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ABSTRACT 

 
 
Wind energy was the fastest growing form of renewable energy in the world during the last 

decade and forecasts predict that this trend will continue. In the U.S., Renewable Portfolio 

Standards (RPS) and federal tax incentives drive this trend from a policy perspective, but 

despite its potential to reduce CO2 emissions and dependence on foreign fuel for electricity 

generation, wind energy development remains a contentious issue and siting of wind 

power systems remains problematic. This thesis presents a GIS-based tool for preliminary 

site suitability analysis for Onshore Wind Power Systems (ONSWPS) that can be used to 

address these issues from a planning perspective. This tool incorporates Multi-Criteria 

Analysis (MCA) and the Analytical Hierarchy Process (AHP) along with various forms of 

spatial and sensitivity analysis to provide quick visual access to ONSWPS site selection 

information through a series of suitability maps. 
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CHAPTER 1: INTRODUCTION 
 
 

1.1 Status of Wind Energy Development 
 
Wind energy was the fastest growing form of renewable energy in the U.S. and the world 

during the last decade (Bohn & Lant, 2009; DeCarolis & Keith, 2006; Hoogwijk, de Vries, & 

Turkenburg, 2004; Rosenburg, 2008a; U.S. Department of Energy, 2008), and forecasts 

predict that this trend will continue for the next decade and beyond (U.S. Energy 

Information Administration, 2011). In the U.S., the majority of states have Renewable 

Portfolio Standards (RPS) in place that mandate a percentage of electricity generation from 

renewable energy sources (RES) (U.S. Energy Information Administration, 2011; Van 

Haaren & Fthenakis, 2011). In addition, several federal tax incentives drive the wind 

energy industry from a policy perspective (American Wind Energy Association [AWEA], 

2008; Bohn & Lant, 2009; Rosenburg, 2008a). In fact, the growth of the wind energy 

industry is highly dependent on the existence of federal Production Tax Credits (PTC), 

which makes the cost of generating electricity from wind energy competitive with other 

forms of electricity generation (Bohn & Lant, 2009).  

 

Despite its potential to reduce CO2 emissions, conserve water and fuel, and reduce the 

country’s dependence on foreign fuel for electricity generation, wind energy development 

remains a contentious social, economic, and environmental issue (DeCarolis & Keith, 2006; 

Denny & O'Malley, 2006; Kuvlevsky Jr., et al., 2007; Rosenburg, 2008b; Sutton & Tomich, 

2005). The proper siting of wind power systems remains inherently problematic because 
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geographical limitations, public opposition, wildlife conservation, electricity grid 

integration, and fuel market fluctuations all pose challenges for planners and developers.  

 

Deciding which criteria to include in the site selection process, and how much priority to 

assign each criteria, is the subject of considerable research and public debate, but all agree 

that proper site evaluations and accurate resource assessments can save time, money, and 

resources and can help to mitigate causes of costly delays (Cavallaro & Ciraolo, 2005; Chen, 

Yu, & Khan, 2010; Dominguez & Amador, 2007; Hansen, 2005; Jankowski, 2009; Loring, 

2007; Simao, Densham, & Haklay, 2009). 

 

1.2 Research Statement 
 
This thesis presents a GIS-based application for evaluating potential site suitability of 

Onshore Wind Power Systems (ONSWPS) in order to provide quick visual access to this 

information for politicians, developers, researchers, students, and the public. This 

application will be useful for preliminary site selection of utility-scale and large distributed 

wind power systems, and will be suitable for regional (approx. 1:3,000,000) and larger 

scale site suitability analysis based on a set of physical, economic, and environmental 

criteria, including topography, wind power capacity, land use, and proximity to 

infrastructure. This application can be integrated into Spatial Decision Support Systems 

(SDSS) as part of a Multi-Criteria Analysis (MCA) approach to ONSWPS siting, thus making 

it a valuable planning tool. Finally, as a demonstration of spatial problem solving, it can also 

serve as a teaching, learning, and decision-making tool through an interactive web-based 

interface and suitability maps.  
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The working hypothesis is that combining GIS spatial analysis and visualization capabilities 

with MCA is an effective approach for “solving” complex spatial problems like wind power 

system siting, which must balance numerous geographic, technical, environmental, 

economic, and social variables. The rationale is that this research can help ensure the best 

use of this form of renewable energy by making information more accessible to interested 

parties and by facilitating discussion on the aesthetic, environmental, and economic issues 

surrounding wind power development. The Middle Columbia River Basin, covering 

portions of Washington and Oregon States, was chosen as the pilot study region (Figure 1). 

 

1.3 Motivation 
 
The responsible production and use of energy is something that ties us all together as 

citizens of the world. Recent concern over the adverse effects of global climate change has 

spurred many nations to pursue alternative sources of energy (United Nations, 1997) and 

has set in motion numerous policies to integrate RES into existing national energy mixes at 

higher levels (Rosenburg, 2008a; U.S. Energy Information Administration, 2011). The 

creation of an economically viable renewable energy infrastructure is a monumental issue 

facing this and future generations, and contributions to research on this issue are of great 

value to decision makers, to society, and to me personally.  

 

The primary motivation for my research is to develop a GIS-based tool that serves multiple 

practical purposes as well as integrates and expands on the work done by others in the RES 

siting field, with a particular focus on wind energy. The foundation of this project involved 
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compiling, reviewing, and organizing the necessary data into a spatial database that 

supports site suitability analysis, as well as model development, sensitivity analysis, and 

the production of a series of site suitability maps.  

 

Information dissemination is regarded as a critical factor in public acceptance of wind 

energy development, and this in turn has tremendous impacts on the successful 

implementation of wind energy projects (Berry, Higgs, Fry, & Langford, 2011; Bohn & Lant, 

2009; Jobert, Laborgne, & Mimler, 2007; Loring, 2007; Malczewski, 2004; Rosenburg, 

2008a; Simao, Densham, & Haklay, 2009; Sutton & Tomich, 2005; Van der Horst & Toke, 

2010). By making this information more readily available to decision makers and the 

public, I hope to stimulate and enhance discussions on the subject of wind energy 

development, and by creating a tool that assesses many of the criteria involved in wind 

energy project siting I intend to provide a practical context for those discussions.  

 

Wind energy is a rapidly growing industry in much of the U.S. and in the Pacific Northwest 

in particular. Washington State (where I live) has gone from having zero installed wind 

capacity in 2000 to ranking 6th nationwide in installed wind capacity, with 2,356 MW as of 

June 30, 2011. Oregon, which is 7th nationally with 2,305 MW, has experienced nearly 

identical growth in that same period (U.S. Department of Energy, 2011). This trend is 

predicted to continue due to volatile fuel prices and socioeconomic pressure to move away 

from fossil fuel-based energy sources. Other incentives, such as the passage of Washington 
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State Initiative 9371 in 2006, and generous federal, state, and regional subsidies for 

renewable energy projects, have also added to the momentum of this trend (North Carolina 

State University, 2011; U.S. Department of Energy, 2008). As the number of suitable sites is 

reduced through development, greater value will be placed on efficient methods to locate 

potential wind energy development sites (Kuvlevsky Jr., et al., 2007; Marinoni, 2004). 

 

One important outcome of this thesis will be the ability to integrate this tool into Decision 

Support Systems (DSS), or more specifically, Spatial Decision Support Systems (SDSS). SDSS 

are used to address complex, multi-faceted spatial problems, such as land use planning and 

renewable energy siting, which require informed judgments rather than calculable 

solutions. Since the inception of computer-aided GIS, one of its primary uses has been land 

use planning; in fact, the evolution of GIS has largely been a response to the needs and 

techniques of land use planners and developers (Malczewski, 2004). The research and 

frameworkd presented here will draw on well-documented land use planning theory and 

research using GIS, and although it will rely on SDSS theory to inform some elements of its 

design, the primary focus will be on the GIS portion of this combination that can serve as a 

part of a SDSS for wind energy system siting. 

 

Since RES siting is inherently multi-faceted, an approach capable of evaluating several 

criteria simultaneously must be used. GIS have the ability to assimilate, analyze, and 

visualize multiple spatial data sets that pertain to the different factors used for site 

selection, but GIS are limited in their ability to assign values to these factors. MCA has been 

                                                        
1 State Initiative 937 mandates that large utilities (those that serve >25,000 people) obtain 15% of their 
energy from renewable resources by the year 2020. 
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shown to be an effective approach to assigning values to different criteria, and it is 

compatible with the functionality of GIS (Baban & Parry, 2001; Cavallaro & Ciraolo, 2005; 

Chen, Yu, & Khan, 2010; Conley, Bloomfield, St. George, Simek, & Langdon, 2010; Griffiths & 

Dushenko, 2011; Hansen, 2005; Janke, 2010; Jankowski, 1995; Lee, Chen, & Kang, 2009; 

Malczewski, 2004).  

 

In fact, it is nearly impossible to find an RES siting study that does not use some form of 

MCA in combination with GIS. However, comprehensive review of these methods is lacking 

and I have not come across any examples of studies attempting to implement an existing 

methodology in another region. Additionally, the criteria evaluated in each study vary 

widely, so it is difficult to compare one methodology to another when the baseline datasets 

(i.e. input values) are different.  

  

This thesis will examine and compare four of the MCA-GIS methods found in the literature 

before presenting a new framework, followed by some Sensitivity Analyses (SA). 

Comparing this methodology and model to those found in similar studies will provide 

insight into the reliability and effectiveness of these models for locating potential sites. 

Undertaking sensitivity analysis will provide some evaluation of the uncertainty involved 

in the MCA, which may help decision makers understand which criteria are more sensitive 

to subjective input values.  

 

Another important outcome of this thesis will be the production and publication of multi-

layered suitability maps using GIS. Such maps can be an effective means of assessing the 
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suitability of potential sites for wind energy development because they can be a cost-

effective and visually powerful information source (Griffiths & Dushenko, 2011; Hansen, 

2005; Ramirez-Rosado, et al., 2008; Sidlar & Rinner, 2006; Simao, Densham, & Haklay, 

2009). These maps can be displayed on the web to provide free, quick access for those 

interested in ONSWPS siting, and increasing access to this type of information has been 

shown to enhance public participation in the siting process (Berry, Higgs, Fry, & Langford, 

2011; Sidlar & Rinner, 2006; Simao, Densham, & Haklay, 2009). It is beyond the scope of 

this thesis to explore the effectiveness of information dissemination on public 

participation, but based on the substantial body of research on this subject in the literature 

(Berry, Higgs, Fry, & Langford, 2011; Jankowksi & Nyerges, 2003; Jankowski, 2009; Jobert, 

Laborgne, & Mimler, 2007; Sidlar & Rinner, 2006; Sieber, 2006; Simao, Densham, & Haklay, 

2009; Van der Horst & Toke, 2010), I believe it is reasonable to work from the assumption 

that increasing the availability of information will benefit public participation in the 

process.  
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CHAPTER TWO: BACKGROUND 

 

 

2.1 Why wind energy? 
 
Onshore wind power has tremendous potential as a competitively-priced alternative to 

fossil fuel-based sources of electricity generation (Conley, Bloomfield, St. George, Simek, & 

Langdon, 2010; Elliott, Wendell, & Gower, 1991; U.S. Department of Energy, 2008; U.S. 

Energy Information Administration, 2011), and it is the fastest growing form of renewable 

energy in the U.S. since 2000 (Bohn & Lant, 2009; Hoogwijk, de Vries, & Turkenburg, 2004; 

Rosenburg, 2008a). Although it currently comprises less than 1% of the present energy 

supply (Rosenburg, 2008a), researchers estimate that wind energy could be the source of 

20% of the U.S. electricity supply (American Wind Energy Association [AWEA], 2008; U.S. 

Department of Energy, 2008).  

 

In addition, wind energy development has potential environmental, economic, and energy 

security benefits over fossil fuel-based sources, including the potential reduction of CO2 

and other greenhouse gases (GHG), the reduction of air pollutants (SO2, NOx, etc.) and other 

toxins, water conservation, domestic job creation, landowner revenue generation and rural 

tax revenue, and perhaps most importantly, reduced reliance on foreign sources of fuel for 

electricity generation (American Wind Energy Association [AWEA], 2008; DeCarolis & 

Keith, 2006; Denny & O'Malley, 2006; Rosenburg, 2008a).  
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2.2 Basics of wind energy 
 
Wind energy is a form of solar energy and, like solar, wind is an intermittent, or variable 

output, source of energy (Ibrahim, Ghandour, Dimitrova, & Perron, 2011; Rosenburg, 

2008a). Wind turbines, typically of a horizontal-axis configuration2, capture the kinetic 

energy in the wind with propeller blades and convert it to other forms of useable energy 

(American Wind Energy Association [AWEA], 2004). The current trend is to convert this 

energy into electricity which can be used to supplement or replace the electricity 

traditionally created from fossil fuels3 (Denholm, Kulcinski, & Holloway, 2005; Ibrahim, 

Ghandour, Dimitrova, & Perron, 2011; Rosenburg, 2008a). Because of this conversion 

process, all wind energy systems technically should be called wind energy conversion 

systems (WECS) (Billinton & Gao, 2008), but his thesis will use the nomenclature wind 

power systems (WPS)- and specifically onshore wind power systems (ONSWPS) - in order to 

avoid confusion between the entire power system and the on-site energy conversion part 

of the system.  

 

Further, a wind power system can consist of one single turbine or hundreds of turbines, 

ranging from small distributed systems to large distributed systems to utility-scale 

systems, and the term wind farm is often used interchangeably in the literature. However, 

generally speaking, wind farms do not include small distributed systems, such as a single 

home-owner or a rural school, because the energy is only used on site and is not connected 

to the grid. Because of the wind resource dataset used in this thesis (at 50 m above the 

                                                        
2 See Dabiri (2011) for a discussion of horizontal- and vertical-axis configurations. 
  
3 Some argue that wind energy is a better candidate for hydrogen production to be used in fuel cells, see 
(Granovskii, Dincer, & Rosen, 2007). 
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ground), the appropriate focus will be on large distributed systems and utility-scale 

systems, and the term wind farm will sometimes be used to describe these systems, 

particularly when discussing other studies that use the term.  

 

An understanding of the complete power system is necessary for thorough site suitability 

analysis, including the energy conversion and storage systems, turbine type and 

arrangement, power transmission, grid integration, load balancing, and the wind resource 

itself. While these factors must be addressed at some point in the site selection process, 

they primarily affect the final cost of the system or other economic measurements such as 

return on investment (ROI). Detailed assessments are expensive and these expenses are 

only appropriately incurred by developers in the later stages of a project. This thesis 

focuses on preliminary site selection using a GIS-based tool, and as such will make many 

informed assumptions about these economic factors based on the literature and use proxy 

values where appropriate.  

 

2.3 Onshore vs. Offshore Wind Energy Development 
 
There is a notable dichotomy between onshore and offshore wind energy development in 

terms of project costs, environmental impacts, public opposition, infrastructure 

development, and siting constraints that essentially makes them two different forms of 

renewable energy. The spatial datasets required for onshore wind energy assessments will 

not suffice for offshore and vice versa, and the economic assessments of each are limited to 

their respective forms. For example, according to the U.S. Energy Information 

Administration (2011), the national average levelized cost of onshore wind energy is 
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approximately 39% the cost of offshore wind energy, and this disparity impacts the 

economic arguments for wind energy development significantly. Due to the various 

discrepancies between onshore and offshore wind energy development and the different 

datasets that would be required to model the two, this thesis will be limited to onshore 

wind energy analysis, which currently is cost-competitive with other forms of electricity 

generation4. 

 

2.4 Renewable Energy Source (RES) siting 
 
RES availability is always a matter of geography, and the first step in the siting process 

must always be an assessment of the availability of a resource at a given location 

(Dominguez & Amador, 2007; Malczewski, 2004; Voivontas, Assimacopoulos, Mourelatos, 

& Corominas, 1998). For wind energy, this consists of  assessing and measuring wind 

characteristics like speed, power, density, prevailing direction, daily and seasonal variation, 

long-term consistency (climate cycles), turbulence and wake, temperature, and uncertainty 

of the wind at various heights5 above the Earth’s surface (American Wind Energy 

Association [AWEA], 2004; Dabiri, 2011; Ozerdem, Ozer and Tosun, 2006; Prasad, Bansal 

and Sauturaga, 2009). This type of analysis is called a Wind Resource Assessment (WRA) 

and it is critical to any wind energy project (Prasad, Bansal, & Sauturaga, 2009).  

 

However, different scales and applications of wind energy development require WRA at 

different hub heights (Elliott, Wendell, & Gower, 1991). For example, small distributed 

                                                        
4 With the federal Production Tax Credit in place, see Bohn & Lant (2009). 
 
5 Typically called hub heights, referring to the central point along the blade axes where the “hub” of the 
turbine generator is located (American Wind Energy Association [AWEA], 2004). 
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systems typically do not need to know how the wind behaves 80 meters above the ground 

because their turbines will not be that tall, whereas large utility-scale wind operations 

would be acutely interested in that information. It is not within the scope of this thesis to 

make detailed WRA or to critique the methods used to make WRA; it is an extremely 

technical, time- and resource-intensive process and, fortunately, much work has already 

been done for this type of application.  

 

Organizations around the world have dedicated substantial resources to measuring the 

wind at different hub heights so that planners, developers, and the public have access to 

this information. The National Renewable Energy Laboratory (NREL) is one such 

organization in the U.S., and they have compiled a number of useful datasets for utility-

scale or large distributed wind energy development (Janke, 2010). This thesis utilizes the 

NREL High Resolution Wind Resource at 50 m dataset for the Pacific Northwest Region of 

the U.S., which can be obtained at http://www.nrel.gov/gis/data_wind.html. This dataset 

provides an adequate level of detail for regional analysis of annual average wind power 

based on wind power classes (WPC) at a height that is useful for utility-scale and large 

distributed systems, and it is a quintessential starting point for wind energy site selection 

processes in the U.S. 

 

2.5 Decision Support Systems (DSS) and Geographic Information Systems (GIS) 
 
DSS are often combined with GIS to address problems that are inherently spatial or have a 

geographic component, yielding Spatial Decision Support Systems (SDSS) (Marinoni, 2004). 

GIS alone do not constitute SDSS because a GIS just handles the data; it does not provide a 

http://www.nrel.gov/gis/data_wind.html
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systematic approach to making complex, subjective decisions. Conversely, SDSS do not 

have the all of tools required to unlock the value in complicated spatial data, and so 

combining the two is necessary when seeking solutions to multi-faceted spatial problems 

(Jankowksi & Nyerges, 2003; Malczewski, 2004; Simao, Densham, & Haklay, 2009).  

 

The research and tool presented in this thesis can be used as part of SDSS for locating 

potential, suitable, and optimal sites for wind energy development, the expansion of which 

is a governmental and societal goal (American Wind Energy Association [AWEA], 2008; 

Bohn & Lant, 2009; Hoogwijk, de Vries, & Turkenburg, 2004; Rosenburg, 2008a; U.S. 

Department of Energy, 2008; United Nations, 1997; Van Haaren & Fthenakis, 2011). DSS 

are a common method for land-use planning and project management activities that 

require the consideration and analysis of multiple, often diverse or unquantifiable, 

variables (Baban & Parry, 2000; Cavallaro & Ciraolo, 2005; Jankowksi & Nyerges, 2003; 

Malczewski, 2004; Ramirez-Rosado et al., 2008; Simao, Densham, & Haklay, 2009). Decision 

makers employ DSS when making complex decisions that involve many stakeholders, often 

with conflicting priorities and agendas, and the result is nearly always a compromise rather 

than a unanimous decision (Cavallaro & Ciraolo, 2005).  

 

GIS offer a level of functionality that is difficult to achieve with other software packages; 

they have powerful analytic capabilities, exceptional spatial data management, storage, and 

retrieval functionality, and an array of visualization tools that make them an invaluable tool 

for site suitability analysis (Malczewski, 2004; Marinoni, 2004). Modern GIS have the 

advantage of using computers, but the spatial analysis techniques used in land-use 
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planning and renewable energy siting are not new (Malczewski, 2004; Rosenburg, 2008b). 

Hand-drawn maps using overlay techniques for land use planning purposes date to the late 

19th and early 20th centuries (Malczewski, 2004). As technology has evolved, the use of GIS 

has spread to nearly all sectors of society, and although there are concerns over the equity 

offered by this highly technical software (Sieber, 2006), the body of scientific research 

supports the notion that GIS is an effective way to approach site suitability problems 

(Baban & Parry, 2000; Cavallaro & Ciraolo, 2005; Dominguez & Amador, 2007; Griffiths & 

Dushenko, 2011; Hansen, 2005; Janke, 2010; Malczewski, 2004; Rosenburg, 2008b; Sidlar 

& Rinner, 2006; Simao, Densham, & Haklay, 2009; Tegou, Polatidis, & Haralambopoulos, 

2010; Van Haaren & Fthenakis, 2011).  

 

2.6 Multi-Criteria Analysis (MCA) 
 
Multi-Criteria Analysis (MCA) is a method for evaluating the relative importance of 

multiple variables as input criteria for making complex decisions (Chen, Yu, & Khan, 2010; 

Hansen, 2005; Marinoni, 2004; Van Haaren & Fthenakis, 2011). MCA is by nature a complex 

process, the essential concept being that a number of relevant criteria must be identified 

and assessed in terms of value, or weight, with respect to the influence the criteria have on 

the final decision. In spatial analysis, this is often accomplished by creating a suitability 

map that is composed of several layers, each layer representing one of the criteria. The 

criteria are given a weighted suitability score, and these scores are represented as different 

classes or categories, which are then symbolized on the map layer showing the suitable 

areas for that criteria. The layers are then overlaid on the map to yield a final site suitability 



15 
 

map, from which the user can then identify optimal areas and continue with a more 

detailed investigation of those sites.  

 

This method is noteworthy for its situational-adaptive properties and ability to assess a 

wide range of tangible and intangible variables based on an assigned weighting scheme 

rather than as hardened values. Variations of MCA pervade the literature6, but they all rely 

on some sort of weighting scheme and they all share the common goal of providing a 

framework to assess many disparate types of criteria (Baban & Parry, 2000; Berry, Higgs, 

Fry, & Langford, 2011; Cavallaro & Ciraolo, 2005; Chen, Yu, & Khan, 2010; Conley, 

Bloomfield, St. George, Simek, & Langdon, 2010; Griffiths & Dushenko, 2011; Hansen, 2005; 

Janke, 2010; Malzcewski, 2004; Simao, Densham, & Haklay, 2009: Tegou, Polatidis, & 

Haralambopoulos, 2010; Van Haaren & Fthenakis, 2011). In the case of wind energy siting, 

these include avian mortality, land use/land cover/land ownership, wildlife habitat, wind 

speed/wind power/wind density estimates, energy storage and energy grid requirements, 

visual and auditory disturbances, topography, geology, radar interference, public 

participation, and cost-revenue analysis. This thesis will not include all of these criteria 

because high quality data is either not available or is too location-specific for regional 

analysis, and the intent is to create a tool that can be used for preliminary site selection 

based largely on geographical criteria.  

 

                                                        
6 Other variations include: MCE (Multi-Criteria Evaluation), MCDM (Multi-Criteria Decision-Making), MCDSS 
(Multi-Criteria Decision Support Systems), SMCDM (Spatial Multi-Criteria Decision-Making), and SMCA 
(Spatial Multi-Criteria Analysis). 
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Most of the relevant criteria for preliminary analysis can be addressed using just a few data 

layers because multiple constraints can often be satisfied by running different spatial 

analysis operations on the same GIS layer. For example, noise, visual disturbance, and 

safety (from parts malfunctions or ice throws) are all criteria that can be analyzed from 

buffering a ‘major cities/urban areas’ layer, and this same layer also embodies an economic 

argument, as an urban area represents a demand for electricity. There are nonetheless 

some criteria that require multiple data layers, such as the critical habitat criterion, which 

assimilates information from several departments and organizations (i.e. U.S. Department 

of Fish and Wildlife, Bureau of Land Management, U.S. Department of Ecology, Nature 

Conservancy, etc.), and so will have several input layers.  

 

Because criteria weights are based on the perceived importance of the selected criteria (in 

which the selection process itself is most likely biased) to the different actors, little 

consensus exists on how to derive MCA criteria weights. One party may argue that 

protecting avian habitat should hold more weight than protecting rural homeowners from 

”shadow flicker” (the moving or flickering shadows cast by rotating turbine blades, often 

rapidly) or turbine noise, while another may consider avian mortality to be a negligible 

issue and cite the evidence that cars kill more birds than turbines each year. Another may 

consider turbines a blight on the landscape that will reduce tourist dollars while another 

may consider turbines a valuable source of income (wind power developers often lease 

agricultural land from rural landowners), while others may even consider them a tourist 

attraction. The bottom line is that with so many actors involved and so many agendas to 

reconcile, wind energy development is always a compromise.  
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One of the most common methods for deriving criteria weights is by using the Analytical 

Hierarchy Process (AHP). Originally described by Saaty (1977), this rule-based method is 

one of the most commonly used by decision-makers and planners for evaluating multi-

criteria decisions (Pohekar & Ramachandran, 2004), and it provides a calculable 

consistency factor (in the form of a ratio) that provides decision-makers with a 

considerably higher level of confidence in the criteria weighting process (Boroushaki & 

Malczewski, 2008; Chen, Yu, & Khan, 2010; Saaty, 1977).  

 

2.7 Critical Factors in Wind Energy Siting 
 
Besides the wind resource itself, there are a number of environmental and economic 

criteria that limit the suitable areas for wind energy development. After a thorough review 

of the literature, six dynamic criteria have been identified in this analysis as critical: wind 

power class (WPC), distance to the electricity grid, distance to cities/urban areas, distance 

to roads, land cover class, and slope. Other criteria identified in this analysis as important 

to wind energy development include critical wildlife/vegetation habitat, areas near 

airports, military installations, National Parks, Forests, Recreation Areas, and Monuments, 

state and local parks or recreation areas, wetlands, tribal lands, and areas with karst or 

unstable soil conditions. 

 

These criteria are classified numerous ways in the literature, but this thesis will focus on 

separating them into two basic categories: simple and dynamic. Simple criteria are 

evaluated in Stage 1 of this analysis, the dynamic criteria are evaluated in Stage 2, and the 



18 
 

two are combined in Stage 3. The sensitivity analysis (SA) will evaluate only the dynamic 

(or weighted) criteria.  

 

In this thesis, the defining property of critical criteria is that they are dynamic. These 

criteria are dynamic in the sense that their impact on the suitability of a particular site 

changes in relation to the other criteria depending on the perceived importance (or weight) 

of the criteria. They are also more difficult to quantify because they deal with a range of 

values. As such, these criteria must be evaluated differently than the simple criteria, which 

can be evaluated with simple Boolean-type exclusionary process based on geographical 

constraints. The simple criteria represent areas that are generally not suitable for 

development under any circumstances, and these areas are excluded from the analysis in 

Stage 1. Many of these criteria relate to ecological constraints and habitat preservation, 

especially for avian (birds, bats, etc.) species, which are the most adversely affected by 

large wind turbines (Barrios & Rodriguez, 2004; Kuvlevsky Jr., et al., 2007; Madders & 

Whitfield, 2006; Sutton & Tomich, 2005). 

 

2.8 Sensitivity Analysis (SA) 
 
SA is a beneficial measure to include in MCA approaches because it provides insight into 

the sensitivity of the outputs (i.e. the suitable areas for development) to errors, inaccurate 

assumptions, or perturbations in the input values (i.e. the criteria values and/or criteria 

weights). SA aids in assessing the precision and limitations of the model (Chen, Yu, & Khan, 

2010). Because the criteria values are based on the perceptions of various stakeholders and 

decision makers, they are often subjective or conditional. The criteria weights may also be 
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subjective or conditional, even if using a systematic approach such as AHP to derive criteria 

weights (Marinoni, 2004; Saaty, 2004), or they may represent a range of values 

(Boroushaki & Malczewski, 2008; Chen, Yu, & Khan, 2010; Karapetrovic & Rosenbloom, 

1999). SA can therefore help identify where the greatest uncertainty exists, whether in 

criteria values or criteria weights, and can identify which criteria need to be evaluated 

more carefully.  

 

2.9 Visualization 
 
One of the greatest advantages of GIS is visualization. Most researchers using GIS-based 

approaches to RES siting use maps to visually analyze locations and display results. 

Although recent work has explored presenting 3D visualizations via virtual reality 

technology (Bishop & Stock, 2010; Stock, et al., 2008) that show what a site would look like 

after development (i.e. with wind turbines, new roads, power lines, etc.) as a way to 

evaluate public acceptance of new projects, or even through the use of video games 

(Bishop, 2011), maps remain the predominant visualization medium. Different types of 

maps and mapping applications have been used: dynamic maps, web-based maps, static 

maps, argumentation maps, and suitability maps (Conley, Bloomfield, St. George, Simek, & 

Langdon, 2010; Elliott, Wendell, & Gower, 1991; Rodman & Meentemeyer, 2006; Sidlar & 

Rinner, 2006; Simao, Densham, & Haklay, 2009). Maps can be extremely effective as a 

vehicle for communicating geographic information and will be an invaluable part of the 

effectiveness of this thesis in achieving its outcome of increased information dissemination.  
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2.10 Study Area 
 
The geographic study area for this thesis is limited by the number of the geographic data 

layers, the size of the datasets, and the computational time required to perform the 

required analysis. Under these constraints, a 270 by 270-mile area (72,900 sq. miles or 

approximately 45.8 million acres) was chosen to facilitate regional analysis at a scale of 

1:3,000,000 and larger (NAD_83 Geographic Coordinate System, Oregon Statewide Lambert 

Conformal Conic projection). The chosen area encompasses the Middle Columbia River 

Basin, which comprises the southern portion of Washington State and northern portion of 

Oregon, east of the Cascade Mountain Range (Figure 1). The approximate study area range 

is 123˚ W to 117˚ W and 44˚ N to 48˚ N. 

 

 
Figure 1: Map showing thesis study area and the locations of existing onshore wind farms 
(black ‘X’ symbols in map to the right). 
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This area was selected for analysis for two reasons: 1) All of the existing (and planned) 

onshore wind farms in Washington and Oregon are located in this region, indicating that 

this is a viable area to apply this tool to, rather than randomly selecting an area where 

there may be no suitable sites. If this tool shows promise in this study area, examination of 

other areas would then be justified, and; 2) The inclusion of an “existing wind farms” GIS 

layer allows us to evaluate the models and the criteria weights in a pragmatic, rather than 

scientific, way. Since wind farm siting is not, as of yet, a purely scientific endeavor, having 

so many unquantifiable variables and containing enormous uncertainty in regards to the 

social and economic variables, a simple comparison with where wind farms actually exist 

may provide additional insight into the effectiveness and limits of the models. If a study 

area was chosen where no wind farms existed, this type of “ground truth” evaluation would 

be impossible. 

 
  



22 
 

CHAPTER THREE: METHODS AND MATERIALS 

 
 

3.1 Project workflow 
 
MCA-GIS site suitability projects often have similar workflows, and this thesis follows a 

basic approach, beginning with a detailed literature and methods review and the careful 

selection of the criteria to by analyzed (Figure 2). This first step is critical in the outcome of 

the project. A number of routine GIS processes and operations are then performed to 

generate the dataset, followed by the spatial analysis portion of the project, including 

sensitivity analysis, and finally the output maps are created and published.  

 

 

Figure 2: Schematic showing  project workflow. 

Final Evaluation 
Sensitivity Analysis Final Analysis 

Stage 3 Evaluation: Finding Optimal Sites 
Combine Stage 1 and Stage 2 Maps Create Optimal Areas Maps 

Stage 2 Evaluation: Suitability Assessment 
Create, run & adjust model Create Suitability Map 

Stage 1 Evaluation: Exclude Non-feasible Areas 
Create, run & adjust model Create Constraint Map 

Organize Database 
Select GIS Determine constraints Determine criteria weights (AHP) 

Data Collection and Processing 
Acquire and examine datasets Convert to common format 

Determine Project Scope 
Review literature & methods Select criteria for analysis 



23 
 

 

3.2 MCA Methodology Comparison 
 
This thesis reviews four MCA/GIS-based studies for wind farm site suitability prior to 

presenting its own framework. These studies were selected based on the similarities of 

their geographic study areas in terms of the level of infrastructure development, 

development costs and standards, social attitudes, the geographic features, and the policies 

and political objectives. It is difficult, for example, to compare a site selection study 

performed in a developing country having an unstable political structure with a study 

performed in New York State because the perceived values of the various economic and 

environmental constraints may vary widely, and, of course, policies at the federal, regional, 

state, and/or local level can have a tremendous impact on development potential. Specific 

policies aside, these four studies compare relatively well and all contribute something 

valuable to the framework presented in this thesis. 

 

Study A 
 
The first approach was applied in the U.K. by Baban and Parry (2001) using the IDRISI GIS. 

Fourteen constraints were evaluated (see Table 1 at end of section), but there were some 

notable exclusions: airports, military facilities, unstable soil conditions, national parks and 

forests, or any specific mention of critical avian habitat or migratory zones. The authors 

selected the constraints based on results from questionnaires sent out to local council 

bodies and private wind companies, who referred to guidance documents about wind farm 

siting, and so there is no argument against the relevance of these criteria for that region. 

However, based on the literature it seems that the excluded constraints are also critical to 
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consider, and the lack of a detailed description about the ecological constraints data is 

somewhat unsettling. 

 

Baban and Parry applied a three-part approach to their analysis. The first stage was to 

exclude unsuitable sites (cell scores of 10 = total constraint; 0 = no constraint), and this 

was followed by a comparative analysis of two weighting schemes. The first scheme 

assumed that all criteria weights were equal, while the second assigned weights based on 

their perceived importance. The authors grouped the factors into four classes of 

importance prior to entering the layers into pairwise comparisons, from which the relative 

importance of each layer was compared to the others, ultimately yielding a pairwise matrix 

of all layers. From this matrix, the principal eigenvector could be computed to determine a 

best-fit set of weights for the criteria.  

 

However, it is unclear what process the authors used to determine which factors fell into 

which classes, and thus it is difficult to interpret the results in a practical way, and this lack 

of measurable consistency in the selection process limits the effectiveness of the 

methodology. For example, Grade-1 factors included slope, roads, and urban centers, while 

“ecological sites”  and water bodies (which were the authors’ proxies for critical wildlife 

habitat) were listed as Grade-2 factors, and there was no mention of distance to the 

electrical grid or the wind resource itself in this section (these were listed as constraints 

earlier in the article however). While the pairwise matrix method may be sound, the input 

values seem to have been arbitrarily selected, and, if questioned by planners or 

conservationists, the authors of this study may have a difficult time defending their results.  
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The most important conclusion from this study was that using a variable weighting scheme 

(derived from calculating the principal eigenvector of the pairwise matrix) provided a 

more effective method for identifying more suitable land area than simply assuming equal 

weights for all layers. This makes sense because giving equal weight to a secondary or 

tertiary criterion will most likely either exclude more land area or lower the suitability 

scores of more land area than it should. It could also reduce the suitability scores for the 

most important criteria, further reducing the area of land scored as most suitable. This is a 

basic form of sensitivity analysis (SA), but there remains a high degree of ambiguity due to 

the synergistic qualities of complex, multi-criteria datasets.  

 

Study B 
 
The second approach was used in the Greater San Francisco Bay Area of California by 

Rodman and Meentemeyer (2006). The study area is heavily populated and has severe 

geographic constraints, which present a considerable challenge for wind development. The 

authors employed a four-part analytic framework, first calculating suitability scores for a 

physical model, an environmental model, and a human impact model, and then ran a series 

of combined models among all three, averaging the scores. Much like the first study, if any 

location had a suitability score of ‘0’ (Unsuitable = 0; Excellent = 4) in any of the single 

models, then that location would receive a score of ‘0’ in the combined model as well, no 

matter what the score was in another model. The models were run for both small-scale 

(>4.5 m/s), grid connected turbines and large-scale (>7 m/s) turbines.  
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Rodman and Meentemeyer (2006) did a better job explaining the rationale behind their 

weighting scheme, although we see a fascinating example of conflicting perceptions of 

importance between this study and Baban and Parry (2001). In their environmental model, 

the Rodman and Meentemeyer (2006) assigned the highest weight to land use/vegetation, 

and within that category cropland and pasture scored the highest for suitability because 

farmers and ranchers can earn extra income by leasing their land to wind developers and it 

does not significantly disrupt farming activities or disturb undeveloped land. Conversely, 

Baban and Parry (2001) included a specific constraint against taking up Grade-1 or Grade-2 

agricultural land, thus demonstrating the problems inherent in assigning weights based on 

subjective perceptions. This is also an example of the complexity added through economic 

arguments, which are extremely context-dependent and therefore difficult to assess and 

model at the preliminary stage. 

 

The advantage of this approach is that it allows for some basic SA among the three models. 

The physical model provides the land area where development could feasibly occur, while 

the environmental and human impact models reduce that land area through a set of 

constraints that can quantifiably indicate which criteria have the most impact on the 

suitable land area. However, as with the first study, there are some notable exclusions: 

proximity to the electricity grid and visual disturbance (proximity to urban areas and 

recreation areas), to which the authors admit, but also proximity to roads, water bodies, 

military installations, airports, tribal lands, critical avian habitat, and unstable soil 

conditions (karst).  
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Although the authors used a relatively sparse criteria set, their results show that their 

models accurately located three land areas where wind development had already occurred 

or had been planned. However, they admit that public opposition was present at two of the 

three sites – one site in particular where public opposition prevented development 

altogether – and they suggest that their models could benefit from more detailed datasets 

and the inclusion of a public acceptance factor. 

 

Study C 
 
A third approach, by Van Haaren and Fthnakis (2011), was conducted for New York State 

using ArcGIS 9.3.1 and it employed a three-stage framework: Stage 1 entailed the exclusion 

of non-feasible sites, Stage 2 consisted of an economic evaluation, and Stage 3 was a bird 

impact evaluation. This study is the most involved in terms of evaluating the economic 

arguments and constraints, and is atypical among wind farm site suitability studies because 

it looks at an entire (relatively large) state rather than a small geographic study area. The 

authors use the term spatial multi-criteria assessment (SMCA) to describe their approach.  

 

The authors went into great detail to describe their rationale behind the selected criteria, 

and they drew on a more comprehensive dataset than the first two studies. In addition to 

the expanded dataset and economic evaluation, other unique facets of this study are the 

inclusion of geologically unstable areas (specifically karst, which results in porous grounds, 

sinkholes, and caves)7, the exclusion of important bird areas (IBA), land clearance costs, 

and a measure of cost optimization between building new substations and 

                                                        
7 For a detailed discussion of karst geology, see Waltham & Fookes (2003). 
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upgrading/expanding existing facilities. After the exclusion of non-feasible sites (Stage 1), 

the authors ranked the remaining areas by net present value (NPV) based on the cost for 

adding feeder lines, the cost for building new roads, and the cost of land clearing.  

 

While the addition of an economic evaluation is helpful, it is a bit problematic because the 

costs of the technology, the behavior of the wind resource, and the costs of producing wind 

energy are not constant, and also wind energy development is largely policy-driven at the 

regional, state, or local level (Boccard, 2009; Bohn & Lant, 2009; Ibrahim, Ghandour, 

Dimitrova, & Perron, 2011). This is not to say that calculating the NPV of selected areas is a 

meaningless exercise; it is certainly a valuable measure to developers and planners and so 

must be considered at some stage in the planning process. The problem is the inherent 

limitation of calculating the NPV at such a scale (an entire state) based on one turbine type 

and its associated nameplate value (the maximum output rating of a turbine). Studies have 

shown that the nameplate capacity estimates are often significantly less than the realized 

values (Boccard, 2009), and this must be taken into consideration in any detailed economic 

evaluation. In the author’s defense, they do admit the limitations of this type of assessment 

and suggest that the user of the tool can change these input values to suit the situation, 

which is an advantage of this model.  

 

Another important feature of this study was the inclusion of criteria specifically focused on 

avian habitat. Bird and bat mortality from turbines and habitat disturbance or destruction 

are among the most controversial issues surrounding wind energy development (Barrios & 

Rodriguez, 2004; Conley, Bloomfield, St. George, Simek, & Langdon, 2010; Kuvlevsky Jr., et 



29 
 

al., 2007; Sutton & Tomich, 2005), but this was the only study reviewed here that included 

this constraint.  

 

The results of this analysis were compared to the locations of existing wind farms in NYS 

and the tool accurately predicted feasible sites for each existing wind farm, although they 

were not always located in the most suitable areas. One important conclusion from this 

study is that the MCA-GIS method is effective in identifying suitable areas for development. 

However, the study was weakened by the absence of any robust sensitivity analysis, 

particularly regarding the economic criteria.   

 

Study D 
 
The final study reviewed here, by Tegou et al. (2010) for the Island of Lesvos, Greece, takes 

the MCA-GIS methodology a step further by including a systematic approach to selecting 

criteria weights using the AHP. The AHP allows the user to assign criteria weights based on 

relative importance (pairwise comparisons) to the overall goal of the decision hierarchy, 

rather than based on perceived importance. The result of the pairwise comparisons for all 

criteria is a pairwise matrix from which the principal eigenvector can be calculated. 

Although Baban and Parry (2001) employed the pairwise comparison portion of this 

method, they did not mention the use of any systematic method (such as the AHP) to 

classify their criteria into grades of importance, and so were unable to evaluate the 

consistency of their judgments.  
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Consistency is crucial to multi-criteria decision making because of the complexity of the 

criteria weighting process and the likelihood of bias (either intentional or unintentional) on 

the part of the different decision-makers (Chen, Yu, & Khan, 2010). An improved 

consistency statistic does not necessarily mean that the judgments will lead to the best 

answer in regards to the “real world” objective, but it does mean that the judgments are 

significantly different from random (Saaty, 1977).  Tegou et al. (2010) included two 

measures of consistency in their approach: a consistency index (CI) and a consistency ratio 

(CR). The CI can be measured by the formula (Saaty, 1977):  

 

   
       

   
         (1) 

 

where λmax is the largest eigenvalue in the matrix and reciprocal matrix and n is the 

number of criteria. If there are no inconsistencies in the pairwise comparisons, then  λmax = 

n. The CR measures coherence of the pairwise comparisons, written as:  

 

   
  

  
          (2) 

 

where RI is the mean CI of a set of randomly generated comparison values (Saaty, 1977), 

and generally a CR value greater than 10% indicates significant inconsistency and suggests 

that the user reevaluate their judgments of relative importance regarding the criteria 

(Tegou, Polatidis, & Haralambopoulos, 2010). 
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Another important aspect of this methodology is the inclusion of sensitivity analysis. The 

authors used a technique similar to that of Baban and Parry (2001), but included four 

weighting scenarios instead of two. The first assumed that all criteria have equal weights, 

the second scenario set the “visual impact” criterion to zero, the third scenario set the 

environmental criteria to zero, and the fourth set the economic criteria to zero. The results 

show that the land area considered most suitable (scores of 0.9-1.0) was still relatively 

small in all cases, but the important conclusion by Tegou et al. (2010) was that “each 

selected criterion is influential in the evaluation of the study region.”  

 

Their conclusion seems like a gross generalization, but it tells us two valuable things: 1) the 

inclusion or exclusion of any relevant criterion is critical to the analysis, and so the set of 

evaluated input criteria may impact the analysis just as much, if not more, than the analysis 

method itself, and; 2) the relationship amongst the criteria is complex and dynamic, so the 

measurement of consistency in the criteria weighting assignment is crucial.  

 

3.3 MCA Comparison Discussion 
 
This review has tried to present the selected studies in a way that illuminates the 

advantages and shortfalls of each as well as shows a progression of methodologies. This 

thesis draws on the conclusions from the studies reviewed here in formulating its  

framework, and so much of the theory behind the analysis used in this framework is built 

on the ideas seen in these four studies, namely: 1) the use of pairwise comparisons and a 

pairwise matrix and the calculation of the principal eigenvalue; 2) the use of the AHP to 

assign criteria weights; 3) the use of a GIS grid format (raster) and the weighted overlay 
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tool; 4) the use of a three-part analysis approach, beginning with the exclusion of infeasible 

sites; and 5) the use of a more comprehensive dataset based on a combination of the layers 

used in these four studies. A summary table is provided below for comparative purposes. 

 
 
Table 1: Summary of relevant input criteria for four wind farm siting studies. 

  
Criteria/Constraint 

 
Baban & Parry 

Rodman & 
Meentemeyer 

Van Haaren & 
Fthnakis 

 
Tegou et al. 

1 Proximity to Roads x  x x 

2 Proximity to Urban 
Areas/Cities 

x x x x 

3 Proximity to Electrical 
Grid 

x  x x 

4 Proximity to Water 
Bodies 

x  x x 

5 Proximity to Forested 
Land 

x x  x 

6 Proximity to Historic 
Sites 

x   x 

7 National Parks, Forests, 
and Monuments 

x  
(National Trust 
Property only) 

x 
(public parks 

only) 

x  

8 Military Installations   x  

9 Airports   x x 

10 Tribal Land   x  

11 Wind Speed/Wind 
Power Class 

x x x x 

12 Slope x x x x 

13 Aspect (Orientation) x    

14 Critical Avian Habitat   x  

15 Critical 
Habitat/Conservation 
Areas 

x 
(“ecological 

sites”) 

x  
(endangered 

species present? 
Y/N) 

x x 

16 Soil Type (Karst)   x  

17 Land Use Type x x  x 

18 Wetlands   x x 

19 Electricity Demand x  x x 

 

3.4 Proposed Framework 
 
As illustrated in Table 1, the studies reviewed here draw on disparate sets of input criteria 

and constraints, and this is generally the case with similar wind farm siting studies in the 

literature. This makes it difficult to directly compare and contrast analysis methods, but the 
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framework presented here has the advantage of learning from these other studies and 

identifying gaps and shortcomings in terms of relevant input data. Therefore, one novel 

contribution of this framework is the compilation of a more complete set of relevant 

criteria as input values. Great analytic approaches may fall short of their full potential if the 

datasets are missing vital criteria, and the results may suffer, even for preliminary analysis.  

 

One thing that is clear from reviewing the literature on the subject is that in order to 

answer the question “Where is it feasible to locate a wind farm?” it is often beneficial to 

first answer the question “Where is it not feasible to locate a wind farm?” All four of the 

studies reviewed here began their analysis with this step, and this thesis has adopted that 

approach as well. 

 

3.4.1 Stage 1 Evaluation: Exclusion of Non-feasible Areas 
 
Stage 1 of this framework is to exclude unsuitable sites based on rudimentary physical, 

administrative, and geographical constraints. Areas including and within specified 

distances of National Parks, National Forests, National Monuments, state and local parks, 

wetlands, water bodies, military installations, populated places, airports, and areas 

considered critical habitat for wildlife or vegetation were excluded outright, as were areas 

with karst (i.e. caves, sinkholes, aquifer feeds, etc.) geology (Table 2). Areas that did not 

meet the constraints were excluded through a Boolean ‘AND’ (Yes = 1/No = 0) classification 

process. All layers were converted to a common cell size of 400 m by 400 m for the analysis 

because 500 m was the smallest buffer size, and 400 m is a scalable increment of most 

other distance thresholds.  
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Table 2: Stage 1 Evaluation criteria and constraints. 

Factors Criteria Constraint for exclusion 

Economic, Safety Populated Place Within 800 m (≈ 1/2 mile) 

Environmental Wetland Within 800 m (≈ 1/2 mile) 

Environmental Water Body Within 800 m (≈ 1/2 mile) 

Environmental Critical Habitat (IBA
1
, USFW, GAP

2
) Within 1,600 m (≈ 1 mile) 

Physical, Engineering Karst Geology Less than 100 m depth (≈ 328 ft) 

Administrative, Public Use National Park, Forest, or Monument Within 1,600 m (≈ 1 mile) 

Administrative, Public Use State or Local Park Within 800 m (≈ 1/2 mile) 

Infrastructure, Safety Airport Within 1,600 m (≈ 1 mile) 

Infrastructure, Safety Military Installations Within 1,600 m (≈ 1 mile) 
1Important Bird Areas as designated by the Bureau of Land Management (BLM) 
 
2See Appendix for list of GAP Status Codes 

 

3.4.2 Stage 2 Evaluation: Geographical Suitability Assessment 
 
Stage 2 identifies those areas deemed “suitable” for large-scale wind energy development 

through the assignment of suitability scores. These scores are calculated based on assigned 

grading values (GV) given to the range of suitable criteria values. Grading values were 

derived by dividing the maximum score value (GVmax = 1.0) by the number of relevant 

criteria (n) and then subtracting this value from each successive grading value, starting 

from the highest ranking range of criteria values (GV = 1.0) to the constraint threshold (GV 

= 0.0). Criteria value ranges that were deemed unsuitable (GV = 0.0) were sometimes a 

function of distance where d = 0.0, but at other times represented a predetermined 

unsuitable class range, (i.e. wind power class and land cover class), or in the case of slope, 

unsuitable percentage ranges. Suitability indexes were derived for each of the Stage 2 

criteria, shown in Tables 5 through 10 (below).  
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All layers were then reclassified to a common scale of 1 to 10 by intervals of 1, called scale 

values for the weighted overlay operation, with 10 being the highest suitability score, 1 

being the lowest, and 0 being restricted (unsuitable) values. Some layers were distance 

ranges, some were classes, some were percentages, and most layers did not have exactly 10 

value ranges or classes, so it was necessary to reclassify the input criteria value ranges in 

order to overlay them. The ArcGIS Weighted Overlay tool requires integers for the scale 

values, which were calculated by multiplying the grading values by 10 and rounding to the 

nearest integer. These scale values were used as the suitability scores.  

 

Criteria that have a geographic dependence on the proximity to specific features, such as 

roads, power lines, and cities, will have suitability scores that diminish further from the 

feature until they reach a distance threshold where the score is zero (economically not 

favorable). However, criteria that deal with sources of public opposition, such as noise, 

visual impact, habitat conservation, and safety, would theoretically demonstrate a “distance 

decay” relationship where the resistance to development diminishes as the distance away 

from the feature increases (Van der Horst & Toke, 2010), and therefore suitability scores 

would also increase as a function of distance (d). Since this analysis deals primarily with 

physical and geographical constraints, minimum distance thresholds (buffers), rather than 

grading values, were used to identify unsuitable areas for Stage 1 (simple) criteria that 

showed a distance decay relationship, while grading values were used to identify 

unsuitable areas for Stage 2 (dynamic) criteria.  
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Roads and populated places (i.e. urban areas, cities, and towns) are unique examples 

because ideal locations would be located within a specified distance of the feature and 

would show an inverse distance decay relationship, but there are also visual, auditory, and 

safety concerns that require a buffer and show a distance decay relationship. In this case, 

two different thresholds are used; a minimum distance threshold and a maximum distance 

threshold (where d = 0.0). The Stage 2 criteria and model constraints are shown in Table 3. 

  

Table 3: Stage 2 Evaluation criteria and constraints. 

Factors Criteria Constraint 

Physical, Wind Resource Wind Power Class (WPC) Must be ≥ 4 

Physical, Engineering Slope (percent rise) Must be less than 20% 

Environmental, Economic Land Cover Class (LCC) NLCD Classes 11, 12, 21-24, 90, 95 excluded 

Infrastructure, Economic Distance to Grid Must be within 8 km (≈ 5 miles) 

Infrastructure, Economic Distance to Road > 500 m (≈ 1/4 mile); < 8,000 m (≈ 5 miles) 

Infrastructure, Economic Distance to City > 1,600 m (≈ 1 mile); < 16,000 m (≈ 10 miles) 

 
 

While Stage 1 criteria primarily relied on a simple Boolean classification of buffered 

features (i.e. excluded or not), the Stage 2 criteria are a subset of the entire set of ONSWPS 

site selection criteria that have a fluctuating geographical dependence on some aspect of 

the input features. These criteria could have also been included in Stage 1 because they 

each have thresholds for exclusion, but they also have a graduated range of suitable values 

based on spatially dependent relationships with the features used to represent them that 

defines their level of suitability.  

 

To eliminate redundant computational processes and save time, it was easier to evaluate 

these constraints through grading values using the Reclassify tool in ArcGIS. For distance-
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dependent criteria, the Euclidean Distance tool was used to calculate distance ranges prior 

to reclassification. A suitability index was then created for each of the Stage 2 Criteria that 

graded the input values or value ranges on a scale of 0.0 (not suitable) to 1.0 (optimal).  

 

Wind Power 

The wind resource is the most important geographically-dependent criterion, and this 

dataset is organized into classes based on mean annual wind density and mean annual 

wind speed at delineated heights above the Earth’s surface (Table 4). Heights of 50-80 m 

are typical for utility-scale or large distributed systems (American Wind Energy 

Association [AWEA], 2008). Wind power classes (WPC) are based on the work of NREL, 

AWS Truepower, and the U.S. Dept. of Energy’s Wind Powering America Program (U.S. 

Department of Energy, 2011).  

 

Table 4: Wind power classes based on mean annual wind density and mean annual wind 
speed at 50 m height, based on Rayleigh speed distribution of equivalent mean wind power 
density. Data from NREL.  

Wind Power 
Class 

Wind Power Density 
(W/m2) 

Wind Speed 
(m/s) 

1 0-200 0.0 - 5.6 

2 200-300 5.6 - 6.4 

3 300-400 6.4 - 7.0 

4 400-500 7.0 - 7.5 

5 500-600 7.5 - 8.0 

6 600-800 8.0 - 8.8 

7 800-2000 8.8 - 11.9 

 

 

There are various ways to assess the wind resource and different scales at which to 

aggregate the data. For regional analysis, the 200 m resolution data compiled by NREL was 
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sufficient. A mean annual wind speed of 7 m/s is commonly considered the minimum range 

for utility-scale wind energy production (Rodman & Meentemeyer, 2006), which 

corresponds to WPC 4, although technology is constantly improving and approaching the 

possibility of being able to utilize WPC 3 for utility-scale systems. Table 5 illustrates the 

grading values used in this analysis. 

 
 
Table 5: Suitability Index for the Wind Power Class (WPC) Layer 

n WPC Grading Value Scale Value 

1 7 1.00 10 

2 6 0.75 8 

3 5 0.50 5 

4 4 0.25 3 

n/a 3 0.00 Restricted 

n/a 2 0.00 Restricted 

n/a 1 0.00 Restricted 

n/a -999 (no data) 0.00 Restricted 

 

 
Electrical Grid 

The proximity to the electrical grid is the most important distance-dependent criteria due 

to both the cost of constructing and integrating new transmission lines, substations, and 

other facilities (Ibrahim, Ghandour, Dimitrova, & Perron, 2011; Van Haaren & Fthenakis, 

2011), and the costs associated with energy loss over long transmission distances, which 

can devalue wind energy production to the point where it is not competitive with other 

forms of energy (Bohn & Lant, 2009; Ibrahim, Ghandour, Dimitrova, & Perron, 2011; 

Rosenburg, 2008b). Since wind energy is an intermittent energy source, it requires special 

energy handling, storage, and transmission facilities to handle the energy fluctuations, 

including energy overloads to the systems during very high winds (Ibrahim, Ghandour, 
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Dimitrova, & Perron, 2011). Proximity to the existing energy infrastructure is beneficial to 

offset these costs as much as possible (Van Haaren & Fthenakis, 2011). Table 6 illustrates 

the grading values used in this analysis. 

 
 
Table 6: Suitability Index for the Proximity to Electrical Grid Layer 

n Distance from grid (m) Grading Value Scale Value 

1 0-500 1.00 10 

2 501-1000 0.89 9 

3 1001-2000 0.78 8 

4 2001-3000 0.67 7 

5 3001-4000 0.56 6 

6 4001-5000 0.44 4 

7 5001-6000 0.33 3 

8 6001-7000 0.22 2 

9 7001-8000 0.11 1 

10 > 8,000 0.00 Restricted 

 

 
Cities, urban areas, and populated places 

The criteria representing urban areas, cities, and populated places, which consisted of two 

different layers (“urban areas/cities” and “populated places”) in Stage 1, was reduced to 

just one layer for Stage 2 analysis. The populated places layer, which included all cities, 

towns, and census designated places in the United States (down to a population of 10 in 4 

housing units in Warm River, ID), was only used in Stage 1 because appropriate buffers 

needed to be set, but small cities and towns typically do not have the necessary 

infrastructure or energy demand to facilitate large-scale wind energy development.  

 

Urbanized areas, on the other hand, represent both of these, but also require larger buffers 

to accommodate urban sprawl and a potentially larger constituency of opposition. These 
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constraints are somewhat at odds; the “not-in-my-back-yard” (NIMBY) notion of public 

opposition (from things like visual or auditory concerns) would seem to promote a 

distance decay relationship (Van der Horst & Toke, 2010), while the electricity demand and 

infrastructure argument would seem to promote an inverse distance decay relationship. 

This thesis argues for a more pragmatic approach based on satisfying a thorough set of 

physical and geographical constraints, and so addresses the former through an adequate 

buffer and then proceeds to assign grading values based on the idea that the economics of 

the proximity to urban areas is more important than hypothetical public opposition.  

 

Noise is a more quantifiable issue than visual disturbance and regulations do exist in 

several countries. Van Haaren and Fthankis (2011) cite a Canadian report that summarizes 

regulatory limits for noise in the range of 40-55 dB, while an Australian EPA report sets the 

limit at 35 dB (Environmental Protection Authority, 2003). Noise, or sound pressure, levels 

are a function of turbine height, wind speed, and distance. Van Haaren and Fthnakis (2011) 

developed an equation for calculating noise levels at increasing distances based on a 

common turbine height of 78 m (taken from the Vestas V80 model with a sound power 

level of 100 dB), and estimated that the noise level at 500 m distance from the turbine is 

approximately 35 dB. This is the basis for the 500 m buffer used in this framework, which 

should also suffice as a buffer for safety and visual disturbance. 

 

Visual “pollution” is similarly a function of tower height and distance, but there is no 

agreeable threshold at which a person’s ability to see a wind turbine becomes a nuisance in 

terms of aesthetic preference. Evidence suggests that the proliferation of information about 
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wind energy and a region’s prior experience with wind energy development tend to 

increase public acceptance; more informed and experienced communities tend to view 

wind turbines positively (Jobert, Laborgne, & Mimler, 2007; Van Haaren & Fthenakis, 

2011). However, there are some nuisance issues that can be largely mitigated through 

distance buffers, such as shadow flicker and reflective glare (Rosenburg, 2008b). 

 

Safety is another fairly quantifiable issue and relates to precautions surrounding parts 

malfunctions, such as a broken blade, or ice throws (when thawing ice chunks are flung 

from a turbine blade). Since broken blades are extremely rare with modern turbines, safe 

distances have only been projected from small-scale simulations, and estimates regarding 

the maximum distance a fragment of a broken blade would travel from an 80 m tall turbine 

would be about 350 m (Van Haaren & Fthenakis, 2011). Ice throws are slightly more 

common, but have also been documented to be around 350 m, well within the 500 m 

minimum threshold for roads and populated places.  

 
 

Roads 

The proximity to transportation infrastructure is another important distance-dependent 

consideration due to the costs of constructing and maintaining new roads, which must be 

substantial enough to allow for the transport of extremely large turbine parts (for example, 

the blades on the Vestas model V80 are 180 ft. long). Van Haaren and Fthnakis (2011) 

estimate the cost of building new access roads to be $82,000 per kilometer, not counting 

the costs of land clearing, permitting, or maintenance. This clearly puts emphasis on 

locating sites as nearby as possible to existing roads. However, as in the case of populated 
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places, there are aesthetic and safety concerns that require an adequate buffer. Table 8 

discloses the grading values and buffers developed for this criterion.  Tables 7 and 8 

illustrate the grading values used in this analysis. 

 
 
Table 7: Suitability index for the Proximity to Urban Area/City Layer 

n Distance from city (m) Grading Value Scale Value 

1 0-1600 0.00 Restricted 

2 1601-3000 1.00 10 

3 3001-4000 0.93 9 

4 4001-5000 0.86 9 

5 5001-6000 0.79 8 

6 6001-7000 0.71 7 

7 7001-8000 0.64 6 

8 8001-9000 0.57 6 

9 9001-10000 0.50 5 

10 10001-11000 0.43 4 

11 11001-12000 0.36 4 

12 12001-13000 0.29 3 

13 13001-14000 0.21 2 

14 14001-15000 0.14 1 

15 15001-16000 0.07 1 

16 > 16,000 0.00 Restricted 

 
 

Table 8: Suitability Index for the Proximity to Roads Layer 

n Distance from road (m) Grading Value Scale Value 

1 0-500 0.00 Restricted 

2 501-1000 1.00 10 

3 1001-2000 0.88 9 

4 2001-3000 0.75 8 

5 3001-4000 0.63 6 

6 4001-5000 0.50 5 

7 5001-6000 0.38 4 

8 6001-7000 0.25 3 

9 7001-8000 0.13 1 

10 > 8,000 0.00 Restricted 
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Land Cover 

Land cover is an unquestionably difficult criterion to assess because of the inability to 

accurately define and map different land cover types, and this is problem is compounded 

by the existence of more than one classification system. This thesis utilizes the National 

Land Cover Database (NLCD) dataset for the United States, which is based on the Anderson 

Level II Classification System (Anderson, Hardy, Roach, & Witmer, 1976), which provides a 

level of detail more than sufficient for regional analysis. Selecting the particular land use 

classes that are most suitable for wind energy development proved a more difficult task, as 

there is a lack of consensus in the literature. 

 

This framework promotes the approach that previously disturbed (developed) land is 

preferable to undisturbed land. Among developed land classes, those that can support wind 

energy development without compromising their value, such as lands dedicated to low-

maintenance crops or grazing, are preferable to other types of agricultural land where the 

placement of turbines may interfere with production. For undisturbed land, there seems to 

be agreement in the literature that areas predominantly covered by shorter vegetation 

species, such as grasses and shrubs, are preferable to taller vegetation cover, like forests 

(Janke, 2010; Malczewski, 2004; Rodman & Meentemeyer, 2006), presumably based on 

land clearing costs and the notion that the taller the vegetation type, the more it reduces 

the wind speed in that area. Barren land is theoretically more preferable based on this 

logic, but barren land is often barren due to the presence of rocky soils or exposed rock, 

conditions not necessarily conducive to the construction of massive towers. However, if 

engineering allows for it, barren land is preferable among undisturbed land classes. 
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Table 9 presents the grading values used in this analysis based on these assumptions, 

limited to the predefined classes from the NLCD.  

 
 
Table 9: Suitability Index for the Land Cover Class Layer 

n 

NLCD Class 
Code Land Cover Description 

Grading 
Value 

Scale 
Value 

1 11 Open Water 0.0 Restricted 

2 12 Perennial Ice and Snow 0.0 Restricted 

3 21 Developed, Open Space 0.0 Restricted 

4 22 Developed, Low Intensity 0.0 Restricted 

5 23 Developed, Medium Intensity 0.0 Restricted 

6 24 Developed, High Intensity 0.0 Restricted 

7 31 Barren Land 0.7 7 

8 41 Deciduous Forest 0.2 2 

9 42 Evergreen Forest 0.2 2 

10 43 Mixed Forest 0.2 2 

11 52 Shrub/Scrub 0.6 6 

12 71 Herbaceous 0.8 8 

13 81 Hay/Pasture 1.0 10 

14 82 Cultivated Crops 0.9 9 

15 90 Woody Wetlands 0.0 Restricted 

16 95 Emergent Herbaceous Wetlands 0.0 Restricted 

 
 

Slope 

Suitable slope for wind energy development is also difficult to determine based on the 

literature. Recommendations range from a maximum of 10% to 30%, but a reasonable 

compromise can be made at 20% as a maximum threshold for engineering and 

construction purposes. This unfortunately eliminates many areas with high WPC, which 

tend to be located on or around ridges and mountains, but these areas would likely 

unsuitable based on other constraints as well, such as distance from roads or cities. 

Rodman and Meentemeyer (2006) gave preference to ridge crests and areas of higher 
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elevation, but they were dealing with a densely populated study area. Most studies 

consider slopes over 10% to be unsuitable based on responses from planning agencies or 

private developers (Baban & Parry, 2001; Van Haaren & Fthenakis, 2011). For this analysis, 

suitability scores decreased as slope increased until the 20% threshold (Table 10).  

 
 
Table 10: Suitability Index for the Slope Layer 

n Slope (as % rise) Grading Value Scale Value 

1 0 - 2.5 1.00 10 

2 2.6  -5.0 0.88 9 

3 5.1 - 7.5 0.75 8 

4 7.6 - 10.0 0.63 6 

5 10.1 - 12.5 0.50 5 

6 12.6 - 15.0 0.38 4 

7 15.1 - 17.5 0.25 3 

8 17.6 - 20.0 0.13 1 

9 20.1 - 35.0 0.00 Restricted 

10 > 35% 0.00 Restricted 

 

3.4.3 Stage 3 Evaluation: Suitability Assessment 
 
Stage 3 of the analysis identifies those sites that are optimal for wind energy development 

based on a combination of ideal circumstances (i.e. those cells that have high suitability 

scores, larger than 5,000 acres, etc.). For this analysis, the economic viability of developing 

certain land areas is assessed through the weighted overlay function in ArcGIS, which will 

yield suitability scores for each cell in the grid. Suitability scores should theoretically reflect 

the most economically viable sites based on the notion that ideal physical conditions will 

yield the highest return on investment through the maximization of the wind resource, the 

minimization of development costs for electricity transport and infrastructure, and the 
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minimization of factors that would instigate public opposition. Table 11 presents these 

criteria and their associated relative weights.  

 
 
Table 11: Output criteria weights for Stage 3 Evaluation. 

Criteria  Code Description 
Criteria 
Weight 

Overlay 
Weight 

WPC Wind Power Class 0.303 30 

GRID Proximity to Electrical Grid 0.303 30 

URBCITY Proximity to Urban Areas, Cities and Populated Places 0.169 17 

ROAD Proximity to Transportation Routes 0.096 10 

LANDCOV Land Cover Class 0.096 10 

SLOPE Slope (as percentage rise) 0.033 3 

 
sum 1.000 100 

 
 

Tribal lands constitute a unique criterion because of legal and logistical constraints on 

development, and opposition from some tribes is very strong (The Confederated Umatilla 

Journal, 2012). Tribal land, which is federally owned, cannot be bought, sold, or leased by 

conventional means and any development on those lands must be arranged as a “special 

lease” through the federal government (Gamboa, 2011). Legislation is currently circulating 

that would change the way this is handled, but for the purposes of this analysis, it is 

generally considered economically unjustified to pursue sites on tribal lands. There are 

cases though where wind energy development is occurring or has occurred on tribal lands, 

and so it may be worth investigating a site located on tribal land if it has a high suitability 

score. This framework includes tribal lands as an additional Stage 3 constraint. 
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3.4.4 The Analytic Hierarchy Process (AHP) 
 
The AHP is an heuristic algorithm that follows a hierarchical structure for multi-criteria 

decision making and it provides mathematical measures of consistency. For site suitability 

analysis it is critical that the assigned weights are logically consistent and mathematically 

defensible, so the AHP is used to derive the input criteria weights that will be applied to the 

weighted overlay technique. Figure 3 illustrates the process of determining input criteria 

weights for suitability analysis using AHP.  

 

The AHP requires that the problem be 

diagrammed as a hierarchical structure, typically 

with the overall objective at the top, the criteria 

that impact it at the next level, the attributes of 

those criteria at the next level, and alternatives at 

the bottom (Boroushaki & Malczewski, 2008; 

Saaty, 1990). The hierarchical structure can be 

more complex (or less complex), but there is a 

logical threshold at which humans have trouble 

simultaneously evaluating options.    

 

 
Based on George Miller’s (1956) work with chess players, the number of criteria that 

humans are able to simultaneously consider is seven plus or minus two, and so generally 

the second layer of the hierarchy structure should not contain more than nine criteria, 

otherwise the structure should be reconfigured because the inherent error increases 

Figure 3: Schematic of the criteria 
weight selection process using AHP, 
adapted from Chen, Yu, & Khan 
(2010). 
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dramatically past this threshold (Saaty, 1977; 1990). For this analysis, seven criteria were 

selected for Stage 3 Evaluation, as shown in Figure 4. However, the last criterion, Tribal 

Land, was not included in the AHP matrix as a weighted variable; rather, it was evaluated 

separately as a final Stage 3 constraint.  

 

 
 
Figure 4: Schematic of the hierarchical structure of the ONSWPS Stage 3 Evaluation criteria, 
based on Saaty (1990). 

 

 
Once the hierarchical structure has been established, the pairwise matrix can be 

constructed. In AHP, this process consists of ranking the relative importance of each 

criteria against the others in terms of its impact on achieving the overall goal (the top level 

of the hierarchy). The fundamental scale proposed by Saaty (1977) is used to rank the 

relationships amongst the criteria by importance (Table 12), and from these pairwise 

comparisons the pairwise matrix is created (Table 13). In MCA, it is often impossible to 

assign absolute values of importance to the diverse, often intangible, criteria. For example, 

how does one quantify the value (importance) of visual aesthetics, critical avian habitat, 

and proximity to the electrical grid as applied to ONSWPS site selection?  
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Some sort of relative scale must be used to establish a hierarchy of priority, i.e. Action A is 

more important than Action B. In terms of data types, it is dealing with ordinal data versus 

interval data; the former has the advantage of flexibility in terms of handling diverse 

criteria, but lacks an inherent zero and therefore cannot tell us how much more important 

one thing is over another (even in relative terms). The fundamental scale enables the 

conversion of ordinal data into ratio data by using an absolute scale with an inherent zero, 

i.e. Action A is this much more important than Action B. Therefore, it is possible to not only 

quantify the relationships amongst diverse criteria, but also to evaluate the consistency of 

these judgments and revise them if necessary in the pairwise matrix.  

 
 
Table 12: The fundamental scale, adapted from Saaty (1990). 
Intensity of 
importance on 
an absolute scale 

 
Definition 

 
Explanation 

1 Equal importance Two activities contribute equally to the objective 
3 Moderate 

importance 
Experience and judgment strongly favor on activity over 
another 

5 Strong importance Experience and judgment strongly favor on activity over 
another 

7 Very strong 
importance 

An activity is strongly favored and its dominance 
demonstrated in practice 

9 Extreme importance Evidence favoring one activity over another is of the highest 
possible order of affirmation 

2, 4, 6, 8 Intermediate values When compromise is  needed 
Reciprocals If one activity i has one of the above activities assigned to it when compared with 

activity j, then j has the reciprocal value when compared with i (i.e. 5 = 1/5 or .200) 

 

 
The pairwise matrix is an n x n grid that requires input values to be assigned by the user 

based on research, experience, and/or expert opinion for each pairwise comparison. In 

AHP, these values are selected from Saaty’s (1977) fundamental scale and assigned by row, 

meaning that the row representing each criterion is compared to each column in terms of 
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importance. This also means that the column representing each criterion will hold the 

reciprocal value of the fundamental scale value assigned to the row.  

 

At the end of each row the nth root value is calculated by multiplying all of the criteria 

values together and taking the nth root, in this case n = 6, so each product is raised to the 

1/6 power. This produces a normalized value for each row, and the nth root values are 

summed together to provide a denominator for the priority vector calculation. The priority 

vectors are calculated by dividing each row’s nth root value by the summed nth root value. 

The priority vectors are the output criteria weights for each row (each criterion), now 

normalized against the matrix so that the sum of the priority vectors is equal to 1.0. 

 
 
Table 13: Pairwise matrix for ONSWPS site selection criteria showing fundamental scale 
values, reciprocal  values, nth root values (n=6), priority vectors (relative weights), the 
principal eigenvalue (λmax), the consistency index (CI) value, and the consistency ratio (CR) 
value, based on Saaty (1990).  
n  1 2 3 4 5 6   

  WPC SLOPE LANDUSE GRID ROAD URBCIT nth 
Root 

Priority 
Vector 

1 WPC 1 9 3 1 3 2 2.33482 0.303 

2 SLOPE 0.111 1 0.333 0.111 0.333 0.200 0.25491 0.033 

3 LANDUSE 0.333 3 1 0.333 1 0.500 0.74184 0.096 

4 GRID 1 9 3 1 3 2 2.33482 0.303 

5 ROAD 0.333 3 1 0.333 1 0.500 0.74184 0.096 

6 URBCIT 0.500 5 2 0.500 2 1 1.30766 0.169 

 
 λ max = 6.01255  CI = 0.00251  CR = 0.00202 

  

 

Once the pairwise matrix was created and the formulas were input (using Microsoft Excel), 

it was possible to adjust the criteria input weights until the lowest set of CI, CR, and λ max 

values were found. Noting that a matrix is consistent if and only if: λ max = n (Saaty, 1977), 
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the goal was to adjust the input values until λ max was as close to 6.00000 (n = 6) as possible, 

in this case 6.01255. The CI, which measures the deviation between λ max and n in order to 

assess inconsistencies in the pairwise comparisons, was calculated from Equation 1. In this 

case, the calculation was (6.01225 – 6)/(6 – 1) = 0.00251, and from this the CR can be 

calculated using Equation 2.  

 

As discussed in section 3. 6, a number of important calculations come from the pairwise 

matrix that evaluate consistency, which in this context refers to consistency of judgment, but 

it has a specific meaning in the mathematical structure of AHP. Consistency is measured for 

two primary reasons and therefore has two imperative functions:  

1) To evaluate the consistency of the user-assigned input criteria values in regards 

to the dominance of one row (one criterion or action) over another in terms of the 

order of magnitude of importance; these judgments must be consistent to preserve 

the order or rank of the criteria in the pairwise comparisons (Saaty, 1990). For 

example, if Criteria A has a 2:1 importance over Criteria B, and Criteria B has a 2:1 

importance over Criteria C, and Criteria C has a 2:1 importance over Criteria A (A > 

B > C > A), then these judgments are logically inconsistent (or invalid) and also 

mathematically inconsistent. A row can demonstrate dominance over another either 

directly (i.e. A > B) or indirectly (i.e. A > B because A > C and C > B) and these ranks 

must be preserved throughout the matrix. This order of dominance can be 

demonstrated in as many steps as the number of criteria (n), and this is why the nth 

root is calculated for each row.  
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2) To control error in judgment by promoting the homogeneity of input values, i.e. 

keeping the judgments within an order of magnitude between criteria; this is why 

the fundamental scale is only 1-9. A larger difference in input values has potentially 

larger error, while smaller differences in input values are less affected by 

perturbations. The number of criteria (n, or λ max in a consistent matrix) also play an 

important role in measuring the inherent error in judgment because the larger n 

gets, especially beyond the 7±2 threshold, the larger the potential error becomes, 

and the smaller n is the more stable it is to random perturbations. The difference 

between λ max and n is therefore an important measure of consistency (Saaty, 1977; 

Saaty, 1990; Saaty & Vargas, 2001).  

 

While there are several measures of consistency in the AHP, the CR is the most indicative of 

whether the judgments are acceptably consistent, and it is imperative that these values are 

significantly different than those that would be derived from random input values. The 

Random Index (RI) values used in this analysis come from a lookup table (shown in Table 

14) based on the work of Saaty and Vargas (2001), who ran thousands of iterations to 

derive the index.  

 

Table 14: Random Index (RI) values, adapted from Saaty & Vargas (2001).  
n RI value 
1 0.00 
2 0.00 
3 0.58 
4 0.90 
5 1.12 
6 1.24 
7 1.32 
8 1.41 
9 1.45 
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The RI values are directly related to the number of criteria (n) in the analysis, and for this 

application with seven criteria the corresponding RI value is 1.24. This value becomes the 

denominator in Equation 2, and a matrix is generally considered consistent if CR < 10% 

(Boroushaki & Malczewski, 2008; Chen, Yu, & Khan, 2010; Saaty, 1990; Tegou, Polatidis, & 

Haralambopoulos, 2010). For this analysis the CR value was calculated (0.00251/1.24) = 

0.00190, or approximately 0.19%, which is well below the 10% threshold.  

 

3.5 SA Methodology 
 
Several SA approaches are found throughout the literature, and the most common have to 

do with changing the input values, changing the relative importance of the criteria (i.e. 

Saaty’s fundamental scale values), or changing the criteria weights. There are also different 

weighting schemes that can be used within each of these approaches, either by substituting 

random values or by changing the values by a defined interval or percentage, or by giving 

all criteria the same weight or zero weight when compared to all others.  

 

This thesis is interested primarily in documenting the effects of perturbations in the input 

criteria weights. A combination of approaches was used in this analysis, both drawing from 

the studies reviewed earlier and incorporating another approach from the literature. Baban 

and Parry (2001), Rodman and Meentemeyer (2006), and Tegou et al. (2010) all applied 

the equal weighting scheme as part of their SA, and it is a logical baseline for comparative 

purposes. This thesis applies the equal weighting scheme to the criteria weights as the first 

phase of the SA. 
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This thesis also applies an SA method known as One-At-a-Time, or OAT, that allows the 

user to alter single input values by a certain percentage interval and then measure the 

impact of that change relative to the other criteria, which must be adjusted accordingly so 

that the criteria weights still sum to 1.0. The isolation of variables eliminates ambiguity and 

improves the comparability of the results (Chen, Yu, & Khan, 2010). A percentage interval 

of ± 20% was chosen as the percent change (pc) used in this analysis, which was applied to 

each of the six Stage 3 criteria individually and the changes were measured in acres of 

suitable land (Table 15, next chapter). The formula used to calculate the weight (W) of the 

main criterion under consideration (cm) is : 

 

 (     )    (    )  ( (    )  (  ))     (3) 

 

where W(cm,0) is the original input weight of (cm) and  (     ) is the weight of that 

criterion at a given pc (in this case, ± 20%). The formula for calculating the adjusted 

weights of the other criteria is: 

 

 (     )  (   (     ))  
 (    )

   (    )
       (4) 

 

where (ci) is the ith criterion and  (    ) is the original (AHP-derived) input weight of the 

ith criterion (Chen, Yu, & Khan, 2010). With OAT, the user can choose to run the SA at any 

number of percentage increments. This thesis chose to examine the data at 5% increments 
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to the ± 20% threshold, plus the base run (the original AHP-derived criteria weights), 

yielding nine total runs.  

 

3.6 Technology 
 
This analysis was conducted using ArcGIS 10.0 Desktop software including Spatial Analyst 

and 3D Analyst extensions. Models were constructed using ArcGIS ModelBuilder through 

the ArcMap/ArcINFO interface. Maps were created using ArcMap and exported in JPEG 

format at 200 dpi. The Microsoft Office 2010 Suite (Word, Powerpoint, and Excel) was 

employed to create the main document and all associated graphs, tables, and figures. The 

hardware used was the Windows 7 (Service Pack 1) operating system running on a 64-bit 

HP 2000 Notebook PC laptop with an AMD E-350 processor, 3 GB RAM.  

 

3.7 Data Processing 
 
The first step was to collect the necessary datasets and convert them into usable forms 

using ArcGIS 10.0 geoprocessing tools. For this type of analysis, working with a grid system 

was the most effective means of calculating values for particular locations. This way each 

grid unit (or cell) in the study area would have an integer value and these values could be 

altered based on the weights assigned to them, yielding a suitability score for each cell. 

However, most datasets are available as vector-type data and so several of the datasets had 

to be converted to grid-based (raster) data prior to analysis.  

 

A final grid resolution of 798 m (NAD_1983_Oregon_Statewide_Lambert projection) was 

chosen for this analysis because it was the largest cell size amongst the datasets, found in 
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the Digital Elevation Model (DEM). All other datasets were converted to this cell size 

because the accuracy of the spatial data can be no greater than the coarsest resolution 

found in the datasets. Although a finer resolution could be obtained by resampling the 

DEM, the chosen cell size was suitable for regional analysis, and this coarser cell size 

reduced computer processing time. To further reduce the computation time of processing 

and analysis, all layers were first clipped to a common regional extent, slightly larger than 

the study area (for most layers, the boundaries of Washington, Oregon, and Idaho were 

used for cartographic purposes).  

 

The Land Cover layer required extensive manual processing because it was only available 

in smaller extents than the study area due to the large size of the files. Two raster files were 

required to cover the study area, each over 10 GB as individual layer packages, and they 

were added to the geodatabase through the Create New Raster tool. The two rasters were 

loaded into the new raster file using ArcCatalog and then clipped to the regional extent of 

the other layers. The original rasters were converted from WGS84 to NAD83 by adding 

them into the geodatabase through the Load Data function. The resolution, which was 

nearly two orders of magnitude smaller than the cell size used in this analysis, was 

adjusted by using the Export Data function and manually specifying the new cell size. This 

new raster was then added to the geodatabase and then re-symbolized in ArcMap based on 

the National Land Cover Dataset (NLCD) classification scheme. 

 

Once all the datasets had been converted to a common format (i.e. same coordinate system, 

same cell size, proper extent, etc.), they were added to a geodatabase in ArcGIS. The 
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geodatabase includes feature datasets for Administrative, Infrastructure, and 

Environmental themes, and includes the raster datasets. Feature topology was not enforced 

because it was not critical for this analysis at this scale. 

 

The analysis was carried out in three stages using ArcGIS 10.0 ModelBuilder. For Stage 1, 

the Euclidean distance was calculated from each feature to a maximum distance of 2,000 m 

(slightly further than the largest buffer), producing new rasters as outputs. The new rasters 

were manually converted to a binary scale (Yes = 1/No = 0) using the Reclassify tool. Areas 

within the buffer thresholds were assigned values of zero, while the remaining areas were 

given a value of one. These outputs were then combined into a single layer through the 

Mosaic-to-New Raster tool with a minimum mosaic operator, and then the relevant areas 

(buffered features) were selected using the Con tool, which uses conditional statements to 

select only the desired cells (those with values of zero). Areas with values of ‘1’ were 

discarded in Stage 1 for illustrative purposes, but were reused in Stage 3 as a mask raster.  

 

A Euclidean Distance/Reclassify tool combination was used instead of a Buffer/Polygon-to-

Raster tool combination strictly to save processing time. The Buffer tool only works with 

feature classes (vector layers), and the large size of the datasets used in this analysis often 

required several hours to calculate the polygon geometry, and then the new polygon layers 

would need to be converted back to rasters for the overlay operation, a process that also 

took hours for each operation. The Euclidean Distance tool accepts either feature classes or 

rasters as inputs and produces a raster as an output, thus effectively doing the same thing 

as buffering in a fraction of the time. The Reclassify tool could be used to set the buffer 
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thresholds, and the Con tool could be used to select the cells that correspond to the 

buffered areas. A diagram of the Stage 1 Model is shown in the Appendix. 

 

Stage 2 required less significantly less processing time than Stage 1, in part because there 

were less input data layers, but also because all of the Stage 1 layers were in vector format 

and many of these layers consisted of extremely large numbers of features, which not only 

take longer for ArcMap to process but also to render. Stage 2, with only three vector layers 

and three raster layers, was much more efficient. A similar approach to Stage 1 was used 

with the Euclidean Distance tool being used for the distance-dependent criteria (again using 

the 2,000 m threshold), and then all layers were reclassified to a scale compatible with the 

Weighted Overlay tool in ArcGIS (i.e. 1 through 10 by intervals of 1) and then given a scale 

value (see Section 3.4.2) in the Weighted Overlay Table. The AHP-derived criteria weights 

were then entered into the Weighted Overlay Table prior to running the tool. The output 

raster from Stage 2 was a suitable areas layer based on the AHP-derived criteria weights. 

 

The Stage 3 Model began with creating a mask layer that represented all non-excluded 

areas from Stage 1. The mask layer could be used to extract (select) the suitable cells from 

the Stage 2 Model outputs, as well as the alternatively weighted layers produced in the SA, 

that were not located in a buffered zone from the Stage 1 Model. This approach was 

effective because the suitable cells retained their original suitability scores and one layer 

could be used repeatedly on as many layers as necessary, yielding consistent geographic 

boundaries for site selection.  
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The second phase of the Stage 3 Model consisted of identifying optimal sites by using the 

mask raster to eliminate all cells that corresponded with Stage 1 excluded areas from the 

Stage 2 AHP-derived suitable areas layer. The output raster from this operation was then 

converted to polygons so that the geographic area could be calculated, and then polygons 

larger than 5,000 acres were selected as optimal sites. This part of the model was rerun 

with the input rasters from the SA for comparative purposes.  

 

The 5,000 acre threshold was chosen to accommodate utility-scale wind farms, which vary 

tremendously in size, but it cannot be overlooked that large wind farms require large 

continuous tracts of land. Although the space between the turbine towers can be used for 

other activities (Rodman & Meentemeyer, 2006; Rosenburg, 2008b) and the ‘footprint’ of 

the towers is relatively small (2-5%) compared to the total wind farm area (Kuvlevsky Jr., 

et al., 2007), the turbines must be located as close together as possible to achieve maximum 

energy transmission and storage efficiency without compromising the ability of the turbine 

blades to “capture” the wind directly. The turbine array (positioning) is therefore 

extremely important in order to avoid potential losses due to interference from the wake 

created by other turbines, and sufficient space is required (Dabiri, 2011).  

 

Estimates are variously described throughout the literature as requiring 5-15 turbine 

diameters of spacing between towers, and estimates for the overall size of wind farms 

range from 0.25 acres/tower (National Renewable Energy Laboratory [NREL], 2012) to 2-3 

W/square meter (Dabiri, 2011) to 40-200 acres/MW (Denholm, Hand, Jackson, & Ong, 



60 
 

2009). For this analysis, a theoretical 50 MW wind farm is used as the baseline, utilizing a 

safe average of 100 acres per MW.  

 

At this stage of the analysis, some tradeoffs become apparent due to the requirement for 

large tracts of land. If one wishes to examine only the areas with the highest suitability 

scores (i.e. 9 or 10), they will most likely eliminate any large polygons from the analysis 

since there were relatively few cells with those scores (Figure 5) and those cells were 

relatively well distributed (Figure 6). However, if one is willing to examine the entire range 

of remaining cells, then not only are there more large polygons to choose from, but 

adjacent polygons can be combined to identify larger suitable sites.  

 

Since the requirement for large tracts of land is also a suitability constraint and any cells 

remaining at this point in the analysis have already satisfied several critical constraints 

(only cells with suitability scores ≥ 5 remain after Stage 3), this framework treats all 

remaining cells as a single category: suitable. Also, as will be discussed further in Chapter 

Four, the geographic location of the suitable cells is nearly identical under all weighting 

schemes, but the values of the individual cells changes within those locations, suggesting 

that the value of an individual cell is not as important as the fact that a suitable cell exists at 

that particular geographic location.  
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Figure 5: Histogram showing the number of cells by suitability score remaining after 
“extraction by mask” in Stage 3, based on the AHP-derived criteria weights. 

 

 

 
Figure 6: Sample spatial distribution of the suitable cells layer depicted in Figure 13. 
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For the final phase of the Stage 3 Model, neighboring polygons (within a distance of 1600 

m) were joined using the Aggregate Polygons tool, and polygons larger than 5,000 acres 

were selected from that layer. All polygons smaller than 5,000 acres were discarded for this 

analysis, despite their suitability scores, and the study area was examined for the locations 

of the remaining polygons to select a detailed regional extent to analyze for the SA. 

 

In summary, Stage 3 identifies optimal sites as those that: 

 Are not located in the excluded areas identified in Stage 1. 

 Have suitability scores greater than ‘0’ based on the Stage 2 constraints. 

 Are located on sites greater than 5,000 acres.  
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CHAPTER FOUR: RESULTS AND DISCUSSION 

 
 
 
One of the primary outcomes of this thesis is the creation of a series of maps to provide 

quick access to site suitability information. Static maps were created for each evaluation 

stage that contain different types of information. For Stage 1, the maps show the areas 

excluded from the analysis, for Stage 2 the maps show the areas considered suitable for 

wind energy development based on graded suitability scores (high=10; low=0), and the 

Stage 3 maps show the optimal areas for development based on an overlay of the Stage 1 

and Stage 2 constraint maps and a minimum size constraint (5,000 acres). Additionally, a 

series of maps and figures were included to help visualize the results of the sensitivity 

analysis (SA). The locations of existing wind farms was shown in several of the maps as a 

means of assessing the models in “real-world” terms.  

 

4.1 Stage 1 Evaluation Results 
 
The objective of Stage 1 was to remove unsuitable areas from the analysis based on simple 

criteria and their associated buffers. Figure 7 shows the results of the Stage 1 Model, and it 

is evident from the map that the majority of the study area is considered unsuitable for 

wind energy development at this stage. It is also intriguing that most areas with high WPC 

are located within the excluded areas, as are many of the existing wind farms. This is 

largely due to the presence of the Cascade Mountain Range (running North/South on the 

left-hand side of the map) which has very high WPC, but has unsuitably steep slopes and is 

primarily U.S. National Forest land or National Parks.  
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Figure 7: Stage 1 constraint map showing areas excluded from the analysis (unsuitable 
cells), the locations of existing wind farms, and areas of high WPC.  

 

 
Significant portions of Washington and Oregon are designated as National Forests, 

therefore excluding vast tracts of land that have suitable-to-high WPC values, and most of 

the land that has the highest WPC. Unfortunately for the wind energy industry, National 

Forests are federally-owned land that is principally off-limits to development, but there is 

evidence to suggest that they harbor abundant wind resources. Figure 8 shows how much 

excluded land from Stage 1 is due solely to the existence of National Forests. This is 

currently a controversial topic throughout the country (Adkins, 2009; Streater, 2012) and 
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we can expect to hear more about it in the next few years as states try to reach ambitious 

Renewable Portfolio Standards (Bohn & Lant, 2009; Rosenburg, 2008a; Van Haaren & 

Fthenakis, 2011).  

 

 
Figure 8: Map showing areas with high WPC and U.S. National Forest Land. 
 
 

In the literature it is often cited that forested land is less desirable than open land because 

stands of trees tend to reduce wind speeds and therefore reduce wind power potential 

(Baban & Parry, 2001; Hansen, 2005; Janke, 2010; Ramirez-Rosado, et al., 2008; Rodman & 

Meentemeyer, 2006; Tegou, Polatidis, & Haralambopoulos, 2010; Van Haaren & Fthenakis, 
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2011). However, looking at Figure 9 (below), it is clear that this assumption may not 

always be true for large-scale wind power, which is typically measured at a height of 50-80 

meters, well above most forest stands.  

 

 
Figure 9: Map showing forested land cover, locations of existing wind farms, and areas with 
high WPC. 

 

 
In fact, most of the areas with the highest WPC in the study area are located within land 

cover classes defined as evergreen, deciduous, or mixed forest. The argument then 

becomes one of the cost of clearing forested land compared to other types of land cover. 

Van Haaren and Fthenakis (2011) estimate that the cost for clearing forested land for a 50 
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MW wind farm to be approximately $3,000 per acre, compared to $40-60 per acre for 

grassland, shrubs, barren land, and cropland. For that reason, forested land was removed 

as a Stage 1 constraint and was assigned a suitability score of 2 in the Stage 2 analysis, 

therefore representing an economic constraint rather than a physical constraint.  

 

4.2 Stage 2 Evaluation Results 
 
In Stage 2, the goal was to locate suitable areas for wind energy development based on a set 

of six dynamic criteria constraints. Suitability indexes provided the basis for this 

assessment, and the criteria weights were derived through AHP. The ArcGIS weighted 

overlay tool was used to identify the feasible sites within the study area, and suitability 

maps were produced from the Stage 2 Model (Figures 10 and 11) showing the graded 

values of the suitable areas. 

 

It is striking how much area is considered unsuitable based on the results of the Stage 2 

Model. Perhaps more intriguing is comparing the preliminary results of the two different 

approaches (Table 15). Stage 1, a subtractive approach based on nine input criteria, 

reduced the amount of area under consideration (the study area) from approximately 45.8 

million acres to 9.6 million acres of suitable land area, a difference of approximately 79%. 

By evaluating only the areas that met critical suitability requirements, the Stage 2 Model 

reduced the amount of suitable area by over 99% using just six input criteria and their 

associated suitability scores.  
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Table 15: Acreage statistics based on Stages 1 and 2 of the analysis. 

 
Acres Percent Reduction Percent of Study Area 

Study area 45,806,472 0 100 

Stage 1 Excluded Area 36,206,408 21.0 79.0 

Stage 1 Remaining Area 9,600,064 79.0 21.0 

Stage 2 Suitable Area > 0 185,009 99.6 0.4 

Stage 2 Suitable Area > 7 127,360 99.7 0.3 

 
 
 
 

 
Figure 10: Stage 2 suitability map showing the results of the weighted overlay operation 
using the AHP-derived criteria weights (10 = most suitable; 0 = unsuitable). 
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Figure 11: Stage 2 suitability map showing only areas with the highest suitability scores. 

 

 
The differences are visually subtle at this scale, but there is a difference of 57,650 acres 

between the number of acres that are considered highly suitable (suitability score ≥ 8) and 

all suitable areas (suitability score > 0). In a table this difference may look significant (and 

it is considering how many wind turbines could fit on 57,650 acres), but the advantage of 

GIS visualization is that we can see where those additional acres are located on a map and 

draw different conclusions.  
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One conclusion from comparing the two maps is that the geographic distribution of the 

suitable cells and the highly suitable cells is nearly identical, meaning that one won’t find 

highly suitable cells in areas where no other suitable cells exist. This makes sense because 

most of the graded values were distance-dependent, but it also supports the notion of 

spatial autocorrelation, which is a measure of the probability that features in space are 

randomly distributed.  

 

The first law of geography, often called Tobler’s Law, states that “Everything is related to 

everything else, but near things are more related than distant things” (O'Sullivan & Unwin, 

2010). In this case, we would expect suitable cells to be located near one another, and 

highly suitable cells to be located near other suitable cells, because they share similar 

geographic qualities. In spatial statistics, Moran’s I is often used to measure spatial 

autocorrelation. An example of the results of Moran’s I are shown in Figure 12 for the layer 

representing suitable areas (suitability score > 0). The results of the Moran’s I test are 

shown here in a graphic report, automatically generated by ArcGIS (Figure 12).  

 

The results confirm that these areas are not randomly distributed, which is as expected, 

and they indicate that the suitable areas are indeed very strongly clustered. We see a 

similar result when examining the areas with suitability scores ≥ 8, although not nearly as 

strongly clustered (Table 16). This can likely be explained by the smaller number (n) of 

features (polygons) under consideration, and by the fact that the 235 features that made up 

the difference between the two layers were highly clustered neighboring features with 

distance-dependent values, thus leaving larger distances between polygons with higher 
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values. In both cases, the results of the Moran’s I test show a statistically significant 

clustering of features. 

 

 
Figure 12: Results of Moran’s I for the Stage 2 suitable areas (> 0) layer. 
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Table 16: Results of Moran’s I for both Stage 2 evaluation layers. 

Layer Moran's Index Z-score* p-value n 

Stage 2 Suitable Area ≥ 3 0.248671 18.400073 0.000000 540 

Stage 2 Suitable Area ≥ 7 0.095718 4.502179 0.000007 305 

*For Moran’s I, the Z-score is a measure of the variance between each pair of target feature values and the mean 
of all feature values.  

 

 
Since there is confirmation of a geographical pattern (a strong clustering of features), it 

may also be useful to investigate whether there is clustering of particular values. Moran’s I 

only measures the distribution of similar feature values, but it does not measure whether 

there is clustering of high or low values across the entire study area. Clustering of high 

values, called “hot spots” in spatial analysis (and conversely “cold spots” for clusters of low 

values), can provide some additional insight into the suitability of a particular region 

(based on the selected input criteria) and perhaps explain why many existing wind farms 

are located in areas not considered highly suitable by technical standards.  

 

For this type of analysis, the Getis-Ord G-statistic is often used, which measures the 

distribution of high or low values in a given area based on distance thresholds set by the 

user, and this is compared with an expected G-statistic calculated by the GIS (a random 

distribution). The Z-score is then calculated to test the significance of the result (i.e. 

whether or not it is significantly different from random). Again, we can expect that there is 

clustering of high values because the input feature class is based on the modeling of the 

input criteria in Stage 2, which selected only those cells with high suitability values. In this 

case, one might expect the hot spot map to look very similar to the one in Figure 11 in 

terms of the spatial distribution of cell values.  
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However, the results of the hot spot analysis indicate that there are clusters of high values 

that differ from the general geographical distribution of highly suitable cells from the Stage 

2 weighted overlay. The maps in Figure 13 display the results for a sub-region of the study 

area where large clusters of suitable cells were found in the Stage 2 analysis, and there is a 

significant visual difference in the clustering of high values between the two maps. For 

example, the cell clusters to the east and southeast in the upper map appear to have about 

the same amount of highly suitable cells as do some of the other clusters in the northwest 

and middle parts of the map, yet they received significantly lower Z-scores in the Getis-Ord 

G-statistic hot spot analysis.  

 

The hot spots indicate areas that are especially good candidates for wind farm sites, 

represented in the lower map in Figure 13 by dark red areas. In the maps presented here, 

the darker the red, the more significant the clustering of high values, while the light yellow 

areas represent no significant clustering of high or low values, and the darker the blue, the 

more significant the clustering of low values. However, the cells identified as hot spots are 

still subject to further geographical analysis during the Stage 3 Evaluation, as many of the 

cells may be located within areas identified as unsuitable for development during the Stage 

1 analysis, and/or they may not be in areas that meet the final Stage 3 constraint requiring 

continuous land areas greater than 5,000 acres.  
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Figure 13: Map details showing the results of the Getis-Ord G-statistic test for Stage 2. In the 
lower map, “hot spots” (clusters of high values) are shown in dark red. 
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4.3 Stage 3 Evaluation Results 
 
The Stage 3 Evaluation consisted of overlaying the Stage 1 constraint map with the Stage 2 

suitability map to yield an optimal areas map. The results of this overlay operation (Figure 

15) show that a large percentage of suitable cells from the Stage 2 AHP-derived weighted 

overlay are located in areas identified as non-suitable in Stage 1, demonstrating why it is 

valuable to approach the problem from different perspectives. Relying only on one 

approach or the other limits the effectiveness of the models and reduces the amount of 

information contained in the maps. For example, if User A and User B were both tasked 

with finding good sites for a wind farm and each used a different approach, then they might 

very well come to completely different conclusions. This framework works conceptually 

like a Venn Diagram (Figure 14), which makes sense because it is built on Boolean logic.  

 

 
Figure 14: Venn Diagram representing the three stages of ONSWPS evaluation.  
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Figure 15:  Map of study area showing overlay results of Stage 1 and Stage 2 analysis. 
 

 
After the maps were overlaid, the next step in the Stage 3 Evaluation required identifying 

land units larger than 5,000 acres. The suitable raster cells were converted to polygon 

geometry to calculate the area, and adjacent polygons were aggregated to maximize 

suitable areas. A distance threshold of 1600 m (≈ 1 mile) was used for the aggregation 

operation, and a new layer was created from the selection of polygons > 5,000 acres. Only 

four polygons met this criterion and they were included in the new layer based on the AHP-

derived weighted overlay.  
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Figure 16: Maps showing the difference between all Stage 3 suitable polygons (suitability 
score > 0) and those polygons greater than 5,000 acres.  
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Figure 17: Maps showing the comparison between the optimal polygons and the results of 
the Stage 3 hot spot analysis (Getis-Ord G-statistic). 
 

Polygon 7 
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The four large polygons shown in the lower map in Figure 16 are the best fit for wind farm 

sites based on the Stage 3 Model, but running the Getis-Ord G-statistic test again can 

elucidate any visual correlation between these sites and areas with clusters of high values. 

The hot spot analysis was run again with the new set of optimal polygons, and the results 

are shown in Figure 17. Based on the results of this test, only the polygon in the northwest 

portion of the map (Polygon 7) correlates with clusters of high values, and so it would be a 

top candidate for further investigation into wind energy development potential in the area.  

 

One additional map is provided in Figure 18 (below) to compare the results of the hot spot 

analysis with areas of high WPC and the locations of existing wind farms. This is a practical 

way to verify the results of the hot spot analysis and the Stage 3 Model visually, and it 

confirms that the optimal sites are located in highly suitable areas for wind energy 

development. Furthermore, the map shows that Polygon 7 is an excellent candidate based 

on the relative proportion of high WPC area to existing wind farms already located in that 

area, suggesting that this region has an abundance of untapped wind resource potential 

and room for growth.  

 

Of course, the cautious optimistic may question why there are no existing wind farms in 

this seemingly bountiful area for wind energy, and this question rightfully deserves further 

investigation. One thing to consider is that Polygon 7 barely exceeded the 5,000 acre 

threshold, the smallest of the four (see Table 18, section 4.5), and so one could conclude 

that there is simply not enough suitable area to warrant massive investment in that area 

because there is little potential for expansion to nearby areas. Figure 19 supports this 
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Figure 18:  Maps showing the comparison between areas with high WPC and suitable area 
hot spots.  
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consideration by showing the mask used in this analysis. The mask (yellow areas) 

represents all areas that were not excluded due to Stage 1 constraints, and it is clear that 

there is not much room to expand in this area, especially compared to the other optimal 

polygons.  

 

Also included in Figure 19 is a map showing the locations of cities and power lines, the next 

two most important criteria behind WPC, which highlights a certain disadvantage for 

Polygon 7 based on its proximity to nearby power lines. Compared to the other optimal 

polygons, which appear to have power lines running directly through them, Polygon 7 

would require substantial investment to connect to the electrical grid. It is also more 

remote in terms of serving large populations. These factors do not preclude Polygon 7 from 

consideration as an optimal site; they simply demonstrate the complex nature of the 

spatial-MCA approach and why more detailed site-specific analysis is necessary before 

selecting a final site.  

 

It is also interesting to note the location of the existing ONSWPS in relation to the suitable 

areas mask developed in this framework (upper map, Figure 19). In general, the existing 

wind farms are located within areas deemed suitable based on Stages 1 and 2 constraints, 

and there are several that are located within or very near the Stage 3 optimal areas. At the 

very least, the spatial distribution of existing ONSWPS closely mimics the spatial 

distribution of the suitable areas, and this affords a level of confidence in the framework 

and validates the model to some degree in real-world terms.  
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Figure 19: Maps showing the location of the optimal polygons in relation to cities, power 
lines, existing ONSWPS, and the Stage 2 suitable areas mask.  

 

Polygon 7 
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One additional note about the patterns observable in the Stage 2 mask (upper map, Figure 

19) is the presence of what appears to be an artificially propagated series of “dots” or 

“holes” in the Washington portion. In fact, these holes are from the buffered wetland layer, 

and to some extent are artificial in the sense that the data collection methods and definition 

of what constitutes a wetland are manmade constructs, and as such will differ amongst 

departments and jurisdictions as the example of the difference between Washington and 

Oregon illustrates in the above figure.  

 

 
Figure 20: Maps showing locations of Tribal Lands relative to optimal sites and areas with 
high WPC. 
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The final Stage 3 criterion concerning tribal lands was also assessed at this point. However, 

there were no optimal sites were identified within the study area during the Stage 3 

Evaluation that were located on tribal lands (Figure 20), so this criterion required no 

further analysis. 

 

4.4 Suitability Assessment Discussion 
 
As evident in Figure 19, the overwhelming majority of existing wind farms are located in 

areas identified by the Stage 1 and 2 models as suitable, and several wind farms exist in 

areas identified as optimal, which lends credence to the effectiveness of these models. 

However, there are a few wind farms that were not located within these areas, which was a 

rather unexpected result, and may be explained by the conservative nature of the 

constraints used in Stage 1, or perhaps these wind farms were located in areas of high WPC 

despite not meeting other constraints. Upon re-examination of Figure 18 (upper map), it 

can be seen that the latter case explains some of these anomalies, but another situation is 

also observable, which is that some of the wind farms are not even located in areas with 

high WPC. This leads to some questions about the accuracy of the WPC dataset and 

emphasizes the fact that potential sites must undergo thorough wind resource assessments 

(WRA) before pursuing development. 

 

These cases aside, it is evident in Figure 19 that several wind farms were located within or 

very near optimal sites identified in the models, but also that the majority of the existing 

wind farms are located outside of the optimal sites. Again, this may have something to do 

with the inaccuracy of the WPC dataset, as WPC was the strongest selective criteria in the 
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models, but it also suggests that wind energy siting is always a compromise and that there 

are limits to the predictive capacity of the models in terms of real-world results. Overall 

though, the sites identified as optimal by the Stage 3 Model corresponded well with the 

locations of existing wind farms.  

 

Based on the results of the Stage 3 Evaluation, four optimal sites were identified, and of 

those four only one showed a significant clustering of high values. However, after further 

investigation, this site (Polygon 7, hereafter called Site D) showed some limitations to 

development when compared to the other three, specifically in its potential for expansion 

into other areas. Economies of scale are vitally important in making wind energy cost 

competitive with other sources of electricity, and a lack of this ability, combined with the 

remoteness of Site D, led to the decision to focus on Sites A-C for the Sensitivity Analysis. 

Since Sites A-C are also closer in proximity to one another, they can be presented in a 

larger-scale map. This affords the reader the ability to observe small changes in the outputs 

that would otherwise be impossible at the regional extent of the entire study area.  

 

4.5 SA Results 
 
Two different weighting schemes were implemented to measure the sensitivity of the input 

criteria weights. In the first scenario, equal weight was given to each of the six dynamic 

criteria and substituted into the Stage 2 Model weighted overlay tool. In the second 

scenario, the criteria were altered by 5% increments up to a threshold of ± 20% using the 

OAT method. The AHP-derived criteria weights were used as the baseline dataset for both 

scenarios, and the results are shown in map details of a study area sub-region for 



86 
 

illustrative purposes. Figure 21 provides an example of the geographic distribution of 

suitable cells under the first scenario.  

 

 
Figure 21: Visualized results of the first SA weighting scenario, showing suitable areas based 
on two different weighting schemes.  

 
 
 
The map on the left shows the results of the AHP-derived input criteria weights, while the 

map on the right shows the output under the equally weighted scheme. The location of 

suitable cells is virtually identical in both maps, but the values of many cells are slightly 
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different. A graphic illustration of the cell distribution provides a more quantifiable 

example of the differences (Figures 22 and 23).  

 

 
Figure 22: Histograms showing the differences in suitable cell distribution between two 
different weighting schemes.  

 

 

 
Figure 23:  Line graph comparing suitable cell distribution between two weighting schemes 
and associated correlation coefficient. 
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The distributions and cell counts are similar under both weighting schemes, and although 

there is an additional cell value (‘3’) included in the equally weighted results, there are only 

four cells with that suitability score (Table 17). The largest difference between the two is 

the number of cells scored at a value of ‘8’ (355 for AHP compared to 291 for Equal 

Weight), which may impact the amount of suitable acreage if one chooses to select only 

suitability scores ≥ 8. However, if one draws from the entire set of suitable cells, the 

number of total cells selected in both weighting scheme is exactly the same. In general, the 

AHP-based distribution is skewed slightly toward the higher values, while the Equal 

Weight-based cell counts represent a more classic distribution.  

 
 
Table 17: Suitable cell value statistics under two weighting schemes. 

Cell Value Cell Count 
   

 
AHP (default) Equal Wt. Standard Deviation Avg. Deviation 

3 0 4 2.828 2.00 

4 23 37 9.899 7.00 

5 133 152 13.435 9.50 

6 291 307 11.314 8.00 

7 468 463 3.536 2.50 

8 355 291 45.255 32.00 

9 104 118 9.899 7.00 

10 2 4 1.414 1.00 

SUM 1376 1376 MEAN 8.63 

Correlation Coefficient 0.98974 
  Average Deviation 8.57 
   

 
To find out if the difference in cell distribution had any effect on the location of optimal 

sites, the suitable cells were converted to polygons and then aggregated within a distance 

of 1,600 m (≈ 1 mile), replicating the parameters of the Stage 3 Model. Table 18 shows the 

difference in acreage among the four optimal polygons (larger than 5,000 acres) between 

the AHP-derived and the equal weighting schemes. 
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Table 18: Acreage statistics for optimal polygons under two different weighting schemes. 

  AHP Optimal Polygons Equal Weight Optimal Polygons 

Site Polygon ID Acres Polygon ID Acres 

A 30 11266.5 29 11319.2 

B 43 10408.3 43 10289.6 

C 37 7209.1 51 9324.4 

D* 7 5625.1 7 5502.1 

SUM   34,509.0   36,435.3 
 *Not shown in figures this section. 

 

The differences in total acreage are slight in terms of acreage, and at the regional scale they 

are visually indistinguishable. Figure 24, which shows a small sub-region of the study area, 

reveals that the differences in Polygon ID are simply due to the numbering process used in 

aggregation, not that different polygons were selected in other locations. The shapes of the 

polygons are slightly different, but they are essentially the same sites. Neither method 

resulted in a consistent increase or decrease in acreage across all four sites, providing little 

insight into the overall impact of the input criteria weights on the output areas under the 

first scenario. The overall difference in acreage however suggests that the equal weighting 

scheme is generally less selective in terms of high cell values. 

 

These results are also heavily influenced by the aggregation process and the 1,600 m 

aggregation distance.  Trials were done at 400 m (one cell width) and 800 m (two cell 

widths), both times resulting in only one polygon larger than 5,000 acres. This seemed 

peculiar given the highly clustered suitable polygons, and so it was decided to use the 

larger aggregation distance of 1,600 m to try to maximize the number of optimal polygons 
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without compromising the data. For preliminary analysis, this level of aggregation was 

considered acceptable for identifying potential development sites.  

 

 
Figure 24: Map detail showing the differences in optimal polygons A, B, and C between two 
weighting schemes (AHP and Equal Weight).  

 
 
 
Under the OAT scenario, the input criteria values were altered by 5% increments to a 

threshold of ±20% to simulate small perturbations or errors, in order to evaluate the 

sensitivity of the individual criteria. Table 19 shows an example of the adjusted OAT 

criteria values used in the weighted overlays (the complete set of OAT criteria weight 

tables is displayed in the Appendix). WPC and the proximity to the electrical grid (GRID) 
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were key variables to investigate because of their large influence on the results and 

because they are different types of constraints; WPC suitability is based on geographic 

correlation, while GRID is a distance-dependent criterion. Note that the main changing 

criteria weights (Cm) are identical for both WPC and GRID, as are the adjusted weights for 

the other criteria (Ci), because their AHP-derived criteria weights are identical.   

 
 
Table 19: SA values for the WPC and GRID criteria using the OAT method.  

 
Cm Ci 

     % WPC GRID URBCITY ROAD LANDCOV SLOPE SUM 

0.20 0.364 0.277 0.154 0.088 0.088 0.030 1.000 

0.15 0.348 0.283 0.158 0.090 0.090 0.031 1.000 

0.10 0.333 0.290 0.162 0.092 0.092 0.032 1.000 

0.05 0.318 0.296 0.165 0.094 0.094 0.032 1.000 

0.00 0.303 0.303 0.169 0.096 0.096 0.033 1.000 

-0.05 0.288 0.310 0.173 0.098 0.098 0.034 1.000 

-0.10 0.273 0.316 0.176 0.100 0.100 0.034 1.000 

-0.15 0.258 0.323 0.180 0.102 0.102 0.035 1.000 

-0.20 0.242 0.329 0.184 0.104 0.104 0.036 1.000 

 
Cm Ci 

     % GRID URBCITY ROAD LANDCOV SLOPE WPC SUM 

0.20 0.364 0.154 0.088 0.088 0.030 0.277 1.000 

0.15 0.348 0.158 0.090 0.090 0.031 0.283 1.000 

0.10 0.333 0.162 0.092 0.092 0.032 0.290 1.000 

0.05 0.318 0.165 0.094 0.094 0.032 0.296 1.000 

0.00 0.303 0.169 0.096 0.096 0.033 0.303 1.000 

-0.05 0.288 0.173 0.098 0.098 0.034 0.310 1.000 

-0.10 0.273 0.176 0.100 0.100 0.034 0.316 1.000 

-0.15 0.258 0.180 0.102 0.102 0.035 0.323 1.000 

-0.20 0.242 0.184 0.104 0.104 0.036 0.329 1.000 
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Figure 25: Maps showing the difference in suitable cell values for the WPC criterion under 
the OAT method (± 20%).  

 
 

The visualized results of the ±20% criteria weight changes for the WPC criterion are shown 

in Figure 25. Again, it is difficult to comprehend the quantitative differences in suitable cell 

distributions from the maps, but the locations are unmistakably similar. And again the 

histograms (Figure 26) provide a better quantitative assessment of the differences, clearly 

exhibiting the skewed distribution toward higher suitability scores for the WPC +20% 

perturbation. 
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Figure 26: Histograms showing the differences in suitable cell distributions for the WPC 
criterion at ± 20% of the baseline values. 

 
 

When combined with the AHP vs. Equal Weight distribution results, the WPC ±20% results 

begin to show a pattern involving the influence of WPC on the distribution of cell values. 

The AHP scheme, which gave WPC a 30% weight, as compared to the Equal Weight scheme 

which gave WPC an approximately 17% weight, has a similarly skewed distribution to that 

of the WPC +20% scheme, which used a 36% weight compared to 24% for the WPC -20% 

scheme. This suggests that the output cell values, particularly at the high end, are relatively 

sensitive to the input weight assigned to WPC. The correlation appears to be that the higher 

the input weight for the WPC criterion, the larger the number of cells with high suitability 

scores, specifically cells with values ≥ 8.  
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Figure 27: Line graphs showing the OAT ±20% cell distributions for the six dynamic criteria. 

 
 

An interesting pattern is observable in Figure 27, with a steady increase in the correlation 

coefficients as the perceived importance of each variable decreases. It would be simple to 

assess if the AHP-derived input criteria weights descended steadily in value: the greater the 

input weight, the more sensitive the output is to small perturbations. However, the WPC 

and GRID criteria had the same AHP-derived input weights (30%), as did the ROAD and 

LANDCOV criteria (10%), so the relationship is not quite that straightforward. Looking at 

the GRID criterion may help to explain some of the variation in the output cell distributions.  
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Figure 28: Maps showing the differences in suitable cell distribution for the GRID criterion 
under the OAT method (±20%). 

 
 
 
Predictably, the locations of the suitable cells are the same (Figure 28), but this time the 

distributions are more similar as evident in the histograms in Figure 29. However, it is still 

difficult to visually assess the differences between the impacts of the +20% perturbations 

on the cell distributions for the two most influential criteria, WPC and GRID, which both 

had input criteria weights of 30%. A side-by-side comparison of the distributions (Figure 

30) between the two layers provides a better perspective of the differences.  
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Figure 29: Histograms showing the differences in suitable cell distributions for the GRID 
criterion at ±20% of the baseline values. 
 
 

 
Figure 30: Histograms comparing the WPC layer and the GRID layer suitable cell 
distributions under the OAT weighting scheme.  
 
 

Although the two layers had identical input criteria weights of 30% under the AHP scheme, 

and their subsequent OAT criteria weights were identical, they exhibit distinctly different 
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distributions, and the difference in their average standard deviations is indicative of a 

larger pattern among all six dynamic criteria. Table 20 provides a statistical perspective of 

the results, and a closer examination of the average standard deviations reveals this 

pattern more clearly. 

 
Table 20: Cell distribution statistics for all six dynamic criteria under the OAT weighting 
scheme (±20%). 

 

4.6 SA Discussion 
 
Comparing the equal weighting scheme to the baseline (AHP-derived) weighting scheme 

provided little insight into the sensitivity of the criteria weights to changes in input values. 

The equal weighting scheme, which altered several of the input criteria weights 
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considerably, exemplified a nearly perfect distribution of suitable cells, while the AHP-

derived weighting scheme showed a slight inclination towards higher suitable cell values. 

This was likely due to a correlation between the larger influence of the WPC criterion 

under the AHP weighting scheme. In both cases, the distributions were similar enough that 

no significant difference in the  selection of optimal areas resulted.  

 

Under the OAT scenario there were some interesting patterns observable, with the 

influence of the WPC layer being the predominant factor in the differences in cell 

distributions. Despite having identical input criteria weights, the WPC layer and the GIRD 

layer had substantially different distributions under the ±20% variations. The WPC 

criterion showed a larger average standard deviation and a smaller correlation coefficient 

when isolated compared to the GRID criterion, but the defining indicator was that an 

increase in the selection of higher cell values was seen under both scenarios whenever 

there was an increase in the WPC criterion weight (Figure 30). However, this was not the 

case when the situation was reversed, as the GRID criterion actually showed more of a 

prevalence for selecting higher cell values when the GRID criterion weight was -20% (this 

meant that the WPC criterion weight was subsequently increased).  

 

While it is natural for the criteria with large influences to be the most sensitive to 

perturbations, this example comparing the WPC and GRID criteria, especially when 

combined with the results of the AHP vs. the equal-weighting scheme results, indicates that 

the WPC layer is the most sensitive to small perturbations in input criteria weights, and 

therefore has the most impact on the distribution of suitable cells.   
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CHAPTER FIVE: CONCLUSIONS 

 

5.1 General Conclusions 
 
The framework developed in this thesis successfully identified areas suitable for wind 

energy development based on a thorough set of criteria and three stages of evaluation, 

resulting in the selection of four optimal sites. The GIS models developed within this 

framework proved to be effective at handling the various types of data necessary for the 

analysis, and they can be adapted to other situations or study areas. The maps created here 

contain an abundance of information about the suitability of particular areas for wind 

energy development, and the AHP-MCA methodology employed in this framework is 

robust, quantifiable, and defendable.  

 

The importance of criteria selection and constraint determination in site suitability studies 

cannot be emphasized enough; these processes are arguably more important than the 

methodology itself. The more comprehensive the set of criteria constraints used in the 

preliminary analysis, the more likely the project will be to avoid costly setbacks and 

unnecessary resource allocation during the site search process. While detailed economic 

analysis is a necessary part of the site search and is included in some preliminary site 

suitability studies, this thesis advocates an approach that postpones this type of analysis 

until a set of physically feasible sites has first been identified.  

 

It is the opinion of this author that too many studies, papers, and reports are overly liberal 

with their assessment of developable area for wind energy. One of the primary causes of 
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this is an incomplete set of criteria. Most studies assess site suitability by volume, how 

many acres can be developed, rather than the quality of developable areas. Perhaps there 

are incentives in place for “finding” more acreage to develop, but does it really help 

planners and developers if they have to sift through unfit sites that could have been 

eliminated during preliminary analysis? Even those who unabashedly support wind energy 

acknowledge the limits on productive land area, as wind energy requires massive 

continuous tracts of land and special atmospheric conditions. This thesis has attempted to 

be conservative with its assessments of suitable areas for wind energy development by 

being more selective, including more criteria, and excluding more area in order to identify 

the most optimal sites, versus just finding the most sites.  

 

Studies that use liberal constraints or limited sets of criteria, and therefore identify a 

perhaps disproportionate amount of suitable land area, inherently find that all the existing 

wind energy developments are located within the areas that they have identified as 

suitable, and they may use that as evidence that their approach is effective. It is like saying 

that all areas on the surface of the Earth that meet the criterion of being a water body are 

suitable for sailing a boat. Several studies throughout the literature did not even include 

the proximity to the electrical transmission grid as a criterion, which is clearly an 

ineffective approach. This thesis hopes to provide support for the notion that less is more, 

in terms of quantity vs. quality, and that taking the necessary precautions and evaluating 

more thoroughly the relevant criteria and constraints at the preliminary stage is a 

beneficial approach to the site selection process. 
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5.2 Technical Conclusions 
 

Chen et al. (2010) suggest that there is a lack of SA in spatial MCA approaches in the 

literature, and they assert that, where SA is conducted on the criteria input weights as 

opposed to the input values, weight sensitivity should be visualized geographically when 

possible. In other words, there is a lack of appropriate spatial analysis in the arena of GIS-

MCA site suitability approaches. In fact, of the four studies reviewed in this thesis, only one 

study even presented a visualization of the SA results (in Tegou et al., 2010). This ratio 

seems to be consistent, if not generous, throughout the literature, and it highlights an area 

where the visualization capabilities of GIS can be exemplified to great effect.  

 
 
This thesis has attempted to address this criticism in two ways: first through a cartographic 

presentation of the results, which provide a substantial amount of information through the 

visual medium that is unique to maps, and second through the use of distribution graphs 

and tables that provide a quantitative, while still visual, view of the results, creating a 

bridge between numbers/values and their respective locations in space.   

 
 
This combination of approaches demonstrates the versatility and effectiveness of GIS 

software packages to evaluate such complex decision-making tasks, and it provides a 

robust set of results on which to base those decisions. Spatial SA has proved to be a 

powerful tool for identifying patterns and establishing a considerable level of confidence in 

the results. It has also provided a means of assessing the capabilities and limits of the 

models developed here. 
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The accurate estimation of criteria weights is imperative for spatial analysis overlay 

approaches. The results from this analysis show that the perceived importance (input 

weight) of the criteria have a substantial impact on the suitable cell distributions of a 

selected area, and the effects of small perturbations (±20% of the baseline values) increase 

as the criteria weight increases (Figure 27). In most cases, these effects were relatively 

small, but this pattern suggests that if a criterion is assigned a very large input weight then 

the effects of small perturbations would have a significant impact on the cell distribution.  

 

This highlights the benefits of using the AHP to derive input criteria weights. The AHP 

provides a means of ranking the importance of diverse criteria on a common scale (i.e. the 

ability to compare “apples and oranges”) and therefore delivers a more accurate 

approximation of their influence on the final outcome. The results of this analysis showed 

that the AHP-based weighting scheme was more selective in terms of identifying suitable 

land area (Table 18) and it selected areas with higher suitability scores (Table 17; Figures 

22 and 23) when compared to the outputs under the equal weighting scheme.  

 

However, the results are not overwhelmingly significant in favor of the AHP outputs, and 

one may question whether it is worth going through all the trouble to use the AHP when 

the equal weighting scheme produced visually similar results. One reason for this similarity 

is due to the Stage 1 excluded areas and the subsequent mask used in Stage 2, which left 

very little land area to examine (Table 18), which is why the cell counts were identical. It is 

likely that the two methods would yield remarkably different cell counts if the remaining 

land area wasn’t limited by the excluded areas mask.  
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Another factor to consider is that the AHP-derived input criteria weights were relatively 

similar in this case, ranging from 30% to 3%, while the Equal Weights scheme assigned an 

approximately 17% weight to all six criteria. When altered by ±20%, many of the criteria 

were within a few percentage points of one another (Figures A-F, Appendix), with many 

near 17%, so this study may not be a great example of the effectiveness of AHP over a 

uniform weighting scheme. Nevertheless, the AHP did show improved results and one 

could expect it to be considerably more accurate if applied to a situation where the input 

criteria weights were more widely varied, for example ranging from 60% to 3%.  

 

In addition, the AHP is mathematically defensible, and if the results were being measured 

purely in mathematical terms, rather than spatial distributions, one could calculate a clear-

cut best option or set of best options. This could also be possible with these results if one 

were to calculate the overall suitability scores for each of the optimal sites, and this is one 

area where this methodology could be expanded. A more detailed assessment of the 

differences between the AHP outputs and the equally weighted outputs would improve the 

confidence in these results as well, such as applying the ±20% OAT approach to the equally 

weighted criteria and conducting the Stage 3 analysis and the SA on the entire study area 

without being limited by the excluded areas mask.  

 

Another important conclusion from this project is that the data conversion and 

organization process is critical to the success of the analysis. Acquiring the necessary 

datasets is obviously important as well, but taking the time to convert the datasets into 
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common formats saves many headaches later in the analysis. Also, with the inclusion of a 

large set of input criteria, the number of data layers in the GIS can get out of hand quite 

easily, so organization is another key. This thesis employed an ArcGIS file geodatabase to 

organize the data, which handles much of the data management automatically and enforces 

some basic consistency among the datasets used in the analysis.  

 

One of the primary features that the geodatabase manages is the cell size of raster datasets. 

This framework used two different cell sizes during the project: 798 m during the data 

conversion process and 400 m during the construction of the models and subsequent 

analysis. It is unclear exactly what type of impact this may have had on the analysis results, 

but in terms of balancing time-savings with the accuracy of the results, the chosen cell sizes 

seemed acceptable for preliminary regional analysis. However, a more consistent approach 

may improve the accuracy of the results.  

 

Another way that this framework might be improved is through the use of fuzzy sets for 

defining categorical membership. While Boolean logic is simple to use and to understand, it 

is this simplicity that is invariably problematic for complex multi-criteria analysis where 

many shades of gray exist. Studies in recent years have explored the use of fuzzy measures 

for wind farm siting using MCA-GIS approaches and found this approach has many benefits 

over Boolean overlay, weighted summation, or weighted linear combination (WLC) 

approaches (Boroushaki & Malczewski, 2008; Hansen, 2005; Jiang & Eastman, 2000). Of 

course, adding this type of complexity to an already complex process may be a more 

academic endeavor than many planners and developers wish to engage in, but it certainly 
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has the potential to improve the accuracy of the results and, most importantly, provide a 

stronger level of confidence in the decisions.  

 

AHP is an excellent means of ensuring consistency in the decision-making process, but it 

has its limits, too. There are many sources of criticism throughout the literature describing 

the shortcomings of AHP, most of which concern the advanced mathematics and theories 

involved, but one of the limitations relates to the use of fuzzy set theory. Boroushaki and 

Malczewski (2008) point out that the AHP is limited in its linguistic ability for describing 

quantities (i.e. “few,” “many,” “one,” etc.), and they propose that a combination of AHP with 

ordered weight averaging (OWA) methods, which include linguistic quantifiers, could 

expand the range of decision strategies available using fuzzy logic.  

 

Another limitation of the AHP is the possibility of a paradoxical situation where the 

decision-maker has created a pairwise matrix to the best of their ability, but still fails the 

consistency test (Karapetrovic & Rosenbloom, 1999). This could easily happen when there 

are large numbers of decision makers with widely varying levels of background knowledge 

and expertise, as in RES site selection processes. Karapetrovic and Rosenbloom (1999) 

suggest adding quality control approach to the AHP consistency check, and although it 

would not apply directly to this study, it may be a beneficial element to add to the 

methodology when trying to adapt it to other areas or situations.  

 

As the methodology exists now, I believe it could be applied in other areas reasonably well, 

particularly those with similar socio-economic status and political goals. There are aspects 



106 
 

to RES siting that are inherently specific to local and/or regional legislation surrounding 

development, and traditional supply/demand models do not consistently apply when 

massive government subsidies are present, so it highly improbable that any universal 

model could ever be developed that would effectively apply in every situation. These types 

of pressures largely relate to the criteria addressed in Stage 1, and could be adjusted with 

minor effort. However, the strength of this framework is that the Stage 2 dynamic criteria, 

which are primarily physical (or geographical), and thus generally avoid legislative 

trappings, are widely adaptable to any region for preliminary analysis.  

 

5.3 Future Work 
 
One natural area to expand the work presented in this thesis is to evaluate the economic 

costs, benefits, and risks associated with developing the selected sites. Several approaches 

are evident at varying levels of detail in the literature, and despite their limited ability to 

accurately portray development costs, these approaches can provide valuable information 

and another means of evaluating potential sites. One approach that has particular appeal 

for this type of analysis is presented by Lee et al. (2009). It combines AHP with benefits, 

opportunities, costs, and risks (BOCR), and may fit well within the scope of preliminary 

analysis without getting too site-specific. 

 

A second extension of this research, which is of personal interest, would be to integrate 

GIS-based learning modules into the education system in order to investigate the 

hypothesis that spatial thinking, through the application of spatial science theory and GIS 

technology, improves overall student performance, particularly in math and science. A recent 
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emphasis on improving math and science performance in the U.S. has led to the 

implementation of increasingly popular “place-based” education initiatives and new 

national Science, Technology, Engineering, and Math (STEM) Education standards (Kuenzi, 

Matthews, & Mangan, 2006; The White House, 2011).  

 

The education system is an arena that stands to benefit from an infusion of spatial thinking 

and spatial problem solving technology, especially if it can be found to improve overall 

student performance. Using the example of ONSWPS site selection, I would eventually like 

to implement this tool into such learning modules as an example of spatial problem solving 

using GIS. The motivation to implement the tool developed in this thesis into course 

modules has informed the design of this project and its outcomes to some degree, and I 

believe this would be a tremendous opportunity to expand and strengthen the role of GIS in 

students’ lives and promote spatial literacy in the public arena.  

 

Another way in which this research could have a greater impact on the public is through 

the production of interactive, web-based maps. Web-based mapping applications have 

been developed for wind energy siting and show serious potential for improving 

information dissemination and increasing public participation (Berry, Higgs, Fry, & 

Langford, 2011; Bishop & Stock, 2010; Jankowski, 2009; Simao, Densham, & Haklay, 2009).  

 

At the very least, the publication of these suitability maps online, such as through the 

ArcGIS Online interface, could provide a heightened level of access to this information for 

planners, decision makers, politicians, students, and the general public. Improving access to 
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this type of information will be increasingly important as suitable land area is reduced 

through urban sprawl and competing wind energy development, and as renewable energy 

sources are mandated to become a larger percentage of the energy mix in the near future 

due to renewable portfolio standards and pressures to move away from fossil fuel-based 

sources of electricity generation. If the United States is going to achieve its goal of 20% 

wind energy by the year 2030 (U.S. Department of Energy, 2008), tools like this will play a 

substantial role in effectively finding optimal sites for wind energy development, and the 

information presented here and in similar studies will be invaluable for educating people 

about the complex issues involved in finding the best sites. 
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APPENDIX 

 
Table 21: Criteria weights for the WPC layer OAT analysis 

 
Cm Ci 

     % WPC GRID URBCITY ROAD LANDCOV SLOPE SUM 

0.20 0.364 0.277 0.154 0.088 0.088 0.030 1.000 

0.15 0.348 0.283 0.158 0.090 0.090 0.031 1.000 

0.10 0.333 0.290 0.162 0.092 0.092 0.032 1.000 

0.05 0.318 0.296 0.165 0.094 0.094 0.032 1.000 

0.00 0.303 0.303 0.169 0.096 0.096 0.033 1.000 

-0.05 0.288 0.310 0.173 0.098 0.098 0.034 1.000 

-0.10 0.273 0.316 0.176 0.100 0.100 0.034 1.000 

-0.15 0.258 0.323 0.180 0.102 0.102 0.035 1.000 

-0.20 0.242 0.329 0.184 0.104 0.104 0.036 1.000 

 
 
Table 22: Criteria weights for the GRID layer OAT analysis. 

 
Cm Ci 

     % GRID URBCITY ROAD LANDCOV SLOPE WPC SUM 

0.20 0.364 0.154 0.088 0.088 0.030 0.277 1.000 

0.15 0.348 0.158 0.090 0.090 0.031 0.283 1.000 

0.10 0.333 0.162 0.092 0.092 0.032 0.290 1.000 

0.05 0.318 0.165 0.094 0.094 0.032 0.296 1.000 

0.00 0.303 0.169 0.096 0.096 0.033 0.303 1.000 

-0.05 0.288 0.173 0.098 0.098 0.034 0.310 1.000 

-0.10 0.273 0.176 0.100 0.100 0.034 0.316 1.000 

-0.15 0.258 0.180 0.102 0.102 0.035 0.323 1.000 

-0.20 0.242 0.184 0.104 0.104 0.036 0.329 1.000 

 
 
Table 23: Criteria weights for the URBCITY layer OAT analysis. 

 
Cm Ci 

     % URBCITY ROAD LANDCOV SLOPE WPC GRID SUM 

0.20 0.203 0.092 0.092 0.032 0.291 0.291 1.000 

0.15 0.194 0.093 0.093 0.032 0.294 0.294 1.000 

0.10 0.186 0.094 0.094 0.032 0.297 0.297 1.000 

0.05 0.177 0.095 0.095 0.033 0.300 0.300 1.000 

0.00 0.169 0.096 0.096 0.033 0.303 0.303 1.000 

-0.05 0.161 0.097 0.097 0.033 0.306 0.306 1.000 

-0.10 0.152 0.098 0.098 0.034 0.309 0.309 1.000 

-0.15 0.144 0.099 0.099 0.034 0.312 0.312 1.000 

-0.20 0.135 0.100 0.100 0.034 0.315 0.315 1.000 
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Table 24: Criteria weights for the ROAD layer OAT analysis.  

 
Cm Ci 

     % ROAD LANDCOV SLOPE WPC GRID URBCITY SUM 

0.20 0.115 0.094 0.032 0.297 0.297 0.165 1.000 

0.15 0.110 0.094 0.032 0.298 0.298 0.166 1.000 

0.10 0.106 0.095 0.033 0.300 0.300 0.167 1.000 

0.05 0.101 0.095 0.033 0.301 0.301 0.168 1.000 

0.00 0.096 0.096 0.033 0.303 0.303 0.169 1.000 

-0.05 0.091 0.097 0.033 0.305 0.305 0.170 1.000 

-0.10 0.086 0.097 0.033 0.306 0.306 0.171 1.000 

-0.15 0.082 0.098 0.034 0.308 0.308 0.172 1.000 

-0.20 0.077 0.098 0.034 0.309 0.309 0.173 1.000 

 

 
Table 25: Criteria weights for the LANDCOV layer OAT analysis. 

 
Cm Ci 

     % LANDCOV SLOPE WPC GRID URBCITY ROAD SUM 

0.20 0.115 0.032 0.297 0.297 0.165 0.094 1.000 

0.15 0.110 0.032 0.298 0.298 0.166 0.094 1.000 

0.10 0.106 0.033 0.300 0.300 0.167 0.095 1.000 

0.05 0.101 0.033 0.301 0.301 0.168 0.095 1.000 

0.00 0.096 0.033 0.303 0.303 0.169 0.096 1.000 

-0.05 0.091 0.033 0.305 0.305 0.170 0.097 1.000 

-0.10 0.086 0.033 0.306 0.306 0.171 0.097 1.000 

-0.15 0.082 0.034 0.308 0.308 0.172 0.098 1.000 

-0.20 0.077 0.034 0.309 0.309 0.173 0.098 1.000 

 
 
Table 26: Criteria weights for the SLOPE layer OAT analysis.  

 
Cm Ci 

     % SLOPE WPC GRID URBCITY ROAD LANDCOV SUM 

0.20 0.040 0.301 0.301 0.168 0.095 0.095 1.000 

0.15 0.038 0.301 0.301 0.168 0.096 0.096 1.000 

0.10 0.036 0.302 0.302 0.168 0.096 0.096 1.000 

0.05 0.035 0.302 0.302 0.169 0.096 0.096 1.000 

0.00 0.033 0.303 0.303 0.169 0.096 0.096 1.000 

-0.05 0.031 0.304 0.304 0.169 0.096 0.096 1.000 

-0.10 0.030 0.304 0.304 0.170 0.096 0.096 1.000 

-0.15 0.028 0.305 0.305 0.170 0.096 0.096 1.000 

-0.20 0.026 0.305 0.305 0.170 0.097 0.097 1.000 
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Table 27: Default GAP Status Code assigned by designation type, from USGS (2011). 
Domain Code  Domain Description  Default GAP Status Code  

National Designations  

100  National Park  2  

101  National Forest-National Grassland  3  

102  National Trail  4  

103  National Wildlife Refuge  2  
104  National Natural Landmark  2  

105  National Landscape Conservation System - Non 
Wilderness  

3  

106  National Landscape Conservation System - 
Wilderness  

2  

107  Native American Land  4  

Other Designations  

109  Protective Management Area - Feature  3  

110  Protective Management Area - Land, Lake or River  3  

111  Habitat or Species Management Area  2  

112  Recreation Management Area  3  

113  Resource Management Area  3  

114  Wild and Scenic River  2  

115  Research and Educational Land  2  

116  Marine Protected Area  3  

117  Wilderness Area  2  
118  Area of Critical Environmental Concern  3  

119  Research Natural Area  2  

120  Historic / Cultural Area  3  

121  Mitigation Land  3  

122  Military Land  4  

123  Watershed Protection Area  3  

124  Access Area  4  

125  Special Designation Area  3  

126  Other Designation  4  

127  Not Designated  4  

State Designations  

300  State Park  3  

301  State Forest  3  

302  State Trust Lands  3  

303  State Other  4  

Local Government Designations  

500  Local Conservation Area  2  

501  Local Recreation Area  3  
502  Local Forest  3  

503  Local Other  4  

Private Designations  

700  Private Conservation Land  2  

701  Agricultural Protection Land  3  

702  Conservation Program Land  2  

703  Forest Stewardship Land  3  
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Table 27 (Continued): GAP Status Code Definitions, from USGS (2011). 

 
Status 1: An area having permanent protection from conversion of natural land cover and 
a mandated management plan in operation to maintain a natural state within which 
disturbance events (of natural type, frequency, intensity, and legacy) are allowed to 
proceed without interference or are mimicked through management.  
 
Status 2: An area having permanent protection from conversion of natural land cover and 
a mandated management plan in operation to maintain a primarily natural state, but which 
may receive uses or management practices that degrade the quality of existing natural 
communities, including suppression of natural disturbance.  
 
Status 3: An area having permanent protection from conversion of natural land cover for 
the majority of the area, but subject to extractive uses of either a broad, low-intensity type 
(e.g., logging, OHV recreation) or localized intense type (e.g., mining). It also confers 
protection to federally listed endangered and threatened species throughout the area.  
 
Status 4: There are no known public or private institutional mandates or legally 
recognized easements or deed restrictions held by the managing entity to prevent 
conversion of natural habitat types to anthropogenic habitat types. The area generally 
allows conversion to unnatural land cover throughout or management intent is unknown. 
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Figure 31: Schematic of the Stage 1 Model built using ArcGIS ModelBuilder.   
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Figure 32: Schematic of the Stage 2 Model built using ArcGIS ModelBuilder. 
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Figure 33: Schematic of the Stage 3 Model built using ArcGIS ModelBuilder.  
 


