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Abstract 

This study compares the use of cadastral land use data with remotely sensed land cover data for 

urban sprawl studies using the Shannon’s Entropy spatial metric. Many rapidly urbanizing 

countries lack the technological or economic infrastructure necessary to establish and maintain 

digital cadastral systems, so remotely sensed land cover data may be a viable option for 

performing urban growth and urban sprawl studies due to its accessibility, cost, and thematic 

consistency. Shannon’s Entropy is a commonly used metric for measuring sprawl in regions 

outside of the United States, where cadastral data is not available. Few studies have compared 

land cover and cadastral land use data using Shannon’s Entropy as the main comparison metric. 

The study uses Model Builder in ArcGIS to perform Shannon’s Entropy calculations on the 

metropolitan areas of Minneapolis and Chicago during the period from 2000 to 2011. The 

calculation uses the proportion and dispersion of low-density land development within the study 

area to quantify sprawl. The study cities are divided up into buffer zones, and the proportion of 

low density land development is measured for each zone. This study found that there was no 

significant difference between the Shannon’s entropy results between land use and land cover. 

The results suggest that land cover data may be suitable for urban footprint studies in regions 

where cadastral data is not readily available or otherwise unavailable. This study also found that 

both metropolitan areas had high entropy values, but entropy did not significantly increase over 

the study period. These results help inform the broader literature on usable data types for urban 

footprint studies, as well as the use of Shannon’s entropy for such studies.  
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 Chapter 1  Introduction 

A world demographic shift is occurring as cities and towns promise new opportunities for 

personal development, upward mobility, and greater access to social infrastructures and services. 

In this shift, villagers and rural inhabitants are moving towards urban areas and shape the urban 

environment, leaving footprints in the form of vertical cities and sprawling metropolises. The 

world’s urban population grew from 746 million people in 1950 to 3.9 billion people in 2014 

(United Nations 2014). The world’s urban population surpassed the rural population for the first 

time in 2008, marking a widespread shift in lifestyle choice throughout the world. Among the 

countries leading in population growth and urbanization are India, China, and Nigeria. This rapid 

rate of urbanization prompts an urgent need to manage growth to account and prepare for 

emergency management, disaster preparedness, and public health issues that may arise.  

While China is in the process of developing GIS-based cadastral land management 

systems (Guo et al. 2013), many more countries are also growing and urbanizing, and lack the 

necessary funds to maintain comprehensive digital cadastral systems. When they do exist,  

digital cadastral data for urban growth studies in many developing countries may be out of date, 

have low data quality, or may be inaccessible due to political or economic reasons.  

Remotely sensed data taken with satellite imagery may be a strong alternative to cadastral 

systems in terms of accessibility, temporal frequency, and data processing. Satellite sensors are 

rapidly improving, and some countries have begun to examine the use of remote sensing data as 

an alternative to traditional ground-based surveying or as a supplement to existing cadastral data 

(Zahar 2012). This study hopes to provide insight for researchers and city planners to anticipate 

and plan for the changing landscape of growing urban areas in developing countries around the 

world.  
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 1.1 Motivation 

Measuring urban growth around the world is crucial for understanding how human 

populations affect the natural environment as urban areas continue to grow and expand. This 

thesis project compares remote sensing imagery with cadastral data using the spatial metric of 

Shannon’s Entropy. Shannon’s Entropy is a metric that measures dispersion of a variable within 

a system (Yeh et al. 2001). 

This study examines some of the fastest growing metropolitan areas of the United States: 

the Minneapolis-St. Paul-Bloomington, MN Metro Area, and the Chicago-Naperville-Elgin, IL-

IN-WI Metro Area (U.S. Census Bureau 2011).  

This project gives insight into the growth patterns of these two metropolitan areas, noting 

whether these areas are growing in dispersed or compact manners. Despite the fast rates at which 

cities within the study areas are expanding, other cities around the world are, on average, 

growing at much faster rates than cities within the U.S. (U.S. Census Bureau 2016). Although 

this study focuses only on two metropolitan areas in the United States, the results of this study 

may provide insight into the data sources needed to adequately measure urban growth and 

expansion in other countries. The time period selected for the study includes the years between 

2000-2011, an 11-year span during which significant economic events such as the Great 

Recession occurred. Data from the years 2000-2011, 2005-2006, and 2010-2011 are used in this 

study. 

Several methods of quantifying changing land cover patterns from urban growth using 

remote sensing are widely used outside of the U.S. (Masoumi 2015). These include transition 

matrices, spatial metrics, spatial statistics, Shannon’s entropy (Dadras et al. 2015; Bhatta 2010; 

Sun et al. 2007). This is because many countries outside of the U.S. lack the organizational or 
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 technological infrastructure needed for developing and maintaining cadastral data (Effat et al. 

2015). While the United States uses accurate parcel-level vectors to monitor urban growth, the 

use of remote sensing may be a more cost- and time-effective approach to monitoring urban 

growth than traditional field surveying methods (Herold et al. 2005).  

In the United States, individual counties keep parcel-level data on all land, including built 

and unbuilt parcels (National Research Council 2007). The data are thematic and commonly 

include parcel numbers, acreage of the parcel, property address, and property description. 

Though most counties keep records in digital databases, some rural counties still exclusively use 

paper maps to maintain parcel data. Counties that do use digital records typically store the data 

within a GIS database.  

The results of this study may be useful in the U.S., as we as other countries that do have 

digital cadastral records, due to the potential lack of uniform data coverage across all regions of a 

country. In the U.S., historical information about individual parcels may be recorded in paper 

records, but are not necessarily retained in the county GIS databases. For example, several 

emails requesting digital copies of historical land use information were sent to the County of 

Riverside and the state of Massachusetts for this project. A representative from the County of 

Riverside had replied stating that only the most current land use records are retained (Riverside 

County Information Technology 2016). Additionally, a representative from the Massachusetts 

Office of Information Technology stated that land use data had not been maintained after 2005.  

The US does not have a nationwide parcel database system (National Research Council 

2007). This means that record-keeping is conducted at the county or state level, which introduces 

inconsistencies across administrative boundaries. One of the many applications of parcel data is 

for classifying how each land parcel is being used, suitably named land use data. Land use data is 
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 an added field or set of fields to parcel vector data describing what the land is being used for, 

such as a parcel being used for a school or for a shopping center. Land use can be determined 

using administrative records, aerial imagery, or a combination of both administrative records 

supplemented by aerial imagery.   

Many different types of land uses exist, and land uses can vary regionally. Some cities 

may have very broad land use categories, while others may subdivide land uses into more 

specific categories, such as dividing educational institutes into high schools or colleges. Land use 

classifications may not be consistent between counties, and data release frequency may differ 

between counties. Thus, using parcel-level vector data to compare land use change and urban 

growth at regional, state, or national levels may be irregular and yield unreliable results for 

models (Hurtt et al. 2001).  

Until a nationwide land parcel system can be developed, land use and land parcel data 

will remain inconsistent across administrative boundaries. The alternative for inter-county or 

inter-state urban growth studies, therefore, is to use nationally consistent, pre-classified satellite 

imagery such as land cover data from the National Land Cover Database (NLCD). Land cover 

data describes the physical characteristics of the earth’s surface, such as water, forest, or 

manmade structures. Land cover data can be classified using remotely sensed satellite or aerial 

imagery.   

Depending on the resolution of the sensor, satellite imagery can show how land cover 

changes from fine to coarse spatial and temporal scales. For example, high spatial resolution 

sensors can capture detailed imagery from areas as small as a meter. High temporal resolution 

sensors can capture imagery almost daily, potentially allowing for more frequent land cover 

change analyses. Unlike land use data, satellite imagery ignores socio-political boundaries, 
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 allowing regional, state, and national areas to be consistently compared. Land cover definitions 

are standardized throughout the US, and the temporal frequency of image acquisition also allows 

for uniform comparison between different socio-political areas (Homer et al. 2004). 

Satellite remote sensing offers an efficient, cost-effective, and accessible method of 

gathering data on land cover (Longley et al. 2002). Analyzing the existing patterns of land cover 

can provide clues regarding where growth is occurring the most and can help provide a basis for 

studies to predict where growth is likely to occur. The spatial metric of entropy can provide 

insight into the dispersion pattern of urban sprawl in urbanizing regions.  

Using remote sensing methods to observe urban sprawl may also supplement or replace 

existing parcel-level observations. The use of pre-classified satellite imagery for observing urban 

sprawl may be more efficient than the use of parcel-level data. This study compares the efficacy 

of using remote sensing data with the efficacy of using vector parcel data in urban footprint 

studies. By analyzing both the land use and land cover change in the study area in the context of 

urban sprawl, this study aims to measure and compare the two sources of data for measuring 

urban sprawl. This concept is tested using Shannon’s Entropy, a spatial metric that quantifies 

urban sprawl by measuring dispersion of low density built residential areas. The secondary goal 

of the study is to observe and describe the sprawl patterns in the study area.  

1.2 The Study Area 

The Minneapolis and Chicago metropolitan areas were chosen as study areas based on 

national census rankings of fastest growing and most populous metropolitan areas. The 

Minneapolis metro area is the sixteenth most populous metropolitan statistical area (MSA) in the 

U.S., and the Chicago metro area is the third most populous MSA in the U.S. Selection criteria 
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 for the study area also included data availability for the period from 2000-2011 and that the city 

footprint be centered around a high-density urban core.  

The study examined county, state, and city websites of the major metropolitan areas 

listed in the 2010-2013 US Census population change documentation to find historical land use 

data (US Census Bureau 2013). Many MSAs, states, and municipalities lacked historical land use 

data in any format, whether in spatial or in tabular format. The San Bernardino-Riverside-

Ontario MSA had historical land use for the study period, but was too multi-nodal in terms of an 

urban high density core to perform Shannon’s Entropy without too many confounding variables. 

Of the major metropolitan areas throughout the United States, only the Chicago and Minneapolis 

metro areas matched the criteria of population growth, data availability, and a central urban core. 

The Minneapolis-St. Paul-Bloomington, MN metropolitan area is the sixteenth most 

populous MSA in the U.S. and has a population of 3,524,583 residents (US Census Bureau 

2015). The Minneapolis-St. Paul area is known as the Twin Cities for the two cities that occupy 

the area, Minneapolis and St. Paul. The MSA occupies 16 different counties, 14 of which are 

located in Minnesota and two of which are located in Wisconsin. The most populous county in 

the region is Hennepin County, which includes the city of Minneapolis. The Mississippi and 

Minnesota rivers run through the MSA, and a number of lakes can be found throughout the 

region. Major industries in the state of Minnesota include bioscience, manufacturing, data 

centers, and renewable energy (Minnesota Department of Employment and Economic 

Development 2016). The population of the MSA was 2,969,000 in 2000 and 3,348,859 in 2010, 

marking a 12.79% overall increase in the population within the ten-year span. No physical 

deterrents to growth, such as large bodies of water or mountains exist in the Minneapolis MSA. 

This means that growth can potentially spread in all directions.  
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Figure 1. Minneapolis study area, with buffer zones displayed. 

1.2.1. About the Chicago-Naperville-Elgin metropolitan statistical area 

The Chicago-Naperville-Elgin, IL-IN-WI metropolitan area is the third most populous 

metropolitan statistical area in the United States and is home to 9,551,031 residents (US Census 

Bureau 2015). The city of Chicago is the third most populous city in the United States. The MSA 

is located on the southwestern end of Lake Michigan in Illinois, and partially stretches into the 

neighboring state of Indiana. The Chicago and Calumet rivers run through the MSA. Major 

industries include auto manufacturing, biotechnology, business services, and energy (Illinois 
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 Department of Commerce & Economic Opportunity 2016). The population of the MSA was 

8,182,000 in 2000 and was 9,461,105 in 2010, marking a 15.63% overall increase in the 

population from 2000 to 2010. Unlike the Minneapolis MSA, the growth of the Chicago MSA is 

physically limited by Lake Michigan to the east. Although the goal of the study does not involve 

comparing between the two study areas, the physical composition of the study areas provide 

contrast between an area that appears to be sprawled in all directions, versus an area whose 

growth is physically limited in one direction.  

 

Figure 2. Chicago metropolitan area study area, with buffer zones displayed.  
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 Despite the existence of literature related to urban growth analysis using remote sensing 

techniques, few or no studies have been conducted on the metropolitan areas of Chicago or 

Minneapolis using remote sensing. Furthermore, although several studies document the use of 

remote sensing in conjunction with cadastral data, few studies have compared land cover with 

land use data for urban growth studies in the United States (Irwin 2003; Wu et al. 2009). This 

study builds on past research on remote sensing for urban growth analysis to observe the growth 

of the two metropolitan areas in the 10-year span from 2001 to 2011. 

1.3 What is Shannon’s Entropy? 

In physics, entropy is a measure of disorder or randomness in a system. The second law 

of thermodynamics states that in a closed system, the entropy of the system never decreases, but 

rather is inclined towards a state of thermodynamic equilibrium, where various physical and 

chemical properties are at equilibrium. Maximum entropy, or maximum dispersion, is at 

thermodynamic equilibrium.  

Shannon (1948) employed the concept of entropy to measure the uncertainty of a 

variable. This uncertainty is expressed as the average expected value of information contained in 

a message. Information can be defined as the negative log of the probability distribution of 

outcomes. The probability distribution is the set of all discrete probabilities. The logarithmic 

function is used because many variables in information science have been observed to vary 

linearly with the logarithm of the number of possibilities (Shannon 1948). The sum of all discrete 

possibilities or probabilities is equal to 1.  

Shannon’s Entropy values ranges from the minimum value of 0 to a maximum value of 

log(n). A value of 0 indicates that the variable being studied is maximally concentrated in a 

single area, and a value of log(n) indicates that the variable is evenly dispersed across the entire 
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 study area. Dividing the value of Shannon’s Entropy by log(n) results in the relative Shannon’s 

Entropy, which scales the possible range of entropy values from 0 to log(n) to 0 to 1. This 

rescaling allows for comparison between different zone sizes and number of zones. The relative 

Shannon’s Entropy value is used in this study for comparison between the land cover and land 

use data.     

Entropy in the context of spatial science measures dividedness, “the extent to which some 

total population is evenly distributed among its component parts” (Thomas 1981). Urban sprawl 

can be measured in the study using Shannon’s entropy to determine whether growth has occurred 

in a more concentrated or dispersed manner. This study executes Shannon’s Entropy measure on 

pre-classified NLCD imagery, which should allow for greater consistency of results than 

executing manual classifications of land cover data. This study also executes Shannon’s Entropy 

measure on vector land use data acquired from the Chicago Metropolitan Agency for Planning 

and the Open Data Minneapolis websites for comparison between the different data types. No 

existing studies have measured entropy using pre-classified NLCD imagery, and most existing 

studies that have employed the Shannon’s Entropy method focus on study areas in Central Asia, 

China, or Egypt. These studies use classification schemes similar to that of the NLCD.  

Shannon's Entropy is the key method for measuring the magnitude and pattern of urban 

land use and land cover in this study. By identifying the entropy values of the variable that 

represents low-density urban land in the region, this research provides a starting point for 

decision-makers who can interpret the results and implement political, economic, and physical 

strategies for managing the urban footprint accordingly. The study can also serve as a basis for 

future studies seeking to quantify urban sprawl using Shannon’s entropy method for metropolitan 

regions in the U.S.  
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 1.4 Thesis Organization 

Chapter 2 discusses the definition of urban growth and urban sprawl and examines past 

studies of urban sprawl using the Shannon’s Entropy metric. Chapter 3 details the procedures 

used to process the data and calculate Shannon’s Entropy. Chapter 4 describes the results of the 

study and provides insight into the implications of the study. Chapter 5 provides a guideline for 

future work that can improve upon or be derived from this study.  
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 Chapter 2 Related Work 

Urban growth and urban sprawl are concepts that are inconsistently defined and measured. The 

purpose of this chapter is to examine and critically evaluate several studies quantifying urban 

growth and, specifically, sprawl. This chapter helps to situate the current study amongst the 

broad spectrum of urban footprint studies. The chapter first examines cadastral approaches to 

measuring urban growth in the United States and Europe. The chapter then investigates remote 

sensing approaches to measuring urban growth and sprawl. Finally, the chapter discusses studies 

using Shannon’s Entropy as the primary metric for quantifying urban sprawl. 

2.1 Urban Growth Measurement Using Cadastral Data 

Urban growth can be measured using parcel-level cadastral land use data. Change in land 

use from rural farmlands or other undeveloped land to urban or exurban residential or 

commercial uses can indicate the presence of sprawl. The definitions of the cadastre, land use, 

land cover, and urban sprawl are discussed in the following sections. 

2.1.1. About Cadastral Data and Land Use  

The casdastre refers to the comprehensive database of real property ownership 

information in a location. Cadastral systems in the US include ownership information and precise 

metes and bounds, and usually parcel value or other relevant information about the parcel. In the 

United States, cadastral surveys involve creating associated maps, diagrams, and plats to register 

and update the parcel in the cadastral system (Esri 2016). This data is stored in a GIS and 

updated as needed. Parcel level maps, including land use maps used at the city or county level, 

can be created using cadastral data. Although general aspects of land use can be inferred from 

land cover, land use and land cover differ conceptually (Hurtt et al. 2001). Land use maps differ 
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 from land cover maps in terms of data type and concept. Land cover describes the type of land 

present, such as desert, open water, urban developed, or tundra, and land use describes how 

humans use the land. Standards for defining urban land use areas differ from country to country, 

and administrative boundaries may be larger or smaller than the actual built-up areas of cities 

(Bhatta 2010). 

2.1.2. Urban Growth and Urban Sprawl  

When humans build structures on existing rural or natural lands for residential or 

business purposes, they are changing how the land is being used. Urban growth occurs when the 

distribution of the human population shifts from being low-density village based to more high-

density city based (Clark 1982). According to Bhatta (2010), the boundary of a city or town may 

be measured through morphological or physical characteristics, or functional or economic 

characteristics.  

The subcategory of urban growth examined in this study is urban sprawl. Urban sprawl is 

a type of urban growth that describes the expansion of low-density built areas. While there is a 

lack of consensus on the official definition of urban sprawl, existing literature notes that sprawl 

is related to changes in land use that lead to poorly planned or uneven patterns of urban growth 

(Bhatta 2010). This pattern of growth exacerbates issues with traffic congestion including 

automobile dependency, increased water demand, and increased energy demand. 

Urban sprawl is associated with the dispersion of low-density urban developments across 

expanses of space (Cabral et al. 2013). However, Bhatta (2010) notes that there is “conceptual 

ambiguity” surrounding sprawl, and as a concept it “suffers from difficulties in definition.” 

While sprawl is typically characterized as outward expansion from a single narrow urban center, 

Kreuger (2012) challenges the definition of the urban center, thereby redefining the notion of 
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 how sprawl occurs around a single, highly concentrated urban core. This kind of ambiguity 

affects efforts to measure sprawl using remote sensing imagery, so Bhatta (2010) compares and 

contrasts different research efforts conducted on urban sprawl. Bhatta’s study finds that singular 

metrics to describe sprawl are often insufficient to determine if areas are sprawling. Despite the 

multitude of metrics available, the use of entropy for measuring sprawl is the most reliable and 

most widely used metric. Though sprawl may not seem difficult to identify with the naked eye, 

quantifying sprawl may be necessary to influence policy and promote sustainable urban 

development.  

For this study, the eight dimensions of sprawl defined by Galster et al. (2001) are 

assumed for the definition of sprawl: density, continuity, concentration, clustering, centrality, 

nuclearity, mixed uses, and proximity. Density is associated with the number of residential units 

per given area. Continuity refers to the fragmentation of urban developed areas. Concentration is 

the spread of development over a certain area. Clustering is the footprint pattern of development 

– whether development has been bunched together in an area of developable land. Centrality 

refers to the measure of distance and spread of developed areas away from a central business 

district. Nuclearity refers to the number and characteristic of central areas. Mixed-use refers to 

the number of common human land uses such as business and residential. Proximity describes 

the distance between different land uses. Galster states that sprawl is a “condition of land use” 

that can be characterized by the presence of low values in one or more of these eight dimensions.  

While Shannon’s Entropy does not explicitly measure each of the eight dimensions of 

sprawl, the concept of sprawl delineated by Galster is used to alleviate the ambiguity around the 

term “urban sprawl.” The study used several of the dimensions – density, concentration, 

clustering, centrality, and proximity – to determine the city center and the buffer zones that 
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 radiate outwards from the city center. The city center is an area with a high concentration of high 

density residential, governmental, and commercial land uses that are within close proximity of 

each other. These land uses are bunched together on developed land with low amounts of open or 

low density land uses. A city center often is characterized by multi-story buildings grouped 

together. The buffer zones used in this study radiate outwards from the city center, and are 

assumed to demonstrate low centrality, low density, low concentration, and low proximity 

between land uses. Shannon’s Entropy helps produce an overall picture of whether the study area 

is sprawled based on the concentration and proximity of low density land use and land cover 

classes.  

2.1.3. The role of cadastral data in land use classification and urban growth 

Irwin (2003) investigates land use change at the rural-urban fringe using parcel data in 

Calvert County, Maryland. The study reviews the conversion of non-residential rural lands, such 

as undeveloped open space and farmland, to residential lands as a measure of urban growth at the 

urban-rural fringe. She notes that there is difficulty in tracking and assessing growth in many 

communities due to the lack of historical data resources necessary for documenting growth. 

Despite these limitations, she notes that GIS and remote sensing data for land use and land cover 

studies are becoming more widespread.  

According to Wu et al. (2009), the combination of remotely sensed and cadastral data for 

land use is interpretation is already widespread many municipalities. However, updating 

cadastral land use data can require vast amounts of time and effort. Laborious manual 

digitization and extensive human resources are still required for creating cadastral data. 

Historical legacy data can create problems with inconsistent land use interpretation. Wu’s study 

proposes using a hybrid raster and vector approach to interpreting land use change. The study 
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 uses raster field-based urban land use classification approach informed by vector parcel data to 

guide interpretation. This approach is best suited for countries with established cadastral data and 

a need for faster update and interpretation of land use, because countries with data-poor 

environments would be unable to utilize this approach due to the lack of cadastral data. 

Epstein et al. (2002) explores techniques for analyzing suburban sprawl in Columbia 

County, Georgia, using both cadastral data in GIS, and Landsat 5 TM NLCD data from 1993. 

Epstein’s study conceptually mirrors the current study in that two different data sources are 

compared for a study of urban sprawl. In her study, single family dwellings of any size are 

classified as low density residential (LDR), which is the main indicator of a sprawling 

neighborhood.  

Instead of using land use vector data, however, Epstein uses road network coverage to 

identify LDR areas. The overall accuracy of correctly identifying LDR areas with the remote 

sensing data was reported to be 72.6 percent, and the accuracy of the vector data was 88.8 

percent. The study was conducted in 2002, so newer satellite sensors and improved classification 

methodologies may increase the accuracy of classifying LDR data. The study concludes that 

significantly more time was spent processing the vector datasets than for the raster datasets, but 

the time was justified due to the vector’s improved spatial contiguity and thematic accuracy. 

However, many developing countries lack the infrastructure to build and maintain cadastral 

databases. The 72.6 percent accuracy of classifying LDR data may be sufficient for urban sprawl 

studies in developing countries.  

As satellite sensors and remote sensing classification methodologies continue to improve, 

urban growth and sprawl may be more effectively monitored using remotely sensed data 

(Longley et al. 2002). Progress in the technology and methodology is likely to benefit both data-
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 poor countries, where cadastral data may be inaccurate or otherwise unavailable, and developed 

countries, where data may not be up-to-date or is inconsistently defined. For example, Zahar 

(2012) investigates the use of high-resolution satellite imagery for defining parcel boundaries 

and land use in Pakistan. The study concludes that high resolution satellite imagery may be 

viable for delineating parcels in place of traditional field-based surveys. While cadastral data is 

typically perceived to be more accurate, remotely sensed data for urban growth studies are 

gaining traction due to its temporality, availability, and lower processing and update times 

(Longley et al. 2002). 

2.2 Urban Growth Measurement Using Remote Sensing  

Myriad studies have been conducted on urban growth measurement using remote sensing 

techniques (Alsharif et al. 2015; Belal and Moghanm 2011; Bhatta 2010; Crowther 2015; 

Masoumi and Roque 2015). Urban growth is typically measured using change detection 

techniques on classified land cover imagery (Bhatta 2010). Land cover pixels are classified as 

natural or impermeable, and impermeable surfaces such as roads and buildings are considered to 

be “developed.” However, urban developed areas are more than simply impervious surfaces. 

Urban areas contain a wide range of spectral signatures due to a variety of different urban 

infrastructure materials, landscaping, and tree canopy. This wide range of spectral signatures 

creates a mixed pixel problem that is observed during the classification process for low to 

medium resolution satellites like Landsat (Pena 2012).  

Despite the limitations of the mixed pixel problem, land cover classification initiatives 

such as the NLCD have been found to be between 84-85% accurate for2001 and 2006 (Wickham 

2013). This accuracy range is acceptable for most remote sensing land cover studies and satellite 

data classification studies (Anderson et al. 1976, Ismail et al. 2008). The primary limitation of 
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 NLCD data for measuring urban sprawl includes the difficulty in measuring low-density 

residential developments in rural areas, also known as exurban development (Irwin 2007). This 

is because the low-density residential developments tend to have smaller distinctions between 

vegetative cover and impervious surfaces, thus easily confounding data that is not verified by 

ground-truthing.  

Irwin argues that finer scale land cover data would be ideal for more accurate measures 

of urban sprawl, and that NLCD data is not at the appropriate spatial scale for measuring urban 

sprawl. However, Irwin’s argument evaluates only a single urban area in Maryland, which may 

not be extendable to the rest of the nation or rest of the world. In contrast with Irwin’s argument, 

Wolman et al. (2005) finds that NLCD data can be appropriate for measuring sprawl depending 

on sensitivity of the definition of sprawl. Wolman et al. also uses Galster’s (2001) eight 

conceptual components of sprawl in their study. Additionally, studies of sprawl using similar 

Landsat data and methodologies of classification have been successful in quantifying sprawl 

(Sudhira et al. 2004; Deka 2010; Effat 2015). 

2.2.1. Studies of urban growth and sprawl using remote sensing 

Sources used in this project include Anthony Gar-On Yeh and Xia Li’s article on 

monitoring urban sprawl using Shannon’s Entropy approach, as well as R.W. Thomas’ 1981 

article on Shannon’s Entropy in the context of spatial studies. Yeh and Li’s (2001) article 

discusses the definition of urban sprawl, methods of measuring urban growth, and how sprawl 

can be analyzed using remote sensing imagery, which aligns with the goals of this project. 

Thomas’ (1981) article provides a detailed explanation of Shannon’s Entropy, and how the 

metric can be used in spatial studies. Other sources include thesis projects by Richard Crowther 
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 (2015) and Eric Pena (2012). Both Crowther’s and Pena’s studies provide a local view of urban 

land use change. 

Crowther (2015) uses NLCD data from 1992-2001 to review urban land cover change in 

the cities of Pasadena and Inglewood, California. His study explores a methodology for 

aggregating land cover datasets from 1992 to compare to 2001 datasets, and roughly compares 

the aggregated datasets. While Crowther’s study does not measure urban sprawl, the study 

provides a framework for working with NLCD datasets, and gives insight into the changing 

landscape of selected Southern California cities. Crowther notes that combining Census 

population data with land cover change would be a useful metric for projecting future land cover 

change.  

Pena combines land cover change and population data to measure urban growth in the 

Lower Rio Grande Valley in Texas. Pena uses supervised classification techniques to classify 

Landsat 5 imagery into three different urban land cover classes and one uninhabited land cover 

class. He overlays this imagery with dasymetric population maps based on Census data to 

explore the magnitude of growth (low, medium, or high) in the region. The study notes that the 

consideration of social and demographic changes can influence the built environment, so it is 

important to take population data into consideration when assessing land cover change. 

2.2.2. International Studies of Urban Sprawl  

The majority of urban sprawl studies using remote sensing techniques concentrate on 

developing countries such as India and China rather than the U.S. This is because using 

conventional surveying techniques for urban sprawl studies is often cost-prohibitive and time 

consuming (Effat et al. 2015). Using remotely sensed imagery for urban sprawl measurements is 

often more cost effective, provides coverage of large areas, and can be performed at more 
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 frequent intervals than conventional surveying (Herold et al. 2005). Improving radiometric, 

spatial, and spectral resolutions, as well as decreasing costs on satellite sensors further make 

satellite remote sensing a viable alternative to traditional surveying and mapping methodologies. 

The images taken from the Landsat series of satellites are commonly used in urban growth 

studies due to their consistent coverage, accessibility, and adequate spatial, temporal, 

radiometric, and spectral resolutions (Sudhira et al 2004). 

2.3 Shannon’s Entropy Approach to Measuring Urban Sprawl 

Several urban growth studies use Shannon's entropy on urban areas to measure sprawl 

over time (Bhatta 2010; Dadras et al 2015; Sun et al 2007). Bhatta (2010) notes that one of the 

most popular methods used to measure urban sprawl using remote sensing and GIS methods is 

Shannon's Entropy, due to its decreased sensitivity to issues relating to the modifiable areal unit 

problem, where results may change drastically with the size, shape, extent, and number of 

regions involved (Bhatta 2010). Thomas (1981) states that unlike other, more traditional methods 

of measuring spatial dispersal, the value of relative Shannon’s Entropy is “invariant” with the 

number of regions, n. The metric is still sensitive to the size and shape of the zones within the 

regions. The aggregation effect of coarser scale combined with few numbers of zones can have a 

substantial effect on the metric, as the entropy value would be very low if only one zone were 

used across an entire metro area. Additionally, using drastically different scales, such as state 

scale versus city scale, would produce incomparable results.  

Yeh and Li (2001) are two of the first researchers to measure urban sprawl using 

Shannon’s entropy on the Pearl River Delta Region of China. Their work has been highly 

influential in later studies of urban sprawl using remote sensing (Bhatta 2010; Singh 2014; 

Sudhira et al. 2004). They used principal component analysis on multi-temporal Landsat 
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 Thematic Mapper (TM) images to identify urban areas and track changes in urban land 

development over time. They then defined dense areas of land development (called “town 

centers”) and major roads in a multitude of cities and towns. Next, they created buffers radiating 

outward from these areas and roads. To calculate the urban footprint, they use a modified version 

of the Shannon’s Entropy equation presented by Thomas (1981) that accounts for the density of 

the land development within the region. Their study found a high average value of Entropy for 

all areas studied, indicating that many of the cities studied were indeed sprawled. The study also 

found that in some cities and towns, buffer zones centered around major roads produced higher 

entropy values than buffer zones placed around the town center. This indicates that in some 

cities, the pattern of sprawl was attributed to distance from roads, while in other places, sprawl 

was attributed to distance from the town center. The current study draws upon Yeh and Li’s 

(2001) modified Shannon’s Entropy equation to examine the urban footprint of the Minneapolis 

and Chicago MSAs.  

Shannon’s Entropy has been used to calculate sprawl in India, Iran, China, Egypt, and 

other developed or developing countries, as observed by Masoumi and Roque (2015). Masoumi 

and Roque compare and contrast different Shannon’s Entropy studies of urban sprawl around the 

world with their study of Ensenada, Northern Mexico. The researchers find that Ensenada has 

comparable sprawl speed values as several fast-growing Indian, Portuguese, and Chinese cities 

and greater intensity values than several Indian cities. This is significant because Masoumi and 

Roque (2015) are successful in comparing the different sprawl studies, whereas very few studies 

comparing the Shannon’s Entropy metric exists.  

The different studies Masoumi and Roque (2015) investigate use different land cover 

classifications, number of buffer zones, and satellite sensors for land cover data, but can be 
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 compared, because the authors apply a standardization equation to convert the entropy to relative 

entropy. Relative entropy scales the value of entropy from the range of 0 to log(n) to a range of 0 

to 1. By converting entropy to relative entropy, Masoumi and Roque (2015) argue that the degree 

of dispersion can be compared between with different sizes and numbers of buffer zones.  

Relative entropy can be calculated by dividing the entropy by log(n). The authors caution 

that the study is limited to developed or industrial countries, and reliable studies in South 

America and much of Africa are unavailable for comparison. The current study finds that 

differing sizes and number of buffer zones can have a slight effect on the entropy value, so 

Masoumi and Roque’s study is used primarily as a reference for the magnitude of change 

between entropy values over time, with differing numbers and sizes of buffers, and across 

different geographical regions around the world.   

While traditionally the Gini coefficient has been used to describe distribution patterns, 

this measure introduces the modifiable areal unit problem because it is highly sensitive to the 

size and shape of the study area (Yeh and Li 2001; Openshaw 1991). The Gini coefficient is a 

ratio between 0 and 1 that measures the inequality of a distribution (Tsai 2005). The ratio 

compares the distribution of a variable to a perfectly uniform distribution. In studies of urban 

form, the Gini coefficient is most often used with population or employment density data. Like 

Shannon’s Entropy, the Gini coefficient divides the study area into sub-areas or zones. However, 

the size and number of zones has a substantial effect on the calculation because of the 

mathematical properties of the metric. 

Another metric used to measure distribution patterns is the Moran coefficient. The Moran 

coefficient measures clustering of high-density zones (Tsai 2005). The range of the Moran 

coefficient is between -1 and 1, where -1 indicates low clustering of high density zones, and 1 
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 indicates high clustering of high density zones. Like the Gini coefficient, the Moran coefficient is 

highly sensitive to the number and size of zones used due to the mathematical properties of the 

metric. In contrast, Shannon’s Entropy is less sensitive to the modifiable areal unit problem 

because the entropy value does not depend exclusively on the area of the zones, but rather how 

evenly observations are dispersed over space (Yeh and Li 2001). 

Buffer zones are typically created around city centers and road networks to help calculate 

“distance-decay properties of urban sprawl” (Singh 2014). Distance decay refers to how distance 

affects different subjects, such as how developments are highly concentrated along roads and in 

the city center. By creating evenly-spaced buffers around city centers and roads, researchers can 

observe how distance affects the spatial placements of new and existing urban developments. 

The current study uses buffer zones around the densest centralized area of the MSAs to 

calculate Shannon's entropy. The proportion of the variables being studied in each zone is used 

to measure the overall dispersion of those variables across all zones. The city center itself is not 

included in the calculation, because of consideration for the centrality aspect of urban sprawl. 

Centrality considers the spread of developed areas away from a central business district or city 

center, rather than within the city center itself. The next section discusses methods for 

performing the calculations. 
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 Chapter 3 Methods 

The primary objective of the project is to evaluate the efficacy of using remote sensing land 

cover data as a comparable data source to cadastral data for urban sprawl studies using the 

Shannon’s Entropy metric. The secondary objective is to examine whether the selected cities 

have grown in compact or dispersed sprawl patterns over the course of the study period. This 

chapter is broken up into six different sections. Section 3.1 outlines how the study was designed. 

Section 3.2 explains the Shannon’s Entropy metric. Section 3.3 discusses the data, how the data 

was acquired, and how the geodatabase is set up.  Section 3.4 describes the initial data 

processing steps. Section 3.5 describes how Shannon’s Entropy was calculated using ArcMap 

and Microsoft Excel.  

3.1 Research Design 

This project involves calculating Shannon’s Entropy for two different metropolitan areas 

in the United States over three different time periods, using two different data types – raster land 

cover data and vector land use data. The major variable in this study is E, Entropy, as well as 

change in Entropy. This variable measures the dispersion of another variable (land use or land 

cover type) across the study area. Shannon’s Entropy is calculated six times for each data type, 

for a total of 12 calculations.  

To assist in planning, cases of urban sprawl measurement using Shannon's Entropy in 

India, Pearl River Delta Region, China, and Cairo, Egypt are studied for background and 

methodologies (Dadras et al 2015, Bhatta 2010, Sun et al 2007). While spatial characteristics 

differed between cities, the cases all of classified land cover data and quantified sprawl using 

Shannon’s Entropy as calculated by Yeh and Li (2001). The studies divide their respective study 

areas into different buffer zones based on either administrative or other social or spatial 
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 boundaries, with no specified standard for the number of buffer zones to optimally execute the 

calculation. The geometry of the buffers also differed between studies. Some used concentric 

circles as buffer zones (Dadras et al. 2014), while others used concentric square buffers (Deka et 

al. 2012). Other studies divided the study area into quadrants to compare entropy values between 

quadrants. The current study uses concentric circles as buffer zones because the circular shape 

captured the shape of the MSAs most effectively.  

Bhatta (2010) argues that because Shannon’s Entropy measures the dispersion of low- 

density land cover using the proportion of low density land cover in relation to total land cover 

of each buffer zone, the size, shape, and number of the buffer zones can vary while achieving 

similar results. This study conducted an analysis using several different numbers of buffer zones 

to test and verify the sensitivity of the Shannon’s Entropy metric. This study performed a 

sensitivity analysis using a range from 39 buffer zones to 5 buffer zones to determine if the size 

and number of zones affect the final Entropy result, and found that the metric is somewhat 

sensitive to the size and number of buffer zones.  

ArcGIS split ring buffer, Model Builder, tabulate intersection, and zonal histogram 

functions were the primary tool sets employed in this study. ArcCatalog was used for 

geodatabase management.  

3.2 Shannon’s Entropy  

The study used Shannon's entropy on the metro areas of Minneapolis-St. Paul-

Bloomington, MN and Chicago-Naperville-Elgin, IL-IN-WI, to quantify the degree of urban 

sprawl in the regions. Shannon's entropy is a concept grounded in information science that uses 

entropy as a measure of information gathered from a system based on probable dispersion or 

concentration of the information (Li et al. 2015, Deka et al 2012). The value of entropy ranges 
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 from 0 to log(n), where a value of 0 represents minimal dispersion of the variable, and a value of 

log(n) indicates maximum dispersion of the variable (Sudhira et al. 2004). Half of log(n) is 

typically used as the threshold to determine whether the area can be described as more or less 

sprawling (Dadras 2014). The variable examined in this project is low density land cover and 

low density residential land use.  

Shannon's entropy can be applied to urban sprawl calculations by measuring the number 

of pixels classified as low-density developed land in comparison with number of pixels classified 

as undeveloped land. A value of 0 indicates that development in the study area is concentrated, 

and a value of log(n) means that development in the study area is fully dispersed or spread out.  

The Shannon's entropy equation for measuring urban sprawl is as follows: 

𝐸 = �𝑃𝑃𝑃𝑃𝑃 ∗ log10(
1

𝑃𝑃𝑃𝑃𝑃
)/ log10 𝑛
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Where n is the total number of zones the study area is divided into and i is the current zone being 

studied 

Equation 1 Shannon's Entropy equation for measuring urban sprawl (Yeh and Li 2001) 

PDENi describes the density of the variable, and PDENi is equal to the “amount of land 

development divided by the total amount of land in the ith buffer in the total of n buffers” (Yeh 

and Li 2001). For example, 35,274 pixels are classified as low density land cover for one of the 

buffer zones in Minneapolis in 2011, out of a total of 334,819 total land cover pixels in that 

particular buffer zone. DENi is 35,274 divided by 334,819 which equals 0.10535. PDENi is 
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 equal to DENi divided by the sum of DENi across all buffer zones for that year. The next step is 

to multiply PDENi by log(1/PDENi), and then take the sum of the results for all zones for a final 

Shannon’s Entropy value. The result can then be converted to relative entropy, which ranges the 

results from 0 to 1, by dividing Shannon’s Entropy by log(n).  

The term log10( 1
𝑃𝑃𝑃𝑃𝑃

) can be used interchangeably with−log10(PDENi). The reason 

why a fraction or negative natural log is used is because PDENi is a fraction, and the log of a 

number less than 1 yields a negative number. Shannon’s Entropy can be calculated in GIS using 

either custom scripts or calculated fields with the Model Builder tool, though the current study 

uses a combination of ArcGIS and Microsoft Excel to perform the calculations. Sections 3.4 and 

3.5 describe the processing and Shannon’s Entropy calculation steps in more detail. 

3.3 About the Data 

The necessary data was required to provide full spatial coverage of the study area from 

the three years specified: 2001, 2006, and 2011. The datasets needed were pre-classified land 

cover data and land use data for the Minneapolis and Chicago metropolitan areas.  

Several assumptions were made for this study. The study assumes that the land use and 

land cover classifications are accurate and includes the variable being studied for the time period 

specified. The accuracy of the land cover data should be around 85% to be considered reliable 

for land cover studies (Anderson 1976). Thus, the land cover data is assumed to be reliable for 

this study. The study also assumes that land use data from the years 2000 through 2011 have 

greater accuracies than the land cover data for those years. Additionally, the land use 

classifications are assumed to be consistent throughout the study period.  
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 3.3.1. Obtaining land cover data 

The study used three different Landsat 5 Thematic Mapper and Landsat 7 Enhanced 

Thematic Mapper + imagery sets from three different years: 2001, 2006, and 2011. The datasets 

for 2001, 2006, and 2011 are part of the NLCD, which is created and maintained by the Multi-

Resolution Land Characteristics Consortium (MRLC).NLCD.  

The Multi Resolution Land Characteristics Consortium (MRLC) uses remotely sensed 

satellite imagery to create a database with land cover information for the entire United States 

(Homer 2007). The first NLCD was completed in 1992 using Anderson Level I classifications 

defined by Anderson et al (1976). The goal of developing a land cover classification system is to 

provide a consistent, reproducible, and reliable method of deriving land cover data from remote 

sensing imagery (Homer 2015). The Anderson Land Cover Classification system separates land 

cover types into 8 different classes, ranging from water to barren land. The classes are further 

broken into subclasses, such as open water and perennial ice/snow and shrub/scrub. The 2001, 

2006, and 2011 NLCD data use a modified version of the original Anderson Land Cover 

Classification.  

The MRLC modified the mapping legend between the NLCD 1992 and 2001 data 

releases as remote sensing technology and classification methodology improved (MRLC 2016). 

Land cover data from the 1992 NLCD was desired to expand the scope of this project, but could 

not be used due to differences in low density land cover classification definitions.  Directly 

comparing the 1992 and 2001 datasets is not recommended, so this study used data only from 

2001 and beyond.  

Data from the NLCD are preprocessed and pixels have already been pre-classified into 

the different sub-classes of the Anderson Land Cover Classification. Data from the NLCD is not 

classified into different land use categories, such as industrial or residential. Instead, it is 
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 separated into categories of low, medium, and high intensity developed land (Table 1). This is 

because NLCD data describes land cover - the physical characteristic of the land, rather than land 

use – how humans use the land.  

Table 1 National Land Cover Database Product Legend – Developed Land Cover Categories 

Class\Value Classification Description 

21 Developed, Open Space  
Areas with a mixture of some constructed materials, but mostly vegetation in the form of 
lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas 
most commonly include large-lot single-family housing units, parks, golf courses, and 
vegetation planted in developed settings for recreation, erosion control, or aesthetic 
purposes. 

22 Developed, Low Intensity  
Areas with a mixture of constructed materials and vegetation. Impervious surfaces account 
for 20% to 49% percent of total cover. These areas most commonly include single-family 
housing units. 

23 Developed, Medium Intensity  
Areas with a mixture of constructed materials and vegetation. Impervious surfaces account 
for 50% to 79% of the total cover. These areas most commonly include single-family 
housing units. 

24 Developed High Intensity  
Highly developed areas where people reside or work in high numbers. Examples include 
apartment complexes, row houses and commercial/industrial. Impervious surfaces account 
for 80% to 100% of the total cover. 

Source: Multi-Resolution Land Characteristics Consortium (MRLC) 

This study examines the distribution and proportion of developed low intensity land 

cover in comparison to all other land cover classes using the Shannon’s Entropy metric. Urban 

sprawl is primarily concerned with low intensity development, which is classified in the NLCD 

datasets with the value of 22. Developed Open Space is classified with the value of 21, and 

includes some large-lot single family housing, but also consists primarily of parks and golf 

courses. For this study, these types of lands are considered to be undeveloped land. 
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 As Table 1 describes, low and medium intensity land cover describes surfaces that 

contain between 20%-49% and 50%-79% impervious surfaces. The difference between low and 

medium intensity categories is the percentage of impervious surfaces: the higher the percentage, 

the greater the development and density of built area. Both low and medium intensity developed 

land cover typically consists of single-family housing units.  

The term “single family housing” only vaguely describes the urban footprint of this kind 

of development. This is because single family houses may either be built close to other single 

family houses on small lots, or built far from other single family homes on large, sweeping lots. 

Using the impervious surface percentage as a method to quantify the footprint of these 

developments helps to remove ambiguity surrounding the term “single family housing” when 

describing urban sprawl. Land cover data uses impervious surface percentage to differentiate 

between low, medium, and high intensity urban land surfaces. This provides an objective 

approach to classifying land that may be associated with single-family or multi-family housing 

units. In contrast, the parcel size for single-family housing units in land use data can vary within 

and between local jurisdictions, making meaningful comparisons between cities difficult.    

The 2001, 2006, and 2011 NLCD data had been downloaded from the MRLC website 

using the Viewer tool, which allows the user to select a custom area for land cover data 

download. The land cover data is federal data that is part of the public domain and may be used 

at no cost. 

3.3.2. Obtaining land use data 

To examine land use change, the study used land use data obtained from the Chicago 

Metropolitan Agency for Planning and the Open Data Minneapolis websites. Historical data is 

available for the years 2000, 2006, and 2011 in Minneapolis, and 2000, 2005, and 2010 in 
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 Chicago. The land use data is at the parcel level and contains fields describing land use types, 

both in numerical code and descriptive text forms. The land use type examined for this study is 

classified as “residential single family detached”. This land use refers to individual residential 

structures that are occupied by single families. This land use type differs from residential single 

family attached land uses, which are single structures that are divided into two or more units that 

house single families. Examples of single family attached homes include townhouses and 

duplexes. The land use data for both study areas include similar descriptions of the single family 

residential detached land use.  

The Minneapolis land use metadata states that some discrepancies between single-family 

attached housing and low density multifamily residential land use may exist. (Metropolitan 

Council 2016) However, only the single family detached housing variable is examined in the 

current study. The Minneapolis data is generally consistent through the study period. Prior to 

2000, the Minneapolis data portrayed land use as a function of ownership. The land use 

categories were adjusted in 2000 to describe how the land was being used. The introduction of 

higher resolution aerial and satellite imagery as well as supplemental administrative data in 2000 

also improved the accuracy of the land use data. Additionally, land use categories were divided 

into subcategories, such as the different classes of residential land uses. Because of the multitude 

of changes that occurred in 2000, land use data for Minneapolis prior to 2000 is not 

recommended for comparison with newer datasets. The land use data is free of topological 

errors, and the data is complete in terms of geographic coverage. The horizontal and positional 

accuracy for the datasets are “likely better than the accuracy of the previous years, however, it is 

still difficult to quantify that accuracy” (Metropolitan Council 2016).     
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 According to the metadata, the land use classifications for Minneapolis are based on 

custom classification schemes, and the land use designations were derived from analyses of 

aerial photography and field surveys. The lineage of the land use data includes digital orthophoto 

quarter quads, historical land use delineations, parcel data, centerline layers, and field checks, 

among other resources. 

The Chicago land use metadata states that data from 1990 through 2005 defined land uses 

using polygons that extended to street centerlines, excluding highways and other large roadways 

(Chicago Metropolitan Agency for Planning 2016). Data after 2005 were modified to observe 

rights of ways. The impact of the modification meant that certain land uses, such as Wetland and 

Vacant Grassland land uses would no longer be in use. This modification may introduce some 

discrepancy between the 2000, 2005, and 2010 land use data for Chicago. The data is free of 

topological errors, and the land use attribute accuracy is stated to be accurate based on 

authoritative inspection. The metadata also notes that the accurate is likely less than 100% due to 

the lack of extensive field testing of the data. The lineage of the data includes orthophotos, 

highway data, parcel data, street centerline data, and historical land use delineations, among 

numerous other resources.  

There is a temporal difference between the land use and land cover data in both the study 

areas: the land use for 2000 has been acquired, while the land cover for 2001 is used for 

comparison. This temporal difference may explain some of the variation in the results. The land 

use data is free to download and use.  

3.3.3. The geodatabase 

Two file geodatabases were created using ArcCatalog to organize and maintain the data. 

Each metropolitan area was placed into a separate geodatabase and handled with a different map 
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 document due to differences in projection. Several vector and raster datasets were generated for 

the project, so careful planning and strict organization of the geodatabase was a priority. All of 

the rasters were handled as individual raster datasets. A partial example of the geodatabase 

organization can be found in Figure 3 below.  

 

Figure 3. Geodatabase organization  

The Minneapolis data was projected into the NAD_1983_UTM_Zone_15N projected 

coordinate system with a Transverse Mercator projection. The Chicago data was projected into 



 

34 
 

 the NAD_1983_StatePlane_Illinois_East_FIPS_1201_Feet projected coordinate system with a 

Transverse Mercator projection.  

3.4 Processing the Data 

After all the data had been gathered, both the land use and land cover datasets were 

examined, and a downtown area was delineated based on a visual comparison of high density 

land cover and land use areas. Clustered areas of both high density land use and land cover types 

were defined as the core downtown area. This downtown area serves as the central core from 

which the buffer zones will radiate out. 20 multiple ring buffers were created around the 

downtown polygons at 1 mile intervals in Minneapolis, and 40 multiple ring buffers were created 

at 1 mile intervals in Chicago.  

3.4.1. Creating buffers  

A series of 20 concentric buffer zones for Minneapolis, and 40 buffer zones for Chicago 

set at 1 mile intervals were created around the city center using ArcMap. The total number of 

pixels within each concentric buffer was measured, and the proportion of low density developed 

area within each zone was calculated as part of the Shannon's Entropy calculation.  

In other studies, researchers used round or square buffers that covered the entire urban 

region, such as the entire city of Pune, India. Pune is surrounded by rural land, so it is possible to 

view the expansion of urban area without considering political and administrative forces that 

might shape development. The Chicago and Minneapolis metropolitan areas are a collection of 

multiple cities, but the buffer zones captured the sprawl phenomenon across a significant portion 

of the entire region.  

Using the Multiple Ring Buffer tool on ArcGIS Model Builder (Figure 3), buffers for 

each city were created at 1 mile distances. These distances were chosen because they cover the 
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 majority of the metropolitan areas. The buffers were dissolved to eliminate any overlap between 

buffers.  

  

 

Figure 3. Model for creating buffers using city boundaries. 

3.4.2. Processing the land cover data 

The land cover data for Minneapolis was projected using the Project Raster tool. Because 

the Chicago land use data was restricted to an area comprised of several counties, the land use 

data had to be clipped to the land use data boundaries in order to produce a study area of 

equivalent size and data content. The land use data was duplicated as an additional layer, and 

then dissolved to produce a boundary. The dissolve function took a significant amount of time to 

process, as there were a large number of features to process. The land cover data was then 

clipped to the dissolved land use feature.  

3.4.3. Processing the land use data 

The land use data for Minneapolis was projected to the NAD_1983_UTM_Zone_15N 

projected coordinate system, and the Chicago data was projected into the 

NAD_1983_StatePlane_Illinois_East_FIPS_1201_Feet projected coordinate system using the 

Project tool. The data were queried to exclude any land uses relating to water, and the resulting 

selections were exported as new feature classes.   
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 3.5 Calculating Shannon’s Entropy using ArcGIS 

The steps for calculating Shannon's Entropy using GIS is partially based on methodology 

published by the University of North Carolina at Chapel Hill (2016). Using the Zonal Histogram 

tool, the number of pixels of each individual land cover type within each buffer zone was 

calculated. The Zonal Histogram tool in ArcGIS generates a table summarizing the pixel count 

of each land cover type by zone. The tool calculates the intersection of the raster land cover 

data’s pixel values and the vector buffer zones.  

Using the Tabulate Intersection tool, the area of each land use type within each buffer 

zone was calculated. The Tabulate Intersection tool generates a tale summarizing the area of 

each land use type by zone. The tool calculates the intersection of the vector land use polygons 

with the vector buffer zones. While the Zonal Histogram tool is used for raster data, the Tabulate 

Intersection tool is used for vector data. The output land cover and land use tables were 

converted to an Excel table using the Table to Excel tool, and further calculation steps were 

completed in Microsoft Excel.  

3.5.1. Calculating Shannon’s Entropy using the land cover data 

Calculating Shannon’s entropy with the land cover data involves  calculating the 

proportion of low intensity land cover pixels to total pixels in each zone, dividing the result by 

the total of all low intensity land cover pixels, multiplying the result by the negative log of the 

low intensity land cover divided by total low intensity land cover, and finally adding up the 

results of each zone to achieve the final Shannon’s Entropy result. These calculations were 

executed in Microsoft Excel for streamlined and flexible data management. The total for each 

land cover category in each zone, excluding water, was summed. The proportion of low intensity 

land cover (represented with a value of ‘22’) in relation to total land cover of the zone was 
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 calculated (DENi). Then, the DENi for each zone was divided by total low intensity land cover 

across all zones to calculate PDENi.  

After PDENi has been created and populated, a new calculated field multiplying PDENi 

and log(1/PDENi) is created. The next step is to sum up the calculated values for low intensity 

land cover. This step adds the values of PDENi * log(1/PDENi) value for low intensity land 

cover of all the buffer zones. The final step to calculating Shannon’s Entropy is to divide the sum 

of the low intensity land cover values by log(n) for this study. The result of this step gives the 

relative Shannon’s Entropy value for the dataset.  

3.5.2. Calculating Shannon’s Entropy using land use data 

The land use data was also processed following a similar methodology for the NLCD 

data. The Tabulate Intersection tool was used to calculate the area per land use type in each 

buffer zone. The resulting table was then exported to Excel, where the proportion of single 

family detached land use types relative to the total area of the zone (represented as a code of 113 

in Minneapolis and 1110/1111 in Chicago for the years of 2000-2005 and 2010, respectively) 

was calculated (DENi). The sum of all the values of DENi for each zone were calculated and 

used to calculate PDENi. Then PDENi was multiplied by log(1/PDENi), and the resulting 

numbers for each zone were summed to produce the Shannon’s Entropy number. Relative 

Shannon’s Entropy was then calculated by dividing Shannon’s Entropy by log(n)  

3.5.3. Observing Entropy through time 

The temporal component of the study involves calculating the change in entropy over 

time. A decrease in entropy over time indicates that the city is developing in a compact, 

concentrated manner, while an increase in entropy indicates that the city is developing in a 

dispersed manner.  



 

38 
 

 

∆𝐸 = 𝐸(𝑡2) − 𝐸(𝑡1) 

WHERE 

t = time 

Equation 2. The change in Entropy values can be used to evaluate the change in the degree of 
urban sprawl (Yeh and Li 2001). 

The expected outcome is that Shannon's Entropy value for land cover data and land use 

data will be similar across the study period. The value of Shannon's Entropy and resulting 

change in Entropy for the land use data is assumed to be the “control” with which to compare the 

usability of NLCD data for urban growth studies. If the values calculated from both types of 

datasets are determined to have a high degree of similarity, NLCD data may be a viable 

alternative to cadastral data for urban growth studies. This outcome would also mean that remote 

sensing data may be viable for use in urban sprawl studies that use Shannon's entropy as the 

main metric. If the values are dissimilar, land use data is recommended for future urban growth 

studies.  

3.5.4. Sensitivity Analysis 

Shannon’s Entropy is run twelve times (for two cities, three years, two data types) for this 

study. A sensitivity analysis of the buffer zones is conducted on Minneapolis for the year 2001. 

20 buffer zones with one mile widths are used in the study. The sensitivity analysis tested the 

value of Shannon’s Entropy using 4 buffer zones with five mile widths and 39 buffer zones with 

half mile widths. The 4 buffer zones were chosen to test the result of Shannon’s Entropy if the 

number of buffer zones were reduced by 1/5th, while increasing the size of the buffer zones by 5 

times. The 39 buffer zones were chosen to test the result if the number of buffer zones were 

increased by almost 2 times, while reducing the size of the buffer zones by 1/2th. The results of 
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 the sensitivity analysis show if there is a significant effect on the metric due to different levels of 

aggregation of the variables being tested. 

The values for Shannon’s Entropy are placed in a results table and compared. If the 

values differ by more than 5% between land cover and land use data, caution may be advised for 

future studies measuring urban sprawl with land cover data. The results also inform whether the 

three cities are indeed sprawling, and the magnitude of how sprawl has changed over time in the 

study area.  
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 Chapter 4 Results 

The chapter is broken into three sections: Minneapolis metro area results, Chicago metro area 

results, and sensitivity analysis results. The first two sections discuss the results of the 

calculations on each respective study area, as well as the change in entropy over time. The last 

section discusses the results of the sensitivity analysis on the Minneapolis metro area.  

The results of the Shannon’s Entropy calculations help inform the similarity between the 

land use and land cover data. This study includes two findings. The primary finding is that there 

is no significant difference between the low density land use and land cover class Shannon’s 

entropy results. Because the two data types show consistent results, the land cover data may be 

suitable for use in urban footprint studies on other metropolitan areas. The secondary finding is 

that the entropy values for both the study areas are high – ranging from 0.97-0.98 out of a 

maximum of 1 and minimum of 0. This finding suggests that the variable is evenly dispersed 

throughout the study area, and that there was no significant growth in the variable during the 

study period.  

4.1 Minneapolis metro area results   

The Shannon’s Entropy calculation was performed using Minneapolis land use and land 

cover data from 2000-2010. 20 buffer zones at one mile intervals originating from a downtown 

center were used to observe the dispersion of the low-intensity residential land cover/land use 

variable in the Minneapolis metro area. The land use data throughout the study period can be 

found in Figure 4, with single family (detached) residential land use polygons highlighted in red. 

The land cover data throughout the study period can be found in Figure 5, with low intensity 

urban land cover pixels highlighted in red. 
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Figure 4. Single family (detached) residential land use polygons in the Minneapolis metro area. Panel A: Year 2001. Panel B: Year 
2005. Panel C: Year 2010 
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Figure 5. Low-intensity urban land cover in the Minneapolis metro area. Panel A: Year 2001. Panel B: Year 2006. Panel C: Year 
2011. 
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 The Shannon’s Entropy results for the Minneapolis-St. Paul metropolitan area can found 

in Table 2. Both the entropy and relative entropy are reported for all three years.  

Table 2. Shannon’s Entropy results for the Minneapolis metro area, 2000-2010 

 
Land Use Land Cover 

Year Entropy Relative Entropy Entropy Relative Entropy 
2001 1.27 0.98 1.26 0.97 
2006 1.28 0.98 1.20 0.97 
2011 1.28 0.98 1.27 0.98 

 

The results indicate that entropy increased from years 2001-2011. The land use and land 

cover results differ by 1/100ths in both 2001 and 2006, but differ by only 1/5000ths in 2011. As 

the results show, the difference between the land use and land cover data is not significant. This 

means that the land use and land cover data used in this study is consistent and may be used 

comparably when performing the Shannon’s Entropy metric. The difference in entropy values 

across the years differs by less than 1%, which indicates that the entropy values did not vary 

significantly across the 10-year study period.   

Relative entropy is scaled from a minimum value of 0 to a maximum value of 1, so a 

value of 0.97-0.98 as observed in the results for Minneapolis indicate that the entropy is high for 

all three years. This means that low density, single family (detached) land cover is evenly 

dispersed amongst all 20 zones of the study area.  

 

4.1.1. Change in Entropy over time – Minneapolis 

The change in Entropy was calculated using the formula from Equation 2. The results can 

be found in Table 3.  
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 Table 3. Change in entropy over time, Minneapolis metro area 

Year Land Use Land Cover 
2001-2006 0.0029 0.0034 
2006-2011 0.0014 0.0021 

 

The change in entropy over time indicates that the change in entropy from 2001-2006 is 

greater than the change in entropy from 2006-2011 in both the land use and land cover datasets. 

However, the magnitude of change is small, within the 1/1000ths. This means that the dispersion 

of low intensity land cover and low density residential land use did not increase or decrease 

significantly throughout study period.   

4.2 Chicago metro area results 

The Shannon’s Entropy calculation was performed using Chicago land use and land 

cover data from 2000-2010. 20 buffer zones at 1 mile intervals originating from a downtown 

center were used to observe the dispersion of the low-intensity residential land cover/land use 

variable in the Chicago metro area. The land use data throughout the study period can be found 

in Figure 6, with single-family (detached) residential land use polygons highlighted in red. The 

land cover data throughout the study period can be found in Figure 7, with low intensity urban 

land cover pixels highlighted in red. 
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Figure 6. Single family (detached) residential land use polygons in the Chicago metro area. Panel A: Year 2001. Panel B: Year 2005. 
Panel C: Year 2010. 
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Figure 7. Low-intensity urban land cover in the Chicago metro area. Panel A: Year 2000. Panel B: Year 2005. Panel C: Year 2010. 
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 The Shannon’s Entropy results for the Chicago-Naperville-Elgin metropolitan area can be found 

in Table 4. Both the entropy and relative entropy are reported for all three years.  

Table 4. Shannon’s Entropy results for the Chicago metro area, 2000-2010 

 
Land Use Land Cover 

Year Entropy Relative Entropy Entropy Relative Entropy 
2001 1.56 0.97 1.56 0.97 
2006 1.56 0.97 1.57 0.98 
2011 1.57 0.98 1.57 0.98 

 

The results indicate that entropy increased from years 2001-2011 according to the land 

use data, but decreased slightly from 2006-2011 according to the land cover data. The land use 

and land cover results differ by 1/100ths in all three years. As the results show, the difference 

between the land use and land cover data is not significant. This means that the land use and land 

cover data used in this study are comparable. A Shannon’s entropy value of 0.97-0.98 as 

observed in the results for Chicago indicate that the entropy is high for all three years. This high 

value of entropy indicates that that no single zone contains the variable disproportionately over 

the other zones in the study area. 

The land use and land cover data differs by less than 1% for all three years, far lower than 

the less than 5% threshold used to establish the usability of the land cover data. Because the 

difference between the results of the different data types is less than 1%, land cover data may be 

considered as an alternative to land use data for urban footprints studies using the Shannon’s 

Entropy metric. The difference in entropy values across the years also differs by less than 1%, 

which indicates that the entropy values did not vary significantly across the ten-year study 

period.  
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 4.2.1. Change in Entropy over time – Chicago 

The change in Entropy was calculated using the formula from Equation 2. The results can 

be found in Table 5. 

Table 5. Change in entropy over time, Chicago metropolitan area 

Year Land Use Land Cover 
2001-2006 0.0031 0.0026 
2006-2011 0.0026 -0.0000 

 

The change in entropy over time indicates that the change in entropy from 2001-2006 is 

greater than the change in entropy from 2006-2011 in both the land use and land cover datasets. 

The magnitude of change is small, within the 1/1000ths in the both the datasets. However, the 

entropy in land cover appears to have decreased from 2006-2011. The decrease in entropy means 

that the proportion of low intensity urban land cover decreased across the zones, either through 

the increase of high or medium intensity urban land cover, or conversion to a different land cover 

type. The increase in entropy from 2006-2011 as observed in the land use data contrasts with the 

decrease in entropy for the same time period observed in the land cover data. This discrepancy is 

likely due to differences between how land use and land cover data characterizes land, as well as 

precision differences between raster and vector data. This discrepancy may also be due to 

administrative or update errors in the land use data, or misclassification in the land cover data.  

While land cover data categorizes urban land cover category data based on percent 

impervious surface, land use data is based on a mix of administrative records and physical 

characteristics of the land. The vector data are more likely to precisely delineate features, while 

the raster data classifies mixed pixels as singular land cover types. The 30 by 30 spatial 

resolution of the NLCD data is a coarse enough resolution to be subject to some classification 
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 imprecision. However, NLCD raster data may more accurately reflect how the land is being used 

than singular vector parcels that are larger than the 30 by 30 resolution of the NLCD data. This is 

because a large vector parcel that is classified as “urban low density” development may in reality 

be a singular house on a very large, multi-acre lot. There are disadvantages to using each type of 

data, so a visual comparison of the data to aerial or satellite imagery is recommended to assess 

the accuracy of representation.     

4.3 Sensitivity analysis results  

 
A sensitivity analysis was performed to determine the sensitivity of the Shannon’s 

Entropy metric to the number and size of buffer zones. The sensitivity test was performed on the 

Minneapolis-St. Paul metropolitan area land use data for the year 2000, and land cover data for 

the year 2001. The test measured Shannon’s Entropy using 39 buffer zones at ½ mile intervals, 

nearly doubling the number of zones while halving the size of the zones. The test also measured 

Shannon’s Entropy using 5 buffer zones at 4 mile intervals, decreasing the number of buffer 

zones by 1/4th, while increasing the size of the zones by 4. The results of the sensitivity analysis 

can be found in Table 6. 

Table 6. Sensitivity analysis results for the Minneapolis metro area 

Minneapolis Land Use (2000) Land Cover (2001) 
Observed Results Entropy Relative Entropy Entropy Relative Entropy 
20 buffers at 1 mile intervals 1.27 0.98 1.26 0.97 

Minneapolis Land Use (2000) Land Cover (2001) 
Sensitivity Test Entropy Relative Entropy Entropy Relative Entropy 
39 buffers at 1/2 mile intervals 1.57 0.98 1.55 0.97 
5 buffers at 4 mile intervals 0.68 0.97 0.66 0.95 
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 The sensitivity analysis results indicate that increasing the number of buffers while 

decreasing the size of the buffers can provide similar values to the observed in the man study. 

Decreasing the number of buffers while increasing the size of the buffers, provide results that 

differ by more than 1/1000ths, which is not a large enough difference to label the metric as 

extremely sensitive to the size and shape of the buffers. Using a greater number of smaller buffer 

zones is typically more recommended than using a small number of large buffer zones, due to 

potential information loss from aggregation effects when using larger buffers (Yeh and Li 2001).  
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 Chapter 5 Conclusions 

This study compared between two different data types – remotely sensed land cover imagery, 

and cadastral land use vector data – to determine if land cover imagery could be suitable for use 

in urban footprint studies. The main metric used to compare the data is a metric called Shannon’s 

Entropy, a concept rooted in information science that measures spatial dispersion of a variable.  

The results of the Shannon’s Entropy calculation show that there is no significant 

difference between the land use and land cover data in Minneapolis and Chicago for the duration 

of the study period. However, there exist differences in the patterns shown by land use and land 

cover data in Chicago – where land use data reports a slight increase in entropy, the land cover 

reports a very slight decrease in entropy. This chapter summarizes overall findings, discusses 

considerations and limitations, and suggests future work for studies of this nature.  

5.1 Major Findings 

The results of the analysis helped inform whether land cover data may be suitable for use 

in urban footprint studies where land use data is unavailable or too cumbersome to obtain. Many 

past studies of urban growth have used the Shannon’s Entropy metric to quantify the dispersion 

of an urban land cover variable using classified imagery data. These past studies have often been 

conducted data-poor countries, where cadastral land use data is absent, not readily available, or is 

of poor data quality. Few studies have compared the suitability and accuracy of the land cover 

data for urban footprint studies with cadastral land use data, which is assumed to be more precise 

because it is produced at a finer scale than land cover data. Thus, the current study performed the 

comparison between the two data types in order to inform future studies of the usability of land 

cover data, particularly the National Land Cover Dataset and other data utilizing similar 

classification methodologies.  
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 The current study found that the entropy levels in both study areas was high, ranging 

from 0.97 to 0.98 out of a maximum value of 1.00 in the study period. This high number means 

that the low density residential land use or low intensity land cover is evenly dispersed amongst 

all zones of the study area. The study also found that the data showed a general trend of entropy 

increasing throughout the study period, although the differences between the years were not 

statistically significant. 

The Minneapolis metropolitan area showed a slight increase in entropy over the study 

period with both data types, while the Chicago metropolitan area only showed an increase in 

entropy with the land use data, where the land cover data showed a slight decrease in entropy. 

The discrepancy examined was not at a statistically significant level, but the difference may 

highlight uncertainties in either of the datasets. The discrepancy may be due a difference in 

accuracy between land use and land cover data, a recordkeeping or update error in land use data, 

or a classification error in the land cover data. Further studies of other metropolitan areas over 

longer study periods are recommended to determine if differing entropy patterns between the 

data types are indeed negligible.  

The low relative sensitivity to changing parameters such as buffer size and number of 

zones makes Shannon’s Entropy a suitable metric for detecting if a significant amount of growth 

has occurred in an urban area while giving researchers flexibility in selecting study parameters. 

While no significant changes were detected in the current study, researchers such as Yeh and Li 

(2001) have been able to use Shannon’s Entropy to detect significant changes in rapidly 

developing regions like the heavily populated Pearl River Delta in China.  
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 The wide spatial and temporal coverage of medium to high resolution imagery, as well as 

improving satellite and sensor technology, make remotely sensed imagery invaluable in urban 

growth studies, where urban land can be identified by presence of impervious surfaces. With 

finer spatial and spectral resolution sensors, satellite imagery can also assist with identifying land 

uses. The percentage of impervious surface can broadly identify how land is being used, as 

individual land uses are typically aligned with certain spectral signatures or are composed of a 

percentage of impervious surfaces.  

While land cover data is unable to discern between specific types of land use – such as 

industrial versus manufacturing land uses, the data can adequately identify the footprint of the 

land use, and can help users discern if land resources can be allocated more effectively. The 

difficulty in obtaining usable, consistent historical land use data also highlights the merits of 

using land cover data for urban footprint studies spanning multiple administrative boundaries. 

Land use data may not be necessary to measure urban growth patterns such as urban sprawl, as 

alternative datasets such as land cover data may be used as effectively. 

5.2 Considerations and Limitations 

Accuracy assessments are often an important element of land cover studies by assessing 

the usability of classification work. A common method of accuracy assessment involves 

computing an Error Matrix to determine the percentage of correctly classified pixels. This study 

did not perform an additional accuracy assessment, as the NLCD pre-classified land cover data 

has been found to meet the minimum 85% accuracy threshold recommended by Anderson et al. 

(1976). The land use data is assumed to exhibit greater than 85% accuracy, and did not need an 

accuracy assessment. 
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 The main limitation of the study is due to the limited number of iterations of Shannon’s 

Entropy performed. Because of the uniform methods to classify land use data within a singular 

county, interstate measurements of urban sprawl may yield widely differing results. This is 

because other states may use different land use classification standards, or may use extensively 

modified Anderson classifications. An extended study period could also increase the number of 

iterations of Shannon’s Entropy performed, as well as provide more detailed insight into the 

patterns of entropy observed in the study areas over time. This study intended to use 1992 

National Land Cover data to extend the study period to a 19-year span of time. Stretching the 

study period would have also covered a span of time that encompassed a large period of 

suburban growth in the United States. Unfortunately, the study was limited by the availability or 

usability of such data. The 1992 National Land Cover data is not directly comparable with the 

2001-2011 land cover data due to differences in how several land cover classes - including the 

low intensity urban land cover class – were defined.  

The study also intended to incorporate more metropolitan areas to perform more 

iterations of the metric. However, there was a lack of historical land use data in many of the 

major U.S. cities. Many cities only had the most current land use data available, and did not keep 

archives of historical data. Although the land use data used was sufficient for the needs of the 

study, the data was limited in coverage, and the land cover data needed to be clipped to the 

boundaries of the land use data. The land use data needed to be dissolved in order to easily clip 

the land cover data, and a significant amount of time was spent performing the dissolve function 

on the land use data.  

This study performed the Shannon’s Entropy calculation on only one prominent type of 

land use and land cover – single family detached residential housing and low intensity urban land 
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 cover. Changes in other land use or land cover types, such as single family attached residential 

units, multifamily units, or medium intensity land cover, would not be well detected in this 

study. For example, if the city of Chicago had added 5,000 new medium density units on several 

parcels from 2005-2010 across several of the zones, the change would not have made a 

significant difference to the value of Shannon’s Entropy for the variables studied. Changes that 

may have appeared to make an impact from ground observation may not have been effectively 

captured by the study due to the emphasis on singular variables.  

Another limitation of this study is the lack of population data used to better inform the 

results. This is especially true for the land use data, which may classify a single land use to a 

large parcel that may not be completely inhabited. This kind of model would involve using 

dasymetric mapping to more accurately map out developable and undevelopable areas before 

calculating Shannon's Entropy. This way, undevelopable areas can be excluded from the 

calculation. Another method of increasing accuracy could include filtering out a wider range of 

land use parcels that should not be included in the study. Land use parcels with low density 

residential units with areas greater than a threshold size can be excluded from the calculation, as 

it would confound the results. This would also allow for a more strict interpretation of low 

density residential land use classes.     

Despite the limitations of the study, the study conclusively finds that there is no 

significant difference between the different data types. Land cover data may provide comparable 

results to land use data when performing urban footprint studies using the Shannon’s Entropy 

metric. Growing cities and metropolitan areas in data-poor countries that do not or cannot 

support a cadastral infrastructure can benefit from using land cover data to measure urban growth 
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 patterns such as sprawl. The measurement of such patterns can provide insight into how 

communities are growing, and can identify areas where urban land may be used more efficiently.   

5.3 Future Work  

The current study may be expanded to study different areas of the United States or other 

countries where vector cadastral data is readily available. Future studies would also benefit from 

an elongated study period to include historical and future data in order to observe entropy over a 

longer period of time. A longer study period can give more insight into whether land use and 

land cover data observe similar patterns of entropy over time, as well as more insight into the 

changing urban landscape of the study areas. There are existing plans to produce synchronized 

NCLD products, including the 1992 datasets, as of 2016. A reclassified 1992 NCLD dataset that 

is directly comparable with NLCD datasets produced after 2001 would allow for extended 

observations of urban growth in the U.S. 

Future studies can benefit from combining different land use and land cover types to 

measure entropy, or from examining different land classes than the ones used in the current 

study. Different entropy values may ensue from combining single family detached housing with 

low density multifamily housing, or from combining low intensity urban land cover with 

medium intensity urban land cover. Studying high intensity urban land cover exclusively can 

measure the concentration of densely inhabited areas throughout the study region.    
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