County). These areas show where there was a statistically significant cluster of high values of 

precipitation.  

There were seven counties total that have No Significant trend. There were five scattered 

throughout New York (Chautauqua County, Onondaga County, Lewis County, Franklin County, 

and Suffolk County), and two neighboring in Massachusetts (Dukes County and Nantucket 

County). There were three total outlier counties, two High-Low outliers and one Low-High 

outlier. They were all located in New York. The High-Low outlier counties were Chenango 

County and Essex County, while the Low-High outlier is Richmond County. These show the 

neighboring values were conflicting with the precipitation values for the county. 
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Figure 19. Local spatial clusters and outliers for Precipitation 

Compared to emerging hot spots (Figure 18), spatial clustering by the Local Outlier 

Analysis (Figure 19), yielded more local variations. The large cold spot in western New York 

was almost exclusively marked as a Low-Low Cluster. A few of the sporadic cold spot counties 

were marked as Multiple Types. This meant that they have a combination of trends. There were 

two Only High-Low Outliers in New York (Chenango County and Essex County), and thirteen 

High-High Clusters scattered in New York, Vermont, and Southern Massachusetts. Surprisingly, 

there were no statistically significant hot spots that share the same locations. Other than a small 

county in New York (Richmond County) marked as Low-High Cluster, the rest of the study area 

was marked as Multiple Types. This extreme variation was intriguing when compared to the 

consistency in the Emerging Hot Spot map. 
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The trend of the precipitation Emerging Hot Spot map (Figure 18) did not overlap with 

those of the Lyme disease (Figures 14, and 15). This suggests that precipitation was not a strong 

predictor of Lyme disease. 

4.3.2. Temperature  

The overall spatiotemporal trends for the three temperature variables during 2000 and 

2015 were similar. The emerging hot spots for maximum temperature can be seen in Figure 20, 

the emerging hot spots for mean temperature can be seen in Figure 21, and the emerging hot 

spots for minimum temperature can be seen in Figure 22. The similarities of these maps will be 

addressed first, followed by their differences. One remarkable trend is that Grand Isle County, a 

small county in Western Vermont on the border of New York, was always classified as having 

no pattern detected in all three temperature maps. This was remarkable as it is in the middle of a 

contiguous cold spot. 

The northern and northeastern portions of Maine, New Hampshire, Vermont, and New 

York had a strong decreasing trend in temperature during 2000 and 2015. The majority of the 

counties in Maine and New Hampshire show persistent cold spots in the outputs of the emerging 

hot spot analysis. Surrounding the counties with persistent cold spots were those of sporadic cold 

spots throughout the four states.  

In terms of increasing trends in temperature, there were two hot spots in the southeastern 

portions of Massachusetts and New York. These hot spots areas were either persistent hot spots 

(continuously increases in temperature) or sporadic hot spots (inconsistently classified as hot 

spots). In between the cold spots and the hot spots was a string of counties with no significant 

spatiotemporal patterns of temperature detected. Generally speaking, it the data showed that the 

weather has been getting colder in the northern section of the study area, and increasingly getting 
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warmer in the southern section. This followed the logic that the temperature decreases the further 

north traveled.  

There were few differences between the maps of the emerging hot spots in the annual 

maximum temperature (Figure 20), the annual mean temperature (Figure 21), and the annual 

minimum temperature (Figure 22). The emerging hot spot map for maximum temperature 

showed sporadic hot spots throughout the most areas of Massachusetts, whereas those maps for 

mean temperature and minimum temperature were classified as persistent hot spots or 

intensifying hot spots. The sporadic hot spots of maximum temperature were also significantly 

larger in areas than those of mean and minimum temperature. The minimum temperature map 

had the only counties classified as a New Cold Spot. The two counties were Delaware County 

and Greene County, and were centrally located in New York. These minor differences in the 

maps below are why all of the temperature variables were included in the stepwise regression. 

The temperature is not consistent throughout the study area, thus the inclusion of multiple values 

allows for the possibility of one aspect of temperature correlating to Lyme disease more than 

another.  
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Figure 20. Emerging Hot Spots for Maximum Temperature 
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Figure 21. Emerging Hot Spots for Mean Temperature 
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Figure 22. Emerging Hot Spots for Minimum Temperature 

Visually, the temperature emerging hot spots (Figure 20, 21 and 22) exhibit similarities to 

the Lyme disease emerging hot spots (Figure 14 and 15). While the cold spots were not reflected 

in the Lyme disease maps, the hot spot located in Massachusetts was analogous to the hot spot 

depicted in the Lyme disease count map. The Lyme disease rate map had a small portion of the 

temperature hot spot replicated in Massachusetts (in Bristol County, Barnstable County, Dukes 

County, Nantucket County), while the rest of the Lyme disease hot spots fell under or near 

temperature cold spots. There were nine counties that were marked as cold spots, two in Maine 

(Hancock County and Waldo County), four in Vermont (Bennington County, Rutland County, 

Windham County, and Windsor County), and three in New York (Washington County, 

Rensselaer County, and Greene County). This result was the opposite of what was anticipated for 
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the relationship between temperature and Lyme disease rate. The expectation was based upon a 

negative effect of the colder weather to the tick life cycle lead to less cases of Lyme disease. 

Conversely, it was assumed warmer weather would increase cases of Lyme disease due to 

increased movement in tick populations, and the human population. This was reflected in the hot 

spot in southern Massachusetts, but not in the other Lyme disease hot spots. The lack of a clear 

correlation demonstrated there was a complex relationship between temperature and cases of 

Lyme disease.  

On the other hand, the results of local outlier analysis (or local Moran’s I) of the 

temperature variables alone showed more variation in spatial clustering (Figures 23, 24, and 25). 

There is a distinct Northeast to Southwest trend of the Low-Low Clusters. Scattered throughout 

there is a few multiple types counties, with three areas of High-High Clusters in the southeastern 

portion of Massachusetts, and the southern and western portions of New York. There is a barrier 

of counties marked as Never Significant in between the two types of clusters.  

While the number of counties in the different categories was fairly equivalent in the local 

outlier maps, there are a few differences. The mean temperature map had the only county marked 

as High-Low Outlier, which was Franklin County, Massachusetts. It was marked as Never 

Significant in the maximum temperature, and is a part of the Low-Low Cluster for minimum 

temperature. The maximum temperature local Moran’s I map had the only Low-High Outlier, in 

Greene County, New York. Greene County was marked as Never Significant in both the 

minimum and mean maps. The final difference is the minimum temperature map had more 

Never Significant and Low- Low Cluster, and less Multiple Types and High-High Cluster 

counties than the other two maps.  
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Figure 23. Local spatial clusters and outliers for Maximum Temperature 
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Figure 24. Local spatial clusters and outliers for Mean Temperature 
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Figure 25. Local spatial clusters and outliers for Minimum Temperature 

When compared to the temperature Emerging Hot Spot maps (Figures 20, 21, and 22), 

the trend of these outlier maps (Figures 23, 24, and 25) was comparable. The Northeastern 

pattern of the cold spots in the Emerging Hot Spot maps was almost exclusively Low-Low 

Clusters. The Southeastern portions of Massachusetts and New York had mostly High-High 

Clusters, with another High-High Cluster in western New York, which was similar to the hot 

spots found in the maps. 

The Local Outlier Analysis maps (Figures 23, 24, and 25), of the temperature variables 

were similar in arrangement to the Lyme disease rate and count maps (Figures 14 and 15). 

Temperature seemed to have a strikingly similar trend to Lyme disease counts, and less of a 

correlation with Lyme disease rate. However, there were still similarities with the Lyme disease 
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rate maps. Lyme disease rate Local Outlier Analysis map had smaller groups of High-High 

Clusters, and more overall Low-Low Clusters. Lyme disease case count overlap closely with the 

mean temperature and minimum temperature Local Outlier maps. The main differences were a 

few Low-High Clusters, and less Never Significant areas in the Lyme case counts. It is possible 

temperature was a better predictor in true case counts as opposed to the incidence rate of Lyme 

disease. However, the Lyme disease rate is a more robust analysis variable. 

4.3.3. Spatial Data Analysis Results for Forest Cover  

The Optimized Hot Spot Analysis tool was used for the forest cover variable, as there 

was only one year of data available for each county (Figure 26). A sizeable contiguous hot spot 

area, comprised of 63 counties, was found from the eastern New York border all the way to 

Maine. Several cold spot areas were found in the southern and western portions of New York, 

the southeastern portion of Massachusetts, and a section on the eastern Maine coast. These areas 

consisted of 42 counties, or 36% of the study area. Scattered intermittently throughout were 11 

counties that were not statistically significant for either hot or cold spots.  
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Figure 26. Optimized Hot Spots for Forest Cover Coverage 

The visual comparison of the Lyme disease hot spots map (Figure 14 and 15) and the 

forest cover hot spot map (Figure 26) indicated an important correlation between the two 

variables. The six of the counties marked as hot spots in the Lyme disease maps corresponded to 

cold spots in the forest cover map. The counties that were classified as cold spots were Knox 

County, Lincoln County, Barnstable County, Bristol County, Dukes County, and Nantucket 

County. The first two counties were located in eastern Maine, and the last four in southeastern 

Massachusetts. Of the fourteen other counties marked as hot spots in the Lyme disease rate map, 

two counties in Maine were marked as not significant, and twelve were marked as hot spots in 

the forest cover map. The original relationship for areas with higher forest cover was a higher 

correlation to areas with more cases of Lyme disease. However, it appears that the relationship 
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was not as clear as expected. This could be due to an increased population in the areas with 

lower percentages of forest cover.  

4.4. Lyme Disease Models 

The final segment of the project results included the model selection. The OLS regression 

results and the final regression model were described. Selected models are demonstrated in 

section 4.4.1. For the complete list of models, see Appendix B. A residual analysis result was 

conducted to present how well the final model fit.  

4.4.1. Stepwise Regression Model for Lyme Disease Rates 

The methods chapter described the backwards stepwise regression that was completely 

run twice. After the first iteration, it was determined that more variables were needed to improve 

the accuracy of the model. The second iteration included the additional variables. From the 

stepwise regressions, there were five regressions determined to fit the data best:  

• OLS 3 Model: Precipitation & Max Temperature 

• OLS 5 Model: Year, Longitude, Latitude, Precipitation, Mean Temperature, 

Maximum Temperature, Minimum Temperature, Forest Cover 

• OLS 9 Model: Year, Longitude, Latitude, Mean Temperature, Max Temperature, 

Forest Cover 

• OLS 12 Model: Year, Longitude, Latitude, Max Temperature 

• OLS 13 Model: Year, Longitude, Latitude, Mean Temperature 

These regressions are shown in Table 6.  
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Table 6. Summary of test results selected models 

 OLS 3 OLS 5 OLS 9 OLS 12 OLS 13 
Dependent 
Variables 

Precipitation, 
Maximum 
Temperature 

Year, 
Longitude, 
Latitude, 
Precipitation, 
Mean 
Temperature, 
Maximum 
Temperature, 
Minimum 
Temperature, 
Forest Cover 

Year, 
Longitude, 
Latitude, 
Mean 
Temperature, 
Maximum 
Temperature, 
Forest Cover 

Year, 
Longitude, 
Latitude, 
Maximum 
Temperature 

Year, 
Longitude, 
Latitude, 
Mean 
Temperature 

Variance 
Inflation 
Factor> 7.5 

Yes No No Yes Yes 

Statistically 
Significant 
Coefficients 

Yes No Yes Yes Yes 

Jarque Bera 
not 
Significant  

Yes Yes Yes Yes Yes 

Koenker 
Test 
Significant 

No No No No No 

Residuals 
Correlated 

Yes Yes Yes Yes Yes 

AICc 22544.586 22310.362 22308.602 22328.280 22312.169 
Adjusted R-
squared 

0.029 0.1462 0.1465 0.1365 0.1440 

 

With the exception of the OLS 5 model, the partial coefficients for all of the independent 

variables had the anticipated signs (+ or -) and were statistically significant. The Variance 

Inflation Factor (VIF) of the OLS 5 and OLS 9 models are significantly over 7.5, indicating the 

considerable variable redundancy (or collinearity). Once those variables were removed, the 

values of the VIF became acceptable (< 7.5) in the OLS12 and OLS 13 models. All five models 

passed the Jarque Bera test and the Koenker Test, but the residuals were still spatially 

autocorrelated. This indicates no model bias and the stationary relationships between the 
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explanatory variables and the Lyme disease rate, but there is likely regression misspecification, 

meaning some key explanatory variables are missing. Stationarity refers to the consistent 

relationship with Lyme disease in reference to geography and time period.  

The presented regression models were chosen to show the increased capability of the 

regression model by adding more variables. OLS 3 was the result from the first complete 

stepwise regression and showed that only approximately 3% of the Lyme disease rate was 

explained by the regression. While OLS 5 did not pass the majority of the model checks, it was 

included to show the substantial increase in the Adjusted R-squared, and the decrease in the 

AICc from OLS 3. In OLS 5 and OLS 9, there was a high VIF due to the multicollinearity 

between the mean temperature and maximum temperature. The VIF check was passed when only 

one temperature variable was included in the model. This is shown in OLS 12 and OLS 13.  

The final model choice was between OLS 12 and OLS 13. The results were sufficiently 

comparable that either model could have been selected. There was an improvement of than 1% in 

the Adjusted R-squared of OLS 13, which was selected as the ultimate regression model. This 

model was picked as the overall best fit with the variables available.  

The regression results were different than expected. Precipitation and forest cover had a 

smaller effect than anticipated. The anticipated relationship with higher precipitation leading to 

more cases of Lyme disease (due to increased host and habitat survivability) was not found. The 

location (longitude and latitude) and time (year) were consistently significant, showing spatial 

locations and time were noteworthy predictors to Lyme disease. Temperature was a significant 

predictor itself, but the inclusion of other variables determined which aspect of temperature was 

significant in the different regressions. Overall, the regression models in this study did not 

explain a sizeable portion of the variance of the Lyme disease rate. Other (natural or human) 
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environmental variables might increase model performance. Other types of modeling techniques 

(e.g. Poisson regression) should also be considered for Lyme disease model prediction.  

The OLS 13 model was selected to be the final Lyme disease model. The full OLS 13 model 

equation is as follows:  

y = - 4057.99 + 3.56X1 + 12.42X2 – 42.05X3 – 6.69X4 + 0     eq. 8 

4.4.2.  Residual Analysis Results for the Lyme Disease Models 

The residual analysis was included to evaluate the model performance. This consisted of 

statistics of the residuals, a residual plot, and a residual map. Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), and Mean Bias Error (MBE) were calculated for both OLS 12 and 

OLS 13 (Table 7). The results displayed that OLS 13 was overall the model with the least errors 

and thus the best choice of the Lyme disease model.  

Table 7. Residual analysis results 

                              Models 

Residual Analysis 
OLS 12 OLS 13 

RMSE 98.79 98.36 
MAE 51.10 52.23 
MBE -3.36 -2.59 

 

The RMSE, as a measure of accuracy determined which model with the smallest error for 

the dataset. When comparing OLS 12 and OLS 13, the latter had a marginally smaller RMSE. To 

determine the best overall model, the next two residual statistics were then examined. The 

comparison of the two models with MAE, a measure of the average absolute difference between 

the observed values and the predicted values, showed a slightly smaller MAE of OLS 12 than 

that of OLS 13.  
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The final residual statistic MBE for the overall bias of the model was then evaluated. It is 

important to note that the positive and negative difference could cancel out in MBE, displaying 

whether the model uniformly over- and under-estimated. Both models had a negative MBE, 

indicating that the model over-estimated the Lyme disease rate more than it under-estimated the 

rate. The OLS 13 model had MBE closer to 0, which was the ideal balance between the counties 

with over-estimated Lyme disease rate and those with under-estimated rate. This supports the 

previous statement that the OLS 13 model was the better fit than OLS 12. However, the 

differences between the two models were marginal, thus choosing OLS 13 over OLS 12 would 

not result in a pronounced improvement.  

The residuals were also plotted against the predicted values (Figure 27). This plot shows 

that the model can be improved based on the dispersion of the residuals. The residual plot is not 

evenly distributed vertically, they have clear outliers, and they have a distinct linear trend. The 

plot is showing heteroscedasticity, meaning the residuals are getting larger as the prediction 

values increase. This indicates there is another variable influencing the incidence of Lyme 

disease that is not included in the regression equation.  



79 
 

 

Figure 27 Residual plot 

The final step of the residual analysis was to create a residual map (Figure 28). This 

was created to show the disparity in the predicted versus actual values of Lyme disease in OLS 

13. The areas in blue show the locations where the model over-predicted the Lyme disease rate. 

Conversely, the areas in red show the locations where the model under-predicted the Lyme 

disease rate. Overall, there were 25 counties (or 22%) marked as under-predicted, and 43 

counties (or 37%) marked as over-predicted.  
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Figure 28. Residual Hot Spot Map for the study area 

The dispersion of the residual hot spots showed the relationship with the Lyme disease 

rate. The areas marked as under-predicted (the hot spots) are very close to the locations marked 

as hot spots for the Lyme disease rate. Of the 25 counties marked as under-predictions, 14 of the 

counties were classified as hot spots in the Lyme disease rate hot spot map (Figure 15). The 

predicted values of the counties identified as hot spots in the Lyme disease hot spot maps was 

not expected to be accurate; however, the discrepancy was greater than expected. The over-

predicted counties in the residual hot spot map do not correlate with the Lyme disease rates.  

Overall, the final Lyme disease model showed Latitude with the greatest coefficient (-

42.05), indicating lower latitudes correlated with a higher incidence rate. The Longitude of the 

counties was the second driver for the Lyme disease rate in the model, with a coefficient value of 
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12.4, indicating lower longitudes (or more eastern locations) correlate with a higher Lyme 

disease incidence. The mean temperature had a partial coefficient of -6.69 in the Lyme disease 

model, meaning that lower mean temperature correlates to higher incidence rates of Lyme 

disease. The variable year, which had a correlation coefficient of 3.56, was positively correlated 

with Lyme disease incidence and consistent with the increasing trend of Lyme disease incidence.  

While the results of the residual analysis showed that the OLS 13 model had the best fit, 

the model only explained 14.4% of the variance in the Lyme disease rate. Overall, locations 

(latitude and longitude) were found to be the most influential variables for Lyme disease 

incidence. The mean temperature and the year were also influential, but were significantly less 

influential than location. Despite the lack of variance explained, the predicted Lyme disease map 

was created and the correlation between the variables and Lyme disease incidence were 

established for this study.  
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Chapter 5 Conclusions 

The spatiotemporal analyses conducted in this study have provided vast insights into the 

correlation of Lyme disease and the selected environmental factors over space and time. This 

chapter provides a summary of the outcomes. Also included in this chapter are the major 

limitations in the study design with a discussion of future directions of the study.  

The overall aim of the project, to understand the spatiotemporal relationships between 

Lyme disease and environmental factors, has been met. The rate of Lyme disease has previously 

been established as rising in the majority of the counties in the study area over the period of 2000 

and 2015. This study found there were exceptions of to this trend. The exceptions were the 

declining trend of the Lyme disease in seven (7) counties. These counties, including Columbia 

County, Dutchess County, Nassau County, Orange County, Putnam County, Suffolk County, and 

Westchester County, were all located in the southeastern portion of New York. Within the seven 

counties, Columbia County was identified as a diminishing hotspot for the Lyme disease rate as 

well.  

 Three subregions of the study area contained the Lyme disease rate emerging hot spots. 

The largest area of the Lyme disease hot spot was centrally located at the juncture of New York, 

Vermont, and Massachusetts. It included six counties from New York, four counties from 

Vermont, and two counties from Massachusetts. The hot spots were a mix of consecutive hot 

spots, persistent hot spots, diminishing hot spots, and sporadic hot spots, indicating various 

changes in the temporal trend of Lyme disease in this subregion. The temporal neighbors are not 

consistent for each county throughout the study period.  

 The spread of the other two hot spot areas were confined to the eastern seaboard of the 

study area. Four counties in the southeastern portion of Maine were classified as consecutive hot 
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spots, indicating a statistically significant probability of Lyme disease in this area. Another four 

counties in the southernmost tip of Massachusetts also showed statistical significance in the 

probability of Lyme disease, but the temporal distributions vary.   

The regression model of Lyme disease indicated precipitation and maximum temperature 

being the two significant environmental variables for Lyme disease incidence. When considering 

spatial (longitude and latitude) and temporal (year) variables, however, precipitation is no longer 

significant, and mean temperature became significant. The independent variables of our final 

Lyme disease model included year, longitude, latitude, and mean temperature. Spatial locations 

were overall the most critical drivers for the Lyme disease.  

Because the R-squared of the Lyme disease model is fairly low (14.4%), this model is a 

suitable inferential model, as it indicated important variables that influence Lyme disease. Lower 

latitudes are correlated with higher incidence rates and more eastern locations (less negative 

longitude) are correlated with higher Lyme disease rates. In terms of climate, lower mean 

temperature attributes to the higher incidence rate of Lyme disease. Time (year) is positively 

correlated with Lyme disease incidence, which is consistent with the increasing temporal trend of 

Lyme disease incidence.  

5.1 Limitations 

 There were several limitations in the project design and analysis. The main limitation was 

the use of aggregated data in the county level. Due to health privacy laws, the use of aggregated 

data is more accessible. However, the use of aggregated data decreases the power of the analysis. 

The spatial relationships of the Lyme disease incidence and the environmental factors might 

have been weakened due to this scale problem. The other data aggregation limitation is the 

aggregation of climate data. Climate data used for this study are spatially interpolated data from 
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weather stations. Using only one point per county as the climate variable might lessen the 

accuracy of the climate data. Unfortunately, the aggregation of county-level data did not allow a 

raster input for the entire interpolated area, which limited the actual distribution of climate data 

being included. 

Another limitation is the overall data quality. The Lyme disease case counts as published 

by the CDC is unable to provide an accurate location or date of diagnosis. It also represented 

where the disease case was diagnosed but not where it was contracted. A case of Lyme disease 

can be contracted in one county, but diagnosed in another. A second data quality example is the 

lack of temporal variation of the forest cover data. It was necessary for the estimation of a land 

use variable, however the availability of merely one year of data hampered the estimation of the 

true temporal correlation. The final data quality issue is the missing data for few counties in the 

PRISM climate data. All of these limitations restricted the accuracy of the results, but were 

addressed as effectively as possible.  

Another study limitation is the data accuracy from various sources. This is related to the 

data quality issue. The data used in the study were all secondary data that might contain 

unknown measurement errors and bias. This error problem might be reduced if the data 

collection was designed with the research objectives and done by the researcher. It was not 

possible for this study due to time constraints and lack of resources.  

5.2 Future Directions and Implications 

The study can be enhanced in multiple directions in the future. First, the study area can be 

expanded to include the states of Connecticut and Rhode Island. There are hotspots identified 

near the border of New York and Massachusetts, where Rhode Island and Connecticut are 

located. Including this spatial neighbor will help understanding the important spatiotemporal 
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trend of this area. The two states were excluded in this study for the concern of data processing 

time. By adding the total 14 counties of these two states, the number of county-year polygons to 

be analyzed would have increased to 224 instead of 116.  

The next future direction will be to look at the areas that were notably different from 

other counties in the study. This can include any hot spot or Low-High Outlier areas. For 

example, by investigating the Low-High Outlier such as Delaware County, New York the reason 

behind the dynamics of Lyme disease rate can be further realized. The possible reasons could be 

either related to natural resources (e.g. fewer habitats available for ticks to survive), or related to 

human practices (e.g. better prevention methods). 

Last but not least, a future direction can also be to investigate more variables related to 

tick habitat environment, particularly critical thresholds related to tick’s survival. Determining 

the bounds of tick survivability would increase the ability to predict when an influx of Lyme 

disease may occur. When the environment is suitable for ticks, it would amplify the possible 

number of cases for that year and the year after. Studying the conditions of what a tick needs to 

survive, and what would kill a tick could inform possible tick epidemic in advance and prevent 

cases of Lyme disease from being contracted.  

The Lyme disease models built in this study brought several benefits. It provides the 

guidance to public health officials in creating and distributing accurate preventative measures to 

the general public. The public health department can also benefit from this study to increase the 

knowledge and known qualities of Lyme disease. The spatiotemporal correlations between Lyme 

disease and the environmental factors identified in this study also can be used to educate the 

general public to be aware of the possible endemic areas and the environment of contracting 

Lyme disease. 
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Appendix A Lyme Disease Rate Hot Spot Classifications 

County State Classification Hot Spot 

Hancock County Maine Consecutive Hot Spot Eastern (2) 
Knox County Maine Consecutive Hot Spot Eastern (2) 

Lincoln County Maine Consecutive Hot Spot Eastern (2) 
Waldo County Maine Consecutive Hot Spot Eastern (2) 

Barnstable County Massachusetts Sporadic Hot Spot Southern (3) 
Berkshire County Massachusetts Diminishing Hot Spot Central (1) 

Bristol County Massachusetts Consecutive Hot Spot Southern (3) 
Dukes County Massachusetts Intensifying Hot Spot Southern (3) 

Franklin County Massachusetts Sporadic Hot Spot Central (1) 
Nantucket County Massachusetts Intensifying Hot Spot Southern (3) 

Albany County New York Persistent Hot Spot Central (1) 
Columbia County New York Diminishing Hot Spot Central (1) 

Greene County New York Persistent Hot Spot Central (1) 
Rensselaer County New York Persistent Hot Spot Central (1) 

Ulster County New York Diminishing Hot Spot Central (1) 
Washington County New York Consecutive Hot Spot Central (1) 
Bennington County Vermont Consecutive Hot Spot Central (1) 

Rutland County Vermont Consecutive Hot Spot Central (1) 
Windham County Vermont Consecutive Hot Spot Central (1) 
Windsor County Vermont Consecutive Hot Spot Central (1) 
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Appendix B Ordinary Least Squares Models 1 to 13 

 Variables ß 
Sign 

ß 
Sig 

VIF Jarque 
Bera 
Sig 

A R2 AICC Residuals  Koenker 
Sig  

OLS 
1 

Ppt, Min T, 
Mean T, Max 
T 

No No No Yes 0.0290 22546.035 Yes No 

OLS 
2 

Ppt, Mean T, 
Max T 

No No No Yes 0.0291 22544.890 Yes No 

OLS 
3 

Ppt, Max T Yes Yes Yes Yes 0.0288 22544.586 Yes No 

OLS 
4 

Year, 
Longitude, 
Latitude, Ppt, 
Min T, Mean 
T, Max T, 
Forest Cover 

No No No Yes 0.146 22312.848 Yes No 

OLS 
5 

Year, 
Longitude, 
Latitude, Ppt, 
Mean T, Max 
T, Forest 
Cover 

No No No Yes 0.146 22310.362 Yes No 

OLS 
6 

Year, 
Longitude, 
Latitude, Ppt, 
Max T, Forest 
Cover 

No No Yes Yes 0.137 22329.543 Yes No 

OLS 
7 

Year, 
Longitude, 
Latitude, Ppt, 
Mean T, Forest 
Cover 

No No Yes Yes 0.144 22314.274 Yes No 

OLS 
8 

Year, 
Longitude, 
Latitude, Min 
T, Mean T, 
Max T, Forest 
Cover 

No No No Yes 0.146 22310.042 Yes No 

OLS 
9 

Year, 
Longitude, 
Latitude, Mean 
T, Max T, 
Forest Cover 

Yes No Yes Yes 0.147 22308.603 Yes No 
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OLS 
10 

Year, 
Longitude, 
Latitude, Mean 
T,  Forest 
Cover 

Yes No Yes Yes 0.144 22312.281 Yes No 

OLS 
11 

Year, 
Longitude, 
Latitude, Max 
T, Forest 
Cover 

Yes No Yes Yes 0.137 22327.758 Yes No 

OLS 
12 

Year, 
Longitude, 
Latitude, Max 
T,  

Yes Yes Yes Yes 0.137 22328.280 Yes No 

OLS 
13 

Year, 
Longitude, 
Latitude, Mean 
T 

Yes Yes Yes Yes 0.144 22312.169 Yes No 

ß - partial coefficient  
Sig - Significant  
Ppt - Precipitation 


