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Abstract 

Geographic Information Systems (GIS) have been widely used for archaeological predictive 

modeling since the 1960s. For coastal archaeology, predictive modeling, which is the practice of 

using mathematical models to indicate the likelihood of archaeological site locations, cultural 

resources, or settlement patterns, is especially helpful in locating sites potentially endangered by 

coastline erosion and destructive forces. The purpose of this project was to determine if it is 

possible to predict the presence of unknown archaeological sites along Virginia’s Chesapeake 

coast to aid in their preservation and site management. In order to predict the presence of sites, a 

baseline of favorable environmental conditions was determined from known coastline 

archaeological sites. Environmental variables considered include elevation, slope, wetland type, 

land type, and distance to the Chesapeake Bay. In order to explore if these environmental 

variables can be used to determine locations favorable to the establishment of campsites, spatial 

data about these environmental variables were used in two predictive modeling methods: fuzzy 

overlay analysis and maximum entropy. Each model’s outcomes were compared with known site 

locations in order to determine their success. The results of each model successfully indicated 

areas of site location suitability. Although results for each model varied, the trends produced 

were similar. Finally, in order to better prioritize site management, a risk analysis was also 

conducted of perceived threats compared to areas in which the models predicted site presence. 

These risk areas were calculated using data on human degradation and coastal sea-rise threat. As 

this study demonstrates, using models to predict where potential sites can allow archaeologists to 

prioritize areas to study for resource management purposes. 
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Chapter 1  Introduction  

Virginia’s Chesapeake Bay region is an area well known for its rich cultural past and is an active 

study area for archaeologists. Known archaeological sites vary from prehistoric to historic 

cultural areas—from the Paleo-Indian inhabitants from 9000 years ago, to the slave trade and 

piracy in the 1600s, followed by the American Revolution, and eventually the Civil War era. As 

this thesis shows, the Chesapeake Bay region is dotted with notable battle sites, dwelling areas, 

and shipwrecks. The dynamic environment of the shoreline, caused by natural wind and wave 

forces, erodes these cultural resources. Shoreline erosion often contributes to the exposure of 

archaeology sites and destruction of artifacts and features. 

  Geographic Information Systems (GIS) have been widely used for archaeological 

predictive modeling since the 1960s (Wescott and Kuiper 2006). For coastal archaeology, 

predictive modeling, which is the practice of using mathematical models to indicate the 

likelihood of archaeological site locations, cultural resources, or settlement patterns, is especially 

helpful in locating sites potentially endangered by coastline erosion and destructive forces. In 

order to address the problem of potential destruction of archaeological sites, this project explores 

two GIS modeling methods, fuzzy overlay and maximum entropy, to predict the presence of 

unfound archaeology sites. As this study demonstrates, using models to predict where potential 

sites may be can allow archaeologists to prioritize areas to study for resource management 

purposes.  

The study area for this project includes seven counties in the Chesapeake Bay area. These 

counties are: Gloucester, Essex, Lancaster, Middlesex, Richmond, Westmoreland, and 

Northumberland. The study area encompasses approximately 117 by 84 kilometers of land 
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within Virginia’s Coastal Plains (Tidewater Region). See Figure 1 and Figure 2 for a map of the 

study area.  

 

Figure 1 Project study area within state of Virginia 
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Figure 2 Close-up of study area with counties 

1.1 Motivation 

Cultural environments change over time and sequences of human deposits are left behind 

in stratified layers of soil. In order to understand and evaluate cultural environments, 

archaeologists examine the materials and deposits left behind at prehistoric and historic sites to 

gain insight on a past society. It is the archaeologist’s challenge to obtain as much information 

about a culture before this information is lost forever due to inevitable destruction over time.  
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In particular, Virginia’s Chesapeake Bay watershed has a bounteous cultural heritage, 

and numerous archaeological sites. Known for its historical and cultural richness, coastal 

Chesapeake Virginia is rife with cultural history. The Chesapeake watershed includes many 

types of archaeology sites including Native American, Civil War, shipwrecks, and colonial 

explorer sites. According to the Chesapeake Bay Program (CBP)1, a regional partnership focused 

on Chesapeake Bay restoration and protection, there are estimated to be at least 100,000 

archaeology sites within the Chesapeake Bay watershed, with only a small percentage of these 

sites documented.  

Now, these sites are buried under layers of sediment and shell middens hiding stone tools, 

artifacts, and dwellings. As sea levels rise, these sites are being flooded by water and becoming 

difficult and sometimes impossible to study. The slow rise in sea level results in the gradual 

input of sediment and organic matter into depressed land areas, creating tidal marshes. 

According to Lowery et. al (2012), sulfidization created in these tidal marshes will destroy or 

alter artifacts and shift site materials around, making it hard to identify cultural materials. These 

erosive processes are slowly destroying sites, making it difficult to excavate them. Lowery et. al 

determined that at least 281 of 17,230 known archaeological sites in the Chesapeake Bay area are 

being impacted by geologic processes associated with sea level rise.  

1.2 Predicting Archaeological Sites in the Chesapeake Bay Region 

According to V-CRIS (Virginia Cultural Resources Information System)2, within this 

study area there are 1,717 known, recorded archaeology sites of different types. In order to 

reduce the sample size and enhance the success of the predictive models, this project focuses on 

                                                 
1 Information found at http://www.chesapeakebay.net/ 
2 Data available with permission at https://vcris.dhr.virginia.gov/vcris/ 
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the 216 known historic and prehistoric campsites. Campsite locations were chosen for several 

reasons. While the time range of settlement periods is vast for these known sites (from 

approximately 5000 B.C.E. through the 1920s), campsites contain relatively similar features 

throughout time, making all campsites comparable for this kind of study, even with wide time 

gaps. All prehistoric and historic campsites structures were either semi-permanent or temporary. 

Typically, campsites are classified by the amount and type of artifact fragments found at a 

location. Campsites are characterized by: low artifact concentration, presence of fire pits, and 

lack of dwelling structures (Judge and Sebastian 1988). Due to the scarcity of permanent floor 

structures and artifact fragments, campsite locations are more susceptible to erosive and 

destructive forces, making them particularly an appropriate focus for this study.  

Focusing on predicting the location of campsites, the study began by determining a set of 

environmental conditions observed in known archaeological sites and discussed in previous 

research. Environmental variables considered include elevation, slope, wetland type, land type, 

and distance to the Chesapeake Bay. Then, to explore if these environmental variables can be 

used to determine locations favorable to the establishment of campsites, spatial data about these 

environmental variables were used in two predictive modeling methods: fuzzy overlay analysis 

and maximum entropy. After inputting the environmental data into each model, the models’ 

output shows locations where sites are likely to be found.  

Each model uses different techniques of prediction. The maximum entropy modeling 

tool, Maxent, finds the maximum entropy (largest spread) of site presence in relation to the input 

environmental variables. Maxent builds models of site distribution occurrences starting with a 

uniform probability of distribution values over background locations, and then iterates the 

process to improve model fit.  
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In fuzzy overlay analysis, each environmental variable is assigned a fuzzy membership 

value based on the role of that variable in determining the suitability of a location for use. For 

instance, slope might be given a fuzzy membership based on slope percentage. Assuming that 

low slopes would be more favorable to the location of sites, lower slope profiles (5% and under) 

are given a high membership value, and high slope profiles (60% and above) are given low 

membership values. These fuzzy layers are then input into a fuzzy overlay tool, which calculates 

the product of each fuzzy layer and determines which locations are likely locations for 

archaeology sites based on high fuzzy membership values.  

Finally, to demonstrate how predictive models such as these can be used to prioritize site 

management, a risk analysis of potential threats was conducted. Risks examined were potential 

human degradation determined by nearness to major roads and sea level rise based on nearness 

to the shoreline in areas where elevation was less than three meters above sea level. These risk 

factors were overlaid onto the predicted site locations created by each model to show how they 

may be used to suggest areas of highest priority for survey. 

1.3 Objectives of this Research 

The purpose of this project was to determine if it is possible to predict the presence of 

unknown archaeological sites along Virginia’s Chesapeake coast to aid in their preservation and 

site management. In order to achieve this, the research addressed the following questions: 

1. Can the potential location of archeological campsites be modeled successfully using 

the deductive fuzzy overlay approach? 

2. Can the potential location of archaeological campsites be modeled successfully using 

the inductive maximum entropy approach? 

3. How do the results of these different modeling approaches differ in results? 
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4. How can these predictions be used to assist in risk management for cultural resource 

management agencies? 

The remainder of this document is composed of four additional chapters. Chapter 2 

discusses relevant literature and previous work that were used as resources for this project. 

Chapter 3 outlines the data compiled and describes the modeling processes used in the project. 

Chapter 4 reviews the results of the two modeling processes and examines the differences 

between the two. Chapter 4 also includes the results of the risk analysis. Lastly, Chapter 5 

discusses model performance and the risk analysis as an illustration of the value of the prediction 

models.  
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Chapter 2 Background and Related Literature 

The motivation for this thesis is to explore the utility of predictive models to find the presence of 

archaeology sites along the coastline of Virginia’s Chesapeake Bay. In order to fulfill this 

purpose, relevant background and literature is needed to support the claims given in this paper. 

This chapter includes information on previous studies using fuzzy logic and maximum entropy 

modeling to predict the presence of archaeology sites and for other predictive studies. 

2.1 Predictive Modeling in Archaeology 

This section provides an overview on the background and applications of archaeological 

predictive modeling. This section discusses the origins of archaeological predictive modeling, 

the two main types of model approaches, and model applications.  

An archaeological predictive model (APM) is defined as a tool that can be used to 

indicate the likelihood of cultural material being present at a location (Campbell 2010). These 

models are used to identify the spatial pattern of archaeological site locations using non-cultural, 

environmental input variables to predict locations of unknown archaeological sites locations 

(Kvamme 1992). Archaeological predictive modeling is based on the idea that human settlement 

behavior is influenced by the distribution of resources and environmental factors within a 

particular landscape. The spatial pattern of cultural materials in an area represents the behaviors 

of past peoples who needed to exploit the landscape for resources.  

In general, predictive modeling is used to establish covariable relationships between the 

environment (slope, elevation, distance to water, available resources, etc.) and the presence of 

archaeological and cultural features. Using analysis of quantifiable attributes from the landscape 

that has been surveyed, the presence of similar sites can be found in unsurveyed areas based on 

these environmental attributes that can be considered proxies for site locations.  
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Predictive modeling in archaeology was initiated by Gordon Willey after a project in 

Peru’s Viru Valley in the 1950’s. Willey pioneered archaeological settlement pattern studies by 

focusing on the interconnectivity of villages in the Viru Valley instead of individual dwelling 

structures. In order to undertake the project, a rigorous survey of the cultural landscape was 

conducted. After survey, Willey calculated the statistical covariance between cultural features 

(artifacts, dwelling mounds, and features) and environmental features (slope, elevation, 

vegetation etc.). The study concluded that villages were located in areas that were tied 

specifically to environmental features. Availability of applicable data and the development of 

quantitative methods lead to the growth of predictive modeling in the 1960s. The use and 

knowledge of this type of modeling has been widespread since the 1980s (Judge and Sebastian 

1988, Campbell 2010). 

 Contributing to the increase of the development of predictive models is the availability 

of digital geographic data, such as elevation, soils, hydrology, and land cover (Campbell 2010). 

The availability of GIS and environmental data allows archaeological predictive models to 

analyze datasets for large land tracts that can be screened for potential archaeological sites. 

Resource and land management organizations such as the Bureau of Land Management (BLM), 

U.S. Forest Service, city planners, and park agencies use this strategy for planning and surveying 

for cultural resource management (Judge and Sebastian 1988, Campbell 2010). For Cultural 

Resource Management (CRM) archaeology, APMs are especially helpful. CRM archaeology is 

based on quantifying the distribution of cultural resources in a region in the interest of 

management and protection of these resources (Lang and Lock 2000). CRM is widely dependent 

on costly ground surveys which require a great deal of travel and time to complete. 
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Archaeological prediction models make CRM survey more efficient by providing a picture of 

potential site distribution, allowing survey resources to be efficiently deployed.  

2.1.1. Inductive and deductive predictive models 

There are two main modeling types used in APMs: deductive predictive models and 

inductive predictive models. This project uses relies on both modeling approaches.  Deductive 

models are based on theories of cultural behavior to infer the relationship between archaeological 

sites and environmental variables. Inductive models use observed patterns to quantify the 

relationship between archaeological sites and environmental variables. Deductive models are 

successful when an archaeologist is highly familiar with a particular culture and the landscape in 

which archaeological sites reside.  

The inductive model approach is the most-used method for United States archaeologists 

(Campbell 2010). The inductive model approach is based on generalities of empirical 

observations (e.g. “sites are found within 500 feet of fresh water”, or “sites are found on slope 

profiles between 2-5%”). These generalities may be defined by the researcher based on 

observation of site locations within an environment. The inductive approach begins with defining 

which features in an environment show a statistically significant correlation with the locations of 

known and documented archaeology sites. In a general sense of the approach, once these 

environmental features have been separated, the process of predicting unknown sites is based on 

mapping all the locations within a study area where the determining environmental factors are 

found. The best form of verification for this type of model is achieved by archaeological survey. 

If the model has accurately predicted locations, sites will be found only in areas in which the 

model predicted. The largest criticism of this approach is that it is based on the necessity of a 

known set of previously reported sites. 
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The deductive approach is similar to the inductive approach only in they both rely on the 

assumption that archaeological sites are distributed non-randomly and that the environment and 

cultural features are responsible for the non-random distribution. This approach differs from the 

inductive approach in that it relies on the notion that people choose locations based on decisions 

for social and survival needs. In order to predict site locations, the researcher must deduce which 

locations have resources that were important to past cultures. The settlement patterns of a culture 

are deduced from the resources in the area that would have been valued.  

The inductive model approach has been found to be much more reliable and accurate than 

a deductive approach by a statistically significant margin (Hudak et. al 2000). The development 

of inductive models was primarily encouraged by federal land management agencies, including 

the Bureau of Land Management (BLM) and U.S. Forest Service (Judge and Sebastian 1998). 

The combination of the advent of GIS software and the adoption of the National Historic 

Preservation Act of 1966 that proposed the management and protection of cultural resources, was 

an incentive to develop computer-based archaeological prediction models (Merwin 2004). These 

agencies used these GIS modeling techniques to quickly and efficiently predict the presence 

archaeology sites, saving time and energy in surveying efforts (Campbell 2010).  

Prior to the advent of GIS, archaeologists used inductive modeling with printed maps and 

statistics to conduct analysis, which was limiting with respect to the organization of data and 

production of results. Although inductive models were used before GIS, the large number of 

statistical computations and extractions of map data made these models costly and difficult to 

efficiently implement (Pilgram 1987). Digital spatial data and GIS provided the necessary tools 

to construct and develop large inductive prediction models (Kvamme and Kohler 1988). The use 
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of GIS modeling in archaeology has increased as GIS software became more sophisticated and 

cost efficient (Wescott and Brandon 2002).  

This paper is inspired by the inductive and deductive approach as well. Maxent employs 

an inductive approach analysis, whereas fuzzy overlay is deductive. Maxent employs the 

inductive modeling approach by finding the probability of suitability of site locations based on 

the presence of environmental data. Fuzzy overlay is deductive in that environmental variables 

are used to predict the probability of suitable sites based on presumptions made by the 

researcher.  

2.2 A Framework for Predictive Modeling 

In 1990, Kvamme outlined a methodology for archaeological predictive modeling. At 

that time, he defined archaeological predictive models as “an assignment procedure that correctly 

indicates an archaeological event outcome at a land parcel location with greater probability than 

that attributable to chance” (Kvamme 1990, 261). The assignment procedure refers to the set of 

criteria that classify spatial unites by use of environmental variables. The procedure assigns 

environmental information to locations. The output of the procedure is the classification of each 

unit to an archaeological event class (Campbell 2010). An archaeological event class is basically 

the classification of an archaeological occurrence or presence at a particular location. A simple 

and commonly used classification of archaeological event classes are “site present” and “site 

absent”. The mode then determines the probability of site occurrence at a location by using the 

given environmental variables (Warren and Asch 2000). From Kvamme’s definition, three key 

aspects are derived: the land parcel used as an analytical unit, assignment procedure of 

archaeological event classes, and the application of environments to assign to each land parcel 
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(Campbell 2010). By generalizing these aspects and taking into account current modeling 

environments, each of these aspects is further explored below. 

2.2.1. Unit of study 

An important aspect of archaeological predictive modeling is the unit used to measure the 

presence of archaeological sites. Often the unit used is the archaeological site itself. For instance, 

as used in this study, known archaeological sites can be represented as points. However, when 

predicting areas of archaeological site presence, Kvamme (1998) suggests that the unit of 

investigation used should be represented by land parcels or grid cells, the latter allowing the 

entire study area to be divided into discrete units of uniform size. In the case of the research 

reported here, uniform square grid cells are necessary for both fuzzy overlay and Maxent models, 

as both use standard rasters for data analysis.  

The grid cell chosen for analysis should capture the variability of the real-life landscape 

but should not be at a finer scale than the available data (Hudek et al. 2000). In order to reduce 

the margin of error, the consideration of the scale of available data is highly important. Because 

data is collected at certain levels of positional and attribute accuracy, the cell size should be 

based on the characteristics of the available environmental data. Using a cell size for the unit of 

study that is at a finer resolution than the mapping scale of the environmental data could 

introduce errors in model precision (Clark et al 2002).  

2.2.2. Model result classes 

The outputs of an archaeological prediction model are represented by the assignment of a 

grid cell to an archaeological event class that is defined prior to model construction (Campbell 

2010). In this project, as discussed in the next chapter, the nature of the modeling tools allowed 

multiple archaeological event classes to be used, ranging from most suitable to least suitable.  
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2.2.3. Decision rules 

Lastly, decision rules must be created on how to predict archaeological site locations 

using environmental variables (Kvamme 1998). These decision rules are based on whether a 

deductive or inductive model type is used. When using inductive analysis decision rules can be 

made using statistical techniques to find site patterns. When using deductive analysis, the 

archaeologist creates rules based on knowledge of cultural patterns and their relationship to the 

environment. This study relies on both inductive analysis using statistical methods for Maxent, 

and fuzzy overlay requires some deductive reasoning when choosing environmental parameters. 

For instance, determining which types of land cover are most likely to contain a campsite 

involves some deductive reasoning based on information provided by previous studies.  

2.3 Fuzzy Overlay Modeling 

Fuzzy logic modeling in archaeology became popular in the 1980s (Judge and Sebastian 

1998). The fuzzy logic concept is used to simulate real-world conditions in which environmental 

conditions are either suitable, not suitable, or along a spectrum of being partially suitable to 

partially not suitable for a particular outcome. Fuzzy logic is based on the idea that an 

archaeological event class could have infinite options, instead of the Boolean logic of “true” and 

“false” or “site-present” and “site-absent”.  

Fuzzy logic was introduced by L.A. Zadeh in 1965. Zadeh’s key idea was that it is 

possible to represent the similarity an entity shares to other members of a group with a 

membership function whose values (memberships) are between 0 and 1. Zadeh defines a fuzzy 

set as “a class of objects with a continuum of grades of membership…such a set is characterized 

by a membership (characteristic) function which assigns to each object a grade of membership 

ranging between zero and one” (Zadeh 1965, 261).  
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Solving a problem with the fuzzy logic system requires four steps to be followed. The 

first is fuzzification that assigns a membership function to every variable in the problem. The 

second step includes a knowledge base defining the rules of logic. Rules follow an “if…then…” 

sequence and express logical assumptions. Third is inference, the processing of the rules. 

Boolean algebra operations (intersection, union, negation, etc.) are often used at this step in the 

fuzzy-set operations. Lastly is reversing the fuzziness or the procedure of transforming the result 

of rules processing into a value indicating the final object outcome.  

2.3.1. Related Literature 

Mink (2009) discusses using the fuzzy logic approach in ArcMap to model the likelihood 

of prehistoric settlement locations in Woodford County, Kentucky. His study was used to create 

a predictive model for the Environmental Division of Kentucky Transportation Cabinet to better 

spatially estimate the probability of encountering prehistoric lithics. In Mink’s study, he used the 

classic deductive modeling approach in determining the significant factors that would influence 

the likelihood of prehistoric settlements. Mink used slope, minutes to water source, and elevation 

above water as his environmental variables. The result of his study concludes that sites were 

more likely to be within a short walking distance of water, and at low elevations.  

Vaughn (2012) explains the use of fuzzy overlay as an archaeological predictive model to 

find archaeological sites in the Pisgah National Forest. Vaughn explains that the results of fuzzy 

overlay analysis is based on the experience of different archaeologists. In her study, Vaughn 

explores two different models based on methods presented by two different archaeologists. She 

tests these methods using fuzzy overlay for both. One model is based on methods by Mink et. al 

(2009) (mentioned above) and one model is based on methods provided by National Forest 

Service (NFS). She compares the models using fuzzy overlay in order to determine whether or 
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not fuzzy overlay is an effective tool for predicting archaeology sites in the Pisgah National 

Forest. Vaughn compares the effectiveness of each model using Kvamme’s gain statistic which 

measures the accuracy and precision of a model’s findings. Specifically, the gain statistic 

measures the percent of area covered by each part of the map divided by the percent of sites in 

each part of the map. Her results showed that the NFS Model provided a smaller range of 

possibility, and the Mink model had a higher range due to the greater number of parameters. 

However, results for the NFS model provided more results of probable site areas, whereas the 

Mink model was more restricted in its results.  

2.4 Maximum Entropy Modeling 

Maximum modeling entropy works by finding the largest spread (maximum entropy) in a 

geographic dataset of known site presences in relation to a set of background environmental 

variables. According to Berger (1996) the concept of maximum entropy can be traced to biblical 

times but the introduction of computers in the 21st century has allowed its wide scale application 

for modeling in statistical recognition and pattern recognition. Berger explains that the concept 

of maximum entropy is based modeling the behavior of a random, incomplete process. To 

construct the model, one must use a sample of outputs of the real world process (e.g. using 

known archaeological site locations in a river valley, to find the probability of unknown sites). 

From the sample output, the model must construe an accurate representation of the real world 

process.  

 The widely used implementation of this technique, Maxent3, is designed to integrate with 

GIS software making data input and predicted mapped output more efficient. Maxent is a 

program originally designed for modeling species distributions from presence-only species data 

                                                 
3 Program can be downloaded at http://www.cs.princeton.edu/~schapire/maxent 
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(Elith et. al 2010, Phillips, Dudík, and Schapire 2004; Phillips, Anderson, and Schapire 2005; 

Phillips and Dudík 2008).  

The Maxent software was created by Phillips, Dudik, and Shapire in 2004 as a species 

modeling program. Using maximum entropy, the program uses presence-only data to create a 

probability distribution using environmental variables as constraints. In this project, the 

presence-only data is implemented as archaeological campsite locations instead of species data. 

Instead of species modeling, this project explores cultural modeling to find the probability 

distribution of campsite locations along the Chesapeake Bay. 

2.4.1. Related Literature 

Bevan and Wilson (2013) explain the use of maximum entropy modeling to understand 

the human settlement of Bronze Age towns on the island of Crete. Using Maxent, the authors 

relied on patchy and incomplete data to predict the networks of past settlements. The data used 

for these models included spatial site point data for the settlement. The model predicted for 

missing archaeological data by characterizing the locations of known settlements using presence-

only data. The Maxent model was able to determine which site characteristics were sufficiently 

robust to be considered reliable indicators to predict unknown settlement areas. 

Galletti et. al (2013) created a predictive model in Maxent to estimate probability 

distributions of ancient and modern terraces in the Troodos Foothills of Cyprus. The article 

explains how the Maxent model is effective in predicting potential terrace distributions whose 

locations are strongly influenced by topography. The study concludes that Maxent is effective in 

assessing environmental constraints and terrace locations and would be useful for archaeological 

modeling based on human-environment interactions.  
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2.5 Environmental Variables for Modeling Campsite Locations 

Choosing the best environmental variables to support predictive modeling in archaeology 

is critical. This section outlines previous research that identifies environmental conditions that 

have been found to be related to the location of archaeological sites. This knowledge is used to 

inform the set of environmental variables chosen for inclusion in this research. 

In Kuiper’s and Wescott’s (1999) paper, the authors explain how GIS was used for 

predictive modeling to locate unrecorded prehistoric midden sites in Maryland’s Aberdeen 

Proving Ground in the Chesapeake Bay region. The predictive model was created using both a 

deductive model (based on theories of cultural behavior) and an inductive model (based on 

observed patterns). In order to run the model, the authors created an archaeological site database, 

produced environmental GIS data layers, and used descriptive statistical analysis to calibrate the 

model. Archaeological site data was a polygon location and included the following data: site 

type, distance to water, type of water source (brackish or fresh), soil type, topographic setting, 

slope, elevation, aspect, geomorphic setting, time period, dimensions, and contents. Each of 

these environmental factors was created as a layer in the GIS using a variety of sources and GIS 

tools. The paper successfully demonstrated that midden locations were located within 500 feet of 

water, and at an elevation between 0-20 feet. 

Merwin (2002) summarizes the environmental conditions in which most coastal 

archaeological campsites were found in her study in the New York’s Harbor area. Her research 

showed that most sites are found in areas of well-drained soil, in relatively flat topography, on 

the shores of protected harbors, estuaries or streams, and adjacent to wetland areas. More 

specifically her spatial analysis revealed that most sites are found in elevations less than 20 

meters above sea level, with an average level of 10 meters above sea-level. Her study also 
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reveals that campsites are generally located on slope profiles less than 20%, with a mean slope of 

10%. Regarding proximity to water resources, including both fresh and brackish, her report 

concludes that most sites are found within 2 kilometers of waterbodies and adjacent to wetland 

areas. 

Lock and Harris (2006) explain that many sites near waterbodies are found near fertile, 

silty-loam texture soils in their predictive modeling study in West Virginia and Virginia. The 

authors conducted an environmental assessment impact study associated with the proposal to 

install a high-power transmission line between the WV and VA border. To comply with CRM 

legislation, a predictive model was created to identify the spatial probability of prehistoric and 

historic sites in the project area. For each site, they set parameters related to distance to water, 

elevation, slope, and soil type. Using exploratory data analysis, the environmental variables 

associated with known archaeology sites were explored using a graphical intuitive approach 

(GIA). The GIA drew on the review of the parameter distributions and relationships to 

understand the threshold boundaries for archaeology sites. The authors concluded that areas with 

fertile vegetation, such as forested areas, are more likely to appeal as a place for settlement than 

barren or wetland areas.  

Kvamme (1992) explains the difficulty of finding reliable data that accurately depicts the 

landscapes of the past and he notes that often archaeologists are forced to use modern maps as a 

guide. Even so, he claims that using modern maps for environmental variables are relatively 

reliable in that even though landscapes change overtime, their settings remain reasonably stable 

over a period of 15,000 years. For the purpose of this study, modern environmental variables are 

used due to lack of access to relevant representative past data, and under the assumption that 

time does not completely alter a landscape.  
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2.6 Summary 

Using archaeological predictive models is necessary to predict the probability of campsite 

locations in Virginia’s Chesapeake Bay region. As described in chapter 2, this study utilizes both 

a deductive model approach in fuzzy overlay, and an inductive approach in Maxent. In order to 

succeed in creating a predictive model to find unknown sites in Virginia, this report uses similar 

data and techniques that were implemented by Kuiper’s and Wescott (1999) Merwin (2002), 

Mehrer and Wescott, and Kvamme (1992) due to similarities in type of analysis and region of 

study. Environmental variables chosen include: distance to water, slope percentage, elevation, 

land cover, wetlands, and soils.  The next chapter explains the methodology and data used to 

carry out this project.  
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Chapter 3 Data and Methodology 

While they use the same input data, the Maxent and fuzzy overlay modeling undertaken in this 

research required different methods of data preparation. This chapter discusses the spatial extent 

of the study area and the preparation of the archaeological campsite data and the environmental 

variable data that was acquired. It concludes by describing the specific model parameters needed 

for the fuzzy overlay and Maxent modeling conducted.  

3.1 Study Area 

As explained in Chapter 1, the study area encompasses seven counties in the coastal 

plains region of Virginia, bordering the Chesapeake Bay. These counties include: Essex, 

Gloucester, Lancaster, Middlesex, Northumberland, Richmond and Westmoreland counties. The 

study area, shown above in Figure 1, encompasses an area 117 by 84 kilometers.  

The study area boundary was determined by the political boundaries of each county. The 

easternmost counties extend to the Chesapeake Bay. Each county lies within Virginia’s Coastal 

Plain (Tidewater) region, an area characterized by low, flat land adjacent to the Atlantic Ocean 

(McGlone 2008). The Tidewater gets its name from the daily tides that affect the coastal regions 

within the area (McGlone 2008). The Tidewater region lies east of the Fall Line, a natural 

boundary caused by a line of crystalline rocks, separating the Tidewater region from the 

Piedmont region (Figure 3).  
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Figure 3 Virginia’s physical regions and the Fall Line separation  

3.2 Archaeological Campsites Data 

The archaeology sites dataset used in this research contains information about campsites 

throughout the study area. Archaeological site data was provided by V-CRIS in downloadable 

excel tables for each county. In order to download this table, one must first be granted access by 

Virginia’s Department of Historic Resources. Permission was granted for this project. From the 

V-CRIS database, the excel tables were downloaded for the seven counties within the study area. 

After downloading the tables, campsites were selected from site type.  

The downloaded excel tables did not include an XY (longitude and latitude) location. 

Thus it was necessary to add coordinate columns to the table and populate them manually for 
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each site individually using the V-CRIS database map viewer. This required zooming to each site 

to be included, extracting the coordinates in decimal degrees and inputting them into the table. 

Once this was completed, the attributes became associated with a location and could be input 

into ArcMap as a vector point dataset.  

The campsites dataset has a spatial extent that encompasses most of the study area and it 

includes 216 entities (campsite points). The V-CRIS map viewer projects all archaeology site 

data in North American Datum 1983 (NAD) Universal Transverse Mercator (UTM) zone 17 

North (17N) projected coordinate system. This projected coordinate system became the baseline 

for projecting all research data. See Figure 4 for a map of the campsite points. 

 

Figure 4 Archaeological campsites 
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Although the original data includes numerous attributes that could be useful for analysis, 

there are several issues hindering their use. For example, data completeness is dependent on the 

individual who originally entered the information about each site. Therefore, some sites have 

missing data for some attributes. Also, the “time period” attribute is problematic for analysis 

since precise dates are difficult to determine for archaeological sites. Thus, many of the time 

periods entered are approximate. However, since the objective was simply to predict locations of 

campsites, these limitations in the source data were easily disregarded in this study.  

This dataset was used for two purposes in this study. It was used in Maxent as the input 

file from which to predict the presence of unknown sites. This dataset was also used to validate 

the fuzzy overlay model by comparing the predicted sites to known sites.  

3.3 Environmental Data 

Environmental data used in the models were obtained from the National Wetlands 

Inventory (NWI), the National Oceanic and Atmospheric Administration (NOAA), the 

Chesapeake Bay Program (CBP), and the U.S. Geological Survey (USGS). Slope was derived 

from the DEM file using the Slope tool in ArcToolbox. Datasets were acquired for the 

Chesapeake Bay counties of Essex, Richmond, Westmoreland, Middlesex, Gloucester, 

Lancaster, Northumberland and Westmoreland. 

For the purpose of this study, a 30 m by 30 m analysis grid was used that is aligned to the 

USGS DEMs of similar dimension. The appropriateness of this grid size for this analysis is 

supported by Campbell and Johnson (2004) who explain that the 30 m2 cell size has been used in 

many similar predictive models. The area of 30 m2 is assumed to be a good representation of the 

footprint of a campsite. All environmental attributes were generalized to this resolution. 
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In order to understand the breadth and meaning of each dataset, this section provides a 

description of each dataset used in this project, including what the data represents, dataset size, 

scale, a brief attribute description, and any issues or errors encountered. As previously 

mentioned, each dataset was projected to NAD 1983 UTM zone 17N.  

3.3.1. Elevation  

Elevation data was downloaded as a Digital Elevation Model (DEM) from USGS in 

raster format. The original USGS elevation data was created in 2001. Data was downloaded for 

the seven counties within the study area to create the elevation layer. The elevation layer 

indicates a representative elevation for the land surface included within each 30 x 30 m cell. The 

unit of elevation for this data is meters. As noted above, this cell resolution of 30 x 30 m with a 

vertical accuracy of 1 m became the analysis grid for all raster dataset conversions in this project. 

The spatial extent for this layer is the same as the study area. See Figure 5 for a representation of 

the Elevation layer. 
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Figure 5 Elevation data (meters) 

3.3.2. Chesapeake Bay waterbody 

The Chesapeake Bay waterbody data was downloaded via the Chesapeake Bay Program 

(CBP). The Chesapeake Bay layer represents the waterbody and its shoreline from which to 

measure the distance to water variable. This dataset included generalized major rivers, and the 

Chesapeake Bay. The data was downloaded as a vector polygon. The spatial extent of the 

original layer is approximately 332 km x 190 km.  

The original dataset was last updated in February 2015. Although the waterbody is 

representative of the current status of the Chesapeake Bay, it is still relevant to the research for 

this project. A historic waterbody dataset could not be obtained, and the range of time periods for 

the sites made it difficult to hypothesize a single status of the Chesapeake Bay during the period 
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of analysis. For the sake of terrestrial archaeology, the current waterbody is most relevant for 

predicting the location of sites inland. Predicting the location of sites within the waterbody 

would be useful for marine archaeology, which is not the focus of this research. The boundary is 

represented by the mean tide level. This dataset was chosen as a general representation of the 

waterbody layer. Because of the ever-changing nature of the tides and water level, the layer was 

chosen to represent the mean tide level. The representation of this layer is visible in Figure 6.  

 

Figure 6 Waterbody data 

3.3.3. Land Cover 

Land cover data for the state of Virginia was downloaded as a vector polygon from the 

USGS National Land Cover Database (NLCD). The data was later extracted for the seven 
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counties within the study area. The original spatial extent of this layer was approximately 410 x 

1886 kilometers. The most important attribute in this dataset was land cover which included the 

following categories: open water, developed, barren land, deciduous forest, evergreen forest, 

mixed forest, shrub, herbaceous, pasture, cultivated crops, woody wetlands, and emergent 

herbaceous. The land cover data was created in 2005 in vector polygon format. The smallest 

polygon in this dataset is 40.4 m2 which was important to take into account when converting to 

raster. See Figure 7 for a representation of the land cover data.  

 

Figure 7 Land cover data  

3.3.4. Wetlands 

The wetlands data were downloaded from the NWI as vector polygons for the entire state 

of Virginia. The original spatial extent of this layer was approximately 410 x 1886 kilometers. 

The most important attribute in this data set was wetland type which included the following 
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categories: estuarine and marine deep water, estuarine and marine wetland, freshwater emergent 

wetland, freshwater forested/shrub wetland, freshwater pond, lake, and riverine. The original 

dataset was last updated in May 2014. See Figure 8 for a map of the wetlands layer. 

 

Figure 8 Virginia wetlands data  

3.3.5. Soils 

The soils dataset was downloaded using the Soil Survey Geographic Database 

(SSURGO) data downloader via ArcGIS.com. This database is derived from data compiled by 

the United States Department of Agriculture (USDA) Natural Resources Conservation Service 

(NRCS). Soils data is available to download for each watershed in vector polygon format. 

Datasets for this project were downloaded for the following watersheds: Lower Potomac 

Subbasin, Lower Rappahannock Subbasin, Great Wicomico-Piankatank Subbasin, and the York 
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Subbasin. The spatial extent for this layer is approximately 243 X 239 kilometers. Key attributes 

included in these datasets are map unit name, flood frequency, drainage class, runoff, and erosion 

class. The map depicted below shows the soil regions downloaded for this project. The soil type 

attribute used for the environmental layer was too fine to depict in graphical form, as the value 

indicated for a legend exceeded 200 rows. This data was last updated in February 2014. See 

Figure 9 for a map of the watersheds used to acquire data for the soils layer.  

 

Figure 9 Watersheds used to acquire soils data  

3.3.6. Virginia Major Roads 

This dataset was used in the risk analysis portion of this project. The dataset was created 

by The Virginia Geographic Information Network (VGIN). VGIN coordinates and manages the 

development of the statewide digital road centerline data which includes: address, road name, 

and state route number. The dataset is a part of The Road Centerline Program (RCL) which is 

focused on creating a single statewide, consistent digital road file. The RCL data layer is 
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supported and maintained by Virginia's local governments, the Virginia Department of 

Transportation (VDOT), and VGIN. The RCL dataset is updated every four months for major 

roads in Virginia.  

 

Figure 10 Virginia’s major roads data 

3.4 Data preparation  

Preparation for modeling began with data collection and conversion. Data were converted 

into forms suitable for fuzzy overlay analysis and Maxent in ArcMap 10.3. Based on the 

previous research discussed in Chapter 2, it was determined that the location of potential sites 

should be modeled from the environmental variables of: distance from water, percent slope, land 

cover type, wetland type, soil type and elevation. 

3.4.1. Preliminary data manipulation 

The data used for both models are the same, however, they are utilized by the models in 

different formats. The initial preparation is relevant for both models. Additional preparation 
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needed for each model is explained in the following subsections. First, each data layer was 

projected to the NAD1983 UTM zone 17N projected coordinate system.  

Secondly, a slope layer was derived from the elevation DEM using the Slope tool in 

ArcMap 10.3. The slope was determined using percent rise rather than degree of slope. Percent 

rise is used because it most commonly used in previous archaeological research studies. 

Next, the wetlands layer, the Chesapeake Bay layer, the soils layer, and the land cover 

layer were converted from vector polygon to raster format. The new raster layers were snapped 

to the elevation layer to ensure all layers had the same cell size of 30 meters, the same spatial 

extent, were projected to the same coordinate system, and were co-registered spatially. 

Next, each layer was extracted to encompass only the study area using the Extract by 

Mask tool. Each layer was extracted to the mask of the elevation layer, and assigned the same 

environments. The next steps for each layer are explained in the following subsections for each 

model. 

3.4.2. Data preparation for fuzzy overlay 

In order to prepare the data for fuzzy overlay analysis, a number of ArcMap tools were 

used to convert the variables into the proper format. A large part of the fuzzy logic analysis 

involved use of the Fuzzy Membership tool. The Fuzzy Membership tool reclassifies data to a 

scale of 0 to 1 based on membership possibility for possible archaeological campsite locations. 

In the tool, 1 is assigned to locations that are positively a member of an archaeological campsite 

location set, and 0 is assigned to locations that are definitely not part of the set of campsite 

locations. Values between 1 and 0 indicate the strength of membership such that locations with 

higher numbers (closer to 1) are more likely to contain an archaeology site and locations with 

lower numbers are less likely contain a site. The Fuzzy Membership tool reclassifies continuous 
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raster data depending on the fuzzy function used within the tool. However categorical raster data 

(e.g. wetland type) must first be reclassified using the Reclassify tool. This tool reclassifies data 

on a 1 to 10 scale. These reclassified numbers are then input into Fuzzy Membership to correct 

the values from 0 to 1, in order to undergo fuzzy overlay analysis. Other important tools in data 

preparation were Euclidean Distance and Fuzzy Overlay which are explained later in this 

chapter. 

Elevation values were classified by the Gaussian function in the Fuzzy Membership tool. 

This function changes the original values into an average distribution. By using a Gaussian 

distribution, the midpoint of the distribution is assigned a 1 (highest probability). The highest and 

lowest numbers are then assigned 0, and the areas between the midpoints are valued as somewhat 

probable. See Figure 11 for a graphic representation on how this function works. The Gaussian 

function was chosen because archaeological campsites are most often found in midrange 

elevations. In the coastal plains area, archaeology sites vary in locations between elevations from 

0 to 20 meters. Midpoint assigned was 10, and spread of 0.1.  Therefore, numbers closest to 10 

meters has the highest membership value, and membership decreased in either direction of the 

number. This means that elevations below 0 and above 20 would be assigned 0 membership, and 
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all elevations beyond 20 up to the highest elevation of 77.5 would be assigned 0 membership as 

well. 

 

Figure 11 Illustration of the Gaussian function in Fuzzy Membership. Source: Esri Desktop Help 

Slope values were classified in Fuzzy Membership using the near function. The near 

function specifies a midpoint near a specified number that is assigned the highest membership. 

The further from this specified number (in positive and negative directions), it is deemed less fit. 

Figure 12 shows a graphic on how this function works. Sites are most likely found in areas with 

a 3-7 slope percentage, and 5 was used as the “near” number. The near function was used rather 

than the Gaussian because of the specific number in which sites are likely to be found. The gap 

between 3-7 slope percentage is small, and so a 5 was deemed the near number.  
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 Figure 12 Illustration of the Near function in Fuzzy Membership Source: Esri Desktop Help  

The wetlands layer was input into Raster Calculator to impose a constraint on this layer. 

The constraint assigned the whole area of wetlands with a value of 0 (not in the suitable set), and 

remaining cells within the study area (using the elevation layer as a mask) were assigned 1 

(definitely suitable). There was no need to use the Fuzzy Membership function on this layer 

since the reclassified layer contained the correct values. 

Because land cover data was comprised of categorical data (land cover), the layer was 

input into the Reclassify tool to assign land cover type values. Land cover data was reclassified 

by land cover attributes using the Reclassify tool numbering types between 1-5. Land cover 

types “deciduous forest”, “evergreen forest”, “mixed forest”, and “cultivated crops” were 

assigned a value of 1. “Open water”, “hay/pasture”, and “developed” were assigned a value of 3 

because it is not known what historic land cover was in these places. Lastly, all wetlands and 

emergent wetlands were assigned a value of 5. The small function Fuzzy Membership was used 

on this data set, assigning smaller values a higher membership and higher values a lower 

membership. Figure 13 is a graphic that shows how this function works. 
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Figure 13 Illustration of Small function in Fuzzy Membership Source: Esri Desktop Help 

 The soils layer was converted into a classified raster using the attribute soil type. 

Because soil types are categorical data, the layer was reclassified using the Reclassify tool. The 

most suitable soils for sites were assigned a value of 1 and least suitable soils were assigned a 

value of 5. Silty and loamy texture soils were assigned a value of 1, sandy soils were assigned a 

value of 3, and gravelly soils were assigned a value of 5. The small Fuzzy Membership function 

was used to calculate the fuzzy values.  

Preparing the water layer for model analysis started with inputting the data into the 

Buffer tool. In order to accommodate the fluctuation of low and high tides, a buffer of 150 

meters from the shoreline was created. Then to calculate distance from water, the waterbody 

buffer was input into the Euclidean distance tool to calculate distance to water features. The cell 

size set in this tool was 30 meters to match the elevation layer, and the maximum distance was 
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set to 2000 meters to accommodate the walkability to a water source. The resulting water 

distance layer was input into the Fuzzy Membership tool using the small function, indicating 

areas closer to the water were more suitable than areas further away. 

3.4.3.  Preparation of data for Maxent 

Three kinds of data files are required for Maxent: several co-registered ASCII format 

raster environmental layers, a .csv file of site locations and, optionally, a bias file indicating the 

extent of the model processes. Preparing data to input into Maxent was done in ArcMap 10.3 and 

Microsoft Excel.  

The environmental layers used in the Maxent model were wetlands, slope, elevation, 

soils, and landcover. For processing in Maxent, it was necessary simply to convert the raster 

layers described in Section 3.4.1 into ASCII format.  

The required .csv file indicates the known site locations from which the model derives 

suitable location conditions to predict where possible unknown sites are located. Based on that 

information, the model uses the environmental variables (soils, water, wetlands, land cover, 

elevation and slope) to determine other areas that are suitable. The bias file indicates the 

boundary extent for the model, and the area in which sites are suitable.  

As mentioned previously, the campsite points Excel file was converted into a comma 

separated values (.csv) file to be input into Maxent. The extent of the study area was earlier 

created by selecting Essex, Richmond, Lancaster, Middlesex, Gloucester, Northumberland, and 

Westmoreland counties from the US Counties file, then merging this into a single polygon. The 

bias file was created by converting the study area polygon feature into raster format using the 

Polygon to Raster tool, using the DEM raster template to ensure the layer was coregistered with 
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all the others. Lastly, the file was converted into ASCII (.asc) format to be input into the Maxent 

model.  

3.5 Model Implementation 

This section explains how the fuzzy overlay and Maxent models were implemented. In 

order to run the models, different parameters need to be set as explained below.  

3.5.1. Running Fuzzy Overlay 

The fuzzy membership layers (fuzzy elevation, soils, fuzzy slope, fuzzy wetlands, fuzzy, 

water distance, fuzzy land type) are simultaneously input into the Fuzzy Overlay tool. In this 

case, the Fuzzy Overlay type used was AND. The fuzzy AND overlay type returns the minimum 

value of all the sets for each cell. This technique is useful in identifying the least common 

denominator for the membership of all the input criteria The result was an output producing 

possible archaeological campsite locations. 

In order to ensure successful model results, the model was run several times with slightly 

different fuzzy values in order to achieve a result indicating a good fit. The process of iteration 

was utilized mainly on the distance to water parameter and the fuzzy overlay operator.  

3.5.2. Running Maxent 

Maxent builds models by beginning with a uniform distribution of probability of 

occurrence over the entire environmental extent. According to the user manual (Phillips 2011), 

this distribution uses the environmental layers and presence sites input into the model. Then, the 

model conducts an optimization routine that iteratively improves model fit by iteratively running 

analyses. Fit is measured as gain. The gain is the deviance statistic that maximizes the 

probability of the site presence in relation to environmental data. Gain increases with each 
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iteration.  The final probability distribution produces the output showing the probability of the 

presence at any location.  

In the Maxent interface, the comma separated values campsites file was input as the 

‘Samples’ file to indicate known site locations. The slope, elevation, land cover, soils, water, and 

wetlands files were input into the ‘Environmental Layers’ path. The counties bias file was input 

into the bias file input. The model was set to run with a random seed, subsample type model with 

a random test percentage of 25%, and 50 replications. These parameters allowed the model to 

withhold a random 25% of the archaeology site samples in each of the 50 replications in order to 

calculate probability values and gain. The model was also set to test 80% of the sample size 

using the “default prevalence” parameter which indicates the probability that an individual is 

observed at a suitable location. At the completion of the processing, the model creates outputs 

into a user specified folder with graphs, and ASCII versions of the maps. These results are 

explored in the next chapter.   

3.6 Risk Analysis  

In order to display the value of using models to predict campsite locations, a risk analysis 

was conducted. The risk analysis shows which areas within the study region are at potential risk 

of human degradation and sea-level rise. The process of risk analysis was conducted using binary 

overlay using the Raster Calculator tool in ArcMap. For this analysis, the major road layer was 

used to calculate one aspect of human degradation. The waterbody layer was used to represent 

distance to water and DEM was used to indicate elevation and used to calculate sea-level rise.  

In order to calculate the threat of sea-level rise, several parameters were set to indicate 

risk areas, which were input into Raster Calculator. The Euclidean distance from water layer was 

used to set the distance to water parameter. Arbitrary distances were used to limit the boundary 
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of the results. Using the elevation layer, areas with an elevation rise of three meters above sea-

level were extracted to indicate water rise. The elevation of three meters above sea-level was 

chosen because this is regarded as the projected maximum sea-level rise by 2100 (Lowery 2012). 

These data layers were created using raster calculator using a constraint equation to limit the 

results to these parameters.  

After the variables were created, the sea-level rise layer, water distance layer, and model 

results were overlaid to indicate areas at potential risk. Using a binary overlay method, the fuzzy 

overlay model results with potential site locations above 0.75 were overlaid with each distinct 

water distance, and with the sea-level rise to indicate areas where potential archaeological camp 

sites were at risk. The same binary overlay method was used with the Maxent results to 

determine risk to high probability sites. 

For the purpose of this demonstration, calculating potential threat from human 

degradation was indicated by nearness to major roads. The major roads layer was used to 

indicate areas of potential development because zoning data, although preferable for analysis, 

was unavailable for each county. The major roads layer was deemed a suitable, general measure 

of human degradation because of the concept of transit-oriented development. According to 

Belzer and Autler (2002), transit-oriented development is based on the principle of businesses, 

and residential areas being constructed close to major roadways for more efficient travel to work, 

goods, and services.  Areas within two-kilometers of a major road were deemed “at risk”. In 

order to calculate urbanization risks, the same overlay method described above was used. The 

single buffer layer was overlaid with each model result to indicate potential risk areas. 

Having outlined the data used for this study and the methods applied, the next chapter 

explores the results.   
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Chapter 4 Results 

This chapter explains the results of each modeling process. Although the desired outcome for 

each model is similar, the manner in which these methods are implemented are unalike. The 

process of fuzzy overlay analysis is produced by an organized, deductive workflow, inputting 

features into a process, and receiving an outcome to input into another process until the final 

outcome. The inductive process of maximum entropy inputs variables into a machine learning 

algorithm and iterates the model process, to receive the outcome. 

 The fuzzy overlay analysis produced results by overlaying the fuzzy environmental 

layers. The output from fuzzy overlay is a raster layer with high and low values in which higher 

values indicate areas that are more suitable and low values indicating areas that are less suitable. 

Maxent produced results through a probability distribution using presence point data (campsites) 

and background environmental variables. Maxent outputs a map in ASCII grid format that can be 

imported into ArcMap to produce a raster layer. The raster layer shows high and low values, 

similar in appearance to those produced in fuzzy overlay, with high values indicating areas with 

a high probability of being suitable for sites, and low values indicating areas of less probability. 

Maxent also outputs several plots and tables indicating the reliability of the model and how each 

environmental variable functioned in the model. These outputs include: jack-knife testing 

determining the importance of each environmental layer, response curves indicating how the 

model responded to each environmental variable, and the area under the receiver operator curve 

(AUC) indicating the fitness of the model. The results of each model are further explained 

below. 
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4.1 Fuzzy Overlay Results 

Calculation of fuzzy overlay analysis results was determined using fuzzy logic. Fuzzy 

logic uses a continuum of logical values between 0 (completely false/unsuitable) and 1 

(completely true/suitable). Values in between are conditions that are “partly true” and “partly 

false”. This logic was applied to campsites due to the elements of uncertainty in finding them, 

and the lack of discrete variables. Concrete variables cannot be calculated because strict 

boundaries for archaeology sites are hard to define, and sites are susceptible to their 

environment. In this project, fuzzy overlay analysis was used to predict the possible site locations 

for unknown archaeological campsites locations. Fuzzy membership for layers is determined by 

known suitable environmental conditions, as proposed in prior research. As mentioned above, 

each factor (elevation, slope, soils, distance to water, wetland type, and land cover) was assigned 

a fuzzy membership based on suitable attribute conditions. These features were then overlaid on 

top of each other with the AND fuzzy overlay operator to determine the locations that are most 

suitable for sites.  

As mentioned above, the combination of fuzzy membership layers used the AND 

operator. The AND operator determines the minimum value for each cell of all input fuzzy layers 

to create the output layer. In doing so, the operation determines the least common denominator 

for membership criteria. Figure 14 shows the site suitability map that resulted from fuzzy overlay 

analysis. Suitability values range from 0 to 1 and are classified into 4 equal classes plus None for 

values of 0 (shown in dark green). Values from .76 to 1 are represented by red (high suitability), 

from .51 to .75 by orange-red (moderate suitability), from .26-.5 by yellow (slight suitability) 

and from .1 to .25 by green (low suitability).  
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Figure 14 Fuzzy overlay results indicating site suitability 

The areas of high suitability are limited, and clustered towards the coastline of the study 

area. A majority of the region is “slightly suitable” or “not suitable”. At a quick glance, the result 

is satisfactory in that it is focused in particular areas, making potential archaeological surveys in 

these areas limited to the areas close to the shoreline. Regarding access to resources, the result 

makes also sense, especially near the waters of the Rappahannock River and York River shown 

on the map. Less suitable areas are inland, further away from river access. Comparing the 

environmental variable layers to the output, it appears there are distinct variables that contributed 

to the model results. The high probability site areas are clustered close to the coastline of the bay, 
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and near river inlets. Two main environmental factors would contribute to this trend: elevation 

and distance to water. Closer to the shoreline, the elevation is lower and would lie between the 

predicted range of between 0-20 feet. The distance to water also appears to be a high 

contributing factor which reflects the parameter that a water source should be within reasonable 

walking distance (2000 meters). 

In order to assess the accuracy of the model, the results of the fuzzy overlay prediction 

were compared to known archaeological campsite locations. Figure 15 below shows the location 

of campsites over the fuzzy overlay suitability map. Clusters of known archaeological sites 

appear along the Chesapeake Bay in the predicted high suitability areas. However, the 

relationship between these distributions is not immediately apparent given the cell size at which 

the analysis was conducted.  
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Figure 15 Fuzzy overlay results with archaeological camps 

To explore this relationship further, Table 1 below shows the number and percentage of 

each known archaeological sites found within each suitability area displayed in the map. In total, 

approximately 122 archaeological sites (out of the total 216) are found in high suitability areas, 

38 are found in moderately suitability areas, 25 are found in slightly suitable areas, 23 are found 

in low suitably areas, and 8 are found in none suitability areas. Thus, 56% of known archaeology 

sites are found in high suitability areas. A chi-square test was also performed on the values 

output for each category. After running the chi-square test, the probability of the distributed sites 

was 0.0015, indicating the models nonrandom distribution of results.  
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Table 1 Known Sites within Suitability Locations 

Suitability level # of sites % of sites 

High 122 56 

Moderate 38 17 

Slight 25 12 

Low 23 11 

None 8 4 

Total 216 100 

4.2 Maxent Results 

As mentioned above, Maxent requires a samples .csv file with the sites locations and a set 

of environmental layers. In this project, the environmental variables included were the same as 

those in the fuzzy overlay analysis. 

Figure 16 below shows the results of the Maxent model run. The results are relatively 

similar to those produced by fuzzy overlay analysis. The map shows areas of high suitability in 

red and low suitability in green. The areas of high suitability are clustered close to the 

Chesapeake Bay shoreline, similar to the results output by fuzzy overlay. However, Maxent has 

more areas of green (not suitable) than are displayed in the fuzzy overlay output.  
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Figure 16 Maxent results indicating site probability 

As part of Maxent’s output, the model’s results are summarized in plots and graphical 

form. The outputs are produced by different diagnostic tests run. These diagnostic tests include 

response curves, contribution and permutation importance, and jack-knife testing. The purpose of 

these diagnostic test outputs is explained below. 

First of the diagnostic test results that Maxent produces are response curves. These curves 

show how each environmental variable affects the Maxent prediction. The graphs produced show 

how the logistic prediction changes as each environmental variable is varied, keeping all other 
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environmental variables at their average sample value. In Philips et. al (2011), the authors 

explain that marginal curve plots can be misleading if environmental variables are correlated. 

However, in this study, none of the variables are correlated and therefore the curves are not 

affected. The curves show the marginal effect of changing exactly one variable, whereas the 

model may take advantage of sets of variables changing together. Figure 17 below shows the 

marginal response curves produced by Maxent. The graphs show the mean response of the 50 

replicate model runs (shown in red) and the mean standard deviations (shown in blue). The 

values shown on the y-axis represents the predicted probability of suitable conditions, the x-axis 

represents metric values for continuous data and categories for categorical data. For example, the 

elevation response curve shows a high response for low elevation values which dips and has a 

low response for medium elevation values, and then a high response for large elevation values.  

 

 

Figure 17 Marginal response curve 

Maxent also produces the test omission rate and predicted area as a function of the 

cumulative threshold, averaged over the replicate runs. The omission rate should be close to the 

predicted omission because of the cumulative threshold. In this particular model, the mean 
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omission is overlaid on top of the predicted omission, in other words, the predicted omission 

shown by the black line, is covered. This indicates the omission rate was reliable. Unless the 

predictions are biased, the blue and red lines will occur at a on the same slope. In this case, the 

predictions are recorded as non-biased on the graph.  

 

 

Figure 18 Average omission and predicted area for campsites 

The next diagnostic output by Maxent is the receiver operator characteristic (ROC) curve 

for the same data averaged over replicated runs. The specificity is defined using predicted area, 

rather than true commission (Phillips et al. 2006). In this model, the sensitivity analysis graph 

shows how well the model performed in the prediction of occurrences compared to the random 

selection of point sites. The ROC calculates the percentage of true and false positives to 

determine the effectiveness of a model. The ROC statistics calculates the tradeoff between 
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sensitivity and specificity within the models. When produced in graphical form, the line curve 

produced indicates the effectiveness of the models. Line curves that are at the 45-degree point or 

below in the graph indicate that the model is less effective, whereas a line above the 45-degree 

point are more effective. Here, the AUC value of 0.758 is high, indicating the prediction is non-

random.  

 

Figure 19 Maxent model sensitivity 

Another key output by Maxent is a table that calculates the percent of variable 

contribution and the permutation of importance for each variable. Table 2 displays the output 

provided from Maxent. While Maxent is running, it keeps track of which environmental 

variables are contributing to the model fit. According to Phillips tutorial, each step of the Maxent 

algorithm increases gain of the model by modifying the coefficient for a single feature and the 



51 

 

program assigns the increase in gain to the environmental variables that these features depend 

on. This is converted into percentages at the end of the model processes, providing the table 

below. The table provides estimates of the relative contributions of the environmental variables 

to the model. In the table below, it shows that Maxent used the elevation, soils, and water 

variables the most in its model process. The right hand column displays the permutation of 

importance. These values are calculated only in the final Maxent model that is iterated. The 

contribution for each variable is determined by randomly permuting the values of that variable 

among the training points (both presence and background) and measuring the resulting decrease 

in training AUC.  A large decrease indicates that the model depends heavily on that variable.  

Values are normalized to give percentages. 

Table 2 Permutation of importance of each environmental variable 

 

Lastly, Maxent provides a graph of the Jackknife of Regularized Training Gain. The 

graph shows the training gain of each variable if the model ran the variable alone, and compares 

it to the training gain of the rest of the variables. This graph is especially useful in identifying 

which variables contribute the most individually to the model.  Figure 20 shows the regularized 

training gain for the variables run in this model. The jackknife graph supports the table above in 

displaying the elevation, distance to water, and soils variables as the highest contributing 

variables to the model. 
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Figure 20 Jackknife of regularized training gain  

Given all of these results, it is appropriate to conclude that the Maxent results are stable 

and successful. It can be concluded that the Maxent prediction is good with respect to the data 

provided.  

4.3 Comparison of Model Results 

One objective for this research was to compare the results of these two methods. In order 

to show the range of predicted values for each, an overlay analysis was used to compare the 

results of each model. The results are compared at different scales in order to indicate the range 

of model prediction values. 

In order to effectively evaluate the range of results between Maxent and fuzzy overlay, 

the site potential values for each model were split into increments of 25%. This percentage 

corresponds with the result values of each model indicated in the section above. For instance, the 

range of 0-25% corresponds with the values between 0.0 and 0.25 in the model results. For this 

analysis lower percentages correlate with areas of low site probability or suitability and high 

percentages correlate with high probability or suitability. The analysis is split into four levels of 

site predictability increments, 0-25%, 25-50%, 50-75%, and over 75%. 100% is not indicated in 
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this analysis because neither of the models resulted in a 100% values. For each increment of 

suitability/probability, the results were compared to indicate in which areas the models produced 

the same results and which areas the model differed in predictions.  

The results for each increment are illustrated below. Figure 21 displays the comparative 

results of each models predictions with a 0-25% probability/suitability of an archaeological 

campsite presence. The red sections in the map indicate areas where both models predicted a 0-

25% probability of site presence. Areas indicated in yellow display where only fuzzy overlay 

indicated suitability for sites. The purple areas indicate areas where Maxent predicted the given 

range of probability of sites. The green areas indicate areas out of the range of probability (over 

0-25%). Consecutively, Figure 22 compares the results of 25-50% range of predictability for 

each model, Figure 23 compares the results of 50-75%, and Figure 24 compares the results of 

predictions over the 75% range. These maps show that the lowest and highest range of 

probability/suitability areas have a greater area of matching results. This conclusion is supported 

by a visual comparison of the results of each model and by the calculation of the count of grid 

cells for each comparative map category shown in Table 3. It is also evident that both models 

produced a much more limited area for highly likely/suitable potential site locations. The lower 

values cover a more expansive part of the study area in both sets of results.  
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Figure 21 Comparison of areas with 0-25% site potential results of models 
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Figure 22 Comparison of areas with 25-50% site potential results of models 
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Figure 23 Comparison of areas with 25-50% site potential results of models 
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Figure 24 Comparison of areas with over 75% site potential results of models 

Table 3 Count of grid cells from comparative analysis 

Category Match 

Count 

Fuzzy Overlay 

Only Count 

Maxent 

Only Count 

Below 25% 581,502 2,013,707 1,164,708 

25-50% 413,888 1,159,207 1,420,602 

50-75% 185,490 822,321 1,102,642 

Above 75% 259,661 659,771 842,426 

4.4 Risk Analysis Results 

The objective of the demonstration risk analysis was to assess potential threats to 

predicted sites in the Chesapeake Bay area. Risks assessed were sea-level rise and human 
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degradation resulting from nearness to major roads. This overlay analysis for the risk assessment 

was kept simple as it was not the primary goal of this project. Rather it is included as a 

supplement to the research, showing how modeled results can be used in threat analysis for 

cultural resource management purposes. The figures below display the relationship between 

areas of each potential threat and each of the model results: the fuzzy overlay suitability 

locations and the Maxent high probability locations. 

Calculating the sea-level rise results involved overlaying three layers: the model result 

layer, the meters above sea-level layer, and the distance to water layer. The model result layer 

only includes area of high probability (above 0.75). The results for the risk of sea-level rise risk 

overlaid on the fuzzy overlay site suitability is displayed in Figure 25. Red represents high risk 

of destruction from sea-level rise, yellow represents a moderate risk, and blue represents a low 

risk of destruction. Figure 26 displays the risk analysis of sea-level rise for the Maxent results.  

Calculating the risk analysis for threat of human degradation involved overlaying the 

distance to roads layer and the model results layer. The results of the human degradation risk 

analysis for fuzzy overlay is displayed in Figure 27 and the results of the risk of human 

degradation risk for Maxent results is displayed in Figure 28. 
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Figure 25 Risk of sea-level rise to highly suitable locations from the fuzzy overlay analysis 
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Figure 26 Risk of sea-level rise for Maxent results 
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Figure 27 Risk of urbanization for fuzzy overlay results 
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Figure 28 Risk of human degradation for Maxent results 

4.5 Summary 

Chapter 4 provides the results of each model, the comparative results of each model, and 

the results of the risk analysis. The model results indicate that archaeological campsites are likely 

to be found relatively close to the shoreline. As indicated by the Maxent results, the elevation, 

soils, and distance to water layer held the most importance in determining the probability of site 

locations.   
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Chapter 5 Summary and Conclusions 

The purpose of this project was to evaluate the effectiveness of the fuzzy overlay model and 

Maxent model for predicting the presence of unknown archaeological sites along Virginia’s 

Chesapeake coast to aid in their preservation and site management. This chapter discusses and 

compares the results of each model, evaluates model effectiveness and addresses the results of 

the risk analysis.  

5.1 Model evaluations 

Because the way in which each model runs is different, the evaluation for each is also 

different. While Maxent has diagnostic tools included in the program to ensure the best possible 

model fit for the environmental variables given, fuzzy overlay requires manual evaluation. 

Although the results of each model are relatively different, the performance of each model are 

good.  

For Maxent, model performance is indicated by the test omission rate and predicted area. 

In the model, the mean omission is overlaid on top of the predicted omission, indicating the 

omission rate was reliable (see Figure 18). The performance of the Maxent model is also 

diagnosed by the receiver operator characteristic (ROC) curve. The ROC calculates the 

percentage of true and false positives to determine the effectiveness of a model. In Maxent, the 

ROC is produced in graphical form. Line curves that are at the 45-degree point or below in the 

graph indicate that the model is less effective, whereas a line above the 45-degree point are more 

effective. In this model, the AUC value of 0.758 is high, indicating the prediction is non-random 

(Figure 19).  
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For the fuzzy overlay model, Model results were also compared to known archaeological 

site point data. In this instance, 56% of sites fell within the high predicted ranges and a chi-

square test determined the distribution of results was nonrandom. 

In order to assess the results, the outcome for the Maxent model and for the fuzzy overlay 

model were compared. Comparing the models visually, it appears that the areas of prediction are 

relatively similar, with Maxent producing a more limited area of prediction. However, when 

comparing the results together in one map, it is evident that each model produced moderately 

different results. The differences in each models results are due to the different methods by 

which each model evaluates the environmental variables to produce results.  

In fuzzy overlay, a deductive approach, variable parameters are set by the researcher and 

then undergo fuzzy membership and overlay to produce a result. Maxent, an inductive machine 

learning method, finds the largest spread of potential site presence based on correlations between 

the site point data and the input environmental variables. Maxent output provides information 

regarding which environmental factors have the highest importance to the model. In this case, 

elevation had the highest impact while soils and wetlands had low impact on the model. 

However, the fact that the models did have some prediction overlap for the most likely or 

suitable areas for sites indicates that the models were effective.  

5.2 Modeling for Risk Analysis 

The risk analysis portion of this project demonstrated how the presence of threat can be 

related to the location of highly likely or suitable sites as predicted by the models. Such a process 

shows how such archaeological prediction models can be used in cultural resource management, 

urban planning and site preservation. The results of the risk management show that areas with a 

high probability of predicted sites (over 75%) are threatened by sea-level rise and urbanization. 
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The simple analysis shows that there is a large area within the study region that poses a risk of 

urbanization to the predicted sites (see Figure 27 and Figure 28). The risk of sea-level rise in the 

study area is also prevalent at varying degrees (see Figure 25 and Figure 26). The risk analysis 

outlines critical areas for CRM archaeologists and land management agencies to survey for 

preservation of sites. In conjunction with archaeological prediction models, risk analysis is a 

great way to prioritize cultural areas for preservation and management.  

5.3 Limitations and Observations 

This study was conducted in order to determine whether a deductive model approach and 

an inductive model approach could be used to predict the probability of campsite locations and to 

establish whether or not these sites are at risk of human degradation and sea-level rise. Although 

the models appear to be successful, there are limits to the analysis of results. Ideally, in order to 

justify whether or not these models were successful, archaeological survey would need to be 

conducted in these areas to ensure that sites exist in the areas that models produced a high 

probability of sites. Due to time constraints and lack of resources, a large-scale survey was not 

conducted. 

The study was also limited by available data to conduct risk analysis. As mentioned in 

Chapter 3, county zoning data would have been ideal for calculating risk of human degradation. 

However, instead, the major roads layer was used to indicate proximity to urban zones with 

heavy human traffic, and represent the potential for growth.  

Lastly, in order to improve this study, a comparison of the permutation of importance of 

environmental variables could be used to check the fuzzy overlay analysis. As indicated by 

Maxent, the soils, elevation, and distance to water variables carried the most importance in 

predicting the probability of site locations.  
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5.4 Future work 

For future work, using inductive and deductive models together could help determine the 

probability of site locations. This could especially be helpful in the continuation of CRM projects 

to help cut costs and efficiently find site locations. Maps and graphical output produced by these 

models allow CRM archaeologists find areas of the greatest probable importance when presented 

with a road proposal, or building construction. In conjunction with a sophisticated risk analysis, 

CRM archaeologists could focus resources and survey time to areas that hold the highest 

probable risk of destruction and the highest probability of a site location. 

 Perhaps in future studies, Maxent could be used to distinguish how to use environmental 

variables for other models such as fuzzy overlay. Because of its inductive approach in which it 

uses environmental variables to determine the presence of sites, it could aid in better deductive 

reasoning when searching for archaeological sites. The Maxent model provides the necessary 

input needed to make decisions on where to find sites. If the environmental parameters in fuzzy 

overlay mirrored those in Maxent, it could improve the fit of the model.  

5.5 Conclusion 

This study demonstrates the effectiveness and importance of APMs in predicting the 

probability of site locations. Both inductive and deductive APMs prove to be successful and with 

similar trended results. The research presented in this thesis provides the basic methodology to 

be carried out for future projects to use and improve. The results of the models are especially 

helpful for CRM archaeology in finding the probability of site locations for survey areas when 

building roads, buildings, businesses etc. Combined with the risk analysis, the model results also 

show the importance of APMs in finding possible site locations for historic and prehistoric 

preservation.   
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