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Abstract 
 

Using Volunteered Geographic Information (VGI) to model blue whale 

(Balaenoptera musculus) foraging habitat, this thesis assesses the utility of citizen science 

in cetacean research and marine spatial management. A unique and new data source on 

whale locations, observation data collected voluntarily by whale-watching vessels, was 

procured, compiled, and digitized. The utility of this newfound dataset was investigated 

through its use in probabilistic habitat suitability analyses and description of species 

phenology. A statistical analysis of whale observations was used to quantify seasonal 

variability of three common baleen whale species within the study area. Among these, 

blue whales exhibit the highest degree of seasonal variability with a mean seasonal 

abundance occurring in late July. Maximum entropy modeling was used to illustrate 

potential blue whale foraging areas based on three environmental variables: bathymetry, 

sea surface temperature, and chlorophyll-a concentrations. Spatial patterns of whale 

observations recorded by whale watchers and scientists indicate a strong habitat 

preference of steep bathymetric features in and around the 300-m isobath. Models using 

whale-presence data collected by whale-watchers were compared to similar models using 

science-quality whale observation data. Differences between these models are minimal 

and the results of the comparison support the usefulness of citizen science in cetacean 

research.  

!
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Chapter 1: Introduction 

Volunteered Geographic Information (VGI) involves human volunteers, as 

sensors of the environment, contributing in whole or in part to the creation, collection, 

and/or dissemination of geographic information (Goodchild, 2008). This thesis composes 

and analyzes the utility of a volunteered geographic dataset describing whale presence 

locations in the coastal waters of Southern California. This new dataset was created by 

combining the geographic information stored in the logbooks of five whale-watching 

vessels operating daily and simultaneously from four ports within the Southern California 

Bight. The high temporal (daily) resolution and vast geographic coverage of this dataset 

is characteristic of VGI. These highly opportunistic observations are used here to create 

probabilistic habitat suitability models for blue whales within the Southern California 

Continental Borderland. Habitat modeling is an essential component of conservation 

biology and key to understanding how we can better share the marine environment with 

vulnerable species. The potential for future use of this new whale observation dataset in 

scientific research and marine management is the focus of this thesis. 

 

Hunted to near extinction during the nineteenth and twentieth centuries, many 

baleen whale species exist at a fraction of their pre-whaling population numbers (Mate 

and Calambokidis, 1999). Since the international ban on commercial whaling in 1965, 

many of these whale species have been slowly recovering from their once intensive 

exploitation (Calambokidis and Barlow, 2004). Nevertheless, baleen whales are still a 

vulnerable group and are faced with continuing threats from human activity. These 

include water contamination, high levels of anthropogenic sound, entanglement with 
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commercial fishing gear, and collisions with ships (Laist et al., 2001). These physical 

threats have physical locations, and if we intend to protect these threatened species, it is 

necessary to identify the geographic areas where whales might be affected by such 

activity. The understanding of when and where a population is most likely to occur is a 

primary goal in conservation biology (Phillips et al., 2006). In addition, knowing how a 

species interacts with its environment can help to forecast future habitat selection by that 

species as the environment changes.        

   

Habitat modeling is a useful tool that can provide important information 

pertaining to a species’ potential range and distribution. Taking what is known about an 

organism’s presence and habitat requirements, statistical models can predict the 

probability that other areas will also offer suitable habitat for that organism (Phillips et 

al., 2006). Much work has been done to study whale habitat and many variations of whale 

habitat models have been developed to give us a better understanding of how these 

animals interact with their environment (Munger et al., 2009; Burtenshaw et al., 2004; 

Moore et al., 2002; Fiedler et al., 1998; Croll et al., 1998). Recently, several studies have 

combined this information with data on shipping routes and other human-induced 

hazards, identifying regions with high risk of human-induced whale mortality (Redfern et 

al., 2013; Pittman and Costa, 2010). This knowledge can be used to inform marine 

managers when designing and implementing maritime regulations or to recommend best 

practices to boaters operating their vessels within known whale habitat. The predictive 

capabilities of these habitat models are commensurate with the quality and resolution of 

the data put into the model. Currently, most whale habitat models utilize whale presence 
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data obtained from scientific surveys with regularized spatial sampling techniques 

performed by trained biologists. These surveys are often laborious, time consuming, and 

expensive, and as a result are conducted infrequently. For example, a commonly cited 

dataset for whale observations in California is from the California Cooperative Oceanic 

Fisheries Investigation (CalCOFI), with surveys being conducted quarterly (i.e., four 

times per year). While this data is of high quality on many levels, it is of low temporal 

resolution. Models using this data can still be effective, but they are often limited by 

small sample sizes resulting from scarcity of surveys and lack of data during winter 

months when weather conditions deteriorate (Munger et al., 2009). One solution to this 

limitation is the use of citizen science in the data collection process. A sub-category of 

VGI, citizen science is capable of amassing large amounts of data covering vast 

geographic areas over short periods of time (Conrad and Hilchey, 2011).  

 

This thesis utilizes a newfound volunteered geographic dataset provided by the 

eco-tourism industry of Southern California. Assembled from five whale-watching 

vessels operating daily and simultaneously from four ports within the Southern California 

Bight, the data is of remarkably high temporal resolution and was collected at no cost. 

While subject to several biases, which will be discussed in subsequent chapters, this new 

dataset demonstrates the potential for increased citizen science in marine mammal 

research.  

 

 

 



! "!

Objectives 

The objectives of this thesis are: (1) to demonstrate the spatial patterns of opportunistic 

observations of baleen whales within the Southern California Bight; (2) to provide 

descriptive statistics of the seasonal variability of whale sightings within the Southern 

California Bight; (3) to use these opportunistic observations to produce probabilistic 

habitat suitability analyses describing the potential spatial and temporal extent of whale 

presence within the larger Southern California Continental Borderland; (4) to compare 

these results with models using science-quality data from expeditions with more regular 

spatial sampling schemes but much lower temporal resolution; and (5) to thereby assess 

the utility of opportunistic observations in scientific research. 
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Chapter 2: Literature Review 

Whales have a long documented history in the Southern California Bight. Much 

of the early documentation of whales in this area came from industrial whaling outposts 

operating along the coast during the nineteenth and twentieth centuries; six such outposts 

were known to exist between Point Conception and San Diego (Starks, 1922). These 

operations often maintained records of their takes of whales and sales of their products, 

which contributed to early estimates of whale populations in the area. After nearly 100 

years of intense exploitation, the hunting of whales off the California coast was brought 

to an end in 1965 (Calambokidis et al., 2009). Following a half-century of slow 

repopulation, these whales are again a valuable resource for the local economies. This 

time, however, it is not for their oil and meat. Whale-watching boats take droves of 

passengers into the waters of Southern California to view these animals nearly every day 

of the year. And much like the whaling industry before them, these eco-touring vessels 

hold the potential to be very rich sources of whale presence data. 

 

An estimated 30 species of cetaceans reside in the eastern Pacific Ocean (Balance 

et al., 2006). A number of these whale species can be observed in the waters off Southern 

California; CalCOFI biologists identified 15 different whale species in this area during 

their quarterly survey cruises in 2009–2010. This number was also observed during the 

2010–2011 cruises, and 14 different species were recorded in the 2011–2012 surveys 

(Campbell et al., 2010, 2011, 2012). Of these observed species, fin (Balaenoptera 

physalus, blue (Balaenoptera musculus), gray (Eschrichtius robustus), and humpback 

(Megaptera novaeangliae) whales were the most common of the baleen whales.  
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This thesis focuses on the blue whale for four reasons. (1) Blue whale occurrences 

in the VGI dataset exhibit the most consistent seasonal variability with over 90 percent of 

their occurrences taking place in July, August, and September. This phenomenon makes 

for convenient monthly comparisons between years. (2) Blue whales are actively feeding 

in the study area during these months and their presence or absence is largely affected by 

the availability of their food source (Croll et al., 1998; Fiedler et al., 1998). This creates a 

starting point for model development; e.g., which environmental variables have an effect 

on prey production? (3) Blue whales feed almost exclusively on krill, a planktonic 

crustacean whose presence and abundance is closely linked to the local environmental 

conditions (Croll et al., 1998; Fiedler et al., 1998). Other species of baleen whales known 

to forage in the study area have a much more varied diet consisting of zooplankton and 

several species of small fishes, making their food source more difficult to model. (4) 

Records of blue whales in the ships’ logbooks are often more complete than records of 

other species. This is likely due to the intrinsic value of the blue whale to the whale-

watching industry. A captain can more easily please a group of passengers by presenting 

them with a whale of many superlatives than with smaller, less impressive animals. As a 

result, a blue whale observation will almost always be recorded with precise coordinates 

of latitude and longitude. The locations of other whale species (fin, gray, minke, etc.) 

recorded in the logbooks were sometimes noted as “out front,” “near red buoy,” or “off 

blue house.” These types of vague descriptors were seldom used for describing a blue 

whale’s location.  
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The blue whale is said to be the largest animal known to have lived on this planet; 

they are capable of reaching lengths of nearly 100 feet, and weighing up to 120 tons 

(Hass, 2011). Harvested to near extinction in the nineteenth and twentieth centuries, the 

global population is estimated between ten and fifteen thousand whales: merely 8 percent 

of their pre-commercial whaling numbers (Mate and Calambokidis, 1999). The National 

Oceanic and Atmospheric Administration (NOAA) lists the blue whale as a depleted 

species (population below optimum sustainable levels) under the Marine Mammal 

Protection Act of 1972, and in danger of extinction under the Endangered Species Act of 

1973.  Blue whales are also listed as endangered species by the International Union for 

Conservation of Nature (IUCN) and the Convention on International Trade in 

Endangered Species (CITES). The remaining blue whales are found throughout the 

world’s oceans and reside in distinct populations that seldom mix (Burtenshaw et al., 

2004). As members of a suborder of cetaceans called Mysticeti, their mouths are 

equipped with baleen plates designed for capturing small planktonic prey. They feed 

almost exclusively on krill, a small crustacean found in all of the world’s oceans (Croll et 

al., 1998; Fiedler et al., 1998). Very mobile animals, they partake in extensive annual 

migrations from summer foraging grounds to areas of breeding and calving during the 

winter (Pittman and Costa, 2010). While we still do not fully understand the complete 

annual migrations of these animals (i.e., where they go for breeding and calving), they do 

show a high level of fidelity to their summer foraging grounds (Pittman and Costa, 2010; 

Mate and Calambokidis, 1999). The coastal waters off California serve as a foraging area 

for possibly the largest remnant population of blue whales in the world (Mate and 

Calambokidis, 1999). Recent estimates of this population suggest between 2,000 and 
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3,000 individuals (Calambokidis and Barlow, 2004). Current threats to this species 

include anthropogenic sound production, water contamination, entanglement with 

commercial fishing gear, collisions with ships, and illegal whaling (Laist et al., 2001).   

 

Several methods have been used to model whale habitat. Most variations use a 

combination of environmental variables as indicators of suitable habitat or proxies for 

potential food availability. Bathymetry, sea surface temperature (SST), and chlorophyll-a 

are common physical variables used in these models (e.g., Redfern et al., 2010; Munger 

et al., 2009; Balance et al., 2006), as described in the following sections. 

 

Bathymetry 

Bathymetry is the measurement of the ocean’s depth and describes the underwater 

features that make up the sea floor. Bathymetry has a profound impact on the abundance 

and diversity of organisms living in the water column above (Pittman and Costa, 2010). 

Pittman and Costa (2010) discuss the high predictive powers of bathymetry alone in 

modeling whale abundance and distribution, noting that edge habitats (e.g., continental 

slopes) are strongly linked to high concentrations of prey. Seafloor features have a 

significant influence on the vertical and horizontal movement of water and the resulting 

eddies can serve to collect and maintain large concentrations of krill (Croll et al., 1998). 

As a result, steep bathymetric features are necessary for blue whales to exploit their tiny 

prey (Fiedler et al., 1998). In the northwest Pacific, seamounts, slopes, and other 

prominent bathymetric features were identified as focal points for blue whales throughout 

the year (Moore et al., 2002). Pitman and Costa (2010) describe the 100-m isobath line as 
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a “cetacean superhighway” for whales along the southern gulf of Maine and argue that 

bathymetry data should be a prime candidate when choosing environmental variables to 

model whale habitat. Burtenshaw and others (2004) identified bathymetry as an import 

variable that could have added predictive power to their model (they did not include 

bathymetry).    

 

Sea Surface Temperature 

Sea Surface Temperature (SST) is a measure of the temperature of the uppermost 

layer of the ocean to about one meter (Campbell and Wynne, 2011). It can be measured 

in situ via boats, buoys, and underwater autonomous gliders, or remotely via airborne and 

space-borne sensors. SST is a fundamental component of marine ecology; oceanic 

temperatures can define marine habitats and detect biological hotspots (Etnoyer et al., 

2006). A study of blue whale distributions off Southern California found SST to be an 

important variable influencing the presence or absence of whales (Munger et al., 2009). 

The authors found blue whales to be associated with colder SST when compared to 

random locations in the study area. This was thought to be a result of oceanic processes 

that, in addition to bringing cold water to the surface, foster prey production, 

accumulation, and retention (Munger et al., 2009). Also in waters off Southern 

California, two reports published in 1998 identify low relative water temperatures as an 

indicator of potential blue whale habitat (Croll et al., 1998; Fiedler et al., 1998). In each 

of these studies the majority of blue whale observations were made in cold, well-mixed 

water that had been upwelled north of the sighting location and advected south via the 

California Current System. Similarly, a study conducted in the Northwest Pacific found 
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blue whales to be associated with colder than area-average SST (Moore et al., 2002). 

These whale clusters were also near SST fronts with sharp gradients. A study in 2007 

found blue whales to be more closely correlated with SST fronts than any other whale 

species in their study (Doniol-Valcroze et al., 2007). This relationship between blue 

whale habitat selection and SST is also documented in the Great Australian Bight where 

the species has been linked to SST of about 1 degree Celsius cooler than average SST in 

the study region (Gill et al., 2011). 

  

Chlorophyll-a 

Chlorophyll-a is the measure of primary productivity in the ocean’s upper layer. 

Plantlike plankton occupying the sunlit portion of the world’s ocean use chlorophyll-a 

and other pigments to perform photosynthesis. These colorful pigments can be detected 

via satellite remote sensing and the varying concentrations of chlorophyll-a on the 

ocean’s surface can be discerned. Chlorophyll-a has been shown to be an important 

environmental variable when modeling the habitat of blue whales. Because this pigment 

is an indicator of primary productivity (the food source of zooplankton) it can be used as 

a proxy for blue whale prey production. Several studies have associated blue whale 

presence with high levels of chlorophyll-a. In 2002, Moore and others noted that blue 

whales in the northwest Pacific were associated with high concentrations of chlorophyll-a 

in the spring; this strong association was not observed later in the foraging season. The 

authors hypothesized this was due to the voracious primary consumption of 

phytoplankton by the zooplankton, coupled with the reduced input of nutrients on the 

back end of the upwelling season (Moore et al., 2002). In a separate study of blue whales 
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in the northeast Pacific, their abundance was also associated with high levels of 

chlorophyll-a (Burtenshaw et al., 2004). This study identifies a time lag between peak 

chlorophyll-a concentrations and whale presence on the order of several months 

(Burtenshaw et al., 2004). 

 

Citizen science  

Citizen science is the involvement of volunteers in some or all aspects of 

scientific research (Conrad and Hilchey, 2010). There are several benefits of citizen 

science: large data sets can be compiled very quickly and inexpensively (Trumbull et al., 

2000) and processes can be observed over large geographic areas (Dickenson et al., 

2010). The results produced by citizen science not only provide decision makers with 

vital information on important matters, but the entire process increases public awareness 

and public involvement in these same issues (Bonney et al., 2009; Goffredo et al., 2010).  

 

Using nonprofessional scientists as volunteer sensors of the environment is 

nothing new. One enduring citizen science campaign, the Christmas Bird Count, began in 

1900 as a means to discourage over-hunting and promote ecological awareness (Bianchi, 

1999). The 27 volunteer birders that took part in the inaugural bird count has grown to 

involve over 50,000 citizens worldwide volunteering to collect bird observation data each 

year. Continuing today, it is producing an ever-expanding online data set providing 

critical information on distributions, ranges, and migration patterns of avian species 

(Audubon, 2013). An effort of this scale, both spatially and temporally, would be nearly 

impossible without the involvement of citizen scientists. This successful use of 
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volunteered data in scientific research can also be seen in the realm of marine science and 

marine management. In an effort to survey the underwater ecosystems of coastal Italy, 

researchers utilized the effort and enthusiasm of 3,825 volunteer SCUBA divers. In just 

four years the project was able to amass nearly 19,000 biological surveys of Italian 

marine ecosystems. Collectively these divers contributed over 13,000 hours of 

underwater data collection at no cost to the research organization. A later assessment of 

this data concluded that the quality and accuracy of the volunteered data was equal to 

data collected by trained divers on precise science-based transects. A subsequent and 

independent study performed by Italy’s Ministry of the Environment validated the 

ecological findings of the VGI dataset (Goffredo et al., 2010). Similarly, a study on the 

east coast of the United States involved nearly 1,000 citizen scientists to monitor 750 

kilometers of coastline. Throughout this vast geographic area, volunteers surveyed the 

inter-tidal ecosystems in search of invasive species of crabs. These volunteers were found 

to have a high level of accuracy when identifying species and the volunteered data 

detected a range expansion of one species of invasive crab (Delaney et al., 2008).               

 

The development and evolution of several technologies have increased the ability 

of citizens to participate in science and, more specifically, geographic research 

(Goodchild, 2007). The World Wide Web has essentially connected the world, allowing 

large amounts of data to be easily shared, compiled, and analyzed (Goodchild, 2007). 

Global Positioning Systems (GPS) allow for locations of objects to be easily and 

accurately measured and recorded by non-trained individuals; this exercise is an essential 

component of geography. Digital cameras (many enabled with GPS technology) allow 
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the average person far more access than ever before to photography, further enabling the 

citizen scientist (Goodchild, 2007). Mobile web devices and the ever-expanding 

capabilities of smart phones also increase the ability of the general public to participate in 

scientific research (Haklay, 2013).  

 

With more citizens now capable of collecting accurate geographic data, the quality and 

size of VGI and citizen science-based datasets have increased. And because humans are a 

rather ubiquitous species, these datasets are often of very high spatial and temporal 

resolution. Temporal resolution refers to the frequency of data collection with respect to 

time: Data collected daily gives the dataset a higher degree of temporal resolution than a 

dataset whose measurements are made weekly, monthly, annually, etc. Temporal 

resolution is an important factor in habitat modeling, and fine-scale (daily) temporal 

resolution may be crucial for detecting temporal trends (Kearney et al., 2011).!
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Chapter 3: Study Area and Data 

Study Area 

The study area is described in two parts: the geographic area from which the 

whale observation data was collected, and the geographic extent of the extrapolated 

probabilistic habitat suitability models. The whale observation data was collected from 

within the Southern California Bight. This area is defined as the coastal waters (from the 

shoreline to the continental shelf) from Point Conception in the north to the U.S.-

Mexican border in the south. It is defined by a wider than average continental shelf, with 

complex bathymetry consisting of many basins and ridges. Oceanic circulation within the 

Southern California Bight is also unique; the northbound Davidson Current brings warm 

water up along the coast, while the California Current carries cold nutrient-rich water 

southward and further offshore. These opposing oceanic currents create a biological 

transition zone that supports nearly 500 species of fish and more than 5,000 species of 

invertebrates (Southern California Coastal Water Research Project, 2013).  

 

The probabilistic habitat suitability models were applied to the Southern 

California Bight and extrapolated south to Vizcaino Bay, Mexico, about halfway down 

the Baja California peninsula. This larger area known as the Southern California 

Continental Borderland is a natural extension of the Southern California Bight. The 

continued biologic, oceanographic, and bathymetric complexity of this area creates a 

geographic unit ideal for studying the behavioral ecology of marine mammals 

(Henderson, 2010). The width of the continental shelf narrows quickly just north and 

south of this region.  
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Data 

Whale presence data can be acquired via three general methods: visual 

observation, acoustic detection, and radio telemetry (tagging). Most scientific research on 

live whales uses at least one of these techniques. Each of these methods has its benefits as 

well as its shortfalls. This thesis focuses on the use of visual observations in whale 

research. Specifically, a comparison between whale observation data collected by 

scientists on scientific surveys and whale observation data collected voluntarily on 

commercial whale-watching tours will be made.     

 

Science-Quality Whale Presence Data 

A commonly cited data source for blue whale presence (visual observations) in 

the Southern California Bight is the CalCOFI dataset. CalCOFI is a partnership formed in 

1949 between the Department of Fish and Wildlife, NOAA Fisheries Service, and 

Scripps Institute of Oceanography. The organization conducts quarterly cruises along a 

series of transect lines extending perpendicular from the central and Southern California 

coastlines. Originally commissioned to study the collapse of the sardine fishery in the 

1940s, its mission has evolved and in 2004 the cruises began recording baleen whale 

observations (among many other data). While this is an impressively longstanding study 

with remarkable consistency, the temporal resolution of the data is low (quarterly). 

Throughout a nine-year period, between 2004 and 2012, the CalCOFI cruises observed 

blue whales (at least one) 121 times, accounting for 212 blue whale records (Campbell et 

al., 2012). This dataset is referred to as the “science-quality” whale observation data used 
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in this study. It includes 29 blue whale observations accounting for 64 blue whale 

sightings within the study area and time frame.  

Non-systematic research cruises (i.e., opportunistic, non-transect) typically 

experience a higher number of whale sightings. Without the gridded constraints of a 

transect line, this more dynamic approach can purposefully place the observer in areas of 

high whale density. Using this method, professional scientists sighted 2,403 blue whales 

in the waters off the coasts of Washington, Oregon, and California in a seven-year period 

between 1991 and 1997 (Calambokidas and Barlow, 2004). While this opportunistic 

approach might be more efficient at finding and documenting whales, it is also much 

more susceptible to recounting the same whale multiple times. Testament to this, using 

photo-identification techniques, the authors of this study determined that only 908 of the 

2,403 blue whales were unique individuals (Calambokidas and Barlow, 2004). 

 

Whale-watch observation data 

Perhaps the most opportunistic of all whale observations are the ones made 

aboard commercial whale-watching vessels. An increasingly popular eco-tourism 

activity, whale-watching tours can be found in nearly every harbor in Southern 

California. Operating daily and simultaneously throughout the Southern California Bight, 

these vessels are potentially a rich source of whale presence data with very high temporal 

resolution. The whale-watch data used in this study was collected from five whale-

watching vessels operating in four ports within the Southern California Bight: two vessels 

in San Diego, and one each in Dana Point, Newport Beach, and San Pedro. Together, in a 
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five-year period, these vessels have logged over 875 blue whale observations accounting 

for more than 2,250 individual whale counts (Figure 1 and Table 1).   

 

 

Figure 1: Gantt chart illustrating start dates and end dates of data collection by various 
sources. Green indicates daily temporal resolution of whale-watch datasets, red indicates 
quarterly temporal resolution of the science-quality CalCOFI dataset.  
 

 

Table 1: Metadata describing the five individual datasets used in this study. The VGI 
dataset is comprised of whale observations from whale-watching vessels operating out of 
San Pedro, Newport Beach, Dana Point, and San Diego. The science-quality dataset is 
collected and maintained by CalCOFI.   

Dataset Start date End date 
Duration 
(years) 

Temporal 
resolution 

   Blue whales  
   counted 

San Pedro 1/2/08 9/29/12 4.74 Daily       1412 

Newport Beach 5/14/11 11/14/12 1.51 Daily       306 

Dana Point 5/11/11 12/10/12 1.59 Daily       315 

San Diego  1/29/12 12/1/12 0.84 Daily       217 

CalCOFI 7/28/04 11/5/12 8.27 Quarterly       64 
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Environmental Variables 

Bathymetry, sea surface temperature, and chlorophyll-a are used here as 

indicators of potential blue whale habitat (Table 2). These oceanographic parameters 

were chosen due to their prevalent use in blue whale habitat modeling per the scientific 

literature.      

 

Bathymetry 

Bathymetry is the measure of the ocean’s depth. This variable is highly correlated 

with the fine-scale presence and distribution of blue whales in the literature. The 

bathymetric data used in this study, ETOPO1, is a product of NOAA’s National 

Geophysical Data Center. This global relief model is a compilation of numerous global 

and regional datasets. Used here in raster format, the data has a spatial resolution of 

0.016667 arc-degrees (1.85 km2) and a vertical accuracy of about 10 meters.  

 

Sea Surface Temperature  

Sea Surface Temperature is the measured temperature of the uppermost layer of 

the ocean to about one meter (Campbell and Wynne, 2011). Temperature is an important 

environmental variable that can influence the presence and distribution of many marine 

species. While blue whales are capable of residing in a wide range of temperatures, the 

literature suggests that SST can be used as an indicator of prey production, thus blue 

whale occurrence. The SST data used here is captured by the Moderate Resolution 

Imaging Spectroradiometer (MODIS), a 36-band spectroradiometer measuring visible 

and infrared radiation, onboard NASA’s Aqua satellite. Specifics of the MODIS 
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instrument can be found at: http://aqua.nasa.gov/about/instrument_modis.php. The Aqua 

satellite scans the earth’s surface every one to two days recording SST with a spatial 

resolution of 0.0125 arc-degrees (1.47 km2). The Goddard Ocean Biology Processing 

Group processes this raw data using multi-sensor level-1 to level-2 software. More on 

this process can be accessed via the SeaWiFS data processing website at: 

http://oceancolor.gsfc.nasa.gov/DOCS/SW_proc.html. Processed SST values are 

validated with in-situ SST buoy data. This dataset covers the eastern pacific (155º W to 

105º W Longitude, 22º N to 51º N Latitude) and maintains a nominal accuracy of ± 1 

degree Celsius.  Summary data of one-month averages are used in this study.  

 

Chlorophyll-a 

Chlorophyll-a is a specific pigment essential to photosynthesis. Found in the cells 

of many photosynthesizing marine organisms, this pigment can be detected via remote 

sensing satellites and is a strong indicator of primary productivity. The chlorophyll-a 

dataset used here was obtained from MODIS aboard NASA’s Aqua satellite. 

Concentrations of chlorophyll-a are recorded in milligrams per meter3 with a spatial 

resolution of 0.0.05 arc-degrees (5.55 km2). Raw data is processed at the Goddard Space 

Flight Center using SeaWIFS Data Analysis System software (NOAA Coast Watch, 

2013). With near-global spatial coverage (180º W to 180º E longitude, and 75º N to 75º S 

Latitude) this dataset maintains a nominal accuracy of 40 percent. It is important to note 

the significant discrepancies that exist between datasets derived from different remote 

sensing apparatus as well as with high-quality in-situ measurements (NOAA Coast 

Watch, 2013). Summary data of one-month averages are used in this study. 
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Table 2:  Descriptions of environmental variable datasets. Each dataset was downloaded 
from NOAA’s Coast Watch Program, 
(http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowser.jsp).  
 
Environmental 
variable 

Source / 
instrumentation 

Spatial  
resolution 

Temporal  
Resolution 

Unit of 
measurement 

Bathymetry ETOPO1 1.85 km2 Static Meter (m) 

SST Aqua MODIS 1.47 km2 1-month average Degrees Celsius  

Chlorophyll-a Aqua MODIS 5.55 km2 1-month average Milligrams/meter3 
 
!
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Chapter 4: Methodology 

Science-quality whale observation data 

The science-quality whale observation data used in this study was collected as 

part of the CalCOFI project. Four times per year research vessels follow a series of 

transect lines within the CalCOFI study area. Trained observers scan the ocean, during 

daylight hours and when weather conditions permit, using 7x power binoculars. When a 

whale is spotted, observers use 18x power binoculars to aid in the identification of the 

species. Each whale sighting is logged and includes distance and bearing from ship, 

species identification, group size, group composition, and the animal’s behavior 

(Campbell et al., 2009). Greg Campbell of Scripps Institute of Oceanography currently 

maintains CalCOFI cetacean data. At the time of writing this thesis the CalCOFI cetacean 

data is undergoing comprehensive quality control, and is not yet publicly available. 

Campbell generously, and personally, provided the CalCOFI blue whale data used here. 

 

Whale-watch observation data set 

Each commercial vessel operating more than three miles offshore is required by 

the United States Coast Guard to maintain a logbook documenting all maintenance of 

safety equipment and the dates emergency drills are performed. In addition, the logbooks 

often list dates of re-fueling, oil changes, and miscellaneous other maintenance 

operations, number of passengers, length of voyage, and the coordinates of ash dispersal 

during burials at sea, among other data. Apart from this information, vessels involved in 

whale-watching tours often record the locations of whale observations. Their motivation 

to record a whale’s location is simple; if you know where a whale was, you have a better 
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chance of finding it on a future trip. Many of these vessels are running two or three trips 

daily, and if an opportunity arises to revisit the same whale later in the day they will.  

 

The methods of whale detection and documentation employed by whale-watching 

vessels vary. In general, the first boat out in the morning will set a course to an area 

frequented by wildlife the day before. While motoring to this location, the captain and 

possibly one or two deckhands will scan the area for signs of whale activity. These 

observers are usually equipped with binoculars of varying optical magnification. 

Generally, the first and or closest whale to be spotted will be visited and should be 

recorded. Because the purpose of the trip is to let the passengers experience a whale, 

rather than count every whale in the area, the vessel will likely stay with one or two 

whales for a long period of time before continuing the search or returning to port. It is 

usually the whale’s last known location that is recorded in the logbooks. A whale’s 

location is used to revisit the same whale on a later excursion or to share with other 

whale-watching vessels in the area; the captains of these vessels maintain open dialog via 

VHF radio.  

 

Currently, not every commercial whale-watching vessel maintains a log of whale 

sightings. Furthermore, of the vessels that do record whale sightings, not all contain 

geographic references. After inquiring at each whale-watching operation in the study 

area, five vessels were found to maintain georeferenced whale records. Each of these 

vessels was visited and the logbooks were recorded using the camera-video function on 

an iPhone (the captains all preferred that the logbooks not physically leave the vessels). 
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Later, the video recordings were played back, and the whale records were viewed and 

manually transfer into an Excel spreadsheet. To control and assure the quality of this 

data, and to minimize error in the transcription process, the following measures were 

taken. If the species and/or coordinates of any logbook entry were undecipherable by two 

persons, they were not included in the digital dataset. If an entry was legible by only one 

of two persons, a third party was used to confirm or repudiate the record. Only when the 

unbiased third party confirmed was the entry included. For every 100 entries in Excel, 15 

were chosen at random and crosschecked with the original source document. Entries were 

imported into ArcMap 10.1 (Figure 2).  

 
Figure 2: Two maps comparing the total number of blue whale observations contained in 
each dataset. Left: Science-quality dataset collected over 9 years from 2004-2012 yields 
26 blue whale observations (red dots) representing 64 blue whale counts. Right: Whale-
watch data collected over 5 years from 2008-2012 yields 847 whale observations (green 
dots) representing 2,250 blue whale counts.         
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Seasonal Variability 
 
 The seasonal variability of blue, fin, and minke whales was quantified using 

circular statistics. One year is divided into 360 degrees with months replacing the 

corresponding angles on a circular plot: 0 degrees is replaced with January, 30 degrees is 

replaced with February, etc. Averaged monthly whale abundance values are recorded as 

radii. These radar plots demonstrate mean whale abundances for each month at each 

location throughout the year. The following equation was used to calculate the mean 

angle and mean radius for each species at each location (Zar, 1996): 

 

Where:  

fi is one month’s whale abundance in each month   

ai is each months corresponding angle  

a is the mean angle 

r is the radius of the mean vector 

 

 The mean angle (a) represents the time of year (month) when a particular whale 

species, on average, can be observed. The radius of the mean vector (r) is a measure of 

the amount of seasonal variability displayed by a species. This value ranges from a 

minimum of zero to a maximum of one. When r equals zero, there is said to be no 

detectable seasonal variability. A value of one indicates a significant change in species 

occurrences between seasons.  



! "#!

Habitat Suitability Models 

Maximum entropy (Maxent) is a sophisticated approach to modeling a species’ 

geographic distribution (Phillips et al., 2004). Using a general-purpose, machine-learning 

method, Maxent can generate probabilistic habitat suitability analyses describing the 

spatial and temporal extent of a given species. Using a set of data points marking where a 

species has been observed, and the environmental conditions associated with each at the 

time the observations were made, Maxent will estimate the environmental requirements 

for that species. The information is then used to estimate the range and distribution of this 

species in non-sampled regions where the environmental conditions are known. It is 

assumed that the localities of the sample points are collected without concern or influence 

of the environmental variables used in the model.  

 

Maxent is free software that can be downloaded from the Internet 

(http://www.cs.princeton.edu/~schapire/Maxent/). It requires all species location data 

points to be comma-separated values (CSV) in the form of species, longitude, and 

latitude. This task was performed using Microsoft Excel and the data points were 

uploaded into the Maxent software using the browser function on the Maxent interface. 

Similarly, a directory containing the environmental variable files to be used in the model 

(bathymetry, SST, chlorophyll-a) was uploaded. The files in this directory must all be in 

ASCII format and contain the same geographic reference system, geographic extent, and 

grid cell size (bathymetry and chlorophyll-a datasets are resampled to conform to the SST 

grid cell size of 1.47 km2). Each of these formatting requirements was executed using 

ArcMap 10.1. First, a map was composed including a raster file of each environmental 
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variable and a shapefile of the study area. In the Spatial Analyst toolbox, the Extraction 

by Mask tool was used to extract the study area from each raster file. The dialog box for 

this operation allows the user to set the parameters for each output file; the geographic 

extent, geographic reference system, and grid cell size were set to the same values for 

each environmental variable. The conversion tool in the spatial analyst toolbox was used 

to convert the extracted raster layers to ASCII files (a Maxent requirement). Once the 

species locations and environmental variables were uploaded into the Maxent software, 

the model could be performed. Before running a model, several parameters were adjusted 

in the Maxent settings field. The number of samples to be set aside for testing was set to 

25 percent, allowing the performance of the resulting model to be tested using a random 

selection of 25 percent of the species location points. The number of model replications 

was set to 15. This tells the software to independently create 15 versions of the model and 

to average the results. The resulting model is theoretically more robust than any single 

replication. This process was repeated for each month of whale observation data.    

 

Samples With Data  

A second approach to running a Maxent model is to provide each species location 

data point with an individual set of environmental variable values corresponding to the 

time and place the observation was made. This method is referred to as the samples with 

data (SWD) format. It can be advantageous when dealing with sample points collected 

during different time periods and thus different environmental conditions. And because a 

Maxent model’s performance increases with an increase in training data (Phillips and 

Dudik, 2008), this approach can lead to higher performance by increasing the sample 
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size. SWD was chosen due to the modest sample size and long periods of time between 

sample points in the CalCOFI dataset.  

 

The following procedure was used to create a file of sample points with 

environmental data to be used in SWD format. A series of maps was created containing 

sample points collected within the same time period (month) and the corresponding 

environmental variables for that time period. This was accomplished in ArcMap. In the 

Spatial Analyst toolbox the Extract Multiple Values to Points tool was used to affix the 

environmental variable values to each corresponding whale observation point location. 

This procedure was repeated for each month’s set of whale observations. The amended 

attribute tables for the point locations were copied and pasted into Excel and saved as a 

CSV file. These files were uploaded into Maxent. 

 

Model Comparison 

Model outputs were compared and contrasted using map algebra, a way to 

analyze multiple maps using algebraic expressions. Used here to view the differences and 

similarities between two Maxent model outputs, the analysis was accomplished using 

ArcMaps’s map algebra function in the Spatial Analyst Toolbox. Using the raster 

calculator within the map algebra toolset, cell values from a model using volunteered 

whale-watch data were subtracted from the corresponding cell values of a model using 

science-quality whale presence data. The map algebra output file demonstrates areas 

where the two models agree and disagree (Figure 9).  
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Chapter 5: Results 

Volunteered Whale Observation Dataset 

The volunteered dataset composed here of the observational records of five whale-watching 

vessels included over 3,000 logbook pages describing five years of whale-watching activity 

within the study area. Held in these pages were 2,250 blue whale observations, 1,218 fin whale 

observations, and 172 minke whale observations. Also found in these logbooks were accounts of 

rare whales seldom seen on infrequent scientific surveys, including sperm whales (Physeter 

macrocephalus), orca whales (Orcinus orca), sei whales (Balaenoptera borealis), and bairds 

beaked whales (Berardius bairdii). Figure 3 demonstrates the spatial patterns of opportunistic 

observations of blue whales.   

 

Seasonal variability 

Each whale species observed and recorded by the whale-watching vessels displayed unique 

seasonal variability. Table 3 shows the statistical results of the seasonal variability analysis. The 

radius of the mean vector (r) is a measure of the amount of seasonal variability displayed by a 

species. This value ranges from a minimum of zero to a maximum of one. When r equals zero 

there is said to be no detectable seasonal variability. A value of one indicates a significant 

change in species occurrences between seasons. Among the whales in the volunteered dataset the 

blue whale exhibited the strongest and most consistent seasonal variability (r=0.83). The mean 

angle (a) represents the time of year (month) when a particular whale species, on average, can be 

observed. The cumulative mean angle for blue whales (averaged over four locations) is 206º, 

suggesting that blue whales are most likely to be observed in late July. Radar plots show each 

month’s mean whale abundance for blue, fin, and minke whales at each location (Figure 4). 
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Spatial patterns of opportunistic observations of blue whales 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Spatial patterns of blue whale observations (white dots) and associated bathymetry. 
The average depth of blue whale observations was 297 meters (162 fathoms). Within the study 
area, this depth is associated with steep bathymetric features thought to be responsible for blue 
whale prey production, accumulation, and retention (Croll et al., 1999).  
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Table 3: Statistical results of the seasonal variability analysis and the contributing data for the 
ensuing radar plots. Mean angle (a) represents the time of year (month) when a particular whale 
species, on average, can be observed (January=0 º, April=90 º, July=180 º, etc.). Radius of the 
mean vector (r) is a measure of the amount of seasonal variability displayed by a species 
(0=low, 1=high).   
 
Species Location Number 

of whales 
(n) 

Mean 
angle 

(a) 

Mean 
vector 

(r) 

Cumulative 
mean angle 

Cumulative  
mean 
vector 

Blue San Pedro 1412 214 0.79 206 º 0.83 

 Newport Beach 306 204 0.82   

 Dana Point 315 216 0.83   

 San Diego 217 188 0.89   

Fin San Pedro 854 359 0.35 254 º 0.43 

 Newport Beach 111 260 0.42   

 Dana Point 96 268 0.56   

 San Diego 157 130 0.40   

Minke San Pedro 120 228 0.29 170 º 0.57 

 Newport Beach 8 248 0.88   

 Dana Point 24 142 0.78   

 San Diego 20 60 0.34   
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Seasonal Variability  
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Figure 4: Radar plots showing seasonal variability of three species of baleen whale observed 
within the study area. Among these, blue whales exhibit the highest degree of seasonal 
variability. Rings represent numbers of whales; radii represent seasonal occurrence.    
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Model Results 

Maxent models demonstrate potential blue whale foraging habitat within the Southern 

California Continental Borderland (Figures 5, 6, and 7). Warmer colors (yellows and reds) 

indicate higher probability of suitable habitat, while cooler colors (blues and greens) indicate 

lower probability of suitable habitat. Because bathymetry was given such a high predictive value 

by the computer-learning models, seasonal variations due to temperature and chlorophyll-a are 

minimal. Because of this, the aforementioned phenology of each species is highly important 

when analyzing these models. Blue whales are primarily observed in the study area from July 

through September and models projected onto other months will not be as accurate. Models 

produced using the whale-watch data did not differ qualitatively from models using the science-

quality data. Both models rank the influence of environmental variables in identical order with 

similar model contribution values assigned to each variable (Table 4). The extrapolated 

predictions of each model are also very similar. The whale-watch data produced a habitat 

suitability model with more definitive predictions, while the science-quality data produced a 

more generalized model. This is most apparent throughout the southern portion of the models in 

Vizcaino Bay, and is likely a result of the differences in model training sample sizes. 

 

Table 4: Each environmental variable’s relative contribution to the Maxent model given as a 
percent. The rank of contribution among environmental variables was consistent among models.       

 
Whale Presence Data Bathymetry Sea Surface Temperature Chlorophyll-a 

Science-quality (n=30) 51.9 29.6 18.5 

Whale-watch (n=30) 60.6 26.9 12.5 

Whale-watch (n=250) 49.7 34.1 16.1 
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Maxent model: science-quality dataset (n=30) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Probabilistic blue whale habitat suitability model using 30 samples of blue whale 
locations collected during CalCOFI cruises between 2004 and 2012. The model is projected onto 
the environmental conditions of August 2011. Warm colors indicate regions with a high 
probability of suitable habitat; cool colors indicate regions with lower probability of suitable 
habitat (AUC=0.945).  
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Maxent model: whale-watch dataset (n=30) 

 

 

 
                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Probabilistic blue whale habitat suitability model using 30 random samples of blue 
whale locations collected by whale-watching vessels between 2008 and 2012. The model is 
projected onto the environmental conditions of August 2011. Warm colors indicate regions with 
a high probability of suitable habitat; cool colors indicate regions with lower probability of 
suitable habitat (AUC=0.964). 
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Maxent model: whale-watch (n=250) 

                                                                                                                                                                   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Probabilistic blue whale habitat suitability model using 250 locations of blue whales 
collected by whale-watching vessels between 2008 and 2012. The model is projected onto the 
environmental conditions of August 2011. Warm colors indicate regions with a high probability 
of suitable habitat; cool colors indicate regions with lower probability of suitable habitat 
(AUC= 0.953).  
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The receiver operating characteristic (ROC) curve is a graphical representation 

comparing the fraction of true positives versus the fraction of false positives committed by the 

model during test runs (Figure 8). Because presence-only data is used, the rate of commission 

(false positives) is unable to be calculated. Maxent replaces this statistic with the fraction of the 

total study area predicted present (Phillips, 2008). The area under this curve (AUC) is the 

measure of a model’s performance. An AUC of 1 indicates a perfect model where every test 

sample is accurately described. Alternately, an AUC value of 0.5 describes a random model with 

a predictive average of 50 percent. This means half of the predictions are erroneous and half are 

accurate (a performance that can be achieved by flipping a coin). The AUC for both the science-

quality and whale-watch-generated models indicate high levels of performance (0.945 and 0.953, 

respectively). The increase in performance with the whale-watch data is most likely the result of 

a larger dataset. 

 

 

 

 

 

 

 

 

Figure 8: Average model sensitivity vs. specificity. The red line illustrates the mean area under 
the curve (AUC). The blue buffer shows the mean standard deviation and the black line 
represents random prediction. The two charts compare model performance between science-
quality (AUC=0.945) and whale-watch (AUC=0.953) datasets.    
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The calculated omission rate for whale-watch data was very similar to the predicted 

omission rate, another indication of high performance (Figure 9). The omission rate for the 

science-survey data did not conform to the line of predicted rate of omission, indicating a less 

robust model. The probabilistic habitat suitability models show an increase in predictive 

performance, with an increase in sample size. As a result, the large dataset provided by the 

whale-watch vessels out-performed the science-quality data with a smaller sample size. 

 
 
Figure 9: Average omission and predicted area. The black line (largely hidden behind yellow) 
represents the model’s predicted omission. The green line depicts the mean omission on test data 
and the orange buffer illustrates the mean standard deviation. 
 
 
Model Comparison 

An algebraic comparison (whale-watch model output subtracted from science-quality 

model output) shows significant agreement between the two models (Figure 10). Red shows 

areas with a high probability of suitable blue whale habitat as predicted by the science-quality 

data and less suitable by the whale-watch data. Green, on the contrary, indicates areas predicted 

as highly suitable by the whale-watch data and less suitable by the science-quality data. Yellow 

shows areas where the two models are in agreement. The main difference between the models is 

the nearness to shore of predicted blue whale foraging habitat. Models produced using whale-
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Model Comparison: whale-watch model subtracted from science-quality model 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Using map algebra, cell values from the whale-watch model (Figure 6) 
subtracted from corresponding cell values of the science-quality model (Figure 5). Red 
indicates areas predicted highly suitable by the science-quality data and less suitable by 
the whale-watch data. Green indicates areas predicted highly suitable by the whale-
watch data and less suitable by the science-quality data. Yellow shows areas where the 
two models are in agreement.     
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watch data are more likely to imply near-shore foraging areas than are models using 

science-quality whale observation data. And, vice-versa, the models using science-quality 

whale data are more likely to suggest offshore suitable habitat. This result may be a 

consequence of the nature and behavior of the whale-watching industry: Their restricted 

temporal and spatial ranges for individual trips limit their offshore observations. The 

science-quality whale data are supplied by cruises operating further offshore than the 

typical whale-watching vessel. 

!
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Chapter 6: Discussion and Conclusion 
 
 

Volunteered whale-watch data proved to be highly effective for the creation of 

probabilistic habitat suitability models. The large and inexpensive dataset created here of 

whales occurring over a vast geographic area is characteristic of VGI. And the high 

temporal resolution of this data can give insight into phenomena that cannot be detected 

from infrequent scientific surveys. Because of Maxent’s tolerance to presence-only data it 

is well equipped to utilize this highly opportunistic dataset. And the large sample size 

provided the software with ample training information to learn and test the blue whale’s 

habitat requirements.  

 

The use of Maxent in whale habitat modeling can be further explored by the use 

of additional environmental variables. With the apparent correlation between blue whale 

occurrences and steep bathymetric features, slope and aspect values may be of significant 

importance. These variables can be derived from the same bathymetric dataset and can 

help explain in more detail the importance underwater features on blue whale prey 

production and retention. Additionally, the use of oceanic current data may help describe 

the spatial separation between these features and the areas where whales are sighted. By 

incorporating these and other environmental variables the predictive power of the model 

may be enhanced.!

 

Consistent in each model is an area of highly probable blue whale foraging habitat 

in Vizcaino Bay, Mexico. This area, located in the middle of the Baja peninsula, occurs 

outside of the CalCOFI study area and out of range for Southern California whale-
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watching vessels. As a result, the whale observation datasets used in this thesis could not 

confirm this prediction. Model confirmation comes from a study conducted in 1995 

where five blue whales were tagged in the Santa Barbara Channel, California. During the 

time the tags remained attached to the whale’s bodies they allowed researchers to track 

the paths of these animals (Figure 11). Of the five whales tagged, four made southerly 

routes to Vizcaino Bay (Mate and Calambokidis, 1999). Furthermore, three of the four 

southbound whales followed a path of suitable habitat as predicted by the Maxent model. 

 

Figure 11: Tracks of five blue whales tagged in the Santa Barbara Channel in 1994 and 
1995 are displayed in various colors. Four of the five whales traveled south making 
temporary stops in Vizcaino Bay (Mate and Calambokidis, 1999). Vizcaino Bay is 
identified as highly probable blue whale foraging habitat by the Maxent models.       
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While whale-watch data is successfully used here in modeling blue whale 

foraging habitat, several issues concerning the quality of this data limit its use in other 

scientific pursuits. For this type of data to be used in a more encompassing scientific 

capacity, the following issues must be addressed. The nature and overall intent of a 

whale-watching cruise is fundamentally different from a true research cruise. Whale-

watching vessels are limited by the short duration of their search; a normal whale-

watching excursion ranges from two to five hours in length. As a result, they tend to 

cover the same geographic area trip after trip. Whale-watching vessels may run two or 

more trips per day, and to save fuel they will often only visit whales closest to the harbor- 

relying heavily on locations of previous whale sightings. This can lead to recounting the 

same whale as well as omitting whales that are outside of this limited area. Once a whale 

is sited, whale-watching vessels tend to stay with the whale for a prolonged period of 

time instead of continuing to search for different whales in the area. This cessation of 

search will result in lower whale counts for the larger geographic area.   

 

Because the nature and behavior of a whale-watching tour boat strongly 

influences the pattern of its whale observations, the spatial patterns of opportunistic 

observations of whales do not reflect the true spatial arrangement of the population. Maps 

produced using whale-watch observation data are indicative of where whales are seen on 

eco-tours rather than how the area’s whale population is distributed. The opportunistic 

observations do, however, reveal an interesting pattern; the vast majority of the 

observations were made on or near the 300m-isobath, a geographic feature locally 
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associated with high bathymetric relief. This phenomenon is also detected in the science-

quality dataset and supported in the literature.   

 

By accounting for the observational effort exhibited by a whale-watching vessel, 

many of the aforementioned concerns may be mitigated. This can be accomplished by 

logging the hours of active whale searching in addition to total hours of excursion. In 

doing so, researchers can better understand the density or scarcity of whales within the 

area. In addition, recording GPS tracks of each excursion can help researchers more 

accurately define the observational area of effort covered by a whale-watching vessel.  

 

Whale-watch data is also limited in other aspects of marine mammal research. 

Without a means of identifying individual whales (i.e., photographic identification), 

opportunistic observations are not conducive to studies of population numbers or 

dynamics. One solution to this problem is for whale-watching vessels to photograph each 

whale they encounter with a GPS-enabled digital camera. These geo-tagged photographs 

can then be analyzed by scientists (citizen or professional) and individual whales within 

the population can be identified. This would allow whale-watch data to be used for 

additional scientific purposes other than habitat suitability analyses.  
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Commercial shipping and blue whale foraging habitat 
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Figure 12: Probability of blue whale habitat versus areas of high shipping activity. Maps 
such as these can be used to inform marine spatial planners when designing shipping 
lanes, marine protected areas, and other marine management areas. Note the area of 
highly suitable blue whale habitat where shipping lanes cross.        
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The goal of this and similar studies is to alert and bring awareness to boat 

operators when in the vicinity of whales. Maps incorporating marine traffic and potential 

whale habitat can be used to inform the maritime community of this spatial conflict 

(Figure 12). An important aspect of using volunteered geographic information in this 

pursuit is the direct involvement of the target audience. By involving this demographic in 

the scientific process they are more likely to be interested in the results and take active 

roles in the solutions.   

 

Citizen science and volunteered geographic information can be of great service to 

the future of marine mammal research and marine spatial planning. Currently, the 

availability of these datasets is limited by the current method of recording data by hand 

and storing data in logbooks dispersed among many vessels. Future work in this area 

should include the unification and digitization of whale observations made by whale-

watching vessels and citizen scientists in general. This would allow for the acquisition of 

near real-time whale location data by scientists and marine managers. This streamlining 

of data acquisition can be accomplished via the creation of a main database capable of 

receiving data entries from various mobile devices (phones, tablets, etc.). Users of these 

devices could upload geo-tagged photos of whales in real-time. By increasing the 

availability of this data and by decreasing the time between data collection and 

utilization, marine managers will be better equipped to deal with the dynamic spatial 

conflict between humans and whales.   

 



! "#!

References  
 
Ballance, L., R. Pitman, and P. Fiedler. 2006. Oceanographic Influences on Seabirds  

and Cetaceans of the Eastern Tropical Pacific: A review. Progress in 
Oceanography 69:360–390.  

Bianchi, J. 1999. Christmas Bird Count. New York State Conservationist 54(3):6.  
Bonney, R., C. Cooper, J. Dickinson, S. Kelling, T. Phillips, K. Rosenberg, and J. Shirk.  

2009. Citizen Science: A Developing Tool for Expanding Science Knowledge and 
Scientific Literacy. BioScience 59(11):977–984.  

Burtenshaw, J., E. Oleson, J. Hilderbrand, M. McDonald, R. Andrew, B. Howe, and J.  
Mercer. 2004. Acoustic and Satellite Remote Sensing of Blue Whale Seasonality 
and Habitat in the Northeast Pacific. Deep Sea Research Part II 51:967–986.  

Calambokidis, J., and J. Barlow. 2004. Abundance of Blue and Humpback Whales in  
the Eastern North Pacific Estimated by Capture-Recapture and Line-Transect 
Methods. Marine Mammal Science 20(1):63–85.  

Calambokidis, J., J. Barlow, J. Ford, T. Chandler, and A. Douglas. 2009. Insights Into  
The Population Structure of Blue Whales in the Eastern North Pacific From 
Recent Sightings and Photographic Identification. Marine Mammal Science 
25(4):816–832.  

Campbell, G., K. Merkens, and J. Hilderbrand. 2010. California Cooperative Oceanic  
Fisheries Investigation (CalCOFI) Cruises: 2009-2010. San Diego, CA. USA: 
Marine Physical Laboratory, Scripps Institution of Oceanography.  

Campbell, G., L. Roche, H. Basset, A. Simonis, D. Camacho, K. Whitaker, and J.  
Hilderbrand. 2011. California Cooperative Oceanic Fisheries Investigation 
(CalCOFI) Cruises: 2010–2011. San Diego, CA. USA: Marine Physical 
Laboratory, Scripps Institution of Oceanography.  

Campbell, G., L. Roche, K. Whitaker, and J. Hilderbrand. 2012. California Cooperative  
Oceanic Fisheries Investigation (CalCOFI) Cruises: 2011–2012. San Diego, CA. 
USA: Marine Physical Laboratory, Scripps Institution of Oceanography.  

Campbell, James B. and Randolph H. Wynne. Introduction to Remote Sensing (5th            
Edition). (Guildford Press, New York, 2011).    

Conrad, C. C., and K. G. Hilchey. 2011. A Review of Citizen Science and Community- 
Based Environmental Monitoring: Issues and Opportunities. Environmental 
Monitoring Assessment 176:273–291.  

Croll, D., B. Tershy, R. Hewitt, D. Demer, P. Fiedler, S. Smith, W. Armstrong, J. Popp,  
T. Kiekher, R. Lopez, J. Urban, and D. Gendron. 1998. An Integrated Approach 
to the Foraging Ecology of Marine Birds and Mammals. Deep Sea Research II 
45:1353–1371.  

Delaney, D., C. Sperling, C. Adams, and B. Leung. 2008. Marine Invasive Species:  
Validation of Citizen Science and Implications For National Monitoring 
Networks. Biological Invasions 10:117–128.  

Dickinson, J., B. Zuckerberg, and D. Bonter. 2010. Citizen Science as an Ecological  
Research Tool: Challenges and Benefits. Annual Review of Ecology, Evolution, 
and Systematics 41:149–172.  

 
 



! "#!

Doniol-Valcroze, T., D. Berteaux, P. Larouche, and R. Sears. 2007. Influence of  
Thermal Fronts on Habitat Selection by Four Rorqual Whale Species in The Gulf 
of St. Lawrence. Marine Ecology Progress Series 335:207-216.  

Etnoyer, P., D. Canny, B. Mate, L. Morgan, J. Ortega-Ortiz, and W. Nichols. 2006. Sea- 
Surface Temperature Gradients Across Blue Whale and Sea Turtle Foraging 
Trajectories off the Baja California Peninsula, Mexico. Deep Sea Research Part II 
53:340–358.  

Fiedler, P., S. Reilly, R. Hewitt, D. Demer, V. Philbrick, S. Smith, W. Armstrong, D.  
Croll, B. Tershy, and B. Mate. 1998. Blue Whale Habitat and Prey in the 
California Channel Islands. Deep Sea Research II 45:1781–1801.  

Gill, P., M. Morrice, B. Page, R. Pirzl, A. Levings, and M. Coyne. 2011. Blue Whale  
Habitat Selection and Within-Season Distribution in a Regional Upwelling 
System off Southern Australia. Marine Ecology Progress Series 421:243–263.  

Goffredo, S., F. Pensa, P. Neri, A. Orlandi, M. Gagliardi, A. Velardi, C. Piccinetti, and F.  
Zaccanti. 2010. Unite Research With What Citizens Do For Fun: "Recreational 
Monitorring" of Marine Biodiversity. Ecological Applications 20(8):2170–2187.  

Goodchild, M. F. 2008. Commentary: Whither VGI? GeoJournal 72:239–244.  
Goodchild. M. F. 2007. Citizens as Sensors: The World of Volunteered Geography.  

GeoJournal 69:211–221.  
Haklay, M. 2013. Citizen Science and Volunteered Geographic Information: Overview  

and Typology of Participation. In Crowdsourcing Geographic Knowledge: 
Volunteered Geographic105 Information (VGI) in Theory and Practice, ed. D. 
Sui, 105–122.  

Hass, T. C. 2011. Improving Natural Resource Management : Ecological and Political  
Models. Hoboken, NJ, USA: Wiley.  

Henderson, E. E. 2010. Cetaceans in the Southern California Bight: Behavioral,  
Aucustical, and Spatio-temporal Modeling. Ph.D. dissertation, University of 
California, San Diego.  

International Union for Conservation of Nature. IUCN Red List of Threatened  
Species. In International Union for Conservation of Nature [database online]. 
Cambridge, United Kingdom, 2008. Available from 
http://www.iucnredlist.org/details/2477/0 (last accessed June/15 2013).  

Kearney, M., A. Matzelle, and B. Helmuth. 2012. Biomechanics Meets the Ecological  
Niche: The Importance of Temporal Data Resolution. Experimental Biology 
15:922–933.  

Laist, D., A. Knowlton, J. Mead, A. Collet, and M. Podesta. 2001. Collisions Between  
Ships and Whales. Marine Mammal Science 17:35–75.  

Mate, B., and J. Calambokidis. 1999. Movements of North Pacific Blue Whales During  
the Feeding Season Off Southern California and Their Southern Fall Migration. 
Marine Mammal Science 15(4):1246–1257.  

Moore, S., W. Watkins, M. Daher, J. Davies, and M. E. Dahlheim. 2002. Blue Whale  
Habitat Associations in the Northwest Pacific: Analysis of Remotely-Sensed Data 
Using a Geographic Information System. Oceanography 15(3):20–25.  

 
 
 



! "#!

Munger, L., D. Camacho, A. Havron, G. Campbell, J. Calambokidis, A. Douglas, and J.  
Hilderbrand. 2009. Baleen Whale Distribution Relative to Surface Temperature 
and Zooplankton Abundance off Southern California. San Diego, California: 
CalCOFI, Report Number, 50.  

National Audubon Society Web Site. In National Audubon Society [database online].  
New York, NY. USA, 2013 Available from  
http://birds.audubon.org/christmas-bird-count (last accessed June 15, 2013).  

National Oceanic and Atmospheric Administration. Coast Watch Website. Washington,  
DC. USA, 2013 Available from  
http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowser.jsp (last accessed 
August 21, 2013).   

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum Entropy Modeling of  
Species Geographic Distributions. Ecological Modeling 190:231–259.  

Phillips, S. J., and M. Dudik. 2008. Modeling of Species Distributions With Maxent:  
New Extensions and a Comprehensive Evaluation. Ecography 31:161–175.  

Phillips, S. J., M. Dudik, and R. E. Schapire. 2004. A Maximum Entropy Approach to  
Species Distribution Modeling. Proceedings of the 21st International Conference 
on Machine Learning 655–655–662.  

Pittman, S., and B. Costa. 2009. Linking Cetaceans to Their Environment: Spatial  
Data Acquisition, Digital Processing and Predictive Modeling for Marine Spatial 
Planning in the Northwest Atlantic. In Spatial Complexity, Informatics, and 
Wildlife Conservation, ed. Huettmann & Cushman, 387–408.  

Redfern, J., M. McKenna, T. Moore, J. Calambokidis, M. Deangelis, E. Becker, J.  
Barlow, K. Forney, P. Fiedler, and S. Chivers. 2013. Assessing the Risk of Ships 
Striking Large Whales in Marine Spatial Planning. Conservation Biology 27:292–
302.  

Southern California Coastal Water Research Project Website. Costa Mesa, CA. USA.  
Available from 
http://www.sccwrp.org/researchareas/RegionalMonitoring/BightRegionalMonitori
ng.aspx. (Last accessed August 21, 2013).       

Starks, E. C. 1922. A History of California Shore Whaling. San Diego: State of  
California, Department of Fish and Game, Report Number, Fish Bulletin No. 6.  

Trumbull, D., R. Bonney, D. Bascom, and A. Cabral. 2000. Thinking Scientifically  
During Participation in a Citizen-Science Project. Science Education 84:265–275.  

Zar, Jerrold H. Biostatistical Analysis (4th Edition). (Prentice Hall, NJ. 1999). 


