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ABSTRACT 

 

The relationship between culture and urban forests is explored by analyzing residential urban 

trees within the privately owned residential lots of City of West Covina residents in Los Angeles 

County, CA. Because the largest percentage of Hispanic immigrants in Los Angeles have 

historically come from rural, often agriculturally fertile areas in Mexico, urban forest structure 

was studied to identify possible differences in the management practices of privately owned 

residential trees in Hispanic neighborhoods; looking for the possibility of increased private urban 

agriculture. The second largest minority group in the city, Asians, were incorporated into the 

analysis as the second largest minority group and to compare two sets of results. Object-based 

image analysis was applied to extract urban forest structure data and OLS regression was 

employed to explore these relationships. When controlling for several factors like parcel size, 

property values, and income levels, a statistically significant relationship at the 90% confidence 

level was found between Hispanic and/or Asian populations and all three dependent variables 

describing urban forest structure. An inverse relationship between higher tree densities and the 

height of trees and Hispanic populations was found, however, the coefficients were small. Asian 

populations were found to have positive associations between all forest structure metrics: a 

statistically significant and positive relationship was found between large Asian populations, tree 

density, tree height and urban tree canopy cover. Although results showed some connection 

between culture and urban forest structure variables, further research and additional methods are 

needed to explore the validity, strength and complexity of any relationships found. 
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CHAPTER ONE: INTRODUCTION 

According to the US State Department’s Special Representative for Global Intergovernmental 

Affairs, “… fifty-two percent of the earth’s population now live in cities and every week one 

million new people move to one” (Lewis 2013). She contends that continued rapid urbanization 

will lead to three billion new urban dwellers, and that cities, rather than states, are becoming the 

focus of governance in the new world order. Landscapes undergo significant land use and land 

cover changes under urbanization and concern is growing over how these changes are impacting 

the health and life quality of urban residents (McPherson et al. 2011). These landscape 

alterations can have enormous costs. One 2006 study found that health costs connected with the 

contamination of beaches in southern California totaled $21 to $51 million per year (Given, 

Pendleton, and Boehm 2006). As cities expand and population density grows, local governments 

are increasingly having to address these issues and are continually being challenged to find 

solutions to these problems. Trends, such as the revitalization of downtown areas that can bring a 

new influx of people back to the center of a city, are creating new challenges as well as new 

opportunities to improve urban environments. 

1.1 Urban Ecosystems 

There are vast differences between highly disturbed urban ecosystems and those less subjugated 

by humans. Human-dominated landscapes have unique biophysical characteristics caused by the 

human redistribution of organisms, materials and energy fluxes, and these changes can be 

obvious or subtle as well as immediate or long-term (Alberti et al. 2006). Cities are visibly 

transformed from their original state and dominated by buildings, roads and other built 

structures. But these collaged landscapes also hold a rich array of green spaces in the form of 

yards, parks, and commercial landscaping; all playing an integral role in an urban environment. 
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Native vegetation is scarce and is replaced in part by the non-native plants, weeds and trees 

growing within the gardens of urban dwellers. Open spaces where native vegetation does have an 

opportunity to grow, are often dominated by invasive species of flora and fauna.  These 

landscapes are not only highly disturbed, they are also highly unstable, only adding to their 

ecological complexity.    

1.2 Humans in the System 

The body of work examining the relationship between urbanization and ecosystems continues to 

grow and garner attention as environmental and social challenges in most cities mount. However, 

little research has focused on questions surrounding the human and ecological patterns that 

emerge from interactions between socioeconomic and physical processes (Alberti et al. 2003; 

Wu 2010) or between sociocultural ones and the latter. According to Alberti et al. (2003), 

ecological scholars who study urban areas have found themselves challenging ecological theory 

to explain the ecology of cities and some have even argued that important theoretical revisions 

are needed in order to include human action. 

1.2.1 Landscape Ecology 

Landscape ecology has brought a broad interdisciplinary and transdisciplinary approach some 

would argue is necessary to understand an especially complex urban environment.  Evolving out 

of an integrative ecosystem approach (Figure 1), it incorporates both bio- and socio-ecological 

perspectives to study as well as to influence the relationship between spatial pattern and 

ecological processes; at multiple scales including time (Wu 2008; Turner 2001). Landscape 

ecology explicitly addresses spatial configuration, composition and form as it approaches process 

(Wu 2008) and understandably, many advancements in the field have largely been fueled directly 

and/or indirectly by the increased adoption of GIS (Geographic Information Systems), remote 
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 Figure 1 Schematic showing evolution of urban ecology 

Source: Wu (2010) 

 

 

sensing and other spatial technologies and techniques, as well as the ever-greater availability of 

spatial data including remotely sensed imagery captured at higher and higher resolutions, with 

greater coverage and in different spectral ranges. Highly relevant to urban sustainability, 

landscape ecology’s contributions have become essential for land use planning and management 

(Turner 2001). However, despite the discipline’s explicit humanistic and holistic approach, most 
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research has not focused on the human element. Instead, it has tended to place humans in the 

context Turner (2001, p. 7) would suggest: as “but one of many factors creating and responding 

to the spatial heterogeneity in an ecosystem”, and not as major active agents of change that are 

complex and sometimes unpredictable.   

1.2.2 Incorporating Culture: Exploiting the Spatial Component  

To restrain human impacts we must learn to understand them. Urban landscapes are both 

affected by and developed by culture. In her introduction to “Placing Nature: Culture and 

Landscape Ecology”, a collection of essays by researchers of diverse disciplines like philosophy, 

ecology, geography, history and landscape architecture, Joan Iverson Nassauer states that in a 

world dominated by humans, “we cannot stand apart from nature and now nature as we know it 

cannot stand apart from us” (Nassauer 1997, p. 3-4). In order to advance ecological health, she 

states, “we must use culture, or we risk removing ourselves altogether from the ecosystems we 

know” (Nassauer 1997, p. 3-4). But how do we best conceptualize the relationship between 

culture and ecosystem in order to use culture to our ecological advantage? Nassauer (1997) 

suggests that “we must formulate ecological questions by considering cultural possibilities and 

we must formulate cultural questions by considering ecological processes.” 

1.2.2.1 Conceptualizing Human Impact on an Ecosystem 

Culture drives the socioeconomic phenomena that integrative disciplines like landscape ecology 

and sustainability science study, but these relationships are often difficult to conceptualize. Other 

researchers in similar fields have also turned their attention to the human element. Some 

conservation biologists have recognized the need for better and more complex representations of 

human impact when implementing key concepts like habitat fragmentation in the landscape 

matrix (McIntyre and Hobbs 1999). Geography has a long history of studying human-
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environmental relationships.  The term “cultural landscape” for example, has been a fundamental 

concept in geography for over a century. Here, the landscape is viewed as one being formed from 

a natural landscape by a particular culture, wherein culture is the agent and the natural is the 

medium. Wu (2010) argues that the concept of cultural landscape can be useful and effective in 

landscape ecology, especially when used in the context of a landscape modification gradient. 

However he also notes that “no single perspective is sufficient to understanding human-

environmental relationships and pluralistic approaches are needed to effectively bridge research 

cores of different perspectives” (Wu 2010, p. 1148). The spatial sciences play an integral role in 

bridging these gaps.   

1.2.2.2 Increasing our Understanding by Using the Spatial Dimension 

The cultural dimension has largely been ignored in mainstream contemporary landscape ecology 

research despite its centrality to the theory (Wu 2010; Alberti et al. 2001; Nassauer 1997). 

However, the subject has gained in popularity in recent years, resulting in a surge in research. 

This in part can be attributed to the increased manifestation of the ecological pressures our world 

faces (Wu 2010), but the surge may also be attributed to an increased integration with the spatial 

sciences, largely in the form of an increased adoption of GIS, remote sensing and other 

geospatial tools and techniques by researchers. This coupled with an enormous amount of spatial 

socioeconomic, demographic and even behavioral data increasingly becoming available offers 

great potential.  Spatial science theory, methods and tools offer a unique opportunity to support 

interdisciplinary and transdisciplinary approaches that can facilitate meaningful new insights 

informing the development of these new concepts. The culturally diverse demographics of a city, 

for example, may be viewed as just another added layer of variability as we attempt to study an 
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already complex urban environment, but by incorporating and exploring the spatial dimension, it 

can afford an opportunity to garner new insights. This study aimed to explore such insights. 

1.3 Thesis Goals  

The overarching goal of this research was to explore the relationship between culture and urban 

trees by analyzing the relationship between Hispanics and urban forests in the City of West 

Covina, CA. With the use of high resolution multi-spectral imagery and LiDAR (Light Detection 

and Ranging) point cloud data, an Object-Based Image Analysis (OBIA) approach and 

regression analysis within a GIS environment that incorporates census and cadastral data, this 

study aimed to answer the following questions:  

1. Are there quantifiable differences in urban forest structure within predominantly 

Hispanic and non-Hispanic neighborhoods in West Covina?  

2. If so, what do these structural differences suggest about urban tree management 

practices taking place in Hispanic neighborhoods?   

3. How does urban forest structure in Hispanic neighborhoods compare with that in 

neighborhoods of a different makeup? 

4. Are there other socioeconomic, demographic or physical influences affecting 

urban forest structure in West Covina?   

The City of West Covina was chosen as the study area because it is representative of many of the 

cities and neighborhoods in Los Angeles County in terms of its large and increasing Hispanic 

population.  It was also chosen because of its wide-ranging income levels and the varied 

educational attainment of its residents. With declining urban tree canopy cover, West Covina 

faces many of the same challenges that other urban areas face (Lee 2012). By studying its urban 

forest, this study aims to further our understanding of the dynamics behind urban tree canopy 
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changes and how GIS and remote sensing technologies can be used to unravel and help to 

explain them. 

1.4 Thesis Organization 

The next chapter summarizes related work and starts by exploring the relationship between 

Hispanic immigrant populations and urban forests in the Los Angeles metropolitan area. The 

chapter provides a brief background on the history of Mexican immigration into the US and 

explores questions surrounding how culture may affect the way Mexican and other Hispanic 

immigrants view and thereby modify and manage private green spaces, and more specifically, 

urban trees. The chapter also discusses the state of our urban forests and why this issue is critical 

for the health and well-being of our cities. Examples of other urban forest research are discussed 

in the chapter, as well as some of the most common tools and techniques currently being 

employed to evaluate the state of our urban forests. Chapter 3 describes the GIS and remote 

sensing methodologies used in this study as well as the data used to explore these relationships. 

Chapter 4 details the results for this study and the final chapter offers a discussion of the broader 

significance of these results and some suggestions for future research as well as the central role 

GIS and remote sensing technologies will likely take as we carry our attempts to decipher 

human–ecosystem relationships forward.  
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CHAPTER TWO: BACKGROUND AND RELATED WORK 

In 1986, the US Immigration Reform and Control Act (IRCA) granted amnesty to nearly three 

million illegal immigrants; 2.3 million of which were Mexican-born. Waves of Mexican 

immigration had been taking place for decades, and though for many the move had been 

temporary, others had chosen to stay, setting roots in their reluctant host-country.  During the 

first part of the 20th Century, Mexican migrants enjoyed somewhat preferential treatment under 

US immigration law. At a time when the US was implementing strict quotas limiting 

immigration from even some western European countries like Spain and Italy, labor recruiters 

were seeking out workers in western Mexico for the rail and agricultural industries (Fussell 

2004). Quotas for Mexican immigrants were not put in place until the end of the 1920s, and by 

then, the demand and recruitment for low-skilled labor and higher wages had given rise to a 

population of approximately 1 million Mexicans living in the US; a population that mixed freely 

between the two countries at the time (Anon. 1928; Library of Congress 2015; Borjas 2007).  

 Things would soon change. The rise in unemployment that began just before and was 

accelerated by the Stock Market crash of 1929 led, in part, to changes in the law that restricted 

the once steady influx of Mexican low-skilled laborers into the country (Anon. 1928). Anti-

immigrant sentiment grew with job losses and initiatives were put in place by the US 

government to encourage, and some would argue push, Mexican migrants to return to their 

country of origin (Borjas 2007); mostly men, but some with their American-born families. It is 

estimated that hundreds of thousands of Mexicans migrated back to their country of origin during 

the 1930s (Library of Congress 2015), but by then, enduring cultural linkages had been formed, 

knowledge and treasure had already been gained, and connections had already been established, 
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and this social, cultural and economic capital would inevitably have a lasting impact on the 

futures of both countries.  

2.1 Social Capital in Mexico to US Migration Patterns 

Subsequent waves of Mexico to US migration would largely follow the historical migration 

patterns already established in the 1910s and 1920s, patterns that remain strong even today and 

that exemplify an interpretation of cumulative causation theory: past migration creates social ties 

to the destination and these ties facilitate further migration (Fussell 2004). When in 1942 the US 

government began implementing a guest worker program in response to labor shortages 

occurring mainly in the agricultural sector, most of the migrants would largely originate from the 

same places: predominantly from rural agricultural areas in the high plateau region of “Mesa 

Central” in west central Mexico. Many from this new generation of migrants profited from the 

social capital gained by prior ones. Often this meant having an upper hand when obtaining the 

necessary documentation from farm owners that would allow them to enter and work legally in 

the US. The guest worker program came to a halt in 1967, but both legal and illegal immigration 

by Mexicans continued to rise (Figure 2), accelerating in the 1980s when the economic 

restructuring and ensuing crisis in Mexico made the US labor market more attractive for rural 

Mexicans (Figure 3). Most were migrating to urban centers in California and Texas as well as to 

an enclave in Chicago where a Mexican population had been established since the early 20th 

century. By 2010, approximately 50 million Hispanics were living in the US, 32 million of them 

were of Mexican origin and many of them would track their origins back to these historical 

migration patterns (US Census Bureau 2010).  
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Figure 2: Illegal Mexican immigration to California from 1963 to 1973 

 Source: Dagodag (1975) 

 

 
Figure 3: Per capita income in Mexico relative to US from 1960 to 2000  

Source: Borjas (2007) 
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2.2 Agro-related Cultural Capital in Rural to Urban Migration 

Given the rapidly shifting demographics occurring in the US, largely due to the growing 

Hispanic and especially Mexican population, identifying and understanding the cultural capital 

Mexican and other rural immigrants are transferring to many US urban centers can help us better 

identify challenges and opportunities for improving urban environments. Considering what we 

know about Mexico-US migration patterns, what can we assert about the role of rurality and/or 

agro-related cultural capital in the way Mexican immigrant’s value, manage and modify private 

urban green spaces? Do patterns portray challenges or opportunities? The highly concentrated 

Hispanic communities that largely exist in urban areas in the US have inadvertently inhibited and 

delayed assimilation by even legal Mexican residents and sometimes their American-born 

children (Valdez 2005; Telles and Ortiz 2011). This can prolong cultural effects on urban 

ecosystems in positive as well as negative ways. 

2.2.1 The Mesa Central Migration Route  

Although changes in Mexico-US migration patterns have taken place especially since the mid-

1990s, with more skilled, educated, metropolitan Mexican individuals migrating to the US in 

recent years, and although large numbers of immigrants from differing states, demographics and 

socioeconomic backgrounds have come to the US throughout history, the single largest historical 

Mexico-US migration pattern of the 20th century still remains that of rural Mexicans from west 

central Mexico migrating to the southwestern US (Fussell 2004; Dagodag 1975). The states of 

Jalisco, Michoacán and Zacatecas have historically contributed the largest numbers of Mexican 

immigrants into the US (Figure 4), with one 1975 study finding that 48 percent of illegal 

immigrants apprehended by the INS at the time had originated from the states of Jalisco and 

Michoacán alone (Fussell 2004; Dagodag 1975), (Figure 5). Most of these first-time migrants 
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were mestizo and not native-Mexican (Dagodag 1975), and this meant that among rural 

communities, they tended to have more social, economic and cultural capital than indigenous 

peoples.  

 

 Figure 4: Source regions of illegal Mexican immigrants in 1973 

Source: Dagodag (1975) 

2.2.1.1 The “Mesa Central” Region  

The “Mesa Central” is a high plateau region in west central Mexico that has high volcanic 

activity, a temperate climate and abundant rainfall.  The rich alluvial and volcanic soils create 

fertile agricultural areas where even the manufacturing and service sectors of the economy are 

strongly tied to agriculture (Fussell 2004). Most of the mestizo rural residents of this area live in 

small colonial-style villages surrounded by the ranches and farmland they tend. Cattle grazing is 

extensive and the land lends itself to wide-ranging agriculture with major crop production in 

corn, sugar cane, avocados, berries and others (Encyclopedia Britannica 2015).  

2.2.2 Private Urban Agriculture: Mexican Immigrants and Residential Green Spaces  

If we consider the strong agro-related cultural and even agro-related social capital that a large 
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Figure 5: The Mesa Central region and major source states of Mexican  

immigrants into the US 

 

number of Mexican immigrants bring to our urban centers, then we may expect that for many 

Mexicans, the sustainability practices strongly associated with a rural agricultural way of life 

may resonate in their new urban environment thereby affecting the way Mexican immigrants 

view, value, and therefore modify and manage private urban green spaces, and in particular, 

urban trees. Furthermore, for Mexican immigrants, who are often afforded the ability to require a 

lesser degree of assimilation in many urban places, there may be a further intensification and 

prolongation of such effects when compared to immigrants from differing cultures. Strong urban 

gardening practices in Hispanic neighborhoods predate most recent urban agriculture trends. 

Fruit trees and vegetable gardens have lined the front and back yards of Hispanic neighborhoods 
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for decades and the European and now American practice of maintaining green lawns can be a 

completely new experience for the rural Hispanic immigrant. Urban trees are some of the most 

vital and highly influential flora in urban ecosystems and urban fruit trees tend to be some of the 

most common plants of consumption in residential green spaces; can we find differences in how 

rural Mexican and other Hispanic immigrants manage them? Are Hispanics more likely to plant 

and maintain fruit bearing trees given cultural influences, and inversely, are they more likely to 

dispose of trees with no consumption value because of the same reasons? Our urban forests are 

on the decline, and for reasons that are poorly understood. Understanding the dynamics behind 

urban forest changes and the possible socioeconomic and sociocultural influences affecting them 

is important.  

2.3 Urban Forests in Los Angeles 

The Los Angeles metropolitan area has one of the largest concentrations of Hispanics in the 

nation with approximately 48% of the population in the county being Hispanic, and 

approximately 34% of Mexican origin. Like other urban areas, Los Angeles faces its own set of 

environmental challenges: air and water quality, storm runoff, local flooding, and water 

shortages, among others. Urban forests play an integral role in mitigating many of these and 

other environmental problems.  However, data show that loss of urban tree canopy (UTC), and 

the consequent decline of urban green cover is a widespread problem across the US, and the Los 

Angeles metropolitan area is no exception. Between the years 2000 and 2010, one study found 

that approximately 305,000 trees (and 12% in general green cover) were lost from single-family 

neighborhoods in 20 of the largest cities in Los Angeles County (Lee 2012). In an already 

stressed environment, losing the ecosystem services provided by established urban trees can be 

of great negative impact.  
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2.3.1 Environmental Benefits of Urban Trees 

Urban trees provide invaluable benefits to urban residents as well as to the urban ecosystem as a 

whole, and by consequence, to those ecosystems that surround it. Increasing UTC, for example, 

is one of the most effective ways of reducing temperature; especially important in the “heat 

islands” that many urban areas have become.  Trees serve as a natural air conditioner; the 

evaporation from a single tree can produce the cooling effect of 10 room-sized air conditioners 

operating 20 hours a day (Evans 2014). This reduction in local air temperatures can result in less 

need for residential cooling, lowering fossil fuel and water consumption at power plants 

(McPherson et al. 2011; Shashua-Bar and Hoffman 2000). Trees can also produce a significant 

positive effect on storm water runoff rates and volume, helping to prevent local flooding (Dwyer 

and Miller 1999): As urbanization increases, so do the impermeable surfaces covering the 

landscape. Rainfall will tend to flow quicker to storm water drains and sewers, resulting in more 

frequent and severe floods (Dwyer and Miller 1999). An urban tree canopy intercepts this rain 

water, slowing its flow. Trees also provide shade, reduce noise, and trap dust and other pollution 

with their leaves essentially serving as air filters in a polluted urban environment.   

2.3.2 Social Benefits of Urban Trees 

Urban trees play a significant role in the social and ecological welfare of cities and their 

residents. Increased tree cover has been associated with an increase in respiratory health for 

example, despite some tree species being allergic triggers (McPherson et al. 2011). More urban 

trees are associated with higher property values, reduced stress and improved general well-being 

(McPherson et al. 2011). Troy, Grove, and O’Neil-Dunne (2012) found a strong and inverse 

relationship between urban tree canopy and crime rates: a 10% increase in tree canopy cover was 
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linked to a 12% decrease in crime. Trees define space, provide privacy and prompt significant 

emotional responses that can be beneficial. 

2.3.3 Managing Urban Forests  

The environmental and social benefits of urban trees have been well documented and municipal 

governments are beginning to take notice. Over the last few years, several tree-planting 

campaigns have been launched in cities across the US in an attempt to increase tree canopy.  

“MillionTreesNYC” is one such initiative where government agencies, in their efforts to increase 

the number of trees in the city of New York are even digging up road surfaces in some cases 

(Vermont Monitoring Cooperative 2014). Similarly, the City of Los Angeles launched the 

“MillionTreesLA” campaign in 2006 after a UTC assessment determined LA’s tree canopy cover 

of 21% was below the national average (Los Angeles Department of Water and Power 2015). 

However, a large percentage and in some cases the larger percentage of trees in a city are 

managed not by local governing agencies, but by residential property owners, and efforts to 

preserve and promote the growth and vitality of urban forests should also focus there.  In 2010, 

“MillionTreesLA” became “City Plants”, refocusing efforts from a campaign that in large part 

concentrated on planting trees on public land, to a more focused effort to increase tree canopy in 

low canopy residential neighborhoods. The program provides LA residents with up to seven free 

shade trees to plant on their residential properties, holds “adopt a fruit tree” events monthly, and 

plants parkway trees (the area between sidewalk and street) at the request of City residents at no 

charge (Los Angeles Department of Water and Power 2015). The evolution of this Los Angeles 

municipal program highlights both the importance of increasing and preserving urban tree 

canopy in residential neighborhoods, including on private property, but also the importance of 

identifying and understanding the cultural and socioeconomic dynamics behind differing 
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management practices of urban green spaces. Understanding these dynamics can help better 

shape conservation efforts, policy and lead to more informed and effective urban design.   

2.4 Similar Work – Studying Urban Forests  

A substantial body of work has developed around the quantification of the ecosystem services 

urban trees can provide, and in many cases, actual monetary values are being assigned to some of 

these benefits. This level of information coupled with an increased adoption of geospatial 

technologies by local governments has led to an increased allocation of resources towards spatial 

scientific studies of urban forests, in most cases, in the form of urban tree canopy (UTC) 

assessments that map and measure urban tree canopy area, and that when repeated, can facilitate 

monitoring. Researchers are also making great strides in being able to map individual trees and 

delineate individual tree crowns more accurately, as well as in differentiating between specific 

tree species, difficult in highly altered and variable urban environments. Some researchers have 

taken advantage of the many advancements and increased derivation of urban forest data by 

focusing on questions that surround the socio-ecological relationships and processes involving 

urban forests; however, this research still remains limited in scope. The three most frequently 

pursued research areas are discussed in more detail below.   

2.4.1 Urban Tree Canopy Assessments 

UTC, the percentage of a site covered by trees, has become a commonly used metric for 

assessing the size and structure of urban forests. One of its advantages is the concept’s simplicity 

so that it can be more easily understood by the general public (McPherson et al. 2011). During 

the past two decades, dozens of UTC assessments have been performed in metropolitan areas 

across the US including in major cities like Atlanta, GA, Washington, DC, Baltimore, MD, New 

York, NY, and Los Angeles, CA (e.g. McPherson et al. 2011; Troy, et al. 2007; McGee et al. 
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2012). Within the framework of urban landscape ecology, these assessments analyze urban trees 

from a landscape level by employing high-resolution aerial or satellite imagery, and in more 

recent years, LiDAR, and some form of semi-automated classification technique to extract and 

map areas of urban tree canopy in order to quantify and analyze it spatially (McPherson et al. 

2011; Walton, Nowak, and Greenfield 2008). Because local governments interested in assessing 

their urban forests are usually interested in improving them, being able to identify and then 

prioritize land suitable to plant new trees has become a common part of these assessments, 

providing local governments with a fairly accurate and cost-effective way to evaluate, monitor 

and improve the health and management of urban forests.   

2.4.1.1 Image Analysis Methods and Classification Techniques  

A large percentage of scholarly urban forest research revolves around the image analysis and 

classification techniques used to extract and quantify urban trees and urban tree canopy. Pixel-

based classification methods have traditionally been implemented by researchers to differentiate 

between different land use and land cover types, as well as to extract urban tree canopy cover.  

McPherson et al. (2011) used a moving masks method in conjunction with a supervised and 

unsupervised pixel-based classification technique to map trees and shrubs in the City of Los 

Angeles, and found that it had a UTC of 21%, below the national average. Irani and Galvin 

(2003) and Nowak, Kuroda, and Crane (2004) also applied pixel-based remote sensing 

techniques to assess tree canopy cover over Baltimore, MD by utilizing the near infrared (NIR) 

and red bands to discern tree canopy from other green areas and estimating that between 1999 

and 2001, Baltimore’s urban forest experienced a 4.2% annual net loss in tree cover.  More 

recently, McGee and colleagues chose a pixel-based approach to perform a UTC assessment of 

the City of Winchester, VA over other approaches “due to the fact that the processing is more 
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easily understood and would be more easily implemented in the future by local jurisdictions” 

(McGee et al. 2012, p. 277).  

The advancements in the quantity, quality and availability of remotely sensed data, 

however, offer a greater capacity for analysis and require more advanced methods to better 

exploit these opportunities. The reduction in data acquisition costs has led to more repeatability 

and therefore more opportunities for richer information extraction. Many researchers are 

beginning to look to other methods because pixel-based image analysis techniques are falling 

short of expectations in terms of consistency and efficiency (Chubey, Franklin, and Wulder 

2006) and because significant advances in classification techniques are greatly limited by the fact 

that they are pixel-based (Blaschke 2010). Unlike humans, the ultimate image interpreters, these 

methods are incapable of using photo-interpretative elements such as shape, texture, or spatial 

relationships and instead place groups of pixels into classes that are primarily based on their 

spectral values (Gao and Mas 2008). In order to extract the spectral characteristics of geographic 

features, these methods treat each pixel individually, and assume every pixel to cover an area 

relevant to the landscape scale (Gronemeyer 2013). When we consider that there could be 

hundreds of millions of pixels to process in a single image, the limitations of pixel-based 

methods become increasingly apparent (Blaschke 2010).   

OBIA (Object-based Image Analysis) methods, which work differently and more closely 

resemble the way humans perform image interpretation, have increasingly gained popularity 

among researchers. In this approach humans are the expert system, offering, in theory, endless 

potential due to their intuitive nature. Instead of considering the spectral characteristic of each 

individual pixel, OBIA begins by creating relatively homogeneous and meaningful objects that 

are made up of groups of pixels by considering one or more characteristics explicitly defined by 
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the user; characteristics that can be simple or highly complex.  These characteristics can include 

spectral value but also, shape, pattern, context, and other cognitive information, placing this 

technology at the interface between remote sensing and geographic information science 

(Blaschke 2010).  OBIA methods are increasingly gaining popularity in urban forest research as 

expectations quickly shift toward greater accuracy and finer-scale inventorying of urban forests: 

Grove et al. (2006) measured tree canopy over the city of New York using object-oriented 

classification methods that included the use of LiDAR data; Moskal and Zeng (2011) measured 

tree canopy over Seattle, WA using the RGB and NIR bands in publicly available remote sensing 

data and achieved accuracies of over 80%; and Lehrbass and Wang (2010) presented a semi-

automatic, object-based method for urban tree cover extraction that was applied to London, 

Ontario, Canada with user’s and producer’s accuracies for trees of 76% and 86%, respectively. 

There are further advantages to OBIA, because the spatial relationship information 

contained in image objects, for example, allows for more than one level of analysis, it is useful 

when making landscape level observations that require multiple scales (Gronemeyer 2013). 

OBIA methods also facilitate the integration of different data types, including vector data, and 

can create layers to incorporate into the analysis virtually on the fly. OBIA techniques have been 

shown to be more accurate at higher resolutions than pixel-based ones (Gao and Mas 2008). 

However, despite these advantages, many researchers have been dissuaded from utilizing OBIA 

methods since their inception in the 1970s, largely because of their level of difficulty as well as 

their dependence on user knowledge and experience (Gao and Mas 2008). Other challenges 

include intensive processing that often requires enterprise software, higher software costs, and 

limited choices in both software and freeware, and because OBIA methods have only recently 

gained traction among researchers, knowledge and resources on which to build new applications 
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are still limited. Despite these limitations, their popularity has grown in recent years and many of 

the advancements in image vegetation classification and feature extraction techniques including 

those for urban trees can be attributed to the use of these methods. 

2.4.2 Individual Urban Tree Detection, Crown Delineation and Species Differentiation 

Researchers are developing more accurate methods to collect more specific information about 

trees besides general tree canopy cover, and many have tackled individual tree detection, 

individual tree crown delineation and even tree species differentiation with a wide variety of 

techniques, data and platforms, with good results. However, research in urban tree detection 

specifically remains very limited: Bacher and Mayer (2000) performed an automatic extraction 

of leafless deciduous trees from 4 cm high resolution aerial imagery taken in spring in Tamm, 

Germany. They made use of the dark shadow of the tree as well as the fact that the vertical trunk 

is imaged as a straight line and they were able to determine the trunk base, height, and width of 

trees with the results showing good potential for their method. Tiede, Hochleitner, and Blaschke 

(2005) presented a methodology to extract and delineate single trees in an urban environment 

from small footprint high intensity laser scanning point data (LiDAR) in a GIS environment, 

employing any additional image data for visualization and accuracy assessment purposes only (a 

commonly seen method in current forest research). Dominant trees were detected with an 

accuracy of 72%; however, the overall tree detection rate was 51% due to suboptimal scan 

sampling distribution that hindered tree crown delineation (Tiede, Hochleitner, and Blaschke 

2005). Zhang and Qiu (2012) developed a neural network-based approach to identify urban tree 

species at the individual tree level from LiDAR and hyperspectral imagery. Their method was 

able to detect individual trees, estimate their tree metrics, and also identified species types with 

an accuracy of 96% in detecting individual urban trees and 68% in tree species identification. 



22 
 

Shrestha and Wynne (2012) developed prediction models to estimate biophysical parameters 

such as height, crown area and biomass for over 2,000 individual trees in central Oklahoma with 

the use of a multiple linear regression model. Using LiDAR, they were able to achieve a high 

level of accuracy for estimating individual tree height (R2 = 0.89), crown diameter (R2 = 0.90), 

and biomass (R2 = 0.67).  

2.4.3 Studying Urban Forests from a Socio-ecological or Urban Landscape Ecology Perspective 

Despite the recent surge in interest in studying the sociological components of ecological 

phenomena occurring in urban environments, urban social science and landscape ecology 

research related to urban forests remains very limited in scope: Zhang et al. (2007) studied the 

attitudes surrounding urban forests among Montgomery, AL residents and found that higher 

income, more educated individuals were more likely to financially support tree planting 

programs. They also found that characteristics such as race, gender, and residence were not 

statistically significant factors in explaining attitudes toward urban forestry programs. Troy et al. 

(2007) used geocoded point crime data and high resolution UTC data with ordinary least squares 

and spatially adjusted regression, and found a strong and inverse relationship between tree 

canopy and crime: a 10% increase in tree canopy was associated with roughly a 12% decrease in 

crime. Iverson and Cook (2000) found a strong correlation between household income and 

population density and UTC in Chicago, IL. Flocks et al. (2011) applied a random sampling 

approach to study urban forest cover structural inequities and found that white areas had greater 

tree density, cover, and species diversity while African American areas had the lowest tree 

density and LAI (Leaf Area Index). Interestingly, Hispanic areas were found to have more trees 

per hectare than African Americans, the greatest individual tree LAI, and more trees in excellent 

condition than either of the two aforementioned groups. 
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CHAPTER THREE: METHODS 

To explore the relationship between Hispanics and urban forest structure in the City of West 

Covina, data was extracted with image analysis software and subsequently analyzed together 

with census and cadastral data within a GIS environment. Eight explanatory variables were 

derived at the census block group level including: Average Parcel Size, Average Building Age, 

and Average Property Value. In addition, other demographic and socioeconomic variables 

including Percent Hispanic, Percent Asian and Median Household income were also analyzed. 

This chapter provides a description of the study area chosen, the data and the data sources 

employed, the OBIA techniques implemented to extract urban forest structure information, and 

the geostatistical methods used to explore possible connections between culture and privately 

owned trees.  

3.1 Study Area 

The city of West Covina is located approximately 20 miles northeast of downtown Los Angeles 

(Figures 6 and 7), and had a population of 106,000 as of the 2010 Census. With 54% of the 

residents being Hispanic, the City was ranked 25th by the US Census Bureau among cities with 

the highest percentage of Hispanics in 2010. In addition, 34% of West Covina’s residents 

reported that they were foreign born during the last decennial census. The second largest 

minority group, Asians, accounted for approximately 26% of its population and was therefore 

included in the analysis. The city was chosen as a study area because of the varying demographic 

nature of its different neighborhoods, its large and growing Hispanic population, and because in 

an earlier study, it was found to have higher than usual UTC losses despite having some of the 

largest average residential lot sizes in the county (Lee 2012).  
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Figure 6: Map of Los Angeles County, Hispanic  

populations and West Covina study area location 
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Figure 7: Map of the City of West Covina and major points of interest 

 

3.2 Data and Sources 

All of the data used in the image analysis and feature extraction originated from the LAC 

Department of Regional Planning and the Los Angeles Region Imagery Acquisition Consortium 

(LARIAC) Program. The LARIAC Program involves multiple organizations, county 

departments and various public agencies in a multi-beneficiary, cost-sharing spatial data 

acquisition program. The program launched its first acquisition project in 2006 and 

accomplished its fourth (LARIAC 4) in 2014. Most of the LARIAC data employed in this study 

originated from the original 2006 acquisition, executed by Infotech Enterprises America using a 

single-pass DMC (Digital Mapping Camera) system. The RGB and CIR data were delivered as 
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two separate products with a 1.5 ft horizontal accuracy at a 95% confidence level. For this study, 

a 2006 leaf-off 12 in RGB orthogonal image originally acquired at a 4 in resolution was used in 

the extraction, as well as a readily available 5-foot NDVI (Normalized Difference Vegetation 

Index) raster layer derived from the 2006 RGB and Color Infrared (CIR) orthophotos. A 5-foot 

Normalized Digital Surface Model (nDSM) derived from LARIAC’s 2006 LiDAR data was also 

used in the feature extraction as height information. Typically, an nDSM is derived by 

normalizing a Digital Surface Model (DSM) with a gridded Digital Terrain Model (DTM):  

𝑛𝐷𝑆𝑀 = 𝐷𝑆𝑀 − 𝐷𝑇𝑀                                                (1)    

However, the DSM used for this work was normalized by subtracting a Digital Elevation 

Model (DEM) from the DSM instead. Although many of these terms are often used 

interchangeably, a DEM represents the bare earth surface, whereas a DTM usually attempts to 

incorporate more geographic elements and natural features such as rivers and other break lines 

(Hashemi 2008; Li et al. 2010). In an urban setting, a DTM is usually based on height points of 

streets (Hashemi 2008; Li et al. 2010). Because the DTM was not available in the necessary 

gridded format, the readily available LAC “Height” file or DEM-normalized nDSM was utilized 

for height information. Vertical accuracy for the LiDAR used to derive all of the aforementioned 

terrain datasets was tested with 0.82 ft accuracy at a 95% confidence level (LARIAC Product 

Guide 2006). Lastly for the high-resolution feature extraction, a “Building Outlines” vector layer 

captured from stereo imagery during the 2008 LARIAC 2 acquisition was employed as a mask to 

aid in the classification and to reduce processing times. For the GIS analysis, the aforementioned 

building layer, an LAC Assessor’s 2013 cadastral layer and a 2010 US Census Bureau census 

block group data layer and corresponding Topologically Integrated Geographic Encoding and 

Referencing (TIGER) vector reference layer downloaded from the US Census Bureau website 
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were also incorporated into the analysis. All of the data was preprocessed to match a single 

geographic projection (NAD 1983, State Plane, Zone V) and clipped to the extent of the city 

boundary of West Covina.  

3.3 Remote Sensing Methods 

An OBIA approach was used to extract both the general UTC area as well as individual trees and 

tree heights. Trimble® eCognition Developer was chosen as the image analysis software. The 

first of its kind, the software was founded by Nobel laureate and OBIA pioneer Gerd Binning 

and his team of researchers and was first launched in 2000 by Munich, Germany-based Company 

Definiens® (and acquired by Trimble® in 2010) (Nassbaum 2008; Esch et al. 2008).  Arguably, 

much of the software’s success can be attributed to their software implementation of multi-

resolution segmentation for the purposes of remote sensing, allowing for multi-source, multi-

region, multi-method and multi-scale image analysis, that is well suited to landscape ecology and 

other urban forest research. Multi-resolution segmentation was the main segmentation algorithm 

used in this study and Esch et al. (2008, p. 2) describes the segmentation in the following 

manner: the segmentation is controlled by heterogeneity criteria color and shape. Color ℎ𝑐 is 

calculated:  

                                           ℎ𝑐 = ∑ 𝑤𝑏𝑏  ∗  𝜎𝑏                  (2)  

where b = the band, wb = the weight, and σb = the standard deviation of the band. The shape is 

composed of both smoothness ℎ𝑠𝑠  and compactness ℎ𝑠𝑐 which are calculated as follows:  

                                                       ℎ𝑠𝑠  =   1/𝑘                                                 (3) 

 
                          

                                                        ℎ𝑠𝑐 =   𝑙/√𝑛                              (4)  
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where 𝑙 = the length of the object’s outline, 𝑘 = the shortest length of the bounding box, and 𝑛 = 

the number of pixels of the object. After each merge process, the change of heterogeneity, which 

flows into the fusion value 𝑆𝑓 , was calculated in the following manner:  

𝑆𝑓 = 𝑤𝑠ℎ𝑐 + (1 − 𝑤𝑠)ℎ𝑠           (5) 

where,  𝑤𝑠 represents a user-defined weighting factor of the shape criterion. 

 The fusion value was then compared with a user-defined scale parameter which defines 

the maximum allowable heterogeneity of the image objects. By varying the scale parameter, 

arbitrary object levels with scale-specific segment sizes can be generated. An example of multi-

resolution segmentation can be seen in Figure 8.   

              

Figure 8 Example of multi-resolution segmentation 
 

3.3.1 Extracting UTC 

To extract the general UTC area, a multi-resolution segmentation was first applied to the RGB 

bands of the 1 ft orthoimage, taking advantage of the highest resolution of the dataset in this first 

segmentation to create the first primitive or sub-objects. Because the red band is known to 
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provide the most vegetation information of the three bands, a higher weight could have 

potentially been assigned to it; however, weighting each of the three bands equally for the 

segmentation provided the best results for this particular extraction process. The smallest 

possible scale parameter or highest possible spatial resolution was chosen, allowing for the edges 

of even small trees to be properly segmented. The shape and compactness were set to 0.9 and 

0.1, respectively. Setting the highest shape value possible (0.9) meant that less weight was given 

to color, providing good discrimination between grass and tree canopy cover. The compactness 

value (0.1) was chosen by testing several parameter combinations. Higher compactness values 

would have resulted in more bounded objects. Although some research has focused on the 

optimization of these parameters, this process still remains largely an iterative one for 

researchers, highly dependent on the dataset as well as the information being extracted.  

 In the next step, classification, the NDVI layer was used to differentiate between 

vegetation and non-vegetation sub-objects. Using a threshold condition of ≥ -0.045, lower than 

the more common > 0.1 NDVI threshold used to classify vegetation, leaf-off and sparsely leaved 

trees were clearly identified as such. Figure 9 shows a leaf-off tree in a parking lot (marked with 

an X) on the left, and is identified as a tree object in green on the right along with other green 

canopy. Within residential lots, lowering this threshold resulted in small misclassifications 

mainly over portions of light colored roofs, walkways, and driveways. These misclassifications 

were largely addressed during subsequent steps in the analysis. More prominent errors occurred  

over commercial areas where light colored surfaces tend to be more common. Here, larger areas 

of parking lots and commercial building roofs were confused with vegetation. These larger 

errors, however, were not relevant to the scope of this study and were later filtered out when 
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Figure 9 Example of leaf-off tree being identified as a tree in image analysis 

 

single-family home residential lots were isolated for the analysis. For the purposes of this study, 

the benefit of more accurate leaf-off tree detection greatly outweighed the remaining degree of 

error.  

Next, the LiDAR was used to discriminate between vegetation of different heights. 

Common thresholds for tree heights range between 5 and 8 ft, largely dependent on the tree type.  

For this study, a height threshold of 5 ft was chosen to classify trees, allowing for more 

flexibility in the data post-extraction where lower height values could easily be filtered out. More 

importantly, due to the coarseness of the NDVI and nDSM as well as the natural structure of 

most tree tops, tree heights tended to be underestimated. Setting this minimum height allowed for 

better identification of smaller trees and also of the edges of trees. This step also largely 

addressed any misclassifications over walkways and driveways.  Finally, the vector building 

outline from LAC Assessor’s 2013 cadastral data was used to mask out buildings, largely 

addressing the misclassifications over roofs. A merging operation was applied to tree canopy 
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objects before extracting UTC objects and exporting them as vector polygon data. Figure 10 

summarizes the aforementioned workflow.  

 

    

Figure 10 UTC extraction workflow 

 The resulting UTC extraction can be seen in Figures 11 and 12. Because of the 

coarseness in the LiDAR data, the UTC was slightly overestimated.  This can clearly be seen in 

Figure 11, where the UTC is overlaid on a 4 inch RGB orthoimage.  Figure 13 illustrates this 

problem more clearly. The coarseness of the nDSM in violet juxtaposed with the 1 ft orthoimage 

seen in green. The lightest violet colors show the highest points in the image. Figure 12 shows 

the resulting UTC extraction in vector format with and without a base image layer. 
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Figure 11 Resulting UTC extraction 

 
 

Figure 12 Resulting UTC vector layer 
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Figure 13 LiDAR data overlaid over a 1 ft orthoimage  

3.3.2 Individual Tree Identification 

In order to identify individual tree tops, the NDVI and nDSM layers were again utilized.  A 

multi-resolution segmentation was applied with the lowest possible scale parameter, with a 

weight of 2 for the nDSM height layer and a weight of 1 for the NDVI layer. A lower emphasis 

on shape (0.3) and a higher compactness value (0.7) that would create more bounded objects was 

chosen because of the coarseness of the data (Figure 9). Using only these two layers of 

information provided better individual tree detection than when a sharper image was 

incorporated into the analysis. The same classification criteria for UTC was then applied, ≥ 0.045 

for the NDVI and ≥ 5 ft for the nDSM. Here, a chessboard segmentation that divides the image 

into a predefined grid would commonly be applied to the areas classified as tree canopy before 

applying a local maxima algorithm to identify potential individual tree tops. Instead, a spectral 

difference segmentation that merges neighboring objects according to their mean layer intensity 

values was first applied, using both the nDSM and NDVI layers as equally valued weights. This 
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method provided better results in this particular case with the particular set of parameters.  The 

assigned search range value in the find local maxima algorithm is predefined normally 

depending on the forest type. The spectral difference segmentation provided more meaningful 

objects for the search range. In this highly heterogeneous urban forest, this method provided 

more accurate local maxima designation. After some clean-up operations, the resulting local 

maxima points or individual tree crown points were exported as vector data with height and 

NDVI attribute information. Figure 14 below describes the workflow and Figure 15 shows the 

individual tree identification results.   

       

Figure 14 Individual tree extraction workflow 
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Figure 15 Extracted individual tree locations 

3.4 GIS Methods 

In traditional statistics, observations are assumed to exist in a world that is abstract and void of 

any external influences, in spatial statistics, the observations are real world phenomena with a 

location, and almost always exhibit regional and local trends. Post feature extraction, the 

remotely sensed data was imported into ArcGIS 10.2 for geostatistical analysis.  An Ordinary 

Least Squared (OLS) global regression was applied to model the relationship between forest 

structure and several socioeconomic, demographic and cadastral variables.  A Global Morans I 

was then applied to the residuals to check for spatial autocorrelation that would indicate spatial 

clustering of residuals and misspecification of the model due to some spatial variables not 

accounted for in the model but present in the relationship(s).   

3.4.1 Dependent Variables 

Four dependent variables were derived for the analysis, all with the use of the extracted urban 

forest data.  Two aggregation levels were used to derive these variables: the first at the parcel 

level, and the second at the census tract level (the coarsest level of granularity and the level used 
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for the regression analysis).  Dependent variables at the census block group level included: 

Average Tree Density per Parcel (TDP); average Percent UTC Canopy Cover (PUTCC) per 

parcel; Trees per Person (TPP); and Average Tree Height (ATH) per parcel.  Table 1 describes 

each of these variables in more detail. 

Table 1 List of dependent variables at the US Census block group level 

Variable Abbreviation Explanation Problems 

Average Tree 
Density per Parcel 

(TDP) 

Avg_TDP Number of individual trees per sq. ft of 
available planting area within each 

residential parcel, aggregated to the 

census block group level 

Available planting area 
does not exclude pools or 

other hardscape and 
further image processing 

would be necessary to 

address; error in feature 

data extraction 

Average Percent 
UTC Cover per 

Parcel (PUTCC_p) 

Avg_PUTCC_p  Average percent urban tree canopy cover 
of available planting area within each 

residential parcel, aggregated to the 

census block group level. 

Available planting area 
does not exclude pools or 

other hardscape; does not 

include UTC cover over 
buildings; error in feature 

data extraction 

Average Tree 

Height  (ATH) 

ATH The average tree height in census block 

group 

Error in feature data 

extraction  

Trees per Person 

(TPP) 

TPP Total number of trees in block 
normalized by the total census block 

group population 

Error in the data 
extraction; US Census 

Bureau estimates  

3.4.2 Derivation of Variables 

To calculate dependent and explanatory variables, the LAC Assessor’s cadastral data was first 

used to isolate single-family home parcels (SFHP). All other parcels including commercial and 

multiple family dwellings parcels were filtered out. Next, an erase overlay operation was applied 

to mask out buildings in SFHP parcels, leaving a theoretical Parcel Potential Planting Area 

(PPAP) within SFHP Parcels:  

                         PPAP = Single Family Home Parcel (SFHP) – Building Footprint                       (6)                  

PPAP did not exclude pools or other impermeable surfaces, and further land-use classification 

methods or data layers would have to be added to identify them. Next, an overlay operation 
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intersecting parcel features and the extracted individual trees was applied. This assigned a parcel 

identification number to each individual tree. This information was then summarized to a table 

by parcel number and was subsequently joined back to the parcel layer. The Tree Density per 

Parcel (TDP) was then calculated by dividing the total number of trees in each parcel t, by the 

potential planting area: 

                                                    𝑇𝐷𝑃 = 
𝑡

𝑃𝑃𝐴
                                                         (7) 

 Next, to calculate the average PUTCC per parcel (the percentage of UTC within the 

potential planting area of each SFHP), the extracted UTC features were intersected with the 

SFHP layer, assigning a parcel identifier to each feature.  Again a field summary operation was 

applied to the parcel identifier. A dissolve operation was used, aggregating UTC polygons to the 

parcel level, then calculating the area for each.  Then the total UTC area u of each parcel was 

calculated and then divided by the PPA: 

    𝑃𝑈𝑇𝐶𝐶 = 
𝑢

𝑃𝑃𝐴
            (8) 

Another overlay intersect operation was applied to aggregate data to a second level. The 

average TDP and PUTCC per parcels for each census block was then calculated. To calculate the 

average PUTCC in each census block group, the UTC areas in each parcel were summed by 

census block group to a table, joined back to the analysis and then divided by total PPA in each 

census block group. The Average Tree Height (ATH) for each census block group was 

calculated and included as a dependent variable. Trees per Person (TPP) was also calculated by 

normalizing the total number of trees in each census block group by the total census block group 

population. Because these variables were measured at different scales, the possibility of 
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introducing issues of MAUP (modifiable areal unit problem) and/or ecological fallacy into the 

models exists. 

3.4.2 Explanatory Variables 

Eight explanatory variables were derived at the census block group level including: Average 

Parcel Size, Average Building Age, and Average Property Value. In addition, single-level census 

block group level data calculations were performed to obtain: Population Density, Percent 

Hispanic, and Percent Asian. Two existing Census data fields, Median Age and Median 

Household Income, were also included as explanatory variables (Table 2). Figure 16 shows 

variables and data sources used to derive each variable.  

 

Table 2 List of explanatory variables aggregated to the US Census block group level 

Variable  Abbreviation Explanation Problems/Potential Error 

Population 
Density 

Pop_Den People per square mile US Census Bureau estimates 

Percent Hispanic Perc_Hisp Percentage of Hispanics living in the 
census block group 

US Census Bureau estimates (historically 
thought to be underestimated) 

 

Percent Asian Perc_Asian Percentage of Asians living in the census 
block group 

US Census Bureau estimates (historically 
thought to be underestimated) 

 

Median Age Med_Age Median age of census tract population US Census Bureau estimates 

Median Income Med_Incm Median income of census tract 

population 

US Census Bureau estimates 

Average Parcel 
Size 

Avg_PrclSz Average parcel size in census block 
group, sq. ft 

Error in cadastral data 

Average 
Building Age 

Avg_BldgAg Average Age of home in the census 
block group 

Error in cadastral data 

Average 

Property Value 

Avg_PrpVal Average single home property value 

within study are and study parcels 

Error in cadastral data 
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Figure 16 Data layers used to produce each variable 

 

3.4.3 Exploratory Regression and OLS  

Next, an exploratory regression was applied to each of the four dependent variables with the 

eight explanatory variables. The explanatory regression was used to explore variable significance 

when choosing explanatory variables for OLS models.  All variables with no significance were 

removed. The suggested regression model(s) with the largest number of variables and consisting 

of only statistically significant p-values < .10 and highest R2 values, were used as the starting 

point for fitting the OLS models for each of the dependent variables. A series of OLS models 

were tested for each variable. Results and models are discussed in the next chapter.  
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CHAPTER FOUR: RESULTS 

Six of the 79 census block groups (CBGs) spanning the City of West Covina in 2010 were 

excluded from the analysis because they did not contain parcels classified as single-home 

residential, leaving 73 remaining census block groups in the analysis. With most of its land 

contained in the north, the results portrayed two distinct sides of West Covina: the northeast and 

the northwest.  The northeast had higher Asian populations, higher incomes, larger lot sizes and 

newer homes. The northwest had higher concentrations of Hispanic populations and portrayed a 

more checkered and complex picture. While some links were found between urban forest 

structure and Hispanics, the more significant relationships were found between forest structure 

variables and Asian populations.  

4.1 Spatial Patterns 

Spatial patterns were detected in the demographic, socioeconomic, housing stock and urban 

forest structure data used in the analysis. The denser northwest was found to have larger numbers 

of CBGs with higher population densities (Figure 17a). Other CBGs with high population 

densities are located sporadically over the remainder of the city. Many of the least densely 

populated groups tended to be the ones with higher median ages (Figure 17b).  Many census 

block groups did not follow this pattern, however. Higher concentrations of Hispanics tended to 

be located in the northeast portion of the City, while Asian populations tended to concentrate in 

the southwest (Figures 18a and 18b). The least densely populated CBGs tended to have some of 

the highest incomes with central West Covina having among the highest. Many census block 

groups with higher median incomes also occurred in the eastern portion of the city (Figure 19a). 

Some higher income neighborhoods were found in the northwest part of the city where Hispanic 

populations also tended to concentrate (Figure 19a), despite the higher property values 
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Figure 17 Maps of Population Density (a) and Median Age (b) by census block group 

Figure 18 Maps of Percent Hispanic (a) and Percent Asian (b) by census block group 

(a) (b) 

(a) (b) 
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Figure 19 Maps of Median Household Income (a) and Average Parcel Size (b) by CBG 

Figure 20 Maps of Average Building Age (a) and Average Parcel Size (b) by census block group 

(a) 

(a) 

(b) 

(b) 
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and larger lot sizes found in the eastern areas of the city (Figures 19b and 20b). Some high 

Hispanic, high income and low property value census block groups were located in the 

northwestern quadrant. Older homes also tend to be located in the northwest, with most homes in 

these areas having been built over 50 years ago (Figure 20a).  

The urban forest structure data that was derived did not show such clear patterns at the 

CBG level, with the exception of TDP. The average tree density per parcel (TDP) was found to 

be higher in the south and eastern portions of the city, as well as in some CBGs located in the 

northwest part (Figure 21a).  A similar but less pronounced pattern can be seen for UTC cover. 

The average percent UTC cover in these areas seemed to be higher, where higher property 

values, more people of Asian descent and higher incomes were also found. Some CBGs in the 

northeast part of the city also showed higher tree densities and percentages of UTC cover. The 

average height of trees (ATH) and trees per person (TPP) did not show strong patterns (Figure 

22), however there were some clusters of CBGs with higher ATH in the eastern, western, and 

central areas of the city.  

4.2 Summary of Regression Results 

Three tables are included for each of the modeled relationships: an exploratory summary of 

variable significance, a table showing OLS regression results including coefficients and p-values, 

and a table showing other OLS statistical tests. None of the variables in the models were found to 

have VIF (Variance Inflation Factor) values greater than 7.5 (> 7.5). Values greater than 7.5 

would have indicated high multi-collinearity between variables (O’Brian 2007; Esri 2014). With 

the exception of Average Tree Density in Parcel, all variables used in the models were used were 

at the > 90% significance level for either probability or robust probability values. The Koenker  
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Figure 21 Maps of average TDP (a) and average PUTCC (b) per parcel 

 

Figure 22 Maps of ATH (a) and TPP (b) by census block groupue 

(a) 

(a) 

(b) 

(b) 



45 
 

Breusch-Pagan test was not statistically significant (p < 0.01) for any of the models. A 

statistically significant Koenker (BP) value would have indicated the relationships modeled were 

not consistent due to non-stationarity or heteroscedasticity (Cai et al. 1998; Esri 2014). Jarque-

Bera, one of the most commonly applied tests to evaluate model fit was not found to be 

statistically significant (p < 0.01) for any of the models. (Jarque and Bera 1987; Esri 2014). This 

indicated that the residuals were not found to be normally distributed and that no significant bias 

was found in the predictions due to non-linear relationships, data outliers or other problems. (Esri 

2014).  

 Tables 3 through 5 show the results for the average tree density (TDP) per parcel model. 

A statistically positive relationship was found between the percentage of Asians living in the area 

and tree density in residential parcels. In addition, parcels with older homes tended to have lower 

tree densities irrespective of parcel size.  

 

Table 3 Exploratory regression results after applying OLS regression to all possible 

combinations of explanatory variables: average Tree Density per Parcel (TDP) 

 

 

 

 

 

 

 

 

 

Variable Percent Significant Percent Negative Percent Positive 

PERC_ASIAN 100.00 0.00 100.00 

AVG_BLDGAG 100.00 100.00 0.00 

AVG_PRPVAL 50.00 50.00 50.00 

PERC_HISP 25.00 64.06 35.94 

MED_AGE 23.44 99.22 0.78 

AVG_PRCLSZ 18.75 48.44 51.56 

POP_DEN 0.00 82.03 17.97 

MED_INCM 0.00 15.62 84.38 
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Table 4 OLS regression coefficients and significance levels: average TDP 

  
Variable Coefficient P-Value Robust P-Value VIF 

Intercept 73.536757 0.000000*** 0.000000*** -------- 

PERC_HISP 0.061253 0.199206 0.135847 1.800252 

PERC_ASIAN 0.151828 0.007432*** 0.013586** 1.920284 

AVG_BLDAG -0.501719 0.000000*** 0.000000*** 1.557480 

*Significant at 90% level **Significant at 95% level ***Significant at 99% level 
 

Table 5 OLS regression diagnostics: average TDP 

n 73 

Multiple R2 0.616370 

Adjusted R2 0.599690 

Koenker (BP) Statistic 

 

12.571826 

Jarque-Bera Statistic 

 

16.699200 

Global Morans I 1.604524 

 

 

Tables 6 through 8 show the results for the percentage of UTC over residential lots OLS model. 

A positive relationship was also found between higher percentages of UTC on residential lots 

and Asian populations.  In addition, median age and property value were also found to be 

statistically significant but negatively correlated with UTC.  

Table 6 Exploratory regression results after applying OLS regression to all possible 

combinations of explanatory variables: average Percent UTC Cover (PUTCC) per parcel 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Percent Significant Percent Negative Percent Positive 

AVG_PRPVAL          97.66      100.00        0.00 

PERC_ASIAN          53.12        0.00      100.00 

MED_AGE             45.31      100.00        0.00 

AVG_PRCLSZ          10.16       50.00       50.00 

AVG_BLDGAG         9.38       68.75       31.25 

MED_INCM             7.81      100.00        0.00 

POP_DEN              0.00      96.88       3.12 

PERC_HISP           0.00      39.84       60.16 
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Table 7 OLS regression coefficients and significance levels: average PUTCC per parcel  

Variable Coefficient P-Value Robust P-Value VIF 

Intercept 37.853496 0.000000*** 0.000000*** -------- 

PERC_ASIAN 0.087237 0.025322** 0.027469** 1.143105 

MED_AGE -0.178216 0.030954** 0.045515** 1.076361 

AVG_PRPVAL -0.000014 0.006765*** 0.029085** 1.099178 

*Significant at 90% level **Significant at 95% level ***Significant at 99% level 

 

 

 

 

Table 8 OLS regression diagnostics: average PUTCC per parcel 

 

n 73 

Multiple R2 0.178507 

Adjuster R2 0.142789 

Koenker (BP) Statistic 

 

5.891550 

Jarque-Bera Statistic 

 

1.300332 

Global Morans I, z-Score 0.708727 

   

A statistically significant negative relationship was found between the number of 

Hispanics in each census block and the average height of trees (ATH) within SFHP parcels in the 

study area (Tables 9-11). Higher numbers of Hispanic residents were associated with lower tree 

heights. In contrast, the relationship between Asian populations and tree heights was positive. 

Taller trees tended to be correlated with higher Asian population numbers. Median age was 

negatively correlated: a younger demographic profile in the census block group was associated 

with taller trees. Higher incomes, higher property values and larger parcel sizes were also 

associated with taller trees. Properties with older homes tended to have shorter trees in addition 

to lower concentrations and lower percentages of canopy cover. 
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Table 9 Exploratory regression results after applying OLS regression to all possible 

combinations of explanatory variables: Average Tree Height (ATH)  

per census block group 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 OLS regression coefficients and significance levels: ATH per census block group 

Variable Coefficient P-Value Robust P-Value VIF 

Intercept 33.266574 0.000000* 7.608690 -------- 

PERC_HISP -0.063328 0.005185*** 0.010868*** 1.660652 

MED_AGE -0.212528 0.000058*** 0.000057*** 1.386687 

MED_INCM 0.000034 0.035142** 0.016711*** 1.203189 

AVG_PRCLSZ 0.000344 0.000010*** 0.000002*** 3.362716 

AVG_BLDGAG -0.107541 0.010924*** 0.041534** 2.288284 

AVG_PRPVAL 0.000021 0.000597*** 0.002280*** 4.931695 

*Significant at 90% level **Significant at 95% level ***Significant at 99% level 

Table 11 OLS regression diagnostics: ATH per census block group  

n 73 

Multiple R2 0.446353 

 

Adjuster R2 0.396022 

Koenker (BP) Statistic 

 

5.000781 

Jarque-Bera Statistic 

 

1.520840 

Global Morans I, z-Score 
0.319906 

  

Variable Percent Significant Percent Negative Percent Positive 

AVG_PRCLSZ         100.00        0.00      100.00       

MED_AGE             96.88      100.00 0.00 

AVG_BLDGAG               57.81 100.00        0.00 

MED_INCM            50.00        0.00      100.00       

PERC_HISP           46.88      100.00        0.00 

AVG_PRPVAL          43.75       50.00       50.00 

PERC_ASIAN          29.69        0.00      100.00       

POP_DEN              0.00      100.00        0.00 
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The TPP (Trees per Person) dependent variable model found that more trees per person 

were associated with higher incomes, higher property values and lower median ages (Tables 12-

14).  Areas with higher percentages of Hispanics tended to have fewer trees per person.  Higher 

Asian populations pointed to more robust urban forest plots, with more trees per person being 

associated with higher concentrations of Asian residents.  

 

Table 12 Exploratory regression results after applying OLS regression to every possible 

combination of explanatory variables for Trees per Person (TPP) per census block group 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13 OLS regression coefficients and significance levels: Trees per Person (TPP) per  

census block group  

Variable Coefficient P-Value Robust P-Value VIF 

Intercept -0.790664 0.391922 0.446162 -------- 

PERC_HISP -0.011530 0.112201 0.050013** 1.330502 

MED_AGE 0.027891 0.109947 0.098454* 1.265537 

MED_INCM 0.000011 0.066781* 0.003808*** 1.197055 

AVG_PRPVAL 0.000004 0.000335*** 0.066007* 1.233927 

*Significant at 90% level **Significant at 95% level ***Significant at 99% level 

 

 

Variable Percent Significant Percent Negative Percent Positive 

MED_INCM           100.00      0.00      100.00 

PERC_HISP           89.84      100.00        0.00 

AVG_PRPVAL          87.50        0.00      100.00 

MED_AGE             74.22        0.00      100.00 

PERC_ASIAN          29.69        9.38       90.62 

AVG_BLDGAG         10.94       48.44       51.56 

AVG_PRCLSZ           7.81       50.00      50.00 

POP_DEN              0.00       21.09       78.91 
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Table 14 OLS regression diagnostics: Trees per Person (TPP)  

n 73 

Multiple R2 0.413886 

Adjuster R2 0.379408 

Koenker (BP) Statistic 

 

25.757151 

Jarque-Bera Statistic 

 

73.106057 

Global Morans I, z-Score 
0.577187 

  

4.3 Research Questions 

The goal of course, was to use the aforementioned results to answer the four research questions 

posed in Chapter 1. The following bullets summarize what was learnt about socio-cultural and 

ecological processes and outcomes in the City of West Covina. 

1. Are there quantifiable differences in urban forest structure within 

predominantly Hispanic and non-Hispanic neighborhoods in LAC?               

An inverse relationship between higher tree densities and the height of trees and 

Hispanic populations was found, however, although the p-values were significant, 

the coefficients were small. The highest UTC was associated with CBGs with 

large Asian populations and no significant relationship was found between UTC 

and percent Hispanic. 

2. If so, what do these structural differences suggest about urban tree 

management practices taking place in Hispanic neighborhoods?  

The results support the notion that Hispanic neighborhoods tend to have a higher 

number of smaller trees with no significant increase or decrease in UTC cover.  

However, although the relationship was significant it was not found to be 
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particularly strong and extending the study to a larger area may yield clearer and 

more significant results.   

3. How does urban forest structure in Hispanic neighborhoods compare with 

that in neighborhoods of a different makeup? 

Asian populations were found to have positive associations between all forest 

structure data. A statistically significant and positive relationship was found 

between large Asian populations, tree density, tree height and UTC cover.  

4. Are there other socioeconomic, demographic or physical influences affecting 

urban forest structure in LAC?   

A negative, statistically significant relationship was found between building age 

and tree density. Older homes tended to have lower tree densities. UTC and 

median age also had a negative relationship. More UTC was associated with 

CBGs with younger populations and lower property values. Taller trees were 

associated with CBGs with younger populations, higher incomes, larger parcels, 

newer homes and higher property values.  
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

Are residential green spaces in Hispanic neighborhoods more rural in nature? If there are more 

urban agricultural practices taking place in certain areas what does that mean for the landscape? 

Are there more fertilizers and pesticides being used that may be leaching into the soil? What are 

the implications given the water shortages in California? These are larger questions that should 

be addressed.  

This study set out to analyze the relationship between culture and urban ecosystems by 

studying the relationship between Hispanic populations and urban forests in Los Angeles.  

Because the largest percentage of Hispanic immigrants in Los Angeles have historically come 

from rural, often agriculturally fertile areas in Mexico, urban forest structure was studied to 

identify possible differences in the management practices of privately owned residential trees in 

Hispanic neighborhoods. Using remote sensing techniques to extract urban forest structure data 

and geostatistical tools to map and analyze these relationships, three variables describing urban 

forest structure within single home residential parcels for the City of West Covina were derived 

and analyzed: the average density of trees within each parcel, the percentage of UTC cover over 

each residential lot, and the average height of trees in lots spanning 73 census block groups in the 

study area. When controlling for several factors including parcel size, property value and income 

levels, a statistically significant relationship at the 90% confidence level was found between 

Hispanic and/or Asian populations and all three dependent variables.  

The lower tree heights found in Hispanic neighborhoods support the idea that Hispanic 

immigrants may have larger numbers of fruit trees that tend to be kept at shorter heights.  This 

could also suggest larger percentages of younger trees. Overall, one of the most significant 

(positive) relationships identified was between Asian populations and tree density within each 

parcel: the percentage of Asians and average building age in the census block alone explained 
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over 60% of the variation in tree density. There were other positive links between Asians and 

urban forests: neighborhoods with higher percentages of Asian residents were found to have 

taller trees as well as higher percentages of UTC cover. Obtaining individual tree point data 

provided more samples and therefore richer data extraction at multiple level. Delineation of each 

individual tree crown for measurement, which was not achieved in this study, would have 

provided additional information on urban forest structure. Finer-scale inputs with individual tree 

points, refining the study area and applying two levels of aggregation (parcel and parcel census 

block group) were methods applied in an attempt to yield finer-scale results. In future studies, 

ownership rates as well as other ethnic and racial backgrounds should be incorporated. In 

addition to a change detection analysis, extremely useful in studying these relationships, an 

improved feature extraction, achieving individual tree crown delineation and more accurate 

delineation of potential planting area per parcel (PPAP) could be useful. Utilizing more cognitive 

variables during the feature extraction would have improved the image classification and feature 

data extraction, increasing accuracy. In addition, being able to differentiate between tree species 

could provide valuable information and clearer answers (see Figure 18 for example).  

The interactions studied here, however, remain highly complex, and more work, layered 

on top the results shown here and using other methods such as random surveys of residents, 

would be needed to accept or reject the hypothesis that Hispanics and/or Asians have a unique 

approach to managing urban trees.  The self-sustainability practices as well as the cultural, 

political, economic, and ecological dynamics experienced by an immigrant both in their place of 

origin as well as their new environment all have the potential to influence the value placed on 

and the management practices of privately owned urban residential green spaces.  The degree of 

need for assimilation in the host country also plays a role. The term ‘‘ecology of prestige’’, for 
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example, suggests that a household’s land management decisions are influenced by its desire to 

uphold the prestige of its community and outwardly express its membership in a given lifestyle 

group (Troy et al.  2007). Studying these spatial relationships can shed insight into these 

dynamics and their significance (Figure 23). 

 

 

Figure 23 Photo of the front yard of a home in a West Covina Hispanic neighborhood showing a 

newer avocado tree and full grown orange tree.   

Photo by Kathy M. Ulloa 

 

Understanding these relationships can inform us in improving our urban forests as efforts 

need to reach beyond government agencies. Outreach campaigns can be targeted towards 

maintaining established trees and not just planting new ones.  More education on the importance 

and care of trees may prove useful in Hispanic neighborhoods. As forest structure spatial data 

becomes increasingly common in urban centers, exploiting the data to analyze these complex 

relationships can serve as groundwork for other studies.  



55 
 

Differing management practices can have unexpected implications. Because shorter trees 

take up more space near the ground, for example, it can mean less open space available for 

children to play. This could potentially also mean closer and more frequent contact with 

fertilizers and pesticides used for fruit trees. Although the importance of urban forests has been 

well studied, understanding the ecological processes taking place and how factors like culture is 

influential remains underexplored.  It is important to understand these dynamics both to mitigate 

losses and improve urban forest health. As the world increasingly becomes more urban, and 

complex urban ecosystems grow in size and importance, the spatial sciences will increasingly 

take a lead role in their study, seizing the opportunity for improvements through better 

understanding of processes and what they offer. 
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