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ABSTRACT 

The population of Sonoran pronghorn (SPH; Antilocapra americana sonoriensis), an endangered 

subspecies within the United States (US), has fluctuated from an estimated 282 individuals in 

1994 to 21 in 2002 and back up to over 150 as of August 2014. As the population continues to 

recover from drought-associated stressors, more SPH frequent the Barry M. Goldwater military 

tactical range and the United States Air Force (USAF) closes more targets from training for 

longer periods of time. In this thesis, hotspot analyses are combined with maximum entropy 

distribution modeling to understand the geographic and seasonal variation in SPH distribution at 

North and South Tactical Ranges (NTAC, STAC) in the Barry M. Goldwater Range East, 

Arizona using data from a monitoring effort begun in 1997.  

 Results show hotspots of high densities of SPH near strafing and bombing targets, 

supporting previous studies using fewer data. In Maxent-derived habitat models, distance from 

targets had the strongest effect on model performance, followed by slope of the ground. 

According to the models, distance from roads had no effect on the SPH locations, nor did 

distance from observer. Prior studies attribute SPH preference for areas near targets to 

attractiveness of forb growth following disturbance as forage, and high visibility resulting from 

few tall shrubs or bushes. Output from the distribution model provides a predictive map of 

habitat use that can be used to evaluate effects of range use on SPH in the future.    
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CHAPTER 1: INTRODUCTION 

Sonoran pronghorn (Antilocapra americana sonoriensis) is an endangered subspecies of 

pronghorn that frequents an active Air Force tactical range in Southwestern Arizona. The 

primary conservation effort is to increase the population size through captive breeding and 

protection from military and recreational activities. Current SPH habitat encompasses 

approximately 20,000 square kilometers on the Barry M. Goldwater Range (BMGR), Cabeza 

Prieta National Wildlife Refuge and the Organ Pipe Cactus National Monument (Krausman et al. 

2005b). In 2011, a re-introduction effort expanded the range into the King’s Valley of Kofa 

National Wildlife Refuge (USFWS 2010). Consistently, 20-45 SPH utilize the BMRG range, 

which is a heavily used training range for the Air Force and Marines.  Since 2005, no analyses 

have been undertaken of the data collected to examine continued trends. Using new spatial 

analysis tools I can examine the data and compare it with prior studies’ results. Hotspot analyses 

and maximum entropy modelling were used to describe range areas with high densities of use 

and to identify potential variables important in predicting the species’ future use. Detailed 

information regarding their spatial behavior in this habitat will both help the military plan future 

training missions and will additionally enhance biologists’ ability to understand the subspecies.  

The goal of this project was to assess where SPH are most likely to occur during different 

portions of the year, potentially allowing the USAF to plan missions by focusing on areas of 

lesser predicted use during particular time periods. This was accomplished through the use of 

hotspots, using core use areas of a kernel density estimate to define each location (Blundell et al. 

2001; Wal & Rodgers 2012). To examine why SPH preferred their observed locations, maximum 

entropy modelling of distributions was applied to the sightings, using a number of environmental 

variables (Phillips et al. 2004, 2006). The output of these models both define important variables, 
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and predict the probability of observing a SPH in a particular location. To accomplish these 

goals, two related questions are asked. First, where in the study area are SPH frequenting, and 

how does it change between seasons and between years? The answer to this question shows 

where SPH were seen during a certain time period, though it does not answer why they were 

there. This introduces the second question, what characteristics of the study area are important in 

defining and predicting SPH location choice? These results showed what variables have high 

predictive value when trying to determine future use by SPH. 

Historically, SPH existed in the Sonoran desert of Mexico, up into southwestern Arizona 

and as far west as southeastern California (O’Gara 1978). The United States Fish and Wildlife 

Service (USFWS) listed SPH as endangered in 1967 (USFWS 1998; deVos and Miller 2005). 

Since then, the population within the United States (US) has fluctuated due to drought from an 

estimated 282 individuals in 1994, to fewer than 30 individuals in 2002 (Morgart et al. 2005; 

Krausman et al. 2005a). The current population estimate is approximately 300 individuals within 

the US. From a purely scientific basis, this limited population warrants special attention and 

analysis.  

SPH utilize all areas of the North (NTAC) and South Tactical Ranges (STAC) on the 

BMGR in Southwestern Arizona, including areas directly surrounding live fire and high 

explosive targets (Krausman et al. 2005b). Missions occur almost daily, including low, dry 

overflights as well as actual releasing of bullets towards targets, and bombs towards high 

explosive hills.  

Studies have shown that this subspecies of pronghorn has a mean individual home-range 

size of 511 km2 with ranges between 43-2873 km2 (Hervert et al. 2005). Habitat preferences 

within this tactical range have been described, showing that pronghorn presence is mostly evenly 
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distributed throughout vegetation types, though there is a significant preference for disturbed 

areas including both targets and burned patches (Krausman et al. 2005b). Between 1997 and 

2005, the population in the study area was quite low, and steadily decreasing. Since 2005, no in-

depth analyses have updated the results from these studies, or examined changes in range use as 

the population increased. 

As the population continues to recover, and more SPH frequent the tactical ranges, the 

USAF is required to close down a greater number of targets for longer periods of time. Current 

operating instructions require normal targets to be shut down for a period of 24 hours following a 

pronghorn sighting within a one-kilometer buffer. For high explosive targets, this buffer is 

extended to 1.5 km. In a study area of between 10 – 25 km from West to East, and approximately 

30 km North to South, a large area is often shut down during portions of the year because of 

multiple, widespread sightings of SPH groups and individuals.  

This study provides additional information to the range managers about areas of high 

density use by SPH throughout the year. Perhaps target use priorities can be identified for 

different times of the year. While predicting target use throughout the year will not change target 

closures, mission planning can be made more efficient by focusing on historically less active 

targets for a specific time period. Also, in the event of new target complexes being developed, 

areas of low use can be chosen for target placement. Examining use of the ranges by SPH is 

providing information about the effects of targets, roads and other variables on SPH movement 

and area use. 
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CHAPTER 2: RELATED WORK 

The SPH are one of five subspecies of pronghorn in the US (Hosack et al. 2002; Krausman et al. 

2005a). The sizes of the two remaining US and Mexico populations of SPH are estimated every 

other year (Table 1; ie. Mexico in 2012, US in 2013), a process that began in 2000 and continues 

to present time (Pronghorn recovery meeting, 2013). Until 2002, the population was declining 

sharply, with few sightings in the study area, though since then it has increased almost every 

consecutive year (Table 1). Both populations are unstable, with little genetic diversity due to the 

genetic bottleneck (Stephen et al. 2005). The majority of written work on SPH resides in 

technical documents, though a few exist in peer reviewed journal articles as well as a number of 

book sections (Krausman et al. 2005c). Most of these published articles or books refer to data 

collected prior to 2003, with one or two as recent as 2005.  

 

Table 1 Annual SPH Population Estimates and Maximum Individuals per Range 

Year (20xx) 00 01 02 03 04 05 06 07 08 09 10 11 12 13 
Max # on 

NTAC  16 15 13 8 6 9 4 6 13 27 24 24 23 40 
Max # on 

STAC  14 21 13 9 9 6 23 20 25 26 41 32 19 44 
Max Total on 

Range 16 21 16 10 13 9 23 20 25 31 45 43 42 57 
Population 
Estimate 100 - 21 - 58 - 68 - 68 - 85 - 159 - 

Source: Data provided by USFWS and Nicole Tautfest at Chiulista Services, Inc. 

2.1 Sonoran Pronghorn 

Pronghorn are a small deer-like ungulate living throughout parts of North America. Of the five 

subspecies, the SPH is the rarest, existing in three separate populations in southwestern Arizona 

and in northwestern Mexico (Stephen et al. 2005; Motsinger 2013). Adapted to dry conditions, 

this subspecies is somewhat smaller and lighter than the other North American subspecies, with a 
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maximum weight between 48–60 kilograms (105-133 lbs). Because of widely distributed food 

sources and drier conditions, home-ranges of the SPH are much larger than the other subspecies 

(Yoakum 1978), at an average of 511 km2, compared to 22–170 km2 of pronghorn from other 

areas of the United States (Hervert et al. 2005). SPH have a characteristic sandy brown body, 

with white stripes on the neck and a white belly and chest (Figure 1; Reid 2006). Males have a 

distinct black patch behind the cheek.

 

Figure 1 SPH at water/feed station; male (back), fawns (front-left), and female (right) - 

Photograph by USFWS Remote Camera 

SPH prefer habitat dominated by palo verde (Parkinsonia spp) and chain fruit cholla 

cactus (Opuntia fulgida), in part because the cholla fruit provides a source of stored water (Fox 

1997). In years of high precipitation, creosote-bursage habitat communities are frequented, as 
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herbaceous plants grow abundantly (Hervert et al. 2005). Diet consists dominantly of forbs and 

grasses, which are taken advantage of soon after precipitation, or in disturbed areas. Some 

succulent shrubs are consumed during the winter months where forbs have been consumed or 

have died out (Ochenfels 2014). Currently, hay is provided to supplement natural food sources in 

captive pens and near artificial water sources in an effort to minimize mortality from starvation. 

 For many years it was thought that SPH required little to no freestanding water for 

drinking, deriving all needed moisture from food sources (Tinker 1978). In 1987, a SPH was 

photographed drinking from an artificial water source, and since then multiple similar sightings 

have been documented using wildlife cameras (Morgart et al. 2005). Freestanding water is 

important to SPH, and severe droughts limited water and forage, helping to cause the decline to 

an estimated 21 individuals in the US by 2002 (Bright & Hervert 2005). 

 Observations of SPH on NTAC and STAC (the study area for this thesis) from 1999–

2002 indicate that approximately 73 percent of sightings occurred in military disturbed areas 

(Krausman et al. 2005b). In a similar report, Hervert et al. (1997) demonstrated SPH were 

attracted to target areas because they could see predators at a greater distance across the open 

desert landscape, as well as the access to standing water and forb growth resulting from constant 

disturbance. Another study focusing on the soil surrounding high explosive targets found that 

standing water in bomb craters was most likely of limited use to SPH because of the high rates of 

evapotranspiration (Tetra Tech 2005). This same study found that residue left by explosions 

added insignificant amounts of sodium to the landscape, so it is unlikely the SPH are attracted 

due to the conditions being similar to a salt lick. In general, little difference in SPH behavior 

were observed on the BMGR between 1998-2000, when anthropogenic noise levels were 

increased by aircraft (Krausman et al. 2001). For adult SPH, behavior changed less than 50 
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percent of the time. The conclusions drawn by Krausman, Harris, and Francine (2001) are that 

military activities have minimal effects on SPH when appropriate monitoring and target closures 

are in effect.  

2.2 Areas of Intensive use by Sonoran Pronghorn 

Hotspots are defined as spatial clusters of points (Liu and Brown 2003). These clusters are areas 

with a high density of features or phenomena of interest (Nelson and Boots 2008). While a 

number of methods are available to calculate and analyze hotspots, local spatial autocorrelation 

and kernel estimators are the two most often used tools. Kernel estimators create density 

surfaces, the highest values of which are distinguished as hotspots. Often these density surfaces 

are used to define overall distributions, or home ranges and core use areas of animals (Kie et al. 

2010; Worton 1989). For this thesis, only the core use areas were used when defining hotspots, 

because highest use is the primary interest. 

2.2.1 Kernel Density Estimation 

Kernel density estimation (KDE) is applied to many fields of study, including but not limited to 

medicine (Er et al. 2010), invasive species outbreaks (Nelson and Boots 2008), crime analysis 

(Liu and Brown 2003), home-range studies (Blundell et al. 2001), and evaluation of hazardous 

conditions (Mola-Yudego and Gritten 2010; Lin et al. 2011). A KDE creates a continuous raster 

density surface over a two-dimensional XY coordinate plane (Downs and Horner 2008; Xie and 

Yan 2008; Downs 2010). This density surface is useful for visualizing locations of spatial 

abundance, as well as emphasizing areas with a lack of use. Because density is represented in 

this way, not only are the focus points of abundance obvious, but a visible and calculable 

relationship between spatial location and likelihood of an occurrence happening is established 

(Anderson 2009). 
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When creating a KDE from a set of locations, two primary variables greatly affect the 

output raster: the bandwidth (search radius/threshold) and the output cell size (Nelson and Boots 

2008; Anderson et al. 2009; Krisp and Peters 2011). The bandwidth represents the search radius 

of the kernel calculation while searching for nearby points. This variable is represented by a 

distance chosen manually as a fixed kernel, or automatically as an adaptive kernel (Seaman and 

Powell 2005). Larger bandwidth values produce smoother and larger KDE area calculations 

(Ramp et al. 2005). The output cell size does not affect the calculation as much as the output 

visualization grid. Cell size is the pixel size representation of the KDE (Nelson and Boots 2008). 

Cell size should not be smaller than the minimum point accuracy being input into the KDE. To 

create an accurate density estimation, Seaman et al. (1999) recommends the use of at minimum 

30 geographic locations, and ideally 50 or more. 

Fixed kernels for a KDE are chosen manually, relying on the judgment of the researcher. 

Wand and Jones (1995) describe this method by examining various bandwidth values from 

largest to smallest, and finding the one that is “most pleasing” to the researcher. This method is 

subjective, allowing the researcher to decide how smooth the edges of the raster output will be. 

For example, an edge with little smoothing has sharper edges, conforming more closely to the 

actual input points while a smoother edge will incorporate more area, with fewer to no sharp 

corners. Nelson and Boots (2008), studying mountain pine beetle hotspots, recommend using 

values between 800–2000 meters because they return results that are smoothed, but not so 

smoothed as to overestimate the distributions. A fixed kernel method may be useful when the 

study purpose involves data exploration for hypotheses before another analysis (Silverman 

1986). 
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Adaptive kernels are those that allow for local variation in smoothing of density 

calculations. This means that areas of lower density are smoothed differently than those with 

higher densities because of their nearness to other points (Wand and Jones 1995). While these 

are useful in many situations, such as when working with data that are unknown to the 

researcher, the approach has drawbacks. The main drawback is that comparability between 

samples is lost because the local variation is calculating different results across the range, instead 

of using a known, and comparable, search radius. 

2.2.2 Hotspots 

Kernel estimated hotspots are used for many types of analyses, both on a two dimensional plane, 

and across a network. Nelson and Boots (2008) used KDE methods to locate hotspots of 

mountain pine beetle infestations. They examined bandwidth values of 450, 800, 2000, and 9500 

meters, and found that the middle two were best because they did not create as many fine scale 

unconnected hotspots, nor as many large, over connected hotspots. Lin et al. (2011) examined 

soil pollution hotspots using KDE methods and found it an appropriate method of delineating 

areas of high pollution. A KDE output shows density of geographic location, and when these 

densities are combined with geostatistics they show variables of interest within the attribute table 

that coincide with those spatial densities. Anderson (2009) and Xie and Yan (2008) both 

investigated traffic incident hotspots with KDEs. Anderson found that the continuous surface of 

a KDE was useful in providing a spread of risk, showing predictive values at locations nearby 

but not on top of known incidents. Xie and Yan (2008) took a standard KDE method and adapted 

it for a network, concluding that their method was an improvement over the standard when using 

a road network. In the wildlife and ecological field, hotspots are often used to examine road 

mortality of animals, as is the case for a study by Ramp et al (2005), looking at fatalities along 
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the Snowy Mountain Highway in Australia. For this study, a bandwidth of 500 meters was 

chosen a priori to be comparable with nearby analyses. Ramp et al. (2005) concluded that spatial 

clustering using density is an appropriate method for identifying hotspots.  

2.3 Maximum Entropy Modelling 

Maximum entropy modelling is a method of distribution modelling using presence-only data 

(Phillips, Dudik, and Schapire 2004; Elith et al. 2011). This method is useful because even 

though an observer does not see an animal at a sample location, it may be hiding, or visibility 

may be less than ideal, which introduces observer bias (Gu and Swihart 2004). In addition, 

absence data are often not available, either because they were not collected, or because a project 

did not have enough funding to sample enough sites to accurately or sufficiently delineate 

absence locations. This modelling method evaluates the most uniform distribution across an area, 

which allows the model to show how much better the data fit than a uniform distribution would 

(Baldwin 2009). Though relatively new, this tool has been used extensively, with over one 

thousand publications since 2006 (Merow, Smith, and Silander 2013). 

 Maxent is a software package designed to analyze data in this way, looking at 

environmental variables to distinguish possible relationships between the location of animals and 

the contributing variables (Phillips, Dudik, and Schapire 2004). This software allows a user to 

input location points for a species or multiple species of interest, in a comma delimited file 

(CSV), using three columns: “Species,” “X,” and “Y.” Environmental variables, which are any 

potentially contributing variables, must be included in an ASCII format, and must be cropped to 

the exact spatial dimensions. Many settings and tests can be specified within the options, 

including the input feature method, the output format, and statistical calculations performed.  
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 Although Maxent has many benefits, such as the ability to perform well with very limited 

sample sizes, Hernandez et al. (2006) point out that model accuracy increases for smaller 

geographic ranges, and for species with more restricted environmental tolerance. The potential 

for sampling bias can negatively affect the usability of the results as well, though this is the case 

in most studies dealing with wildlife. When choosing environmental variables for a particular 

model, care should be taken to select variables that correspond well with the geographic 

locations of the species. For example, an average precipitation layer should be from the same 

temporal scale as that of the points being analyzed. Similarly, variables with little variation 

across the study area extent should not be used, as they will not affect the model because they are 

not at the appropriate scale (Phillips, Anderson, and Schapire 2006). 

 The ability to perform accurate analyses of distributions with only presence data has 

made this method popular among the scientific community. Yost et al. (2008) used Maxent to 

map sage grouse nesting habitat in southern Oregon. They tested their models by withholding 25 

percent of their data from the training algorithm. They found that the type of vegetation was 

most important in predicting nest sites, and visually, the output image of high probability areas 

were accurate when comparing with the nest sites withheld for testing.  

 Suarez-Seoane et al. (2008) used Maxent to analyze seasonal change in little bustard 

(Tetrax tetrax) distribution. They found that during the winter, lower elevations and more 

wastelands were occupied, which differed from the spring use of higher elevation pasturelands. 

The results showed that managers could potentially use spring habitat selection to predict winter 

habitat, which is important when managing a rare species, or a sport hunted species. 

 Also, a study on predictive modeling of microhabitat for endemic Chilean birds, by 

Moreno et al. (2011), used Maxent in a small geographic area (approximately 4.5 km2). They 
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showed one species’ preference for areas farther from roads in lower elevation forest, while 

another species preferred higher percent slopes in more rugged terrain. Their study concludes 

that when combining GIS to visualize and produce results for the analysis, maximum entropy is a 

useful tool for forest management.   

12 
 



13 
 

CHAPTER 3: METHODS  

This chapter introduces the methods used for this thesis. First, the study area is defined more 

clearly, then the data collection is explained. Because data collection started in 1997, some new 

tools have been introduced, though the methods remain similar. The data analysis techniques are 

described, beginning with the creation of hotspots, progressing to the use of Maxent to create 

distribution models. The Maxent methods include management and creation of layers to work 

within the software, and covers the settings used in this project. 

3.1 Study Area 

The data collected for this thesis come from NTAC and STAC, which are air-to-ground tactical 

ranges on the BMGR East (Figure 2). NTAC and STAC consist of 777 km2 of mostly flat land 

with 813 individual targets that are combined into approximately 30 target complexes (USAF 

Targets 2013 dataset). Three of these complexes consist of high explosive targets, which are of 

extra concern and require more attention when monitoring. Bladed dirt and sand roads connect 

targets to each other for access and maintenance. Four primary observation points designed to 

provide the best coverage of all targets are used, and six secondary observation points are 

available for special use when necessary. Bordering the study area on the South and Southeast 

side is the Cabeza Prieta National Wildlife Refuge, and to the east is State Route 85, connecting 

Gila Bend, Arizona to Ajo, Arizona. 
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Figure 2 NTAC and STAC Study Area on the BMGR East 

3.2 Data Collection 

Data were collected from February 1997 to April 2014 and continue to be collected as part of an 

ongoing effort by the USAF to prevent SPH mortality caused by training activities in the study 

area. Certain operating procedures have changed over the years; however most of the changes 

pertain to buffer distances surrounding targets, which are closed from target practice following a 
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SPH sighting. Also, from 1997–2007, monitoring sessions were performed twice, rather than 

once, in a 24-hour period (Nicole Tautfest, face-to-face, December, 2014). The second 

monitoring session was primarily for double-checking the high explosive hills.  

These methods are reported from the monitoring protocol set forth by the USAF and 

pronghorn biologists for monitoring SPH on the ranges (Pronghorn Biologists 2012). Starting at 

sunrise, biological monitors scan NTAC and STAC for at least two hours from primary 

observation points on each day with training missions (a minimum of two monitors on each 

range). When missions are late and monitoring is more difficult due to many animals or difficult 

environmental conditions, monitoring may go longer than the minimum two hours. Secondary 

observation points are used when one range is closed for maintenance, or when road or weather 

conditions limit access to the primaries.  

 Observation point locations were selected because they provided vantage points to see 

target complexes clearly, so SPH sightings are potentially biased towards locations near targets. 

Scanning is performed using 10x50 binoculars of various brands, as well as with 20-60x Leica 

and Swarovski spotting scopes (Figure 3). Scans of the target areas are prioritized over areas 

without targets, although surrounding areas are always scanned. In addition, telemetry is used to 

locate radio collared individuals across the landscape and to place them within visible groups. 

Yagi antennas (Communication Specialists, Orange, CA, USA) are used in combination with 

Communication Specialists (Orange, CA, USA) R-1000 receivers. A minimum of two crossing 

bearings is required for a location to be established by telemetry alone.  

 When a SPH or group of SPH is observed, location is recorded in military grid 

reference system (MGRS) format to the nearest 100 meters (e.g. TA946997). Basic behavioral 

observations are recorded, taking note of number of SPH in the group, sex, age, and general 
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direction of travel. At the end of the monitoring window, locations are reported to the range 

operations control center (ROCC), where they are input into ArcMap to determine target 

closures. Targets where inert ammunition is used are closed for a period of 24 hours if the 

sighting is within a one kilometer buffer. For the three high explosive target complexes, this 

buffer is extended to 1.5 kilometers. 

 

Figure 3 Monitoring From One of the Observation Points (OP Echo) 

3.3 Data Analysis 

All analyses were conducted using a combination of ArcMap (version 10.1), Geographic 

Modelling Environment (GME; version 0.7.2.1), R (version 3.1.0), and Maxent (version 3.3.3k). 

GME works as a standalone program, though it requires an installation of ArcGIS and R to 

function. It replaces an older ArcGIS plugin called “Hawths Tools,” which was created for 

ArcGIS 9.3.x, and specifically designed for advanced spatial analysis and modeling. Maxent is a 

standalone software package developed to study geographic distributions of species and to 
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predict probability of presence (Phillips, Anderson, and Schapire 2006; Phillips, Dudik, and 

Schapire 2006; Kumar and Stohlgren 2009). 

3.3.1 Hotspots 

This section prepares to answer the first question presented in this thesis: where are hotspots of 

SPH use across the study area? There is a temporal aspect within the question, in that variation 

occurring between seasons and throughout the year is important. For example, if biologists are 

wanting to predict SPH use during the month of November, they must examine a hotspot 

analysis of recent sightings and one from the previous year’s coinciding time period. In this way, 

they will account for prior year’s areas of high use while incorporating the current year’s trends 

to predict important points within the study area for the future time period of interest. To achieve 

this task, hotspots were calculated for the years 2010-2014, and for each breeding, fawning, and 

summer season within each of those years. This was accomplished using ArcMap 10.1, creating 

a KDE with 100-meter cell size and a bandwidth of 1,000 meters. The bandwidth value was 

chosen because it represents the buffer distance for the majority of the targets throughout the 

range. Points within that distance of each other are important when calculating the density, and 

will be significant to the monitoring effort. Only time periods with a minimum of 30 sighting 

locations were used for the analysis, as recommended by Seaman et al. (1999). GME was then 

used to create polygons around the highest 20 percent of the density values. These polygons were 

brought back into ArcMap, and center points within each polygon were distinguished using the 

Feature to Point tool, specifying inside features. These were output into a new feature class 

named for the time period and sighting type (e.g. All SPH, year 2013 = cent_2013). The 

visualizations were symbolized using large red or green dots over the KDE raster. 
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 Hotspots were calculated for many different temporal scales, to examine variation at 

different times of the year, and between years.  One hotspot map was produced for all sightings, 

one for each year’s sightings, and one for each season from 2010-2014. For this analysis and the 

others, seasons are defined as: breeding season (Oct-Jan), fawning season (Feb-May), and 

summer season (Jun-Sep). Once calculated, these hotspots were put into a table and the distance 

from the nearest target was added. Both the annual hotspot table and the seasonal hotspot table 

were then analyzed using an analysis of variance (ANOVA) test using R, to test for significant 

differences in distance from nearest targets between years and between seasons.  

3.3.2 Maximum Entropy Modelling 

Maxent is a small but powerful program, with many features that are constantly being updated. 

These options allow users to customize the input features, as well as output formats and 

statistical analyses. Though customization is good for researchers with a good understanding of 

the methods involved, the default settings also produce accurate and usable results (Phillips and 

Dudik 2008; Baldwin 2009). Many of the following methods were derived from a tutorial 

(Phillips 2005).  

3.3.2.1 Layer Preparation  

The first step in initiating this analysis consisted of preparing a plan to address the potential 

sampling bias inherent in any study. Creating an effort layer to use as a bias file within Maxent 

was not feasible because the only way to do so was very subjective. Therefore, the SPH dataset 

was split into two. The first dataset consisted only of telemetry sightings. These sightings were 

not visible to the observer’s eyes, relying solely on telemetry bearings for previously radio 

collared SPH, and as such cannot be misplaced due to bad judgment of distance, or other 

visibility related environmental variables such as wind or haze and heat distortion. The second 
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dataset was created using only visual sightings, those seen without any telemetry aid. In this way, 

instead of setting aside a percentage of the overall sightings for training and testing, I created the 

telemetry layer for training the algorithms, and the visual layer for testing of that algorithm.  

 Next, I assembled and created the environmental layers. Though I accounted for some 

potential bias in observer ability by using telemetry sightings for training, I created a distance 

raster of distance from observation point to test the overall contribution of observation distance 

to sighting location. I created this layer using the Euclidean Distance tool within ArcMap, using 

100 meter cell sizes. The 100 meter cell size was chosen because it coincides with the scale of 

the SPH sightings collected. Smaller sizes would potentially introduce artifacts, while larger 

sizes would limit the accuracy and utility of the output when considering such a small study area. 

This layer was called “Observer Distance.” 

 As distance from roads and distance from targets are considered important because of 

their inherent cause of disturbance to the SPH, I created a distance layer for each of these factors, 

with 100 meter cell size. Two layers were created, again using the Euclidean Distance tool in 

ArcMap, one from the target feature class, and one from the road feature class (Figure 4). Output 

raster layers were labeled “Target Distance,” and “Road Distance.” 
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Figure 4 Euclidean Distance Calculation for the Target Feature Class in ArcMap 10.1 

Observation of SPH show they prefer areas of flat ground, rarely venturing up slopes 

(Nicole Tautfest, face-to-face, July, 2014). Because access to some locations requires climbing 

hills or small mountains, it is not always the case that steep slopes are avoided. Because of this, I 

created a slope layer from a 90 meter Arizona digital elevation model (DEM), which was 

provided by biologists at Luke Air Force Base (AFB). I cropped the DEM to the general area, 

ran the Slope calculation tool within ArcMap, then resampled the raster to 100 meter cell sizes. 

This layer was named “Slope.” 

Lastly, I created a wetness index layer, to see if soil water content had an effect on SPH 

location preference. A precipitation layer could be used, though because variation across such a 

small area is often quite low, the wetness index allows the study to look at overall drainage and 
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water storage rather than amount of precipitation directly. This layer was called “Wetness 

Index.” 

To make sure each layer had the same geographic bounds, I created an extent layer, 

which I proceeded to use when clipping all the environmental layers to the same size. I clipped 

both input SPH layers as well, to make sure the overall extents matched. Once clipped, each 

layer was exported to ASCII format, using the Raster to ASCII tool for raster layers, and the 

Export Feature Attribute to ASCII for the SPH point features. The two SPH feature classes were 

organized into a single folder, while each raster layer and coinciding ASCII file were put into 

another folder, as required by Maxent.  

3.3.2.2 Maxent Settings 

The main screen for Maxent is relatively simple, though without reading through the tutorial and 

the descriptive papers on the software, choosing options would be quite complicated (Figure 5). 

On the top left, the samples used for the analysis are chosen from a single comma delimited file. 

Multiple species or groupings can be included in a single file, but in this case only one was 

needed. For my analysis, this was the telemetry only file. The top right of the screen is where the 

user must choose the folder containing the environmental layers, and then differentiate between 

each layer being of a continuous or categorical type. All of the environmental variables in this 

model were continuous.  

21 
 



22 
 

 

Figure 5 Maxent Main Page 

Maxent has many options for features that vary the complexity of the model (Figure 5). 

The default setting is Auto, which lets the software choose the feature type based on the input 

variables. Merow, Smith, and Silander (2013) explain that when auto is checked, if there are 

more than 80 presence locations, then all the feature classes will be used. These features define 

how the model will be fit. I accepted the default of Auto, because it would run all of the feature 

types, choosing those that are most useful when building the model.  

Underneath the environmental layers box, on the right, are check boxes to create response 

curves, picture predictions, and do jackknife tests to measure variable importance within the 
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model. Response curves show how input environmental variables affect the model prediction 

(Phillips 2005). The pictures of predictions creates an image of the output grid in a format easily 

readable by standard image viewers, in case access to ArcMap is limited. The Jackknife test 

examines variable importance to the overall model, by removing the variable and running the 

model again, to see the overall difference in results. In this way, a variable is assigned an 

importance to the model in the form of a percent contribution.  

An output format of logistic was chosen because it produces a value within cells across 

the study area consistent with the probability of having a sighting at that location. It is easily 

understandable and provides a predictive capacity (Phillips, Anderson, and Schapire 2006; 

Phillips and Dudik 2008; Elith et al. 2011). I chose an output type of asc, for its ability to be 

incorporated into ArcMap for integration with future sighting information. Finally, I chose an 

output folder, which included all the output information produced during a model run.  

After the main settings are chosen, clicking on the settings tab at the bottom brings up a 

new window with additional options (Figure 6). This is the page that allowed me to specify a test 

dataset of visual only sightings. When filling this, and specifying a test dataset, all sightings from 

the previous page’s sighting input is used to train the model algorithm. Most options were left as 

default, except I increased the maximum number of background points from 10,000 to 20,000. 

Merow, Smith and Silander (2013) mention that the default or similar value is acceptable for this 

if all areas within the extent are potentially accessible to the species. I chose a larger maximum 

background points because of the large number of presence locations available (Phillip and 

Dudik 2008). Below that, I chose to run 1,000 replicates for statistical purposes, with 

crossvalidate as the replicated run type. This method leaves out “folds” of data, which are used 
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for testing against each other, providing evaluation for the model. In this way, it utilizes all the 

available data for testing each replicate run (Phillips 2005).  

 

Figure 6 Basic Settings Choices for Maxent 

 Clicking to the right of the basic tab brings up the advanced options (Figure 7). All 

defaults were accepted except with an additional check mark for the “Write plot data” box, to 

provide access to raw data used in creating the response curves, in a format importable to 

peripheral software. After checking these settings, closing the window brings back the main 

page, where the run button can be clicked to start the analysis. 
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Figure 7 Advanced Settings Choices for Maxent 

 After these main analyses were completed, I ran three more models using mostly the 

same settings, except a more traditional approach to calculating statistics on the replicated runs. 

In the third model, I used all the data for SPH, combining all telemetry and visual sightings. 

Rather than cross-validation, I used the subsample feature which holds back a random 

percentage, in this case 25 percent, of points for testing, and the remaining 75 percent is for 

algorithm training. This model run is indicative of an ideal dataset with all points being equal in 

quality, with little to no observer bias. It was then compared to the model created to account for 

observer bias. The fourth model consisted of the same settings, but run on telemetry only 

sightings. The fifth model again used the same settings, but on the visual only sightings. These 
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last two models were run to see if there were any differences in model performance when the 

training and testing data were from one type of sighting, instead of both like model three, or 

separate for models one and two.   
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CHAPTER 4: RESULTS 

The analysis included 8,092 SPH sightings between March 1997 and March 2014 (Figure 8). The 

telemetry only sightings numbered 1,464 and visual only sightings were 3,919. The remaining 

2,709 sightings were seen and located with telemetry, with no information as to whether they 

were seen before an animal with telemetry was heard, or whether the telemetry assisted in the 

observation. Because of this, these sightings were not used for the Maxent portion of the 

analysis, though they were all included when creating hotspots. 

 

Figure 8 Study Area With All SPH Sightings Displayed Over Targets and Roads 
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4.1 Hotspots 

Hotspot calculations using the 100-meter cell size and 1,000-meter bandwidth produced 

acceptable results that correspond visually with the locations of SPH sightings. Results are 

visually appealing, and portray the important details of high-density areas. To provide an 

example of the KDE output, a figure is shown of the KDE raster with isopleth polylines as well 

as hotspot locations (Figure 9). For all consecutive maps, only the hotspot locations are shown, 

along with coordinates for those locations and distance from nearest target. For the 2013 fawning 

season, the average distance from target was 466 meters. Ten of the eleven hotspots were <615 

meters from targets, while a single hotspot was at 2.1 kilometers.  

 

Figure 9 Fawning Season 2013 Hotspot Location Map with Underlying KDE and Overlaid 

with a Distance from Nearest Target Table 
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 Summer and breeding season sample maps show similar hotspots, though the summer 

season map has hotspots located further south, towards the artificial water station (Figure 10, 

Figure 11). In the summer season, the average distance from targets was 1,127 meters, though 

six of the seven points were <670 meters, and one was at almost five kilometers. This farthest 

distance hotspot coincides with an artificial water and feed station, which is heavily used during 

the summer months, or other seasons during a dry year. The breeding season hotspots had an 

average distance of 317 meters to the nearest target, and the farthest was 600 meters.  

 

Figure 10 Summer Season 2013 Hotspot Location Map with Underlying KDE and Overlaid 

with a Distance from Nearest Target Table 
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Figure 11 Breeding Season 2013 Hotspot Location Map with Underlying KDE and 

Overlaid with a Distance from Nearest Target Table 

 When taken as a whole, the 2013 sightings have hotspots in similar locations, though 

spread out over the entire area, rather than clumped in one part of the study area as are certain 

seasons. Looking at annual hotspots for 2013, few of them are different from any of the seasonal 

breakdown maps, they are just spread out over the entire area rather than clumped (Figure 12). 

Over the year, the average hotspot distance from a target comes to 1,254 meters, with four of the 

six locations under 1000 meters, one at 1,092 meters, and the farthest at five kilometers. Again, 
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this farthest location is at an artificial feeding station, which draws the SPH to it during hot and 

dry times of the year (location 1).  

 

Figure 12 Hotspot Locations for the Entire Year of 2013 with Underlying KDE and 

Overlaid with a Distance from Nearest Target Table 

A summary of hotspot distances emphasizes the nearness of these high use locations to 

targets. Annual hotspots are comprised of the entire year’s SPH sightings, so must be tested 

separately from the seasonal hotspots, which split the locations into groups.  Using an analysis of 
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variance (ANOVA) on the annual hotspots’ distance from targets, there is no significant 

difference between years (F=0.006, p=0.999).  There is an average of 1,305 meters from the 

nearest target, with a range of 36–5016 meters (Table 3). Each year has one large distance, near 

the artificial water source, and when this location is removed from each year, the average 

decreases to 388 meters.  

Table 2 Annual Hotspots’ Distance to Nearest Target 

Year Hotspot Distance 
2010 1* 4959 
2010 2 737 
2010 3 504 
2010 4 316 
2010 5 306 
2011 1* 5016 
2011 2 36 
2011 3 341 
2011 4 162 
2012 1* 4980 
2012 2 36 
2012 3 332 
2012 4 685 
2012 5 171 
2013 1* 4947 
2013 2 1092 
2013 3 337 
2013 4 953 
2013 5 64 
2013 6 134 

   
*Located at artificial food and water station. 

Seasonal hotspots show a different pattern, where there is a significant difference 

between the distance from targets during the summer season from the breeding and fawning 

seasons (F=3.978, p=0.0236, Table 5-Appendix B). When the food and water station hotspots are 

removed from the data, the difference in target distance between seasons becomes insignificant 
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(F=0.266, p=0.7674). The breeding seasons have an average distance from nearest target of 459 

meters, while the fawning and summer season are 380 meters and 1,227 meters respectively. The 

summer season’s average distance is much greater because of the artificial water source drawing 

SPH, and when these outliers are removed, the average distance to targets for the summer season 

decreases to 477 meters (Figure 13).  

 

Figure 13 Boxplot for Seasonal Variation in Hotspot Distance from Nearest Target 

These hotspot results and others, which are included in Appendix A, agree with a simple 

look at the number of sightings and hotspots within one kilometer of targets (Figure 14). 

Performing a quick buffer analysis shows that 58 percent of all sightings are within a one 

kilometer buffer. Based on these analyses, it confirms that SPH congregate near targets, though 
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the specific targets change throughout the year and between years. In general, the hotspots move 

more southward during the summer months each year, and move slightly northward during the 

winter months (Figure 15, Figure 16, Figure 17, Figure 18). Also, far fewer sightings are made 

throughout the range during the summer months. Results of each hotspot calculation for the last 

four years were produced as maps, and are included in Appendix A of this thesis. 
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Figure 14 Annual Hotspots from 2010-2013 Above 1KM Target Buffer 

 

Figure 15 Seasonal Hotspots for 2010 
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Figure 16 Seasonal Hotspots for 2011 
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Figure 17 Seasonal Hotspots for 2012 
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Figure 18 Seasonal Hotspots for 2013 
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4.2 Maximum Entropy Modelling 

Results and model evaluation are based on the area under the curve (AUC), which represents 

model performance (Phillips, Anderson, and Schapire 2006). Separate models can then be 

compared to each other when evaluating which model to pursue further. Individual variables 

within a model run can be examined using the percent contribution, as calculated by the 

jackknife tests. Baldwin (2009) used an AUC evaluation scale where a value of less than 0.7 was 

considered uninformative, while values between 0.7 and 0.9 were considered good, and values 

greater than 0.9 were considered very good. Two models were run to examine the effect of 

including a wetness index within the model. The first model, including the wetness index, also 

included the target distance, road distance, observer distance, and slope. The second model 

removed the wetness index, but was otherwise the same.  

 The 1,000 replicates of the first model, which incorporated the wetness index, produced 

an average AUC of 0.803, with a standard deviation of 0.166 (Figure 19). When examining 

individual variable response curves, observer distance and road distance had a certain amount of 

variation present between replicates, while the remaining three variables had almost no variation 

between replicates (Figure 20). The jackknife test results for each variable on AUC values show 

that targets had the most impact as a standalone variable, as the model AUC went down 

significantly when it was removed from the model (Figure 21). The most important variable 

shown is the target distance, as it had the highest AUC value when it was the only variable 

considered, and the model AUC drops significantly when it was removed. The three variables 

above it (observer distance, road distance, and slope) had moderate AUC results if they were the 

only variable, but when removed from the overall model, there was little change. The wetness 
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index variable had very little impact on its own, and when removed, increased the model AUC, 

prompting the second model run, excluding the wetness index.  

 

Figure 19 Average AUC for 1,000 Replicates Including the Wetness Index 

 

Figure 20 Variable Response Curves for 1,000 Replicates Including the Wetness Index. 

From Left to Right the Variables Shown Include Observer Distance, Distance from Road, 

Slope, Distance from Target, and Wetness Index 
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Figure 21 Jackknife Test on AUCs for 1,000 Replicates Including the Wetness Index. From 

Top to Bottom, the Environmental Variables Include, Observer Distance, Distance from 

Roads, Slope, Distance from Targets, and Wetness Index 

The second model, excluding the wetness index variable, increased the average AUC 

value to 0.805 and lowered the standard deviation to 0.150 (Figure 22). The increase, though 

minimal, was an improvement. Variable response curves remained the same, as did the jackknife 

test results. Without the wetness index, the jackknife test is more obvious in showing that the 

target layer is most important. What is interesting is that while both observation distance and 

road distance perform better than slope when considered on their own, slope causes the next 

largest decrease in overall model AUC when it is removed (Figure 23).   
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Figure 22 Average AUC for 1,000 Replicates with the Wetness Index Removed 

 

Figure 23 Jackknife Test on AUCs for 1,000 Replicates with the Wetness Index Removed. 

From Top to Bottom, the Environmental Variables Include Observer Distance, Distance 

from Roads, Slope, and Distance from Targets 

Comparing the percent contribution of variables from the two runs shows an increase for 

target distance and slope, but a decrease in observer distance (Table 3). Even though the percent 

contribution was higher for observer distance, it was the slope that had a larger effect on the 
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model performance. Importantly, no variable increased the overall model AUC when removed 

from the run. 

Table 3 Percent Contribution of Variables in the Two Model Runs 

Variable 

Percent contribution 

(With Wetness Index) 

Percent contribution 

(NO Wetness Index) 

Target Distance 71.0 78.1 

Observer Distance 22.2 10.8 

Slope 5.2 7.9 

Wetness Index 1.0 NA 

Road Distance 0.5 3.1 

  

 Once the second model was identified as performing better, with a higher AUC value, the 

output raster probability layer was imported into ArcMap and examined (Figure 24). Each cell of 

the raster has a value related to the probability of detecting a SPH at its location. This raster was 

produced using all of the telemetry sightings for training, and the visual only sightings for 

testing. Seasonal or even monthly predictions could be made in order to more accurately predict 

locations for the future based on recent data only. 
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Figure 24 Predictive Output Raster from the Second Model, Showing Probability of a 

Sighting  

 The third model, using all the sighting data and the subsample method for calculating 

statistics produced a slightly lower AUC value of 0.791 (Figure 25). Where this model improved 

significantly was in the standard deviation, which came in at 0.004, as compared to the 0.166 and 

0.150 of the first and second models. The. response curves and jackknife tests were no different 
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from the first two models. The third model’s output map shows a smoother distribution of high 

predictive values, though the overall predictive ability is lower (Figure 26). 

 

Figure 25 Average AUC for 1,000 Replicates Using All Sightings with the 25 Percent 

Subsample Statistical Method 
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Figure 26 Predictive Output Raster from the Third Model, Showing Probability of a 

Sighting 

 Models four and five used telemetry only, then visual only data respectively for input 

locations, and the 25 percent subsample to calculate the AUC. Both AUC values were higher 

than for model two and model three, with standard deviations much lower than model two, and 

comparable to model three (Table 4). Though the overall AUC values were higher, the jackknife 

test and residuals remained the same when compared to the previous models.  
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Table 4 Model Comparison of AUC and Standard Deviation Values 

 
Model 1  

* 
Model 2  

** 
Model 3 

*** 
Model 4  

**** 
Model 5 
***** 

 

Variables 5 4 4 4 4  
Target Distance x x x x x  

Observer Distance x x x x x  
Slope x x x x x  
Road x x x x x  

Wetness Index x  -   -   -   -   
       

AUC Value 0.803 0.805 0.791 0.814 0.816  
Standard Deviation 0.166 0.150 0.004 0.008 0.005  

       
* All variables, telemetry for training, visual for testing 

** No wetness index, telemetry for training, visual for testing 
*** No wetness index, all sightings, 75% training, 25% testing  

**** No wetness index, telemetry only sightings, 75% training, 25% testing 
***** No wetness index, visual only sightings, 75% training, 25% testing 
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CHAPTER 5: CONCLUSION AND DISCUSSION 

The results from this study confirm those from previous studies that used pre-2005 data, showing 

high densities of use, and high probabilities of future use, surrounding targets and disturbed areas 

(Krausman et al. 2005b). This thesis provides a demonstration of a different tool’s ability to 

analyze and portray use of the target range by SPH. Unlike the study by Krausman et al. (2005b), 

it allows users to examine various environmental variables at any particular scale to decide 

which are most important when considering the future preference of SPH for a particular 

location.  

Both the hotspot analysis and distribution model indicate that SPH have strong preference 

for areas at and around target structures. The few times a hotspot location was more than one 

kilometer from a target, it was located at an artificial water tank just east of the southeastern 

corner of target range. SPH used all of the range, but visual inspection makes apparent locations 

where more sightings occur (Figure 9). The majority of hotspots from 2010 to 2014 are located 

among four areas. These locations are more or less central within the range, including the 

northernmost targets on STAC and the southernmost targets on NTAC. The maps with more 

hotspot locations show that SPH were more spread out, and therefore there were more locations 

where the highest 20 percent density values occurred. Fewer hotspots show less spreading, and 

more clumping.  

When the hotspots were examined on a seasonal time scale, the summer season stood out 

from the breeding and fawning seasons in that the distance from these hotspots to the nearest 

target was greater. This agrees with observations and sightings during the summer months, 

because many SPH move southwest towards the food and water station, while others leave the 

study area entirely. When the food station hotspots were removed from the analysis for each 
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season (they only occurred in the summer season of each year), the results of the ANOVA 

determined there was no significant difference in distance from targets between seasons. This 

emphasizes the effect of the food and water station on the SPH locations. During the breeding 

and fawning seasons, the SPH have the same access to that location as during the summer 

months, but choose to forage elsewhere. In this way, the food and water station provides a 

resource that has a significant impact on SPH location during the summer season of each year.  

  Before this study, the biologists monitoring the SPH had not identified the influence of 

roads on SPH sightings. Krausman et al. (2005b) examined roads and disturbance, though at a 

much coarser scale, by marking a one kilometer block as either having a road or a target or 

undisturbed. If there was a road anywhere within that block then it was given that attribute. Their 

study showed a high use of roads by SPH, with 70 percent of the road blocks having SPH 

sightings. These results show a high usage of road blocks by SPH, though I would argue that this 

method is not useful because roads are interspersed practically everywhere throughout the range, 

so it is difficult to get anywhere far from a road. Because of this, the one kilometer scale will 

inaccurately show roads as being important.  By looking at the roads layer at a closer scale in this 

thesis, the effect of roads on SPH sightings is minimal, while the effect of targets remains high.  

There are times when SPH are seen walking along roads, traveling or foraging, though not often. 

The results from the Maxent analysis show that the roads have very little effect on the 

pronghorn locations, in that when removed from the analysis, model performance did not 

decrease.  Gavin and Komers (2006) examined the effects of various intensities of human 

disturbance on American pronghorn and found that while there did not appear to be any strong 

preference towards or away from roads, there was increased vigilance and less foraging time 

within groups near roads. The roads in this study consisted of public roads with average traffic 

49 
 



50 
 

values estimated by the department of transportation between <10 to >300 vehicles per day. 

They also noticed that larger groups were affected less in this way than individuals or small 

groups. Observation distance had the same result within the model’s jackknife tests, though 

when considering the percent contribution to the model, it takes a much larger percentage than 

the road distance or the other variables. This is interesting because when examining the jackknife 

test, they are almost exactly the same in AUC model performance values. Prior studies always 

mention potential bias caused by observation locations (Krausman et al. (2005b), though none 

look at observation distance or type of sighting as a way to mediate this bias. 

 Interestingly, slope appears to have the most negative effect on the model AUC when 

removed, after target distance. Unfortunately, because most of the study area is relatively flat, 

this is hard to corroborate through observation in the field. It is true that the SPH are rarely on 

the hills themselves, but they are sometimes seen in between hills, where access is limited to 

being on the hill’s steep slope at some point while traveling.  

 The third model results showed that while the predictive ability decreased slightly, the 

variance present decreased greatly. This shows that there are differences between the telemetry 

locations and the visual locations. SPH are seen more easily close to observers. The third model 

included all sightings, which means that there were many groups that were not specified as 

having been seen first, or whether their sighting was due to a telemetry animal being within the 

group. The fact that a random 25 percent of the sightings were chosen to test with, I believe, 

explains the lower AUC value because it is unknown which locations were used for training or 

testing. Models four and five had higher AUC values and lower standard deviations because each 

25 percent test dataset was taken from the same dataset as the 75 percent used in training the 

algorithm. This is what I expected, and why I don’t think they are the best option for the primary 
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model. Observer bias is an issue, in this study and others, and should be taken into account. That 

the models using only one type of sighting performed better, with less variation in runs, supports 

the idea that the two sightings are different enough from each other to affect the model’s 

performance. I believe that by using telemetry only sightings for training, and visual sightings for 

testing, a portion of observer bias is accounted for, even though the model AUC is lower and the 

standard variation is larger.  

 Future analyses of this type should explore the use of precipitation interpolation layers, as 

well as detailed vegetation classifications for supplemental environmental variables. Because the 

study area is small relative to the scale at which these variables are currently available, they were 

not included in the analysis.  The addition of a bias layer could potentially help as well, these 

methods attempted to account for visibility bias by using telemetry only sightings for training 

and visual only for testing. As observation points are positioned to provide maximum visibility 

to targets, this is definitely an important consideration when interpreting the results. Vegetation 

types also have different cover values, as small trees are harder to see through than short grass or 

shrubs. Perhaps a layer built from the vegetation type could represent an index of visibility 

within the model.  

 Other than the addition of new variables into the model, the time scale being analyzed 

will definitely affect the predictive capacity of the output. If the SPH biologists and monitors are 

interested in a prediction of sighting locations for the next month, the analysis should be run 

using recent sightings only, to provide the level of variation required.  

51 
 



52 
 

REFERENCES 

Anderson, Tessa K. 2009. “Kernel Density Estimation and K-means Clustering to Profile Road 

Accident Hotspots.” Accident Analysis and Prevention 41: 359-364. 

Baldwin, Roger A. 2009. “Use of Maximum Entropy Modeling in Wildlife Research.” Entropy 

11: 854-866. 

Beyer, H. L. 2012. Geospatial Modelling Environment (Version 0.7.2.1). URL 

http://www.spatialecology.com/gme. 

Blundell, Gail M., Julie A. K. Maier, and Edward M. Debevec. 2001. “Linear Home Ranges: 

Effects of Smoothing, Sample Size, and Autocorrelation on Kernel Estimates.” 

Ecological Monographs 71: 469-489. 

Bright, Jill L. and John J. Hervert. 2005. “Adult and Fawn Mortality of Sonoran Pronghorn.” 

Wildlife Society Bulletin 33: 43-50. 

deVos, James C. and William H. Miller. 2005. “Habitat Use and Survival of Sonoran Pronghorn 

in Years with Above-average Rainfall.” Wildlife Society Bulletin 33: 35-42. 

Downs, Joni A. 2010. “Time-geographic Density Estimation for Moving Point Objects.” 

Geographic Information Science 6292: 16-26. 

Downs, Joni A. and Mark W. Horner. 2008. “Effects of Point Pattern Shape on Home-range 

Estimates.” Journal of Wildlife Management 72: 1813-1818. 

Elith, Jane, Steven J. Phillips, Trevor Hastie, Miroslav Dudik, Yung E. Chee, and Colin J. Yates. 

2011. “A Statistical Explanation of MaxEnt for Ecologists.” Diversity and Distributions 

14: 43-57.  

Er, A. C., M. H. Rosli, A. Asmahani, M. R. Mohamad Naim, and M. Harsuzilawati. 2010. 

“Spatial Mapping of Dengue Incidence: A Case Study in Hulu Langat District, Selangor, 

52 
 

http://www.spatialecology.com/gme


53 
 

Malaysia.” International Journal of Environmental, Ecological, Geological and Mining 

Engineering 4: 25-29. 

ESRI. 2012. ArcGIS Desktop: Release 10.1. Redlands, CA: Environmental Systems Research 

Institute. 

Fox, L. M. “Nutritional content of forage in Sonoran pronghorn habitat, Arizona.” MS Thesis, 

University of Arizona, Tucson, 1997. 

Gavin, Shannon D. and P. E. Komers. 2006. “Do Pronghorn (Antilocapra americana) Percieve 

Roads as a Predation Risk?” Canadian Journal of Zoology 84: 1775-1780. 

Gu, Weidong and Robert K. Swihart. 2004. “Absent or Undetected? Effects of Non-detection of 

Species Occurrence on Wildlife-habitat Models.” Biological Conservation 116: 195-203. 

Hernandez, Pilar A., Catherine H. Graham, Lawrence L. Master, and Deborah L. Albert. 2006. 

“The Effect of Sample Size and Species Characteristics on Performance of Different 

Species Distribution Modeling Methods.” Ecography 29: 773-785. 

Hervert, John J., Jill L. Bright, Robert S. Henry, Linden A. Piest, and Mark T. Brown. 2005. 

“Home-range and Habitat-use Patterns of Sonoran Pronghorn in Arizona.” Wildlife 

Society Bulletin 33: 8-15. 

Hervert, John J., Linden A. Piest, W. Ballard, R. S. Henry, Mark T. Brown, and S. Boe. 1997. 

“Sonoran Pronghorn Population Monitoring: Progress Report.” Arizona Game and Fish 

Department, Technical Report, 126. Phoenix, AZ. 

Hosack, Dennis A., P. S. Miller, John J. Hervert, and R. C. Lacy. 2002. “A Population Viability 

Analysis for the Endangered Sonoran Pronghorn, Antilocapra americana sonoriensis.” 

Mammalia 66: 207-229. 

53 
 



54 
 

Kie, John G., Jason Matthiopoulos, John Fieberg, Roger A. Powell, Francesca Cagnacci, Michael 

S. Mitchell, Jean-Michel Gaillard, and Paul R. Moorcroft. 2010. “The Home-range 

Concept: are Traditional Estimators Still Relevant with Modern Telemetry Technology?” 

Philosophical Transactions of the Royal Society B 365: 2221-2231. 

Krausman, Paul R., John R. Morgart, Lisa K. Harris, Chantal S. O’Brien, James W. Cain III, and 

Steven S. Rosenstock. 2005. “Introduction: Management for the Survival of Sonoran 

Pronghorn in the United States.” Wildlife Society Bulletin 33: 5-7. 

Krausman, Paul R., Lisa K. Harris, Sarah K. Haas, Kiana K. G. Koenen, Pat Devers, Daniel 

Bunting, and Mark Barb. 2005. “Sonoran Pronghorn Habitat Use on Landscapes 

Disturbed by Military Activities.” Wildlife Society Bulletin 33: 16-23. 

Krausman, Paul R., Lisa K. Harris, and Jon Francine. 2001. “Noise Effects of Military 

Overflights on Sonoran Pronghorn: Final Report.” The University of Arizona, Tucson, 

AZ. 

Krausman, Paul R., John R. Morgart, Lisa K. Harris, Chantal S. O’Brien, James W. Cain, III, 

Steven S. Rosenstock. 2005. “Sonoran Pronghorn Literature: an Annotated 

Bibliography.” USGS Open-File Report 2005-1265. U.S. Geological Survey, Southwest 

Biological Science Center, Sonoran Desert Research Station, The University of Arizona, 

Tucson, AZ. 

Krisp, Jukka M. and Stefan Peters. 2011. “Directed Kernel Density Estimation (DKDE) for Time 

Series Visualization.” Annals of GIS 17: 155-162. 

Kumar, Sunil and Thomas J. Stohlgren. 2009. “Maxent Modeling for Predicting Suitable Habitat 

for Threatened and Endangered Tree Canacomyrica monticola in New Caledonia.” 

Journal of Ecology and Natural Environment 1: 94-98. 

54 
 



55 
 

Lin, Yu-Pin, Hone-Jay Chu, Chen-Fa Wu, Tsun-Kuo Chang, and ChiuYang Chen. 2011. 

“Hotspot Analysis of Spatial Environmental Pollutants Using Kernel Density Estimation 

and Geostatistical Techniques.” International Journal of Environmental Research and 

Public Health 8: 75-88. 

Liu, Hua and Donald E. Brown. 2003. “Criminal Incident Prediction Using a Point-pattern-based 

Density Model.” International Journal of Forecasting 19: 603-622. 

Merow, Cory, Matthew J. Smith, and John A. Silander, Jr. 2013. “A Practical Guide to MaxEnt 

for Modeling Species’ Distributions: What it Does, and Why Inputs and Settings Matter.” 

Ecography 36: 1058-1069. 

Mola-Yudego, Blas and David Gritten. 2010. “Determining Forest Conflict Hotspots According 

to Academic and Environmental Groups.” Forest Policy and Economics 12: 575-580. 

Moreno, Roberto, Ricardo Zamora, Juan R. Molina, Angelica Vasquez, and Miguel A. Harrera. 

2011. “Predictive Modeling of Microhabitats for Endemic Birds in South Chilean 

Temperate Forests Using Maximum Entropy (Maxent).” Ecological Informatics 6: 364-

370. 

Morgart, John R., John J. Hervert, Paul R. Krausman, Jill L. Bright, and Robert S. Henry. 2005. 

“Sonoran Pronghorn Use of Anthropogenic and Natural Water Sources.” Wildlife Society 

Bulletin 33: 51-60. 

Motsinger, J. 2013. Defenders of Wildlife Blog. “Road to Recovery: Sonoran Pronghorn.” 

http://www.defendersblog.org/2013/07/road-to-recovery-sonoran-pronghorn (accessed 9 

July 2014). 

Nelson, Trisalyn A. and Barry Boots. 2008. “Detecting Spatial Hot Spots in Landscape 

Ecology.” Ecography 35: 556-566. 

55 
 

http://www.defendersblog.org/2013/07/road-to-recovery-sonoran-pronghorn


56 
 

Ochenfels, R. Pronghorn antelope. Arizona Antelope Foundation. 

http://azantelope.org/Facts___Research/About_Pronghorn/about_pronghorn.html 

(accessed 10 July 2014). 

O’Gara, Bart W. 1978. “Antilocapra americana.” Mammalian Species 90: 1-7. 

Phillips, Steven. 2005. "A Brief Tutorial on Maxent." ATandT Research. 

Phillips, Steven J. and Miroslav Dudik. 2008. “Modeling of Species Distributions with Maxent: 

New Extensions and a Comprehensive Evaluation.” Ecography 31:161-175. 

Phillips, Steven J., Miroslav Dudik, and Robert E. Schapire. “A Maximum Entropy Approach to 

Species Distribution Modeling.” In Proceedings of the 21st International Conference on 

Machine Learning, 655-662. ACM Press, New York, 2004. 

Phillips, Steven J., Robert P. Anderson, and Robert E. Schapire. 2006. “Maximum Entropy 

Modeling of Species Geographic Distributions.” Ecological Modelling 190: 231-259. 

Pronghorn Biologists. Sonoran Pronghorn Monitoring Protocol. Gila Bend and Barry M. 

Goldwater Range Complex, Gila Bend, AZ, 2012. 

R Development Core Team. 2011. R: A language and environment for statistical computing 

(Version 3.1.0). R Foundation for Statistical Computing, Vienna, Austria. URL 

http://www.R-project.org/. 

Ramp, Daniel, Joanne Caldwell, Kathryn A. Edwards, David Warton, and David B. Croft. 2005. 

“Modelling of Wildlife Fatality Hotspots Along the Snowy Mountain Highway in New 

South Wales, Australia.” Biological Conservation 126: 474-490. 

Reid, F. A. A field guide to mammals of North America, 500-501. New York, NY: Houghton 

Mifflin Company, 2006. 

56 
 

http://azantelope.org/Facts___Research/About_Pronghorn/about_pronghorn.html
http://www.r-project.org/


57 
 

Seaman, D. Erran, Joshua J. Millspaugh, Brian J. Kernohan, Gary C. Brundige, Kenneth J. 

Raedeke, and Robert A. Gitzen. 1999. “Effects of Sample Size on Kernel Home Range 

Estimates.” Journal of Wildlife Management 63: 739-747. 

Seaman D. Erran and Roger A. Powell. 2005. “An Evaluation of the Accuracy of Kernel Density 

Estimators for Home Range Analysis.” Ecology 77: 2075-2075. 

Silverman, Bernard W. Density Estimation for Statistics and Data Analysis. London, UK: 

Chapman and Hall, 1986. 

Stephen, Catherine L., James C. Devos, Jr., Thomas E. Lee, Jr., John W. Bickham, James R. 

Heffelfinger, and Olin E. Rhodes Jr. 2005. “Population Genetic Analysis of Sonoran 

Pronghorn (Antilocapra americana sonoriensis).” Journal of Mammalogy 86: 782-792. 

Suarez-Seoane, Susana, Eladio L. Garcia de la Morena, Manuel B. Morales Prieto, Patrick E. 

Osborne, and Eduardo de Juana. 2008. “Maximum Entropy Niche-based Modelling of 

Seasonal Changes in Little Bustard (Tetrax tetrax) Distribution.” Ecological Modelling 

219: 17-29. 

Tetra Tech, Inc. Ecological Factors that may Influence Sonoran Pronghorn: North and South 

Tactical Ranges, Barry M. Goldwater Range, Luke AFB, Arizona. By Tetra Tech, Inc. 

San Bernardino, CA, 2005. 

Tinker, B. Mexican Wilderness and Wildlife. University of Texas Press, Austin, USA, 1978. 

United States Fish and Wildlife Service. Final Revised Sonoran Pronghorn Recovery Plan. 

Albuquerque, NM, 1998. 

United States Fish and Wildlife Service. Fact Sheet: Sonoran Pronghorn. Albuquerque, NM, 

2003. 

57 
 



58 
 

United States Fish and Wildlife Service. Final Environmental Assessment for Reestablishment of 

Sonoran Pronghorn. Albuquerque, NM, 2010. 

Vander Wal, Eric and A. R. Rodgers. 2012. “An Individual-based Quantitative Approach for 

Delineating Core Areas of Animal Space Use.” Ecological Modelling 224: 48-53. 

Wand, M. P. and M. C. Jones. Kernel Smoothing. London, UK: Chapman and Hall, 1995. 

Worton, B. J. 1989. “Kernel Methods for Estimating the Utilization Distribution in Home-range 

Studies.” Ecology 70: 164-168. 

Xie, Zhixiao and Jun Yan. 2008. “Kernel Density Estimation of Traffic Accidents in a Network 

Space.” Computers, Environment and Urban Systems 32:396-406. 

Yoakum, J. D. “Pronghorn.” In Big game of North America: ecology and management, edited by 

J. L. Schmidt and D. L. Gilbert, 103-121. Washington, D.C.: Wildlife Management 

Institute and Harrisburg, PA: Stackpole Books, 1978. 

Yost, Andrew C., Steven L. Petersen, Michael Gregg, and Richard Miller. 2008. “Predictive 

Modeling and Mapping Sage Grouse (Centrocercus urophasianus) Nesting Habitat Using 

Maximum Entropy and a Long-term Dataset from Southern Oregon.” Ecological Informatics 3: 

375-386.  

58 
 



59 
 

APPENDIX A: HOTSPOT MAPS 

 

Figure 27 SPH 2010 Hotspot Map with Underlying KDE Raster 
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Figure 28 SPH 2010 Breeding Season Hotspot Map with Underlying KDE Raster 

60 
 



61 
 

 

Figure 29 SPH 2010 Fawning Season Hotspot Map with Underlying KDE Raster 
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Figure 30 SPH 2010 Summer Season Hotspot Map with Underlying KDE Raster 
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Figure 31 SPH 2011 Hotspot Map with Underlying KDE Raster 
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Figure 32 SPH 2011 Breeding Season Hotspot Map with Underlying KDE Raster 
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Figure 33 SPH 2011 Fawning Season Hotspot Map with Underlying KDE Raster 
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Figure 34 SPH 2011 Summer Season Hotspot Map with Underlying KDE Raster 
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Figure 35 SPH 2012 Hotspot Map with Underlying KDE Raster 
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Figure 36 SPH 2012 Breeding Season Hotspot Map with Underlying KDE Raster 
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Figure 37 SPH 2012 Fawning Season Hotspot Map with Underlying KDE Raster 

69 
 



70 
 

 

Figure 38 SPH 2012 Summer Season Hotspot Map with Underlying KDE Raster 
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Figure 39 SPH 2013 Hotspot Map with Underlying KDE Raster 
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Figure 40 SPH 2013 Breeding Season Hotspot Map with Underlying KDE Raster 
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Figure 41 SPH 2013 Fawning Season Hotspot Map with Underlying KDE Raster 
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Figure 42 SPH 2013 Summer Season Hotspot Map with Underlying KDE Raster 
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APPENDIX B: SEASONAL HOTSPOT DISTANCE TABLE 

Table 5 Seasonal Hotspots’ Distance to Nearest Target 

Year Season Hotspot Distance 
2010 breeding 1 66 
2010 breeding 2 245 
2010 fawning 1 190 
2010 fawning 2 640 
2010 fawning 3 475 
2010 fawning 4 301 
2010 summer 1 4942 
2010 summer 2 495 
2010 summer 3 255 
2010 summer 4 309 
2010 summer 5 543 
2010 summer 6 176 
2011 breeding 1 170 
2011 fawning 1 48 
2011 fawning 2 88 
2011 fawning 3 325 
2011 fawning 4 267 
2011 fawning 5 449 
2011 fawning 6 61 
2011 summer 1 5015 
2011 summer 2 419 
2011 summer 3 173 
2011 summer 4 1356 
2011 summer 5 188 
2012 breeding 1 168 
2012 breeding 2 217 
2012 breeding 3 71 
2012 breeding 4 970 
2012 breeding 5 875 
2012 breeding 6 351 
2012 breeding 7 355 
2012 breeding 8 90 
2012 breeding 9 2628 
2012 fawning 1 84 
2012 fawning 2 296 
2012 fawning 3 865 
2012 fawning 4 276 
2012 summer 1 4992 
2012 summer 2 1256 
2012 summer 3 137 
2012 summer 4 498 
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2012 summer 5 776 
2012 summer 6 17 
2013 breeding 1 600 
2013 breeding 2 198 
2013 breeding 3 527 
2013 breeding 4 18 
2013 breeding 5 247 
2013 fawning 1 2141 
2013 fawning 2 438 
2013 fawning 3 415 
2013 fawning 4 73 
2013 fawning 5 378 
2013 fawning 6 584 
2013 fawning 7 611 
2013 fawning 8 84 
2013 fawning 9 101 
2013 fawning 10 239 
2013 fawning 11 66 
2013 summer 1 4954 
2013 summer 2 1084 
2013 summer 3 108 
2013 summer 4 512 
2013 summer 5 309 
2013 summer 6 664 
2013 summer 7 260 
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