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Abstract 
Urban centers continue to densify and increase in number as the world’s population grows. 
Landslides are a common hazard throughout the world and can cause significant loss of life and 
property. Landslide risk and damage to the built environment is often an outcome of 
urbanization, whereas in the natural environment damage due to landslides is considered part of 
nature taking its course. This study examines the most common landslide triggering variable, 
precipitation, in Western Washington State, a region prone to this geohazard. The methodology 
developed in this study utilizes freely available, currently cached and real-time soil, geology, 
land use, demographic, and weather data provided by state and federal agencies and required no 
field research. It is imperative in high-risk landslide zones to have easy access to accurate 
landslide prediction models available in an open format. Integrating real-time data into validated 
landslide risk and relative risk assessment models through a geographic information system 
(GIS) can increase the utility, accuracy, and ease of use of a given model. The model developed 
in this study reports potential risk to urban and rural environments as well as risk to specific 
demographics for a specified landslide event. Landslide triggering variables are well suited for 
real-time streaming due to their continuously changing behavior. By publishing and publically 
sharing the model as a web service thus making it available on via the internet, the methodology 
also encourages collegial and professional discussion. Thus, this study provides an example of 
data integration of traditional landslide risk assessment variables with real-time precipitation into 
a landslide risk and relative risk model that can be readily adapted to investigations into landslide 
hazards in other locations. 
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Chapter 1 Introduction 
As populations continue to grow and densify, it is imperative that emergency response personnel, 
community planners, and managers are aware of the risks posed by geohazards. In the context of 
this thesis, risk is defined as measurable loss of property, life, or economic gain resulting from a 
geohazard (ICG 2014). In addition, a geohazard is typically defined as a geological state, 
condition, or effect, which has the potential to cause widespread damage. Geohazards include 
landslides, floods, earthquakes, tsunamis (hurricanes or cyclones), and other natural events. 
Landslides are a particularly critical geohazard and a serious risk to human settlements because 
slope failure can cause both widespread property damage and loss of life. In this study, a 
landslide is defined as a form of slope movement that includes “mud and debris flow, rockfalls, 
soil slips and deep-seated slides” (Varnes 1978, p 7). Geologic terms and definitions relating to 
landslides have been well established and in this thesis will follow those set forth by Varnes 
(1978) and refined by Cruden and Varnes (1996). The term vulnerability is also used when 
describing landslide risk in a specific geographic area where populations and built environment 
exist. 

The purpose of the study is to develop an innovative Landslide Risk Assessment Model 
(LRAM) that can be understood by anyone at any level of technical proficiency in Geographic 
Information Systems (GIS) and landslide risk assessment and to increase the utility of a model 
by placing it in an accessible location. This model is implemented using commonly used GIS 
technology including Esri’s ArcGIS for Desktop and Server and ArcGIS.com. In addition, this 
research utilized non-GIS dedicated applications such as Wget. The study area chosen to carry 
out this effort is United States Geologic Service (USGS) Zone 10 of Washington State (Figure 1-
1). This location was chosen because of the regions’ rich history of landslides including the site 
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of the most deadly landslide in United Stated (US) history (Stone and Servic 2014). Government 
agencies such as the National Oceanic and Atmospheric Administration’s (NOAA) National 
Weather Service (NWS) and the USGS provide individual assessments of potential major natural 
disasters in the United States as they occur. However, there is a void in the literature concerning 
real-time landslide risk assessment models for predicting landslide events, though such models 
have been published for wildfires, tornadoes, and rainfall triggered flooding. This thesis seeks to 
fill that void by creating an easily communicable landslide risk assessment model and hosting it 
in a web service. Hosting a model within a web service has many advantages. The most 
significant advantage of a web service hosted hazard model is that the model is available real-
time, on demand, to those who wish to use it, for example in an urgent time-sensitive situation. 
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Figure 1-1 USGS Zone 10 consisting of all of Western Washington State and a small portion of 
Eastern Washington. Major cities, towns, and mountains are labeled to orient the viewer to local 
geography.  
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Landslide hazard and risk assessment is a constantly advancing science. Landslide events 
impose immediate repercussions for the environment and the ways humans interact with it. 
Landslide prediction, quantification, and risk assessment have been strongly aided by the 
creation and continued use of GIS. Before GIS use became widespread, landslide hazard 
assessment was primarily performed through manual  statistical interpretation of soil 
morphology, geology, ecology, built environments, and precipitation, among other factors 
(Carrara 1989; Cruden and Varnes 1996; Malamud and Turcotte 2004). And prior to the advent 
of GIS-based risk analysis of various natural hazards, landslide risk assessment was “dominated 
by uncertainty” (Dai, Lee, and Zhang 2001). Today many GIS hazard assessment models are 
typically deterministic rather than statistical (probability) models. Nevertheless, statistical 
models have their place in landslide risk, relative risk, and vulnerability assessments, as 
explained in the following discussion.  

1.1 Deterministic and Statistical Models 
Deterministic natural hazard assessment models determine an outcome from a fixed set of 

pre-determined variables with known relations. It is assumed that using a deterministic model for 
a given hazard analysis will always yield the same output or result, provided the same input data 
is utilized. For example, a deterministic earthquake hazard assessment would involve using the 
input parameters form an existing historical earthquake to repeat the event in the same location, 
to see if the model produces the same results observed following the real event. When creating a 
statistical landslide hazard model the researcher quantifies all variables into the model as coded 
variables.  

Generally, a deterministic landslide hazard model is used to establish locations or zones 
geographically vulnerable to a landslide (De Capua et al. 2014). Each of the main input 
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variables, such as slope and soil characteristics, remains constant within the bounds of the study 
area. While many types of data utilized will change over time, the changes will generally occur 
outside of a time frame for which a model is applied. One example is geology data, which 
changes over the course of hundreds and thousands of years. Landsat data is the most 
geographically variable data type utilized in landslide hazard models. Landsat data would need to 
be updated and the model re-run after any major change in the natural or built environment in a 
given study area. An example is the logging of forests which would affect the results of a 
Normalized Difference Vegetation Index (NDVI) analysis and therefore, change the land cover 
type in the model. 

A landslide vulnerability model is a statistical model (Carrara 1989). The vulnerability is 
determined by the land use of the area and the populations residing in the hazard zone. Due to 
the nature of human populations, the inhabitants, and built environment are in flux and can only 
be assessed through statistical interpretations of data. There are varying levels of complexity in 
regards to any type of vulnerability model. Landslide models can be designed to analyze 
potential risk to populations or man-made infrastructure. In regards to the built environment, a 
landslide model can be weighted with respect to specific types of man-made structures such as 
schools, hospitals, tenant housing, or even to specific architectural design and construction if the 
information is available. Weighting a model to examine specific variables has been used in 
previous studies to determine the effects of a landslide on transportation infrastructure in rural 
locations, or in cases examining the effects of landslides in densely populated areas (Erener and 
Düzgün 2012). This is particularly useful for local governments when developing and issuing 
zoning and economic development plans. 
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The landslide risk assessment model (LRAM) developed for this thesis project focuses on 
analyzing landslide relative risk using raw population data and land use zoning to assign land use 
scores. In a final Web GIS deployment of the LRAM, historic and real-time predicted 
precipitation data was utilized in statistical analyses to further refine and predict land areas or 
zones most at risk in the study area. Additionally historic precipitation was used in conjunction 
with soil data to determine land instability potential. Lastly, predicted precipitation was then 
used along with  the determined instability potential in the afflicted zones to determine the final 
landslide hazard output,, since precipitation is the primary landslide triggering variable. The 
development, integration, and implementation of the model are discussed in detail in Chapter 3.  

1.2 Motivation 
In certain geographies, landslides can occur with a relatively predictable frequency, 

which are generally caused by man-made alteration of the environment in the risk area (Miller 
and Sias 1997). These same landslides can cause greater damage than anticipated if certain 
environmental factors shift or change rapidly. This limits the usefulness of any landslide risk 
assessment model.  

For example, recently a landslide in the city of Oso located in Washington State that 
occurred on March 22, 2014 caused catastrophic damage to residential housing and resulted in a 
heavy loss of life (Stone and Servic 2014). Although landslides regularly occur in this area, the 
land volume of this landslide was greater than anticipated and caused structural damages far 
beyond expectations (Miller and Sias 1998; Miller and Sias 1997). While there are many 
questions surrounding the cause of the Oso Landslide, factors leading to the atypical severity of 
the damages incurred have surfaced. The most significant factor contributing to the high number 
of causalities is human settlement too close to the hazard zone, despite prior recommendations 
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from earth science researchers and public surveyors against residential development in the area 
due to previously identified landslide risk (Miller and Sias 1998; Miller and Sias 1997). This area 
was further destabilized by an unusually high level of precipitation in the region which is 
assumed to have flooded the ground water table (Stone and Servic 2014).  

It is imperative that landslide risk assessment models are communicated and 
disseminated to government agencies, developers, emergency management officials, and 
residents, to help them with the decision making process of  gauging landslide risk, potential 
damage to structures and loss of life in the event that a landslide does occur. Current methods of 
communicating hazard models involve publications in government reports for agencies or 
businesses directly related to the environment or landscape being researched (Fell et al. 2008). 
Thus, a major goal of this project was to take a validated deterministic model (hazard risk 
assessment) and integrate real-time statistical models in a publically available Web application. 
The primarily goal of the latter is to increase landslide hazard awareness, in particular in the 
study area region. The method for disseminating these models will increase the footprint of 
awareness by being hosted in a Web mapping application accessible by anyone with an internet 
connection.  

1.3 Case Study: USGS Zone 10, Western Washington State 
Western Washington State was chosen as the study location for this thesis project, 

because this particular region experiences a high number of landslides every year due to its 
unique geologic, atmospheric and soil morphology and systems (see Figure 1-1) (Miller and Sias 
1997).  The application of real-time data is limited to NOAA weather data, since for the most 
precise and accurate model it is best if real-time data is updated hourly. Eastern Washington was 
excluded from the study area due to incomplete input data sets and other limitations in data 
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availability. Eastern Washington holds a retired nuclear research and enrichment facility that is 
now the nation’s largest Comprehensive Environmental Response, Compensation, and Liability 
Act (CERCLA) site, more commonly known as a Super-fund site (Figure 1-1). This site, in 
addition to being a CERCLA site, is also one of the nation’s largest retired nuclear research 
facilities and contains a vast nuclear waste dump. As such, soil data is not available to the public.  
 Washington State has a natural geographic and socio-political boundary that runs through 
the state along the Cascade Mountain Range. The geographic dividing line is absolute as 
determined by the state legislature. However, the federal government, through USGS data 
collection, has placed the boundary location further east. The digital elevation map used for this 
area is USGS Zone 10 for Washington State. The Zone 10 boundaries do not match the East-
West dividing line for Washington State. Due to this difference, the USGS Zone 10 area was 
used rather than the state’s East-West dividing line.  
 The data collected for the project was compiled at a state and regional level. This study 
was then focused on the overall smallest region for the collected data (USGS zone 10). Thus, the 
project environment was set to limit all analysis to this chosen region. The model was run as a 
single dataset to eliminate edge effects rather than running smaller geographic or political areas 
and stitching them together as a mosaic. The overall analysis and many of the individual steps 
consist of raster analysis which if mosaicked can have issues with values bleeding into other 
cells that do not represent a true value.  

1.4 Thesis Organization 
The remainder of this thesis is divided into four additional chapters. Chapter 2 provides 

background literature and explains concepts, such as real time data integration, in a broader 
context as the concepts relate to the thesis. Chapter 3 outlines the development of the LRAM and 
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describes the methodology conducted during this thesis. Chapter 4 details the results of the 
LRAM after running and validation. Lastly, Chapter 5 summarizes the outcomes produced and 
offers concluding comments on future work needed to further the development of this work. 
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Chapter 2 Background 
This thesis project consists of three separate but inter-woven goals regarding landslide risk 
assessment modeling development and deployment. These goals are examined below in the 
context of previous contributions by academic and government sources in the field. The first goal 
is the integration of a deterministic landslide risk model (Hadi 2004) with a real-time statistical 
precipitation slope failure risk model (Chiang and Chang 2009; Chang and Chiang 2009; 
Bhandary et al. 2013). In this study, these two different types of models were integrated to form 
the foundation of the LRAM. The second goal of this study is to publish the LRAM in a publicly 
available web service where it is updated hourly with the most accurate available primary source 
data. The third goal is to communicate the LRAM, risk zones, and inaccuracies effectively to the 
research community, the general public and to government entities that the LRAM output is 
intended to assist as a decision-making tool. Placing the LRAM model in a public location 
without communication has the same general outcome as printing the results and putting them in 
a drawer. The LRAM is published on ArcGIS.com and shared to all who want to use and find it. 
Additionally, after final review and validation, the model will be published on a public website 
that explains the dangers of landslides and what we can do to minimize risk to our communities.  

2.1 Landslide Modeling 
Many researchers have set forth guidelines on how to determine landslide susceptibility, 

and others have examined the finer aspects of modeling landslides such as considering units, 
scale or size of study area, directional debris flows, and elevation (Westen and Terlien 1996; 
Westen, Castellanos, and Kuriakose 2008; Erener and Düzgün 2012; Jagielko, Martin, and 
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Sjogren 2012; Fell et al. 2008). Also, the various environmental and landslide triggering 
conditions have been widely examined (Miller and Sias 1998; Cruden 1994; Cruden and Varnes 
1996; F. Dai, Lee, and Ngai 2002; Dahal and Hasegawa 2008; Fell et al. 2008). 

Although landslide vulnerability is not comprehensively examined in this study, 
dasymetric mapping of population is included in the methodology to provide an indication of 
vulnerability of people in harm’s way. The term vulnerability, when applied to a geohazard, must 
be clearly defined. In the geohazard discussion within social science literature, vulnerability is 
often used to define the risk of a geohazard to a social group or society at large. Within this 
context, vulnerability focuses on sources that “produce explicit spatial outcomes, social and 
biophysical, and describe their origins and common usage within the social science hazards 
literature” (Cutter 1996). This vulnerability may or may not have a spatial domain. Within the 
more specific academic discussion of landslide prediction and analysis, vulnerability is used to 
describe several attributes beyond populations, societies, and social groups. These attributes 
include buildings, transportation networks, lifelines, essential facilities, population data (total 
population), agriculture data, economic data, and ecologic data. These combined attributes create 
the geographic area’s vulnerability to a landslide event (Westen, Castellanos, and Kuriakose 
2008). This paper’s goal is not to assess comprehensive vulnerability from either definition but 
to determine the relative risk of a region.  

Preparatory or environmental factors have been defined as, “variables that make the slope 
susceptible to failure without actually initiating it” (F. Dai, Lee, and Ngai 2002, 67). These 
factors include the slope gradient and aspect, the soil type and the bedrock geology, the overall 
elevation and the elevation change, vegetation presence or absence, and how the ground surface 
has weathered up to the point of analysis. These factors are what make up the geography of a 
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given study area and allow stability to be quantified such that that researchers can estimate how 
they can be altered by testing different values in the triggering variables. 

Landslide triggering variables are defined as “the triggering variables which shift the 
slope from a marginally stable to an unstable state and there by initiating failure in an area of 
given susceptibility” (F. Dai, Lee, and Ngai 2002, 67). Triggering factors can include 
earthquakes of varying intensity, heavy rainfall, changes to the built (anthropogenic) 
environment, and rapid rise in ground water levels. These factors are important because at least 
one, if not more, will result in the slope destabilization and thereby trigger a landslide.  

The landslide models currently published in the literature are not without errors (Miller 
and Sias 1997). Noted errors include location-based assumptions when comparing similar 
locations, bad data, and errors in analysis. A common error that is difficult to avoid is 
interpolating precipitation data from one recorded point to a region. At this time, there is no way 
to avoid precipitation interpolation from point sets into isohyets. Nevertheless, existing models 
are integral to saving lives and preventing property damage from an eventual landslide. As 
previously stated, the LRAM developed as part of this thesis attempts to integrate real-time data 
into an already validated deterministic landslide risk model. This method for calling a landslide 
risk model on demand utilizing dynamic input data, intended to provide the most up to date risk 
assessment and forecasted risk as possible. While many factors in landslide analysis do not 
change quickly, weather and ground water can and are major triggering factors, in addition to 
other major geologic events such as debris flows and earthquakes (Miller and Sias 1998).  

The model chosen for this analysis incorporates only environmental factors (Hadi 2004) 
while omitting triggering variables. The purpose of omitting triggering variables other than 
rainfall is to develop a baseline model where triggering variables can be applied to the region as 
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needed to test for different landslide locations. One location within a region may be vulnerable to 
precipitation triggered landslides but not earthquakes, while the opposite may be true for a 
different region. As such, the LRAM has a peer reviewed rainfall analytical model integrated 
within it which attempts to correlate landslide risk with rainfall events to assess a safety factor, 
which has been considered a standard method for assessing landslide risk (Lepore et al. 2013). 
Rainfall-triggered landslide modeling is well researched and reviewed (Bhandary et al. 2013; 
Dahal and Hasegawa 2008; Chiang and Chang 2009; Aleotti 2004).  

The original landslide assessment model utilizes a method known as infinite slope 
modeling to estimate risk. This modeling method accounts for the hydrological framework of a 
watershed or areas of slope failure, the environmental variables incorporated into the model. 
Arnone (2011) and Arnone et al. (2013) provide a detailed description of the infinite slope model 
equations and rainfall triggered modeling. Lepore et al. (2013) add to the discussion by 
furthering the model to include soil which is neither dry nor wholly saturated. The main 
advantage of the infinite slope model is that it applies to nearly any location where basic soil data 
and precipitation data is known (Lepore et al. 2013).  

2.2 Real-Time Data Integration 
Precipitation data is a requisite model variable that is updated hourly to ensure the 

accuracy of the LRAM. Real-time precipitation data is sourced through NOAA’s National 
Weather Service (NWS) National Digital Forecast Database (NDFD) for the study area (NDFD 
2015).To facilitate the download of real-time precipitation data and its conversion to a usable 
data format batch scripts were written in a text editor and saved at .bat. These scripts are run on 
the production server, which also hosts the LRAM public facing Web map application. These 
scripts are included in Appendix C. A task scheduler calls the batch scripts to run at designated 



 
 

15 
 

times to download new precipitation data, replace the old data and run NOAA’s DEGRIB 
application1 to turn the precipitation data into a shapefile. This process is discussed further in 
Chapter 3. Thus, to best incorporate the temporal and volume fluctuation of precipitation data, 
the data is integrated into the LRAM in a real time format where predicted precipitation levels 
are computed for a 72 hour forecast period, updated hourly, with the LRAM running hourly to 
update the calculations utilizing the most recent precipitation data. 

2.3 Communication of Hazard Models 
Geohazards are a relatively common phenomenon in the United States (FEMA 2015b). 

The Federal Emergency Management Association (FEMA) actively works to protect 
communities and prepare them for possible disasters. The USGS and FEMA both have a large 
amount of information available related to landslide susceptibility at the state or county level. 
Landslide susceptibility is defined by examining historic landslides, slope, soil morphology, 
normalized difference vegetation index (NDVI), and anthropogenic development. However, 
neither organization provides data at the city or block group level. The available data available is 
complex and can be difficult for a non-geologist to locate and interpret. Also, region-wide 
models provided through government agencies are typically static and do not include dynamic 
triggering variables, such as rainfall (Westen, Castellanos, and Kuriakose 2008). 

FEMA utilizes GIS to quantify and predict land areas that are susceptible to geohazards 
and their potential cost in terms of loss (i.e. economic, property, population, built environment) 
(FEMA 2015a). HAZUS was created by FEMA to streamline this process and put hazard 
analysis tools into the hands of the public, research communities, and emergency planners. 
Currently, HAZUS supports modeling for flooding, hurricanes, coastal surge, and earthquakes by 
                                                 
1 http://www.nws.noaa.gov/mdl/NDFD_GRIB2Decoder/ 
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calculating hazard exposure, intensity, and loss. While HAZUS is an efficient service for 
modeling those events it does not include models for other hazards and disasters such as 
wildfires, tornadoes, and landslides. HAZUS, while free to use, does require an ArcView license 
for ESRI’s ArcGIS and the Spatial Analyst extension for running applicable analyses. This 
substantially increases the cost of using HAZUS and requires a user such as a community 
planner to be familiar with the science behind the hazard analyses and many damage estimation 
tools built into this system, as well as to this proprietary software ecosystem of products. Lastly, 
HAZUS does not provide real-time modeling for any of the disaster analysis tools it currently 
supports. 

The following chapter provides a detailed account of the development of the LRAM 
Model. This methodology is built upon the work of Hadi (2004) and Lepore and Arnone (2013; 
2011), as described above.  
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Chapter 3 Methodology 
As described in the previous two chapters, the main goal of this research was to integrate a 
landslide and a precipitation model together to achieve a real time, relative risk landslide analysis 
model customized for Western Washington State (Hadi 2004; Lepore et al. 2013; Arnone et al. 
2011). The models selected were correlated with particular regions where each is most 
appropriate for landslide risk analysis and prediction. The LRAM was then validated using data 
for other locations that have already undergone landslide risk analysis in addition to field 
validation. The final application was made available via a public-facing Web map that allows for 
general consumption of the model and generation of downloadable results.  

This chapter presents the methods used for integration of the two models, the method 
used to score the requisite data sets in the creation of the final model, and the similarities and 
differences between the LRAM model and the original models it is built upon. Focus was also 
placed on the communication of risk assessment models to the public and the service this can 
provide. The chosen method for communication of risk assessment models is through a Web GIS 
service.  

3.1 Model Overview 
The LRAM was created by integrating two types of landslide analysis models (Figure 3-

1). The first model is an information value (Info Val) model commonly seen in the field. The 
specific model was inspired by Hadi (2004) and further refined by Che et al. (2012). The Info 
Val method was chosen because it requires less expert knowledge in the field, the data required 
is easily available in the United States, the model is flexible, and the computation requires 
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minimal computer resources (Che et al. 2012). The model primarily relies on identifying 
environmental factors known to be variables in the event of a landslide through analyzing data 
sets on soil geology, morphology, land cover, and slope (see Table 3.1). These factors are scored 
and weighted before risk areas can be identified. Scoring of known variables is a process where 
variables, which have been verified in literature as environmental factors that contribute to 
landslides, are weighted by severity. Severity is the potential impact of the environmental 
variable to result or participate in causing a landslide.  

The template models used in this analysis are all relative risk models rather than absolute 
risk models. A relative risk model categorizes risk as low, medium, and high or similar 
categories. The relative risk model was chosen as the input data sets are not all numerical nor 
categorical and thus do not lend themselves an absolute analysis. There is a single absolute 
analysis in this study in regards to the triggering variable, described in detail in section 3.4.
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Figure 3-1 Flowchart overview of the LRAM. 
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3.2 Data Overview 
The LRAM model utilizes easily accessible datasets (Figure 3-1). In the United States, 

datasets can typically be located through federal, state, and municipal agencies. All data sets are 
raster images or polygon shapefiles imported into a file geodatabase. Real time data is provided 
in a binary format that is converted into a shapefile as described later in this chapter. Before 
being uploaded to the server, all datasets were imported into a Spatial Database Engine (SDE). 
Raster analyses were performed according to the lowest resolution raster included in a given 
analysis. For example, in step 1, Raster A and Raster B have the same resolution of 0.5 x 0.5 feet 
and therefore the output raster had a resolution of .5 x .5 feet. However, when raster B was 
analyzed against Raster C with a resolution of 10 x 10 feet, the lower resolution was selected for 
resampling of Raster B, so both raster were analyzed at a 10 x 10-foot resolution. This ensured 
that the best possible accuracy of data was maintained throughout each analysis. The raster 
resolution was used to normalize scoring by multiplying the score of smaller resolutions to that 
of the largest to ensure equal weighting of the variables in the final analysis.  
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Table 3-1 Raw Data sources used to populate the Landslide Risk Analysis Model 

Name  Type Source  Description  Raster Scale in feet Raster Depth 
National Elevation Dataset (NED) Raster USGS compiled into Zone 10 by University of Washington 

NED is used for slope analysis and raster calculation. Scoring is performed on slope intensity ranging from flat to steep. 10, 10 16 Bit 

Soil Polygon  Washington State DNR 
Feature to raster tool was used on fields- Soil Texture, Soil Depth, Soil Drainage, Soil Stability, Soil Percolation Rate, Soil Displacement, and Moisture Capacity. Rasters were reclassified and scored based on each field’s unique contribution to landslides. 5100, 5100 8 Bit 

Block Population Polygon 
2010 Census Summary File and Block level shape files joined outside of model 

Polygon to Raster and reclassified by population density. 0.5, 0.5 16 Bit 
Land Use / Parcel Map Polygon Washington State WAGDA geoportal Parcel map with land use of open areas.  n/a n/a 
Land Cover Data Raster Landsat Imagery Data is utilized to create a vegetation index and then scored based cover density of area 30,30 8 bit 
Geology Raster Washington State DNR Bedrock Structure. Contains information regarding rate of weathering, exposed bedrocks, and the shape and slope of the bedrocks structure 4988, 4988 8 bit 
Precipitation Data Binary Data NOAA through hosted live feed Real time precipitation forecasts for the next 72 hours and 15 day previous total precipitation n/a n/a 
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3.3 Hazard Map Data Types and Calculations 
Classification and scoring for the GIS-based landslide assessment analysis developed in 

this study are intended to produce a hazard map, based on procedures describe in Hadi (2004). 
All data types and scoring were adapted from Hadi (2004), Chang and Chiang (2009), Hadji et 
al. (2013) and were consolidated by the author. The calculation of the hazard map is: 

݀ݎܽݖܽܪ = + ݈ܵ_ܿܵ) + ݎܦ_ܿܵ  + ܦ_ܿܵ  + ܾݐܵ_ܿܵ  + ݔܶ_ܿܵ  + ݎݐܵ_ܿܵ   ܵܿ_ܸ݅) [1] 
Where  
Hazard : Hazard map 
Sc_Slp : Scored slope map  
Sc_Dr : Scored soil drainage  
Sc_Dp : Scored soil depth  
Sc_Stb : Scored soil stability  
Sc_Tx : Scored soil texture  
Sc_Str : Scored geologic structure  
Sc_Vi : Vegetation index  

The output of this computation was raster with an 8-bit pixel depth, where each pixel on 
the map was assigned a Hazard value according to the equation above. In the output Hazard map, 
the minimum value is 7 and the maximum is 35. Values closer to 7 have lower risks of landslides 
while values closer to 35 are high risk.  The following sections document spatial analysis and 
scoring for each variable in Equation 1 above. Hazard scores are given on a scale from 1 to 5 
where 1 is the lowest hazard, and 5 is highest. Table 3-2 includes the hazard risk (class) as 
associated with scoring (score) which applies to all other variables.   
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3.3.1. Digital Elevation Model 
The digital elevation model (DEM) used in this study was created by the United States 

Geologic Survey (USGS 2015b). The DEM is based on the National Elevation Dataset (USGS 
2015a). The dataset used in this model is a 10-meter DEM containing all of Zone 10. This file 
was obtained in a raster format with a cell size of 10 x 10 and a 16-bit pixel depth. 

A slope analysis was performed using ESRI’s Slope tool in the Surface toolbox within 
the Spatial Analyst Extension, with the DEM as input. This tool analyzes the slope of the DEM 
by examining the z-values present. The variable “z” corresponds directly to elevation in most 
rasters. The slope tool generated a new attribute field (slope) and inserted the slope value based 
on the surrounding cells.  

Table 3-2 Description and scoring for the final slope map (Adapted from Hadi 2004) 

Criteria Class Score 
Description Steepness (°) 

Flat 0 - ≤ 8° Lowest Hazard 1 
Flat to Moderate 8 - ≤ 15° Low Hazard 2 

Moderate 15 - ≤ 25° Moderate Hazard 3 
Steep 25 - ≤ 45° High Hazard 4 

Very Steep > 45° Highest Hazard 5 
  
3.3.2.  Soil Map 

The soil map was obtained from the Washington State Department of Natural Resources 
is a polygon shapefile format (DNR 2015). Four attributes are required for the hazard analysis. 
These include soil texture, soil depth, soil drainage, and soil stability. These four feature classes 
were converted to a 5100 x 5100 feet raster with an 8-bit pixel depth.  
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3.3.2.1. Soil Texture 
Soil texture was standardized into nine classes. Standardization of soil data consisted of 

aggregating broad terms into single terms to bring the number of soil classes in line to match the 
scoring from Hadi (2004). For example, in the original soil layer, “sandy loam” and “loamy 
sand” were present. Each of these soil types is different regarding soil morphology. In the 
LRAM, these similar soil types were standardized to “loamy sand.” Standardization of 
terminology was performed across the entire soil texture attribute field before analysis. After 
standardization, the model assigns a score based on soil texture class (Table 3-3). These scores 
were originally obtained from Ilaco (1981) and Hadi (2004). The scoring of soil texture is in 
direct correlation to the laboratory analysis or provided soil texture and does not need 
calculations to arrive at a final score. A raster re-classify tool is used to score the soil textures.  

Table 3-3 Description and scoring for soil texture (adapted from Ilaco 1981 and Hadi 2004). 
Soil Texture Score 
Loam 1 
Loamy Clay 2 
Loamy Silt 2 
Loamy Sand 3 
Heavy Clay 4 
Silt 4 
Heavy Sand 5 
Sand 5 
Sandy Clay 5 

3.3.2.2. Soil Depth 
Soil depth is included as a value in inches. Similar to soil texture, soil depth is scored according 
to values provided in Soils Profile Descriptions by Worosuprojo and Jamulya (1991).  
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Table 3-4 Description and scoring for soil depth, a field located on the soil map (adapted from 
Hadi 2004). 

Class Soil Depth (In) Score 
Very Shallow 0-12 1 

Shallow 13-24 2 
Moderate 25-35 3 

Deep 36-59 4 
Very deep >60 5 

3.3.2.3. Soil Drainage 
Soil Drainage is scored using the same profiles as soil depth and given in Soils Profile 

Descriptions (Worosuprojo and Jamulya 1991). Two additional fields were added which were 
not present in the soil profile but were present in the soil map. These fields, “excess drained” and 
“some excess drained,” refer to soil types, which hold large amounts of water and have high 
drainage rates enabling them to move water quickly, which might cause instability. These soils 
were scored as moderate risk based on their similarity to variable drained and moderately well 
drained.  

Table 3-5 Description and scoring for soil drainage, a field located on the soil map. 
Class Score 
Well drained 1 
Moderately well drained 2 
Excess Drained 2 
Variable drained 3 
Some Excess Drained 3 
Poor drained 4 
Very poor drained 5 

3.3.2.4. Soil Stability 
This study utilized a pre-determined soil stability and erosion potential analysis, also 

included on the soil map. The original model and study also utilized a laboratory analysis of 
field-collected soil samples to determine texture, shear inclination, cohesion, shear pressure, 
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shear resistance, and safety factors. These factors were used to rate the erosion potential of the 
area, from stable to high instability. The soil map provided by Washington State Department of 
Natural Resources (DNR) classified the soils from low to high instability potential. The scoring 
of the study is translated to local soil analysis in the following table. 

Table 3-6 Description and scoring for soil stability, a field located in the soil map. 
Hadi et al. - Classes Wa State- Class Score 
Stable Low 1 
Unstable  Moderate 3 
High Instability High 5 

3.3.3. Bedrock Geology 
A 24k geology was obtained from the Washington State DNR  (DNR 2015). A point 

shapefile with bedrock observations for inclination, attitude, strike, azimuth, dip angle, bedrock 
geology, and analysis of landslide risk. This shapefile was converted to a raster using a natural 
neighbor interpolation method resulting in a 4,988 by 4,988 foot (default raster resolution based 
on inputs) and 8-bit pixel depth for the purpose of this analysis. Scoring was based on models 
determined by the inclination and shape of the rock structure validated in previous studies 
(Misdiyanto 1992). The model accounts for both slope of the landform and for bedrock slope or 
steepness. Slope measurements include vegetation and soil while the geology raster includes the 
slope or steepness of the bedrock only.   
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Table 3-7 Description and scoring for bedrock geology (Adapted from Hadi 2004) 
Criteria Score 

Description Steepness (°) 
Horizontal, Flat 0 - 3° 1 

Vertical, sloping on flat-undulating landform >3 - 8° 2 
Non structural on steep slope  >20° 3 

Sloping on undulating landform >8-14° 3 
Sloping on undulating landform >8-20° 4 

Sloping on heavy rock on undulating landform >20° 5 
3.3.4. Landsat 

Landsat data was used to create a Normalized Difference Vegetation Index (NDVI) using 
a mapcalc function within a new field (NDVI) (Hadi 2004). This calculation required two 
satellite bands that were previously georeferenced. One band must show visible red reflectance 
while the second must show near infrared reflectance. The following expression was used to 
calculate this variable, where a = visible or red reflectance (Landsat band 3) and b = near infrared 
reflectance (Landsat band 4):  

ܫܸܦܰ = (ܾ − ܽ) / (ܽ + ܾ)   [2] 
The output of this computation was raster with an 8-bit pixel depth, where each pixel on 

the map was assigned an NDVI value ranging between -1 and 1. Areas with dense coverage will 
have a higher score due to the high near-infrared reflectance. Conversely, areas with minimal 
coverage will have a higher visible reflectance and a lower NDVI values (Hadi 2004). Areas are 
given a score based on their NDVI, provided in Table 3-8.  
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Table 3-8 Description and scoring for Normalized Difference Vegetation Index (Adapted from 
Hadi 2004) 

Cover Density NDVI  Score 
Dense Coverage > 0.4 1 
Fairly Dense Coverage 0.24 - 0.4 2 
Moderate Coverage 0.08 - 0.24 3 
Sparse Coverage 0.08 - (-0.08) 4 
Bare land and Water (- 0.08) – (-0.24) 5 

 
The final reclassified scoring of NDVI was then run through the Majority Filter tool in 

Esri’s Spatial Analyst extension to remove as many errors as possible.  

3.4 Relative Risk Map Data Types and Calculations 
Classification and scoring for the relative risk map were also based on Hadi (2004). All 

data types and scoring were pulled from different published journals and had been consolidated 
and validated in the aforementioned work. The relative risk map is the hazard map normalized by 
population and land use. The final calculation for the relative risk map is given in equation 3. 

ݕݐ݈ܾ݅݅ܽݎ݈݁݊ݑܸ = ݀ݎܽݖܽܪ) ∗  Population  [3] / (ܷܮ

3.4.1.  Land Use 
Land use was determined by running a majority filter generalization tool on a statewide 

land use map. This tool identified and scored areas based on the majority use as shown in Table 
3-9. 
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Table 3-9 Description and scoring for land use data 
Land Use Scored 
Water Bodies 1 
Agriculture 2 
Industrial 3 
Commercial  4 
Mixed use 5 
Residential 5 

3.4.2. Census  
Dasymetric mapping was used to determine population density in the study area. Hadi 

(2004) used a choropleth density map in the original analysis. However, dasymetric mapping 
provides a more accurate population density analysis by using ancillary data to standardize data 
(Eicher and Brewer 2001). Dasymetric mapping is required for the relative risk map as a core 
component of determining which geographic area is most vulnerable to a landslide as previously 
explained in Chapter 2. In this study, dasymetric mapping consisted of utilizing census data from 
the 2010 Census and the National Land Cover Database. This data set was provided complete 
through the Washington State Geospatial Data Archive (WAGDA 2015). A detailed explanation 
of the creation of the dasymetric mapping is outside the focus of this thesis and is provided in 
Zandbergen (2011) and Mennis (2015).  

3.5 Statistical Rainfall Modeling and Integration 
This study modeled a single complex landslide triggering variable, rainfall. Above 

average rates of precipitation over time can cause soil instability in two ways. The first is by 
causing the ground water table to flood, causing pressure exerted on the soil to have a greater 
ability to shear the soil (Iverson 2000). Groundwater flooding can be the result of short periods 
of large rainfalls or a long-term increase in rainfall causing rivers, lakes, and aquifers to hold 
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above average levels of water. Ground water flooding may occur over long periods, and the 
effect may not be noticeable immediately. The second effect of above average rates of rainfall is 
landslides induced by storm flooding. Storm flooding generally coincides with large amounts of 
rapid rainfall over short time periods. Flooding occurs when the soil becomes saturated with 
excess water, and the water cannot move quickly enough (percolation) out of the soil. Ground 
water flooding is a generally slower than storm flooding and usually causes less loss of life but 
greater loss of property (Miller and Sias 1998).  

Statistical modeling of rainfall triggered events was directly based on Alan Chleborad 
(2003). This paper was sponsored by the USGS in an attempt to precisely estimate the amount of 
precipitation necessary to cause a landslide in the greater Seattle Area. The study utilized a 
landslide database of 187landslides in the Seattle area since 1897 and the historical precipitation 
records for NOAA in an attempt to determine the threshold of rain needed to trigger a landslide. 
Chleborad (2003) determined that 89% of all landslides in Seattle, and 68% in the Seattle area, 
occurred if the 72 hour cumulative precipitation was greater than the 15 day prior antecedent 
precipitation (2003). The paper noted that seven of the 12 landslides that occurred when the 
threshold was not met occurred in areas of high levels of anthropogenic activity. Examples given 
for why these landslides occurred include poor drainage during construction, blocked culverts, 
and water lines leaking into the groundwater table (Chleborad 2003). 

3.5.1. Precipitation Integration Methods 
Real-time precipitation data in binary format was collected from NOAA using a server 

side query and download function (NDFD 2015). The interpolation and creation of NOAA 
precipitation forecast and historical precipitation are outside the focus of this thesis and is 
provided in Fielder (2003), Brown (2014), and National Weather Service (2016) .Wget (GNU 
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2015) is an ideal software package for this implementation. Wget is a free and open source 
software package with the ability to retrieve files from HTTP, HTTPS, or FTP architecture. 
Wget works on most operating systems including Windows, Linux, and Apple. Wget has both a 
command line interface and a visual interface in a Windows operating system environment. This 
software can be set up to allow Wget to resume failed or aborted downloads, to run recursively, 
and utilize wildcards and timestamps to determine which file to download. The only significant 
limitation of Wget is a 2-gigabyte file size limit when using a 32 bit operating system. For this 
project, Wget was downloaded to the server and commands were created in a text file and run 
through Window’s Task Scheduler2. Specifically, the script for the download process was written 
in a text editor and saved as a batch (.bat) file. This commented script is located in Appendix C.  

Wget also allows the user to set up many parameters for the download and environment 
both in command line and in its visual interface. This solution was chosen as it relied on a visual 
interface while still allowing the script to be run from command line without direct input from a 
user. This command line program was run hourly to acquire the weather forecast data and daily 
for the recorded precipitation data. The program queried the NOAA servers for the Pacific 
Northwest region’s real-time precipitation forecast for 36 hours ahead, and for the previous day’s 
recorded precipitation day data. The data downloader needed to be run for 15 days, with the data 
being cached on the local server before the model had enough information to analyze potential 
rainfall triggered events. Using the same command line method, the 72-hour data was deleted 5 
minutes before the new dataset was downloaded. In addition, the 15-day actual recorded 
precipitation data had the 16th or oldest record deleted 5 minutes before the new dataset was 

                                                 
2 http://windows.microsoft.com/en-US/windows/schedule-task#1TC=windows-7 
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downloaded. This method of deletion kept the server environment organized and efficient while 
maintaining the necessary datasets. 

NOAA’s DEGRIB (National Digital Forecast Database (NDFD) GRIB2 decoder) was 
also run during the same process to convert the original binary data into a shapefile for analysis 
(NWS 2015). This process was also scheduled in Windows Task Scheduler and run as a batch 
file. A wildcard needs to be used in the naming convention of the script to accurately convert the 
binary file into an Esri shapefile. The converted shapefile was placed into the primary data folder 
for the model on the server hosting the LRAM. Once in a shapefile LRAM clipped the data to 
the USGS Zone 10 outline. As aforementioned, the downloader must run for 15 days before the 
converted shapefiles can be compiled by the model into a single aggregate of the antecedent 15 
day precipitation totals. Then the data was interpolated across the study area to create a raster 
using inverse-distance weighting (Fiedler 2003; Chiang and Chang 2009).  

3.5.2. Real-Time Precipitation 
There are two different methods to incorporate the precipitation data into the LRAM. For 

the first, a weighted score could be applied to the predicted precipitation levels in conjunction 
with the antecedent 15-day precipitation levels. This method would leverage a large vulnerable 
area and identify them in ranges in the Info-Val method, according to Che et al. (2012). The most 
significant problem with this method of incorporation relies on the Chleborad  (2003) method of 
identifying precipitation-triggered landslides, which does not take into account critical fault 
thresholds of the soil and slope in conjunction with the total water load. Due to this weakness, 
the highest score of increased risk is capped at 80% without having clear delimitations above or 
below the point where 72-hour precipitation is greater than the antecedent 15 day precipitation 
levels. The classification of this method is shown in Table 3-10.  
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Table 3-10 Weighted precipitation scoring for 72 hour predicted compared to antecedent 15 day 
precipitation levels.  

72 hour predicted precipitation as a percentage of antecedent 15-day precipitation. Scored 
Less than 50% 0 
Greater than 50% and less than 75% 1 
Greater than 75% and less than 100% 2 
Greater than 100% 5 

  
 The second route to incorporate precipitation data is to use a definitive method of 
classifying precipitation-triggered landslide hazard. This is the route chosen in the LRAM. The 
ArcGIS tool, Greater Than Frequency, was run within the model to determine if any cells in the 
72 hour predicted precipitation forecast were greater than the antecedent 15-day precipitation. 
This method produced an output of identified zones that had an 80% increased chance of a 
landslide due to precipitation. Identified areas were then multiplied by 1.8 against the previous 
relative risk score to give an 80% increased chance of a slide event. This formula is given below.  

(3.3 ݊݅ݐܿ݁ݏ) ݇ݏܴ݅ ݀ݎܽݖܽܪ + (3.4 ݊݅ݐܿ݁ݏ)݇ݏܴ݅ ݁ݒ݅ݐ݈ܴܽ݁ ∗
(3.5 ݊݅ݐܿ݁ݏ) ݐ݊݁݉ݏݏ݁ݏݏܣ ݎ݁݃݃݅ݎܶ ݊݅ݐܽݐ݅݅ܿ݁ݎܲ =  [4]  ݇ݏܴ݅ ݁ݒ݅ݐ݈ܴܽ݁ ݈ܽ݊݅ܨ

3.6  Web Map Application Environment 
The ability to quickly and accurately communicate the model to the public is one of the 

most significant factors in determining the success of model creation. If a relative landslide risk 
analysis is performed but not made available for public consumption, there is no difference than 
if the model was never run. As such, the web map application needed to be hosted with several 
important requirements in mind. It is desirable for the model to be hosted on the internet on a 
server that provides public access, be readily available to any person with or without access to a 
GIS, and the model must be communicated in a way that was easily understandable to anyone 
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viewing despite personal levels of technical (computer as well as scientific) proficiency. 
Furthermore, the model needed to be hosted in an environment that was easily updated, reliable 
and allowed expansion as the datasets required. In addition, a low-cost environment was crucial. 

Thus, an Amazon EC2 (Elastic Compute Cloud) instance was chosen to host the web 
model. The EC2 instance was built with ArcGIS Server 10.3, using ArcMap for Desktop 
integrated with Microsoft SQL spatial databases. Additional programs required to run the web 
model included Wget, NOAA’s DEGRIB, PyScripter3, Fiddler4, and Microsoft’s Task 
Scheduler. Wget, DEGRIB, and Task Scheduler are explained in detail in section 3.5. PyScripter 
is an integrated development environment (IDE) specific to the Python coding language. The 
program is utilized to write, amend, and check python code, such as the final model. The final 
model was not run in the IDE but was exported as a python script, checked for bugs, and then 
run by Task Scheduler executing a run command (see Appendix C) at a set interval of 4 hours. 
Fiddler, while not required, is an application used to test that a server and client are 
communicating. While no problems arose in the Web environment between the server 
environment and the client requests, testing of the map the application using Fiddler ensured that 
communication was flowing both ways without error.  

Next, the final raster layers were published as a feature service. The features are hosted in 
a spatial database engine (SDE). The database is versioned, and the model writes to a single 
ancestor of the default database as it updates. The branch is then reconciled and posted with the 
default table as it is updated. A detailed explanation of versioning in an SDE environment is 
given by Derek Law (2016).  The LRAM updates every 4 hours with up to date precipitation data 

                                                 
3 At the time of writing PyScripter’s website appears to be offline. A link for download can be 
found at http://sourceforge.net/projects/pyscripter/ 
4 http://www.telerik.com/fiddler 
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provided by NOAA and delivered through Wget (GNU 2015; NDFD 2015) as described in 
section 3.5.  

The front-end environment of the model, where an end user will experience the final Web 
map, was created in ArcGIS through the Web AppBuilder for ArcGIS. This method of 
publishing the map was chosen due to ease of application creation and the ability to host the map 
in an environment that allowed the model to be viewed in any internet browser capable of 
consuming HTML and JavaScript. The Web AppBuilder service gives a developer a wide array 
of template maps to choose from and widgets to allow customization of the final Web map 
application. A simple map design was chosen so as not to hinder or distract an end user from 
utilizing the Web map content as intended (see Chapter 4). Future suggested improvements to 
the Web map environment are provided in detail in Chapter 5 Section 2. 
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Chapter 4 Results 
The LRAM functions well as a proof of concept in landslide risk assessment modeling without 
field work being required. The outcome of this study adds to the growing body of literature about 
real-time landslide prediction and risk analysis, and more specifically rainfall triggered events. 
There are three distinct phases of results resulting form each run of the LRAM. These include the 
hazard map (section 3.3), the relative risk map (section 3.4), and the statistical rainfall modeling 
(section 3.4). The LRAM is only able to perform as a relative risk model instead of a 
vulnerability or statistical model due limitations in the input data available for this study.  

4.1 Hazard Map 
The Info-Val method proved to be highly customizable in accounting for variables 

specific to the study location while still relying on peer-reviewed scoring and interpretation of 
results as described in Chapter 3. Figure 4.1 provides the resulting landslide hazard map 
produced using Equation 1, as described in Chapter 3 Section 3. The landslide hazard map 
incorporated soil texture, soil depth, soil geomorphology, soil stability, NDVI, and slope data.  

Based on the resulting hazard map, it is evident that Southwestern Washington 
experiences the largest area of highest risk terrain. This area is represented by deep clay-silt soils 
with high moisture retention. Additionally, low soil shear strength and slow soil percolation rates 
result in unstable wet soil throughout the year.  

This same pattern is reflected in the western coastline of the state. In the highest risk 
areas, the terrain is flatter than it is to the east where the foothills of Mount Saint Helens and 
Adams dominate, and to the central northwestern peninsula where Mount Olympus resides. 
Whereas the Cascade and Olympic mountain ranges have relatively very low risk when 
compared to their foothill regions. This is a direct result of soil texture, soil percolation, soil 
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moisture capacity, and soil drainage data for the national parks not being present in this analysis. 
Federal and state soil data fields differ to an extent that including federal soil data was outside 
the scope of this project, as it would take significant effort to reconcile any differences between 
the two datasets5. Furthermore, the increased data from the Federal soil data would include areas 
with low populations while the majority of the Cascade Mountain Range and the Hanford Site 
would still be missing. 

                                                 
5 Federal soil data provided by United States Department of Agriculture is located at 
https://gdg.sc.egov.usda.gov/GDGOrder.aspx. Washington State soil data is provided by the 
Department of Natural Resources at https://wagda.lib.washington.edu/data/geography/wa_state/.  
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Figure 4-1 Hazard map utilizing soil texture, soil depth, soil geology, soil stability, NDVI, and 
slope 
 

In the Cascade Mountain Range, two different passes have a very high risk of landslide. 
Both paths are outline in Figure 4.2. This risk is increased due to the natural geologic erosion and 
shallow soil depth on steep mountain slopes. The risk is higher along these passes due to the 
large amount of anthropogenic alterations to the landscape. The southern pass is known as 
Snoqualmie Pass and runs along Interstate 90. The northern pass is Stevens Pass runs along State 
Highway 2. This freeway landscape alteration is further examined in the relative risk map. 
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Figure 4-2 Landslide Hazard risk in mountain passes in Washington State. The northern pass is 
Steven’s Pass while the Southern is Snoqualmie Pass.  

4.2 Relative risk Map 
Landslides are a natural phenomenon and are not considered a hazard in the natural 

environment devoid of human settlements. The potential for damage to the built environment and 
populations is what define landslides as geohazards. In order to test the LRAM and as part of the 
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a proof of concept for this study, the relative risk map was generated in order to refine the hazard 
map, by including parcel and demographic information for the state through the inclusion of the 
dasymetric map as described in section 3.3.2. Figure 4.3 is the refined hazard map, now 
considered a relative risk map.  

The resulting relative risk map shows a decreased number of higher risk or vulnerable 
areas, which shifted to encompass more populated places as defined by total population, and 
places with locations where there is a large amount of built infrastructure. Both mountain passes 
previously described scored high in this analysis, as did the northwestern portion of the state near 
the Canadian border. The coastline adjacent to Western Puget Sound and the Straights of Juan de 
Fuca are indicated as highly vulnerable. The Southwestern zone now exhibits moderate relative 
risk versus the high and highest risk previously indicated in Figure 4-2. The relative risk map is 
considered more useful than the hazard map for landslide hazard mitigation. While the initial 
hazard map does allow for a limited amount of anthropogenic influence through the land cover 
analysis, its primary purpose is to examine vegetation density while the land use map included in 
the relative risk map scores areas by the degree of anthropogenic change to the landscape. This 
landscape alteration combined with dasymetric mapping allows a relative risk map defining the 
susceptible region and its population.  
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Figure 4-3 Relative risk map including parcel and population data. 
4.3 Relative risk and Precipitation 

The Relative risk was further refined by adding 15-day antecedent and 72 hour forecast 
precipitation data into the analysis. In order to test the LRAM and as part of the proof of concept 
for this study, 15-day antecedent precipitation for the 2-week period of October 28, through 
November 11, 2015, is presented in Figure 4.4. Figure 4.5 includes this data plus the total 
precipitation forecasted over the next 72 hours (November 12, through November 15, 2015).  



 
 

42 
 

 

Figure 4-4 Antecedent 15 day rainfall for USGS Zone 10 (NDFD 2015).  
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Figure 4-5 Forecasted precipitation from November 12, through November 15, 2015. 

4.4 Final Precipitation Triggered Relative Risk Map 
Figure 4-6 shows the relative risk of Western Washington when considering all of the 

previous variables (the Relative Risk Map) and the increased risk in areas where precipitation 
has surpassed the threshold as described by Chleborad (2003). In Figure 4-6, there is only one 
location that scored higher than “low.” This location is located along State Highway 2 about 45 
miles northeast of Seattle and 50 miles southeast of Oso, Washington. The nearest populated 
towns are Goldbar and Sultan. This location is along the Skykomish River in the foothills of the 
Cascade Range. This area is vulnerable to ground water flooding, has a high moisture retention 
rate with low percolation rates, and the soil is scored moderate low on soil sheer strength. These 
factors combined with an elevated precipitation level result in high potential landslide score.  
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Overall, we see repeat patterns throughout each analysis stage that become more precise 
as more data is incorporated. Mountain lowlands and passes are the highest risk areas, followed 
by coastal dunes, high population (urban areas) and then suburban locations with large amount of 
anthropogenic alteration of the landscape and a nearby hydrology network. The final analysis 
identifies a location in the mountain lowlands of the Cascade Range with similar geography and 
geomorphology as the recent Oso Mudslide 
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Figure 4-6 Relative risk map with scored monthly total precipitation. This analysis was run on 
the evening of December 17th 2015 making its prediction range December 18th – 20th.  
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4.5 LRAM Validation 
At 4:55 am on December 18, 2015, a small landslide was reported to the Snohomish 

County Sheriff’s Office and reported in a local newspaper. This landslide occurred in the 
geographic area of the analysis at 47.852978, -121.775830. This location is within the analysis 
raster’s identified high risk area (Monitor 2016).  

4.6 Web Map Application Environment  
To provide an example of disseminating the LRAM output, a landslide risk map was 

published as an interactive Web mapping application6. The landslide risk map discussed in 
Chapter 4 was uploaded to and Esri ArcGIS.com-based application, intended as a proof of 
concept. At the time of this writing, the LRAM output data are hosted through ArcGIS.com as an 
interactive map application built using Esri Web AppBuilder7. The current Web map application 
is shown in Figure 4-7. Incorporates the most recent precipitation data captured on December 18, 
2015, and shows five discreet high-risk landslide zones. These high-risk areas agree with 
previous tests of the LRAM for both the risk and vulnerability maps discussed in Chapter 4. In 
the future, this basic Web map application will be moved to a dedicated personal website for 
further development.  

                                                 
6 http://uscssi.maps.arcgis.com/home/item.html?id=f821d0d849a345a492e74732d5937cfd 
7 http://doc.arcgis.com/en/web-appbuilder/ 
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Figure 4-7 Web map application of the LRA model   
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Chapter 5 Discussion 

This landslide risk assessment model, LRAM, was constructed as a proof of concept for 
predicting and analyzing landslides in large geographic areas with similar geologic and 
geographic environments. The LRAM successfully integrated statistical rainfall as a triggering 
variable into a relative risk map. The model has been validated for Western Washington State 
and should be scalable to any region with similar environmental conditions. The LRAM is 
unable, at this time, to be modified into an absolute risk model to accurately and quantitatively 
predict landslides due to the requirement of more detailed engineering properties of soil typically 
gathered through field reconnaissance and subsequent laboratory testing of soils. The true value 
of this model is the use of publicly available data to create a scalable ordinal relative risk model 
that has been regionally validated.  

5.1  Consequences of the Qualitative Soil Data Gap 
In order to accurately gauge the amount of rainfall necessary to trigger a landslide, 

quantitative data on soil depth, soil texture, soil percolation, soil moisture capacity, and soil 
drainage is required. While many of the datasets used in this study included the required 
information, the available soil moisture capacity data was previously aggregated into ordinal 
ranges referred to as low, medium, and high. This lack of numerical data prohibits the model 
from functioning as an absolute risk model. The final published version of the model is an 
accurate and validated ordinal risk model. Ordinal risk models are important as they provide a 
low-cost approach to informing many interested communities such as researchers and land use 
planners about the relative landslide risk to a region, while not requiring government agencies to 
invest in expensive soil analysis studies.  



 
 

49 
 

Washington State’s publically available geologic data is a limited feature set that is less 
robust than desired for a landslide hazard assessment. At this time, it is unknown what effect the 
interpolation of the limited dataset had on the region and its geology in terms of scoring the 
hazard map. While hazard maps can be created without geologic data, the result will be much 
more accurate if bedrock structure, weathering, and erosion are known, as the soil is a direct 
result of these processes. The Washington State data only contained limited bedrock structure, 
slope information, and excluded all erosion and weathering data. As such, the hazard model was 
missing a 5 point scale from the original model, bringing the original hazard map score to a 
modified score range of 7 to 35 as opposed to the original 12 to 40 (Hadi 2004). This data is 
particularly important when analyzing mountain areas and other rocky slopes where rockslides 
are the dominant form of land movement. Results that are more accurate could be obtained from 
a landslide assessment in areas surrounding mountain passes and on foothills if this data was 
included.  

NOAA’s DEGRIB application works well in conjunction with the Wget script to fetch 
and encode precipitation data into useable shapefiles. However, during testing, more than 50% of 
the precipitation data fetched through Wget and DEGRIB returned empty. At this time, a binary 
file is written to the file transfer protocol site at a regular interval whether or not data is present 
in the file. The Wget application has no way of verifying if data is present in the downloaded 
file, only that there is a new file to download. Future work will include testing of new versions of 
DEGRIB, which coding changes that may address this problem. A potential solution would be to 
configure an intermediate data quality control script that would filter out incomplete precipitation 
data prior to feeding into LRAM. 
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5.2 Future Work 
Further research needs to be performed on the costs and benefits of collecting complete 

soil attributes for areas where landslides are common. It has been proven in small specific studies 
that rainfall triggered landslides can be partially predicted by analyzing soil loading and the point 
of critical failure. LRAM demonstrates that readily available input data and processes can 
interpolated to a larger geographic area as long as valid input data is utilized.  

The largest difficulty in disseminating natural hazard risk information is discovering a 
way to awaken public interest before a disaster occurs. The best way to survive a natural disaster 
is to be prepared for one (FEMA 2015b). Being prepared for a landslide requires foreknowledge 
of a geographic risk and susceptibility to major landslide triggering events, such as rainfall and 
earthquakes. Even if the risk information is not qualitatively certain the value of knowing where 
disasters are likely to occur could be enough to save lives. A validated model can mean the 
difference between ignorance and informed awareness.  

LRAM was validated against a single landslide incident in Washington State. While this 
study’s validation provides confirmation of the accuracy of the analysis for a single location, it is 
nonetheless considered inadequate for quantitative damage estimation of loss of life and 
property, beyond a proof of concept model. A confusion matrix or error matrix is well suited for 
a future series of model validations. By creating a raster of all possible rainfall triggered events 
in the study area and comparing the outputs of a confusion matrix (false positives, false 
negatives, true positives, and true negatives) the researcher would be able to assess a confidence 
interval to the model and determine its statistical viability. Future development of a large 
geographic area landslide prediction model will require substantial resource investment in 
acquiring soil data and subsequent validation.  
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5.2.1.  Web Map Application  
In the future, the web map application could be hosted within a landslide assessment 

website to disseminate information about Washington State and provide an example of how the 
LRAM can assist planners, developers, municipal and state employees, and the public. The 
model could be published through a server hosting GIS and web mapping software, as a Web 
map application that includes a geoprocessing service that runs the LRAM in real time, behind 
the scenes using server resources8. The output data from running the geoprocessing service 
(LRAM) would look the same or similar to Figure 4-7, provided to the end user as a template for 
online map construction. The user could be given written or video tutorial guidance on how to 
prepare and utilize their own local input data into LRAM in order to obtain localized landslide 
risk and vulnerability map results.  

5.3 Conclusions  
The deployment of a functional model, LRAM, and the safety planning measures it can 

provide is considered a successful proof of concept. Though the technology is readily available, 
detailed critical input information to allow computation of quantitative damage estimates is not. 
With more complete soil data, geology and strong validation techniques the current model may 
be adaptable from an ordinal risk model to an absolute risk model. The model was validated with 
a single predicted slide event at the time of writing and could be further validated with an error 
matrix as described in section 5.2. Providing a model of this utility to the public will require a 
significant investment of time and resources and therefore should be provided by the agency 

                                                 
8 http://server.arcgis.com/en/server/latest/publish-services/windows/what-is-a-geoprocessing-
service-.htm 
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which governs the geographic area the model covers. This could probably be easily managed by 
a county or state.  

The overall goal of this study was to create a landslide risk and relative risk assessment 
model and resultant map, to automate as much of the computations as possible, and to publish 
the results in a publically available Web mapping application. While LRAM did not incorporate 
the quantitative prediction assessment, loss and damage estimation tools originally desired, it did 
succeed in meeting other goals of this thesis project, including the creation of a scalable and 
easily portable model that can determine landslide hazard, relative risk, and has a regionally 
validated rainfall triggered assessment model. Furthermore, this model requires no fieldwork on 
behalf of the researcher and utilizes primary data sources typically collected by municipal and 
federal agencies. The framework for this model is easily expandable and when applied with 
quantitative data sources the model itself could, with validation, accurately predict landslides in 
the time frame for the region of interest.  
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Appendix A: Python Code  
 
# --------------------------------------------------------------------------- 
# LRAM Final.py 
# Created on: 2015-11-20 03:13:30.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: LRAM Final <DEM> <BlockPop> <Soilmap> <v72_Hour_Precipitation> <v8-
14_Day_Precipitation> <WaParcel> <Landcover> <v1-7_Day_Precipitation>  
# Description:  
# Local Landslide Risk Assessment model created by Michael Barnett. This project is to demonstrate the 
availability of data and the ability of the model to create an accurate analysis. 
# --------------------------------------------------------------------------- 
 
# Import arcpy module 
import arcpy 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
 
# Set Geoprocessing environments 
arcpy.env.scratchWorkspace = "D:\\data\\geodatabase\\LRA_Final.gdb" 
arcpy.env.snapRaster = "" 
arcpy.env.extent = "576751.629936263 81877.319960922 2551197.68005201 1355594.74889892" 
arcpy.env.workspace = "D:\\data\\geodatabase\\LRA_Final.gdb" 
 
# Script arguments 
DEM = arcpy.GetParameterAsText(0) 
if DEM == '#' or not DEM: 
    DEM = "D:\\data\\geodatabase\\tenmeter\\zone10" # provide a default value if unspecified 
 
BlockPop = arcpy.GetParameterAsText(1) 
if BlockPop == '#' or not BlockPop: 
    BlockPop = "D:\\data\\geodatabase\\LocalLRA.gdb\\BlockPop" # provide a default value if unspecified 
 
Soilmap = arcpy.GetParameterAsText(2) 
if Soilmap == '#' or not Soilmap: 
    Soilmap = "D:\\data\\geodatabase\\LocalLRA.gdb\\soils" # provide a default value if unspecified 
 
v72_Hour_Precipitation = arcpy.GetParameterAsText(3) 
if v72_Hour_Precipitation == '#' or not v72_Hour_Precipitation: 
    v72_Hour_Precipitation = "D:\\data\\geodatabase\\LRA.gdb\\Precipitation\\day13_2015111800" # 
provide a default value if unspecified 
 
v8-14_Day_Precipitation = arcpy.GetParameterAsText(4) 
if v8-14_Day_Precipitation == '#' or not v8-14_Day_Precipitation: 
    v8-14_Day_Precipitation = "D:\\data\\geodatabase\\LRA.gdb\\T97e1112" # provide a default value if 
unspecified 
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WaParcel = arcpy.GetParameterAsText(5) 
if WaParcel == '#' or not WaParcel: 
    WaParcel = "D:\\data\\geodatabase\\LocalLRA.gdb\\WaParcel" # provide a default value if unspecified 
 
Landcover = arcpy.GetParameterAsText(6) 
if Landcover == '#' or not Landcover: 
    Landcover = "D:\\data\\geodatabase\\LRA.gdb\\Landcover" # provide a default value if unspecified 
 
v1-7_Day_Precipitation = arcpy.GetParameterAsText(7) 
if v1-7_Day_Precipitation == '#' or not v1-7_Day_Precipitation: 
    v1-7_Day_Precipitation = "D:\\data\\geodatabase\\LRA.gdb\\T97e1800" # provide a default value if 
unspecified 
 
# Local variables: 
SoilTextRaster = Soilmap 
SC_Tx = SoilTextRaster 
Hz_Score = SC_Tx 
LRAM_Final = Hz_Score 
SoilStbRaster = Soilmap 
Sc_Stb = SoilStbRaster 
SoilDpRaster = Soilmap 
Sc_Dp = SoilDpRaster 
SoilDrRaster = Soilmap 
Sc_Dr = SoilDrRaster 
SlopeMap = DEM 
SlopeScore = SlopeMap 
c72HourPrecipitation_Clip = DEM 
GreaterRaster = c72HourPrecipitation_Clip 
v15day_Clip = DEM 
Population_Raster = BlockPop 
Sc_pop = Population_Raster 
v72HrPrecipRaster = v72_Hour_Precipitation 
v8-14DPrecipRaster = v8-14_Day_Precipitation 
v15day = v8-14DPrecipRaster 
LCRaster = Landcover 
SC_Lc = LCRaster 
WaParcelRaster = WaParcel 
v1-7DPrecipRaster = v1-7_Day_Precipitation 
 
# Process: 1-7DPrecipRasterCreate 
arcpy.PolygonToRaster_conversion(v1-7_Day_Precipitation, "QPF", v1-7DPrecipRaster, 
"CELL_CENTER", "NONE", "1200") 
 
# Process: 8-14DPrecipRasterCreate 
arcpy.PolygonToRaster_conversion(v8-14_Day_Precipitation, "QPF", v8-14DPrecipRaster, 
"CELL_CENTER", "NONE", "1200") 
 
# Process: 15dayMerge 
arcpy.gp.RasterCalculator_sa("\"%1-7DPrecipRaster%\" + \"%8-14DPrecipRaster%\"", v15day) 
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# Process: 15dayPrecipClip 
arcpy.Clip_management(v15day, "541707.539368356 47020.8082192693 1806223.53350932 
1375478.46972344", v15day_Clip, DEM, "", "NONE", "NO_MAINTAIN_EXTENT") 
 
# Process: 72HrPrecipRasterCreate 
arcpy.PolygonToRaster_conversion(v72_Hour_Precipitation, "QPF", v72HrPrecipRaster, 
"CELL_CENTER", "NONE", "1200") 
 
# Process: CurrentPrecipClip 
arcpy.Clip_management(v72HrPrecipRaster, "541707.539368356 47020.8082192693 1806223.53350932 
1375478.46972344", c72HourPrecipitation_Clip, DEM, "", "NONE", "NO_MAINTAIN_EXTENT") 
 
# Process: Greater Than Frequency 
arcpy.gp.GreaterThanFrequency_sa(v15day_Clip, 
"D:\\data\\geodatabase\\LRA_Final.gdb\\c72HourPrecipitation_Clip", GreaterRaster) 
 
# Process: Soil_TextureRaster 
arcpy.PolygonToRaster_conversion(Soilmap, "SOIL_TXTR_MDFR", SoilTextRaster, 
"CELL_CENTER", "NONE", "5100") 
 
# Process: SoilTextClass 
arcpy.gp.Reclassify_sa(SoilTextRaster, "SOIL_TXTR_MDFR", "'SILT LOAM' 2;'GRAVELLY LOAM' 
1;'STONY LOAM' 1;'V.BOULDERY LOAM' 1;'STONY SANDY LOAM' 1;'V.GRAVELLY SANDY 
LOAM' 1;VF.SNDY.LOAM 3;LOAM 1;'GRAVELLY SILT LOAM' 1;'V.GRAVELLY LOAM' 
1;'GRAVELLY SANDY LOAM' 1;'GRAVELLY LOAMY SAND' 1;F.SANDY.LOAM 2;'COBBLY 
SILT LOAM' 2;MUCK 3;'VARIABLE VARIABLE' 1;'SANDY LOAM' 2;LOAMY.FN.SND 
3;'XTR.GRAVELLY LOAMY SAND' 1;'V.STONY SILT LOAM' 1;'STONY SILT LOAM' 1;'STONY 
LOAMY SAND' 1;SAND 2;'V.STONY LOAM' 1;'V.GRAVELLY SILT LOAM' 1;CRS.SND.LOAM 
2;'XTR.STONY LOAM' 1;'VARIABLE SAND' 1;'SHALY LOAM' 2;SLT.CLY.LOAM 2;'STONY 
F.SANDY.LOAM' 2;'V.COBBLY SANDY LOAM' 1;'XTR.GRAVELLY SANDY LOAM' 1;'LOAMY 
SAND' 1;'GRAVELLY F.SANDY.LOAM' 1;PEAT 2;'V.COBBLY SILT LOAM' 1;'XTR.STONY 
SANDY LOAM' 1;'BOULDERY LOAM' 1;'COBBLY LOAM' 1;VARIABLE 1;'V.COBBLY LOAM' 
1;'V.BOULDERY SILT LOAM' 1;'BOULDERY F.SANDY.LOAM' 1;'COBBLY SANDY LOAM' 
1;'V.STONY SANDY LOAM' 1;'XTR.STONY SILT LOAM' 1;'V.GRAVELLY LOAMY SAND' 
1;'COBBLY LOAMY SAND' 1;'CLAY LOAM' 3;LOAM.CRS.SND 3;'MUCKY SILT LOAM' 2;SILT 
2;'V.STONY LOAMY SAND' 1;'V.ROCKY SILT LOAM' 1;'OTHER MUCK' 1;'GRAVELLY 
SLT.CLY.LOAM' 2;'MUCKY SLT.CLY.LOAM' 2;'MUCKY PEAT' 2;'STONY OTHER' 1;'CINDERY 
SANDY LOAM' 1;'CINDERY F.SANDY.LOAM' 1;'COBBLY F.SANDY.LOAM' 1;'GRAVELLY 
CLAY LOAM' 1;'BOULDERY SANDY LOAM' 1;'V.ROCKY SANDY LOAM' 1;'GRAVELLY 
CRS.SND.LOAM' 1;'V.GRAVELLY LOAMY.FN.SND' 1;'V.BOULDERY LOAMY SAND' 
1;'V.BOULDERY SANDY LOAM' 1;'V.COBBLY LOAMY SAND' 1;'XTR.GRAVELLY LOAM' 
1;'ROCKY SANDY LOAM' 1;'MUCKY LOAM' 2;'SHOTTY LOAM' 2;'SILTY CLAY' 3;'V.CINDERY 
LOAMY SAND' 2;'V.CINDERY SANDY LOAM' 2;'VARIABLE LOAM' 1;CLAY 3;'SANDY CLAY' 
3;'CINDERY LOAMY SAND' 1;'V.CINDERY LOAM' 1;'V.GRAVELLY SLT.CLY.LOAM' 
2;'V.ROCKY LOAMY SAND' 2;'XTR.CINDERY LOAMY SAND' 1;'ROCKY SILT LOAM' 
2;'CINDERY LOAM' 1;'XTR.COBBLY LOAM' 1;'COBBLY VARIABLE' 1;'STONY CLAY LOAM' 
2;NODATA 0", SC_Tx, "NODATA") 
 
# Process: Soil_StabilityRaster 
arcpy.PolygonToRaster_conversion(Soilmap, "SOIL_EROSION_POTNL", SoilStbRaster, 
"CELL_CENTER", "NONE", "5100") 
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# Process: Soil_Stb_Class 
arcpy.gp.Reclassify_sa(SoilStbRaster, "SOIL_EROSION_POTNL", "MEDIUM 2;LOW 1;HIGH 3;N/A 
0;VARIABLE 1;NODATA 0", Sc_Stb, "NODATA") 
 
# Process: Soil_DepthRaster 
arcpy.PolygonToRaster_conversion(Soilmap, "SOIL_DPT", SoilDpRaster, "CELL_CENTER", "NONE", 
"5100") 
 
# Process: Soil_Dp_Class 
arcpy.gp.Reclassify_sa(SoilDpRaster, "SOIL_DPT", "'>60 inches' 4;'40 - 60 inches' 3;'0 - 0 inches' 1;'20 - 
40 inches' 1;'0 - 60 inches' 3;'20 - 60 inches' 3;'40 - 40 inches' 3;'10 - 20 inches' 1;'30 - 60 inches' 3;'8 - 14 
inches' 1;'30 - 40 inches' 1;'4 - 20 inches' 1;'0 - 40 inches' 1;'30 - 50 inches' 3;'20 - 44 inches' 2;'6 - 20 
inches' 1;'50 - 60 inches' 3;'20 - 36 inches' 2;'14 - 20 inches' 1;'10 - 60 inches' 2;'10 - 40 inches' 2;'0 - 10 
inches' 1;'30 - 30 inches' 2;'20 - 30 inches' 2;'12 - 60 inches' 2;'25 - 40 inches' 3;'24 - 40 inches' 2;'12 - 20 
inches' 1;'0 - 20 inches' 1;'18 - 18 inches' 1;'55 - 60 inches' 3;'20 - 35 inches' 2;'23 - 40 inches' 2;'20 - 20 
inches' 2;'36 - 36 inches' 2;'30 - 55 inches' 3;'26 - 33 inches' 2;'48 - 48 inches' 3;'16 - 20 inches' 1;'8 - 20 
inches' 1;'29 - 40 inches' 2;'4 - 10 inches' 1;'24 - 36 inches' 2;'5 - 10 inches' 1;'5 - 15 inches' 1;'4 - 12 
inches' 1", Sc_Dp, "DATA") 
 
# Process: Soil_DrainageRaster 
arcpy.PolygonToRaster_conversion(Soilmap, "SOIL_DRAIN_RATE", SoilDrRaster, "CELL_CENTER", 
"NONE", "5100") 
 
# Process: Soil_Dr_Class 
arcpy.gp.Reclassify_sa(SoilDrRaster, "SOIL_DRAIN_RATE", "'WELL Drained' 1;'MOD WELL 
Drained' 1;'NO DATA Drained' 1;'SOME POOR Drained' 3;'SOME EXCESS Drained' 1;'POOR Drained' 
4;'VERY POOR Drained' 5;'VARIABLE Drained' 3;'EXCESS Drained' 1;'N/A Drained' 1", Sc_Dr, 
"NODATA") 
 
# Process: Population to Raster 
tempEnvironment0 = arcpy.env.newPrecision 
arcpy.env.newPrecision = "SINGLE" 
tempEnvironment1 = arcpy.env.autoCommit 
arcpy.env.autoCommit = "1000" 
tempEnvironment2 = arcpy.env.XYResolution 
arcpy.env.XYResolution = "" 
tempEnvironment3 = arcpy.env.XYDomain 
arcpy.env.XYDomain = "" 
tempEnvironment4 = arcpy.env.scratchWorkspace 
arcpy.env.scratchWorkspace = "F:\\Barnett_Office\\Documents\\ArcGIS\\Default1.gdb" 
tempEnvironment5 = arcpy.env.cartographicPartitions 
arcpy.env.cartographicPartitions = "" 
tempEnvironment6 = arcpy.env.terrainMemoryUsage 
arcpy.env.terrainMemoryUsage = "false" 
tempEnvironment7 = arcpy.env.MTolerance 
arcpy.env.MTolerance = "" 
tempEnvironment8 = arcpy.env.compression 
arcpy.env.compression = "LZ77" 
tempEnvironment9 = arcpy.env.coincidentPoints 
arcpy.env.coincidentPoints = "MEAN" 
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tempEnvironment10 = arcpy.env.randomGenerator 
arcpy.env.randomGenerator = "0 ACM599" 
tempEnvironment11 = arcpy.env.outputCoordinateSystem 
arcpy.env.outputCoordinateSystem = "" 
tempEnvironment12 = arcpy.env.rasterStatistics 
arcpy.env.rasterStatistics = "STATISTICS 1 1" 
tempEnvironment13 = arcpy.env.ZDomain 
arcpy.env.ZDomain = "" 
tempEnvironment14 = arcpy.env.transferDomains 
arcpy.env.transferDomains = "false" 
tempEnvironment15 = arcpy.env.resamplingMethod 
arcpy.env.resamplingMethod = "NEAREST" 
tempEnvironment16 = arcpy.env.snapRaster 
arcpy.env.snapRaster = "" 
tempEnvironment17 = arcpy.env.projectCompare 
arcpy.env.projectCompare = "NONE" 
tempEnvironment18 = arcpy.env.cartographicCoordinateSystem 
arcpy.env.cartographicCoordinateSystem = 
"PROJCS['NAD_1927_UTM_Zone_10N',GEOGCS['GCS_North_American_1927',DATUM['D_North_
American_1927',SPHEROID['Clarke_1866',6378206.4,294.9786982]],PRIMEM['Greenwich',0.0],UNIT[
'Degree',0.0174532925199433]],PROJECTION['Transverse_Mercator'],PARAMETER['False_Easting',5
00000.0],PARAMETER['False_Northing',0.0],PARAMETER['Central_Meridian',-
123.0],PARAMETER['Scale_Factor',0.9996],PARAMETER['Latitude_Of_Origin',0.0],UNIT['Meter',1.0]
],VERTCS['Unknown 
VCS',VDATUM['Unknown'],PARAMETER['Vertical_Shift',0.0],PARAMETER['Direction',1.0],UNIT['
User_Defined_Unit',0.1]]" 
tempEnvironment19 = arcpy.env.configKeyword 
arcpy.env.configKeyword = "" 
tempEnvironment20 = arcpy.env.outputZFlag 
arcpy.env.outputZFlag = "Same As Input" 
tempEnvironment21 = arcpy.env.qualifiedFieldNames 
arcpy.env.qualifiedFieldNames = "true" 
tempEnvironment22 = arcpy.env.tileSize 
arcpy.env.tileSize = "128 128" 
tempEnvironment23 = arcpy.env.parallelProcessingFactor 
arcpy.env.parallelProcessingFactor = "" 
tempEnvironment24 = arcpy.env.pyramid 
arcpy.env.pyramid = "PYRAMIDS -1 NEAREST DEFAULT 75 NO_SKIP" 
tempEnvironment25 = arcpy.env.referenceScale 
arcpy.env.referenceScale = "" 
tempEnvironment26 = arcpy.env.extent 
arcpy.env.extent = "DEFAULT" 
tempEnvironment27 = arcpy.env.XYTolerance 
arcpy.env.XYTolerance = "" 
tempEnvironment28 = arcpy.env.tinSaveVersion 
arcpy.env.tinSaveVersion = "CURRENT" 
tempEnvironment29 = arcpy.env.nodata 
arcpy.env.nodata = "NONE" 
tempEnvironment30 = arcpy.env.MDomain 
arcpy.env.MDomain = "" 
tempEnvironment31 = arcpy.env.spatialGrid1 
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arcpy.env.spatialGrid1 = "0" 
tempEnvironment32 = arcpy.env.cellSize 
arcpy.env.cellSize = "MAXOF" 
tempEnvironment33 = arcpy.env.outputZValue 
arcpy.env.outputZValue = "" 
tempEnvironment34 = arcpy.env.outputMFlag 
arcpy.env.outputMFlag = "Same As Input" 
tempEnvironment35 = arcpy.env.geographicTransformations 
arcpy.env.geographicTransformations = "NAD_1927_To_NAD_1983_NADCON" 
tempEnvironment36 = arcpy.env.spatialGrid2 
arcpy.env.spatialGrid2 = "0" 
tempEnvironment37 = arcpy.env.ZResolution 
arcpy.env.ZResolution = "" 
tempEnvironment38 = arcpy.env.mask 
arcpy.env.mask = "" 
tempEnvironment39 = arcpy.env.spatialGrid3 
arcpy.env.spatialGrid3 = "0" 
tempEnvironment40 = arcpy.env.maintainSpatialIndex 
arcpy.env.maintainSpatialIndex = "false" 
tempEnvironment41 = arcpy.env.workspace 
arcpy.env.workspace = "F:\\Barnett_Office\\Documents\\ArcGIS\\Default1.gdb" 
tempEnvironment42 = arcpy.env.MResolution 
arcpy.env.MResolution = "" 
tempEnvironment43 = arcpy.env.derivedPrecision 
arcpy.env.derivedPrecision = "HIGHEST" 
tempEnvironment44 = arcpy.env.ZTolerance 
arcpy.env.ZTolerance = "" 
arcpy.PolygonToRaster_conversion(BlockPop, "P0010001", Population_Raster, "CELL_CENTER", 
"NONE", "0.014") 
arcpy.env.newPrecision = tempEnvironment0 
arcpy.env.autoCommit = tempEnvironment1 
arcpy.env.XYResolution = tempEnvironment2 
arcpy.env.XYDomain = tempEnvironment3 
arcpy.env.scratchWorkspace = tempEnvironment4 
arcpy.env.cartographicPartitions = tempEnvironment5 
arcpy.env.terrainMemoryUsage = tempEnvironment6 
arcpy.env.MTolerance = tempEnvironment7 
arcpy.env.compression = tempEnvironment8 
arcpy.env.coincidentPoints = tempEnvironment9 
arcpy.env.randomGenerator = tempEnvironment10 
arcpy.env.outputCoordinateSystem = tempEnvironment11 
arcpy.env.rasterStatistics = tempEnvironment12 
arcpy.env.ZDomain = tempEnvironment13 
arcpy.env.transferDomains = tempEnvironment14 
arcpy.env.resamplingMethod = tempEnvironment15 
arcpy.env.snapRaster = tempEnvironment16 
arcpy.env.projectCompare = tempEnvironment17 
arcpy.env.cartographicCoordinateSystem = tempEnvironment18 
arcpy.env.configKeyword = tempEnvironment19 
arcpy.env.outputZFlag = tempEnvironment20 
arcpy.env.qualifiedFieldNames = tempEnvironment21 
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arcpy.env.tileSize = tempEnvironment22 
arcpy.env.parallelProcessingFactor = tempEnvironment23 
arcpy.env.pyramid = tempEnvironment24 
arcpy.env.referenceScale = tempEnvironment25 
arcpy.env.extent = tempEnvironment26 
arcpy.env.XYTolerance = tempEnvironment27 
arcpy.env.tinSaveVersion = tempEnvironment28 
arcpy.env.nodata = tempEnvironment29 
arcpy.env.MDomain = tempEnvironment30 
arcpy.env.spatialGrid1 = tempEnvironment31 
arcpy.env.cellSize = tempEnvironment32 
arcpy.env.outputZValue = tempEnvironment33 
arcpy.env.outputMFlag = tempEnvironment34 
arcpy.env.geographicTransformations = tempEnvironment35 
arcpy.env.spatialGrid2 = tempEnvironment36 
arcpy.env.ZResolution = tempEnvironment37 
arcpy.env.mask = tempEnvironment38 
arcpy.env.spatialGrid3 = tempEnvironment39 
arcpy.env.maintainSpatialIndex = tempEnvironment40 
arcpy.env.workspace = tempEnvironment41 
arcpy.env.MResolution = tempEnvironment42 
arcpy.env.derivedPrecision = tempEnvironment43 
arcpy.env.ZTolerance = tempEnvironment44 
 
# Process: PopulationClassify 
tempEnvironment0 = arcpy.env.newPrecision 
arcpy.env.newPrecision = "SINGLE" 
tempEnvironment1 = arcpy.env.autoCommit 
arcpy.env.autoCommit = "1000" 
tempEnvironment2 = arcpy.env.XYResolution 
arcpy.env.XYResolution = "" 
tempEnvironment3 = arcpy.env.XYDomain 
arcpy.env.XYDomain = "" 
tempEnvironment4 = arcpy.env.scratchWorkspace 
arcpy.env.scratchWorkspace = "F:\\Barnett_Office\\Documents\\ArcGIS\\Default1.gdb" 
tempEnvironment5 = arcpy.env.cartographicPartitions 
arcpy.env.cartographicPartitions = "" 
tempEnvironment6 = arcpy.env.terrainMemoryUsage 
arcpy.env.terrainMemoryUsage = "false" 
tempEnvironment7 = arcpy.env.MTolerance 
arcpy.env.MTolerance = "" 
tempEnvironment8 = arcpy.env.compression 
arcpy.env.compression = "LZ77" 
tempEnvironment9 = arcpy.env.coincidentPoints 
arcpy.env.coincidentPoints = "MEAN" 
tempEnvironment10 = arcpy.env.randomGenerator 
arcpy.env.randomGenerator = "0 ACM599" 
tempEnvironment11 = arcpy.env.outputCoordinateSystem 
arcpy.env.outputCoordinateSystem = "" 
tempEnvironment12 = arcpy.env.rasterStatistics 
arcpy.env.rasterStatistics = "STATISTICS 1 1" 
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tempEnvironment13 = arcpy.env.ZDomain 
arcpy.env.ZDomain = "" 
tempEnvironment14 = arcpy.env.transferDomains 
arcpy.env.transferDomains = "false" 
tempEnvironment15 = arcpy.env.resamplingMethod 
arcpy.env.resamplingMethod = "NEAREST" 
tempEnvironment16 = arcpy.env.snapRaster 
arcpy.env.snapRaster = "" 
tempEnvironment17 = arcpy.env.projectCompare 
arcpy.env.projectCompare = "NONE" 
tempEnvironment18 = arcpy.env.cartographicCoordinateSystem 
arcpy.env.cartographicCoordinateSystem = 
"PROJCS['NAD_1927_UTM_Zone_10N',GEOGCS['GCS_North_American_1927',DATUM['D_North_
American_1927',SPHEROID['Clarke_1866',6378206.4,294.9786982]],PRIMEM['Greenwich',0.0],UNIT[
'Degree',0.0174532925199433]],PROJECTION['Transverse_Mercator'],PARAMETER['False_Easting',5
00000.0],PARAMETER['False_Northing',0.0],PARAMETER['Central_Meridian',-
123.0],PARAMETER['Scale_Factor',0.9996],PARAMETER['Latitude_Of_Origin',0.0],UNIT['Meter',1.0]
],VERTCS['Unknown 
VCS',VDATUM['Unknown'],PARAMETER['Vertical_Shift',0.0],PARAMETER['Direction',1.0],UNIT['
User_Defined_Unit',0.1]]" 
tempEnvironment19 = arcpy.env.configKeyword 
arcpy.env.configKeyword = "" 
tempEnvironment20 = arcpy.env.outputZFlag 
arcpy.env.outputZFlag = "Same As Input" 
tempEnvironment21 = arcpy.env.qualifiedFieldNames 
arcpy.env.qualifiedFieldNames = "true" 
tempEnvironment22 = arcpy.env.tileSize 
arcpy.env.tileSize = "128 128" 
tempEnvironment23 = arcpy.env.parallelProcessingFactor 
arcpy.env.parallelProcessingFactor = "" 
tempEnvironment24 = arcpy.env.pyramid 
arcpy.env.pyramid = "PYRAMIDS -1 NEAREST DEFAULT 75 NO_SKIP" 
tempEnvironment25 = arcpy.env.referenceScale 
arcpy.env.referenceScale = "" 
tempEnvironment26 = arcpy.env.extent 
arcpy.env.extent = "DEFAULT" 
tempEnvironment27 = arcpy.env.XYTolerance 
arcpy.env.XYTolerance = "" 
tempEnvironment28 = arcpy.env.tinSaveVersion 
arcpy.env.tinSaveVersion = "CURRENT" 
tempEnvironment29 = arcpy.env.nodata 
arcpy.env.nodata = "NONE" 
tempEnvironment30 = arcpy.env.MDomain 
arcpy.env.MDomain = "" 
tempEnvironment31 = arcpy.env.spatialGrid1 
arcpy.env.spatialGrid1 = "0" 
tempEnvironment32 = arcpy.env.cellSize 
arcpy.env.cellSize = "MAXOF" 
tempEnvironment33 = arcpy.env.outputZValue 
arcpy.env.outputZValue = "" 
tempEnvironment34 = arcpy.env.outputMFlag 
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arcpy.env.outputMFlag = "Same As Input" 
tempEnvironment35 = arcpy.env.geographicTransformations 
arcpy.env.geographicTransformations = "NAD_1927_To_NAD_1983_NADCON" 
tempEnvironment36 = arcpy.env.spatialGrid2 
arcpy.env.spatialGrid2 = "0" 
tempEnvironment37 = arcpy.env.ZResolution 
arcpy.env.ZResolution = "" 
tempEnvironment38 = arcpy.env.mask 
arcpy.env.mask = "" 
tempEnvironment39 = arcpy.env.spatialGrid3 
arcpy.env.spatialGrid3 = "0" 
tempEnvironment40 = arcpy.env.maintainSpatialIndex 
arcpy.env.maintainSpatialIndex = "false" 
tempEnvironment41 = arcpy.env.workspace 
arcpy.env.workspace = "F:\\Barnett_Office\\Documents\\ArcGIS\\Default1.gdb" 
tempEnvironment42 = arcpy.env.MResolution 
arcpy.env.MResolution = "" 
tempEnvironment43 = arcpy.env.derivedPrecision 
arcpy.env.derivedPrecision = "HIGHEST" 
tempEnvironment44 = arcpy.env.ZTolerance 
arcpy.env.ZTolerance = "" 
arcpy.gp.Reclassify_sa(Population_Raster, "VALUE", "0 54 1;54 205 2;205 481 3;481 1127 4;1127 2314 
5", Sc_pop, "DATA") 
arcpy.env.newPrecision = tempEnvironment0 
arcpy.env.autoCommit = tempEnvironment1 
arcpy.env.XYResolution = tempEnvironment2 
arcpy.env.XYDomain = tempEnvironment3 
arcpy.env.scratchWorkspace = tempEnvironment4 
arcpy.env.cartographicPartitions = tempEnvironment5 
arcpy.env.terrainMemoryUsage = tempEnvironment6 
arcpy.env.MTolerance = tempEnvironment7 
arcpy.env.compression = tempEnvironment8 
arcpy.env.coincidentPoints = tempEnvironment9 
arcpy.env.randomGenerator = tempEnvironment10 
arcpy.env.outputCoordinateSystem = tempEnvironment11 
arcpy.env.rasterStatistics = tempEnvironment12 
arcpy.env.ZDomain = tempEnvironment13 
arcpy.env.transferDomains = tempEnvironment14 
arcpy.env.resamplingMethod = tempEnvironment15 
arcpy.env.snapRaster = tempEnvironment16 
arcpy.env.projectCompare = tempEnvironment17 
arcpy.env.cartographicCoordinateSystem = tempEnvironment18 
arcpy.env.configKeyword = tempEnvironment19 
arcpy.env.outputZFlag = tempEnvironment20 
arcpy.env.qualifiedFieldNames = tempEnvironment21 
arcpy.env.tileSize = tempEnvironment22 
arcpy.env.parallelProcessingFactor = tempEnvironment23 
arcpy.env.pyramid = tempEnvironment24 
arcpy.env.referenceScale = tempEnvironment25 
arcpy.env.extent = tempEnvironment26 
arcpy.env.XYTolerance = tempEnvironment27 
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arcpy.env.tinSaveVersion = tempEnvironment28 
arcpy.env.nodata = tempEnvironment29 
arcpy.env.MDomain = tempEnvironment30 
arcpy.env.spatialGrid1 = tempEnvironment31 
arcpy.env.cellSize = tempEnvironment32 
arcpy.env.outputZValue = tempEnvironment33 
arcpy.env.outputMFlag = tempEnvironment34 
arcpy.env.geographicTransformations = tempEnvironment35 
arcpy.env.spatialGrid2 = tempEnvironment36 
arcpy.env.ZResolution = tempEnvironment37 
arcpy.env.mask = tempEnvironment38 
arcpy.env.spatialGrid3 = tempEnvironment39 
arcpy.env.maintainSpatialIndex = tempEnvironment40 
arcpy.env.workspace = tempEnvironment41 
arcpy.env.MResolution = tempEnvironment42 
arcpy.env.derivedPrecision = tempEnvironment43 
arcpy.env.ZTolerance = tempEnvironment44 
 
# Process: Slope 
arcpy.gp.Slope_sa(DEM, SlopeMap, "DEGREE", "0.1") 
 
# Process: SlopeClass 
arcpy.gp.Reclassify_sa(SlopeMap, "Value", "0 8 1;8 15 2;15 25 3;25 45 4;45 100 5", SlopeScore, 
"NODATA") 
 
# Process: Polygon to Raster 
arcpy.PolygonToRaster_conversion(Landcover, "Landuse", LCRaster, "CELL_CENTER", "NONE", 
"5100") 
 
# Process: LandcoverClass 
arcpy.gp.Reclassify_sa(LCRaster, "VALUE", "0 1 5;1 2 3;2 3 3;3 4 5;4 5 2;5 6 4;6 7 1;7 8 1;8 9 1", 
SC_Lc, "NODATA") 
 
# Process: Polygon to Raster (2) 
arcpy.PolygonToRaster_conversion(WaParcel, "LU", WaParcelRaster, "CELL_CENTER", "NONE", 
"5100") 
 
# Process: Raster Calculator 
arcpy.gp.RasterCalculator_sa("Hazard = \"%SC_Tx%\" + \"%Sc_Stb%\" + \"%Sc_Dp%\" + 
\"%Sc_Dr%\" + \"%Sc_pop%\" + \"%SlopeScore%\"  + \"%SC_Lc%\" + \"%WaParcelRaster%\"", 
Hz_Score) 
 
# Process: Raster Calculator [040846_11182015] 
tempEnvironment0 = arcpy.env.newPrecision 
arcpy.env.newPrecision = "SINGLE" 
tempEnvironment1 = arcpy.env.autoCommit 
arcpy.env.autoCommit = "1000" 
tempEnvironment2 = arcpy.env.XYResolution 
arcpy.env.XYResolution = "" 
tempEnvironment3 = arcpy.env.XYDomain 
arcpy.env.XYDomain = "" 
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tempEnvironment4 = arcpy.env.scratchWorkspace 
arcpy.env.scratchWorkspace = "D:\\data\\geodatabase\\LocalLRA.gdb" 
tempEnvironment5 = arcpy.env.cartographicPartitions 
arcpy.env.cartographicPartitions = "" 
tempEnvironment6 = arcpy.env.terrainMemoryUsage 
arcpy.env.terrainMemoryUsage = "false" 
tempEnvironment7 = arcpy.env.MTolerance 
arcpy.env.MTolerance = "" 
tempEnvironment8 = arcpy.env.compression 
arcpy.env.compression = "LZ77" 
tempEnvironment9 = arcpy.env.coincidentPoints 
arcpy.env.coincidentPoints = "MEAN" 
tempEnvironment10 = arcpy.env.randomGenerator 
arcpy.env.randomGenerator = "0 ACM599" 
tempEnvironment11 = arcpy.env.outputCoordinateSystem 
arcpy.env.outputCoordinateSystem = 
"PROJCS['NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet',GEOGCS['GCS_North
_American_1983_HARN',DATUM['D_North_American_1983_HARN',SPHEROID['GRS_1980',637813
7.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]],PROJECTION['
Lambert_Conformal_Conic'],PARAMETER['False_Easting',1640416.666666667],PARAMETER['False_
Northing',0.0],PARAMETER['Central_Meridian',-
120.5],PARAMETER['Standard_Parallel_1',45.83333333333334],PARAMETER['Standard_Parallel_2',4
7.33333333333334],PARAMETER['Latitude_Of_Origin',45.33333333333334],UNIT['Foot_US',0.30480
06096012192]]" 
tempEnvironment12 = arcpy.env.rasterStatistics 
arcpy.env.rasterStatistics = "STATISTICS 1 1" 
tempEnvironment13 = arcpy.env.ZDomain 
arcpy.env.ZDomain = "" 
tempEnvironment14 = arcpy.env.transferDomains 
arcpy.env.transferDomains = "false" 
tempEnvironment15 = arcpy.env.resamplingMethod 
arcpy.env.resamplingMethod = "NEAREST" 
tempEnvironment16 = arcpy.env.snapRaster 
arcpy.env.snapRaster = "" 
tempEnvironment17 = arcpy.env.projectCompare 
arcpy.env.projectCompare = "NONE" 
tempEnvironment18 = arcpy.env.cartographicCoordinateSystem 
arcpy.env.cartographicCoordinateSystem = 
"PROJCS['NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet',GEOGCS['GCS_North
_American_1983_HARN',DATUM['D_North_American_1983_HARN',SPHEROID['GRS_1980',637813
7.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]],PROJECTION['
Lambert_Conformal_Conic'],PARAMETER['False_Easting',1640416.666666667],PARAMETER['False_
Northing',0.0],PARAMETER['Central_Meridian',-
120.5],PARAMETER['Standard_Parallel_1',45.83333333333334],PARAMETER['Standard_Parallel_2',4
7.33333333333334],PARAMETER['Latitude_Of_Origin',45.33333333333334],UNIT['Foot_US',0.30480
06096012192]]" 
tempEnvironment19 = arcpy.env.configKeyword 
arcpy.env.configKeyword = "" 
tempEnvironment20 = arcpy.env.outputZFlag 
arcpy.env.outputZFlag = "Same As Input" 
tempEnvironment21 = arcpy.env.qualifiedFieldNames 
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arcpy.env.qualifiedFieldNames = "true" 
tempEnvironment22 = arcpy.env.tileSize 
arcpy.env.tileSize = "128 128" 
tempEnvironment23 = arcpy.env.parallelProcessingFactor 
arcpy.env.parallelProcessingFactor = "" 
tempEnvironment24 = arcpy.env.pyramid 
arcpy.env.pyramid = "PYRAMIDS -1 NEAREST DEFAULT 75 NO_SKIP" 
tempEnvironment25 = arcpy.env.referenceScale 
arcpy.env.referenceScale = "" 
tempEnvironment26 = arcpy.env.extent 
arcpy.env.extent = "360475 5038305 733345 5431525" 
tempEnvironment27 = arcpy.env.XYTolerance 
arcpy.env.XYTolerance = "" 
tempEnvironment28 = arcpy.env.tinSaveVersion 
arcpy.env.tinSaveVersion = "CURRENT" 
tempEnvironment29 = arcpy.env.nodata 
arcpy.env.nodata = "NONE" 
tempEnvironment30 = arcpy.env.MDomain 
arcpy.env.MDomain = "" 
tempEnvironment31 = arcpy.env.spatialGrid1 
arcpy.env.spatialGrid1 = "0" 
tempEnvironment32 = arcpy.env.cellSize 
arcpy.env.cellSize = "MAXOF" 
tempEnvironment33 = arcpy.env.outputZValue 
arcpy.env.outputZValue = "" 
tempEnvironment34 = arcpy.env.outputMFlag 
arcpy.env.outputMFlag = "Same As Input" 
tempEnvironment35 = arcpy.env.geographicTransformations 
arcpy.env.geographicTransformations = "NAD_1927_To_NAD_1983_NADCON" 
tempEnvironment36 = arcpy.env.spatialGrid2 
arcpy.env.spatialGrid2 = "0" 
tempEnvironment37 = arcpy.env.ZResolution 
arcpy.env.ZResolution = "" 
tempEnvironment38 = arcpy.env.mask 
arcpy.env.mask = "" 
tempEnvironment39 = arcpy.env.spatialGrid3 
arcpy.env.spatialGrid3 = "0" 
tempEnvironment40 = arcpy.env.maintainSpatialIndex 
arcpy.env.maintainSpatialIndex = "false" 
tempEnvironment41 = arcpy.env.workspace 
arcpy.env.workspace = "D:\\data\\geodatabase\\LocalLRA.gdb" 
tempEnvironment42 = arcpy.env.MResolution 
arcpy.env.MResolution = "" 
tempEnvironment43 = arcpy.env.derivedPrecision 
arcpy.env.derivedPrecision = "HIGHEST" 
tempEnvironment44 = arcpy.env.ZTolerance 
arcpy.env.ZTolerance = "" 
arcpy.gp.RasterCalculator_sa("(\"%GreaterRaster%\" * 3) + \"%Hz_Score%\"", LRAM_Final) 
arcpy.env.newPrecision = tempEnvironment0 
arcpy.env.autoCommit = tempEnvironment1 
arcpy.env.XYResolution = tempEnvironment2 
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arcpy.env.XYDomain = tempEnvironment3 
arcpy.env.scratchWorkspace = tempEnvironment4 
arcpy.env.cartographicPartitions = tempEnvironment5 
arcpy.env.terrainMemoryUsage = tempEnvironment6 
arcpy.env.MTolerance = tempEnvironment7 
arcpy.env.compression = tempEnvironment8 
arcpy.env.coincidentPoints = tempEnvironment9 
arcpy.env.randomGenerator = tempEnvironment10 
arcpy.env.outputCoordinateSystem = tempEnvironment11 
arcpy.env.rasterStatistics = tempEnvironment12 
arcpy.env.ZDomain = tempEnvironment13 
arcpy.env.transferDomains = tempEnvironment14 
arcpy.env.resamplingMethod = tempEnvironment15 
arcpy.env.snapRaster = tempEnvironment16 
arcpy.env.projectCompare = tempEnvironment17 
arcpy.env.cartographicCoordinateSystem = tempEnvironment18 
arcpy.env.configKeyword = tempEnvironment19 
arcpy.env.outputZFlag = tempEnvironment20 
arcpy.env.qualifiedFieldNames = tempEnvironment21 
arcpy.env.tileSize = tempEnvironment22 
arcpy.env.parallelProcessingFactor = tempEnvironment23 
arcpy.env.pyramid = tempEnvironment24 
arcpy.env.referenceScale = tempEnvironment25 
arcpy.env.extent = tempEnvironment26 
arcpy.env.XYTolerance = tempEnvironment27 
arcpy.env.tinSaveVersion = tempEnvironment28 
arcpy.env.nodata = tempEnvironment29 
arcpy.env.MDomain = tempEnvironment30 
arcpy.env.spatialGrid1 = tempEnvironment31 
arcpy.env.cellSize = tempEnvironment32 
arcpy.env.outputZValue = tempEnvironment33 
arcpy.env.outputMFlag = tempEnvironment34 
arcpy.env.geographicTransformations = tempEnvironment35 
arcpy.env.spatialGrid2 = tempEnvironment36 
arcpy.env.ZResolution = tempEnvironment37 
arcpy.env.mask = tempEnvironment38 
arcpy.env.spatialGrid3 = tempEnvironment39 
arcpy.env.maintainSpatialIndex = tempEnvironment40 
arcpy.env.workspace = tempEnvironment41 
arcpy.env.MResolution = tempEnvironment42 
arcpy.env.derivedPrecision = tempEnvironment43 
arcpy.env.ZTolerance = tempEnvironment44 
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Appendix B: Python Model Graphic 
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Appendix C: Server Data Maintenance Code 
 NOAA Download 72 Hour – Code used to fetch current 72 hour forecast data 

## Set the directory  
cd C:\wget_Data_3 
##Execute Wget to download weather data for Pacific Northwest Region.  
wget http://weather.noaa.gov/pub/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.pacnwest/ 
  NOAA Download 15 day – Code used to fetch antecedent 15 day forecast 
## Set the directory  
cd C:\wget_Data_15 
##Execute Wget to download weather data for Pacific Northwest Region.  
wget http://weather.noaa.gov/pub/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.pacnwest /VP.001-
003/ds.qpf.bin 
 

 Deletion Script 72hour – Code used to clean up server’s old data files 
## Set the directory  
cd C:\wget_Data_3 
## delete all data in the directory file with .bin or .txt file extensions.  
del "C:\wget_Data\*.BIN"  
del "C:\wget_Data\*.TXT" 
 
• Deletion Script 15day – Code used to clean up server’s old data files 
 
## Set the directory  
cd C:\wget_Data_15 
## delete all files in the wget_Data_15 directory that are 16 days or older.  
C:\wget_Data_15 forfiles /m *.BIN /c "cmd /c Del *.BIN " /d -16 
C:\wget_Data_15 forfiles /m *.TXT /c "cmd /c Del *.TXT " /d -16 
  DEGRIB Convert Script – Used to convert the binary data downloaded through Wget 

into a usable ESRI Shapefile 
 
## Set the directory  
cd C:\wget_Data_3 
## execute degrib to select the .bin files and convert them to small polygon shapefiles 
/degrib/bin/degrib "*.BIN" -C -msg 1 -Shp -poly small 
## Change the directory to wget_Data_15   
cd C:\wget_Data_15 
## execute degrib to select the .bin files and convert them to small polygon shapefiles 
/degrib/bin/degrib "*.BIN" -C -msg 1 -Shp -poly small 


