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Abstract 

Climate change is a pressing issue, and regional studies play an important part in understanding 

the impact of global climate change. This project explored the spatial and temporal patterns 

apparent in temperature records from 1935 to 2014 using homogenized station data from 66 

stations in Southern California. Using Hurst Exponent, an index used to explore the persistence 

of trends in longitudinal data, the strength of the increasing temperature trend observed at every 

station was evaluated. Hurst Exponent values were calculated for the high, mean, and low 

temperature series for both the summer and winter 3-month period. The spatial distribution of 

each of the six Hurst values was examined with respect to location, elevation, aspect, land use, 

and population density of each station using Microsoft Excel and ArcGIS.  Results show that 

there is persistence in the increase of temperature at all stations beginning around 1980, though 

the strength of this persistence varies.  Winter High temperature persistence is strongest in 

coastal areas and weaker in the inland mountains as shown by the hot spot analysis. 
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Chapter 1 Introduction 

Climate change is already affecting many places and people in the world. In order to understand 

where the climate is going, and attempt to mitigate the consequences, it is important to 

understand how climate has changed thus far. Evaluating climate long term and short term, on 

both global and regional scales are all crucial. There are many measures of climate change, and 

temperature change is a significant indicator (Karl et al 1997). This study evaluates spatio-

temporal temperature trends for 66 weather stations using homogenized data in the ten counties 

of Southern California. Using the Hurst exponent, the degree of persistence of change at different 

elevations, slopes, and aspects was evaluated to determine if there is an association between the 

direction, magnitude, and speed of trends and these three variables in regards to station location. 

This study helps understand the direction and degree of climate change  in Southern California. 

The term “climate” is a broad term that incorporates many facets of the environment. In 

order to gauge climate change, quantifiable measures must be defined. Climate change can be 

measured by changes in trends and extremes of temperature and precipitation, by the changing 

patterns of flora and fauna, and variations in wildfire patterns (Karl et al. 1997). One of the most 

frequently evaluated measures in climate change is temperature change, and that was the 

indicator selected in this study to be analyzed. Global temperature increases have been observed 

by many agencies and researchers, with an overwhelming majority of climate scientists believing 

that the human activity is the cause of the observed temperature increases (Oreskes 2004, Doran 

and Zimmerman 2009, and Anderegg et al. 2010). 

Figure 1 illustrates the changing temperatures recorded on land and sea. Figure 1A shows 

the global annual mean temperature change from the 1951-1980 base period. Figure 1B shows 

the distribution of change of temperature averaged over 2001 to 2005 compared to the base 
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period. As can be seen in the first graph, in 1890 the mean global temperature was two degrees 

below the base period and in 2010, the temperature was about 6 degrees above the base mean 

(Hansen et al. 2006). This helps to demonstrate the pace at which temperatures are increasing 

across the globe. The figure also shows that until about 1980, there were fluctuations in 

temperatures above and below the mean; however, since about 1980 temperatures have only 

ranged above the mean.  

 
Figure 1: Surface temperature anomalies relative to 1951-1980 (A) Global annual mean 

anomalies. (B) Temperature anomaly for the first half decade of the 21st century.  

Source: Hansen et al. 2006 

Climate change is important because of how the changing climate impacts agriculture, 

economy, and environment on local and global scales. Where the effects of climate change can 

be observed globally, they are and will be felt locally. As evidenced by Figure 1B, the way the 

climate is changing can vary greatly by region. In order to understand what the impacts are going 

to be, it is important to understand how each region has been affected by climate change. 

Regional climate studies fill in this gap. Regional studies provide answers to the questions of 

how the climate has changed and indicate the direction of change for that region.  
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 Study Area 

California is an ecologically diverse state. According to the Western Regional Climate 

Center (WRCC 2015), biomes range from sub-tropic to sub-arctic depending on latitude, 

elevation and proximity to the coast, with nearly all biomes represented. This is because of the 

confluence of maritime air masses joining with continental currents, and the diverse topography. 

There are several mountain ranges in California, with the highest peaks reaching over 14 

thousand feet. California also has many low elevation areas with Death Valley being the lowest 

point in the country with an elevation of 276 feet below sea level.  Also, Southern California is 

home to two of the largest counties in the United States. San Bernardino County is the largest 

county by size, and Los Angeles County is the largest by population.   

California has mostly dry summers and a comparatively wet winter. Northern California 

typically has more year round rain, and can provide the state with over 70 percent of the its water 

needs, when not experiencing severe drought as is the case as of 2015 (WRCC 2015). With 

irrigation, California’s generally warm temperatures facilitate a lengthy growing season. The 

coldest temperature on record of -45 degrees Fahrenheit was reported in 1937 from a location at 

an elevation of 5,532 feet. To contrast the hottest temperature on record, as of December 2015 

was 134 degrees Fahrenheit at -168 feet elevation (WRCC 2015). Figure 2 shows the 5-year 

average temperatures of California over a 100-year period. Consistent with other temperature 

data, temperatures have been entirely above the mean since 1980.  
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Figure 2: Temperature change in California from 1901 to 2000 

Source: National Oceanic and Atmospheric Administration (NOAA) 

http://ncdc.noaa.gov 

Southern California has many definitions. Some definitions of Southern California are 

based on membership in the Southern California Association of Governments, an association of 

six counties: Imperial, Los Angeles, Orange, Riverside, San Bernardino, and Ventura. Where this 

is convenient because it has an official sound to it, it excludes counties that are conceptually 

ingrained in the concept of Southern California like San Diego. Other definitions based in 

economics include only eight counties: Santa Barbara, Ventura, Los Angeles, San Bernardino, 

Riverside, Orange, San Diego, and Imperial (US Census Bureau 1970). Because this project is so 

heavily spatial in nature, Southern California is defined by the Southern versus Northern division 

at 35° 47′ 28″ north latitude, as seen in Figure 3. This adds San Luis Obispo and Kern Counties 

http://ncdc.noaa.gov/
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to the list to make a total of ten counties that have a balanced shape to serve as the study area of 

this project.    

 

Figure 3: Study Area: 10 counties of Southern California 

Temperature change in Southern California was evaluated by the Office of 

Environmental Health Hazard Assessment (OEHHA). They found that the annual mean 

temperatures have increased 1.5 degrees Fahrenheit per century since 1895, while average  

minimum (low) temperatures are up 1.99 degrees  (OEHHA 2013). According to the report, 

average maximum (high) temperatures were up only 1.01 degrees. These numbers serve as a 
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foundation for understanding that temperatures are increasing in Southern California. The goal of 

this project is to contribute to the understanding of how persistent that change is. 

 Project Overview 

This study evaluates persistence of temperature change using homogenized seasonal 

high, mean and low monthly temperature data from 66 stations across Southern California from 

December 1934 to August 2014. Persistence is measured using the Hurst Exponent. This study 

tests H-values in correlation to elevation, aspect, and land cover to provide insight to the spatial 

trend in temperature change. These are the Research Questions that were addressed: 

1. Is there a spatial pattern of H-values by season as determined by optimized hot spot 

analysis; if present, how is the correlation best described? 

2. Is there a correlation between H-values and elevation; if present, how is the 

correlation best described? 

3. Is there a correlation between H-values and aspect; if present, how is the correlation 

best described? 

4. Is there a correlation between H-values and the land covers “Urban” and “Rural”; if 

present, how is the correlation best described?  

There are several different types of sciences involved in climate change research. In this 

case, the focus is on geographic information science (GISci). Mapping and spatial analysis, 

major components of GISci, have been important to understanding and displaying climate data 

(Thornthwaithe 1948, Daly et al. 2002). One of the best ways to interpret climate data is by 

understanding the space in which it occurs. As a result, much of the analysis in this project is 

illustrated with maps. 
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1.2.1. Homogenization 

Homogenization is a process of treating climate data to remove the impact of urban heat 

islands (UHI), ensure that that recorded data is reliable, and maintain the consistency of the time 

series (Longobardi, and Mautone 2015). This editing, filtering and filling in of data creates a 

stronger, more consistently reliable set of data from which further analysis is strengthened. The 

NOAA Carbon Dioxide Information Analysis Center (CDIAC) published a report of 

homogenized stations (Menne et al. 2015) that produced a long-term series for the conterminous 

United States. The report details the homogenization and quality assurance processes that 

produce the end data.  The quality assurance (QA) of the data is an integral step in data 

homogenization and includes (Durre et al 2010):  

1. Basic Integrity Check - looks for data duplication;  

2. Outlier tests (19 checks) - looks for values that are outside of the presumed value 

range.  

3. Internal and temporal consistency - evaluates ranges in the data;  

4. Spatial consistency - makes sure the values are consistent with surrounding sites;  

5. Meta-consistency – observations not flagged by other checks are verified for 

integrity. 

The specific methodology of homogenization is discussed in Chapter 2. In brief, Menne 

and Williams (2007) use a pairwise comparison algorithm to analyze consistency of the 

observations of adjacent stations, checking for outliers, missing data and possible errors. This is 

an important contribution to preparing data for climate change analysis because the alternative is 

to rely on station metadata that is not always consistent in availability and/or quality.   
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1.2.2. The Hurst Exponent 

Harold Edwin Hurst created a method of rescaling time series data in 1951. The goal was 

to evaluate the discharge of the Nile before it was to be dammed. The resulting analysis process 

is seen as pioneering work in fractal geometry (Mandelbrot 1982, Outcalt 1997). The Hurst 

Formula, shown in (1), from Outcalt (1997), measures how the trends in a time series move 

towards or away from the mean of the entire series.    

                                                  [
𝑅(𝑛)

𝑆(𝑛)
] ∞ 𝑛𝐻                                          (1) 

Here, n is the number of data points in the time series, R(n) is the range of the n values, 

and S(n) is the standard deviation of the values. H is the slope of the line from log [R(n)/S(n)].  H 

is the vital portion of the equation, and is known as the Hurst Exponent. While Hurst used the 

method first, the equation was developed by Mandelbrot (1967) who named it after Hurst.  

The power of the Hurst Exponent is its ability to qualify the time series. H-values range 

between 0 and 1. A value greater than 0 but less than 0.5, indicates that change within the series 

is cyclical. The further away from 0.5 the more pronounced the cyclic pattern. 0.5 indicates an 

entirely random series, so as values approach 0.5, the more random the series variation is. Values 

greater than 0.5 indicate persistence of change. As the value approaches 1, the stronger is the 

persistence of the apparent trend, and likewise the closer to 0.5 the value is, the weaker and more 

random the series variation is. The H-value does not report the direction of the persistence, only 

its strength. The direction of the persistence must be independently determined by reviewing the 

trends in the data itself. The Hurst Exponent is the theoretical construct where H-value is what 

can be calculated.  
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1.2.3. Spatial Properties 

The H-value was used as a tool to evaluate the relationship between long-term 

temperature changes and various spatial variables associated with each station’s location. The 

variables evaluated in this study were aspect, elevation and urbanization. The H-value of each 

station’s series provided a means to evaluate the strength or persistence of the temperature 

increases at that station. To formally frame the analysis described here, a hypothesis for each 

spatial property is presented below. 

1.2.3.1. Aspect 

Aspect in this case is the cardinal direction of the slope of the plane valuing from 0 to 360 

with 0/360 representing due north and 180 representing due south. The earth is far from a flat 

surface, and southern facing planes receive more sun in the northern hemisphere than northern 

facing planes. The hypothesis is that stations on a southern facing plane will have higher 

H-values reflective of more persistent temperature changes over stations located on a northern 

facing plane. 

1.2.3.2. Elevation 

There are myriad regional climate studies, and many of those studies are showing that 

high elevations are more sensitive to changing climate conditions and may act as early indicators 

of impending change at lower elevations (Giorgi, Hurrell and Marlnucci 1996; Diaz and Bradley 

1997; Hansen et al. 1999; Van Beusekom, Gonzalez, and Rivera 2015).  Because higher 

elevations are often more sensitive they can help show the direction that the regional climate 

trend is headed. Therefore, the hypothesis is that stations located at higher elevations will 

produce higher H-values reflecting increased persistence of temperature change at higher 

elevations over stations at lower elevations  
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1.2.3.3. Urbanization 

The urban heat island (UHI) effect has been well studied (Easterling, Peterson, and Karl 

1997; Tett et al. 1999; Kalnay and Cai 2003; Hayhoe et al. 2004, Ruddell 2013) and urbanization 

has been shown to have a significant impact on temperatures causing more pronounced 

temperature increases. Even though the data used in this study has been homogenized to 

minimize the UHI effect spatially, the expectation is that over the time series, stronger 

persistence of temperature increases should be observed at stations with an urban land cover. 

Because urbanization changes over time but land use data is difficult to find for the full range of 

dates included in this study, census population density was used as a proxy for urbanization. The 

hypothesis is that there will be higher H-values showing higher degrees of persistence of 

temperature change at stations with higher population densities (i.e. more urbanized) than 

stations with lower population densities (i.e. more rural).  

 Outline of this document 

Chapter 2 discusses some of the myriad studies in climate change focusing on studies that 

are relevant to the study area or the study methodology.  Works analyzing global temperature 

climate change show that around the world temperatures have been increasing over the last 

century with the most significant increases from 1980. Not only are temperatures increasing, but 

the driving forces linked to temperature increases are attributed to human activity. This is called 

anthropogenic climate change (ACC) (IPCC 2007), and is addressed in Section 2.1.  Regional 

studies help scientists to understand which areas are being most affected by climate change. 

Section 2.2 discusses some of the methodology for regional analysis of temperature changes, and 

the results of regional studies for California and Southern California. Homogenization is 

discussed in Section 2.3. Section 2.4 talks about the Hurst-Exponent, and how it is used in a 
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research setting. The rest of Chapter 2 discusses how the spatial variables used in the study are 

reflected in the research.  

Chapter 3 addresses the methodology employed. The data that was used, how it was 

obtained and the important metadata are addressed in Section 3.1. The rest of the chapter is 

dedicated to explicating how the Hurst data was generated and employed in analysis. Section 3.2 

focuses on the Hurst Exponent, and Section 3.3 looks at the Hot Spot Analysis. The spatial 

dimensions of the study are addressed in Section 3.4  

All of the results of the study are displayed in Chapter 4. Section 4.1 reviews the 

temperature trends where Section 4.2 shows the results of the Hurst analyses.  

The final chapter addresses the problems that arose during the study. Chapter 5 also 

covers a few afterthoughts and suggestions for future research based both on the methodology 

and the data set created. Lastly, the significance of this study is relayed. This very last section of 

Chapter 5 is arguably the most important because it not only covers what the study 

accomplished, but how it might help other studies in the future.   
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Chapter 2 Background Literature 

Climate change is an incredibly widely studied field. There are journals, such as Climate 

Change, Climate, and Climate Dynamics, among others, exclusively dedicated to climate change. 

With an average of about 1,400 articles on climate published each year (Powell 2012), there is no 

shortage of studies to report. This chapter focuses on some major keystone articles, articles 

specifically about the study area, and some recent works relative to each section.  

Climate is defined as the weather conditions prevailing in an area in general or over a 

long period. Weather conditions are generally thought of as temperature and precipitation, and 

maybe wind, but ways of measuring climate change extend far beyond that. Karl et al (1996) 

outline in detail many of the ways that climate change can be measured through its impacts on 

flora and fauna, oceanography, wildfire patterns, and of course atmospheric conditions like 

precipitation and temperature, the latter the focus of this research.  

 Global Temperature Change 

Tracking temperature change is one of the primary means of evaluating climate change. 

As early climatic sensor technology proliferated, the ability to quantify climate became a reality 

(Thornthwaite 1948). The next challenge was to disambiguate climate study from meteorology, 

statistical rational analysis was one means of accomplishing this (Thornthwaite 1948). Chapter 1 

already discussed how temperatures are rising around the globe, but many research studies cover 

the myriad aspects of the globally increasing temperatures. In 2006, Hansen et al. compared 

predictive temperature models from the 1980’s and compared their predictions to real instrument 

readings during the prediction years. This served to evaluate the accuracy of predictive models, 

and assess the current rate of temperature increase. Not only does their paper show the 

magnitude of global temperature increases, but it also looks at three scenarios for continuing 
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trends based on carbon dioxide emissions estimates. Their conclusion is that the earth is as warm 

as the Holocene maximum. As temperatures approach the warmest in a million years, the effects 

of the temperature increases constitute significant levels of change.  

Most scientists attribute the rise in temperatures to increases in greenhouse gasses such as 

carbon dioxide. Greenhouse gasses not only increase temperatures but also increase solar 

radiation levels as discussed by Schlesinger (2011). He reports that global air temperatures are 

expected to increase from 2 degrees to 4.5 degrees Celsius because of increased concentrations 

of greenhouse gasses.  

These are just a couple articles that show that global surface temperatures are on the rise. 

Even though we know that temperatures are on the rise, regional studies help scientists 

understand how the global increases are impacting people, plants, and animals on a local level. 

This is part of the reason that there are so many regional studies on climate change, and 

temperature increases in particular. Temperature increases are happening globally, but change is 

observed on the regional scale. 

2.1.1. Anthropogenic Climate Change 

 Anderegg et al. (2010) did a meta-study looking not at climate change or its causes, but 

instead looked at a database of 1,372 leading scientists and their research to address the apparent 

disagreement about anthropogenic climate change (ACC) perceived by the American public. 

According to that study, about 98 percent of researchers publishing in the field of ACC agree 

with the results of the Intergovernmental Panel on Climate Change. Not only this, but the 

roughly 2 percent of researchers who do not hold this belief are much less prominent 

professionally. This really translates to the vast majority of the scientific community as a whole 

agree that the patterns being observed as climate change have been caused by human action.  
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Studies regarding the changes seen in the climate and possible causes began decades ago. 

There was an IPCC on climate change in 1990 that attributed the increases in global temperature 

to human activities (Santer et al 1996). By 1999, scientist attributed increases in temperature to 

the increased levels of carbon dioxide in the atmosphere, and the increase use of sulphate 

aerosols (Tett et al 1999). In 2013, Ryerson et al. directly addressed atmospheric pollution and 

climate change. The goal was to record how much of what is going into the air, and how that 

might potentially be affecting the climate. The correlation here between population growth and 

urbanization with climate change is obvious. They were even able to record leaks in the natural 

gas infrastructure, which might have been overlooked as a contributing factor had it not been 

included in their research. They also looked at how air pollution in Los Angeles might be 

moving across the valleys and affecting air quality elsewhere.   

One of the earliest papers identified that correlates climate change with population 

growth showed that even in the small towns of less than 10,000 people there was on average a 

0.1 degree Celsius increase in temperature from nearby stations with more than 2,000 people 

(Karl et al. 1988). That study evaluated 1219 weather stations from 1901 to 1984.  

One human activity other than carbon emissions that is known to increase temperatures is 

the amount of ground covered by pavement and buildings. Since soil is not very reflective, as the 

sun hits the soil it will absorb heat. Concrete on the other hand reflects the heat back to be 

bounced off nearby buildings. The reflectivity and absorption of heat by a surface is called 

albedo. Concrete and other man made structure have a high albedo and are very reflective, where 

trees, grass, and soil absorb heat more than reflect it, and have a low albedo (Taha 1997). As 

solar radiation as heat hits the earth, the radiation and heat are either absorbed by surface or 

reflected back functionally increasing temperatures (Raupach and Finnigan 1997). The effect is 
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similar to the impact a mirror has on light. A single candle only produces so much light on its 

own, but if the candle is placed in front of a mirror the light of the candle is almost doubled.  

 Regional Climate Change Analysis  

Regional climate studies are important in understanding how the changing climate has 

impacted and will impact specific areas on a smaller scale. Kuepper et al. (2005) discuss the 

significance and importance of regional studies in understanding global climate change.  As of 

2015, Global Climate Models (GCM) must be used and parred down to facilitate projections for 

a region (Pierce 2004, Cayan 2008).  Quality data and analysis for a region helps to fill in the 

data gaps of the GCM to make the regional model more comprehensive, highlighting the 

importance of quality regional climate change studies.  

Studies of historical climate and temperature change at the local level are dependent upon 

the availability of data. Ideally, the best data that has been collected or is available for that region 

will be used. The data must have been consistently and reliably collected to be utilized as an 

indicator in a study to evaluate temperature change, or any other aspect of climate change for 

that matter. Each collected temperature set is a separate indicator. Daily high data is one example 

of an indicator, and daily low temperatures is another. Indicators can also be the result of data set 

analysis. This study used seasonal measures derived from the monthly high, mean and low 

temperature reports.  

Different climate stations report data differently; some stations report on daily 

temperature high, and low, sometimes including a daily mean, while some stations in Europe, 

report data according to Manheim hours (Rebetez and Reinhard 2007). Manheim hours take the 

temperature measurements at specific times of day (morning, afternoon and evening) to calculate 

monthly means instead of using the simply daily high and low temperatures. Other stations do 



16 

 

not report the daily mean at all, only the high and low. If the data for a specific measure is 

sporadic or inconsistently collected, or has been shown to be in any other way unreliable, that 

indicator is likely to be eliminated entirely from the analysis.  

Data quality is an issue addressed in many ways. Most projects are usually only able to 

use between three to five indicators to determine rate of change because of issues in data quality 

for the other indicators. Garzena’s (2015) study of temperature change in the Italian Alps uses 6 

indicators: Cold spell duration, Warm nights, Warm days, Cool nights, cool days, and Warm 

spell duration. They used some satellite data to fill in some blanks offered from intermittent 

ground station data.  Some studies, such as Liu at al. (2004), have used interpolation to fill in 

short periods of missing data. They evaluated 305 stations high, mean and low readings. They 

likely interpolated missing values in order to maintain an even statistical weight between the 

figures.  

Booth, Byrne and Johnson (2012) evaluated climate change in western North America 

using data from 485 stations. They were able to utilize consistent daily data from 1950 to 2005. 

Six stations had long-term records that were analyzed for a hundred year interval starting in 

1906. There were able to analyze 4 temperature indicators and 4 precipitation indicators from the 

27 core climate change indicators developed by the World Meteorological Organization (WMO). 

They evaluated the 22 westernmost states of the contiguous United States and 4 provinces from 

Canada. Results showed that because of the diversity within the region, result of increases 

varied, though warming trends were ubiquitous, and precipitation trends fluctuate between 

increasing and decreasing trends. In California and southern California specifically, they found a 

general warming trend with some coastal cooling.  
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An important paper that influenced this research is Rebetez and Reinhard (2007). Their 

study also sought to analyze long-term temperature trends using spatial attributes like aspect, and 

elevation. Using homogenized data, they evaluated temperature change in Switzerland at 13 

stations. They compared temperatures to the global mean to assess degree of change. Using the 

Ward Method for hierarchical clustering based on a Euclidean distance matrix they analyzed the 

relationship between stations. They found that temperatures had increased 0.135 degrees Celsius 

per decade in the last century, but 0.57 degree increase can be attributed to the last 30 years 

alone. Seasonal warming trends fell into the 95 percent significance range. This key research is 

reviewed in detail later in this chapter as a means of setting the framework for the research 

reported in this document.  

2.2.1. Impacts of Climate Change in California 

Climate change is more than just temperature and precipitation changes. The impact that 

these changing patterns have affects multiple systems. In this section, some of the other ways 

that climate change has impacted California and Southern California are explored.  

As temperatures increase and, especially in California, as precipitation decreases, some 

species of plants thrive, while others wither or migrate to more suitable areas. Evaluating where 

and how plant distribution is changing is one of the indicators of climate change (Karl et al. 

1996).  Kelly and Goulden (2008) cover over 30 years of floral distribution in Southern 

California. They found that as temperatures increased and precipitation decreased, the elevation 

of dominant species increased by approximately 65 m. Even some climate modeling scenarios 

include projections regarding flora. Projections predict an increase in deciduous forest cover as 

coniferous forests decline (Lenihan et al 2003, 2008).  The viability and accuracy of modeled 
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plant ranges with projected climate change suggest that predictions may not have the desired 

accuracy and how to possibly adjust the projections (Dobrowski et al. 2011). 

Plant life migration patterns are only one of the impacts of climate change. Rising sea 

level is one of the primary concerns in a global climate change scenario. The Pacific Ocean is a 

significant contributor to the overall climate patterns in California. Cayan et al. (2008) examine 

what effects climate change will have on sea levels along California’s coast. Because California 

has such a long coast line, this global trend is regionally relevant. Ocean currents affect El Nino 

patterns that contribute to precipitation patterns across the globe. Cayan et al. suggest that even 

with the changes in precipitation in California, the increased temperatures will continue to reduce 

snow pack. Further analysis of ocean cycles is seen in other articles.  

Even though the primary focus of Hayward (1997) is on the Pacific Ocean as a whole, the 

paper looks at changing plant life within the Pacific. The expectation is that there will be a 

proliferation and abundance of some sea life, where other sea life will wither. The long ranging 

effects of these changes was not evaluated in the paper, but because California has such a long 

coast line, it may be assumed that climate changes affecting the abundance of ocean flora and 

fauna will significantly influence California’s economy.  

As temperatures increase and precipitation in California decreases, fire patterns are one 

of the big climate change indicators. Fried, Tom, and Mills (2004) show that changes in the fire 

patterns can demonstrate climate change in California.  Their paper focuses on Northern 

California specifically, and they found that as CO2 increases, fires are projected to burn more 

intensely and spread faster. Westerling and Bryant (2008) discuss the importance of climate 

change on fire seasons, and what possible impacts the regional climate change may have upon 
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California’s fire season. The study reported that the reduction in air and land moisture with 

increased temperatures indicate there will be more large fires more often.  

 Homogenization of Climate Data 

Ideally, data collected for any research objective is perfect with no instrument error or 

gaps in data recording, and no external factors influencing readings. With most data sets this is 

not the case, and climate data is no exemption. Changes in instruments, how data is recorded, 

station location, and increases in urbanization all have impacts on climate data that make solid 

meaningful statistical analysis difficult (Aguilar et al. 2003). This is where homogenization of 

weather data for climate change research steps in.  

Different studies use various methodologies for selecting data collection sites to use for 

their studies, but many studies value homogeneity because it ensures consistency within the data. 

(Vincent and Guillett 1999; Rebetez and Reinhard 2007; Garzena, Fratianni and Acquaotta 2015; 

Longobardi and Mautone 2015). When sites have been moved, or have only sporadically 

collected data, it can significantly affect analysis of temporal trends (Christensen et al. 2008; 

Dibike et al. 2008). The results from statistical analysis can also be altered by sporadic and 

erratic data. Using homogenized data ensures that these errors and gaps are eliminated from the 

data as much as possible.  

Much research has been dedicated to how to identify non-climatic contributions to 

climate data, so there are many techniques and means by which homogenization can be done. 

While some methods focus on analysis of the metadata to give clues to how data should be 

adjusted, others use analytic methods directly on the data itself (Easterling, Peterson, and Karl 

1995). For the research reported here, homogenization was performed using Mene and Williams 

(2007) guidelines. They created an automated algorithm that performs pairwise comparisons of 
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data from a network of stations. The process looks at each of the readings from a diverse set of 

stations to establish the most likely range of temperatures that exclude artificial discontinuities, 

or “inhomogeneities” (Menne and Willaims 2007). The goal is to be able to detect disparities in 

temperature that do not reflect the true variability. This is why the metadata is not as significant. 

Regardless of the completeness of the metadata, or any previous knowledge regarding the 

circumstances around the data collection, inhomogeneities should be snuffed out.  

The pairwise comparison is combined with another algorithm that uses recursive testing 

to correct multiple inhomogeneities simultaneously. Recursion relies on testing and analyzing 

smaller versions of the same type of data. The series of data are also examined for improbable 

shifts in temperatures from one day or one station to another.   This method has a lower rate of 

false alarm readings than the other methods for homogenization (Mene and Williams 2007). The 

result produces homogenized monthly data from which further analysis can be performed.  

 The Hurst Exponent in Climate Change Studies 

The Hurst exponent has seen most use in the financial sector to calculate predictability of 

various markets. Carbone, Castelli, and Stanley (2004) calculated the H value for the minute to 

minute ticks of the German market to determine the predictability. They estimated H using the 

Detrending Moving Average technique. H-values calculated were all close to .5 in value, and it 

was determined that the market has a low predictability.  

Cajueiro and Tabak (2004) provides another example of the Hurst Exponent being 

employed in finance. They sought to determine if emerging markets gain efficiency over time. 

They evaluated 4 years of global market trends of young markets, such as Brazil, Latin America, 

and Thailand. They found that higher H values reflected increasing efficiency expressed by most 

young markets but not all.  
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 Despite its popularity in financial studies, the Hurst exponent was created for evaluating 

geophysical time series data (Hurst 1951, Mandelbrot 1968), but it has many applications. 

Outcalt (1997) outlines a number of other uses and applications. He suggests using H-values to 

assess distribution of trees and sunspot pattern analysis, and, with respect to climate studies, for 

temperature, precipitation and drought analysis.  

A very interesting study was done in 2003 by Koutsoyiannis. He took 1000 years of 

temperature data inferred from various sources such as isotope readings, tree ring analysis, and 

ice core samples. Because of the nature of the inferred data, the study covered the northern 

hemisphere. The researcher’s interest was to determine hydrological cycles based on temperature 

persistence. He found that climate fluctuates at all time scales, and calculated an H value of 0.88 

for the long-term memory of the proxy annual temperatures.  

Another long range temperature study that used inferred data covered 125 years of ocean 

compared to land temperatures of the Northern Hemisphere (Alvarez-Ramirez et al. 2008). They 

found that temperatures, while rising, are also cyclical annually and inter-annually determined by 

12 month and 2 month running means.  

Rangarajan and Sant (2004) used meaned monthly data to calculate seasonal H-values of 

monsoon seasons in India to see if there was a correlation between temperatures and 

precipitation. Their study used GHCN data of 31 stations .H-values greater that 0.5 can also 

show predictability. Some stations high H-values reflected high predictability, but not all.  

Ruddell et al. (2013) used the Hurst exponent to evaluate long-term temperature changes 

to quantify the UHI. Temperature data from urban Phoenix, AZ was compared to temperature 

data from the nearby Gila Bend, AZ, a much less urbanized community. They examined the 

extremes in temperatures: frost days, and misery days from 1900 to 2007 and calculated H-
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values for the time series data. The results showed fewer frost days and increases in misery days 

in Phoenix, while the conditions were relatively stable with only moderate increases in Gila 

Bend.  

 The Environmental Variables Affecting the Rate of Climate Change 

2.5.1. The Effect of Aspect 

Around the northern world, as in California, on north-facing slopes snow tends to last 

longer and temperatures tend to be cooler (WRCC 2015). This is due to differences in solar 

radiation and suggests that south-facing slopes (in the northern hemisphere) may feel the effect 

of climate change more strongly. Rebetez and Reinhard (2007) found that to be the case in their 

study of the Alps. They found that stations on the south-facing sides warmed an average of 0.13 

degrees, and temperatures on the north-facing sides increased only 0.10 degrees. No other studies 

that included aspect as part of a temperature change study were found, even though slope and 

aspect are key to understanding species distribution and ecosystem processes (Bennie et al. 

2008). Environmental Variables Affecting the Rate of Climate Change 

2.5.2. The Effect of Elevation 

It is common knowledge that the high elevations have different climatic attributes from 

the low lands of Southern California (WRCC 2015). Many “flatlanders” escape the summer heat 

by retreating to the cooler mountain temperatures, and visits to the snow in winter, when there is 

snow, is not uncommon either. The question is how the effect of difference in elevation has been 

expressed in the climate change research. 

There are studies dedicated exclusively to climate change at high elevations. In many 

measures of climate change, higher elevations are more sensitive to the impacts of higher 

temperatures. Beniston, Diaz and Bradley (1997) looked at a centuries worth of data and the 
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impacts for climate change in high elevations exclusively. They note the difficulty in performing 

a thorough analysis because of the lack of high elevation stations. Even still they were able to 

find that the magnitude of change in high elevations exceeds the global rate of change.  

Mote (2006) looked at snow pack levels in western North America. Though Southern 

California was left out of the study, the results for the mountains of Northern California and the 

Cascades show that Pacific climate variability accounts for 10 to 60 percent of April snow water 

equivalent levels. In other words, the snow pack is melting. Pacific climate variability is the 

interannual and decal oscillating patterns and fluctuations of currents within the oceans and 

atmosphere that have effects upon the weather in the northern hemisphere. (Di Lorenzo et al. 

2010) 

The Tibetan plateau has been the focus of many of the high elevation research studies 

(Liu et al 2008, You el al. 2010). You et al. (2010) tested correlations in the temperature trend 

for annual mean temperature and seasonal temperatures with elevation using National Center for 

Environmental Protection (NCEP) data. 11 indicators at 71 stations all above 2000 m found no 

correlation between elevation and the magnitude of the rising temperature trend.  Liu et al (2008) 

found elevation dependency in the Tibetan Plateau similar to the types of dependency found in 

the Alps, and the Rockies. They found increasing temperature trends from 116 stations using 

monthly low temperature data.  

2.5.3. Land Use and Climate Change 

Evaluating land use change in association with temperature change is one component of 

understanding anthropogenic climate change. Changes in albedo is one of the most direct effects 

of population growth upon the local ecology and thus suggests impacts on temperature change.  
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Early studies such as Taynac and Toros (1997) focused on individual cities and climate change. 

They looked at four developing cities in Turkey from 1951-1990, and found urban heat islands 

with marked increases in annual temperature during this time period, but there were no perceived 

changes in precipitation. A 2003 study by Kalnay and Cai attributed a 0.25 degree temperature 

increase over the past fifty years to surface temperature changes.  In 2008, Grimm et al. 

performed a continental research program to evaluate small and large cities and the effects of 

land cover change. Satterthwaite (2009) looked at carbon emissions as a driving force for climate 

change and argued that it is not so much population increase, but the carbon footprint of the 

populations that are driving climate change. Thus, the role of urbanization on climate change is a 

diversely studied and intensely interesting research topic. 

 Methodological Inspiration 

After reading many academic articles on regional climate change, Rebetez and 

Reinhard’s (2007) study of temperature changes in the Swiss Alps was selected as a preliminary 

study template. Station elevation ranged from 316 m to 2490 m in their report, which is similar 

enough to the range of values of Southern California stations (- 36.9 m to 2091.7 m) to serve as a 

viable model. Also, the time frame is similar; Rebetez and Reinhard were able to obtain 

homogenized data from 1901-2000. This study ranged from 1935 to 2014, providing an 80 year 

analysis in place of the 100 year study. At the initial inception of the project there were data for 

only 13 homogenized stations in Southern California, and the Rebetez and Reinhard study used 

12 stations. The objective, data and ranges were thus similar enough to justify considering 

employing their research methodology as a model.   

The data set used by Rebetez and Reinhard had 12 homogenized stations with monthly 

Manheim temperatures. Manheim temperatures report three values each day: an early morning, a 
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peak afternoon, and an evening temperature instead of the high, low, and mean temperatures 

seen in the majority of U.S. temperature station data. It was from the daily Manheim values that 

their study calculated a mean temperature for each month. The monthly data available from 

NOAA that reports temperatures in North America, including Southern California, employs the 

more typical daily high and low and mean temperatures. This use of a different type of 

temperature series was the first major divergence from the original template methodology. The 

second was a fortuitous acquisition of more homogenized Southern California temperature data 

that permitted this study to expand to a consideration of 66 stations. 

Rebetez and Reinhard used the Ward method to perform a cluster analyses to analyze the 

relationships between the stations. The Ward method is an agglomerative hierarchical clustering 

using a Euclidean distance matrix to explore similarities and differences in stations and months. 

Unfortunately, most programs which perform this type of analysis, such as SPSS, are not 

spatially oriented. They use latitude and longitude values, which are degree measurements that 

change in distance measure as the distance from the poles changes, as Cartesian x,y values. As a 

result, Euclidean distances from such coordinates are not accurate measures of true distance. 

The Ward method puts greater importance on closer stations with results similar to a 

nearest neighbor distance weighting. This is done by sequentially incorporating clusters by 

proximity starting with each point as its own “cluster” and building from there.  ArcGIS has the 

ability the run a distance analysis from a projected coordinate system where distance measured is 

relatively accurate to reality, and is therefore inherently a better means to perform the same type 

of analysis. In this study, an optimized hotspot analysis was used in place of the Ward clustering.  

This became another point in which the methodology of this study deviated from the original 

template study.  
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Rebetez and Reinhard employed a Fisher test to determine the exact p-value of trends for 

individual stations. P-value is the likelihood that a randomization of the variable will match what 

is actually observed. It is used to determine how likely the reality is to be random or correlated.  

The Fisher test runs every iteration of the possible paired values for all variables to produce a p-

value that reports the strength of the correlation in the data.  

The Hurst Exponent also measures the strength of temporal autocorrelation of a time 

series. In this study it was chosen over the Fisher test because the Hurst Exponent was developed 

to analyze time series specifically, where the Fisher test is employed in all forms of statistics for 

all forms of data types. Also the Hurst Exponent not only measures autocorrelation and 

randomness, but also identifies cyclical patterns and is therefore offers a stronger analysis of the 

time series.  

Rebetez and Reinhard compared their results to global data from the Climatic Research 

Unit as a baseline for comparison of changes. However, the Hurst Exponent offers a cumulative 

deviation time series that can be used to understand the trends for each station. A more regional 

comparison was deemed a more appropriate means to evaluate change in this study.  

The template study compared the north- and south-facing aspects of the slopes in the 

Alps by comparing the mean temperature increase at stations on the northern versus southern 

side of the Swiss mountain ranges. That inspired the aspect analysis performed by this project, 

but again GIS facilitates a more concise evaluation of slope and aspect derived from a DEM. 

Webster used the derived aspect to assign numerical aspect values (0-360) for each station. The 

H-values for each station were then compared to the aspect values using scatter plots as a 

correlation analysis.    
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Finally, in a complete deviation from the template study, this study also evaluated land 

use and population change to see if there was a connection between stations demonstrating 

higher persistence of increasing temperature change and higher urbanization levels.   

This chapter could have continued to discuss climate change in depth for many more 

pages. This background chapter served to provide a foundation and justification for the research 

and methodology presented.   
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Chapter 3  Methods 

This project sought to understand the spatial and temporal trends in temperature change in 

Southern California that are evident in homogenized monthly temperature data from 1935 to 

2014. The Hurst Exponent was used as the key metric in assessing the strength of trends. By 

comparing elevation, aspect, land cover, and historic population density with the H-values at 

each station, relationships between long-term temperature changes and these environmental 

variables were explored.   

The hypothesis for elevation was that temperature increases would be more pronounced 

and accelerated as indicated by higher H-values at stations at elevations greater than 1,000 

meters above sea level. The hypothesis for aspect was that south-facing stations would have 

experienced higher temperatures overall, and more pronounced and intense temperature 

increases indicated by higher H-values. The hypothesis for land cover was that there would be 

more persistence in increasing temperature trends, or higher H-values, at stations in urban areas 

than stations in rural areas. Lastly, the hypothesis for population would mirror that for land cover 

as higher density was used as a proxy for urbanization. 

 Data Sets Employed 

This project was data intensive. Weather data for 66 stations giving monthly high, mean, 

and low temperatures were required. Stations location and temperature data came from NOAA’s 

climate data website, the National Climatic Data Center. Homogenized station data was obtained 

from Mathew Mene at NOAA's National Centers for Environmental Information (NCEI).  

NOAA has a great climate data download site at the National Climatic Data Center. The 

site provides access to stations and the associated data in .csv format. That document can then be 

imported to Excel, and from Excel a feature class can be created using the latitude and longitude 
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coordinates provided. The coordinates are provided in the ten-thousandths, which for Southern 

California equals about 11 meter accuracy. The coordinates provided were in WGS 84. All data 

imported was projected into California State Plane V for spatial analysis. This projection was 

selected because it was designed specifically for Southern California to balance area and shape.  

Because Rebetez and Reinhard (2007) used homogenized stations, homogenized station 

data was sought out on the NOAA site. A preliminary search yielded the 13 homogenized 

stations for Southern California shown in Error! Reference source not found.A couple 

problems were immediately evident: not all counties were represented with at least 1 station, and 

there is not a good distribution of stations in general across the landscape. That indicated that in 

order to perform the desired spatial analysis, more stations would need to be homogenized.  

 

Figure 4: The Original 13 Homogenized Stations 

Given that homogenized data for a larger set of stations was not immediately available, 

all of the stations in Southern California were evaluated for longevity and completeness of the 

time series. A map of all the stations evaluated is shown in Error! Reference source not 

found.This included 70 stations including the original 13 with available data dating from at least 
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1950 to the end of 2014 and with at least 70 percent complete data completeness. It was from 

these stations that the homogenized station data would be created.  

 

Figure 5: Active and Historic Temperature stations 

Mene and Williams’ homogenization methodology is provided in their 2007 report.  This 

project attempted to obtain the program used to homogenize data. When Mathew Mene was 

contacted, he observed that it would be difficult to obtain the appropriate amount of data to 

homogenize stations out of context, and added that he was in the process of homogenizing many 

more stations nationwide. He offered to homogenize the Southern California stations that were 

already under consideration for homogenization. This meant that the stations would be 

homogenized using the same rigorous methodology employed by NOAA for all stations, 

ensuring the highest quality of authoritative data possible.  

Within a couple of weeks, 66 stations were returned with 100 percent completeness from 

at least 1934 to 2014; a full list of station names and associated station number is shown in Table 
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1. A few stations of the 70 originally requested still had missing data and were eliminated from 

the analysis. The final station selection is shown in Figure 6. The final selection represents all 

counties more evenly. The only major area not well represented is the high desert of San 

Bernardino County. Unfortunately, the region did not have a complete enough data set meet the 

required completeness criteria.  

Table 1: Homogenized station list with associated coop number  

 
 

Station_ID Station_Name Station_ID Station_Name Station_ID Station_Name

COOP:040439 BAKERSFIELD COOP:044297 IRON MOUNTAIN COOP:046730 PASO ROBLES

COOP:040442 BKFLD MEADOWS FIELD AP COOP:044412 JULIAN CDF COOP:047253 RANDSBURG

COOP:040519 BARSTOW COOP:044647 LAGUNA BEACH COOP:047306 REDLANDS

COOP:040521 BARSTOW COOP:044735 LA MESA COOP:047740 SAN DIEGO WSO

COOP:040609 BEAUMONT NUMBER 2 COOP:044747 LANCASTER COOP:047785 SAN GABRIEL FIRE DPT

COOP:040741 BIG BEAR LAKE COOP:044749 LANCASTER ATC COOP:047810 SAN JACINTO

COOP:040742 BIG BEAR LAKE DAM COOP:045064 LOMPOC COOP:047888 SAN ANA FIRE STN

COOP:040924 BLYTHE COOP:045107 LOS ALAMOS COOP:047902 SANTA BARBARA

COOP:041048 BRAWLEY COOP:045115 LOS ANGELES DWTN USC COOP:047940 SANTA MARIA

COOP:041194 BURBANK VALLEY PUMP COOP:045502 MECCA FIRE STN COOP:047953 SANTA MONICA

COOP:041244 BUTTONWILLOW COOP:045756 MOJAVE COOP:047957 SANTA PAULA

COOP:041758 CHULA VISTA COOP:046118 NEEDLES COOP:048014 SAAUGUS PWR PLT

COOP:042214 CULVER CITY COOP:046154 NEW CUYAMA COOP:048826 TEHACHAPI

COOP:042239 CUYAMACA COOP:046175 NEWPORT HARBOR BEACH COOP:048829 TEHACHAPI 4 SE 

COOP:042598 EAGLE MOUNTAIN COOP:046377 OCEANSIDE MARINA COOP:048839 TEJON RANCHO

COOP:042713 EL CENTRO 2 SSW COOP:046399 OJAI COOP:048973 TORRANCE AP

COOP:042805 ELSINORE COOP:046569 OXNARD COOP:049035 TRONA

COOP:042941 FAIRMONT COOP:046624 PALMDALE COOP:049099 TENTYNINE PALMS

COOP:043463 GLENNVILLE COOP:046635 PALM SPRINGS COOP:049152 UCLA

COOP:043468 GLENNVILLE MORROW RA COOP:046657 PALOMAR MT OBSTRY COOP:049325 VICTORVILLE PUMT PT

COOP:043855 HAYFIELD PUMP PLANT COOP:046699 PARKER RESRV COOP:049452 WASCO

COOP:044223 IMPERIAL COOP:046719 PASADENA COOP:049847 YORBA LINA
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Figure 6: Homogenized stations by location 

3.1.1. Station Elevation 

The elevation for each station was provided by NCDC with the station data. Elevation is 

reported in meters to the nearest tenth. Figure 7 displays a histogram of the distributions of 

stations at given elevations. Ideally, a study of this kind would have an even distribution of 

stations across elevations. Reality very rarely meets the ideal, and this is no exception. There are 

a lot of stations at lower elevations and very few stations at the highest elevations. This uneven 

distribution of data may make it harder to show a dependency of persistence at higher elevations.   
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Figure 7:  Histogram of Distribution of stations at elevation in meters.  

3.1.2. Station Aspect 

The digital elevation model (DEM) obtained from the National Elevation Dataset (NED) 

had 1 arc-second spacing, or 25.29 m at 35° latitude, and can be seen in Figure 8. The DEM 

shows all of the ranges of elevations seen in Southern California, where the station elevation data 

only addresses the elevations of climate stations. The most extreme elevations are not 

represented by stations. The aspect surface that was created from that 1 arc-second DEM can be 

seen in Figure 9. 
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Figure 8: 1 arc-second DEM for Southern California 

 

 

Figure 9: Aspect derived from the DEM for Southern California 
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Because of the well-known problems with error in DEM data (Fisher and Tate 2014), the 

aspect was smoothed by 3x3 pixel window. That smoothing created an overrepresentation of 

southern facing planes. This is because if a pixel with the value of 12 (N) is averaged with a 

pixel that has a value of 340 (also N), the new value will be 276 (S).  If any interpolation or 

further surface analysis were being performed this would have been a much more difficult issue 

to tackle. However, because stations are points, it was possible to manually examine the 

smoothed aspect values for all stations that returned a value of Southwest, South or Southeast 

(112.5 to 247.5) in order to ensure that the station was truly in a predominately south-facing area.  

Only about half of the stations needed to be manually evaluated. In this case the 

smoothed aspect values at station locations were compared to the unsmoothed aspect values. 

Stations that had a northern value (292.5 to 359.9 and 0 to 67.5) returned from the original 

unsmoothed aspect surface required further evaluation. This was the case for 15 stations.  For 

those few stations, a new value was calculated manually. The values of the 9 pixels with the 

station at the center were averaged by adding 360 to values below 67.5.  This way if a cell with 

the value of 12 is averaged with a cell of 340 ((12+360) +340)/2 is 356 which is a north-facing 

aspect.  

3.1.3. Land Cover Data 

Land use/land cover data at 100 m resolution was downloaded from The National Land 

Cover Database (NLCD). The 100 m dataset is a smoothed version of the original 30 m dataset, 

developed to aid in the visualization of regional land use/land cover conditions. The 100 m 

dataset was chosen for use in this project because it was determined that the 30 m resolution data 

would have been too detailed to appropriately estimate urbanization levels of the area 
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surrounding the stations. This smoothed dataset was created in 2010 although it is based on 2001 

Landsat satellite data. It is shown in Figure 10.  

 

Figure 10: Land cover data with station urbanization 

In order to extract land cover values for this analysis, the numeric class value was pulled 

for each station. Then the classes were divided into “urban” and “rural” values to facilitate 

comparison. “Urban” stations had a value of 22, 23 or 24. The value 21 (Developed open space) 

was not included in the “Urban” classification because it was decided that even though there is 

some development nearby, since weather stations should be at least 30 m from any large paved 

area (Campbell Scientific 2015), it is likely that the area around the station was still open, thus 

minimizing the impact from any Urban Heat Island effects. All other values were classed as 
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“Rural.” There were 25 stations located in rural classifications, and 41 stations located in urban 

classifications.  

3.1.4. Population Density 

 The extent of urbanization changes over time. The places that were urbanized in 2001 

were likely either less urbanized or still rural in 1950. More often than not, high levels of 

urbanization are associated with higher population densities. Since historic land use data could 

not be obtained, population density was used as a proxy for urbanization because of the 

relationship between density and urbanization levels.  

Decadal population data from 1940 to 2010 were obtained from the National Historic 

Geographic Information System (NHGIS). However this data contained population totals, not 

densities directly, and until 1970 most population was reported at the county level only. As of 

1980, all counties had been divided into smaller tracts. For each decade, the population and the 

area of the coincident census zone were extracted for the location of each station using ArcGIS. 

The density values were calculated by dividing population by the area of the census zone. 

Densities for all decades were compiled into a single table, shown in Appendix A.  

 Calculation of the Hurst Exponent  

The Hurst Exponent is a means to analyze a time series. A value of .01 to .049 indicates 

that the series is cyclical; the closer to zero the more consistent the cycle. A value of 0.5 

indicates a random series. The closer the H-value is to .5 the more random the series is. A value 

greater than .5 and less than 1 indicates the persistence, or positive autocorrelation of the series 

(Outcalt 1997). The Hurst Exponent is the crux of this research project.  

Calculation of H is approached by first calculating the mean of the series, then creating a 

mean-adjusted series, and then calculating the cumulative deviate (QD) series. Using the 
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minimum value and the maximum value of the QD, the range is calculated.  The standard 

deviation of the original series is then calculated. H is estimated by dividing the log of the range 

over the standard deviation by the log of the number of values in series.  

Because seasons are inherently cyclical, only the hottest and coldest months were 

analyzed. The first step was to determine the pattern of temperatures for Southern California. 

Temperature data for several stations was graphed so that the hottest and coldest months could 

be determined. Figure 11 is one such graph. This is all 80 years of monthly data (x-axis) in 

degrees Celsius times 100 (y-axis). June, July and August form the peak, and are the hottest 

months; the coldest months were December, January and February.  

 

Figure 11: 80 years of temperature data by month shown in *C x100 

  The mean for June, July, and August was calculated for each of the 80 years in the series 

to get Summer Means. December from the previous year was averaged with January and 

February to get the Winter Means. The analysis starts with December 1934, thus December 

1934, January 1935, and February 1935 compose the 1935 winter season. Where this is more 

MEAN 718 958 1252 1620 2082 2547 2895 2804 2431 1803 1132 694
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complicated than using the last month from the same year, it makes more logical sense in terms 

of seasons.  

For each station’s three temperature measures (high, mean and low), an H-value was 

calculated for each season (winter and summer). Each station had 6 H-values. To calculate the 

H-values, Outcalt’s 1997 estimation of the Hurst Exponent was used (Error! Reference source 

not found.): 

 𝐻 =  𝐿𝑜𝑔 (𝑅𝑎𝑛𝑔𝑒/ 𝑆𝐷)/ 𝐿𝑜𝑔 (𝑛) (2) 

Thus, for each station, first the mean of each seasonal series was found. Then, for each year the 

distance from the mean of the series was determined. From that yearly difference, a running total 

of distance from the mean, or Cumulate Deviation (QD) was calculated. The QD shows the trend 

of the temperature change, and the winter and Summer High and Low QD graphed against the 

decadal temperature averages for all stations can be seen in Appendix B. 

To actually calculate the Hurst exponent, the max and the min of the QD was found, and 

the Range (max- min) was established. The next step was to calculate the standard deviation 

(SD) of the seasonal series. H is calculated by using Error! Reference source not found. where 

n is the number of entries in the series. In the case n=80. All of the H-values for each station are 

shown in Appendix C calculated to the nearest ten-thousandths.  

 Hot Spot Analysis 

As explained in Chapter 2, once the H-values were calculated, an optimized hot spot 

analysis was run using ArcGIS in place the Ward cluster analysis that Rebetez and Reinhard 

(2007) employed. This method was selected because it allowed analysis of not only the location 



40 

 

of the stations, but also included the analysis of a single variable. In this instance, each H-series 

was selected. This would serve to identify spatial patterns of each of the 6 series of data.   

 Analysis of the Spatial Components  

The primary means of evaluating the spatial components relied on correlation analysis. 

For the elevation analysis, each of the 6 H-value series were plotted against the elevation in a 

scatter plot as a correlation analysis with the trend line displayed.  If the hypothesis is correct and 

there is more persistence in higher elevations, then the scatter plot would show an increasing 

slope along the H-values as the elevation increases. H-value is plotted on the Y axis, where the X 

axis is elevation in meters. R2 shows how well the trend line fits the data, and was calculated 

automatically by Microsoft Excel. An R2 value of 1 is a perfect match.  

Aspect was analyzed using a scatter plot for correlation as well. Instead of a linear trend, 

a polynomial, or parabolic trend line was displayed. This is because both 0 and 360 represent a 

northern facing slope and 180 refers to a southern facing slope. If the hypothesis is correct, and 

there is a higher H value represented by southern facing stations, the trend line would be an 

inverted “U”.  Also, an H-value was established for each station by averaging the 6 H-values 

from the indicators. Each station was assigned a cardinality based on the aspect value.  A mean 

was created from H-values with the same cardinality to compare H-values by cardinality.  

Urbanization was evaluated with comparison of Urban versus Rural H-values. For each 

indicator the mean rural value was compared to the mean urban value. The population density 

data was prepared to compare the QD data to the density data. If the hypothesis was correct, the 

QD would see an accent at significant rises in urbanization.  
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Chapter 4 Results  

The following presents the results from the various analyses using the Hurst Exponent on 

historical homogenized monthly temperature station data from December 1934 to August 2014.  

 Southern California Temperature Trends 

The QD trend lines for each station tell a unique story about the direction of temperature 

change. Recall that QD shows the cumulative deviation from the mean of the entire series. Each 

season, and each temperature measure has a unique pattern. Most lines have a decent, a plateau, 

and an incline, though not all do. Figure 12 shows an example of a graph of QD lines for the 

Summer and Winter High and Low temperatures at Bakersfield. A line showing the decadal 

average temperature is also included (grey line). The end of the decent is marked with red, and 

the start of the accent is marked in black. The individual stories for each station can be explored 

in Appendix B which contains the graphs for all stations.  

 

 Figure 12: QD series graph for station 40439: Bakersfield  
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As Table 2 shows, the point of inflection upward, meaning the year at which the upward 

trend becomes strongly persistent, is generally between 1975 and 1995, tending around 1980, 

which is consistent with the global trend of temperature increases seen in Error! Reference 

source not found.. This table cannot be reliably expanded because of the difficulty measuring 

the inflection points precisely. The decadal temperature average lines plotted with the QD show 

that temperatures are increasing all along Southern California. The H-value and associated QD 

tell the story of the pattern of temperature changes, and the strength of the persistence of the 

seasonal trend.  

Table 2: Approximate QD inflection points of representative stations 

 WINTER HIGH SUMMER HIGH SUMMER LOW WINTER LOW 

Station 

ID 

Decent 

End 

Accent 

Begins 

Decent 

 End 

Accent 

Begins 

Decent  

End 

Accent 

Begins 

Decent 

End 

Accent 

Begins 

COOP:040439 1976 1996 1996 2001 1957 1983 1977 1977 

COOP:040519 1951 1980 1983 1993 1957 1966 1977 1977 

COOP:040521 1949 1975 1993 1993 1960 1983 1976 1976 

COOP:040741   1984 1993  1983  1979 

COOP:040742 1952 1979 1966 1993 1956 1969  1979 

COOP:040924  1977 1955 1985 1957 1984   

COOP:041048    2000   1976 1976 

COOP:041194  1993    1976  1994 

COOP:041244 1974 1990  2000  1980  1976 

COOP:041758  1977  1980  1980  1976 

 

 Analysis of the Hurst Exponent Results 

Each series of H-values has its own distribution patterns. Those patterns can be seen in 

the histograms in Figure 13. Only 2 H-values were less than 0.5 for any indicator: Palm Springs 

Summer High H= 0.47, and Big Bear Lake Winter High H=0.42. All other values are above .51 

with the highest value being 0.795 at Newport for the Winter High.  Summer Low H-values 

show the highest level of persistence, meaning that there is stronger upward trend in the low 
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temperatures experienced during the summer months, while the Winter High H-values are on 

average lower as indicated in the mean value.   

 

Figure 13: Distribution of H-value data as a histogram 

In order to classify the stations, the mean and range of H-values was calculated for each 

station. The results of this are shown in Table 3 and the average H-value for stations ranged from 

0.6 to 0.76, while the lowest value in the range was 0.60, and the highest range from 0.71 to 

0.76. Given that 0.5 is random, and anything above that shows persistence. Therefore, the Hurst 

values were classified as 0.4 to 0.5 showing no persistence; 0.51 to 0.6 as showing weak 

persistence; 0.61 to 0.7 as persistence and 0.71 to 0.8 as strong persistence. This means in 

general terms that most stations are showing persistence, 16 stations are showing strong 

persistence and only 2 stations are showing weak persistence.  
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Table 3: Stations by mean H-value, highlighting the persistence categories 

 

A complete visual representation of all the H-values by station is shown in Figure 14. The 

H-values reflect degree of persistence quantified. Winter displays trends in the mean of 

observations for the period December-February, and Summer displays trends in observations for 

June-August. The H-values have also been qualified so there is a description of the strength of 

the persistence attached. Anything below 0.5 is random and shows no persistence. Those stations 

are represented in yellow, and there are very few stations in any season with that symbology. 

Most stations show between weak to strong persistence.  

Station_Name Range Mean Station_Name2 Range3 Mean4 Station_Name5 Range6 Mean7

TEHACHAPI 4 SE 0.144 0.6031 TRONA 0.073 0.6635 SAN JACINTO 0.111 0.6903

PALM SPRINGS 0.269 0.6051 OCEANSIDE MARINA 0.138 0.6644 SANTA BARBARA 0.103 0.6905

BEAUMONT NUMBER 2 0.144 0.6087 UCLA 0.052 0.6664 GLENNVILLE 0.144 0.6912

RANDSBURG 0.221 0.6093 LOS ANGELES DWTN USC 0.120 0.6676 SAN ANA FIRE STN 0.132 0.6942

FAIRMONT 0.115 0.6111 BAKERSFIELD 0.056 0.6688 LAGUNA BEACH 0.164 0.6962

TENTYNINE PALMS 0.208 0.6180 BARSTOW 0.204 0.6693 TEJON RANCHO 0.135 0.7001

PASO ROBLES 0.169 0.6220 PALOMAR MT OBSTRY 0.246 0.6703 LOS ALAMOS 0.069 0.7075

HAYFIELD PUMP PLANT 0.140 0.6234 BARSTOW 0.191 0.6711 YORBA LINA 0.045 0.7109

MOJAVE 0.182 0.6248 GLENNVILLE MORROW RA 0.055 0.6718 BAKERSFIELD MEADOWS 0.031 0.7110

PALMDALE 0.153 0.6321 TORRANCE AP 0.064 0.6736 SANTA MONICA 0.138 0.7118

VICTORVILLE PUMT PT 0.132 0.6430 PARKER RESRV 0.159 0.6779 SAN GABRIEL FIRE DPT 0.099 0.7144

NEW CUYAMA 0.141 0.6508 BUTTONWILLOW 0.114 0.6805 OJAI 0.063 0.7171

CUYAMACA 0.201 0.6514 WASCO 0.080 0.6807 SANTA MARIA 0.091 0.7183

JULIAN CDF 0.226 0.6514 BRAWLEY 0.142 0.6830 SANTA PAULA 0.130 0.7189

LANCASTER ATC 0.097 0.6520 IRON MOUNTAIN 0.137 0.6833 OXNARD 0.039 0.7192

BIG BEAR LAKE DAM 0.188 0.6561 TEHACHAPI 0.163 0.6841 ELSINORE 0.111 0.7193

EL CENTRO 2 SSW 0.209 0.6572 SAN DIEGO WSO 0.073 0.6856 MECCA FIRE STN 0.140 0.7241

EAGLE MOUNTAIN 0.118 0.6604 BURBANK VALLEY PUMP 0.143 0.6869 CULVER CITY 0.122 0.7313

LANCASTER 0.111 0.6618 IMPERIAL 0.049 0.6875 CHULA VISTA 0.058 0.7390

SAAUGUS PWR PLT 0.144 0.6622 LA MESA 0.123 0.6890 LOMPOC 0.112 0.7400

BIG BEAR LAKE 0.357 0.6627 BLYTHE 0.251 0.6891 PASADENA 0.093 0.7497

NEEDLES 0.096 0.6628 REDLANDS 0.059 0.6901 NEWPORT HARBOR BEACH 0.079 0.7579
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Figure 14: Persistence of Temperature change in H-values 
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 Relationship between Elevation and Temperature Trends 

Figure 15 shows the scatter plot and trend line for the H-values for each indicator 

measured against elevation. Winter High H-values offer a clear trend even if the R2 of a fitted 

trend line isn’t very strong. The slope is very small because the graph is in tenths. The most 

interesting aspect of Winter High trend is that it shows a negative correlation between elevation 

and the H-values. As the elevation increases, the H-values decrease. The expectation was to see 

the inverse. The hypothesis was that there would be more persistent temperature increases at 

higher elevations; that is not the pattern the data is demonstrating.   

Summer High H-values show a very weak negative correlation. The slope is shallow, and 

the R2 is close to zero. The trend is so weak, it makes more sense to say there is no correlation 

between persistence expressed as H-values and elevation. This supports the null hypothesis that 

there is no difference in persistence of temperature increases at different elevations. Winter Mean 

H-values also show a slight negative correlation. It is weak, with a low R2 value, but is not so 

weak as to claim it is nonexistent. The negative correlation works against the hypothesis.  

Summer Mean H-values have no correlation to elevation. This supports the null 

hypothesis. The Winter Low trend has a very weak R2 combined with a very weak slope. This 

shows support for the null hypothesis that there is no correlation between higher H-values and 

higher elevations.  Summer Low correlation also supports the null hypothesis that there is no 

relationship between H-values and elevation. There is no visible slope and the R2 is very low. 

Both of those things suggest that the pattern of dispersion is random.  
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Figure 15 Hurst exponent values against the elevation of the station 

 Relationship between Aspect and Temperature Trends  

Each of the 6 H-value series was plotted against the Aspect values using a scatter plot as 

correlation analysis. If the hypothesis is correct there would be an inverted U shape in the graph 

showing that as the H-values are increasing as to points approach a the southern values. In order 

to accomplish that, a polynomial (parabolic) trend line was used.  Where some of the trend lines 

did display a weak arch, none of the R2 values were high enough to really demonstrate any 

correlation between persistence, expressed via the H-value, and station aspect. Figure 16 shows 
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the aspect correlation analysis charts by seasonal series. The highest R2 value was for Winter 

Mean values at 0.14; all other R2 values were less than 0.1. They all support the null hypothesis 

that there is no increase in persistence at temperature stations with a south-facing aspect.  

 

Figure 16:  Seasonal H-values plotted against numerical aspect 

Because a weak relationship seemed to be evident, the station mean of the H-values was 

used to average the H-values of stations with the same cardinality. A summary table, Table 4 

shows the there is a slight difference in the mean H-values. The full data is included in 

Appendix C. Stations with a northern cardinality have a mean H-value of .645, where stations 



49 

 

with a southern cardinality have a mean of .687. Where the difference is slight, it does show 

what the slight parabolic inflections were indicating.  

Table 4: Mean H-value of stations based on cardinality 

Cardinality Mean H-value 

North 0.6450 

North East 0.6550 

East 0.6849 

South East 0.6642 

South 0.6874 

South West 0.6942 

West 0.6837 

North West 0.6540 

 

 Land Use, Population Density and Temperature Trends 

Each of the 6 H-value series (winter and Summer High, mean and low) were averaged for 

each set of stations (Urban and Rural) producing 2 mean values for each H-value series. These 

are summarized in Table 5. The idea for this came from Rebetez and Reinhard. They averaged 

the mean temperatures for north side and south side stations to compare change on one side 

versus the other. Because the Urban and Rural classes provided a similar dichotomist 

classification, that approach was applied to examining the Urbanization factor’s effect on 

temperatures.  

Table 5: Mean H-values for urban and rural stations 

 
Winter 

High 

Summer 

High 

Winter 

Mean 

Summer 

Mean 

Winter 

Low 

Summer 

Low 

Land-Class 

Mean 

Mean Rural: 0.5919 0.6467 0.6239 0.6628 0.6408 0.6796 0.6410 

Mean Urban: 0.6700 0.6909 0.6986 0.7146 0.6967 0.7238 0.6991 

Indicator Mean 0.6380 0.6730 0.6685 0.6943 0.6742 0.7070  
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Consistently, the urban H-values are higher than the rural. Summer Mean and Summer 

Low mean urban H-values range in the strong persistence category. Only Winter High rural 

mean H-value is in the weak persistence range. The evidence fails to disprove that there is not 

stronger persistence shown at stations with an urban land cover over stations with a rural land 

cover; however, it also should be noted that the difference of 0.058 in the H-value puts both 

classification in the “persistent” category. Urban stations’ H-values are only marginally higher.   

 

Figure 17: Proportional Symbol Population and Population Density change in Southern 

California from 1910 to 2010 



51 

 

The hope was that the census data would provide valuable information about the 

changing population density of Southern California. Since all Southern California county 

populations, and thus their densities, have increased significantly from 1910 to 2010, as shown in 

Figure 17, there was an expectation to see increasing population densities that could then be 

compared to the QD lines to determine if the inflection points coincided with significant 

increases in population density. This trend is simply not reflected in the census tract data by 

station location.  

Unfortunately, since census tracts change each decade and in the early years population 

was reported only at the county level for most of this region, the modifiable area unit problem 

(MAUP) is exaggerated. As shown by the selection of data in Table 6, in the tracts that contain 

stations, the population density does not appear to increase over time. In most cases the 

population density remains fairly consistent, or fluctuates wildly. The density data is simply too 

variable to provide any consistent information about the urbanization levels of the area around 

each station. The full data set of population densities is shown in Appendix A. Maps of the 

population density by station, included in Appendix D, do little to add further insight.  

Table 6: Selection of population density data 

Station 1940 1950 1960 1970 1980 1990 2000 2010 

Bakersfield 16.6 28.0 2,695.9 1,420.0 1,471.0 1,506.5 1,136.4 999.5 

Beaumont 2 14.4 23.3 1,230.5 1,647.1 1,708.1 2,098.4 2,171.4 2,303.0 

Burbank 1,705.6 7,264.5 8,494.8 7,165.7 7,163.7 7,085.2 7,265.8 7,354.2 

Eagle Mountain 14.4 23.3 0.7 1.1 1.2 1.2 2.9 0.5 

Redlands 8.0 14.0 4,906.7 5,560.5 5,103.3 5,451.9 5,418.3 5,642.1 

 Hot Spot Analysis 

In place of the Ward cluster analysis performed by Rebetez and Reinhard, an optimized 

hot spot analysis was run to test the spatial relationship between the stations’ H-values to 
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visualize any spatial patterns present. Figure 18 shows the results for the 6 analyses run, one for 

each H-series. The only series that has any real spatial pattern is the Winter High temperatures. 

The pattern of hot spots and cold spots do not correlate very well with any of the other variables 

explored. The hotspots seem to have a loose relationship with coastal regions which generally 

have a low elevation, and the cold spots are generally in a mountain region, not all the hotspots 

are coastal, and not all the cold spots are in higher elevations. This seems to be reflective of the 

weak negative correlation between elevation and H-value seen in Figure 15 of the elevation 

correlation results.  

In the hotspot maps of H-values of monthly mean temperature, both summer and winter 

show weak cold spots in the northern part of Los Angeles County but it is difficult to suggest a 

cause for these within the context of this analysis.  In summary, the hot spot analysis indicates 

that the distribution of H-values is mostly random across the landscape. This supports all of the 

null hypotheses that there are no increases in persistence corresponding to any spatially 

dependent attribute evaluated by this study. 
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Figure 18:  Optimized hot spot analysis of seasonal H-values by station.  
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 Chapter 4 Summary 

H-values of the summer and winter seasons were used to analyze spatial attributes of 66 

temperature stations. H-value when analyzed against station elevation data displayed a negative 

correlation supporting the elevation null hypothesis. Mean H-values of stations with a southwest 

facing cardinality were the highest compared to all other cardinalities, though southern facing 

stations did mean a higher H-value than northern facing stations. This provides weak support for 

the aspect hypothesis. Urban stations have a mean H-value that is marginally higher than Rural 

stations. This provides weak support for the land cover hypothesis. The hypothesis for 

population density changes was not able to be tested.    
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Chapter 5  Discussion  

This project sought to understand what trends in temperature change are evident based on 

homogenized monthly data in Southern California from approximately 1935 to 2014 using the 

Hurst Exponent evaluating seasonal data. The study examined elevation, aspect, and land cover 

for each station using the H-values and optimized hotspot analysis to evaluate trends. This final 

chapter reviews the results discussed in Chapter 4 and draws the final conclusions. The research 

questions are re-examined to determine if they were addressed, and what conclusions can be 

drawn. This chapter also discusses some areas of future research.  

 Evaluation of the Research Questions 

The research questions are the backbone of a research project. This section looks at each 

research question and addresses how well it was answered and the implications.  

5.1.1. What is the spatial pattern of H-values by season as determined by optimized hot spot 

analysis? 

The only indicator that displayed a significant spatial trend was Winter High. All other 

indicators displayed no significant trend. The expectation was that the hot spot analysis would 

show trends that could be connected to the spatial variables. Without any trends, the analysis of 

the trends to determine the nature of the spatial relationships could not be done. This is one of 

the areas where much more is possible. There are a plethora of spatial analysis tools that could be 

employed to evaluate if there are any spatial trends in the distribution of the H-values. Just 

because the optimized hot spot analysis did not yield results does not necessitate that there is no 

spatial trend in the spatial distribution of the H-values.  Good avenues to explore are the other 

hot spot analysis tools, as well as the regression analysis tools.   
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5.1.2. What is the correlation between H-values and elevation? 

The null hypothesis was that there will be no persistence in temperature increases. The 

hypothesis for elevation was persistence would be more pronounced expressed by higher H-

values as elevation increases.  The results from the elevation analysis were surprising. The 

correlation analysis showed that there is a negative correlation between elevation and 

persistence, even though so many mountain ranges even those relatively local to Southern 

California showed that the mountains were more sensitive to temperature increase exact 

opposite. The hypothesis was rejected in favor of the null hypothesis.  

5.1.3. What is the correlation between H-values and aspect? 

The hypothesis for aspect was that stations on a southern face would have experienced 

higher more persistent temperature increases than northern facing stations indicated by higher H-

values. Where the differences in H-values according to aspect were minor, they trends were 

there. The mean H-value for stations on a north facing plane were the lowest, and southern 

facing stations were markedly higher, with the highest being stations on a south-western face. 

Averaging data does marginalize the figures, but also allowed the trend to present itself. The 

correlation analysis alone yielded nothing but very weak results.  The evidence marginally 

supports the hypothesis. The null hypothesis can be rejected. There are more pronounced 

increases in southern facing stations.  

There is possibility for further study here also. One of the ways that aspect has been 

evaluated by other climate studies has been to not necessarily look at the orientation of the exact 

face that upon which that station rests, but rather to divide the mountain ranges into predominate 

faces. There are norther, southern, eastern and western faces of the ranges that could be 
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evaluated for correlations in persistence. It could be that a stronger pattern would present itself if 

the side of the mountain were evaluated over the face of the slope.  

5.1.4. What is the correlation between H-values and the land covers “Urban” and “Rural”?  

The hypothesis for land cover is that station located in more urban areas will experience 

higher persistence expressed as higher H values than stations located in more rural areas. This 

was another area where there was little to no precedent set on how to approach analyzing H-

values in correlation to urbanization levels. Because most comparisons were based on urban 

versus rural readings, again averaging the stations with urban versus rural land covers seemed to 

be the most quantifiable approach. The results were not as pronounced as expected. There is 

speculations that this is due to the normalizing of the temperature data during homogenization. 

One of the goals of homogenization is to mitigate the impact of urbanization on temperature 

readings. However even using homogenized data, a marginal difference was detected between 

persistence in urban stations versus rural stations supporting the hypothesis and rejecting the null 

hypothesis that there is no relationship.  

5.1.5.  Can census data be used to track changes in population density to evaluate changes in 

urbanization?  

This area was an overall loss for the project. No analysis was possible because of the 

inconsistency within census tracts. Where generally, urbanized areas are more densely populated, 

census data is too malleable between census years to be able to provide viable comparisons. It 

would have been exciting to evaluate the QD trends in association with periods of pounced 

increases in population density. This is one area where future research is possible. The 

relationship between urbanization and temperature increases are well documented. The issue 

here is simply in the availability of the data. Perhaps individual counties have the data necessary 
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to perform this type of analysis. If viable data could be obtained, it would be interesting to see if 

the QD lines reflected increases in population density. 

 Issues Addressed in the Study 

Every project faces challenges. This section reviews the significant hiccups, how they 

were addressed, and if there were any consequences upon the research.   

5.2.1. Issues from Data Quantity and Quality 

The final data set used for the analysis was both extensive and multi-dimensional. Three 

temperature measurements for each of the 66 stations for 80 years created a large, bulky dataset 

to manipulate in Excel. After analysis, the master table had station attribute data, H-values, 

decadal temperature means, and decadal census tract densities. The master table was then 

divided into more manageable tables for each of the station attributes evaluated. Database 

management was essential to maintaining data integrity. The advantage of creating and 

managing such a dataset in Excel, however, is the multiple ways the set can be manipulated and 

analyzed using the available tools. Given the richness of the final data collection, many 

additional questions arouse that remain to be addressed in future projects. Many of those 

opportunities for further analysis are discussed below.  

5.2.2. Using H-values in spatial analysis 

Since there has been little previous research using H-values in spatial analysis, it was 

difficult to determine the best means of employing the H-values to evaluate the persistence in 

relation to the various spatial attributes of stations. Much additional research to mine the data 

developed in this research remains to be done. 
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5.2.3. Exploration of the QD series 

A lot of the research done with the Hurst Equation focuses on the trend of the series 

viewed through the QD series (Oatcalt 1997, Ruddell 2013). That is not the direction this project 

took. Where the QD is a significant part of the story that each station has to tell, it did not 

become a major focus of this project. Evaluation of the spatial patterns was better served by the 

Hurst Exponent. Also, when analyzing the trends in the QD series there was a degree of 

subjectivity that made the researcher uncomfortable. The lowest point in the series was often 

after a brief incline. It seemed arbitrary to place the end of decline inflection point at one place 

versus the other. The graphs themselves are too individually unique to facilitate generalized 

conclusions. Quantification of the data presented in the QD series is certainly one avenue for 

future work on this data set.  

 Conclusion 

The Hurst exponent is a powerful analysis tool.  The persistence found in temperature 

increases at Southern California stations were not surprising. Temperatures are increasing 

worldwide, and regional studies show that temperatures are increasing in Southern California as 

well. The interesting aspect of the work done lies in the ability to quantify the strength of the 

trend using a different analysis than the Fisher test with p-value. While p-value is a useful 

statistical tool, it overlooks the fractal nature of climatological processes. The H-value 

recognizes that temporal patterns are assessed not only by the strength of their randomness, but 

also their persistence or cyclical nature. This study makes a small step forward in showing how 

the Hurst Exponent can be used to examine spatial attributes.  
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Appendix A: Population Density 

Population Density for stations by station and decade 

Station ID 1940 1950 1960 1970 1980 1990 2000 2010 

40439 16.6 28.0 2,695.9 1,420.0 1,471.0 1,506.5 1,136.4 999.5 

40442 16.6 28.0 734.0 511.3 604.1 795.4 986.2 1,547.4 

40519 8.0 14.0 1,988.6 1,547.5 1,213.8 908.2 698.4 813.8 

40521 8.0 14.0 3,506.2 3,485.1 3,049.5 3,430.1 3,333.3 3,440.9 

40609 14.4 23.3 1,230.5 1,647.1 1,708.1 2,098.4 2,171.4 2,303.0 

40741 8.0 14.0 7.6 23.3 41.4 823.8 1,034.6 1,111.7 

40742 8.0 14.0 7.6 23.3 41.4 5.2 6.4 7.3 

40924 14.4 23.3 2,156.1 1,078.2 1,365.2 1,804.0 2,925.0 2,680.1 

41048 13.3 14.0 16.1 16.1 1,263.8 1,286.1 1,840.5 2,093.5 

41194 1,705.6 7,264.5 8,494.8 7,165.7 7,163.7 7,085.2 7,265.8 7,354.2 

41244 16.6 28.0 17.2 12.5 13.3 15.1 16.3 21.2 

41758 68.2 4,734.2 4,576.9 10,422.4 11,267.8 14,056.0 15,636.3 15,705.4 

42214 2,611.3 7,072.3 9,995.4 14,821.0 9,264.6 10,350.3 10,214.6 9,779.5 

42239 68.2 131.3 4.0 6.8 12.1 12.6 14.1 12.8 

42598 14.4 23.3 0.7 1.1 1.2 1.2 2.9 0.5 

42713 13.3 14.0 16.1 16.1 1,001.8 123.2 257.9 1,230.2 

42805 14.4 23.3 516.0 98.9 182.9 507.8 1,431.3 1,665.9 

42941 4.4 7.0 7.6 6.3 5.4 10.1 5.6 7.1 

43463 16.6 28.0 1.2 0.7 1.3 5.9 5.9 5.6 

43468 16.6 28.0 1.2 0.7 1.3 5.9 5.9 5.6 

43855 14.4 23.3 0.7 1.1 1.2 1.2 2.9 0.5 

44223 13.3 14.0 16.1 16.1 71.6 79.9 112.3 173.1 

44297 8.0 14.0 4.6 5.7 7.1 2.0 2.1 2.2 

44412 68.2 131.3 4.0 4.7 7.6 9.4 54.8 53.2 

44647 163.8 270.8 152.1 265.0 439.3 686.0 720.0 721.4 

44735 68.2 2,279.7 3,304.7 4,070.9 4,308.1 4,611.3 7,669.7 8,529.4 

44747 23.7 56.6 323.2 351.1 578.9 1,591.3 5,169.8 5,620.2 

44749 23.7 56.6 8.5 7.3 15.8 31.4 28.5 46.3 

45064 25.7 35.7 8.7 992.0 1,113.0 2,870.6 3,349.1 3,203.1 

45107 25.7 35.7 16.0 27.6 23.3 32.1 38.4 48.0 

45115 4,561.1 5,078.8 2,194.1 5,448.5 9,038.0 3,659.8 2,771.0 1,618.3 

45502 14.4 23.3 23.5 26.2 20.6 35.9 61.4 83.8 

45756 16.6 28.0 190.8 201.1 212.9 204.0 171.9 189.2 

46118 8.0 14.0 0.5 0.6 0.7 0.8 0.3 0.6 

46154 37.5 61.7 1.2 1.0 1.0 1.0 1.2 1.1 

46175 163.8 270.8 6,266.1 6,531.5 6,489.3 6,195.6 6,028.7 6,046.6 

46377 68.2 131.3 123.6 5,127.1 6,721.5 6,942.6 6,362.7 4,579.1 

46399 37.5 61.7 107.2 104.2 137.8 142.9 106.4 101.0 

46569 37.5 61.7 107.2 333.9 766.1 12,621.2 8,248.1 3,656.2 

46624 11.2 20.7 25.6 39.2 23.6 36.8 32.7 71.1 

46635 14.4 23.3 817.8 852.2 1,535.7 1,896.5 144.4 438.7 

46657 68.2 131.3 4.0 4.7 7.6 9.4 5.9 6.4 

46699 8.0 14.0 0.5 0.6 0.7 0.8 0.3 0.6 
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Station ID 1940 1950 1960 1970 1980 1990 2000 2010 

46719 8,780.4 10,641.3 10,390.7 8,937.5 7,939.3 9,045.4 9,981.3 5,130.3 

46730 10.0 15.5 24.4 31.8 491.9 675.9 751.1 2,886.1 

47253 16.6 28.0 2.9 5.2 7.3 5.5 4.3 6.6 

47306 8.0 14.0 4,906.7 5,560.5 5,103.3 5,451.9 5,418.3 5,642.1 

47740 68.2 661.4 99.6 33.0 183.9 179.8 207.8 113.7 

47785 3,572.6 5,419.7 5,608.7 5,604.5 5,159.0 4,947.7 4,100.9 4,325.5 

47810 14.4 23.3 2,581.2 4,354.1 4,613.2 6,150.7 6,544.2 5,367.5 

47888 163.8 270.8 6,830.7 6,924.5 7,428.9 11,921.6 16,050.2 14,688.7 

47902 25.7 35.7 5,086.0 5,027.5 5,643.8 5,577.9 6,198.5 6,417.9 

47940 25.7 35.7 913.2 793.2 765.9 3,777.4 7,220.7 7,248.6 

47953 7,507.8 9,123.8 6,452.6 4,489.9 3,971.7 3,745.9 3,892.9 5,807.7 

47957 37.5 61.7 107.2 131.2 157.4 181.2 199.9 209.6 

48014 10.7 19.6 8.6 9.5 37.8 52.9 14.3 23.4 

48826 16.6 28.0 571.6 727.6 754.5 1,023.9 1,051.3 1,392.6 

48829 16.6 28.0 2.5 1.9 5.5 10.8 14.4 8.0 

48839 16.6 28.0 2.5 1.9 5.5 10.8 14.4 8.0 

48973 172.6 686.5 1,070.5 3,983.1 2,590.3 2,334.5 2,373.0 2,369.8 

49035 8.0 14.0 1.8 3.0 3.1 2.6 1.7 1.6 

49099 8.0 14.0 4.6 5.7 7.1 53.4 404.1 1,161.3 

49152 3,021.5 4,893.5 8,075.6 6,951.3 6,255.9 8,147.2 10,263.8 15,165.3 

49325 8.0 14.0 3,045.8 3,298.9 3,296.5 3,825.5 3,448.9 3,877.6 

49452 16.6 28.0 3,907.2 4,257.3 4,319.7 5,551.8 5,492.5 6,145.3 

49847 163.8 270.8 89.3 2,516.8 3,793.8 3,967.6 4,000.6 4,264.5 
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Appendix B: Station Cumulative Deviation Series 

The following are the high and low QD trend lines for both the summer and winter 

seasons for each station as indicated. The four colored lines are the QD trend lines. The grey line 

indicates the decal mean temperatures. Each chart has a unique temperature scale to reflect each 

stations unique temperature ranges. The QD scales are not all exactly the same, but the range of 

the scales are within proximity of each other. Some stations have inflection points indicated. Red 

shows the end of the decent in the series, and black shows the incline of series.  
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Appendix C: H-Values by Station 

Station_ID WinterH SummerH WinterM SummerM WinterL SummerL 

40439 0.6742 0.6703 0.6847 0.6432 0.6421 0.6983 

40442 0.7014 0.6954 0.7216 0.7142 0.7073 0.7260 

40519 0.5482 0.6544 0.7006 0.7086 0.6754 0.7396 

40521 0.5458 0.7496 0.5879 0.7331 0.6699 0.7292 

40609 0.6614 0.6083 0.5926 0.6399 0.5172 0.6330 

40741 0.4236 0.6935 0.6226 0.7396 0.7169 0.7802 

40742 0.5395 0.7183 0.6194 0.7277 0.6223 0.7097 

40924 0.5068 0.7583 0.6680 0.7465 0.7098 0.7453 

41048 0.6025 0.6366 0.7126 0.7129 0.7450 0.6887 

41194 0.6551 0.6161 0.6802 0.7339 0.6773 0.7590 

41244 0.6813 0.6892 0.7275 0.6139 0.6935 0.6776 

41758 0.7056 0.7153 0.7593 0.7343 0.7556 0.7638 

42214 0.6679 0.7897 0.7136 0.7740 0.7276 0.7150 

42239 0.5165 0.6749 0.6377 0.6561 0.7055 0.7177 

42598 0.5805 0.6506 0.6628 0.6795 0.6982 0.6905 

42713 0.5226 0.7313 0.6629 0.5876 0.7119 0.7268 

42805 0.6605 0.7633 0.6870 0.7720 0.6910 0.7420 

42941 0.5854 0.6677 0.5987 0.6514 0.6105 0.5531 

43463 0.6256 0.6434 0.6919 0.7226 0.6940 0.7695 

43468 0.6582 0.6686 0.6802 0.6501 0.6690 0.7049 

43855 0.5855 0.7121 0.5720 0.6904 0.5933 0.5870 

44223 0.6636 0.6870 0.6925 0.6861 0.7126 0.6833 

44297 0.5916 0.6984 0.6772 0.6985 0.7282 0.7058 

44412 0.5145 0.6807 0.5931 0.7066 0.6731 0.7404 

44647 0.7208 0.7587 0.7188 0.7247 0.6600 0.5944 

44735 0.6257 0.6597 0.6741 0.7347 0.6913 0.7485 

44747 0.6017 0.6114 0.6875 0.6622 0.7122 0.6959 

44749 0.5933 0.6636 0.6310 0.6750 0.6899 0.6592 

45064 0.6720 0.7666 0.7201 0.7843 0.7299 0.7673 

45107 0.6904 0.6800 0.7090 0.7310 0.6852 0.7494 

45115 0.7061 0.6255 0.6387 0.6847 0.6152 0.7352 

45502 0.6278 0.7662 0.7195 0.7678 0.7349 0.7283 

45756 0.5225 0.6085 0.6356 0.6218 0.7045 0.6557 

46118 0.6621 0.7006 0.6314 0.6886 0.6041 0.6898 

46154 0.6573 0.5663 0.6946 0.6289 0.6498 0.7077 

46175 0.7946 0.7520 0.7870 0.7405 0.7579 0.7153 

46377 0.7365 0.5989 0.7073 0.6108 0.6358 0.6973 

46399 0.7350 0.6799 0.7406 0.7369 0.6775 0.7328 

46569 0.7267 0.7129 0.7222 0.7317 0.6929 0.7290 
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Station_ID WinterH SummerH WinterM SummerM WinterL SummerL 

46624 0.6035 0.5834 0.5488 0.6698 0.6850 0.7022 

46635 0.5821 0.4728 0.5322 0.6533 0.6480 0.7421 

46657 0.5181 0.7184 0.5722 0.7638 0.6865 0.7628 

46699 0.6341 0.5865 0.6701 0.7087 0.7232 0.7451 

46719 0.6864 0.7732 0.7384 0.7798 0.7619 0.7588 

46730 0.6436 0.6221 0.5460 0.6623 0.5447 0.7133 

47253 0.5870 0.5060 0.5839 0.6110 0.6408 0.7272 

47306 0.6752 0.6603 0.6882 0.7098 0.6882 0.7188 

47740 0.7146 0.6999 0.6743 0.6938 0.6412 0.6896 

47785 0.7183 0.6690 0.7223 0.7351 0.6735 0.7680 

47810 0.6363 0.6497 0.6809 0.7192 0.7082 0.7473 

47888 0.6813 0.6578 0.7427 0.6233 0.7553 0.7052 

47902 0.7409 0.6868 0.7284 0.6382 0.6894 0.6592 

47940 0.7155 0.7320 0.6826 0.7623 0.6717 0.7460 

47953 0.7782 0.7499 0.7461 0.6751 0.6808 0.6406 

47957 0.7506 0.7360 0.7131 0.7435 0.6204 0.7501 

48014 0.5623 0.6782 0.6602 0.6972 0.6687 0.7064 

48826 0.6526 0.5973 0.6711 0.7069 0.7168 0.7599 

48829 0.5650 0.6597 0.6370 0.6711 0.5273 0.5587 

48839 0.7403 0.6156 0.7046 0.7184 0.6705 0.7509 

48973 0.6465 0.6469 0.6703 0.6712 0.7106 0.6962 

49035 0.6533 0.6955 0.6559 0.6789 0.6224 0.6754 

49099 0.6554 0.7181 0.5902 0.6635 0.5099 0.5708 

49152 0.6851 0.6889 0.6664 0.6399 0.6364 0.6817 

49325 0.5581 0.6570 0.6281 0.6560 0.6903 0.6687 

49452 0.6881 0.6280 0.7030 0.6593 0.6972 0.7084 

49847 0.7050 0.6813 0.7197 0.7109 0.7266 0.7221 
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H-values averaged by cardinality 
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Appendix D: Population Density for Census Tract by Station 
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