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Abstract 

With advancements in GIS technology and computer capabilities there has been an increased 

interest in species distribution modeling (SDM). Previous works have focused on creating SDMs 

to determine presence while many ignore how the environment interacts with the species 

abundance levels. This study attempted to determine the most suitable method for predicting 

spatial distribution as well as the abundance of several different fish species in Lake Ontario. Ten 

fish species that were observed in Lake Ontario benthic trawling surveys at least 5% of the time 

between 1978 - 2014 were used to develop models. Subsets of the original dataset were also used 

to account for periods of time that saw major changes in Lake Ontario. This included a dataset 

before the invasion of dreissenid mussels, a dataset after the invasion of dreissenid mussels, and 

a dataset for the years limited to when Round Goby (Neogobius melanostomus) occurred within 

the trawling surveys. Generalized Linear Models (GLM), Generalized Additive Models (GAM), 

and Geographically Weighted Regression (GWR) were compared to each other to determine the 

best method. Habitat variables used to determine abundance relationships consisted of depth, 

fetch, fishing depth temperature, distance to major rivers and wetlands, as well as the presence of 

other fish species in the trawl. Adjusted R2 and Cohen’s Kappa were the primary indicators for 

determining the best method. None of the methods were able to produce good models with the 

habitat and biological data used. GWR did show an improvement in overall modeling 

performance, based on this study’s criteria, over GLM and GAM. This was done by producing 

adjusted R2 and Cohen’s Kappa values similar to the GAM models while using a less complex 

regression model by using fewer predictive variables.
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Chapter 1  Introduction 

The ability to model species distribution has benefited ecologists, wildlife managers, and 

conservationists by helping them determine where a species can be found, what areas are most 

important for preservation, or what environmental and biological factors significantly influence 

the targeted species. Species distribution models (SDM) not only assist in better understanding 

for desired or endangered species but could also be used to determine how invasive species 

spread and to track their progress. SDMs can also assist in determining what possible actions 

could be done to influence the distribution of a species or if altercation of an area could impact a 

species distribution (Guisan et al. 2013). While SDMs should not be used as the sole factor in 

conservation decisions, they can be a powerful tool in identifying the best locations to focus on, 

what actions can be taken to remedy the issue, and to investigate how changes in the 

environment could affect distribution.  

Geographic information systems (GIS) and remote sensing technology have allowed 

researchers a greater ability to assign habitat data to species observational data. As GIS and 

remote sensing technology advances, better resolutions of data are becoming more readily 

available. In the past, broad scale representations of environmental variables such as land cover, 

elevation, and other variables were available but these environmental variables were often too 

different in scale compared to observational data to properly represent the environment of the 

observed location. This often led to the aggregation of observational data into larger areas that 

could match the environmental variable resolution (Graham et al. 2001, Nishida & Chen 2004). 

With finer scale remotely collected data as well as more effort to collect habitat data from the 

field becoming more available, the ability to aggregate observational data in smaller areas or to 

keep as individual observational records could become more common. 
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Observational data for distribution modeling typically comes in two different forms, 

presence and absence data or presence only data. Presence and absence data is collected when an 

observer studies an area and documents if the target species is present or not. While data can be 

collected on the habitat characteristics of absence locations it does have the potential to include 

numerous zeros into the dataset. While access to presence and absence data is preferred, it is not 

often available.  

Presence only data is collected when an observer documents only where the target 

species is encountered. Thus, locations where the species does not occur (absences) are not 

recorded. The analysis of presence only data sometimes requires the fabrication of pseudo-

absences, which are randomly generated points within the study area that are considered 

absences but were not actually observed. Since absences were not recorded by an observer, it is 

possible that a pseudo-absence can occur at a location that is truly a presence (Graham et al. 

2004). Observational data that does not properly sample the entire study area could lead to biased 

results because some habitat types might have not been sampled at all even though they may be 

included in the study area over which the model was developed. This research depended upon 

presence and absence data that contained species count numbers, allowing not only for the 

habitat of absences to be known but different abundances as well.  

The choice of the SDM method to use is highly dependent on the availability of 

observational data and the dispersal of that observational data. The choice of SDM methods is 

also subject to the needs of the analyst. SDMs that simply predict where a species could or could 

not be have commonly been used for plants and animals. Methods such as Bioclim, Domain, 

GARP, and Maxent have been used for numerous studies but only allow for results ranging in 

values of 0 to 1, with 0 being an absence and 1 being the highest probability that the target 
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species is present (Hernandez et al. 2006). Presence and absence distribution can be useful with 

rare species where abundances are overall low. When knowing where the lowest and highest 

abundances are likely to be found is important, these methods would not offer as much insight as 

Generalized Linear Model (GLM), Generalized Additive Model (GAM), Geographically 

Weighted Regression (GWR), and Artificial Neural Networks (ANN). The use of regressions 

and ANN allow for not only presence distribution to be determined but also abundances to be 

calculated from observational data. Regressions and ANNs are also beneficial when relationships 

between the target species and environmental variables are not completely understood. 

1.1 Motivation 

Having the ability to predict the distribution and abundance of an aquatic species would 

allow lake managers, conservationists, and commercial fisheries to better utilize their time and 

resources for accomplishing their mission statements. Knowing the best modeling method to use 

in a particular situation should lead to the development of better predictions and more informed 

species management decisions.  

Since presence and absence only prediction results can only predict distribution, they are 

unsuitable for use in predicting abundance. This limited function of presence and absence only 

predictions, which is utilized by methods like Bioclim, Domain, GARP, and Maxent would not 

be useful for this study. ANN has been considered a powerful tool due to its ability to determine 

non-linear relationships to predictors which could allow for better identification of sparse 

distribution (Pearson et al. 2002). Although ANN has the capability to predict abundance values 

and has had success outperforming other methods it was been observed to overfit (Heikkinen et 

al. 2006). This tendency to overfit could lead to some variables to being seen as more significant 

than they truly are or significant when they are not. If researchers focus on variables made to fit 
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the model, they could possibly ignore other available data that could be better suited for use in 

the model or prevent them from considering other environmental variables that can be collected 

from the field to improve their models. To overcome this setback, a method is needed that can 

allow analysts to predict abundance values as well as control the possibility of overfitting the 

model. 

Environmental conditions can assist in species distribution modeling because of the 

requirements and preferences of each species. For example, water temperature can be used to 

determine where cold or warm water species can be found. Depth could assist in helping to 

predict where light sensitive species are located. Biological data could be used to indicate food 

availability or the existence of competition.  

While all the mentioned methods have their merits, this study focused on GLM, GAM, 

and GWR. These methods were chosen because they can develop predictions that not only note 

presence but provide an abundance estimate. The possibility of overfit can be somewhat limited 

by limiting the number of variables used to explain the response. An additional reason these 

modeling method were selected was that it is not entirely clear what environmental influences 

are most significant for predicting abundance of fish species. Rather than have an ANN that 

could overlearn using a non-significant predictor until it fits the data, the selected regression 

methods can potentially help spot poor performing predictors. GLM was specifically chosen 

because it is a linear regression and would be a good base to compare with a GAM which utilizes 

smoothers that can allow for nonlinear relationships. GWR was specifically chosen to compare 

the difference between global regression equations (from GLM and GAM) and a local regression 

equation. In a small study area, a global regression equation could be suitable due to less 

variation in environmental variable values. However, in a study area that encompasses a large 
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area with sampling events dispersed throughout, model performance could do better with a local 

regression equation.  

Lake Ontario was chosen as the study area for a number of reasons; (1) Lake Ontario is 

smaller than a marine ecosystem and is more contained than a marine ecosystem but larger than 

most lakes so that a local regression equation could be better tested, (2) Lake Ontario, due to its 

commercial and recreational importance, has a wide variety of environmental and biological data 

available that can be used for analysis, (3) Lake Ontario, again due to its commercial and 

recreational importance, could greatly benefit from fish abundance prediction models.  

Better SDMs for game fish species could be used by game and wildlife officials to create 

more appropriate guidelines for catch limitations and even special regulations for specific 

regions for the lake. By creating stable fish populations the recreational fishing industries 

involved in a number of the cities and towns that border Lake Ontario could have long term 

fisheries security. Industrial fisheries could use the SDMs to determine the most efficient areas to 

harvest while limiting the number of harvesting events, avoiding sensitive areas for rare species, 

and reducing overall bycatch. Lake mangers and conservationists could better determine which 

areas of the lake are most significant to a rare or endangered species and best utilize time and 

funding by focusing their efforts on those areas. Research biologists could utilize SDMs for 

better time and fund management by focusing on areas with the highest abundances for 

collecting samples as well as lower abundance areas to study reasons for lower numbers. 

The proper use of SDMs to support fisheries management decision making for Lake 

Ontario could help sustain stable fish population by promoting better understanding of the key 

environmental variables. These models can also be used to gain understanding of interaction 

relationships between different species.  
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1.2 Research Questions 

This study aims to identify which regression method performs best with predicting the 

distribution and abundance of Lake Ontario fish species. Secondarily, this study attempted to 

develop models that could better predict both distribution and abundance. The predictor variables 

used in this study include environmental data collected at the time and location of the trawling 

event as well as environmental data developed from remote sensing. Environmental data 

obtained from remote sensing largely focused on the trawling event’s distance to an object (i.e. 

river mouth or wetland) since the values of distance vary smoothly, do not change over short 

time ranges, and can be directly computed. While spatially and temporally dynamic variables 

such as primary production, dissolved oxygen, or other water quality characteristics could also 

be determined by remote sensing or extrapolation from point sources, it would be difficult to 

capture this data at the specific time and place of the trawling events. Therefore, the dynamic 

environmental variables used for this study were collected in situ at the same moment as the 

response variable so that they match both the temporal and spatial scale of the species density 

data. The presence and abundance of other species will also be used as a predictor variable for 

developing models.  

By creating a variety of SDM models from a large collection of both fish density and 

environmental data collected in Lake Ontario, this study aims to answer the following research 

questions: 

1) Which modeling method yields the best overall results; Generalized Linear Model, 

Generalized Additive Model, or Geographically Weighted Regression? 

2) Does a local regression (GWR) perform better than a global regression (GLM and 

GAM)? 
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3) Given the various measures of model success discussed in this thesis, can good 

distribution or abundance models be produced for any fish species using these methods?  

1.3 Summary 

In order to develop SDMs that can predict abundance as well as presence, the best 

modeling method must first be identified. Generalized Linear Model, Generalized Additive 

Model, and Geographically Weighted Regression methods were investigated to determine which 

performed the best using both environmental and biological predictor variables. This study 

investigated which method worked the best with fisheries data and if a local regression 

outperforms a global regression. This study also investigated if models with high adjusted R2, 

≥0.70, and Cohen’s Kappa values that suggest moderate or better agreement between observed 

and predicted values could be produced with the predictor variables used in this study.  

The next chapter details preliminary research that was done to understand problems that 

exist with fisheries datasets and to explore how successful previous research was at using GLM, 

GAM and GWR methods for prediction of fisheries distribution and abundance. Chapter 3 

outlines the source and type of data used for the analysis. Chapter 4 outlines the procedure that 

was used to develop and the criteria used to compare the results for the GLM, GAM, and GWR 

methods. Chapter 5 provides the results from all three modeling methods. Chapter 6 summarizes 

conclusions arising from the results and explains which method was determined to perform best 

at developing Lake Ontario fish distribution and abundance models. 
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Chapter 2 Background 

To help identify issues in performing the intended GLM, GAM, and GWR a review was done on 

the general issues that exist in dealing with aquatic or fisheries data. Research into past studies 

using fisheries data was also performed to determine the successes and failures of past attempts. 

This insight into past research made it possible for solutions to be made in this study to correct 

issues that have arisen for others. The history of Lake Ontario was also studied to make an 

account of any major events that occurred within the lake that may impact the fish populations.  

2.1 Fish Observation Methods and Issues 

Unlike terrestrial or avian species that can be tracked with GPS, satellite imagery, and 

remotely or personally observed in the field, an aquatic species is very difficult to track and 

monitor. GPS and radio transmissions are often limited to larger fish and aquatic animals due to 

device size and concerns on how it may negatively affect the subject (Bryne et al. 2009). GPS 

also requires the subject to remain close to the surface, ~1.5 meters, for the device to broadcast 

(Sims et al. 2009). While advancements with satellite imagery and its ability to penetrate surface 

water are being made, there is still a severe limit of how deep the view can go and it is highly 

dependent on the clarity of the water system. Landsat imagery used for determining water depth 

through remote sensing showed that results rarely exceeded 25 meters due to visual limitations of 

the equipment (Stumpf et al. 2003). While this may allow researchers to track large aquatic 

animals like whales and some sharks that are near the surface or to monitor coral reefs, it would 

be of little to no use in assisting to identify benthic species. 

The biggest difficulty in studying an aquatic species is that it cannot be studied in its 

native environment successfully. While some submersibles, both manned and unmanned, can 

view the target subject in their habitat, the observer’s intrusion into the environment alone can 
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likely influence the target’s behavior, as would a diver (Usseglio 2015). The inability to observe 

the target species without altering its behavior creates a profound lack in the understanding of 

what influences the target.  

Traditionally the most common method of determining a fish species presence and 

abundance is through sampling with either a passive or active method (Schlieper 1972). Passive 

methods would include stationary traps or nets that fish swim into and become entrapped. Active 

methods include field personnel using moving nets/seines, hooks, or electricity to collect fish. 

More modern techniques now involve tags detected by buoys and handheld devices as well as 

cameras (Sippel 2015, Fukuba 2014).  

Both traditional and new techniques have their pros and cons. Traditional methods, like 

nets and electric shock, generally offer a snap shot of the conditions at a single time, but are well 

tested and are capable of capturing large numbers of individuals. With new methods, like tags 

and cameras, obtaining movement data is now possible. However, with tags the individual fish 

needs to be captured for implantation and observation cameras rely heavily on light conditions, 

depth, and water clarity. While these new methods offer new insights into fish behavior, they are 

unlikely to be able to assist in large scale abundance studies for multiple wild population species.  

2.2 Previous Fish Modeling Research 

Species distribution modeling has been a growing tool for the last few decades as 

biological understanding and technological advancements have been made. However, as 

mentioned before, most of that research has been focused on plants and animals in terrestrial 

settings. For this study, emphasis was placed on reviewing research using GLM, GAM, and 

GWR in marine and lacustrine ecosystems. 
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2.2.1. Great Lakes fish species distribution and abundance research 

McKenna and Castiglione (2014) produced distribution and abundance models for Silver 

Chub (Macrhybopsis storeriana) in the western basin of Lake Erie using an ANN. The 

observational data used by McKenna and Castiglione was collected by a combination of 

electrofishing and trawling events undertaken by US and Canadian agencies. While the study did 

include a number of environmental variables, McKenna and Castiglione did not include any 

biological predictors. This lack of biological data could be due to the absence of any useable 

datasets, which can be the case when working with targeted surveys and not community wide 

surveys. 

McKenna and Castiglione were also interested in extrapolating the results of the model 

into unknown areas of the western basin of Lake Erie to see what the theoretical range and 

abundances of Silver Chub would be. This extrapolation was based solely on environmental 

habitat needs and could explain why biological data was not used for the analysis. Since 

biological predictor data is rarely available for large areas it would be difficult to extrapolate the 

model predictions into unknown locations. The environmental predictors that were most 

significant in their datasets were the cosine of direction to nearest delta wetland, cosine of 

direction to nearest open wetland, sinuosity of the nearest shoreline, submerged aquatic 

vegetation covering ≥50% of the bottom substrate, water depth, distance to nearest open wetland, 

distance to nearest protected wetland, distance to nearest large river mouth, nearest shore line 

geomorphic type, coastal reinforcement condition of nearest shoreline, mean surface water 

temperature, and coefficient of variation of surface water temperature. 

 The ANN used for this study produced R² values greater than 0.8. Cohen’s Kappa was 

also used to determine how much agreement not associated with chance existed between 

predicted and observed values. Kappa values for their moderate and high abundances were 
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considered to be fair or substantial using a ranking system by Landis and Koch (1977). While 

these results from the ANN were good, the paper fails to indicate if or how observations were 

aggregated before modeling.  

2.2.2. Generalized Linear Model only fisheries research 

Nishida and Chen (2004) utilized the GLM regression method in an attempt to see if the 

inclusion of a spatial autocorrelation parameter in the GLM could improve performance for 

determining longline catch per unit of effort (CPUE) of Yellowfin Tuna (Thunnus albacares) in 

the Indian Ocean. Nishida and Chen included this spatial autocorrelation component as 

covariograms using an exponential model, spherical model, Gaussian model, and a linear model. 

To avoid issues with zero value data, Nishida and Chen added to all the data a constant that was 

equal to 10% of the global CPUE mean. Data was also aggregated in units of 5° latitude by 5° 

longitude. Other variables beside the spatial component used in the models were year, month, sea 

surface temperature, and thermocline depth. 

A total of 10 models were run, two with no spatial component and eight which 

incorporated the spatial component. The two GLM with no spatial component models, one 

incorporating a habitat based model and the other not, resulted in coefficient of determination 

(R2) values of 0.585 and 0.602 respectively, both with the highest Akaike Information Criterion 

(AIC) values out of all 10 models. The eight GLM with a spatial component, four incorporating a 

habitat based model and the other four not, produced R2 values ranging from 0.711 to 0.768. Of 

the four methods to calculate the spatial component, the Gaussian model achieved the highest R2 

value and the lowest (i.e. the best) AIC value in their groupings. The Gaussian model was 

followed by the spherical model, the exponential model, and the linear model in decreasing order 

of success.  



12 
 

Nishida and Chen’s study concluded that the GLM with a spatial component performed 

better in analyzing Yellowfin Tuna CPUE than a GLM without a spatial component. However, 

they also discuss how this method has not been thoroughly applied to other species, datasets, or 

location. They also discuss how this method is intended for strongly spatial autocorrelation 

datasets.  

It should be noted there is some criticism by including a spatial variable into regression to 

correct the effect of spatial autocorrelation. Carsten Dormann (2007) argues that the inclusion of 

this spatial variable can underestimate the environmental variables effect on the model and may 

introduce additional bias to the model when compared to models that do not use a spatial 

variable. 

2.2.3. Generalized Additive Model only fisheries research 

Graham et al. (2001) use a GAM as the primary modeling method when developing a 

GIS for a cephalopod fishery. Other methods of modeling are suggested in their work such as 

ARIMA, GLM, and tree-based models but there are no results or details on procedures, possibly 

suggesting a lower performance than the highlighted GAM model. Analysis was done for a study 

area encompassing a large section of European waters in the Northeastern Atlantic with 

observations aggregated to a resolution of l° longitude by 0.5° latitude cells. Environmental 

variables used for analysis were sea surface temperature, sea bottom temperature, sea surface 

salinity, sea bottom salinity, and bathymetry. 

The results for the 1990 Cuttlefish predictions were deemed “poor” at fine spatial 

resolution even though the authors observed a broad agreement between predicted and actual 

abundance at a broader scale. The authors did not report any statistical indicators of model 

performance which prevents the reader from understanding what the authors consider “poor” or 
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drawing their own conclusions on how the model performed. The poor results could be 

connected to using aggregated zones having different sized areas dependent on their latitudinal 

position. The use of predator or food source variables could have increased the performance of 

the GAM.  

2.2.4. Geographically Weighted Regression only fisheries research 

GWR is a relatively new method used to model species distribution; the earliest use of 

this method in fisheries that could be found was in 2009 in a methods comparison between 

GLM, GAM and GWR (Windle et al. 2009). A more focused study on the improvement of an 

OLS model with the use of a GWR model is the thesis of Jamie Kilgo (2012). Finding research 

focusing solely on GWR even outside the field of fisheries is difficult, an ordinary least squares 

(OLS) model is often included in the study to first determine if the data should be run with a 

GWR as well as a means to measure how much improvement the model gained. 

In Kilgo’s study fish biomass of five different reef species were modeled with seven 

available variables. The landscape variables used were nearest patch or linear reef, distance to 

boundary, coral reef proportion, seagrass proportion, macroalgae proportion, non-colonized 

pavement proportion, and sand proportion. Data exploration showed that seagrass and sand 

proportion were not suitable variables for any of the species and were not used in any of the 

models. The results of the OLS had R2 values ranging from 0.0191 to 0.2841 and the GWR with 

R2 values ranging from 0.0507 to 0.3467. Each species had an R2 value increase and a lower AIC 

value from the use of a GWR.  
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2.2.5. Comparison of methods for fisheries research 

Murphy et al. (2015) compared GLM and GAM along with a number of other modeling 

methods to determine the best method for predicting the distribution of a highly tolerant invasive 

species, Eastern Mosquitofish (Gambusia holbrooki) throughout the Iberian Peninsula. 

Environmental variables consisted of elevation, slope, topographic index, flow accumulation, 

urban land use, agriculture land use, annual precipitation, annual mean temperature, thermal 

range, population density, number of local dams, and total number of dams upstream. Cohen’s 

Kappa (k), area under receiver operating characteristic curve (AUC), and true skill sensitivity 

(TSS) were used to determine overall model performance. 

 In this study, the GAM method (k = 0.43, AUC = 0.82, TSS = 0.48) slightly 

outperformed the GLM method (k = 0.40, AUC = 0.81, TSS = 0.45). Compared to the other 

methods used, the GLM and GAM methods were only superior to the surface range envelopes 

method (k = 0.10, AUC = NA, TSS = 0.16). The GLM and GAM methods performed closest to 

the multiple adaptive regression splines (k = 0.47, AUC = 0.82, TSS = 0.49), mixture 

discriminate analysis (k = 0.43, AUC = 0.80, TSS = 0.44), classification tree analysis (k = 0.49, 

AUC = 0.81, TSS = 0.61), and artificial neural networks (k = 0.49, AUC = 0.78, TSS = 0.41) 

methods. Of the methods used boosted regression trees (k = 0.64, AUC = 0.92, TSS = 0.41), 

Maxent (k = 0.77, AUC = 0.96, TSS = 0.77), and random forests (k = 0.88, AUC = 0.98, TSS = 

0.85) methods performed the best. While results for this study showed GLM and GAM among 

the lowest performing modeling methods, this may have been due to the use of presence only 

data and was focused only on determining presence and absence rather than abundance levels. 

Windle et al. (2009) explored the possibility of a local regression outperforming a global 

technique. The species of interest was Atlantic Cod (Gadus morhua) in the Northwest Atlantic. 

Observation data was classified as present or absent, with absences consisting of catch weights 
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five kilograms or less. This was done to prevent small catches from influencing the model too 

much. Point events were not aggregated into a larger area but kept as individual events. 

Environmental variables used for the models were temperature, mean bottom depth, salinity, 

distance to shore, crab biomass, and shrimp biomass were available for analysis. The variables 

found best suited for the analysis was temperature, distance to shore, and the biomass of crab and 

shrimp. 

The resulting GLM showed the worst results with the lowest R2 (0.013) and the highest 

Akaike Information Criterion with correction (AICc) value (323.4), The GAM showed better 

results with a R2 value of 0.072 and an AICc value of 313.7, the GWR performed the best with 

the highest R2 values of (0.11-0.26) and the lowest AICc value (271.4). The correction to AIC is 

often used when observational data is small in number. While the R2 values are poor overall 

there is an improvement in prediction by using a GWR method over the GLM or GAM methods. 

2.3 Transformations and Zero Inflated Data 

Transformations can be applied to either the response or predictor variable to improve the 

performance of data analysis. There are four major reasons for a transformation to be made on a 

response or predictor variable. The first is to reduce the effect an outlier would have on the 

dataset. The second is to improve the linearity between a response and predictor variable. The 

third is to make the dataset closer to a normal distribution. The fourth reason is to stabilize the 

relationship of the mean and the variance. When extreme observations exist in the response 

variable a transformation can be used to reduce effect of extreme values. Alternatively, analysis 

methods that are better equipped at dealing with them such as GLM or GAM that use a Poisson 

distribution can be used (Zuur et al. 2007).  
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O’Hara and Kotze (2010) discuss the disadvantages and issues that arise when using 

transformations for ecological count data. O’Hara and Kotze point out that log-transformation is 

widely used with count data but there is no significant literature for a reason to use log-

transformations over other transformations. They suggest that this could be because log-

transformations are one of the first topics discussed in textbooks or that much of the analysis 

done with ecological data is by biologists rather than statisticians who would better understand 

the pros and cons of different transformation types.  

When collecting ecological count data from methods that include traps or grid searches, 

the possibility of recording zero observations is possible. While access to absences for a species 

can be useful in determining its spatial distribution, it can cause issues when determining spatial 

distribution of abundances due to the possibility of numerous zero observations skewing the data 

towards lower values. Barry and Welsh (2002) discuss how a dataset that is zero inflated can be 

difficult to predict from standard error models used with GLM. They state that if the high 

number of zeros is ignored and the model is applied with a standard Poisson error model, then 

there can be problems with inference. O’Hara and Kotze also discuss how zero observations are 

dealt with using a log-transformation by the traditional method which is to add a constant to all 

values to eliminate zeros. A value of one is commonly used but there is no method 

standardization that dictates what value should be used for a constant value and the use of 

different values could alter the fit of the model. 

Leathwick and Austin (2001) raised this issue about assuming a Poisson distribution with 

zero inflated data when modeling competitive interactions between tree species. During their 

modeling tests, they used transformed data to assume a Gaussian distribution as well as a non-

transformed dataset with a Poisson distribution, their results suggested that while the Poisson-



17 
 

based model was not ideal it was the best available. Barry and Welsh suggest that a better 

method is to model zero inflated data in two steps using the Zero Inflated Poisson method (ZIP). 

The first step is to perform a presence/absence model, 0 or 1 value, using all data. Once this 

model has been created the spatial distribution of the species in question can be determined. The 

second step is to use only the presence data to model the abundance levels values. If the models 

were to be extrapolated into unknown areas the abundance value model would only be applied to 

areas that were determined to be a presence by the first method.  

When using the ZIP method, the error of two different models would have to be 

considered when trying to make decisions from the results. Results from a ZIP method that 

produced a good distribution model but a poor abundance model would only tell a decision 

maker where the species most likely was. The model would not be able to predict abundance 

with significant confidence, leading to limits in the decisions that could be made. A result that 

produces a poor distribution model but a good abundance model could misidentify which areas a 

species could be found in.  

Barry and Welsh raised the subject that a Poisson based model would not be able to 

predict a large amount of zeros with a zero dominated dataset. However, this is discussed mainly 

in association with non-mobile species such as trees, as was the case in the research done by 

Leathwick and Austin. However, when dealing with mobile species, such as fish, an absence 

does not necessarily mean that the area is not used by the species but simply was not in the 

location at the time of sampling. The ability to observe mobile and non-mobile species also plays 

a role, it is easy to search a grid and determine the exact number and position of a tree species, 

but the capture of fish species is not as efficient and false zero observations are possible. So 

predicted values from a Poisson method that does not match observed zeros could be studied and 
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compared with nearby sampling locations as well as observations from previous years, if 

available, to determine if the value could be a true absence or if the predicted value is possible. 

2.4 Relevance to this Research 

Most of the previous research for GLM, GAM, and GWR is based on comparison studies 

to see which model performs best. Marine ecosystems were also commonly used for the study 

areas for GLM, GAM, and GWR. This is likely a result of the importance of finding commercial 

fisheries in such large areas. Much of the research available on fisheries species distribution 

models focuses on presence and absence data that is better modeled with methods other than 

GLM, GAM, and GWR (Murphy et al. 2015). ANN modeling with abundance categories also 

seemed to outperform GLM, GAM, and GWR but no studies could be found that included all 

these models to predict abundance values. 

While past research showed that ANN has performed better than GLM and GAM, they 

can be more susceptible to overfitting if environmental relationships with the target species are 

not completely understood. As discussed above, including many environmental variables can 

also lead to the possibility of overfitting the model. Models that are the result of overfitting could 

lead to misinterpretation of significant variables and possibly result in poor decision making in 

conservation or harvesting operations. 

Since environmental relationships are not fully understood with the species in this study, 

ANN was not be used because of this susceptibility. An additional reason ANN was excluded as 

a method was due to the complexity of the model that is developed. 

When comparing GLM, GAM and GWR with each other, GLM has often been seen as 

the poorest performing method with GAM boosting performance. GWR, when compared to 

GLM and GAM, showed an increase in performance in both R2 and AIC values. The previous 



19 
 

research seems to indicate that fisheries data is often better modeled with a nonlinear method 

(GAM) than a linear method (GLM) when using a global regression. When comparing the 

performance of a global regression and a local regression, the local method tends to outperform 

the global method. The previous research also stresses the importance of choosing the modeling 

method that fits the data distribution (Gaussian or Poisson).  

One of the biggest issues that many researchers must overcome is the large number of 

zero data values. This is the reason that many choose to use observations as presence and 

absence only. The decision to model with the zeros as is or to implement the ZIP method should 

depend on whether the researcher is confident that the zeros in the data are either true absences 

or false absences due to gear malfunction or simply bad timing and luck. This study did not 

implement the ZIP method since it would add too much complexity to model development, 

making it difficult to compare base performance between GLM, GAM, and GWR. 

The study by McKenna and Castiglione showed what lake wide environmental data was 

currently available to use in analysis for the Great Lakes region. The environmental data shown 

to be available by McKenna and Castiglione in combination with the success other methods have 

had by including biological data, gave needed insight into the predictor variables that are most 

suitable to use for model development. 

2.5 Research Gaps 

There are a number of gaps in current research in fisheries species distribution modeling. 

The most notable of these are:  

(1) The use of biotic variables in distribution models is lacking in many studies. The 

presence and abundance of food or a predator could not only influence the 

probability of presence but the abundance of the target species as well.  
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(2) Many of the studies focus on the water surface temperature, most likely due to the 

readily available sources. While the surface temperature can give an idea of the 

temperature just below the surface, it would not be relevant to fish further from 

the surface.  

(3) The largest gap in fisheries species distribution models is the focus on presence 

probability. By modeling for abundance as well as distribution, the models would 

better locate important habitats indicated by the higher abundances. 

This research sought to address these gaps. 

2.6 Study Area: Lake Ontario 

The study used in the analysis is Lake Ontario. While the observational and 

environmental attributes are the focus of the analysis, it is also important to take the history of 

the study area into account. Because it is not possible to obtain a dataset covering the entire time 

period of the study area, it is wise to know what the state of the study area was prior to the 

creation of the datasets just as much as the state during the dataset.  

2.6.1. Physical characteristics 

Lake Ontario is the eastern most of the Great Lakes situated between New York State, 

USA and the Providence of Ontario, Canada (Figure 1). The lake is located at the lowest 

elevation of all the other Great Lakes as well as having the smallest length, breadth, land 

drainage area, water area, total area, and shoreline length. While Lake Ontario might have the 

lowest values of these features, it does have an average water depth greater than all the other 

lakes beside Lake Superior. Maximum water depth is also greater than Lake Erie and Lake 

Michigan. While the smallest of the Great Lakes, it still has more volume than Lake Erie. Lake 

Ontario’s retention time is one of the shortest with only a period of six years. This retention time 
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is much shorter than lakes Huron, Michigan, and Superior who have retention times over 20 

years (Botts & Krushelnicki 1987). Table 1 summarizes all of these details. 

 

Figure 1 Study Area: Lake Ontario (black box) in the Great Lakes region 
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Table 1 Physical Characteristics of the Great Lakes. Numbers in parenthesis indicate where the 
lake ranks among the Great Lakes with 1 ranking the highest values. * indicates that the physical 
characteristic was measured using the low water datum. ** indicates that island shorelines were 

included in the measurement. Source: Botts & Krushelnicki 1987 

Attribute Ontario Erie Huron Michigan Superior 
Elevation (m)* 74(4) 173(3) 176(2) 176(2) 183(1) 

Length (km) 311(5) 388(3) 332(4) 494(2) 563(1) 

Breadth (km) 85(5) 92(4) 245(2) 190(3) 257(1) 

Average Depth (m)* 86(2) 19(5) 59(4) 85(3) 147(1) 

Maximum Depth (m)* 244(3) 64(5) 229(4) 282(2) 406(1) 

Volume (km3)* 1,640(4) 484(5) 3,540(3) 4,920(2) 12,100(1) 

Water Area (km2) 18,960(5) 25,700(4) 59,600(2) 57,800(3) 82,100(1) 

Land Drainage Area (km2) 64,030(5) 78,000(4) 134,100(1) 118,000(3) 127,700(2) 

Total Area (km2) 82,990(5) 103,700(4) 193,700(2) 175,800(3) 209,800(1) 

Shoreline Length (km)** 1,146(5) 1,402(4) 6,157(1) 2,633(3) 4,385(2) 

Retention Time (years) 6(4) 2.6(5) 22(3) 99(2) 191(1) 

2.6.2. Lake History 

The history of Lake Ontario is a history of numerous changes. Many of these changes can 

be contributed to human actions on and around the lake. Settlements along Lake Ontario began 

to take off in the 1780s. With the settlements came the construction of mills and dams to meet 

the needs of the settlers. Construction of dams would become barriers for migrating species. As 

settlements grew, the need for resources to meet the demands and to create profit for the 

settlements led to an increase in land clearing for lumber and agriculture. 

 The early 1800s saw increased traffic on Lake Ontario with the introduction of 

steamships and the connection to the Erie Canal at Buffalo, Oswego, Rochester, and Hamilton. 

One of the biggest events of the early 1800s was the completion of the Welland Canal that 

connected Lake Ontario with Lake Erie. Land held by the British navy was released and more 

timber exploitation around Lake Ontario occurred leading to further landscape transformations 

around the lake. The 1830s saw the introduction of pound nets, which are trap nets with a fence 

leading toward the shore that funnels fish into the trap net. The 1850s saw the deployment of 

offshore fishing and gill nets used for major commercial fishing. The 1860s was the peak of mill 
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and dam construction in the Lake Ontario basin. Generation of hydro-electric power from the 

Niagara River started in the 1870s. The 1870s was also the peak period for timber exploration 

around the lake. 

 The deployment of cotton gill nets into the lake occurred in the early 1900s, an 

improvement over older gill nets. The 1950s saw the first signs of concern for high lake levels 

and shore erosion. The 1960s marked a major event with the opening of the St. Lawrence 

Seaway to ocean shipping. These vessels would become a key player in the unintentional release 

of several exotic species. Regulation of outflow from the lake began as well. Eutrophication, 

which occurred due to the result of nutrient loading, the primary nutrient being phosphorus, 

became an issue in the 1960s. The 1980s saw additional remedial actions implemented to address 

increases in toxic substances as well as a growing concern of habitat loss, increased shoreline 

development and the effects of high lake levels on shore stability. 

 To combat further eutrophication and to return the lake to a more historic production 

level, the Canada-US Great Lakes Water Quality Agreement was signed in the 1970s. The intent 

of this agreement was to reduce nutrient loading in hopes of lowering the productivity of the 

Great Lakes. A significant decrease has been observed (Sly 1991). The EPA set a trophic state 

goal of oligomesotrophy, which was considered to have been met in 2012 (Sullivan 2015).  

2.6.3. Species invasions and declines 

As with most ecosystems that have major a human influence, there have been many cases 

of exotic species, some intended and others unintended, introduced to Lake Ontario. These exotic 

populations have occurred at all trophic levels and often include many species that have a 

primarily marine distribution (Stoermer et al. 1985).  
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The 1830s saw the collapse of Atlantic Salmon (Salmo salar) stocks. Alewife (Alosa 

pseudoharengus) became naturalized within Lake Ontario in the 1870s. From the late 1800s and 

early 1900s saw Lake Sturgeon (Acipenser fulvescens) become very scarce. Sea Lamprey 

(Petromyzon marinus) became abundant in Lake Ontario in the 1920s. The 1940s saw the 

collapse of Lake Trout (Salvelinus namaycush), Burbot (Lota lota), Lake Herring (Coregonus 

artedii), and Deepwater Ciscoes (Coregonus johannae) stocks. While these species were 

declining, Rainbow Smelt (Osmerus mordax) were rising to become one of the dominate species. 

In the 1950s controls were enacted to limit the number of Sea Lamprey in Lake Ontario. 

The mid 1900s also saw the White Bass (Morone chrysops), Blue Pike (Sander vitreus glaucus), 

and Deepwater Sculpin (Myoxocephalus thompsonii) disappear from the lake. The 1960s saw the 

collapse of whitefish stocks in the eastern portion of Lake Ontario. Lake Trout and salmonids 

saw a rebound in stocks but were highly dependent on human stocking efforts in the 1980s. 

Whitefish stocks also began to recover in the 1980s (Sly 1991). 

The end of the 1980s marked the invasion of Zebra Mussels (Dreissena polymorpha) 

(Griffiths et al. 1991). The 1990s saw the introduction of other invasive species such as the 

Round Goby (Neogobius melanostomus) and Quagga Mussel (Dreissena bugensis) (Owens and 

Dittman 2003, Mills et al. 1993). The Lake Ontario deep water benthic community was 

historically comprised of the dominate Diporeia spp. as well as sphaeriids, oligochaetes, and 

chironomids (Cook and Johnson 1974). In the 1990s these deep water benthic organisms began 

to decline with spread of Zebra and Quagga Mussels (Watkins et al. 2007). 

2.7 Summary 

This review of research about SDMs developed using fisheries data shows that GAMs 

often outperform GLM. The studies also indicated that GWR use in fisheries is relatively new 
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but shows promise modeling improvements over GLM and GAM. A large range of 

environmental variables have been included in previous fisheries research, which suggests an 

appropriate set of predictor variables for this research. Research into the history of Lake Ontario 

revealed that there were numerous occasions when human development heavily impacted the 

lake. One of the biggest impacts to face the lake was the introduction of a number of invasive 

species. This suggests that the use of temporal subsets of the fisheries data used in this study that 

focus on the years before and after the introduction of the biggest threats may provide useful 

insights. The next chapter explores the data used in this study.  
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Chapter 3 Data 

To develop the models, both environmental and biological datasets were collected to be used for 

predictor and response variables in the GLM, GAM, and GWR methods. Research into the 

history of Lake Ontario helped identify which years should be used to create dataset subsets that 

contained periods with the most meaning. This chapter explores the biological and 

environmental datasets that were used. 

3.1 Biological Data 

Benthic trawling surveys were obtained through personal contact with the United States 

Geological Survey’s (USGS) Lake Ontario Biological Station, one of the Great Lake Research 

Centers, located in Oswego, NY. The primary purpose of these bottom trawls is to assess the 

status of important prey fishes. Bottom trawls are done in the spring for Alewife, summer for 

Rainbow Smelt, and in the autumn for Slimy Sculpin (Cottus cognatus) and Deepwater Sculpin. 

While the surveys are targeted at specific species, non-target species were always counted as 

well. The specific months during which each of these surveys were conducted were chosen 

following a study undertaken in 1972 when trawls were performed throughout May to October to 

determine the times of peak catches of the target species (USGS 2012).  

Surveys are done with a fixed station sampling design, which is commonly used in the 

other Great Lakes as well as in northern Europe. The fixed stations used for these surveys are 

often confined to the same area year after year at the same depths year after year. It is assumed 

that mean abundance from fixed station surveys will not be biased if the fish population are 

randomly distributed. The assumption that fish populations are randomly distributed in the 

geographic area was confirmed with the use of acoustic sampling done during the 2004-2006 

Alewife bottom trawl surveys (ICES 2004). 
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The trawls that occurred at these stations were done at a standard 10 minute bottom drag. 

While time on the bottom of the lake was roughly similar between events the area swept from 

surface to bottom was heavily dependent on the depth being sampled. This created a greater area 

swept for deeper water and less area swept for shallower water with depths ranging from 5 

meters to 215 meters. The range of area swept in the dataset used was approximately 1,100 

square meters to approximately 25,300 square meters. 

Until 1997, bottom trawls were conducted with a Yankee trawl with a 12 meter headrope 

and flat rectangular trawl doors. In 1997, increased dreissenid densities interfering with trawls 

led to a change to use of a 3-in-1 bottom trawl with an 18 meter headrope and slotted, cambered 

V-doors. Yankee bottom trawls were still used for deep waters until 2004 where dreissenid 

densities were low. In 2011, the 12 meter Yankee trawl once again returned to being the only 

gear type used.  

The trawl dataset obtained from the USGS consisted of a .csv file. Each trawl has an 

assigned unique identification number and the starting point for each trawl is included as lat/long 

coordinates. In addition to the number of individuals caught, the Lake Ontario Biological Station 

included their calculations for area swept and density (fish per square meter) for each fish 

species in each trawling event. Table 2 shows the columns in the original .csv file.  
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Table 2 USGS Database Field Descriptions 

Field Name Description Format 
OP_ID Operation ID Numeric 
YEAR Year of the operation Date 

OP_DATE Julian date of operation Date 
LATITUDE Latitude coordinate for start location Numeric 

LONGITUDE Longitude coordinate for start location Numeric 
TARGET Target species code Coded Value 

TARGET_NAME Target species name Text 
FISHING_TEMP Temperature at fishing depth Numeric 

FISHING_DEPTH Fishing depth Numeric 
SPECIES Species code Coded Value 

COMMON_NAME Species common name Text 
N Number of individuals Numeric 

WEIGHT Weight of individuals Numeric 
areaSampled_m2 Calculated area swept (m2) Numeric 
Number_Npm2 Calculated density of species (fish/m2) Numeric 
Weight_gpm2 Calculated weight of species (g/m2) Numeric 

 

A list was compiled of the fish species that were observed in at least 5% of the total 

number of trawls, resulting in ten species to model. The species present in sufficient abundance 

were Alewife, Round Goby, Johnny Darter (Etheostoma nigrum), Lake Trout, Yellow Perch 

(Perca flavescens), Slimy Sculpin, Rainbow Smelt, Spottail Shiner (Notropis hudsonius), 

Threespine Stickleback (Gasterosteus aculeatus), and Trout Perch (Percopsis omiscomaycus).  

Since each species had a record in the original .csv for each unique event, for the 

purposes of this research, it was necessary to reorganize the table so that there was a single 

record for each unique trawling event and a column for each species. To create the response 

variables, a new field was created for each of the ten species to be modeled, labelled using a 

coded name for each. The individual species response variable fields were populated by 

multiplying the species square meter density by the average area swept (7,276 m2) and rounded 

to the nearest whole number as shown in Table 3. The actual count numbers were not used due to 

the differences in area swept. The area swept is heavily influenced by the depth being sampled, 
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so models would be more heavily influenced by the deeper trawls. The original CPUE values 

were not used due to the units being for fish per square meter, which was populated with very 

small values (0 - 32) with a mean of approximately 0.1 fish per square meter. Thus, to achieve 

fish densities more likely to be encountered in an average trawling event, the average area swept 

was used.  

Table 3 Response Variable Fields Added to USGS Database 

New Field Description 
ALEW Alewife density for average trawl length as whole number 
GOBY Round Goby density for average trawl length as whole number 
JOHN Johnny Darter density for average trawl length as whole number 
LTRT Lake Trout density for average trawl length as whole number 
PRCH Yellow Perch density for average trawl length as whole number 
SLIM Slimy Sculpin density for average trawl length as whole number 
SMLT Rainbow Smelt density for average trawl length as whole number 
SPOT Spottail Shiner density for average trawl length as whole number 
STK3 Threespine Stickleback density for average trawl length as whole number 
TRPR Trout Perch density for average trawl length as whole number 

 

Species abundances were also used as a predictor variable for other species but required a 

transformation to produce a better relationship between response and predictor. A square root 

transformation was chosen to limit the influence of extreme values without over generalizing the 

values that a Log10 transformation could have done. Thus, additional fields were created to be 

used as the predictor variables with other species that were named with the prefix sqrt and 

species code and populated with the square root of the density times 7,276 m2. Equation 1 

illustrates the formula for the Alewife species. 

𝑠𝑞𝑟𝑡𝐴𝐿𝐸𝑊 =  √𝐴𝐿𝐸𝑊 𝐹𝑖𝑒𝑙𝑑                                                    (1) 

Four datasets were created to address the important temporal ranges identified earlier. 

These included the entire time period of the database, 1978-2014; the time period before the 

invasion of dreissenid mussels, 1978-1989; the time period after the invasion of dreissenid 
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mussels, 1990-2014; and the time period of occurrence for Round Goby to only be used in the 

modeling of Round Goby, 2004-2014. These trawl event sets are shown in Figures 2 and 3. The 

1978-2014 dataset allowed the regressions to model the fish species for long term environmental 

and biological trends. The 1978-1989 dataset allowed the regression to model fish species for 

trends before the invasion of dreissenid mussels. The 1999-2014 dataset allowed the regression 

to model fish species for trends that started after the invasion of dreissenid mussels. The 2004-

2014 dataset allowed the regression to model for Round Goby during their entire occurrence of 

the species during the database extent. 

The reorganized and augmented trawling .csv table was used to create a feature class in 

Esri ArcGIS (version 10.2) named Trawling Events Complete using the trawl start location. This 

initial feature class was then used to create the data subsets based on years (Trawling Events 

1978 - 1989, Trawling Events 1990 - 2014, & Trawling Events 2004 - 2014). All four of these 

feature classes were used iteratively as input for the GLM, GAM, and GWR tools described in 

the next chapter. 
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Figure 2 Densities of USGS Benthic Trawling Events per Km2 for Each Dataset in Lake Ontario 
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Figure 3 Species Occurrences in USGS Benthic Trawl Surveys for Each Dataset in Lake Ontario. 
Alewife (ALEW), Rainbow Smelt (SMLT), Threespine Stickleback (STK3), Trout Perch 

(TRPR), Lake Trout (LTRT), Spottail Shiner (SPOT), Johnny Darter (JOHN), Yellow Perch 
(PRCH), Round Goby (GOBY), Slimy Sculpin (SLIM) 

3.2 Environmental Data 

Environmental data used consisted of temperature at fishing depth, depth, effective fetch, 

distances to major river mouths and wetlands. These conditions contribute to the distribution and 

abundance of fish species by offering the necessary needs for temperature and structure. While 

some datasets may offer direct relationships, others could offer indirect relationships, for 
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example depth plays a role in the amount of light in the water. These indirect relationships were 

used in place of direct environmental variables for which there are no datasets that match the 

temporal or spatial scale of the fish database. All predictor variables, excluding fishing depth 

temperature and species abundance, were obtained from Chris Castiglione, the GIS Coordinator 

and Fish & Wildlife Biologist at the Lower Great Lakes Fish and Wildlife Conservation Office 

in Basom, NY. This database of environmental data was created as part of the Great Lakes 

Aquatic Gap project. The objective of the Great Lakes Aquatic Gap project is to classify aquatic 

habitats in rivers, streams, and lakes in the Great Lake basin using regionally consistent methods. 

The project also aims to develop biological databases at state and regional scales as well as 

mapping actual and predicted occurrences and distributions of aquatic species (Myers et al. 

2002). All of the Castiglione data was obtained as 90 m raster files in the ArcGIS Grid format. 

The environmental data that were not collected during the trawling events were extracted 

from these rasters for each trawling point and added to the attribute tables of the four Trawling 

Event feature classes. The trawl direction is not known so only the value of these rasters at the 

start location of the trawl was extracted to the feature class point. The variation of these 

environmental values from the start and end location of any trawl was considered to be small 

enough that the value at a single point is sufficiently representative. An area average around the 

point was not done because it would likely include areas not sampled. Another reason for not 

using an area average was that the environmental variables involved distance measurements that 

would likely average down to the center tile, which would be the tile occupied by the start 

location. 
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3.2.1. Temperature 

Temperature (Temp) data was recorded at the time of each trawling event at the fishing 

depth and was included in the .csv file provided by the USGS. Since fishing depths reach deeper 

than 200 meters for some events and the average fishing depth is 60 meters, it would not be 

useful to use surface temperature. Since fishing depth temperature was recorded at the time of 

the trawling, the records match both the temporal scale and geographic scale. 

3.2.2. Depth 

 While depth was included in the .csv from the USGS, it was commonly rounded to a set 

value (i.e. 20 m, 25 m, etc.). The depth raster values were extracted to the trawling events feature 

class so a comparison of values from the USGS .csv file to the depth raster included in the 

Castiglione data could be done. This comparison was done to see if there were any major 

differences between the .csv and raster values. Major differences could have indicated that there 

was a recording error in the trawling events coordinates or fishing depth fields. Since the 

trawling events are all benthic trawls, fishing depth should have been equal or close to the value 

of the depth raster. The comparison of depth values showed that the .csv values were within five 

meters of the depth raster signifying that the fishing depth field closely matched the depth raster. 

Since the depth raster values offered more variation, these were used instead of the .csv values.  

 Castiglione created this file from raster data distributed jointly by the National Centers 

for Environmental Information, National Environmental Satellite, Data, and Information Service, 

and NOAA (Figure 4). This bathymetry data of Lake Ontario was originally collected for 

nautical navigation. US data came from the US National Ocean Service’s (NOS) Hydrographic 

Survey Data, the NOS Coast Survey, and the US Army Corps of Engineers. Surveyors collected 

data at one meter intervals for the first ten meters of depth and two meter intervals at depths 
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greater than ten meters. The Canadian waters were collected using sounding measurements 

collected by the Canadian Hydrographic Service for one meter intervals. While the data supplied 

is not meant to be used for navigation, it is considered high quality for planning and modeling 

purposes (National Geophysical Data Center 1999). 

 

Figure 4 Depth Raster for Lake Ontario 

3.2.3. Effective fetch 

 Effective fetch (Fetch) was included in the Castiglione data and shows the uninterrupted 

distance that the wind can travel over water (Figure 5). Effective fetch was calculated using the 

recommended procedure of the Shore Protection Manual (USACE 1984). Fetch is a component 

in wave action and upwelling. Because of the large range of values in fetch, a log10 

transformation (Fetch_Log) was created as an alternative variable to the non-transformed fetch in 

the modeling process. 
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Figure 5 Fetch Raster for Lake Ontario, with and without transformation 

3.2.4. Distance to major river mouth 

 The distance to major river mouth (RivDist) raster was created by calculating Euclidean 

distance from major river mouths (Figure 6). Major rivers are those of Strahler order 4 or larger 

(McKenna and Castiglione 2010). Rivers can be the source of nutrients for primary productivity 

as well as habitat for spawning. Similar to fetch, because of the large range of values in distance 

to a major river mouth, a log10 transformation (RivDist_Log) was also created as an alternative 

predictor variable.  
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Figure 6 Distance to Major River Mouth Raster for Lake Ontario, 
with and without transformation 

3.2.5. Distance to delta type wetland 

 The distance to delta type wetland (DeltaDist) raster was created by calculating Euclidean 

distance from delta type wetlands (Figure 7). Delta type wetlands are wetlands that extend out 

into Lake Ontario and are formed primarily of alluvial materials (GLC 2004). Wetlands can play 

a key role in fish species distribution by offering structural habitat or spawning areas. Because of 

the large range of values in distance to delta type wetland, a log10 transformation 

(DeltaDist_Log) again was prepared as an alternative predictor variable to the non-transformed 

distance to delta type wetland. 
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Figure 7 Distance to Delta Type Wetland Raster for Lake Ontario, 
with and without transformation 

3.2.6. Distance to protected type wetland 

 The distance to protected type wetland (ProtDist) raster was created by calculating 

Euclidean distance from protected wetlands (Figure 8). Protected wetlands are wetlands that 

have increased protection due to bay or sand-spit formations. This increased protection can cause 

an increase in sediment accumulation making them shallower and heavier in vegetation (GLC 

2004). As was done with other variables with large ranges of values, a log10 transformation 

(ProtDist_Log) was created, to be used as an alternative to the non-transformed distance to 

protected type wetland. 
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Figure 8 Distance to Protected Type Wetland Raster for Lake Ontario, 
with and without transformation 

3.2.7. Distance to open type wetland 

 The distance to open type wetland (OpenDist) raster was created by calculating Euclidean 

distance from open wetlands (Figure 9). Open type wetlands are wetlands that are directly 

exposed to the nearshore processes, a situation that results in little sediment accumulation as well 

as scarcer vegetation generally located closer to the shore (GLC 2004). A log10 transformation 

(OpenDist_Log) alternative to the original distance to open type wetland raster was also created. 
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Figure 9 Distance to Open Type Wetland Raster for Lake Ontario, 
with and without transformation 

3.3 Temporal Data 

 Year and month variables were included for consideration to account for temporal trends. 

The YEAR field already existed in the original .csv from the USGS and was included in the 

created feature class to show the year in which each trawling event occurred. A MONTH field 

was added to the feature class and the numeric value of the month calculated from the Julian date 

provided in the original OP_DATE field. The GLM and GAM tools included in the Marine 

Geospatial Ecology Tools toolbox allow for the use of categorical data so the categorical value 

of MONTH is sufficient. The GWR tool included in the Spatial Analysis extension, however, 
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does not allow for categorical data. So, in order to include month into the model, dummy binary 

fields had to be added for each month (1 if it is the labelled month, 0 if it is not). Month was 

included so that seasonal movements within the lake could be accounted for. Year was included 

to help assist in modeling for long term trends that are not yet understood or as a proxy for data 

that is not available.  

3.4 Summary 

The inclusion of transformed data as predictor variables allowed for alternatives to be 

used in the case that the non-transformed variables does not perform well in a GLM, GAM, or 

GWR. Transformations were only done with species densities and habitat variables that had 

values that varied by magnitudes. Variables like temperature and depth were not transformed 

because the ranges of values were small. As is shown in the results discussed later, the choice of 

which transformed and non-transformed variables were used was dependent on the species and 

dataset modeled. Having outlined the variables used in the models, the next chapter turns to a 

detailed discussion of the modeling methods used and the statistics employed to assess their 

effectiveness.  
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Chapter 4 Methods 

This study used the Marine Geospatial Ecology Tools (MGET) suite developed by Duke 

University to incorporate the R statistical program into ArcGIS so that GLM and GAM could be 

performed. The Exploratory Regression and Geographically Weighted Regression tools from 

Esri’s ArcGIS Spatial Analysis extension were used to determine the best predictors and 

development of the GWR model. This chapter describes the procedure used to run the GLM, 

GAM, and GWR model tools.  

4.1 Software Requirements 

 To run all necessary analysis, the statistical R (version 2.15.2) program, MGET (version 

0.8a60), and ArcGIS were required. While MGET is used as the interface that utilizes R within 

ArcGIS, the statistical program must be installed on the computer. ArcGIS Advanced license 

version 10.2.2 was used with the Spatial Analysis extension activated.  

4.2 Procedure 

 The procedure for this study required multiple GLM, GAM, and GWR models to be 

developed for each species using different datasets. The use of four different datasets created 

from different year ranges allowed for an investigation to see if a specific time period modeled 

better than others. Another key model component that was varied was the choice of Gaussian or 

Poisson distributions. This section discusses each of the modeling methods separately and 

outlines the required inputs for the tools to run as well as the outputs that are created. 

4.2.1. Generalized Linear Model 

 For a valid GLM model to be developed the following characteristics must be met: 
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1) The relationship is defined by the link function between the mean of the response and 

the linear combination of predictor variables.  

2) Data is assumed to belong to one of several distribution families including normal, 

binomial, Poisson, negative binomial, or gamma. 

3) The predictor variables used to develop the model will be statistically significant.  

4) Coefficients of predictor variables reflect an expected or justifiable relationship with 

the response variable. 

5) There will be no redundancy in the predictor variables. 

The GLM models for each of the ten fish species were developed using the MGET tool 

called Fit GLM. This tool requires an input table that contains the response variable, continuous 

predictors, and categorical predictors. The tool also requires that the response variable 

distribution be assigned. The Fit GLM tool also has a feature for automated model selection. By 

choosing the stepwise backward option, the tool runs iteratively, dropping terms from the 

original selection and calculating an AIC value for each result. The model with the lowest AIC 

value is determined to be the best model.  

 For each run, the input table was one of the four datasets created and described above. 

The response variable used was the one of the species coded fields described in the data chapter. 

The response variable distribution was run using the Gaussian method initially with all the 

variables included. The stepwise backward feature was used to reduce the number of variables 

used to five. The Fit GLM tool was redone for each species and dataset using the Poisson 

distribution. The Gaussian distribution used an identity link and the Poisson distribution used a 

log function link. The output for each Fit GLM tool run was a .Rdata file that contains the 
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regression equation and was used to calculate prediction values in the next tool. The .Rdata file is 

R statistics program file that can also be used with the MGET tool Predict GLM From Table. 

After all of the models were run, a new blank field was created in each of the four time 

period feature classes named to hold the prediction values for each of the models that were 

developed. The fields were named with the species code and the suffix _GLMG (e.g. 

ALEW_GLMG) for models using the Gaussian distribution and _GLMP (e.g. ALEW_GLMP) 

for models using the Poisson distribution. 

 Finally, the Predict GLM From Table was used to populate the newly created fields with 

the species code and suffix _GLMP and _GLMG (i.e. ALEW_GLMP). This was done by using 

the .Rdata files created from the Fit GLM tool mentioned above and the attribute table from the 

trawling event feature classes that were used to develop the model. The species response variable 

field found in the trawling event feature class attribute table was used as the observed field and 

the corresponding _GLMG or _GLMP field, depending on the distribution used, was set as the 

field to receive the predicted value for each trawling event in the feature class. The output of this 

tool was populated prediction field and R² value displayed in the geoprocessing window. This 

was done for each model run in each of the time period datasets.  

4.2.2. Generalized Additive Models 

 For a valid GAM model to be developed the following characteristics must be met: 

1) Functions are additive and the components are smooth. 

2) No redundancy in predictor variables. 

The GAM models for each of the ten fish species were done using the MGET tool Fit 

GAM. Like the GLM tool, this tool required an input table that contained the response variable, 

continuous predictors, and categorical predictors. The tool also requires that the response 
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variable distribution be assigned as well as the R package that is to be used. Unlike the Fit GLM 

tool that used a single R package for GLM, the Fit GAM tool had two packages to choose from. 

One is an older R package called gam, which allowed splines or loess functions to be used, and a 

newer R package called mgcv, which allowed for a variety of splines to be used. 

For each run, the input table was one of the four datasets created and described above. 

The response variable used was the one of the species coded fields described in the data chapter. 

The response variable distribution was run using the Gaussian method initially with the variables 

used in that species corresponding GLM model. All continuous predictor variables were set to 

use a thin plate regression spline with shrinkage and a maximum of three degrees of freedom. 

The shrinkage function would reduce any variable that was found to be insignificant to zero to 

prevent it from heavily impacting the model. The maximum number of degrees of freedom for 

the spline states how many curves the function is allowed. The setting of three degrees of 

freedom allowed for up to two curves. 

 Then the Fit GAM tool was redone for each species and dataset using the Poisson 

distribution. The Gaussian distribution used an identity link and the Poisson distribution used a 

log function link. The output for each Fit GLM tool run was a .Rdata file that contains the 

regression equation and was used to calculate prediction values. The .Rdata file is R statistics 

program file that can also be used with the MGET tool Predict GLM From Table. The same 

smoothing function and maximum degrees of freedom were used as the GAM with Gaussian 

distribution. The output for each Fit GAM tool was a .Rdata file that contains the regression 

equation and was used to calculate prediction values in the next tool. The .Rdata file is R 

statistics program file that can also be used with the MGET tool Predict GAM From Table. 

Again, new blank fields had to be created so prediction values could be added to the trawling 
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event feature classes. The fields were named with the species code and the suffix _GAMG (e.g. 

ALEW_GAMG) for models using the Gaussian distribution and _GAMP (e.g. ALEW_GAMP) 

for models using the Poisson distribution. 

 Finally, the Predict GAM From Table was used to populate the newly created fields with 

the species code and suffix _GAMP and _GAMG (i.e. ALEW_GAMP). This was done by using 

the .Rdata files created from the Fit GAM tool mentioned above and the attribute table from the 

trawling event feature classes that were used to develop the model. The species response variable 

field found in the trawling event feature class attribute table was used as the observed field and 

the corresponding _GAMG or _GAMP field, depending on the distribution used, was set as the 

field to receive the predicted value for each trawling event in the feature class. The output of this 

tool was populated prediction field and R² value displayed in the geoprocessing window. This 

was done for each model run in each of the time period datasets. 

4.2.3. Geographically Weighted Regression 

 For a valid GWR model to be developed the following characteristics must be met: 

1) Statistically significant coefficients of predictor variables. 

2) No redundancy in predictor variables. 

3) Normally distributed residuals. 

4) Over and under predictions are randomly distributed spatially. 

To determine which variables would be best to use for a GWR, the Spatial Analysis 

extension tool Exploratory Regression was used to determine the best OLS model that had a 

significant Koenker Statistic indicating that the response is non-stationary and could do better 

with a GWR. When the Exploratory Regression was finished running, the best models were 
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identified and they were then rerun using the Spatial Analysis extension tool Geographically 

Weighted Regression. 

 The Geographically Weighted Regression tool requires an input shapefile that has both 

the response and predictor variables. A kernel type was set to adaptive so that when feature 

distribution is dense the spatial context would be smaller, and if the feature distribution is not as 

dense the spatial context would be larger. The bandwidth method was set to AICc so that the 

kernel extent would be determined by AICc. The optional parameter to save the intercept and 

coefficients for variables as surface rasters was set. While the GLM and GAM tools had the 

ability to change the distribution family, the GWR tool included in ArcGIS only allows for a 

Gaussian distribution.  

 The output for the Geographically Weighted Regression tool is a table with the number of 

neighbors used for the GWR, the residual squares, effective number, sigma value, AICc, R2, 

adjusted R2, the response variable used, and the list of predictor variables used. A feature class is 

also created with fields that display the observed response value, condition number, local R2, 

predicted value, coefficient fields for intercept and predictor variables, residual values, 

standardized residuals, standard error, and standard error fields for intercept and predictor 

variables. As noted above, optional surface rasters can be created for the extent of the feature 

class for the intercept and predictor variable coefficients.  

4.2.4.  Predictor variable significance and multicollinearity 

Predictor variables were checked during model development to determine if the modeling 

tool found them significant. If a variable received a p-value of 0.05 or less, the variable was 

determined to be significant. The GAM tools offered a variety of smoothing functions, which 
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were selected to be used, that limited insignificant variables, if present, by reducing the 

coefficient value to zero.  

Multicollinearity was determined by the variance inflation factor (VIF) value that was 

calculated by each tool. The cutoff value was set to 7.5, which falls within the suggested five to 

ten range of cutoff values (Craney & Surles 2002).  

4.2.5. Model comparison 

 Several methods were used to compare models and assess their success. All models were 

compared to each other using Pearson’s adjusted R2. The R2 value is a statistical measure of how 

observed data fits the regression line. For this analysis, a R2 value for the fit between the 

predicted and observed data informed how well the model was able to predict actual values. 

However, R2 does not take into account the number of independent (predictor) variables in the 

creation of the model. Hence, adjusted R2 which does take the number of independent variables 

into account is used here. While it is arbitrary, a value of 0.70 or better was the mark set here to 

indicate a high adjusted R2 value. The 0.70 value was selected based on the work of previous 

researchers. Nishida and Chen (2004) is one of the few studies that predicted for abundances 

rather than just presence and absence. They concluded that their successful models had adjusted 

R2 higher than 0.70. 

While AIC has commonly been used in past studies to compare the results of different 

regressions against each other, there is little research on whether it is appropriate to use AIC to 

compare models that use different distribution families. Because of this lack of past research, 

AIC comparison was not chosen to be a major indictor to distinguish model performance 

between methods. While the equation for AIC is the same for both Gaussian and Poisson, the 

method by which log-likelihood is calculated is different and could lead to the inability to 
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compare Gaussian models with Poisson models (Steenbergen 2012). Even though not a major 

indicator, AIC was calculated using R and the GWR tool from ArcGIS to compare the models 

that used the same distribution family. Unlike R2, the value of AIC cannot be interpreted directly 

because of the variation in constants as well as the influence of the sample size. So rather than 

use the actual value, the change in AIC (∆AIC) was used (Burnham and Anderson 2004). 

 The models were also compared using Cohen’s Kappa values for different abundance 

categories. Cohen’s Kappa is a statistic that measures the agreement of two categorical items. In 

this study the agreement that was measured was between the observed and predicted values for a 

variety of abundance classes. Cohen’s Kappa was used because a model that has the accuracy to 

predict the exact number of fish to be found at a location is highly unlikely. What is more likely 

is the development of a model that can accurately predict a value that falls within an abundance 

category. The abundance categories that were used to determine Cohen’s Kappa values was 

presence and absence (0 or >0), low abundance (1 - 10 individuals or not), moderate abundance 

(10 - 1,000 individuals or not), and high abundance (>1,000 individuals or not). 

 Cohen’s Kappa was calculated using a cross verification table for each abundance class 

(Table 4). The table was populated with observed values in columns and predicted values in the 

rows. The frequency on whether the predicted or observed values fell within the abundance class 

range was compared between each other.  



50 
 

Table 4 Cohen’s Kappa cross verification table 

Abundance Class Observed Abundance  
Yes No  

Predicted 
Abundance 

Yes 

Both fell within 
abundance class 

frequency 
(AgreeYes) 

Only predicted fell within 
abundance class 

frequency 
(DisagreeYesNo) 

Total number of times 
predicted fell within 

abundance class 
(PredYesTotal) 

No 

Only observed fell 
within abundance class 

frequency 
(DisagreeNoYes) 

Neither fell within 
abundance class 

frequency 
(AgreeNo) 

Total number of times 
predicted did not fall 

within abundance class 
(PredNoTotal) 

  Total number of times 
observed fell within 

abundance class 
(ObsYesTotal) 

Total number of times 
observed did not fall 

within abundance class 
(ObsNoTotal) 

Total number of events 
(EventsTotal) 

 

 The cross verification table was used to calculate the observed agreement as seen in 

Equation 2. Observed agreement is the proportion where observed and predicted abundance 

values both either fall within the abundance class range or that neither of them falls within the 

abundance class range. Expected agreement, which is the proportion of agreement that is 

expected to occur by chance, is then calculated by using Equation 3. Finally, Cohen’s Kappa was 

calculated using Equation 4. 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =
(𝐴𝑔𝑟𝑒𝑒𝑌𝑒𝑠+𝐴𝑔𝑟𝑒𝑒𝑁𝑜)

𝐸𝑣𝑒𝑛𝑡𝑠𝑇𝑜𝑡𝑎𝑙
                                       (2) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =  [
𝑃𝑟𝑒𝑑𝑌𝑒𝑠𝑇𝑜𝑡𝑎𝑙

𝐸𝑣𝑒𝑛𝑡𝑠𝑇𝑜𝑡𝑎𝑙
×

𝑂𝑏𝑠𝑌𝑒𝑠𝑇𝑜𝑡𝑎𝑙

𝐸𝑣𝑒𝑛𝑡𝑠𝑇𝑜𝑡𝑎𝑙
] + [

𝑃𝑟𝑒𝑑𝑁𝑜𝑇𝑜𝑡𝑎𝑙

𝐸𝑣𝑒𝑛𝑡𝑠𝑇𝑜𝑡𝑎𝑙
×

𝑂𝑏𝑠𝑁𝑜𝑇𝑜𝑡𝑎𝑙

𝐸𝑣𝑒𝑛𝑡𝑠𝑇𝑜𝑡𝑎𝑙
]             (3) 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝐾𝑎𝑝𝑝𝑎 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
                             (4) 

 Cohen’s Kappa values were used to determine if a specific model was better at predicting 

one abundance category over another. While there is no general standard for assessing the 

significance of Cohen’s Kappa values, many authors have used the categorization that is 

displayed in Table 5 (see for example, Landis and Koch 1977, McKenna and Castiglione 2014). 

The ranking system displayed in Table 5 was used for determining Cohen’s Kappa significance 

in this study.  
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Table 5 Cohen’s Kappa value agreement ranking 

Cohen’s Kappa 
Value Agreement Ranking 

<0.01 No agreement 
0.01 - 0.20 Slight agreement 
0.21 - 0.40 Fair agreement 
0.41 - 0.60 Moderate agreement 
0.61 - 0.80 Substantial agreement 

>0.80 Almost perfect agreement 
 

For this study, a good model is one that obtained an adjusted R2 value of 0.70 or greater 

with Cohen’s Kappa values for moderate or better agreement in each abundance category. An 

adjusted R2 of 0.70 or better would show high correlation between the observed and predicted 

abundances. A moderate agreement in each abundance category would indicate a model that can 

moderately predict any abundance class, rather than be biased to predicting only lower or higher 

abundances. Additional comparisons using AIC values and a qualitative assessment of model 

structure added further insight. 

4.3 Summary 

 Using four different input datasets, the MGET GLM and GAM tools were used to 

develop 120 models with the best combination of five predictor variables for each of the two 

distribution types. The Esri tools for developing the 30 GWR models were able to determine the 

best combination of predictor variables to be used. Indicators that were used to compare the 

models were adjusted R2 and Cohen’s Kappa values. Additional insights were obtained by 

examining AIC values and model structure. The model results are discussed and compared in the 

next chapter.  
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Chapter 5 Model Results 

The MGET tools were able to run without any errors using the all the datasets and for all the 

species. However, as described below, the Geographically Weighted Regression tool produced 

errors when attempting to model Threespine Stickleback for any of the datasets. The success of 

the GLM and GAM tools and the majority of the successes for the GWR tool produced enough 

results for comparisons to be made for the three modeling methods.  

5.1 Generalized Linear Model 

 The MGET GLM toolset was able to produce results for each species and all the datasets. 

Overall results were poor for each model, the highest achieving only an adjusted R2 value of 0.63 

for Spottail Shiner in the 1978 - 1989 dataset. The Poisson distribution was able to achieve a 

better R2 value for a majority of the models. Cohen’s Kappa values were dependent on the 

distribution type used for the model. The Gaussian distribution performed better at predicting 

presence and absence whereas the Poisson distribution performed better with the moderate and 

high abundance classes. Neither distribution type was able to get any Kappa value agreement 

ranking between observed and predicted values above slight agreement. 

5.1.1. 1978 - 2014 dataset 

 The 1978 - 2014 dataset yielded overall poor results for both the Gaussian and Poisson 

distribution GLMs (Table 6). Differences between the two distribution types were small, >0.1, 

except for Trout Perch which saw a decrease, of 0.12, in adjusted R2 value when run with a 

Poisson distribution. Trout Perch (0.26) was the only species modeled with GLM that could 

explain at least 25% of the response. The Trout Perch GLM used Log10 transformed distance to 
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open type wetland, effective fetch, and the square root of Rainbow Smelt, Yellow Perch, and 

Spottail Shiner abundances as predictor variables. 

Table 6 Adjusted R2 values for GLMs for each species (1978-2014). GLMG uses Gaussian 
distribution and GLMP uses Poisson distribution. Bolded values are the 

higher between Gaussian and Poisson. 

Species GLMG 
Adj R2 

GLMP 
Adj R2 

Difference 
(GLMG-GLMP) 

ALEW 0.09 0.07 0.02 
GOBY 0.05 0.10 -0.05 
JOHN 0.04 0.04 0 
LTRT 0.10 0.08 0.02 
PRCH 0.08 0.14 -0.06 
SLIM 0.15 0.21 -0.06 
SMLT 0.12 0.13 -0.01 
SPOT 0.18 0.17 0.01 
STK3 0.01 0.03 -0.02 
TRPR 0.26 0.14 0.12 

  

The results of the Cohen’s Kappa showed that the Gaussian distribution was better at 

determining presence and absence but not as well as for moderate and high abundances 

compared to the Poisson distribution (Table 7). Neither distribution type was able to get a fair or 

higher agreement ranking between the observed and predicted values for the low abundance 

class. Trout Perch which had the highest adjusted R2 using the Gaussian distribution was able to 

get a fair agreement ranking for the presence and absence classification as well as a moderate 

agreement ranking for the high abundance class, but was only able to get a slight agreement 

ranking for the low and moderate abundance classes. 

The standardized residuals versus the fitted values for the Trout Perch GLM using a 

Gaussian distribution showed that there is a coned shaped pattern indicating that there is not 

homogeneity of the variance. There is more dispersal of standardized residuals for the higher 

values with lower values being more clustered. The QQ - Plot also indicates that the model did 

not meet the assumptions (Figure 10). When the Trout Perch standardized residuals were mapped 
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the highest (≥ 1.5) and lowest (≤ -1.5) deviation from the mean were more heavily distributed in 

the eastern portion of the lake (Figure 11).  

Table 7 Cohen’s Kappa values for GLMs for each species (1978-2014). G = Gaussian, P = 
Poisson, (*) denotes fair agreement, (**) denotes moderate agreement. Bolded values are the 

higher between Gaussian and Poisson. 

Species 
Presence Low 

Abundance 
Moderate 

Abundance 
High 

Abundance When  Species Present 

G P G P G P G P Range of 
abundances 

Average 
abundance 

ALEW 0.33* <0.01 <0.01 <0.01 0.05 <0.01 0.24* 0.31* 1 - 124,648 2,438 
GOBY 0.15 0.11 <0.01 <0.01 0.10 0.27* <0.01 0.25* 1 - 13,076 215 
JOHN 0.12 0.07 0.03 <0.01 0.14 0.26* <0.01 <0.01 1 - 10,935 71 
LTRT 0.16 0.01 0.06 <0.01 0.30* 0.29* NA NA 1 - 732 9 
PRCH 0.08 0.22* <0.01 0.08 0.21* 0.43** <0.01 <0.01 1 - 2,664 56 
SLIM 0.35* 0.03 0.02 <0.01 0.23* 0.06 <0.01 0.30* 1 - 11,595 224 
SMLT 0.06 <0.01 <0.01 <0.01 0.10 0.16 0.32* 0.41** 1 - 181,082 1,391 
SPOT 0.09 0.14 <0.01 <0.01 0.17 0.31* 0.25* 0.42** 1 - 12,055 246 
STK3 0.05 0.04 <0.01 <0.01 0.03 0.13 <0.01 0.1 1 - 16,701 138 
TRPR 0.21* <0.01 0.01 <0.01 0.14 0.12 0.60** 0.41** 1 - 23,917 358 
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Figure 10 Standardized Residual versus Fitted Value and QQ Plot for 
Trout Perch GLM (1978 - 2014), with Gaussian Distribution 
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Figure 11 Spatial Distribution of Standardized Residuals for 
Trout Perch GLM (1978 - 2014), with Gaussian Distribution 

5.1.2. 1978 - 1989 dataset 

 The 1978 - 1989 dataset saw poor adjusted R2 values, <0.25, for a majority of the species 

with both distributions (Table 8). The GLMs with Gaussian distribution produced an adjusted R2 
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value that explained at least 25% of the response for Spottail Shiner (0.30) and Trout Perch 

(0.43). The GLMs with Poisson distribution produced higher adjusted R2 values than the GLMs 

with Gaussian distribution for Slimy Sculpin (0.36) and Spottail Shiner (0.63). The GLM with 

Poisson distribution caused a slight decrease in adjusted R2 for Trout Perch (0.40). The shift 

from Gaussian to Poisson distribution showed at least a 0.10 increase in adjusted R2 for three 

species. The change in distribution more than doubled the adjusted R2 for Spottail Shiner. The 

predictor variables used for the Spottail Shiner model was the Log10 transformed distance to 

open type wetland, month, depth, and the square root of Trout Perch and Johnny Darter 

abundances. The change in distribution family wasn’t as large for Johnny Darter or Slimy 

Sculpin, but the increase did allow for more than 25% response explanation for Slimy Sculpin.  

Table 8 Adjusted R2 values for GLM models for each species (1978-1989). GLMG uses 
Gaussian distribution and GLMP uses Poisson distribution. Bolded values are the 

higher between Gaussian and Poisson. 

Species GLMG 
Adj R2 

GLMP 
Adj R2 

Difference 
(GLMG-GLMP) 

ALEW 0.13 0.17 -0.04 
JOHN 0.04 0.18 -0.14 
LTRT 0.11 0.08 0.03 
PRCH 0.12 0.16 -0.04 
SLIM 0.20 0.36 -0.16 
SMLT 0.17 0.22 -0.05 
SPOT 0.30 0.63 -0.33 
STK3 0.01 0.04 -0.03 
TRPR 0.43 0.40 0.03 

  

The results of the Cohen’s Kappa showed that the GLMs with Gaussian distribution was 

better at determining presence and absence but not as good as for moderate and high abundances 

compared to the GLMs with Poisson distribution (Table 9). Neither distribution type was able to 

get a fair or higher agreement ranking between the observed and predicted values for the low 

abundance class. Spottail Shiner had the highest adjusted R2 using the Poisson distribution was 
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able to get a slight agreement ranking between observed and predicted values for the presence 

and absence classification as well as a fair agreement ranking for the moderate abundance class, 

but could not get any agreement for the low abundance classes. The highest rank of agreement 

was moderate for the high abundance class.  

Table 9 Cohen’s Kappa values for GLM models for each species (1978-1989). G = Gaussian, P 
= Poisson, (*) denotes fair agreement, (**) denotes moderate agreement. Bolded values are the 

higher between Gaussian and Poisson. 

Species 
Presence Low 

Abundance 
Moderate 

Abundance 
High 

Abundance When Species Present 

G P G P G P G P Range of 
abundances 

Average 
abundance 

ALEW 0.34* <0.01 0.01 0.01 0.05 0.01 0.32* 0.42** 1 - 114,693 2,745 
JOHN 0.10 0.01 0.01 0.01 0.15 0.23* <0.01 0.20 1 - 10,935 64 
LTRT 0.15 <0.01 <0.01 <0.01 0.33* 0.31 NA NA 1 - 431 13 
PRCH 0.11 0.25* 0.03 0.07 0.31* 0.49** <0.01 <0.01 1 - 2,336 63 
SLIM 0.24* 0.14 0.02 <0.01 0.16 0.19 0.24* 0.46** 1 - 8,528 344 
SMLT 0.10 <0.01 <0.01 0.01 0.14 0.26* 0.35* 0.44** 1 - 72,261 2,313 
SPOT 0.28* 0.13 0.01 <0.01 0.25 0.38* 0.35* 0.56** 1 - 7,002 262 
STK3 0.02 0.08 <0.01 0.02 <0.01 <0.01 NA NA 1 - 91 6 
TRPR 0.19 0.09 0.01 <0.01 0.13 0.20 0.57** 0.53** 1 - 17,612 431 

 

The standardized residuals versus the fitted values for the Spottail Shiner GLM using a 

Poisson distribution showed that there was a coned shaped pattern indicating that there is not 

homogeneity of the variance. There was more dispersal of standardized residuals for the higher 

values with lower values being more clustered. The QQ - Plot also indicates that the model did 

not meet the assumption of homogeneity of the variance (Figure 12). When the Spottail Shiner 

standardized residuals were mapped, the lowest (≤ -1.5) deviations below the mean were isolated 

to the eastern portion of the lake (Figure 13). The highest (≥ 1.5) deviations above the mean were 

more frequently located in the eastern portion of the lake, but with a few isolated events in the 

central portion of the lake. 
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Figure 12 Standardized Residual versus Fitted Value and QQ Plot for 
Spottail Shiner GLM (1978 - 1989), with Poisson Distribution 
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Figure 13 Spatial Distribution of Standardized Residuals for 
Spottail Shiner GLM (1978 - 1989), with Poisson Distribution 
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5.1.3. 1990 - 2014 dataset 

The 1990 - 2014 dataset saw poor adjusted R2 values, <0.25, for all but one of the species 

with both distributions (Table 10). The GLMs with the Gaussian distribution didn’t get a single 

species to produce an adjusted R2 higher than 0.14. The GLMs with the Poisson distribution was 

able to produce higher adjusted R2 values than the Gaussian distribution but only Spottail Shiner 

was able to get a value greater than 0.25. The shift from Gaussian to Poisson distribution more 

than tripled the adjusted R2 value for Spottail Shiner. The predictor variables used for the 

Spottail Shiner model development was Log10 transformed distance to delta type wetland, 

distance to protected type wetland, month, and the square root of Yellow Perch and Trout Perch 

abundances. 

Table 10 Adjusted R2 values for GLM models for each species (1990-2014). GLMG uses 
Gaussian distribution and GLMP uses Poisson distribution. Bolded values are the 

higher between Gaussian and Poisson. 

Species GLMG 
Adj R2 

GLMP 
Adj R2 

Difference 
(GLMG-GLMP) 

ALEW 0.07 0.06 0.01 
GOBY 0.06 0.10 -0.04 
JOHN 0.04 0.04 0 
LTRT 0.05 0.04 0.01 
PRCH 0.06 0.15 -0.09 
SLIM 0.14 0.21 -0.07 
SMLT 0.07 0.06 0.01 
SPOT 0.09 0.44 -0.35 
STK3 0.02 0.04 -0.02 
TRPR 0.12 0.17 -0.05 

  

The results of the Cohen’s Kappa showed that the Gaussian distribution was only slightly 

better at determining presence and absence but not as well as for moderate and high abundances 

compared to the Poisson distribution (Table 11). Neither distribution type was able to get a fair 

or higher agreement ranking between the observed and predicted values for the low abundance 

class. Spottail Shiner, which had the highest adjusted R2 using the Poisson distribution, had 
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higher Kappa values than the Gaussian distribution for each category. There was a slight 

agreement ranking for the presence and absence classification and the low abundance class. The 

moderate abundance class was able to achieve a fair agreement ranking. The highest rank of 

agreement was for moderate agreement for the high abundance class.  

Table 11 Cohen’s Kappa values for GLM models for each species (1990-2014). G = Gaussian, P 
= Poisson, (*) denotes fair agreement, (**) denotes moderate agreement. Bolded values are the 

higher between Gaussian and Poisson. 

Species 
Presence Low 

Abundance 
Moderate 

Abundance 
High 

Abundance 
When Species Present 

G P G P G P G P Range of 
abundances 

Average 
abundance 

ALEW 0.39* <0.01 0.01 0.01 0.09 <0.01 0.23* 0.27* 1 - 124,648 2,265 
GOBY 0.18 0.05 <0.01 <0.01 0.12 0.22* <0.01 0.25* 1 - 13,076 215 
JOHN 0.14 0.13 0.03 <0.01 0.17 0.34* <0.01 <0.01 1 - 9,103 77 
LTRT 0.11 0.02 0.07 0.01 0.09 0.15 NA NA 1 - 732 6 
PRCH 0.07 0.21* <0.01 0.10 0.14 0.40* <0.01 <0.01 1 - 2,664 52 
SLIM 0.39* 0.01 0.03 <0.01 0.27* 0.19 <0.01 0.19 1 - 11,595 155 
SMLT 0.06 <0.01 0.01 <0.01 0.07 0.08 0.34* 0.40* 1 - 181,082 895 
SPOT 0.04 0.14 <0.01 0.02 0.08 0.30* 0.17 0.44** 1 - 12,055 227 
STK3 0.05 0.09 <0.01 0.02 0.05 0.15 <0.01 0.09 1 - 16,701 144 
TRPR 0.16 0.13 <0.01 <0.01 0.11 0.23* 0.36* 0.46** 1 - 23,917 287 

 

The standardized residuals versus the fitted values for the Spottail Shiner GLM using a 

Poisson distribution showed that there is a non-random pattern indicating that there was not 

homogeneity of the variance. The QQ - Plot also indicates that the model did not meet the 

assumption of homogeneity of the variance (Figure 14). When the Spottail Shiner standardized 

residuals were mapped the highest (≥ 1.5) deviations above the mean was more heavily 

distributed in the eastern portion of the lake, with a few isolated locations in the central portion 

of the lake (Figure 15). The lowest (≤ -1.5) deviations below the mean were also heavily 

distributed in the eastern portion of the lake with an isolated event in the western portion of the 

lake. 
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Figure 14 Standardized Residual versus Fitted Value and QQ Plot for 
Spottail Shiner GLM (1990 - 2014), with Poisson Distribution 
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Figure 15 Spatial Distribution of Standardized Residuals for 
Spottail Shiner GLM (1990 - 2014), with Poisson Distribution 
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5.1.4. 2004 - 2014 dataset 

The 2004 - 2014 dataset was used to model only for Round Goby. The GLM with 

Gaussian distribution saw a poor adjusted R2 values while the Poisson distribution was able to 

produce a higher adjusted R2 value that more than doubled the adjusted R2 of the Gaussian 

distribution (Table 12). The predictor variables used for the Round Goby model development 

was depth, temperature at fishing depth, distance to protected type wetland, month, and the 

square root of Alewife abundance. The results of the Cohen’s Kappa showed that the GLM with 

Gaussian distribution was better at predicting presence and absence (Table 13). The GLM with 

Gaussian distribution could not get any agreement between the observed and predicted values for 

the high abundances class compared to the GLM with Poisson distribution which was able to 

account for a fair agreement ranking. Neither distribution was able to get any agreement for the 

low abundance class.  

Table 12 Adjusted R2 values for GLM models for Round Goby (2004-2014). GLMG uses 
Gaussian distribution and GLMP uses Poisson distribution. Bolded values are the higher between 

Gaussian and Poisson. 

Species GLMG 
Adj R2 

GLMP 
Adj R2 

Difference 
(GLMG-GLMP) 

GOBY 0.11 0.26 -0.15 
 

 

Table 13 Cohen’s Kappa values for GLM models for Round Goby (2004-2014). G = Gaussian, P 
= Poisson, (*) denotes fair agreement, (**) denotes moderate agreement. Bolded values are the 

higher between Gaussian and Poisson. 

Species 
Presence Low 

Abundance 
Moderate 

Abundance 
High 

Abundance When Species Present 

G P G P G P G P Range of 
abundances 

Average 
abundance 

GOBY 0.21* 0.01 <0.01 <0.01 0.16 0.18 <0.01 0.37* 1 - 13,076 215 
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The standardized residuals versus the fitted values for the Round Goby GLM using a 

Poisson distribution showed that there was a non-random pattern indicating that there is not 

homogeneity of the variance. The QQ - Plot also indicates that the model did not meet the 

assumption of homogeneity of the variance (Figure 16). When the Round Goby standardized 

residuals were mapped, the highest (≥ 1.5) deviations above the mean were distributed 

throughout the central and eastern portion of the lake (Figure 17). The lowest (≤ -1.5) deviations 

below the mean were heavily distributed in the central portion of the lake.  

 

Figure 16 Standardized Residual versus Fitted Value and QQ Plot for 
Round Goby GLM (2004 - 2014), with Poisson Distribution 
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Figure 17 Spatial Distribution of Standardized Residuals for 
Round Goby GLM (2004-2014), with Poisson Distribution 

5.2 Generalized Additive Model 

The MGET GAM toolset was able to produce results for each species and all the datasets. 

Overall results were poor for each model, the highest achieving only an adjusted R2 value of 0.74 
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for Spottail Shiner in the 1978 - 1989 dataset. The Poisson distribution was able to achieve better 

adjusted R2 values for a majority of the models. Cohen’s Kappa values were dependent on the 

distribution type used for the model. The Gaussian distribution performed better at predicting 

presence and absence whereas the Poisson distribution performed better with the moderate and 

high abundance classes. Neither distribution type was able to get any Kappa value agreement 

ranking between the observed and predicted values above slight agreement. 

5.2.1. 1978 - 2014 dataset 

 The 1978 - 2014 dataset yielded mostly poor results for both the Gaussian and Poisson 

distribution GAMs (Table 14). Differences between the adjusted R2 for the two distributions 

were >0.1 for five of the ten species. The GAMs with Poisson distribution did outperform all 

GAMs with Gaussian distribution models expect for Trout Perch which had the same adjusted R2 

values for both distributions. The highest adjusted R2 value was for Round Goby (0.48), with 

Slimy Sculpin (0.40), Spottail Shiner (0.36), and Trout Perch (0.29) having at least 25% of the 

response explained. The predictor variables that were used to develop the Spottail Shiner model 

was the Log10 transformed distance to delta type wetlands, depth, month, and the square root of 

Trout Perch and Johnny Darter. The predictor variables used for the Round Goby model 

development was depth, temperature at fishing depth, distance to protected type wetland, year, 

and month.  
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Table 14 Adjusted R2 values for GAMs for each species (1978-2014). GAMG uses Gaussian 
distribution and GAMP uses Poisson distribution. Bolded values are the 

higher between Gaussian and Poisson. 

Species GAMG 
Adj R2 

GAMP 
Adj R2 

Difference 
(GAMG-GAMP) 

ALEW 0.10 0.12 -0.02 
GOBY 0.06 0.48 -0.42 
JOHN 0.05 0.17 -0.12 
LTRT 0.11 0.12 -0.01 
PRCH 0.10 0.16 -0.06 
SLIM 0.19 0.40 -0.21 
SMLT 0.14 0.16 -0.02 
SPOT 0.21 0.36 -0.15 
STK3 0.02 0.15 -0.13 
TRPR 0.29 0.29 0 

  

The results of the Cohen’s Kappa showed that the Poisson distribution outperformed the 

Gaussian distribution in determining presence and absence by producing fair agreement ranks for 

three species and a single moderate agreement ranking for one (Table 15). Neither distribution 

type was able to get a fair or higher agreement ranking between the observed and predicted 

values for the low abundance class. The GAM with Poisson distribution did outperform the Gam 

with Gaussian for the moderate and high abundance classes by producing more fair and moderate 

agreement rankings between the observed and predicted values. Round Goby had the highest 

adjusted R2 also had better Kappa values for each abundance category with the Poisson 

distribution over the Gaussian distribution. Spottail Shiner also had a higher adjusted R2 as well 

as an improvement in all abundance categories using the Poisson distribution.  
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Table 15 Cohen’s Kappa values for GAMs for each species (1978-2014). G = Gaussian, P = 
Poisson, (*) denotes fair agreement, (**) denotes moderate agreement. Bolded values are the 

higher between Gaussian and Poisson. 

Species 
Presence Low 

Abundance 
Moderate 

Abundance 
High 

Abundance When  Species Present 

G P G P G P G P Range of 
abundances 

Average 
abundance 

ALEW 0.30* <0.01 <0.01 <0.01 0.05 <0.01 0.23* 0.33* 1 - 124,648 2,438 
GOBY 0.18 0.42** <0.01 0.12 0.11 0.37* <0.01 0.52** 1 - 13,076 215 
JOHN 0.17 0.18 0.02 0.03 0.19 0.38* <0.01 0.20 1 - 10,935 71 
LTRT 0.21* 0.03 0.09 <0.01 0.35* 0.37* NA NA 1 - 732 9 
PRCH 0.03 0.23* <0.01 0.09 0.19 0.51** <0.01 <0.01 1 - 2,664 56 
SLIM 0.30* 0.10 0.02 0.01 0.22* 0.31* <0.01 0.35* 1 - 11,595 224 
SMLT 0.07 <0.01 <0.01 0.04 0.10 0.16 0.36* 0.47** 1 - 181,082 1,391 
SPOT 0.09 0.23* <0.01 0.04 0.16 0.44** 0.26* 0.44** 1 - 12,055 246 
STK3 0.12 0.29* <0.01 0.10 0.05 0.29* <0.01 0.22* 1 - 16,701 138 
TRPR 0.21* 0.15 0.01 <0.01 0.16 0.25* 0.46** 0.55** 1 - 23,917 358 

 

The standardized residuals versus the fitted values for the Spottail Shiner GAM using a 

Poisson distribution showed that there was a non-random pattern indicating that there was not 

homogeneity of the variance. The QQ - Plot also indicates that the model did not meet the 

assumptions of homogeneity of the variance (Figure 18). When the Spottail Shiner standardized 

residuals were mapped the highest (≥ 1.5) and lowest (≤ -1.5) deviations from the mean is 

primarily distributed in the eastern portion of the lake with some occurring in the central portion 

of the lake (Figure 19). The standardized residuals versus the fitted values and QQ - Plot for the 

Round Goby showed similar results as the Spottail Shiner of not having homogeneity of the 

variance (Figure 20). When the Round Goby standardized residuals were mapped, the lowest (≤ -

1.5) deviations below the mean were primarily distributed in the central portion of the lake and 

the highest (≥ 1.5) deviations above the mean were more dispersed between the central and 

eastern portion of the lake (Figure 21).  
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Figure 18 Standardized Residual versus Fitted Value and QQ Plot for 
Spottail Shiner GAM (1978 - 2014), with Poisson Distribution 
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Figure 19 Spatial Distribution of Standardized Residuals for 
Spottail Shiner GAM (1978 - 2014), with Poisson Distribution 
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Figure 20 Standardized Residual versus Fitted Value and QQ Plot for 
Round Goby GAM (1978 - 2014), with Poisson Distribution 
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Figure 21 Spatial Distribution of Standardized Residuals for 
Round Goby GAM (1978 - 2014), with Poisson Distribution 

5.2.2. 1978 - 1989 dataset 

 The 1978 - 1989 dataset saw poor adjusted R2 values, <0.25, for five of the ten species 

using either of the distribution types (Table 16). Slimy Sculpin, Spottail Shiner, and Trout Perch 
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were able to achieve an adjusted R2value greater than 0.25 using either distribution. Spottail 

Shiner and Slimy Sculpin saw an increase in adjusted R2 with the Poisson distribution, but Trout 

Perch saw a decrease. Spottail Shiner saw the largest difference between the two distributions as 

well as obtaining the highest adjusted R2 value. The predictor variables used for the Spottail 

Shiner model was the Log10 transformed distance to open type wetland, month, depth, and the 

square root of Trout Perch and Johnny Darter abundances.  

Table 16 Adjusted R2 values for GAMs for each species (1978-1989). GAMG uses Gaussian 
distribution and GAMP uses Poisson distribution. Bolded values are the 

higher between Gaussian and Poisson. 

Species GAMG 
Adj R2 

GAMP 
Adj R2 

Difference 
(GAMG-GAMP) 

ALEW 0.14 0.21 -0.07 
JOHN 0.12 0.25 -0.13 
LTRT 0.14 0.13 .01 
PRCH 0.15 0.24 -0.09 
SLIM 0.28 0.37 -0.09 
SMLT 0.20 0.24 -0.04 
SPOT 0.41 0.74 -0.33 
STK3 0.01 0.07 -0.06 
TRPR 0.47 0.40 0.07 

  

The results of the Cohen’s Kappa showed that the Gaussian distribution was better at 

predicting presence and absence but not as well as for moderate and high abundances compared 

to the Poisson distribution (Table 17). Neither distribution type was able to get a fair or higher 

agreement ranking between the observed and predicted values for the low abundance class. 

Spottail Shiner had the highest adjusted R2 using the Poisson distribution and was able to get a 

fair agreement ranking for the presence and absence classification. The GAM with Poisson 

distribution for Spottail Shiner was also able to get a moderate agreement ranking between 

observed and predicted values for the moderate and high abundance classes. 



76 
 

Table 17 Cohen’s Kappa values for GAMs for each species (1978-1989). G = Gaussian, P = 
Poisson, (*) denotes fair agreement, (**) denotes moderate agreement. Bolded values are the 

higher between Gaussian and Poisson. 

Species 
Presence Low 

Abundance 
Moderate 

Abundance 
High 

Abundance 
When Species Present 

G P G P G P G P Range of 
abundances 

Average 
abundance 

ALEW 0.30* <0.01 <0.01 0.01 0.03 0.05 0.31* 0.45** 1 - 114,693 2,745 
JOHN 0.13 0.02 0.01 <0.01 0.16 0.28* 0.20 0.36* 1 - 10,935 64 
LTRT 0.31* <0.01 0.08 <0.01 0.37* 0.39* NA NA 1 - 431 13 
PRCH 0.03 0.32* <0.01 0.12 0.27* 0.49** <0.01 <0.01 1 - 2,336 63 
SLIM 0.30* 0.11 0.01 <0.01 0.27* 0.19 0.41** 0.46** 1 - 8,528 344 
SMLT 0.06 <0.01 <0.01 0.18 0.15 0.31* 0.39* 0.47** 1 - 72,261 2,313 
SPOT 0.07 0.21* <0.01 0.01 0.29* 0.45** 0.44** 0.48** 1 - 7,002 262 
STK3 0.02 0.10 <0.01 0.05 <0.01 <0.01 NA NA 1 - 91 6 
TRPR 0.18 0.09 0.02 <0.01 0.14 0.27* 0.59** 0.59** 1 - 17,612 431 

 

The standardized residuals versus the fitted values for the Spottail Shiner GAM using a 

Poisson distribution showed that there was a coned shaped pattern indicating that there is not 

homogeneity of the variance. There is more dispersal of standardized residuals for the higher 

values, with lower values being more clustered. The QQ - Plot also indicates that the model did 

not meet the assumption of homogeneity of the variance (Figure 22). When the Spottail Shiner 

standardized residuals were mapped, the lowest (≤ -1.5) deviations below the mean were 

primarily distributed in the eastern portion of the lake (Figure 23). The highest (≥ 1.5) deviations 

above the mean were dispersed in both the eastern and central portions of the lake. 
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Figure 22 Standardized Residual versus Fitted Value and QQ Plot for 
Spottail Shiner GAM (1978-1989), with Poisson Distribution 
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Figure 23 Spatial Distribution of Standardized Residuals for 
Spottail Shiner GAM (1978-1989), with Poisson Distribution 

5.2.3. 1990 - 2014 dataset 

 The 1990 - 2014 dataset saw poor adjusted R2 values, <0.25, for the GAMs with 

Gaussian distribution (Table 18). The use of the Poisson distribution increased adjusted R2 saw 
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values exceed 0.25 for six of the ten species. Spottail Shiner GAM with a Poisson distribution 

obtained the highest adjusted R2 value of 0.71. The predictor variables used for the Spottail 

Shiner model development was Log10 transformed distance to delta type wetland, distance to 

protected type wetland, month, and the square root of Yellow Perch and Trout Perch abundances. 

Table 18 Adjusted R2 values for GAMs for each species (1990-2014). GAMG uses Gaussian 
distribution and GAMP uses Poisson distribution. Bolded values are the 

higher between Gaussian and Poisson. 

Species GAMG 
Adj R2 

GAMP 
Adj R2 

Difference 
(GAMG-GAMP) 

ALEW 0.09 0.13 -0.04 
GOBY 0.08 0.48 -0.40 
JOHN 0.06 0.32 -0.26 
LTRT 0.05 0.07 -0.02 
PRCH 0.10 0.28 -0.18 
SLIM 0.17 0.31 -0.14 
SMLT 0.09 0.12 -0.03 
SPOT 0.14 0.71 -0.57 
STK3 0.03 0.06 -0.03 
TRPR 0.16 0.35 -0.19 

  

The Cohen’s Kappa showed that the GAM with Poisson distribution was able to get more 

values in or above the fair agreement rank between observed and predicted values for the 

presence and absence category as well as the moderate and high abundance classes than the 

Gaussian distribution (Table 19). Neither distribution type was able to get a fair or higher 

agreement ranking for the low abundance class. Spottail Shiner which had the highest adjusted 

R2 using the Poisson distribution was able to get a fair agreement ranking for the presence and 

absence classification as well as a moderate agreement ranking for the moderate and high 

abundance classes, but could only get a slight agreement rank for the low abundance classes.  
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Table 19 Cohen’s Kappa values for GAMs for each species (1990-2014). G = Gaussian, P = 
Poisson, (*) denotes fair agreement, (**) denotes moderate agreement. Bolded values are the 

higher between Gaussian and Poisson. 

Species 
Presence Low 

Abundance 
Moderate 

Abundance 
High 

Abundance When Species Present 

G P G P G P G P Range of 
abundances 

Average 
Abundance 

ALEW 0.35* <0.01 <0.01 0.01 0.05 <0.01 0.22* 0.31* 1 - 124,648 2,265 
GOBY 0.21* 0.36* 0.04 0.08 0.13 0.35* <0.01 0.52** 1 - 13,076 215 
JOHN 0.17 0.38* 0.02 0.11 0.17 0.48** <0.01 0.38* 1 - 9,103 77 
LTRT 0.14 0.04 0.10 0.02 0.08 0.27* NA NA 1 - 732 6 
PRCH 0.02 0.22* <0.01 0.09 0.12 0.47** <0.01 0.29* 1 - 2,664 52 
SLIM 0.39* 0.16 0.02 0.02 0.27* 0.32* <0.01 0.22* 1 - 11,595 155 
SMLT 0.06 <0.01 <0.01 0.03 0.07 0.10 0.36* 0.44** 1 - 181,082 895 
SPOT 0.05 0.28* <0.01 0.09 0.17 0.47** 0.31* 0.50** 1 - 12,055 227 
STK3 0.06 0.09 0.01 0.02 0.07 0.17 <0.01 0.13 1 - 16,701 144 
TRPR 0.17 0.19 <0.01 0.01 0.12 0.24* 0.40* 0.48** 1 - 23,917 287 

 

The standardized residuals versus the fitted values for the Spottail Shiner GAM using a 

Poisson distribution showed that there was an almost cone like pattern indicating that there is not 

homogeneity of the variance. The QQ - Plot also indicates that the model did not meet the 

assumption of homogeneity of the variance (Figure 24). When the Spottail Shiner standardized 

residuals were mapped the highest (≥ 1.5) and lowest (≤ -1.5) deviations from the mean were 

heavily distributed in the eastern portion of the lake, with few isolated locations in the central 

portion of the lake (Figure 25). 
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Figure 24 Standardized Residual versus Fitted Value and QQ Plot for 
Spottail Shiner GAM (1990-2014), with Poisson Distribution 
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Figure 25 Spatial Distribution of Standardized Residuals for 
Spottail Shiner GAM (1990-2014), with Poisson Distribution 
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5.2.4. 2004 - 2014 dataset 

The 2004 - 2014 dataset was used to model only for Round Goby and the GAM with 

Gaussian distribution saw a poor adjusted R2 values (Table 20). The GAM with Poisson 

distribution was able to produce a much higher adjusted R2 values than the Gaussian distribution 

that explained 49% of the response. The predictor variables used for the Round Goby model 

development was depth, temperature at fishing depth, distance to protected type wetland, month, 

and the square root of Alewife abundance. The results of the Cohen’s Kappa showed that the 

Gaussian distribution was better at predicting presence and absence than any other abundance 

category (Table 21). The Gaussian distribution could only get a slight agreement ranking for the 

moderate and high abundance classes and no agreement for the low abundance class. The 

Poisson distribution could only get a slight agreement ranking for presence and absence and a no 

agreement ranking between the observed and predicted values for low abundances. The Poisson 

distribution was able to get a fair agreement ranking for the moderate abundance class and a 

moderate agreement ranking for high abundance class.  

Table 20 Adjusted R2 values of GAMs for Round Goby (2004-2014). GAMG uses Gaussian 
distribution and GAMP uses Poisson distribution. Bolded values are the 

higher between Gaussian and Poisson. 

Species GAMG 
Adj R2 

GAMP 
Adj R2 

Difference 
(GLMG-GLMP) 

GOBY 0.14 0.49 -0.35 
  

Table 21 Cohen’s Kappa values of GAMs for Round Goby (2004-2014). G = Gaussian, P = 
Poisson, (*) denotes fair agreement, (**) denotes moderate agreement. Bolded values are the 

higher between Gaussian and Poisson. 

Species 
Presence Low 

Abundance 
Moderate 

Abundance 
High 

Abundance When Species Present 

G P G P G P G P Range of 
abundances 

Average 
abundance 

GOBY 0.24* 0.01 <0.01 <0.01 0.19 0.22* 0.18 0.51** 1 - 13,076 215 
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The standardized residuals versus the fitted values for the Round Goby GLM using a 

Poisson distribution showed that there was a non-random pattern indicating that there was not 

homogeneity of the variance. The QQ - Plot also indicates that the model did not meet the 

assumption of homogeneity of the variance (Figure 26). When the Round Goby standardized 

residuals were mapped, the lowest (≤ -1.5) deviations below the mean were distributed in the 

central portion of the lake and the highest (≥ 1.5) deviations above the mean were dispersed in 

both the eastern and central portion of the lake (Figure 27).  

 

Figure 26 Standardized Residual versus Fitted Value and QQ Plot for 
Round Goby GAM (2004-2014), with Poisson Distribution 
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Figure 27 Spatial Distribution of Standardized Residuals for 
Round Goby GAM (2004-2014), with Poisson Distribution 

5.3 Geographically Weighted Regression 

 The Esri tool used to develop the GWR models was able to produce results for all species 

and all the datasets, except for Threespine Stickleback. Overall results were poor for each model, 
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the highest achieving only an adjusted R2 value of 0.48 for Spottail Shiner in the 1978 - 1989 

dataset. Cohen’s Kappa values varied from species to species as well as dataset to dataset. The 

values would range from no agreement to moderate agreement for the presence and absence 

category, the moderate abundance class, and the high abundance class. A Kappa value for fair 

agreement between the observed and predicted values for low abundance was achieved for Lake 

Trout in the 1978 - 2014 and 1990 - 2014 datasets. 

5.3.1. 1978 - 2014 dataset 

 The 1978 - 2014 dataset saw poor adjusted R2 values, <0.25, for a majority of the species 

and the local R2 values range was very broad for all species (Table 22). Round Goby, Lake 

Trout, Spottail Shiner and Trout Perch were the only species to get an adjusted R2 value greater 

than 0.25. The number of neighboring observations needed to produce the models varied species 

to species. The number of variables also had to be reduced in many cases due to local 

multicollinearity. Threespine Stickleback could not be modeled at all, with tool warnings of 

severe model issues. Round Goby had the highest adjusted R2 value using 151 neighbors and 

only a single variable of temperature at fishing depth. 
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Table 22 Adjusted R2 values for GWRs for each species (1978 - 2014). Local R2 values, number 
of neighbors to produce the model, and number of variables used. 

Species Adjusted R2 Local R2 Range Neighbors # of Variables 
ALEW 0.13 0.02 - 0.31 896 4 
GOBY 0.33 <0.01 - 0.78 151 1 
JOHN 0.13 <0.01 - 0.52 314 2 
LTRT 0.31 <0.01 - 0.98 47 1 
PRCH 0.15 <0.01 - 0.16 601 1 
SLIM 0.24 <0.01 - 0.29 766 3 
SMLT 0.15 <0.01 - 0.72 490 2 
SPOT 0.27 <0.01 - 0.85 613 2 
STK3 -- -- -- -- 
TRPR 0.29 <0.01 - 0.29 437 3 

  

The results of the Cohen’s Kappa showed that Round Goby, which had the highest 

adjusted R2 value, could only obtain a fair agreement ranking between the observed and 

predicted values for the high abundance class. All other abundance categories for Round Goby 

received a no or slight agreement ranking (Table 23). Lake Trout which had the second highest 

adjusted R2 value was able to obtain fair agreement rankings for the presence and absence 

category as well as the low abundance class. The moderate abundance class was able to get a 

moderate agreement ranking. Lake Trout did not have values that fell within the range of high 

abundance, so this category was not available for this species.  

Table 23 Cohen’s Kappa values for GWRs for each species (1978-2014). 
(*) denotes fair agreement, (**) denotes moderate agreement. 

Species Presence Low 
Abundance 

Moderate 
Abundance 

High 
Abundance 

When  Species Present 
Range of 

abundances 
Average 

abundance 
ALEW 0.24* <0.01 0.06 0.31* 1 - 124,648 2,438 
GOBY 0.07 <0.01 0.12 0.27* 1 - 13,076 215 
JOHN 0.17 0.01 0.31* 0.20 1 - 10,935 71 
LTRT 0.36* 0.25* 0.53** NA 1 - 732 9 
PRCH 0.39* 0.13 0.45** <0.01 1 - 2,664 56 
SLIM 0.20 <0.01 0.20 0.32* 1 - 11,595 224 
SMLT 0.05 0.03 0.23* 0.40* 1 - 181,082 1,391 
SPOT 0.29* 0.05 0.43** 0.50** 1 - 12,055 246 
STK3 -- -- -- -- 1 - 16,701 138 
TRPR 0.28* 0.04 0.35* 0.54** 1 - 23,917 358 
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The standardized residuals versus the fitted values for the Lake Trout GWR showed that 

there was a non-random pattern indicating that there was not homogeneity of the variance. The 

QQ - Plot also indicates that the model did not meet the homogeneity of the variance assumption 

(Figure 28). When the Lake Trout standardized residuals were mapped the highest (≥ 1.5) and 

lowest (≤ -1.5) deviations from the mean were dispersed throughout the eastern and central 

portions of the lake (Figure 29). 

 

Figure 28 Standardized Residual versus Fitted Value and QQ Plot for 
Lake Trout GWR (1978-2014) 



89 
 

 

Figure 29 Spatial Distribution of Standardized Residuals for 
Lake Trout GWR (1978-2014) 
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The local R2 values for Lake Trout ranged from less than 0.01 to 0.98 and were dispersed 

throughout the lake (Figure 30). The coefficients for the Lake Trout model are shown in Figure 

31. The coefficient for the square root of abundance for Rainbow Smelt had a small range of 

values from -1.2 to 1.8. The highest values are indicated with the black boxes labeled A in Figure 

31. The majority of the areas have lower values with small moderate values scattered along the 

US side of the lake. The coefficient for the intercept had a large range of values from -43.1 to 

101.2. The lowest values were few and located in the black boxes labeled B in Figure 31. The 

majority of areas have moderate values with the lowest values located in a small area in the black 

box labeled B in Figure 31 The highest values were located in the western and eastern portion of 

the lake in the black boxes labeled C in Figure 31. 

 
 

Figure 30 GWR Local R2 Values for Lake Trout (1978 - 2014) 
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Figure 31 Lake Trout (1978-2014) GWR Coefficient Rasters 

5.3.2. 1978 - 1989 dataset 

 The 1978 - 1989 dataset saw poor adjusted R2 values, <0.25, for a majority of the species 

and the local R2 values range was very broad for all species (Table 24). Slimy Sculpin, Spottail 

Shiner, and Trout Perch are the only species to get an adjusted R2 value greater than 0.25. The 

number of neighboring observations needed to produce the results varied species to species. The 

number of variables also had to be reduced in many cases due to local multicollinearity. 

Threespine Stickleback could not be modeled at all due to sever model issues. Trout Perch had 
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the highest adjusted R2 value using 450 neighbors and only two variables, the square root of 

Spottial Shiner and Yellow Perch abundances. 

Table 24 Adjusted R2 values of GWRs for each species (1978 - 1989). Local R2 values, number 
of neighbors to produce the model, and number of variables used. 

Species Adjusted R2 Local R2 Range Neighbors # of Variables 
ALEW 0.16 0.08 - 0.57 552 4 
JOHN 0.10 <0.01 - 0.71 359 2 
LTRT 0.13 0.02 - 0.16 984 4 
PRCH 0.20 <0.01 - 0.19 201 1 
SLIM 0.46 <0.01 - 0.45 354 2 
SMLT 0.18 0.02 - 0.18 943 2 
SPOT 0.48 <0.01 - 0.82 199 1 
STK3 -- -- -- -- 
TRPR 0.52 <0.01 - 0.88 450 2 

  

The results of the Cohen’s Kappa showed that Trout Perch, which had the highest 

adjusted R2 value, only obtained a fair agreement ranking for the moderate abundance class and a 

moderate agreement ranking for the high abundance class. All other categories received a no or 

slight agreement ranking for the Trout Perch GWR model (Table 25). Slimy Sculpin and Spottail 

Shiner had similar adjusted R2 values and obtained fair agreement rankings between the observed 

and predicted values for the presence and absence category. Slimy Sculpin and Spottail Shiner 

both had fair or moderate agreement rankings for the moderate and high abundance classes.  

Table 25 Cohen’s Kappa values for GWRs for each species (1978-1989). 
(*) denotes fair agreement, (**) denotes moderate agreement. 

Species Presence Low 
Abundance 

Moderate 
Abundance 

High 
Abundance 

When Species Present 
Range of 

abundances 
Average 

abundance 
ALEW 0.08 0.01 0.02 0.34* 1 - 114,693 2,745 
JOHN 0.07 <0.01 0.16 0.29* 1 - 10,935 64 
LTRT 0.17 0.08 0.39* NA 1 - 431 13 
PRCH 0.42** 0.12 0.51** <0.01 1 - 2,336 63 
SLIM 0.29* 0.01 0.31* 0.57** 1 - 8,528 344 
SMLT 0.13 <0.01 0.15 0.33* 1 - 72,261 2,313 
SPOT 0.24* 0.03 0.43** 0.57** 1 - 7,002 262 
STK3 -- -- -- -- 1 - 91 6 
TRPR 0.03 <0.01 0.38* 0.60** 1 - 17,612 431 
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The standardized residuals versus the fitted values for the Slimy Sculpin GWR show that 

there is a cone like, pattern indicating that there is not homogeneity of the variance. The QQ - 

Plot also indicates that the model did not meet the required assumptions (Figure 32). When the 

Slimy Sculpin standardized residuals were mapped, the lowest (≤ -1.5) deviations below the 

mean were isolated in a small area in the eastern portion of the lake, and the highest (≥ 1.5) 

deviations above the mean were more heavily distributed in the central portion of the lake with 

some also in the eastern portion of the lake (Figure 33).  

 

Figure 32 Standardized Residual versus Fitted QQ Plot for Slimy Sculpin GWR (1978-1989) 
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Figure 33 Spatial Distribution of Standardized Residuals for Slimy Sculpin GWR (1978-1989) 
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The local R2 values for Slimy Sculpin ranged from less than 0.01 to 0.45. The higher 

values were isolated in the eastern portion of the lake as well as a small area in the western 

portion of the lake (Figure 34-A). The rest of the lake has local R2 values of ≤ 0.25.  

 

Figure 34 GWR Local R2 Values for Slimy Sculpin (1978 - 1989) 
 

The coefficients for Slimy Sculpin are shown in Figure 35. The coefficient for the 

influence of trawling in October had a large range of values from -238 to 1,659. The highest 

values were isolated to the eastern portion of the lake. The majority of the areas have lower 

values with few moderate values scattered across the lake (Figure 35-A). The coefficient for 

depth had smaller values ranging from -27.6 to 64.3. The lowest and highest values for the depth 

coefficient were also located in the eastern portion of the lake, with moderate values covering the 

majority of the lake (Figure 35-B). The coefficient for the intercept had a large range of values 

from -2,653 to 3,707. The lowest and highest values like the other coefficients were heavily 
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located in the eastern portion of the lake (Figure 35-C). The majority of areas had low to 

moderate values. 

 

Figure 35 Slimy Sculpin (1978-1989) GWR Coefficient Rasters 
 

The standardized residuals versus the fitted values for the Spottail Shiner GWR showed 

that there is a cone like pattern indicating that there is not homogeneity of the variance. The QQ - 

Plot also indicates that the model did not meet the homogeneity of the variance0 assumption 

(Figure 36). When the Spottail Shiner standardized residuals were mapped the highest (≥1.5) and 
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lowest (≤ -1.5) deviations from the mean were heavily distributed in the eastern portion of the 

lake, with a few isolated locations in the central portion of the lake (Figure 37). 

 

Figure 36 Standardized Residual versus Fitted Value and QQ Plot for 
Spottail Shiner GWR (1978-1989) 
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Figure 37 Spatial Distribution of Standardized Residuals for Spottail Shiner GWR (1978-1989) 
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The local R2 values for Slimy Sculpin ranged from less than 0.01 to 0.82. The higher 

values were isolated heavily in three areas enclosed in the yellow boxes labeled A (Figure 38). 

The rest of the lake had local R2 values of ≤ 0.25 with a few higher values scattered among them. 

 

Figure 38 GWR Local R2 Values for Spottail Shiner (1978 - 1989) 
 

The coefficients for Spottail Shiner are shown in Figure 39. The coefficient for the square 

root of Trout Perch abundance had a small range of values from -0.5 to 49. The highest values 

were isolated mainly to the eastern portion of the lake (Figure 39-A). The majority of the areas 

had lower values across the lake. The coefficient for the intercept had a large range of values 

from -394.3 to 52.4. The highest values were primarily isolated in the eastern portion of the lake 

(Figure 39-B). The majority of areas had higher values with a few areas with moderate values 

located in the eastern portion of the lake. 
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Figure 39 Spottail Shiner (1978-1989) GWR Coefficient Rasters 

5.3.3. 1990 - 2014 dataset 

 The 1990 - 2014 dataset saw poor adjusted R2 values, <0.25, for all but Round Goby and 

Lake Trout. The local R2 value range was very broad for all species (Table 26). The number of 

neighboring observations needed to develop the model varied species to species. The number of 

variables also had to be reduced in many cases due to local multicollinearity. Threespine 

Stickleback could not be modeled at all. Round Goby had the highest adjusted R2 value using 

148 neighbors and only a single variable of temperature at fishing depth. 



101 
 

Table 26 Adjusted R2 values of GWRs for each species (1990 - 2014). Local R2 values, number 
of neighbors to produce the model, and number of variables used. 

Species Adjusted R2 Local R2 Range Neighbors # of Variables 
ALEW 0.11 0.01 - 0.26 960 5 
GOBY 0.35 <0.01 - 0.76 148 1 
JOHN 0.22 <0.01 - 0.71 211 2 
LTRT 0.34 <0.01 - 0.92 41 1 
PRCH 0.15 <0.01 - 0.27 220 1 
SLIM 0.16 <0.01 - 0.19 766 2 
SMLT 0.16 <0.01 - 0.72 503 2 
SPOT 0.16 <0.01 - 0.85 549 2 
STK3 -- -- -- -- 
TRPR 0.20 <0.01 - 0.59 990 2 

  

The results of the Cohen’s Kappa showed that Round Goby, which had the highest 

adjusted R2 value, obtained a fair agreement ranking between observed and predicted values for 

the high abundance class and a slight agreement for all the other abundance classes (Table 27). 

Lake Trout, which had a similar adjusted R2 value of 0.34, obtained a fair or moderate agreement 

ranking for every abundance class that had representation. Lake Trout had no abundances that 

few within the high abundance category. 

Table 27 Cohen’s Kappa values for GWRs for each species (1990-2014). 
(*) denotes fair agreement, (**) denotes moderate agreement. 

Species Presence Low 
Abundance 

Moderate 
Abundance 

High 
Abundance 

When Species Present 
Range of 

abundances 
Average 

abundance 
ALEW 0.32* 0.01 0.07 0.29* 1 - 124,648 2,265 
GOBY 0.07 0.01 0.12 0.26* 1 - 13,076 215 
JOHN 0.21* 0.05 0.33* 0.25* 1 - 9,103 77 
LTRT 0.39* 0.31* 0.41** NA 1 - 732 6 
PRCH 0.39* 0.20 0.55** <0.01 1 - 2,664 52 
SLIM 0.14 <0.01 0.17 <0.01 1 - 11,595 155 
SMLT <0.01 <0.01 0.11 0.41** 1 - 181,082 895 
SPOT 0.37* 0.09 0.41** 0.45** 1 - 12,055 227 
STK3 -- -- -- -- 1 - 16,701 144 
TRPR 0.23* 0.02 0.32* 0.41** 1 - 23,917 287 
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 The standardized residuals versus the fitted values for the Lake Trout GWR showed that 

there was a cone like pattern indicating that there is not homogeneity of the variance. The QQ - 

Plot also indicates that the model did not meet the homogeneity of the variance assumption 

(Figure 40). When the Lake Trout standardized residuals were mapped both the highest (≥ 1.5) 

and lowest (≤ -1.5) deviations from the mean were dispersed throughout the study area (Figure 

41).  

 

Figure 40 Standardized Residual versus Fitted Value and QQ Plot for 
Lake Trout GWR (1990-2014) 
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Figure 41 Spatial Distribution of Standardized Residuals for Lake Trout GWR (1990-2014) 
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The local R2 values for Lake Trout ranged from less than 0.01 to 0.92. The higher values 

were dispersed around the lake (Figure 42). The trawling event located in deeper waters tended 

to have the lower local R2 values. 

 

Figure 42 GWR Local R2 Values for Lake Trout (1990 - 2014) 
 

The coefficients for Lake Trout are shown in Figure 43. The coefficient for the square 

root of Rainbow Smelt abundance had a small range of values from -9.24 to 0.82. The highest 

values were mainly located in a number of areas in the eastern portion of the lake (Figure 43). 

The majority of the study area had lower values across the lake. The coefficient for the intercept 

had a large range of values from -10.7 to 285.9. The highest values were isolated in small areas 

in the eastern portion of the lake and also in areas in the western portion of the lake (Figure 43-

A). The majority of areas had low values throughout the lake, with the lowest values primarily in 

the eastern portion of the lake (Figure 43-B). 
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Figure 43 Lake Trout (1990-2014) GWR Coefficient Rasters 

5.3.4. 2004 - 2014 dataset 

 The 2004 - 2014 dataset was used to model only for Round Goby and produced an 

adjusted R2 value of 0.48 using 47 neighbors and only a single variable, temperature at fishing 

depth (Table 28). The results from the Cohen’s Kappa showed that the GWR did better at 

predicting the moderate and high abundance classes, getting a fair and moderate agreement 

ranking respectively. The Round Goby GWR did not perform as well for the low abundance or 

the presence and absence which only got a slight agreement ranking between the observed and 

predicted values (Table 29).  
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Table 28 Adjusted R2 value of the GWR for Round Goby (2004 - 2014) 

Species Adjusted R2 Local R2 Range Neighbors # of Variables 
GOBY 0.48 <0.01 - 0.89 47 1 

 
 

Table 29 Cohen’s Kappa values of the GWR for Round Goby (2004 – 2014) 
(*) denotes fair agreement, (**) denotes moderate agreement. 

Species Presence Low 
Abundance 

Moderate 
Abundance 

High 
Abundance 

When Species Present 
Range of 

abundances 
Average 

abundance 
GOBY 0.14 0.01 0.21* 0.44** 1 - 13,076 215 

 

The standardized residuals versus the fitted values for the Round Goby GWR showed 

that there was a non-random pattern indicating that there was not homogeneity of the variance. 

The QQ - Plot also indicates that the model did not meet the homogeneity of the variance 

assumption (Figure 44). When the Round Goby standardized residuals were mapped, the lowest 

(≤ -1.5) deviations below the mean were distributed in the central portion of the lake and the 

highest (≥ 1.5) deviations above the mean were dispersed in both the eastern and central portion 

of the lake (Figure 45).  



107 
 

 

Figure 44 Standardized Residual versus Fitted Value and QQ Plot for 
Round Goby GWR (2004-2014) 

 



108 
 

 

Figure 45 Spatial Distribution of Standardized Residuals for Round Goby GWR (2004-2014) 
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The local R2 values for Round Goby ranged from less than 0.01 to 0.89. The higher 

values were dispersed around the lake (Figure 46). The trawling event located in deeper waters 

tended to have the lower local R2 values. 

 

Figure 46 GWR Local R2 Values for Round Goby (2004 - 2014) 
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The coefficients for Round Goby are shown in Figure 47. The coefficient for fishing 

depth temperature had a large range of values from -317 to 914.7. The highest values were 

mainly isolated to three small areas throughout the lake (Figure 47-A). The majority of the areas 

have lower values across the lake. The coefficient for the intercept also had a large range of 

values from -4172.1 to 1463.8. The lowest values were isolated in the western and eastern 

portion of the lake (Figure 47-B). The rest of the lake had relatively high values. 

 

Figure 47 Round Goby (2004-2014) GWR Coefficient Rasters 
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5.4 Summary 

 The result of this analysis of successful models across the datasets and methods shows 

that the GAM method often achieved the highest adjusted R2 values, most commonly with the 

Poisson distribution. The AIC values were often lowest with the GWR for the Gaussian models 

and GAM for the Poisson models. The GWR method was the only method to obtain Cohen’s 

Kappa values that surpassed slight agreement in all categories. When the low abundance 

category was excluded the GAM and GWR methods often had the highest values. The GLM 

method was the least successful in both adjusted R2 and Cohen’s Kappa values. The next chapter 

focuses on comparative analysis of model results collectively.  
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Chapter 6 Model Comparison 

 The ultimate objective of this thesis was to compare the success of models generated by 

three different modeling methods. This chapter develops these comparisons in depth. Before 

comparing the models produced by GLM, GAM, and GWR, the different distribution types were 

compared between the GLM and GAM methods. Distribution types were compared using the 

adjusted R2 and Cohen’s Kappa values. Then a comparison was done between modeling methods 

using the adjusted R2 and Cohen’s Kappa values. A comparison of AIC values was done between 

the modeling methods within each distribution type to see which method achieved the lowest 

value for each distribution type. Model variables were also reviewed to determine if model 

relationships agreed with what was to be expected in reality. 

6.1  Gaussian Distribution Versus Poisson Distribution 

 A comparison of Gaussian and Poisson distribution was only done with GLM and GAM, 

due to the fact that the Esri Spatial Analyst tool Geographically Weighted Regression did not 

have the option of using any other distribution family besides Gaussian. Sixty percent of the 

GLMs saw improvement in adjusted R2 value when using a Poisson distribution with a change in 

value that ranged from a 0.02 to 0.35. Ninety percent of the GAMs saw improvement in adjusted 

R2 value when using a Poisson distribution with a change in value that ranged from 0.01 to 0.57. 

The Cohen’s Kappa values for the presence and absence category were commonly higher for the 

Gaussian distribution whereas the Poisson distribution had more success predicting the moderate 

and high abundance classes. Neither distribution had much success in predicting the low 

abundance class. 
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6.2 GLM, GAM & GWR Adjusted R2 and AIC Comparison 

 The highest adjusted R2 value for the 1978 - 2014 dataset was 0.48 using the GAM 

method with a Poisson distribution for Round Goby (Figure 48 & Table 30). The GAM with 

Poisson distribution received higher adjusted R2 values for seven of the ten species. The GWR 

method achieved higher adjusted R2 values for two of the ten species, and could not develop a 

model for Threespine Stickleback. Both GAM methods and the GWR received similar results for 

Trout Perch. The GWR method also commonly received the second highest adjusted R2 value for 

the species being modeled. The GLM modeling methods performed the poorest. The GLM with 

Poisson only managed to outperform another method, the GAM with Gaussian distribution, with 

three species. While the GLM with Poisson distribution did outperform the GAM with Gaussian 

distribution it failed to be the top performing model. 

 

Figure 48 Comparison of Adjusted R2 Values for GLM, GAM, and GWR (1978 - 2014). Alewife 
(ALEW), Round Goby (GOBY), Johnny Darter (JOHN), Lake Trout (LTRT), Yellow Perch 

(PRCH), Slimy Sculpin (SLIM), Spottail Shiner (SPOT), Threespine Stickleback (STK3), Trout 
Perch (TRPR). * signifies that the GWR could not develop a model for Threespine Stickleback 
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Table 30 Comparison of adjusted R2 values for GLM, GAM, and GWR (1978 - 2014). Alewife 
(ALEW), Round Goby (GOBY), Johnny Darter (JOHN), Lake Trout (LTRT), Yellow Perch 

(PRCH), Slimy Sculpin (SLIM), Spottail Shiner (SPOT), Threespine Stickleback (STK3), Trout 
Perch (TRPR). 

Species Adjusted R2 

Highest value Lowest value 

ALEW 0.13GWR 0.12GAMP 0.10GAMG 0.09GLMG 0.07GLMP 

GOBY 0.48GAMP 0.33GWR 0.10GLMP 0.06GAMG 0.05GLMG 

JOHN 0.17GAMP 0.13GWR 0.05GAMG 0.04GLMG 0.04GLMP 

LTRT 0.31GWR 0.12GAMP 0.11GAMG 0.10GLMG 0.08GLMP 

PRCH 0.16GAMP 0.15GWR 0.14GLMP 0.10GAMG 0.08GLMG 

SLIM 0.40GAMP 0.24GWR 0.21GLMP 0.19GAMG 0.15GLMG 

SMLT 0.16GAMP 0.15GWR 0.14GAMG 0.13GLMP 0.12GLMG 

SPOT 0.36GAMP 0.27GWR 0.21GAMG 0.18GLMG 0.17GLMP 

STK3 0.15GAMP 0.03GLMP 0.02GAMG 0.01GLMG NAGWR 

TRPR 0.29GAMP 0.29GWR 0.29GAMG 0.26GLMG 0.14GLMP 

  

The AIC values from the 1978 - 2014 dataset showed that between the Gaussian models, 

GWR had the lowest values, indicating the better model (Table 31). Threespine Stickleback 

could not develop a model using GWR so GAM was shown to have the lowest AIC value. Trout 

Perch which could get a GWR model to develop also had GAM produce the lowest AIC value. 

Between the GLM and GAM with Poisson distribution the GAM had the lowest AIC value for 

all species besides the Slimy Sculpin model.    
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Table 31 ∆AIC values for GLM, GAM, & GWR models based on distribution type (1978 - 2014) 

Species ∆AIC 
GLMG GAMG GWR GLMP GAMP 

ALEW 468 354 0 2,546,802 0 
GOBY 3,826 3,735 0 367,204 0 
JOHN 1,082 925 0 231,527 0 
LTRT 2,108 1,911 0 9,968 0 
PRCH 959 585 0 10,420 0 
SLIM 1,282 718 0 0 952,690 
SMLT 411 76 0 3,110,170 0 
SPOT 1,406 953 0 152,350 0 
STK3 129 0 NA 412,754 0 
TRPR 441 0 176 690,503 0 

 

 The 1978 - 1989 dataset developed the highest adjusted R2 value of all the datasets with a 

value of 0.74 for Spottail Shiner (Figure 49 & Table 32). The GAM method obtained the highest 

adjusted R2 values for seven of the nine species, with the GAM using Poisson distribution being 

the method that often got the highest values of the GAMs. The GWR method obtained a higher 

adjusted R2 values for only two of the nine species. The GWR failed to develop a model for 

Threespine Stickleback as was the case with the 1978 - 2014 dataset. The GLM with Poisson 

distribution saw an increase in performance with this dataset by receiving the second highest 

adjusted R2 values for four out of the nine species. 
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Figure 49 Comparison of Adjusted R2 Values for GLM, GAM, and GWR (1978 - 1989). Alewife 
(ALEW), Round Goby (GOBY), Johnny Darter (JOHN), Lake Trout (LTRT), Yellow Perch 

(PRCH), Slimy Sculpin (SLIM), Spottail Shiner (SPOT), Threespine Stickleback (STK3), Trout 
Perch (TRPR). * signifies that the GWR could not develop a model for Threespine Stickleback 

 

Table 32 Comparison of adjusted R2 values for GLM, GAM, and GWR (1978 - 1989). Alewife 
(ALEW), Johnny Darter (JOHN), Lake Trout (LTRT), Yellow Perch (PRCH), Slimy Sculpin 

(SLIM), Spottail Shiner (SPOT), Threespine Stickleback (STK3), Trout Perch (TRPR). 

Species Adjusted R2 

Highest value Lowest value 

ALEW 0.21GAMP 0.17GlMP 0.16GWR 0.14GAMG 0.13GLMG 

JOHN 0.25GAMP 0.18GLMP 0.12GAMG 0.10GWR 0.04GLMG 

LTRT 0.14GAMG 0.13GAMP 0.13GWR 0.11GLMG 0.08GLMP 

PRCH 0.24GAMP 0.20GWR 0.16GLMP 0.15GAMG 0.12GLMG 

SLIM 0.46GWR 0.37GAMP 0.36GLMP 0.28GAMG 0.20GLMG 

SMLT 0.24GAMP 0.22GLMP 0.20GAMG 0.18GWR 0.17GLMG 

SPOT 0.74GAMP 0.63GLMP 0.48GWR 0.41GAMG 0.30GLMG 

STK3 0.07GAMP 0.04GLMP 0.01GAMG 0.01GLMG NAGWR 

TRPR 0.52GWR 0.47GAMG 0.43GLMG 0.40GAMP 0.40GLMP 
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The 1978 - 1989 dataset AIC values showed that between the Gaussian models GWR and 

GAM had the lowest values depending on the species (Table 33). Threespine Stickleback could 

not develop a model using GWR and had only a value of three differences making it difficult to 

identify which modeling method was better. Between the GLM and GAM with Poisson 

distribution the GAM had the lowest AIC value for all species models.    

Table 33 ∆AIC values for GLM, GAM, & GWR models based on distribution type (1978 - 1989) 

Species ∆AIC 
GLMG GAMG GWR GLMP GAMP 

ALEW 113 113 0 1,073,431 0 
JOHN 326 0 111 49,894 0 
LTRT 111 0 27 7,756 0 
PRCH 313 177 0 5,298 0 
SLIM 1,464 1,087 0 46,174 0 
SMLT 91 0 105 433,941 0 
SPOT 1,064 409 0 31,323 0 
STK3 3 0 NA 208 0 
TRPR 679 369 0 81,163 0 

 

 The 1990 - 2014 dataset achieved another of the highest adjusted R2 values, 0.71 for 

Spottail Shiner (Figure 50 & Table 34). The GAM with Poisson distribution, like the previous 

dataset results, received the highest adjusted R2 values for eight of ten species. The GWR 

method was able to get the highest adjusted R2 values for two of the ten species. The Lake Trout 

GWR saw a considerable increase compared to the other methods. GWR also developed the 

second highest value for four of the ten models The GWR failed to develop a model for 

Threespine Stickleback as was the class with both of the previous datasets. The GLM with 

Poisson distribution once again saw an increase in performance with this dataset than was seen 

with the 1978 - 2014 dataset. 

 



118 
 

 

Figure 50 Comparison of Adjusted R2 Values for GLM, GAM, and GWR (1990 - 2014). Alewife 
(ALEW), Round Goby (GOBY), Johnny Darter (JOHN), Lake Trout (LTRT), Yellow Perch 

(PRCH), Slimy Sculpin (SLIM), Spottail Shiner (SPOT), Threespine Stickleback (STK3), Trout 
Perch (TRPR). * signifies that the GWR could not develop a model for Threespine Stickleback 
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Table 34 Comparison of adjusted R2 values for GLM, GAM, and GWR (1990 - 2014). Alewife 
(ALEW), Round Goby (GOBY), Johnny Darter (JOHN), Lake Trout (LTRT), Yellow Perch 

(PRCH), Slimy Sculpin (SLIM), Spottail Shiner (SPOT), Threespine Stickleback (STK3), Trout 
Perch (TRPR). 

Species Adjusted R2 

Highest value Lowest value 
ALEW 0.13GAMP 0.11GWR 0.09GAMG 0.07GLMG 0.06GLMP 

GOBY 0.48GAMP 0.35GWR 0.10GLMP 0.08GAMG 0.06GLMG 

JOHN 0.32GAMP 0.22GWR 0.06GAMG 0.04GLMG 0.04GLMP 

LTRT 0.34GWR 0.07GAMP 0.05GAMG 0.05GLMG 0.04GLMP 

PRCH 0.28GAMP 0.15GWR 0.15GLMP 0.10GAMG 0.06GLMG 

SLIM 0.31GAMP 0.21GLMP 0.17GAMG 0.16GWR 0.14GLMG 

SMLT 0.16GWR 0.12GAMP 0.09GAMG 0.07GLMG 0.06GLMP 

SPOT 0.71GAMP 0.44GLMP 0.16GWR 0.14GAMG 0.09GLMG 

STK3 0.06GAMP 0.04GLMP 0.03GAMG 0.02GLMG NAGWR 

TRPR 0.35GAMP 0.20GWR 0.17GLMP 0.16GAMG 0.12GLMG 

 

The 1990 - 2014 dataset AIC values showed that between the Gaussian models GWR had 

the lowest values for all species besides Slimy Sculpin and Threespine Stickleback (Table 35). 

Threespine Stickleback could not develop a model using GWR and had only a value of three 

differences making it difficult to identify which modeling method was better. Between the GLM 

and GAM with Poisson distribution the GAM had the lowest AIC value for all species models.    
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Table 35 ∆AIC values for GLM, GAM, & GWR models based on distribution type (1990 - 2014)  

Species ∆AIC 
GLMG GAMG GWR GLMP GAMP 

ALEW 287 122 0 3,483,420 0 
GOBY 2,758 2,672 0 359,398 0 
JOHN 1,536 1,412 0 167,300 0 
LTRT 2,109 2,071 0 4,907 0 
PRCH 761 393 0 12,664 0 
SLIM 214 0 141 229,169 0 
SMLT 717 564 0 1,999,770 0 
SPOT 608 209 0 110,352 0 
STK3 64 0 NA 53,431 0 
TRPR 788 458 0 216,431 0 

 

The 2004 - 2014 dataset, which only modeled Round Goby achieved similar adjusted R2 

values for GAMP (0.49) and GWR (0.48) (Figure 51 & Table 36). The Gaussian distribution for 

both GLM and GAM achieved the lowest values. The GLM with a Poisson (0.26) did better than 

the GLM and GAM with Gaussian distribution. 

 

Figure 51 Comparison of Adjusted R2 Values for GLM, GAM, and GWR (2004 - 2014). 
Round Goby (GOBY) 
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Table 36 Comparison of adjusted R2 values for GLM, GAM, and  
GWR (2004 - 2014). Round Goby (GOBY). 

Species Adjusted R2 

Highest value Lowest value 

GOBY 0.49GAMP 0.48GWR 0.26GLMP 0.14GAMG 0.11GLMG 

 

The 2004 - 2014 dataset AIC values showed that between the Gaussian models the GWR 

method had the lowest values for Round Goby (Table 37). Between the GLM and GAM with 

Poisson distribution the GAM had the lowest AIC value of the two methods.    

Table 37 ∆AIC values for GLM, GAM, & GWR models based on  
distribution type (2004 – 2014)  

Species ∆AIC 
GLMG GAMG GWR GLMP GAMP 

GOBY 1,672 1,548 0 184,450 0 
 

6.3 GLM, GAM, & GWR Cohen’s Kappa Comparison 

 The Cohen’s Kappa values for the 1978 - 2014 dataset showed that the GWR method was 

the only method to get a fair or better agreement ranking between observed and predicted values 

in each abundance category for a single species, Lake Trout (Figure 52). It should be noted that 

Lake Trout did not have abundances that fell within the high abundance category. All modeling 

methods had the most difficulty with predicting the low abundance category. None of the 

methods were able to successfully predict the high abundance category of Yellow Perch. Besides 

the low abundance category the GWR method was able to get a fair or higher agreement ranking 

in the other categories for Spottail Shiner and Trout Perch. The GAM with Poisson distribution 

was able to get a fair or better agreement ranking for every category besides low abundance for 

Spottail Shiner and Threespine Stickleback.  
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Figure 52 Cohen’s Kappa Values for the 1978 - 2014 Dataset. Alewife (ALEW), Round Goby 
(GOBY), Johnny Darter (JOHN), Lake Trout (LTRT), Yellow Perch (PRCH), Slimy Sculpin 
(SLIM), Rainbow Smelt (SMLT), Spottail Shiner (SPOT), Threespine Stickleback (STK3), 

Trout Perch (TRPR) 
 

The Cohen’s Kappa values for the 1978 - 1989 dataset also showed that all methods had 

difficulty predicting the low abundance category for all species and the high abundance category 

for Yellow Perch (Figure 53). Slimy Sculpin was able to get a fair or better agreement ranking 

between observed and predicted values in all categories, other than the low abundance category, 

using the GAM with Gaussian distribution and GWR methods. Spottail Shiner also achieved a 

fair or better ranking in all categories but low abundance with the GLM with Gaussian 
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distribution, GAM with Poisson distribution, and GWR methods. For the Spottail Shiner models 

the GWR and GAM outperformed the GLM by having higher values. 

 

Figure 53 Cohen’s Kappa Values for the 1978 - 1989 Dataset. Alewife (ALEW), Round Goby 
(GOBY), Johnny Darter (JOHN), Lake Trout (LTRT), Yellow Perch (PRCH), Slimy Sculpin 
(SLIM), Rainbow Smelt (SMLT), Spottail Shiner (SPOT), Threespine Stickleback (STK3), 

Trout Perch (TRPR) 
 

The 1990 - 2014 dataset Cohen Kappa values continued to show that the low abundance 

category was the most difficult to predict (Figure 54). Of all the models only the Lake Trout 

model using the GWR method achieved fair or better agreement rankings between observed and 

predicted values for all categories. When the low abundance category was ignored Round Goby 

(GAM with Poisson distribution), Johnny Darter (GWR & GAM with Poisson distribution), 
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Yellow Perch (GAM with Poisson distribution), Spottail Shiner (GWR & GAM with Poisson 

distribution), and Trout Perch (GWR) obtained a fair or better agreement ranking in all other 

categories. 

 

Figure 54 Cohen’s Kappa Values for the 1990 - 2014 Dataset. Alewife (ALEW), Round Goby 
(GOBY), Johnny Darter (JOHN), Lake Trout (LTRT), Yellow Perch (PRCH), Slimy Sculpin 
(SLIM), Rainbow Smelt (SMLT), Spottail Shiner (SPOT), Threespine Stickleback (STK3), 

Trout Perch (TRPR) 
 

The 2004 - 2014 dataset saw poor overall results for all abundance categories (Figure 55). 

As was the case with all other datasets the low abundance category was the most difficult to 

predict. Of all the methods used the GWR was the only method to produce a slight or better 

agreement ranking between observed and predicted values in all categories. The GAM with 
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either distribution method was the second best performing method producing a slight or better 

agreement ranking for all categories besides the low abundance.  

 

Figure 55 Cohen’s Kappa Values for the 2004 - 2014 Dataset. Round Goby (GOBY) 

The Cohen’s Kappa values for all datasets showed that the GWR method was the only 

method to achieve a rank above slight agreement between observed and predicted values for the 

low abundance class. The GAM method also produced some of the highest values for all 

categories except for low abundance. The GLM method rarely produced agreement rankings 

between the observed and predicted values above slight agreement.  
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6.4 Assessment of Model Function and Structure 

As discussed above, all GLMs and GAMs were fitted with five variables. The GWR 

models include five or fewer predictor variables depending on the species. The reduction of 

variables below the parsimonious initial goal of five was necessary due to local multicollinearity. 

As was stated in the methods, only variables that had a p-value of 0.05 or less were used, 

indicating that they were significant. All predictor variables within each model set had a VIF 

value below 7.5, which is an indication that collinearity among predictor variables is low. 

Since the variables included in each best model changed with the dataset and/or the 

method used, any variable that repeatedly appeared can shed light on which variables have the 

most importance. As a further means of assessing model success, it is useful to assess whether 

the relationships shown by the different sets of variables show the same overall pattern and make 

sense. 

Because of the nonlinear nature of the GAM and the local regression method of the 

GWR, variables used in the GAM and GWR models could have both positive and negative 

relationships. The GAMs in this study allowed for smoothing functions with three degrees of 

freedom, two curves. Relationships between response variables and predictor variables in a 

GWR are heavily influenced on geographic location. Due to the geographic change of 

coefficients with a GWR, it can be difficult describing the relationships between predictors and 

response variables. However, the GWR tool used in this study produces coefficient surface 

rasters as seen earlier in this chapter. Because of the difficulty discussing GWR coefficients this 

section focuses only on GLM and GAM coefficient relationships.  

Month was a recurring variable in the GLM and GAMs, showing up in the majority of 

the successful models; however the direction of the relationship of individual months changes 
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depending on the species, the method used and the dataset. The likely reason for the 

reoccurrence of Month as a predictor variable is that it can represent the time of the year when 

some fish species assemble together for some activity, therefore increasing their numbers for 

easier capture. These activities could include spawning or feeding on booms in primary 

production in select areas. 

For example the month of May consistently had a positive relationship with the 

abundance of Alewife. This relationship is reasonable due to its connection to Alewife spawning 

which occurs in and around the month of May (Durbin et al. 1979). Another example of the 

month variable highlighting spawning time is with Slimy Sculpin. Slimy Sculpin spawning is 

triggered by water temperature and at greater depth the water temperature is not often met until 

later in the year (Owens and Noguchi 1998). The model for Slimy Sculpin showed that the 

month of October, the time deeper waters would start becoming warmer, was consistently 

positive for all models. Johnny Darter was another species that showed a primarily positive 

relationship between the month of October and the species’ abundance for the 1978 - 2014 and 

1990 - 2014 datasets. The 1978 - 1989 dataset saw a negative relationship for the month of 

October. Past research showed that in October Johnny Darter was more present in Lake Trout 

diets (Elrod and O’Gorman 1991). The decrease in Lake Trout population could explain why the 

relationship is negative for the 1978 - 1989, when Lake Trout were more present, than the other 

datasets. The reason for the positive relationship is unclear but could be related to seasonal 

migration or spawning. 

Exploring all the relationships between month and individual species would be extensive 

and require in-depth knowledge of the life cycles of each species. The Alewife, Slimy Sculpin, 
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and Johnny Darter examples do suggest that month is an important variable and could explain 

the increased abundance of some species at a location during one month and not another.  

6.4.1. Alewife model structure 

For Alewife, the common variables are the square roots of Slimy Sculpin and Rainbow 

Smelt abundances (Table 38). The square root of abundance for Slimy Sculpin was only used in 

nine of the fifteen models for Alewife. The relationship between Slimy Sculpin and Alewife was 

negative for the GLMs and primarily negative in the GAMs (Table 39). The negative 

relationship primarily seen with the Slimy Sculpin is reasonable due to the potential predation 

that could occur from Slimy Sculpin. The Rainbow Smelt relationship with Alewife was 

primarily positive for both the GLMs and GAMs. The primarily positive relationship between 

Alewife and Rainbow Smelt is reasonable as they have similar dietary habits (Lantry and Stewart 

1993). 
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Table 38 Variables included in Alewife models for each dataset 

Method Dataset 
Name 

Response 
Variable 

Distribution 

Continuous Predictor 
Variables 

Categorical 
Predictor 
Variable 

GLM 
and 

GAM 

1978-2014 
Gaussian ProtDist_Log, SqrtSLIM, SqrtLTRT, SqrtSMLT Month 

Poisson 
SqrtSMLT, SqrtSLIM, SqrtLTRT, 

OpenDist_Log 
Month 

1978-1989 
Gaussian Year, ProtDist_Log, OpenDist, Depth Month 
Poisson SqrtSLIM, Year, ProtDist_Log, SqrtLTRT Month 

1990-2014 
Gaussian Temp, Depth, SqrtSLIM, SqrtSMLT Month 
Poisson SqrtSMLT, SqrtSLIM, SqrtLTRT, Depth Month 

GWR 

1978-2014 Gaussian SqrtSMLT 
Month(Apr), 
Month(May), 
Month(Jun) 

1978-1989 Gaussian Depth 
Month(Apr), 
Month(May), 
Month(Jun) 

1990-2014 Gaussian SqrtSMLT 

Month(Apr), 
Month(May), 
Month(Jun), 
Month(Oct) 

 

Table 39 Relationships of reoccurring model variables for Alewife 

SqrtSLIM GLMG GLMP GAMG GAMP GWR 
1978-2014 - - - / + / - - / + / - NA 
1978-1989 NA - NA - / + / - NA 
1990-2014 - - - / + / - - / + / - NA 

SqrtSMLT GLMG GLMP GAMG GAMP GWR 
1978-2014 + + + / - / + + / - / + - / + 
1978-1989 NA NA NA NA NA 
1990-2014 + + + / - / + - / + - / + 

6.4.2. Round Goby model structure 

For Round Goby, the most common variable is temperature at fishing depth (Table 40).  

Temperature at fishing depth occurred in every model developed. As Table 41 shows, for the 

GLM models the relationship was positive, indicating that Round Goby were higher in 

abundance as water temperature increased. The relationship between temperature and Round 
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Goby for the GAM show that the relationship is positive until the water gets too warm and then 

abundances start to decrease. The trend of abundance increasing until a certain temperature then 

dropping off is more reasonable than the strict positive relationship seen in the GLM. The 

reasoning is that while Round Goby enjoy warmer waters, they do not enjoy when it gets too hot. 

Table 40 Variables included in Round Goby models for each dataset 

Method Dataset 
Name 

Response 
Variable 

Distribution 

Continuous Predictor 
Variables 

Categorical 
Predictor 
Variable 

GLM 
and 

GAM 

1978-2014 
Gaussian Temp, Year, ProtDist, SqrtJOHN Month 
Poisson Year, Depth, Temp, ProtDist Month 

1978-1989 
Gaussian Temp, ProtDist, Year, SqrtJOHN Month 
Poisson Year, Depth, Temp, ProtDist Month 

1990-2014 
Gaussian Temp, ProtDist, SqrtSMLT, SqrtTRPR Month 
Poisson Depth, Temp, ProtDist, SqrtAlew Month 

GWR 
1978-2014 Gaussian Temp  
1978-1989 Gaussian Temp  
1990-2014 Gaussian Temp  

 

Table 41 Relationships of reoccurring model variables for Round Goby 

Round Goby 
Temp GLMG GLMP GAMG GAMP GWR 

1978-2014 + + + / - + / - / + - / + 
1990-2014 + + + / - + / - - / + 
2004-2014 + + + / - + / - - / + 

6.4.3. Johnny Darter model structure 

For Johnny Darter the most common variables are temperature at fishing depth and the 

square root of Slimy Sculpin (Table 42). The square root of Slimy Sculpin variable was present 

in all models except for a single GWR, 1978 - 1989 dataset, and showed a primarily positive 

relationship with the abundance of Johnny Darter for the GLMs and GAMs (Table 43). The 

temperature at fishing depth variable was used in each model and showed that Johnny Darter had 
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a positive relationship to a point, when it would become negative. The positive relationship 

between Slimy Sculpin and Johnny Darter is not fully understood, but could indicate similar 

diets or habitat preferences. 

Table 42 Variables included in Johnny Darter models for each dataset 

Method Dataset 
Name 

Response 
Variable 

Distribution 

Continuous Predictor 
Variables 

Categorical 
Predictor 
Variable 

GLM 
and 

GAM 

1978-2014 
Gaussian Temp, SqrtSLIM, SqrtSPOT, SqrtPRCH Month 
Poisson Depth, Temp, SqrtGOBY, SqrtSLIM Month 

1978-1989 
Gaussian Temp, SqrtSPOT, SqrtPRCH, SqrtSLIM Month 
Poisson Temp, SqrtSLIM, SqrtLTRT, SqrtSPOT Month 

1990-2014 
Gaussian Temp, SqrtSLIM, SqrtSMLT, SqrtSTK3 Month 
Poisson Depth, Year, SqrtSLIM, Temp Month 

GWR 
1978-2014 Gaussian Temp, SqrtSLIM  
1978-1989 Gaussian SqrtSPOT, Temp  
1990-2014 Gaussian Temp, SqrtSLIM  

 

Table 43 Relationships of reoccurring model variables for Johnny Darter 

Johnny Darter 
SqrtSLIM GLMG GLMP GAMG GAMP GWR 

1978-2014 + + + / - / + + / - / + + / - 
1978-1989 + + + / - + / - / + NA 
1990-2014 + + + / - / + + / - / + + / - 

Temp GLMG GLMP GAMG GAMP GWR 
1978-2014 + + + / - + / - + / - 
1978-1989 + + + / - / + + + / - 
1990-2014 + + + / - + / - + / - 

6.4.4. Lake Trout model structure 

For Lake Trout, the most common variable is the square root of Rainbow Smelt 

abundance which was appears in every model (Table 44). The relationship between Rainbow 

Smelt and Lake Trout was primarily positive in all models for GLM and GAM (Table 45). This 
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is an expected relationship with Lake Trout, as Rainbow Smelt is a key prey fish for them (Elrod 

and O’Gorman 1991). 

Table 44 Variables included in Lake Trout models for each dataset 

Method Dataset 
Name 

Response 
Variable 

Distribution 

Continuous Predictor 
Variables 

Categorical 
Predictor 
Variable 

GLM 
and 

GAM 

1978-2014 
Gaussian Fetch_Log, DeltaDist, Year, SqrtSMLT Month 
Poisson Year, SqrtSMLT, DeltaDist, SqrtALEW Month 

1978-1989 
Gaussian SqrtSMLT, ProtDist, SqrtALEW, OpenDist Month 
Poisson SqrtSMLT, SqrtALEW, ProtDist, OpenDist Month 

1990-2014 
Gaussian SqrtSMLT, Fetch, DeltaDist, ProtDist Month 
Poisson Year, SqrtSMLT, Fetch, DeltaDist Month 

GWR 
1978-2014 Gaussian SqrtSMLT  
1978-1989 Gaussian ProtDist, Temp, SqrtSMLT, SqrtSLIM  
1990-2014 Gaussian SqrtSMLT  

 

Table 45 Relationships of reoccurring model variables for Lake Trout 

Lake Trout 
SqrtSMLT GLMG GLMP GAMG GAMP GWR 

1978-2014 + + + / - + / - / + + / - 
1978-1989 + + + / - / + + / - / + + / - 
1990-2014 + + + / - + / - / + + / - 

6.4.5. Yellow Perch model structure 

For Yellow Perch the most common variables are log10 transformed distance to open type 

wetland and square root of Trout Perch abundance (Table 46). The relationship between Yellow 

Perch and distance to open type wetland was negative for all GLM and GAM models (Table 47). 

This relationship suggests that Yellow Perch abundances decrease the further from open type 

wetlands one searches. The square root of Trout Perch abundance was used in all models from 

the 1978 - 2014 and 1978 - 1989 datasets. The relationship was positive for all GLM and GAM 

models. It is likely that the positive relationship is related to their shared diet of Diporeia, 
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amphipods (Wells 1980). Diporeia largely disappeared from Lake Ontario in the early 1990s 

(Dermott 2001). This disappearance of amphipods may explain why Trout Perch is no longer a 

significant predictor in the 1990-2014 dataset.  

Table 46 Variables included in Yellow Perch models for each dataset 

Method Dataset 
Name 

Response 
Variable 

Distribution 

Continuous Predictor 
Variables 

Categorical 
Predictor 
Variable 

GLM 
and 

GAM 

1978-2014 
Gaussian 

SqrtSPOT, OpenDist_Log, SqrtTRPR, 
DeltaDist_Log, SqrtJOHN  

Poisson OpenDist_Log, Depth, RivDist, Fetch_Log, 
SqrtTRPR 

 

1978-1989 
Gaussian 

SqrtTRPR, SqrtSPOT, SqrtJOHN, OpenDist_Log, 
ProtDist_Log  

Poisson OpenDist_Log, Depth, SqrtTRPR, RivDist, Fetch  

1990-2014 
Gaussian 

SqrtSPOT, OpenDist_Log, DeltaDist_Log, Temp, 
ProtDist_Log  

Poisson OpenDist_Log, Depth, RivDist, SqrtSPOT, 
Fetch_Log 

 

GWR 
1978-2014 Gaussian SqrtTRPR  
1978-1989 Gaussian SqrtTRPR  
1990-2014 Gaussian Temp  

 

Table 47 Relationships of reoccurring model variables for Yellow Perch 

Yellow Perch 
OpenDist_Log GLMG GLMP GAMG GAMP GWR 

1978-2014 - - - / + / - - NA 
1978-1989 - - - / + / - - / + / - NA 
1990-2014 - - - / + / - - NA 

SqrtTRPR GLMG GLMP GAMG GAMP GWR 
1978-2014 + + + + + / - 
1978-1989 + + + + + / - 
1990-2014 NA NA NA NA NA 

6.4.6. Slimy Sculpin model structure 

For Slimy Sculpin, the most common variables was depth (Table 48). The relationship 

between Slimy Sculpin and depth showed a positive relationship for the GLMs and a mixed 
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positive and negative relationship for the GAMs (Table 49). This relationship suggests that 

Slimy Sculpin prefer deeper water when looking at the GLMs, however the GAMs suggest that 

at certain depth abundances may decrease. This decrease could however be due to a reduction of 

gear efficiency at the deepest depths.  

Table 48 Variables included in Slimy Sculpin models for each dataset 

Method Dataset 
Name 

Response 
Variable 

Distribution 

Continuous Predictor 
Variables 

Categorical 
Predictor 
Variable 

GLM 
and 

GAM 

1978-2014 
Gaussian Year, Depth, OpenDist, SqrtSMLT Month 
Poisson Depth, SqrtTRPR, OpenDist, Year Month 

1978-1989 
Gaussian Depth, OpenDist, RivDist, SqrtTRPR Month 
Poisson OpenDist, SqrtTRPR, SqrtSMLT, SqrtALEW Month 

1990-2014 
Gaussian Year, Depth, SqrtTRPR, SqrtSMLT Month 
Poisson Year, SqrtTRPR, Depth, Fetch_Log Month 

GWR 
1978-2014 Gaussian Depth, SqrtSMLT Month(Oct) 
1978-1989 Gaussian Depth Month(Oct) 
1990-2014 Gaussian Depth Month(Oct) 

 

Table 49 Relationships of reoccurring model variables for Slimy Sculpin 

Slimy Sculpin 
Depth GLMG GLMP GAMG GAMP GWR 

1978-2014 + + + / - + / - + / - 
1978-1989 + NA + / - NA + / - 
1990-2014 + + + / - + / - + / - 

6.4.7. Rainbow Smelt 

For Rainbow Smelt, the most common variables were the event year, the square root of 

Lake Trout abundance, and the distance to open type wetland (Table 50). The year variable had a 

negative relationship with the GLMs for the 1978 - 2014 and 1990 - 2014 dataset, but a positive 

relationship for the 1978 - 1989 dataset (Table 51). The GAM models had a positive relationship 

that becomes negative for the 1978 - 2014 and 1990 - 2014 datasets and a positive relationship 
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for the 1978 - 1989 dataset. These relationships show that as time moved forward the abundance 

of Rainbow Smelt started to decrease. Because the variable is simply time, it is difficult to say 

the exact reason for the decline but determining when the decline takes place according to the 

model could assist in figuring out what could be the cause.  

Table 50 Variables included in Rainbow Smelt models for each dataset 

Method Dataset 
Name 

Response 
Variable 

Distribution 

Continuous Predictor 
Variables 

Categorical 
Predictor 
Variable 

GLM 
and 

GAM 

1978-2014 
Gaussian SqrtLTRT, OpenDist, Temp, Year, SqrtTRPR  
Poisson Depth, OpenDist, Year, SqrtLTRT, SqrtTRPR  

1978-1989 
Gaussian OpenDist, Depth, Temp, Year, SqrtLTRT  
Poisson Depth, OpenDist, Year, SqrtLTRT Month 

1990-2014 
Gaussian Year, SqrtLTRT, OpenDist, SqrtTRPR, Temp  
Poisson Year, OpenDist, Depth, SqrtLTRT, SqrtTRPR  

GWR 
1978-2014 Gaussian SqrtLTRT, Depth  
1978-1989 Gaussian ProtDist, Depth  
1990-2014 Gaussian SqrtLTRT, SqrtTRPR  

 

Table 51 Relationships of reoccurring model variables for Rainbow Smelt 

Rainbow Smelt 
Year GLMG GLMP GAMG GAMP GWR 

1978-2014 - - + / - + / - NA 
1978-1989 + + + + NA 
1990-2014 - - + / - / + + / - / + NA 

SqrtLTRT GLMG GLMP GAMG GAMP GWR 
1978-2014 + + + + / - / + + / - 
1978-1989 + + + + NA 
1990-2014 + + + / - + / - + / - 

OpenDist GLMG GLMP GAMG GAMP GWR 
1978-2014 + + + + NA 
1978-1989 + + + + NA 
1990-2014 + + + + NA 

 

The Rainbow Smelt abundances were also shown to increase in all GLMs as the 

abundance of Lake Trout increases. The GAMs also had this positive relationship with Lake 
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Trout but at a certain point the relationship turns negative and Rainbow Smelt abundances begin 

to decrease as Lake Trout increase. This is a reasonable relationship since Lake Trout are a 

known predator of Rainbow Smelt, so a large number of Lake Trout could indicate a large 

number of Rainbow Smelt. But if too many predators are present the number of Rainbow Smelt 

will be too diminished by the Lake Trout.  

The GLMs and GAMs saw positive relationships with distance to open type wetlands. 

This suggests that Rainbow Smelt are not commonly found near open type wetlands. 

6.4.8. Spottail Shiner model structure 

For Spottail Shiner, the most common variables are the square roots of Trout Perch and 

Yellow Perch abundances (Table 52). The GLMs showed that Trout Perch abundance had a 

positive relationship with all datasets (Table 53). The GAMs showed that Trout Perch abundance 

had a positive relationship for the 1978 - 2014 and 1978 - 1989 dataset. The 1990 – 2014 dataset 

model using the Gaussian GAM method showed that Trout Perch had a positive relationship that 

turns negative with Spottail Shiner. This could possibly suggest that Spottail Shiner share similar 

diets with the Trout Perch but at certain abundances the Trout Perch could possibly outcompete 

the Spottail Shiner for resources. The GLMs also showed a positive relationship with Yellow 

Perch abundances. The GAMs showed that Yellow Perch abundance was positive at first but 

then the relationship turns negative. This change was seen in all datasets and suggests that while 

the two species might have some overlap in diet; Yellow Perch may also be feeding on the 

Spottail Shiner. 
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Table 52 Variables included in Spottail Shiner models for each dataset 

Method Dataset 
Name 

Response 
Variable 

Distribution 

Continuous Predictor 
Variables 

Categorical 
Predictor 
Variable 

GLM 
and 

GAM 

1978-2014 
Gaussian 

SqrtTRPR, SqrtPRCH, DeltaDist_Log, Depth, 
RivDist_Log  

Poisson SqrtTRPR, DeltaDist_Log, SqrtJOHN, Depth Month 

1978-1989 
Gaussian 

SqrtTRPR, SqrtPRCH, Fetch_Log, SqrtJOHN, 
Temp  

Poisson SqrtTRPR, Depth, SqrtJOHN, OpenDist_Log Month 

1990-2014 
Gaussian 

SqrtTRPR, SqrtPRCH, DeltaDist_Log, Temp, 
Depth  

Poisson DeltaDist_Log, ProtDist, SqrtPRCH, SqrtTRPR Month 

GWR 
1978-2014 Gaussian SqrtTRPR, SqrtPRCH  
1978-1989 Gaussian SqrtTRPR  
1990-2014 Gaussian SqrtTRPR, SqrtPRCH  

 

Table 53 Relationships of reoccurring model variables for Spottail Shiner 

Spottail Shiner 
SqrtTRPR GLMG GLMP GAMG GAMP GWR 

1978-2014 + + + + + / - 
1978-1989 + + + + + / - 
1990-2014 + + + / - + / - / + + / - 

SqrtPRCH GLMG GLMP GAMG GAMP GWR 
1978-2014 + NA + / - NA + / - 
1978-1989 + NA + / - NA NA 
1990-2014 + + + / - + / - + / - 

6.4.9. Threespine Stickleback model structure 

For Threespine Stickleback, the most common variable was the log10 transformation of 

fetch (Table 54). The majority of models for Threespine Stickleback had a negative relationship 

for GLMs and GAMs for fetch. Only the GAM with Poisson distribution showed a positive 

relationship with some values of fetch (Table 55). Due to the poor overall results of the 

Threespine Stickleback models the true relevance of fetch and abundance is questionable.  
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Table 54 Variables included in Threespine Stickleback models for each dataset 

Method Dataset 
Name 

Response 
Variable 

Distribution 

Continuous Predictor 
Variables 

Categorical 
Predictor 
Variable 

GLM 
and 

GAM 

1978-2014 
Gaussian Year, Depth, Fetch_Log, SqrtJOHN, SqrtSMLT  
Poisson Depth, Year, Fetch_Log, SqrtJOHN Month 

1978-1989 
Gaussian Fetch_Log, Temp, SqrtTRPR, SqrtPRCH, 

SqrtLTRT 
 

Poisson SqrtLTRT, Fetch_Log, SqrtTRPR, SqrtPRCH Month 

1990-2014 
Gaussian Fetch_Log, SqrtJOHN, Temp, RivDist_Log Month 
Poisson Depth, SqrtJOHN, Fetch, SqrtGOBY Month 

GWR 
1978-2014 Gaussian NA NA 
1978-1989 Gaussian NA NA 
1990-2014 Gaussian NA NA 

 

Table 55 Relationships of reoccurring model variables for Threespine Stickleback 

Threespine Stickleback 
Fetch_Log GLMG GLMP GAMG GAMP GWR 

1978-2014 - - - - NA 
1978-1989 - - - + / - / + NA 
1990-2014 - NA - NA NA 

6.4.10. Trout Perch model structure 

For Trout Perch, the most common variables was the log10 transformation of distance to 

open type wetland and the square root of Spottail Shiner abundance (Table 56). The relationship 

between distance to open type wetland and Trout Perch was negative for all GLM and GAM 

models; this suggested that Trout Perch were more abundant the closer they were to open 

wetlands (Table 57). The relationship between Trout Perch and Spottail Shiner was positive for 

all GLM models. The GAM relationships with Spottail Shiner were more diverse. The Gaussian 

GAM in the 1978 - 2014 dataset had a positive relationship that turned negative relationship at 

some point. The 1990 - 2014 datasets GAMs both showed a shifting pattern from positive to 

negative at different points.   
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Table 56 Variables included in Trout Perch models for each dataset 

Method Dataset 
Name 

Response 
Variable 

Distribution 

Continuous Predictor 
Variables 

Categorical 
Predictor 
Variable 

GLM 
and 

GAM 

1978-2014 
Gaussian 

OpenDist_Log, Fetch, SqrtSMLT, SqrtPRCH, 
SqrtSPOT  

Poisson OpenDist_Log, SqrtSPOT, Temp, Year Month 

1978-1989 
Gaussian 

SqrtSPOT, SqrtPRCH, Fetch_Log, Year, 
DeltaDist_Log  

Poisson SqrtSPOT, OpenDist_Log, Temp, SqrtSLIM Month 

1990-2014 
Gaussian 

SqrtSPOT, SqrtSMLT, OpenDist_Log, SqrtPRCH, 
Temp  

Poisson OpenDist_Log, Year, Temp, SqrtSPOT Month 

GWR 
1978-2014 Gaussian SqrtSMLT, SqrtPRCH, Temp  
1978-1989 Gaussian SqrtSPOT, SqrtPRCH  
1990-2014 Gaussian SqrtSMLT, SqrtSPOT  

 

Table 57 Relationships of reoccurring model variables for Trout Perch 

Trout Perch 
OpenDist_Log GLMG GLMP GAMG GAMP GWR 

1978-2014 - - - - NA 
1978-1989 NA - NA - NA 
1990-2014 - - - - NA 

SqrtSPOT GLMG GLMP GAMG GAMP GWR 
1978-2014 + + + / - + NA 
1978-1989 + + + + + / - 
1990-2014 + + + / - / + + / - / + + / - 

6.5 Standardized Residuals 

 The standardized residual versus fitted value plots for the best performing models showed 

that none of the models had randomly distributed residuals. This was a strong indicator that one 

or more key components were absent from the models. All QQ plots also did not have a linear 

pattern also suggesting that key components were absent. 

 When standardized residuals were mapped, the highest and lowest deviations of the mean 

were often located in smaller isolated areas. This isolation of standard residuals in small areas 
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rather than dispersed throughout the study area suggests that those areas have an additional 

strong influence that is causing the over and under estimations. The majority of the standardized 

residuals were isolated to the eastern portion of the lake. This could suggest that the islands 

located in the eastern portion or the St. Lawrence River could be having a major impact as there 

are no similar comparisons to these features elsewhere in the lake.  

6.6 Variations Between Results From Different Time Period Datasets 

Of the four datasets, each consisting of different stretches of time, the 1978 - 1989 and 

1990 - 2014 datasets were the only ones to achieved an adjusted R2 greater than 0.70 and had the 

highest Cohen’s Kappa values over the two remaining datasets. While the 1978 - 2014 dataset 

could have offered more insight in long lasting influences for fish species the adjusted R2 values 

were often lower than the 1978 - 1989 and 1990 - 2014 dataset. As well as having the lower 

Cohen’s Kappa values. The 2004 - 2014 dataset that was used to only model for Round Goby 

was considered the poorest performing dataset. While some methods produced relatively high 

adjusted R2 the Cohen’s Kappa values showed that they models were often biased towards 

certain abundance classes. This dataset could have been useful in the modeling of an invasive 

species but the biased predictions would have made them unreliable. The 1978-1989 and 1990-

2014 datasets are likely to have been the best datasets because of how they helped to reflected 

the state of the lake before and after one of the most influential events to occur within Lake 

Ontario, the invasion of dreissenid mussels.  

6.7 Summary 

The comparison of methods showed that GAM and GWR had similar adjusted R2 and 

Cohen’s Kappa values. The GWR had the lower AIC values among the other Gaussian models. 

The GWRs also used fewer variables in model development than the GLMs and GAMs. 
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Assessment of model function and structure showed that there was an overlap in the variables 

selected for a method and dataset to be used for model development. Variables that appear in a 

majority of a species’ models could indicate the most influential variables that were available. 

Month was included in a number of species, with positive relationships being associated most 

likely to spawning practices. Rainbow Smelt, Trout Perch, and Slimy Sculpin abundances were 

reoccurring variables for a number of species with positive relationships associated with other 

species that had similar dietary needs as the target species. The negative relationships associated 

with these abundances could be due to predation on the target species. The GAMs allowed the 

temperature variable to better represent reality by including a point where a positive relationship 

with temperature can turn negative when it gets too warm. 
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Chapter 7 Discussion and Conclusion 

While Chapters 5 and 6 provide rich detail regarding the modeling results and comparisons, this 

chapter provides the overall conclusions achieved in this study. The best modeling method was 

determined by the method that had higher overall adjusted R2, Cohen’s Kappa values, and 

simpler model complexity. The review of reoccurring predictor variables showed that they 

followed reasonable and expected relationships. These model indictors along with standardized 

residuals versus fitted value plots were used to help determine if the models were better at 

making predictions. This chapter also addresses the issues encountered and possible 

improvements for future research. 

7.1 General Conclusions 

There are several general conclusions that can be made from the comparative results 

discussed in the previous chapter. These are outlined in the following sections. 

7.1.1. GWR is the best modeling method 

 The result of this study suggests that the best modeling method was GWR. While the 

GWR did not commonly achieve the highest adjusted R2 values, it did have the most success at 

predicting all abundance categories. Both GAM and GWR generally outperformed the GLM in 

adjusted R2 and Cohen’s Kappa values. Between GAM and GWR methods, the GAM method 

had the higher adjusted R2 value, but GWR often had the second highest while using fewer 

predictor variables. The GAM and GWR methods also had similar Cohen’s Kappa values for the 

moderate and high abundances categories, with GWR also getting better results for the low 

abundance category. The similarity in the results for adjusted R2 values and Cohen’s Kappa 

values between GAM and GWR with the added weight of the GWR having a less complex 
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model with fewer predictor variables suggest that GWR is the best overall modeling method to 

use.  

 While AIC was not used as an indicator for choosing the best model because of the 

uncertainty in use comparing different distribution families, it has identified which model is best 

within distribution families. For the Gaussian families, the GWR had the lowest AIC values for 

most of the species modeled, approximately 73 percent. The trend for Gaussian models was that 

the GLM had the highest AIC values and GWR mostly received the lowest values, indicating 

that GWR is the better model. When the GWR did not have the lowest AIC value, it was the 

GAM that did. For the Poisson models only, the GLM and GAM could be compared because no 

GWR with Poisson distribution was used. The GAM method managed to have the lowest AIC 

between both methods for every species beside Slimy Sculpin in the 1978 - 2014 dataset.  

 The AIC values showed that among the Gaussian models the GWR method was the better 

of the three. The GWR AIC values could not be compared to the Poisson models due to 

differences in distribution families. If a GWR that allowed Poisson distribution was used it could 

have a similar trend as the Gaussian models and see further improvement over the GAM method.   

The use of the Esri Spatial Analyst extension tool Geographically Weighted Regression 

also offered an easy and user friendly interface to create predictor coefficient surfaces. The 

predictor coefficient surfaces can be used to see how the influence of the predictor changes 

throughout the study area. The added pressure of accounting for local multicollinearity could 

also help in model creation by choosing the most influential variables.  

7.1.2. Local regression is better than global 

 Since this study concludes that GWR is the best overall modeling method, this also 

suggests that a local regression performs better than a global regression. The local R2 values 
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produced by the GWR also increase model usefulness. By studying the local R2 values, smaller 

areas within the study area can be considered for future research based on how well or poorly 

that area was modeled. The reason that the local regression performed better than the global 

regression could be due to habitat and biological values changing dynamically, in both time and 

space, in an area as large as Lake Ontario. These variations in variables could cause global 

regression to be over generalized.  

7.1.3. Good models cannot be produced 

No good models, those with adjusted R2 ≥ 0.7 and Cohen’s Kappa rankings of moderate 

or better, could be produced with any of the modeling methods. While some models for some 

species, like Spottail Shiner, were able to achieve the required adjusted R2 value, no model was 

able to get moderate agreement or better in all the abundance categories. While moderate 

agreement rankings were obtained for the moderate and high abundances categories of many 

species the same could not be said of the presence and absence category or the low abundance 

category. 

This inability to develop good models was most likely due to missing predictor variables. 

This was suggested when reviewing the standardized residual versus fitted values and QQ - 

Plots, which strongly indicate that at least one key variable is missing in all models. The use of 

multiple species and several different temporal range datasets with differing abundances and 

number of observations has helped determine if a particular method works better with a specific 

species or dataset. For example, Trout Perch often did best with the use of a Gaussian 

distribution when most species did better with a Poisson distribution. The inclusion of numerous 

zero observations in the models could also have added to the difficulty in developing a 

significant model. All models consistently over-predicted for zeros. 
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While the models weren’t considered to be good with the broad requirements set by this 

study, the requirements could be relaxed with more information on the nature of the individual 

species. The models, such as Spottail Shiner, that were close to the requirements could become 

classified as a good model with the inclusion of an additional predictor variable or the refinement 

of an existing model. To refine the existing model results that do not meet the stated 

requirements as good would require further knowledge of the specific species that includes their 

diet, life cycle, and behavior.   

7.2 Issues Encountered 

 The biggest issue in developing models for Lake Ontario fish species was the lack of 

dynamic, both temporal and spatial, environmental and biological data to develop better models. 

While datasets for plankton levels, macroinvertebrate community, and water quality exist, they 

are often have a broad temporal and spatial scale that does not match the more limited temporal 

scale of the benthic trawling surveys. These dynamic variables are often sparsely sampled within 

the study area and values extrapolated to the rest of the lake. Because of this sparse sampling the 

dispersed sampling points would likely not be within the coverage or receive questionable 

extrapolated values. The inclusion of these dynamic variables could be what the model needs to 

develop models with higher adjusted R2 values and better Cohen’s Kappa value agreement 

rankings. 

7.3 Future Research  

 This study was a successful starting point from which to determine which regression 

method would be best suited for a study area the size of Lake Ontario. However, in order to 

create good models, which this study was unable to accomplish, future research could focus 

solely on improving the GWR models. Improvements on the GWR could be as simple as 
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reducing the study area to areas that received a decent local R2 or as much as adding new 

predictor variables.  

One future approach would determine the best spatial scale at which to aggregate the 

observational data. Determining the proper spatial scales for modeling could possibly be 

determined by deeply investigating how the trawling vessel performs the survey. This would 

require detailed tracking of trawling vessels over a large number of sampling events. 

Another obstacle to overcome in future research is developing a way that temporal 

variables--including temperature, season, and other factors that change with time--are not lost or 

over generalized to spatial aggregation. This study focused on individual observational events so 

temporal factors, such as catch numbers and fishing depth temperature, would not be averaged 

together. By overcoming this obstacle larger time period datasets could be better utilized without 

losing seasonal effects from the model development. 

Another improvement that could be implemented in future research is the inclusion of 

better biological environmental data such as macroinvertebrate density, plankton density, light 

levels, concentration of oxygen, pH, and a number of other characteristics. This data does exist 

but does not match the temporal scale of the data. Macroinvertebrate and plankton density 

surveys are often done annually but not with the dispersal and frequency that the fisheries data is 

collected. While this biological and environmental data is currently available, it would likely 

have to be an annual average and values extrapolated to cover the study area so that all 

observations could have values. Future research would be better focused on collecting these 

variables at the time and location of the trawling survey. While this would not be practical for 

every variable, the inclusion of recording instruments onto the trawling gear could collect a good 

number of them.  
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Yet another improvement would be to investigate the effectiveness of each individual 

trawling event. Recently, cameras have been attached to trawls to determine their effectiveness; 

these videos can be used to create a variable that would act as a weight for event efficiency that 

would prevent poor preformed trawling events due to gear error from impacting results from 

more successful trawls. However, the use of these cameras would limit the models to more 

recent years.  

7.4 Conclusion 

 The results of this study showed that GWR was the best modeling method compared to 

GLM and GAM. While GAM did outperform with some of the model indicators than the GWR 

models, the GWR did similarly while reducing the complexity of the models. This study has 

contributed more evidence that a local regression method like GWR is an improvement in model 

development. Because of the relatively new use of GWR in fisheries research, more studies like 

this conducted with GWR can inform other fisheries studies on the issues and possible solutions 

to those issues.  
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