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ABSTRACT 

 

Small scale farming identify farms with less than 300 acres of agricultural land 

and represent a large population of producers in the US, thus the interest in procedures 

such as Precision Agriculture Application in productivity cycles. This study compares 

publically available Landsat7 ETM+ imagery, at nominal 30 meters pixel resolution, and 

National Agricultural Imagery Program’s (NAIP) imagery, at nominal 1 meter pixel 

resolution, to evaluate their use in Precision Agriculture (PA) applications for small-scale 

farming. The selected study area was determined based on crop characterization and land 

size criteria identified in the South Eastern part of Pittsylvania County, VA.  The selected 

agricultural fields within the study area, 14 in total, were of varying shapes, ranging from 

7.5 to 150 acres in size, and characterized by a specific crop type such as non-alfalfa hay.   

  The methodology for this study consisted in the computation and analysis of four 

vegetation indices (VIs) to evaluate the effect of imagery resolution to depict vegetation 

maturity in the selected 14 sites. The VIs used consisted of: Ratio Vegetation Index 

(RVI), Normalized Difference Vegetation Index (NDVI), Green Normalized Difference 

Vegetation Index (GNDVI), and Soil-Adjusted Vegetation Index (SAVI). In addition to 

the Vis analysis, a pixel Percent Error estimate was derived from the low- and high-

resolution VIs products to evaluate the amount of variance between Landsat7 ETM+ and 

NAIP data. 

As expected, NAIP’s VIs results provided more detail about the study sites 

compared to the Landsat7 ETM+ VIs products. This was evident as NAIP’s ability to 

locate and visualize vegetation and non-vegetation features within the study sites, which 

is of particular importance for PA applications. In contrast, Landsat7 ETM+ imagery 
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were not able to provide adequate identification and monitoring capabilities when used in 

limited areal extent, specifically required for small scale farming PA applications. 

Spectral mixing of land features smaller than the 30 meters pixel resolution imagery were 

causing vegetation differences to be diluted across the fields rather than being isolated 

and identifiable like in the NAIP’s VIs results.  

Results from the PE analysis confirm the VI results and show a great difference 

between VI values derived from the low resolution Landsat7 ETM+ and high resolution 

NAIP imagery. The majority of the sites contain a high percentage of pixels error above 

the acceptable percentage, which outline that VI values derived from low resolution 

imagery do not provide results comparable to the high resolution imagery. Moreover, the 

size of the sites do have an effect on the amount of acceptable PE within each field, with 

larger fields containing higher percentages of Acceptable PE than smaller sites. 

Therefore, due to the use of reduced size fields in small scale farming, the use of low 

resolution imagery might not be appropriate to adequately represent the actual ground 

conditions necessary for reliable PA use.     
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 

While there are still tractors, harvesters, combines and other typical machines involved, 

those machines and their operators are now equipped with GPS units, various 

environmental sensors, and other forms of technology such as the sue of satellite and 

airborne imagery, commonly identified as Remote Sensing (RS), that help monitor and 

track almost every element of traditional farming. The leap into a new generation of 

small scale agricultural technology, defined as Precision Agriculture (PA), is made 

possible through the use of RS and its innovations. PA has its benefits, however, it brings 

to farmers some difficult choices due to the implementation of a new technology, which 

has its challenges and costs. Implementing PA requires startup costs for training, 

hardware, and software that could intimidate potential new users. As with all new 

technology, there is an inherent amount of risk associated, especially in terms of cost. 

Identifying cost effective methods with new technology can be a trying process. 

Small scale farming accounts for around 92% of farms within the US (Poole, 

2004) and the majority fall in the low producing section of that category where the farm 

produces barely enough to cover the costs of maintaining a working farm. The other 8% 

are large family or commercial farming outfits that produce over $250,000 in revenue. In 

a study conducted in 2010 throughout the state of Ohio, of 3,000 farmers surveyed, 

38.7% stated that they had adopted 1 or more elements of PA. This percentage identified 

farms of the largest size and highest gross income (Diekmann & Batte, 2010). 

Unfortunately this trend is not limited only to Ohio but it is common across the United 
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States, as stated in the USDA’s National Institute of Food and Agriculture (NIFA) 

website (USDA National Institute of Food and Agriculture 2009): 

“Small and medium sized producers have a distinct disadvantage over 

large producers. In high-volume agriculture, economies of scale and 

narrow profit margins provide an economic advantage to large producers. 

Furthermore, large producers tend to have more education and are less 

wary of technology than smaller producers. These characteristics of 

production agriculture suggest that most technological advances, including 

site-specific management, are not scale neutral.”  

  

1.1 Introduction to Precision Agriculture (PA) 

 

While there is a noted disadvantage, there are some areas where PA applications 

can be utilized by small scale operations. PA contains a variety of technology, therefore 

individual elements can be implemented over time at a more manageable level rather than 

purchasing multiple elements at one time. PA by definition refers to:  

“a management system that is information and technology based, is site 

specific and uses one or more of the following sources of data: soils, 

crops, nutrients, pests, moisture, or yield, for optimum profitability, 

sustainability, and protection of the environment” (McLoud & Gronwald 

2007). 

 

The information and technology used include a host of hardware (GPS Units, 

vehicle mounted sensors, auto-steering, etc.) and software (GIS software, recordkeeping, 

sampling collection, etc.) which drive the management styles and processes of farms. 

While it is not as efficient to pick and choose which elements to use, cost savings and 

increased revenue from PA over time could eventually lead to increased implementation. 

Modern PA can trace its history back to when emerging technology became 

available to the public. Early uses of GPS for precision agriculture began in the early 

1990’s with the availability of NAVSTAR GPS (Sturdevant 2007). Variable rate 
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dispersion of fertilizers and pesticides, yield mapping, and isolating field damage from 

weather related events were the first of many adoptions of modern PA through the 

availability of GPS technology. Early estimations in 1994 predicted that only 5% of 

farmers were utilizing the new GPS enabled PA, yet this was considered ‘booming’ for 

the time (Sturdevant 2007).  

Implementation of PA in agriculture since the early adoptions has increased, but 

not across the entire spectrum of PA. The Agricultural Resource Management Survey 

(ARMS) analyzed data from 2001 to 2010 of corn, winter wheat, and soybeans to try to 

understand the adoption rates of PA. In the study, it found that while the PA technology 

is becoming more readily available, it is still developing, and the adoption rates reflect 

this. Easier forms of PA, such as Yield Monitoring, are first to be implemented, with 

Yield Monitoring adoption rate of 45% for soybeans, 42% for corn producers, and 35% 

for winter wheat (Schimmelpfennig 2011). Other forms, such as Variable Rate 

Technology (VRT), which require more sophisticated analyses and technology, are less 

likely to be utilized. VRT rates for soybeans was 8%, corn was higher at 12% and winter 

wheat topped at 14% and is steadily increasing (Schimmelpfennig 2011).   

PA utilizes RS as a source of data used to create products that can be used across 

a wide range of practices. Table 1 contains a listing of RS products and suggested uses 

developed by the Missouri Precision Agriculture Center (Casady & Palm, 2002). A 

wealth of information is available through RS, which directly assists with the day to day 

management of farming operations.  

RS products differ in temporal availability, spatial resolutions, and spectral 

resolution. These factors require evaluation and the pros and cons of the different RS 
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products need to be determined for best use in each individual PA application, whether 

large scale or small.  

Table 1: RS products and suggested uses. 

RS Product Use in PA 

Soil Brightness Construct soil maps or direct soil sampling 

Crop Vigor or Health Various uses including replanting, fertilizer use, 

pesticide use, and yield predictions 

Vegetation Cover Replant decisions 

Chlorophyll Content Nitrogen management 

Yield Predictions General management 

Weed Escapes Weed management 

Stress due to Canopy Irrigation management moisture deficits 

Crop Residue Evidence of compliance with erosion prevention 

guidelines 

Source: Casady & Palm, 2002 

Farming is critical to the livelihood of civilization, the best available technology 

and practices needs to be utilized to operate at peak efficiency. As previously mentioned  

in the Ohio study (Diekmann & Batte, 2010), only 38.7% of the Ohio farmers surveyed 

were using PA. Thus, the motivation for this study stems from the lack of widespread use 

of PA within the farming community. Technology evolves and advances as time 

progresses, and so it is necessary that adoption rates of technology follow suit. New tools 

and processes are being developed to modernize and streamline processes that are 

currently being used. The goal is to be more efficient with resources and increase output, 

essentially do more with less. Unless these new practices and technology are used, these 

goals will not be met. Spreading the word and educating potential users about how PA 

can be implemented needs to go hand in hand with the development of new technology. 
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Small farms are an important part of American agriculture. In the 1998 National 

Commission on Small Farms, a renewed dedication to the improvement of small farms 

was created (Volkmer et al., 1998). The purpose of this commission was to develop goals 

and strategies for small farms to succeed in a very competitive economy. As stated in the 

report (USDA National Commission on Small Farms 1998):  

“Small farms have been the foundation of our Nation, rooted in the ideals 

of Thomas Jefferson and recognized as such in core agricultural policies. 

It is with this recognition of our Nation’s historical commitment to small 

farms that we renew our dedication to the prominence of small farms in 

the renewal of American communities in the 21
st
 century.”  

  

The importance of small farms stretches far beyond the production of crops. 

Communities benefit from the presence of small farms in terms of divers types of owners, 

cropping systems, landscapes, biological organizations, culture, and tradition (Volkmer et 

al., 1998). These small farms are a source of employment for the rural communities they 

reside in. Farms can be a great learning environment for children, where they can learn 

about responsibility and the fruits of hard work. Additionally, with the majority of 

farming across the Nation being small scale, the ecological and environmental 

management are more personal and results with more involvement of farmers and their 

environment. The benefit of small scale farming is shaping the rural parts of the country 

and needs to be protected. With new technology and modern farming practices, these 

small farms can continue to operate and have the ability to increase production and 

revenue. 

Education is critical to changing the minds of those that are unfamiliar about how 

PA can be used on a farm. The more familiar PA is to potential users, the greater the 

chances of implementation. There is a substantial amount of academic research articles 
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and journals aimed at agricultural developments, most of which are written for a technical 

audience.  

1.2 Review of Remote Sensing in Precision Agriculture studies 
 

 The point of view of a farmer looking at their crops is very limited, and the more 

they can see, the more they can understand and act on. Remotely sensed images can be 

used to identify nutrient deficiencies, diseases, water deficiency or surplus, weed 

infestations, insect damage, hail damage, wind damage, herbicide damage, and plant 

populations, to name a few (Nowatzki, Andres, & Kyllo, 2004). In Figure 1 is shown a 

very simplified sequence of the main elements of a complete remote sensing system, 

from beginning to end, of remote sensing of vegetation and use for PA purposes. .There 

are many elements that are required, which encompass acquisition, processing, analysis, 

and interpretation of RS imagery.  
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Figure 1. Remote Sensing in Precision Agriculture: The sun (A) emits 

electromagnetic energy (B) to plants (C). A portion of the electromagnetic energy is 

transmitted through the leaves. The sensor on the satellite detects the reflected 

energy (D). The data is then transmitted to the ground station (E). The data is 

analysed (F) and displayed on field maps (G) and then used in the field (Nowatzki et 

al., 2004). 

 

Agricultural RS applications can trace their roots back as early as the 1920’s. In 

1927 aerial photography was used to differentiate the difference between healthy and 

diseased cotton plants (Neblette, 1927). This is a very early successful instance of using 

remotely sensed information for agricultural purposes. After aerial photography came the 

use of satellites for remote sensing.  Crop imagery began to be obtained by Landsat in 

1978 (Tenkorang & Lowenberg-DoBoer, 2008). Since then many different satellite 

constellations have been launched and cover the entire earth, such as the ASTER, 

IKONOS, GEOEYE, QuickBird, RapidEye, and SPOT systems. Each has their own 

specialties that range from high resolution to different scanners, which include thermal 

and panchromatic bands. In addition to satellite based sensors, low altitude sensors 

provide another method for collecting RS data. Airplanes, helicopters, and unmanned 

aerial vehicles (UAVs) provide a great service when satellite platforms are not an option.   

 Remote sensing in general has many advantages, and those advantages translate 

well toward agriculture. Remote sensing technology is a non-destructive method of data 

collection, it is systematically collected over large geographical areas, can reveal data 

about places inaccessible by humans, the systematic nature of data collection can remove 

sampling bias, provides biophysical information usable by other sciences, and remote 

sensing data is independent from other mapping sciences such as cartography or GIS 

(Jensen, 1996). Of these advantages, we can see how useful remote sensing is. Systematic 
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collection of data that is unbiased can eliminate a majority of field work previously 

performed by individuals with in situ surveying (Liaghat, 2010), as well as monitoring 

distant areas of a large scale farming installation.  

 

1.2.1 Remote Sensing of Vegetation 
 

Remote sensing of vegetation requires knowledge of the structure and function of 

vegetation itself and how its energy is recorded through sensors. This allows a user to 

better understand what is being seen through the data that has been collected and apply 

that data to real life plant identification or condition. Plant life differs between species 

and their chemical composition is what is reflected in the data. Vegetation Indices (VI) 

are derived from the reflectance properties of plants and are used to identify 

characteristics of plant life. These properties correspond to data points that are measured 

in the electromagnetic spectrum, particularly in the visible, near-infrared and infrared 

portions. In the case of using RS for agricultural purposes, the focus is directed to the 

energy reflected from plant foliage.  

The most important parts of plant foliage that are indicated through RS data is 

pigments, water content, carbon content, and nitrogen content (Exelis, 2013). These 

components all contribute to the spectral characteristics of each plant. Figure 2 below 

contains a reflectance graph showing portions of the electromagnetic spectrum and the 

respective plant components. Each part of the plan affects the reflectance values. This is a 

major factor when utilizing RS data for PA applications. Spectral profiles like Figure 2 

tell us a great deal about the condition of vegetation.   
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Figure 2. Plant Spectral Profile: Typical reflectance sensitivities as controlled by leaf 

pigments, cell structure, and water content. Crop health and other plant 

characteristics can be identified based on the specific values returned in a spectral 

profile. The variation of spectral values tells the story of the plant and gives a 

molecular breakdown of what is happening inside (Exelis, 2013). 

 

Pigments within the plant include chlorophyll, carotenoids, and anthocyanins 

(Exelis, 2013). Each of these components that are found within a plant responds 

differently depending on the health and condition of the plant. Chlorophyll is commonly 

known for giving the green color to plants and helps see the general health of the plant. 

Plants registering with high levels of chlorophyll are healthy and have high rates of 

photosynthesis, meaning that they are well nourished and are able to sustain themselves. 

The presence of high levels of carotenoids generally indicates stress, which can be caused 

by low moisture content or disease, but can also indicate death of the plant. Identifying 

carotenoid content can be very beneficial early on in the growing season to help identify 

crop diseases and failures in irrigation systems. The last pigment compound is 
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anthocyanins, which shows changes in the foliage. This lends itself to identifying plants 

undergoing senescence. All of these pigments within a plant are represented through RS 

imagery.  

The water content within a plant helps facilitate many processes that are necessary 

for the plant to survive and sustain itself. Nutrients and minerals are transported 

throughout the plant by water, and without water, the plant could not survive. Measuring 

water content through RS is performed using the water content found within the leaves 

using the near-infrared and shortwave infrared regions of the electromagnetic spectrum. 

The values associated in this portion of the spectrum can then be used to identify the 

water content of the plant and whether it has an appropriate amount and can survive or if 

there is a lack of sufficient water.  

Plants need carbon to survive, as it is the main requirement to perform 

photosynthesis. Plants use carbon in forms as sugar, starch, cellulose, and lignin. 

Cellulose and lignin are used in cell structure and have spectral characteristics that appear 

in the shortwave infrared range of the electromagnetic spectrum. In addition to carbon, 

nitrogen is also found in plants and has spectral characteristics that affect VIs that 

measure plant pigments. Nitrogen can be found in plant leaves, contained in chlorophyll, 

proteins and other molecules. 

 

1.2.2 Vegetation Indices 

 

Vegetation indices use a combination of two or more wavelengths of spectral 

values into a single value, which can identify and highlight functional characteristics of 
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vegetation (Department of Ocean Earth and Atmospheric Sciences, ODU, 2003). Because 

of the different chemical compositions of vegetation, these reflectance values change 

plant to plant, including different stages of growth and during times of plant stress. In 

addition to identifying plant characteristics, VIs can also be used as mapping tools. Image 

classification, such as land use can be identified through the use of VIs that is specifically 

tailored toward plant identification. Other uses include canopy mapping, and tracking 

deforestation.  

The use of VIs requires the same knowledge of plant physiology as using RS. 

With over 150 different VIs present today, the desired output and land conditions will 

determine the type of VI used. Some of the most popular and widely used VIs developed 

over the years includes Normalized Difference Vegetative Index (NDVI), Soil Adjusted 

Vegetation Index (SAVI), and Ratio Vegetative Index (RVI). Each of these VIs uses the 

same basic ratio based approach, but there are advantages to use one over the other.  

1.2.2.1 Type of Vegetation Indices and their use 

Ratio Vegetation Index (RVI) 

 The Ratio Vegetation Index (RVI) is the simplest VI as it is a basic ratio of near 

infrared and red bands (Birth and McVey 1968). The use for this is a general view of 

vegetation in a given scene. The equation (1) for calculating RVI is as follows: 

RVI = NIR / RED (1) 

Normalized Difference Vegetation Index (NDVI) 

 The Normalized Difference Vegetation Index (NDVI) calculates the different 

between the near infrared and red reflectance values divided by their sum (Tucker 1979, 
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Hunt and Yilmaz 2007). The equation (2) produces a value ranging from -1 to 1, where 

positive values generally denote vegetation and values approaching 0 and below are 

devoid of vegetation, such as barren rock and snow. The example in Figure 3 shows the 

difference of NDVI values for healthy and unhealthy vegetation. 

NDVI = (NIR – RED)/(NIR + RED) (2) 

 

 

 
 

 

Figure 3. NDVI Calculation: NDVI is calculated from the visible and near-infrared 

light reflected by vegetation. Healthy vegetation (left) absorbs most of the visible 

light that hits it, and reflects a large portion of the near-infrared light. Unhealthy or 

sparse vegetation (right) reflects more visible light and less near-infrared light. The 

numbers on the figure above are representative of actual values, but real vegetation 

is much more varied (NASA Earth Observatory, 2013). 
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Green Normalized Difference Vegetation Index (GNDVI) 

 A variation of NDVI has been developed (Hunt et al. 2007) that uses the green 

band portion of the electromagnetic spectrum rather than the red band. This is referred to 

Green Normalized Difference Vegetation Index (GNDVI). This is calculated using the 

same equation (3) as NDVI, but with green band substituted for Red: 

GNDVI = (NIR - GREEN) / (NIR + GREEN) (3) 

 The benefit of GNDVI over NDVI is that the green band can cover a broader 

range of chlorophyll in plants than the red band. This applies to mature plants, and can be 

useful for crop yield monitoring late in the growing season. NDVI’s use of the visible red 

band works well for young, adolescent vegetation and is suitable for general greenness 

and growth monitoring. 

Soil Adjusted Vegetation Index (SAVI) 

 The Soil Adjusted Vegetation Index (SAVI) uses the same band as NDVI (red) 

but introduces a constant to account for the present of soil in the data (Huete 1988). The 

equation (4) for calculating SAVI is as follows: 

SAVI =     ((NIR – RED)x(1 + L))/(NIR + RED + L) (4) 

The L value is the constant for soil brightness and produces values that are 

independent of background noise (soil reflection). The L value ranges from 0 to infinity, 

but Huete suggested that a value range be determined for vegetation density (Qi et al., 

1994). The value range suggested is L=1 for low vegetation, L=0.5 for intermediate 

vegetation and L=0.25 for high vegetation. Note that when L=0 the output would equal 

NDVI. This would be appropriate to use early on in the growing season where there is an 
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abundance of bare soil while seedlings are growing, or other situations where there is a 

large amount of soil present when taking imagery. 

 

1.2.2.2 Data Output from Vegetation indices 
 

Once the calculations of VIs have been performed, the resultant data can be 

visually examined. One of the advantages of using RS imagery is the ability to isolate 

individual spectral bands and perform false color composite images. This process alters 

the natural color scheme of what is seen by the eye to highlight a specific feature or 

collection of features that cannot be seen by the naked eye. Figure  below shows part of 

the City of Ukiah, California. NDVI was calculated using 1 meter resolution imagery and 

a false color composite color ramp is shown ranging from brown (unhealthy vegetation), 

to red to green (healthy vegetation). Agricultural fields can be seen with lots of green 

present, and surrounding neighborhoods and roads are represented with darker browns 

and reds. 
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Figure 4. False Color Composite: NDVI calculated Ukiah, CA, using NAIP 2010 1-

meter resolution NDVI imagery. False color composite images allow a different view 

where subtle differences can be identified. In a true color image, green grass would 

be visible and dominant, but with this alternate view, all rooftops and other features 

that would be camouflaged by their colors stand out and can be easily seen. In this 

image green tones depict healthy vegetation, yellow tones a mix of vegetation and 

soil, and red tones bare soil or manmade infrastructures. 

Source: ArcGIS Online, 2014 

 

1.2.3 Benefits of Precision Agriculture 
 

The benefits of PA derive from streamlined processes and added monitoring 

ability. The results of efficient processes and monitoring include reducing the amount of 

wasted resources, increased ability to monitor soil and crop conditions, and the potential 

for increased yield with enhanced crop management. In a Cornell Precision Agriculture 

case study, the farm of Elmer Richards and Sons was used as a test sight. The Richards 
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farm is a dairy farm that grows 1,300 acres of corn and 1,000 acres of wheat, along with 

their 800 cow dairy operation. In 1997 a yield monitor was purchased to assist with 

identifying problem areas and to create field maps. As stated in the study, it was an 

additional 10 hours of work for the entire year to manage data with an additional hour to 

calibrate the sensor as needed, both of which is considered minimal (Kahabka, Staehr, 

Hanchar, & Knoblaunch, 2000). Through their use of the yield monitor, crop maps were 

produced utilizing yield data combined with GPS data. Based on the information gained 

from implementing one PA element, numerous changes in crop selection were made as a 

result of having accurate data available when making decisions.   

Additional benefits of PA present opportunities that do not apply the farmer’s 

bottom line; there are environmental advantages and benefits of using PA. Utilizing 

advanced resource management, the amount of farm related pollution and erosion can be 

lessened. Through targeting specific areas with a predetermined amount of pesticides, 

fertilizers, or any other additives, runoff can be curbed to reduce ground water 

contamination.  

Erosion is another source of water contamination and removes valuable topsoil. 

Monitoring key areas through PA can prevent many practices such as over irrigation on 

sloped fields and unnecessary field and crop treatments. In addition, with the capability to 

track farm equipment using GPS, high traffic areas can be identified and addressed to 

reduce unnecessary traffic and movement on and around sensitive areas that are prone to 

erosion. 
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1.3 Research question and Objectives 

 Small scale farms rely heavily on the success of their crops as it is generally the 

only source of income. Because of the limitations of available capital, any potential 

addition to current operations is a financial risk. In addition to financial risks, new 

technology brings new challenges that include hardware, software, and the technical 

capabilities of the user. The uncertainty about new technology and financial risks are 

factors that keep potential users from considering using. 

The research topic for this case study is comparing low and high resolution RS 

products for use in PA applications for small scale farming. Due to the limited land and 

resources available with small scale farming, utilizing RS data needs to be as efficient as 

possible. Resolution differs between RS sensors and sources, and cost is influenced by 

resolution. This comparison used publicly available Landsat7 ETM+ low resolution data, 

30 meters nominal resolution,  and efficient NAIP high resolution data, 1 meter nominal 

resolution, to achieve the following measurable objectives: 

- quantify the amount of error between  Landsat7 ETM+ and NAIP data through 

the use of VI and PE analyses 

- quantitative comparison of Landsat7 ETM+ vs. NAIP, 

 The predicted outcome is that there will be a large amount of difference between 

the two based on the large difference in pixel size, so much so that the low resolution 

imagery will not provide the optimal results. Small scale farming fields are small and low 

resolution pixels are large and cannot collect the same level of detail and information 

compared to their high resolution counterpart.  
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Alternately, high resolution imagery provides a large amount of data, which could 

actually be in excess of the amount of needed information. If the larger pixel size can 

produce results comparable to the high resolution, then the use of low resolution imagery 

can be considered optimal. Even with this as a possibility, the expected outcome is that 

the low resolution imagery is not optimal for small scale farming. 

The following chapters of this thesis discuss and explain the process that took place to 

achieve the thesis objectives. Chapter 2 discusses the study site selection process, with 

details related to the site selection criteria. Chapter 3 provide details on the data selection 

and methodology used for the vegetation indices extraction, statistical analysis, and 

values quantification and comparison. Chapter 4 lists the results and chapter 5 presents 

the conclusions and potential future work.   
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CHAPTER 2: STUDY AREA 

 

Precision Agriculture’s use of imagery provides a data driven view of a specific area. RS 

imagery provides the spectral vegetation values for a field and after further analysis (such 

as a vegetation index calculation or false color composite image) a crop health map is 

derived that allows a farmer to understand the general health their field.  

The accuracy of this data depends on several factors, which include the 

characteristics of the field. Agricultural fields come in various shapes and sizes, terrains, 

climates, locations, and other characteristics that will affect the RS imagery and resultant 

data. These variations occur both naturally and manmade, which needs to be taken into 

account when gathering data. To present the best possible study locations, several factors 

were selected and included in the site selection process.  

Small scale faming exists throughout the country and across a wide variety of 

land types. To be able to represent small scale farms for this comparison, features and 

characteristics of small scale farms were used that can be applied to most small farms in 

one way or another. Study sites were chosen based on location, presence of vegetation, 

size and shape of the site, and field characteristics. These categories represent real life 

factors of small farms and topographic elements that challenge the abilities of RS 

imagery.  

2.1 Location 

 

The study area for this comparison consists of agricultural areas within 

Pittsylvania County; Virginia. Figure 5 gives reference to the location of Pittsylvania 
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County. The Commonwealth of Virginia grows a wide variety of crops and has a large 

number of small farms. The 2011 average farm size was 171 acres, which falls under the 

initial definition of a small scale farm. While the average farm size is 171 acres, the 

majority of farms within the state fall under 100 acres, with multiple fields per farm.  

The 2007 Agricultural Census showed that the majority of acres harvested came 

from farms averaging less than 100 acres in size. Pittsylvania County is the largest county 

in Virginia and is comprised of 44% agricultural land (Rephann, Ellis, Rexrode, & 

Eggleston, 2013). In addition to having an abundant supply of available agricultural land, 

Virginia also participates in USDA’s National Agricultural Imagery Program (NAIP). 

The NAIP program acquires ‘leaf-on’ aerial imagery during growing seasons across the 

United States. NAIP imagery is available to the public and government agencies for use 

in both agricultural and non-agricultural purposes. Virginia’s participation in this 

program provided key RS data for this comparison as it is both publically available and 

high resolution.   
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Figure 5. Study Location: Pittsylvania County is located in the South Central 

portion of the state of Virginia. It is the largest county in Virginia and is 44% 

agricultural land. The terrain includes hills, low land, and low mountains in the 

northern portion of the county. Rich soil content and a healthy growing season 

present optimal conditions for growing a variety of crops and livestock  

Source: Yellow Maps, Blank County Maps of Virginia  2014 

 

 

2.2 Sites Characterization Criteria 

2.2..1 Presence of vegetation 

 

 Vegetation index analyses were used for the comparison, which required 

vegetation to be present within the imagery. Due to the wide range of vegetation grown in 

Pittsylvania County, there was a good chance of having vegetation within the collection 

areas for each set of imagery. In the case of Pittsylvania County, VA, the collection dates 
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were rather early within the growing season, but despite this, there was usable vegetation 

within the hay and agricultural grasses category. These particular crops can have earlier 

harvesting dates, which allowed for the presence of Non-Alfalfa Hay vegetation. This 

type of vegetation served as a viable agricultural medium for VI analysis. To keep results 

uniform throughout the study, fields containing the same crops were sought. This was 

accomplished with the assistance of the USDA’s National Agricultural Statistical Service 

(NASS). NASS collects and updates a national database, the Cropland Data Layer, with 

agricultural data, specifically crop types. The NASS utilizes the AWiFS sensor aboard 

the Resourcesat-1 satellite to gain 56m imagery. The data is analyzed in-house with 

commercial software (Erdas Imagine, ESRI ArcGIS, and Rulequest See5) to develop and 

process accurate ground cover types (Research and Development Division 2014). With 

the development of appropriate methodology, including the development of the Common 

Land Unit (CLU) program as a result, the information produced by this service was used 

to identify crop types for all fields during the selection process.  

2.2.2 Size and shape of site 

 

Small Scale farming is defined by the USDA as having an income less than 

$250,000 per year (Poole, 2004). A set range of 5 - 150 acres per field has been chosen 

for this analysis due to the average farm size for the middle income range ($10,000-

$99,999/year) of 2011 is around 300 total acres. This accounts for 30% of the number of 

farms classified as small (the majority fall in the < $10,000/year, at 60%) (National 

Agricultural Statistics Service, 2012). Even though the majority of farms are well below 
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the 300 sq. acre range, the same results can be used on any size farm by utilizing the 

information and processes as stated in this comparison. 

The topology and terrain of small farms varies depending on a variety of factors, 

including availability of arable land, water features, irrigation practices, etc. Typical 

small scale farms utilize multiple fields, comprised of all shapes and sizes to maximize 

all available land that is owned by the farmer. Pittsylvania County’s agricultural land 

showed no standard or consistent field size or shape throughout the county. To reflect this 

within the comparison, a range of field sizes and shapes was used. This variation in field 

size was necessary to test the limits of how the different resolutions represented fields 

varying in size and shape.  

 

2.2.3 Site Additional Features Characteristics 

 

In addition to selecting sites of different size and shapes, certain features 

characteristics were chosen to challenge the resolution of the imagery. These included the 

presence of non-vegetation features such as bodies of water, and erratic boundaries 

between vegetation features.  The reasoning behind these characteristics is centered on 

the problem of mixed pixels. Mixed pixel is the result of a single pixel representing an 

“area occupied by more than one ground cover type” (Roosta, Farhudi, & Afifi, 2007). 

Mixed pixel situations occur in the following situations: 1) the pixels that are located at 

the edges of large features, like agricultural fields, present a mixed signature between 2 

vegetation types or vegetation and non-vegetation ground cover materials; 2) objects that 

are relatively small, compared to the spatial resolution of the sensor, do contribute to the 
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pixels signature value but cannot be isolated (Roosta et al., 2007). In the low resolution 

imagery, due to the larger area per pixel coverage, each pixel contains a larger amount of 

spectral variation.  

In a single 30 x 30 meter plot of land (size of Landsat7 ETM+ pixels), there can 

be part of a water body, vegetation, a road, or bare ground. Each of those produces a 

different spectral value, which is then averaged out to give a single value for the pixel. 

With high resolution imagery, this issue becomes less apparent. Within a 1x1 meter pixel 

area (size of NAIP pixels), the potential differences in ground cover and features are 

limited. Areas along boundary features, such as roads and tree lines, have fewer mixed 

pixels which result in more defined boundary edges. An example of this can be found in 

one of the study areas, Study Site 14, shown in Figure 6. Site 14 has 3 lines of trees that 

extend out into the field. This pattern is easily distinguished when using high resolution 

imagery, but when viewed with low resolution imagery, the line of trees is somewhat 

delineated but not clearly and uniquely identifiable.  

In order to challenge the data analysis a variety of features such as tree lines, dirt 

roads, tranches, ponds, and irregular boundaries were common in all selected sites. 

Moreover, the wide variety of different field sizes created a very diverse dataset for this 

study.  
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Figure 6. Site Characteristics: Study Site 14 shown utilizing both NAIP (right panel) 

and Landsat7 ETM+ (left panel) imagery. The red arrows point to three different 

tree lines that are within the field. Notice how defined the tree line is in the NAIP 

imagery (right panel). As for Landsat7 ETM+ imagery (left panel), the tree line is 

drastically exaggerated to the point of being almost unrecognizable. The area 

affected by mixed pixels is greater in the Landsat7 ETM+ imagery as compared to 

the NAIP. This larger area contains pixel averages that include unrelated tree 

vegetation, which skew vegetation reflectance values specific to the non-alfalfa hay 

crop that is being investigated in this study. 

 

2.2 Sites Selections 

After determining the criteria, the site selection process could begin. Both 

Landsat7 ETM+ and NAIP imagery were utilized during the site selection process. Each 

site is defined by a site number, group number, size in acres, and the different field 

characteristics found within it. A total of 14 study sites, ranging in field sizes from 7.5 to 

152 acres, were chosen and by relative location separated into 5 groups, as shown in 

Figure 7. The 14 selected sites and attributes are summarized in Table 1. Footprint 

examples for Group 5 (sites 10 through 14) are shown in Figure 8 and all remaining site 

footprints are listed in Appendix A.  
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Table 2: Study Sites Characteristics 

Site# Group# 
Size 

(Acres) 

# of Pixels 

Landsat7 

ETM+ 

# of Pixels 

NAIP 
Crop Type Site Characteristics 

1 1 110.57 
499 

 
436,155 

Non-Alfalfa 

Hay 

Rounded boundaries, forested section 

within field boundary, hilly terrain 

2 2 12.72 54 46,374 
Non-Alfalfa 

Hay 

Straight boundaries, no presence of 

foreign objects or vegetation 

3 2 71.98 320 273,157 
Non-Alfalfa 

Hay 

Irregular boundaries, narrow field 

sections, outbuilding present and small 

wooded area 

4 3 14.30 65 54,382 
Non-Alfalfa 

Hay 

Straight boundaries, no presence of 

foreign objects or vegetation 

5 3 30.56 137 117,965 
Non-Alfalfa 

Hay 
Irregular boundaries, dirt road present 

6 3 17.33 78 64,407 
Non-Alfalfa 

Hay 

Rounded boundaries, narrow field 

section 

7 3 11.29 50 40,957 
Non-Alfalfa 

Hay 

Narrow field with barren patch of land 

within 

8 4 33.49 151 128,512 
Non-Alfalfa 

Hay 

Irregular shape with a tree line and 

individual trees throughout 

9 4 21.76 97 81,697 
Non-Alfalfa 

Hay 

Irregular shaped field with trees and 

barren sections contained within 

10 5 152.35 686 605,657 
Non-Alfalfa 

Hay 

Large field with a dirt road, grove of 

trees and slight terrain variation 

throughout 

11 5 23.42 104 88,032 
Non-Alfalfa 

Hay 

Straight boundaries with a narrow 

section surrounded by trees 

12 5 7.5 31 26,173 
Non-Alfalfa 

Hay 

Rectangular shaped field with uniform 

vegetation and slight terrain variation 

13 5 23.89 108 92,087 
Non-Alfalfa 

Hay 

Rectangular shaped field, a grove of 

trees, and a pond 

14 5 86.61 391 331,107 
Non-Alfalfa 

Hay 

Sprawling field with narrow sections 

and tree lines entering the field 
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Figure 7. Study Sites on NAIP image. Their locations are contained within the 

usable NAIP and Landsat7 ETM+ imagery overlapping area (as discussed in section 

3.1.2), and have been assigned to 5 Groups. Site details are contained within Table 1 

and complete list of site footprints are contained in Appendix A.  
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Figure 8. Site Footprints of Group 5. Landsat7 ETM+ (top panel) and NAIP 

(bottom panel). Group 5 consists of Sites 10 through 14. Several features exist that 

appear in the imagery, for instance Site 10 contains a dirt road and tree lines casting 

shadows, site 13 contains a pond, and site 14 contains tree lines casting shadows.    
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CHAPTER 3: DATA AND METHODOLOGY 

This chapter describes in detail the data sources and their selection process, then focus on 

the selected methodology encompassing the analysis of four vegetation indices, 

vegetation indices percent error analysis, and values quantification and comparison. 

3.1 Data Sources and Selection for Landsat7 ETM+ and NAIP Imagery  
 

The search of available data was conducted with collection dates as close to one 

another as possible. This was done to reduce the variance between crops due to 

vegetation maturity. Vegetation at different stages in maturity reflect differently, which 

would not present identical site data between resolution datasets.  

 The Landsat7 ETM+ low resolution imagery were publicly available from the 

USGS’s Landsat Archive, through the USGS web based Earth Explorer system 

(http://earthexplorer.usgs.gov/). The data was identified using the ground coordinates 

of the study area (Lat: 36.7440, Lon: -79.1704) among the available imagery from the 

data set L7 ETM+ SLC-off (2003-present).  

The NAIP imagery were obtained from the USDA/NRCS imagery program and 

web portal (http://datagateway.nrcs.usda.gov/) in which a county system ID is used to 

retrieve county mosaics and DOQQs. The county ID used for the Pittsylvania County, 

located in the South Central portion of the state of Virginia, is 51143. 

The similarity of the Green, Red, and Near Infrared spectral bands of the NAIP data 

and Landsat ETM+ data (Lillesand and Kiefer 1994; USDA 2008) provide the perfect 

data sets for this study.  
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3.1.2 Data selection  

3.1.2.1 Landsat7 ETM+ Imagery 

Landsat7 ETM+ multispectral data with less than 10% cloud cover factor was 

used for the comparison. In addition to cloud cover restraints, Landsat7 ETM+ data 

contains gaps within each scene due to a malfunction on the satellite platform that 

occurred in 2003. On May 31, 2003, the Scan Line Corrector (SLC), which compensates 

for the forward motion of Landsat 7, failed. The SLC-off effects are most pronounced 

along the edge of the scene and gradually diminish toward the center of the scene (Figure 

9). The middle of the scene, approximately 22 kilometers wide on a Level 1 (L1G) 

product, contains very little duplication or data loss, therefore this region of each image is 

very similar in quality to previous ("SLC-on") Landsat 7 image data. Landsat 7 ETM+ 

inputs are not gap-filled in the surface reflectance production available through USGS 

Landsat Archive: L7 ETM+ SLC-off (2003-present). Because of this, the areas chosen 

using the Landsat7 ETM+ scene were within the unaffected areas as shown in Figure 9. 

The selected Landsat7 ETM+ imagery was collected on June 9, 2008, and was acquired 

as L1G Product or Surface Reflectance. In Table 2 are listed the bands characteristics of 

the acquired Landsat7 ETM+ scene encompassing bands B2 ( Green), B3 (Red), and B4 

(Near Infrared). Table 2 contains a summary of the Landat7 ETM+ dataset.  
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Figure 9. Landsat7 ETM+ scene. The yellow rectangle shown contains the area 

within the Landsat7 ETM+ scene is unaffected by the data gaps. 

 

Table 3. Landsat7 ETM+  data 

Landsat7 ETM+ 

# of Bands 

Collected 

B2 (.525-.605 μm) 

Green 

B3 (.63-.690 μm) 

Red 

B4 (.75-.90 μm) 

NIR 

Surface 

Reflectance 

Spatial 

Resolution 
30 meters 

Date of 

Collection 
9 June 2008 

Data Set LE70160352008161EDC00 

Data Source: USGS Landsat Archive: L7 ETM+ SLC-off (2003-present) 2008 
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3.1.2.2 NAIP Imagery 

The NAIP data for this study was collected in 2008, as it was the only available 

dataset with 4 bands for Pittsylvania County. NAIP procedures allow states to acquire 3 

or 4 band imagery, and with the use of VI the 4 band imagery is required. The acquisition 

date on May 23, 2008, was the closest available dataset to match the Landsat7 ETM+ 

dataset.  Figure 10 shows the same available data rectangle as seen in Figure 9, which 

represents overlapping data with Landsat7 ETM+. A summary of the NAIP Surface 

Reflectance dataset used  in this study is listed in Table 3. 

 

Figure 10. NAIP Scene. The yellow rectangle shown correlates with the available 

data section of the Landsat7 ETM+ scene. The NAIP scene contains only 
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Pittsylvania County Virginia, whereas the Landsat7 ETM+ scene contains a larger 

portion of counties within Virginia and North Carolina.  

 

Table 4. NAIP data  

NAIP 

# of Bands 

Collected 

B2 (.480-.640 μm) 

Green 

B3 (.580-.700 μm) 

Red 

B4 (.680-.940 μm) 

NIR 

Surface 

Reflectance 

Spatial 

Resolution 
1 meter 

Date of 

Collection 
23 May 2008 

Data Set 51143_1m2008_6 Pittsylvania 

Data Source: USDA/NRCS NAIP 2008 

 

3.2 Methodology 

 

The methodology used in this study encompass a first phase for data preparation 

and vegetation indices extraction (Section 3.21, Vegetation Indices Analysis), a second 

phase of vegetation indices statistical analysis (Section 3.2.2, Percent Error Analysis), 

and a third phase for data products resolution comparison (Section 3.2.3, Quantifying 

Values).   

 The full methodology workflow, shown in Figure 11, was conducted using 

Model Builder (ESRI, 2014) Image bands were imported into ArcMap to begin the 

extraction process. Prior to the VI’s calculations, statistical analysis, and value 

quantification processes, the spectral band from both Landsat7 ETM+ and NAIP imagery 

were extracted for each study site within the study area. This was accomplished by using 

the Extract by Mask tool in order to reduce the amount of disk space used and increase 

speed during processing time.  
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Figure 11. Methodology workflow. This ModelBuilder model illustrates the 4 main 

processing phases: 1) band extraction, 2) VI Analysis, 3) PE Analysis, and 4) 

Quantifying Values used to evaluate the effect of image resolution for use in PA 

applications. 

 

 

3.2.1 Vegetation Indices Analysis 

Four different VI’s were utilized to give a variety of available indices used in the 

vegetation analysis:  

1) Ratio Vegetation Index (RVI) 
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RVI = NIR / RED 

2) Normalized Difference Vegetation Index (NDVI) 

NDVI = (NIR – RED)/(NIR + RED) 

3) Green Normalized Difference Vegetation Index (GNDVI) 

GNDVI = (NIR - GREEN) / (NIR + GREEN) 

4) Soil Adjusted Vegetation Index (SAVI) 

SAVI = (NIR – RED)/(NIR + RED + L)  x (1 + L) 

 These equations use spectral values associated with each individual pixel within a 

spectral band. NAIP’s used spectral bands B2 (Green), B3 (Red), and B4 (Near Infrared).  

Analogously Landsat7 ETM+ used bands were B2 (Green), B3 (Red), and B4 (Near 

Infrared) spectral bands. Due to the spectral characteristics and interaction of red, near-

infrared, and green bands with plants, these bands are used in most vegetation related 

indices. In addition to spectral band values, the SAVI equation uses a constant variable 

‘L’ to adjust for bare soil. Based on the collection date, type of crop, and visual 

inspection of the imagery, a constant of 0.25 was used when calculating for SAVI. The 

0.25 constant represents high vegetation and limited soil interference. From a visual 

inspection between both sets of imagery, each site contains a generous covering of 

vegetation with limited bare soil present.   

Each site area was isolated from surrounding areas to reduce VI calculation times, 

and using the above mentioned equations on each pixel, VI values for both Landsat7 

ETM+ and NAIP were calculated. These values were then used to complete the PE 

analysis. 
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3.2.2 Percent Error Analysis 

 

To compare the differences between VI values at different resolutions the Percent 

Error (PE) analysis was used (University of California, Davis 2014). The PE analysis is 

not commonly used in agricultural purposes and has not been applied for PA applications 

observed in the literature, however, it is commonly used in chemistry and other sciences, 

where it involves measuring the difference between a known value (exact value) and an 

experimental (approximate value) value. The PE equation (5) used in this study measures 

the percent of error between a known value, exact value in this case assigned to NAIP VI 

value, and a measured value or approximate value that in this case was assigned to 

Landsat7 ETM+ VI value:  

                  –            

           
         (5)  

where :  Exact value = NAIP VI value 

Approximate value = Landsat7 ETM+ VI value. 

 

The approximate value was designated as Landsat7 ETM+ values as it is being 

compared to NAIP and it is the average value of the largest pixel size. Exact Value is 

NAIP values as it is the value being compared to and is used as a more exact value due to 

the reduced pixel size. The equation was performed for each NAIP pixel,  and results 

were collected and grouped into percentage categories. The resulting calculations give the 

amount of error present between the two resolutions. Because a single low resolution 

pixel represents a 30m x 30m land area within that pixel, there are  900 high resolution 

pixels for the same size area, therefore there will likely be a given percentage of error 
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between the two. The percentage error calculation is two-fold as its output can give the 

percentage of value differences that are: 1) over-estimated, where value of the low 

resolution pixel is above what of the high resolution pixel value;  2) under-estimated, 

where value of the low resolution pixel value is lower than the high resolution pixel.  

 

3.2.3 Quantifying Values 

The PE analysis is performed on each site’s VI values and the results are then 

categorized. Three categories were established based on the amount of error present. The 

categories are Grossly Over-estimated (+/- 100%), Debatable (between +/-100 & +/-

25%), and Acceptable (between +/- 25%). Each category’s percent error range was based 

on the amount of error, compared to the amount of change between VI values.   

The Acceptable category contains the percentage of pixels where the values fall 

closely together, with a +/- 25% error range. This range represents a minimal change in 

value. The Debatable category is separated into positive and negative percentages, which 

represent over and under estimation of values. This particular range is considered 

debatable, as the values have more than the accepted amount of error, but could 

potentially rest within an acceptable range of error if so decided by the user. The Grossly 

Overestimated category contains the percent of error +/- 100%, which is a significant 

difference between values.  

The results of the PE analysis provided a basis for comparison, as it defined a 

measurable amount of error present. The greater the amount of error, the greater the 

difference between VI values, which translates to incorrect VI representations for the 

ground within that specific pixel. This applies directly to the use of RS data in PA, where 
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monitoring applications, resource allocation, or yield estimation rely on accurate ground 

information. The greater the error, the more likely the resulting PA practices will not 

produce the intended results, such as incorrect moisture monitoring results leading to 

either over-watering or withholding irrigation. These actions would be detrimental to the 

crops and negate the intended use of RS and PA.  
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CHAPTER 4: RESULTS 

 

The results of both the VI analysis and PE analysis gave two different viewpoints for  

imagery comparison. The VI analysis successfully calculated VI values for each field, 

allowing for the PE analysis to measure any differences between resolutions. The results 

are illustrated using the NDVI values due to their popularity in the agricultural literature, 

however, all VI’s values are reported in Appendix B and C. 

 The results of the sites from Group 5 contain the largest number of fields, largest 

range of field size, and largest amount of site characteristics available, therefore are 

chosen as representative example of the general results. The remaining results obtained 

from Group 1, 2, 3 and 4 are listed in Appendices B and C.  

 The PE analysis results provided a statistical look at the differences between 

resolutions. As expected, there was a large amount of error present between the two 

resolutions. This error was present for each VI analysis with the exception of the RVI 

outputs. For this particular VI, the PE results were opposite of what was expected. PE 

values were calculated as within the Acceptable category for every field, which was 

drastically different than the other site PE results. Possible reasons for this to occur is that 

the RVI formula is not normalized and therefore the results would not conform to the rest 

of the VIs results.    

 

4.1 Vegetation Indices Calculations 

 As mentioned in the site selection section, fields were chosen to include various 

characteristics and features to test the abilities of the RS imagery. Both the Landsat7 
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ETM+ and NAIP imagery showed these differences, but with different degrees of details. 

Results varied with each VI analysis due to the different spectral bands used in the  VI 

formulas, therefore different reflectance response are at times emphasized and others 

subdued.  

The NDVI values for the sites in Group 5 are shown in Figure 12. and 13. In 

figure 12 are shown the low resolution Landsat 7 ETM+ imagery (panel A) and NDVI 

(panel B), while figure 13 show the NAIP high resolution imagery (panels C) and  NDVI 

(panel D). Figure 14 and 15 show the VI results on sites 10 through 14, for the Landsat7 

ETM+ and NAIP imagery respectively. Looking at Group 5 for each resolution, the VI 

results do follow similar patterns and highlights the same general areas for vegetation and 

non-vegetation areas.  

The greater differences are observable when comparing resolutions, not just 

between the VI results. For example Site 11, Figures 16 and 17, shows a substantial 

difference with regards to VI values between the low and high resolutions imagery. The 

difference suggests a great effect due to mixed pixels in the NDVI product form the 

Landsat 7 ETM+ imagery, which is unable to depict the high resolution features 

observable in the NADVI products derived from the NAIP imagery. Additionally, on a 

pixel level, PE analysis adds to the vast differences in VI values. The remaining VI 

results for the other sites and relative descriptions can be found in Appendix B. 
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Figure 12. Group 5: low resolution Landsat7 ETM+ imagery (panel A) and NDVI 

(panel B). The Landsat7 ETM+ imagery (panel B) does outline similar features, 

however, they are not as well defined and are not outlined as well through the NDVI 

analysis. 
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Figure 13. Group 5: high resolution NAIP (panel C) and NDVI (panel D). There are 

obvious differences between the VI’s products due to the different resolutions. The 

NAIP NDVI analysis (panel D) shows more detail and outlines the such as a dirt 

road and tree lines casting shadows (site 10), site 13 contains a pond, and site 14 

contains tree lines casting shadows. 
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Figure 14. Group 5 Landsat7 ETM+ imagery VI analyses. VI values are overlying 

NAIP base imagery for clarity. Values for each VI vary for each field, but follow 

similar trends for vegetative areas and low vegetative areas. Site 13 contains a large 

red spot, which is a pond. Each VI identifies it, but the effects of mixed pixel 

averaging of surrounding ground values creates a disproportionate size and shape 

of the pond.  
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Figure 15. Group 5 NAIP imagery VI analyses. High resolution analysis reduces the 

impact of mixed pixels. Comparing Site 13, from Figure 14, same the pond is more 

defined and the effect of surrounding areas reduced. Additionally, distinct lines of 

low vegetation appear in Site 10, which are not clearly defined in the low resolution 

imagery (Figure 14).  
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Figure 16. Site 11: VI products from Landsat7 ETM+. Similar results are 

observable among VI’s values (overlying on NAIP base imagery for clarity). Pixels 

are noticeably larger and effect of mixed pixels occur, resulting in the inability to 

isolated higher resolution features visible in the NAIP results (Figure 17).  
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Figure 17. Site 11: VI products from NAIP. Similar results are observable. A large 

amount of difference is though present when comparing VI products from NAIP 

and Landsat7 ETM+ (Figure 16), in particular most of the low value vegetative 

areas are singled out within the eastern part of the field in the NAIP imagery. 
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4.2 Percent Error Results 

The PE analysis results for the NDVI values, shown in Table 5, are broken into 

three different percentage categories: Grossly Overestimated, Debatable, and Acceptable. 

NDVI values for each site is represented in the table. NDVI values and the results from 

the remaining VI values are located in Appendix C. Referring back to Site 11, the large 

amount of visual difference equated to only 10% of the pixels (8,803 pixels) being within 

the Acceptable range, which represents a very low amount. The remaining 90% was 

found split between the Debatable and Grossly Overestimated categories. 

Table 5. NDVI Percent Error Results 

NDVI 

Site 
# 

Grossly Overestimated Debatable Acceptable 

Below -100% Above 100% 
Between -25% and 

-100% 
Between 25% 

and 100% 
Between -25% 

and 25% 

  PE # of Pixels PE # of Pixels PE # of Pixels PE 
# of 

Pixels 
PE 

# of 
Pixels 

1 14% 61062 12% 52339 45% 196270 10% 43616 19% 82869 

2 25% 11594 10% 4637 49% 22723 5% 2319 11% 5101 

3 51% 138713 20% 56384 20% 55019 3% 9653 6% 17459 

4 62% 33717 6% 3263 18% 9789 9% 4894 5% 2719 

5 84% 99091 2% 2359 10% 11797 1% 1180 3% 3539 

6 75% 48305 1% 644 18% 11593 1% 644 5% 3220 

7 3% 1229 41% 16792 8% 3277 36% 14745 12% 4915 

8 45% 57830 1% 1285 52% 66826 1% 1285 1% 1285 

9 24% 19607 1% 817 69% 56371 1% 817 5% 4085 

10 7% 42396 24% 145358 8% 48453 29% 175641 32% 193810 

11 30% 26410 13% 11444 42% 36973 5% 4402 10% 8803 

12 24% 6282 62% 16227 1% 262 5% 1309 8% 2094 

13 2% 1842 1% 921 5% 4604 12% 11050 80% 73670 

14 2% 6622 3% 9933 51% 168865 7% 23177 37% 122510 

  

In reference to the sites in Group 5, Table 6 contains the results for all the VI 

calculations. With the exceptions of RVI (which will be discussed later in Chapter 5) and 
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Site 13, all remaining VI results fall in the low percentages of Acceptable. This trend 

extends throughout the rest of the sites, with remaining amounts of Debatable versus 

Gross Overestimation varying. 

 

Table 6: Group 5 PE results for all VI values 

 Site  Info 
Grossly Overestimated Debatable Acceptable 

Below -100% Above 100% 
Between -25% 

and -100% 
Between 25% 

and 100% 
Between -25% 

and 25% 
Sit
e # 

# of 
Pixels 

PE 
# of 

Pixels 
PE 

# of 
Pixels 

PE 
# of 

Pixels 
PE 

# of 
Pixels 

PE 
# of 

Pixels 

RVI 

10 605,657 0% 0 0% 0 <1% 595 9% 54509 91% 551148 

11 88,032 0% 0 <1% 2 0% 0 2% 1761 97% 85391 

12 26,173 0% 0 0% 0 0% 0 37% 9684 63% 16489 

13 92,087 0% 0 2% 1842 <1% 169 6% 5525 91% 83799 

14 331,107 0% 0 <1% 2 <1% 8 1% 3311 98% 324485 

NDVI 

10 605,657 7% 42396 24% 145358 8% 48453 29% 175641 32% 193810 

11 88,032 30% 26410 13% 11444 42% 36973 5% 4402 10% 8803 

12 26,173 24% 6282 62% 16227 1% 262 5% 1309 8% 2094 

13 92,087 2% 1842 1% 921 5% 4604 12% 11050 80% 73670 

14 331,107 2% 6622 3% 9933 51% 168865 7% 23177 37% 122510 

GNDVI 

10 605,657 23% 139301 74% 448186 0% 0 1% 6057 1% 6057 

11 88,032 34% 29931 62% 54580 0% 0 2% 1761 0% 0 

12 26,173 74% 19368 26% 6805 0% 0 0% 0 0% 0 

13 92,087 64% 58936 32% 29468 1% 921 1% 921 1% 921 

14 331,107 5% 16555 90% 297996 0% 0 4% 13244 <1% 11 

SAVI 

10 605,657 6% 36339 25% 151414 8% 48453 29% 175641 32% 193810 

11 88,032 34% 29931 13% 11444 43% 37854 5% 4402 5% 4402 

12 26,173 24% 6282 63% 16489 0% 0 6% 1570 7% 1832 

13 92,087 34% 31310 31% 28547 7% 6446 13% 11971 15% 13813 

14 331,107 2% 6622 3% 9933 51% 168865 7% 23177 37% 122510 
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4.3 Assessment of Resolution Differences  

The Percent Error analysis produced some very interesting results. The expected 

outcome was that there would be a high level of error between resolutions, which was 

due to the large pixel size and averaging of reflectance values within Landsat7 ETM+ 

pixels. A single Landsat7 ETM+ pixel value was compared to the 900 NAIP pixels 

contained within, and a single non-vegetative feature would produce many low or 

negative NAIP pixel values, which would differ drastically to the corresponding averaged 

Landsat7 ETM+ pixel value.  

Because of the potential for difference between Landsat7 ETM+ and NAIP pixel 

values, there was a chance that the percentage would be greater than 100%. This happens 

when the approximate value (Landsat7 ETM+) is far greater than the known or expected 

value (NAIP). An example of this is found in Figure 18. The Landsat7 ETM+ pixel 

#213’s NDVI value is 0.011 and the NAIP pixel # 188184 NDVI value is -0.077. Those 

values used in the PE formula result in a percent error of -114.669, which is greater than 

the +/- 100% mark.  
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Figure 18. Site 1 PE example. The yellow square represents the Landsat7 ETM+ 

pixel and the red dot represents the location of the NAIP pixel. With their values 

used in the PE formula, the resulting PE is outside the +/- 100% mark, which falls 

within the Gross Overestimation category. 

 

  For this comparison, examples of the gross over or under estimation values can be 

attributed to VI values of shadows from vegetation found in high resolution data and not 

low resolution, or non-vegetation feature VI values in high resolution pixels that 

averaged out in low resolution pixels, and non-vegetation features within the low 

resolution pixel that are not being recognized due to pixel size vs. feature size.  Site 10 

contains site characteristics that fit the description above and causing PE of +/- 100%. 

Figure 19 shows a color representation of NDVI PE values, where the areas containing 

+/- 100%  error follow the dirt road, tree lines with shadows, and changes in terrain.  
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Figure 19. Site 10 PE. Dark red represents +/- 100% error pixels, which follow the 

dirt road (a) and surround the tree lines (b). One other area of interest is (c), where 

a change in terrain occurs and showing with a significant amount of error. This area 

(c) was not originally identified as significant site characteristic for testing 

resolution abilities.    
 

In Table 6, the PE results for Group 5 show large amount of differences present 

among the various sites. To put the data into perspective, NDVI PE values for sites 10 

and 13 will be used to explain the results. Table 7 contains NDVI PE results for sites 10 

and 13, while remaining results can be found in Appendix C. 

 

 

a 
c 

b 
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Table 7: Sites 10 & 13 NDVI PE Results 

Site # Grossly Overestimated Debatable Acceptable 

10 31% 37% 32% 

13 3% 7% 80% 

  

In site 10 there is 31% of pixels falling within the Grossly Overestimated 

category, 37% of pixels falling within the Debatable category, and 32% of pixels falling 

within the Acceptable category. The overall results an even distribution across categories. 

Looking at it from a usability standpoint, straight from the data, only 32% of the data 

would result in correct ground values and conditions. Additional research and decisions 

on acceptable levels from the Debatable category could bolster this amount, but without 

that, there is too much error to safely rely on low resolution data to produce acceptable 

results.  

In site 13 the NDVI results are different than that of the other sites. In contrast to 

the expected results, Site 13 produced high amounts of Acceptable error present. Site 13 

resulted in only 3% of pixels falling within the Grossly Overestimated category, 17% in 

the Debatable category, and 80% in the Acceptable category. Even grouping Grossly 

Overestimated and Debatable together, the total amount of Acceptable error is significant 

enough to suggest that low resolution imagery, using NDVI calculations will provide 

correct ground values with an 80% accuracy. Although this is a significant amount, the 

remaining fields surrounding site 13 did not calculate this amount of Acceptable error, 

and it would not be efficient to utilize low resolution for a single field, where the 

surrounding fields need higher resolution imagery to be assessed.  
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As far as field size is concerned, there is a significant trend of larger fields 

containing more Acceptable percentages of Error than their smaller counterpart. Table 8 

shows the average Acceptable PE for the larger 5 sites, medium 4 sites, and smaller 5 

sites. Both RVI and SAVI show that larger sites correspond a higher number of pixels 

with Acceptable Error. RVI results have the larger averages in both the large and small 

sites, and respectively higher than the medium size fields. NDVI shows close percentages 

between the large and medium sites, with the lowest average in smaller sites. GNDVI has 

opposite results, with the larger fields averaging the lowest amount of Acceptable Error 

percentages.  

 

Table 8: Average PE by Size 

Average Acceptable PE 

  
Large Size 

5 Sites 
Medium 

Size 4 Sites 
Small Size 

5 Sites 

Avg. Landsat7 ETM+ Pixels 409 111 39 

Avg. NAIP Pixels  354,918 90,622 49,917 

RVI 88.20% 61.50% 74.60% 

NDNI 19% 24.50% 8.50% 

GNDVI 5% 11.50% 9.20% 

SAVI 19% 10.25% 8% 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions  

The results from the VI analysis of low resolution imagery did not provide results 

comparable to the high resolution imagery. VI analysis on the low resolution imagery 

resulted in a lower detail in features and characteristic delineation. Features within the 

low resolution imagery were identifiable but with less detail due to mixed pixels, 

therefore resulting in an exaggerated feature footprint, such as the tree lines and dirt roads 

as seen in Sites 10 and 14, which was highlighted in Figure 8, 12 and 13. As expected, 

the high resolution data provided a more detailed visual representation of the study sites, 

including all site features and characteristics. 

 Results from the Percent Error Analysis showed a great difference between VI 

values with the exception of RVI. These results showed that the size of the pixel affects 

the accuracy of data values. Landsat7 ETM+’s large pixel size averaged out the 

surrounding areas and fail to retain amount of usable data which is instead captured in the  

NAIP data. Even though there were amounts of acceptable error between the two 

resolutions, the majority of the error was found within the Grossly Overestimated and 

Debatable categories. 

 Examples used in section 4.3 examined the results of two sites, 10 and 13. The 

comparative results identified site 10 as the area with the higher number of pixels outside 

the Acceptable category. In contrast, site 13 produced results that went against the 

expected outcome, showing 80% in the Acceptable category. A similar results was found 

also for site 3 (Appendix C) also showing a higher amount of Acceptable error.  
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Site size was also a contributing factor in amount of Acceptable error. The larger 

the field, the greater the chance of having more pixels with Acceptable amounts of PE. 

The cause of this could be attributed to the same challenges overall; pixel size and mixed 

pixels, but also the limited amount of land and pixel  field boundary overlapping. Smaller 

boundaries around fields and large pixels have the greater chance to include neighboring 

areas within each pixel averaging.    

There was one exception to the VI results, where the entire set of RVI values 

resulted in almost 100% of pixels showing percentages of error within the Acceptable 

category.  A potential reason as to why this occurred is that the output values for RVI 

were outside the normal range of outputs for normalized VI formulas. Fluctuations 

between RVI values between resolutions were nominal, and the largest difference 

between resolution VI results were found in the other VI formulas. 

Overall, the results favored the expected outcome showing a greater difference 

between NAIP high resolution VI values compare to the Landsat7 ETM+ low resolution 

VI values. With the small nature of land applications used in small scale farming, the 

larger pixel size would retain less information to be of use compared to the high 

resolution imagery. If there was a higher percentage of acceptable error, +/- 25% was 

accepted here, then the results could be more in favor of the low resolution. 

This study addressed issues related to the assessment of data resolution in PA 

applications, however, other factors could affect the use of different RS data such as cost, 

return on investment (ROI) on use of RS to manual site methods in distributing fertilizer 

or pesticide. In the next session, some considerations are provided for future work for 

development in the use of affordable RS imagery in PA applications.  



 

56 

 

 

5.2 Future Work  

 Precision Agriculture is not a brand new topic, but it is one that has seen an 

increase in research and activity in the past 20 years. With RS imagery, GIS integration, 

highly advanced computers, and a vast array of monitoring hardware steadily advancing 

the room for continued research is wide open. The basis of this comparison is to limit the 

financial strain on small scale farmers when adopting new technology, particularly RS 

imagery to use in PA applications. Cost is a main factor, and imagery resolution 

influences the cost. Any additional or future work associated with this comparison would 

include research in cost effective ways to implement RS or other advanced PA practices 

and policies.  

An example of this research would be an in-depth look at the financial return on 

investment (ROI) applications of RS imagery. Begin a case study comparing the use of 

RS to manual site methods in distributing fertilizer or pesticide. The comparison would 

look at the time/cost data of the amount of labor used (man hours with relative pay), and 

a fertilizer/pesticide used, determining a time frame for a ROI of utilizing RS for a single 

specific use. This could then branch off to other uses as necessary. 

Branching off from the ROI research, additional work including researching cost 

effective methods of implementing RS imagery. NAIP imagery is valuable, but imagery 

containing the NiR band is not available for every mapped location. Nontraditional 

sensor platforms would be a popular subject as drones or UAVs have become a 

household name in society today. Moving away from space-born and high altitude 

platforms could potentially reduce some costs associated with sensor tasking, flight 

scheduling, and weather related issues. Depending on the source, on-demand flights 
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could be possible after weather related events, during specific growth timelines, or land 

surveying. Work already being completed by schools such a Utah State University’s 

AggieAir UAV system (http://aggieair.usu.edu/) could be expanded with additional 

knowledge of resolution limitations for small scale farming applications. 

Additionally, improving upon the data available would be beneficial, as some 

might be limited due to the intrinsic resolution of the data. This could be explored using 

Data Fusion, which refers to the combination of data from different sensors and 

resolutions to improve imagery interpretability (Ranchin, 2014). One of the advantages of 

data fusion is the capability to improve spatial resolution and thus increase the ability to 

identify features of interest. Despite the low performance of Landsat 7 ETM+ low 

resolution imagery in this study, data fusion could possibly be used as a combination of 

Landsat 7 ETM+ and LiDAR data (Cartus, 2012) to increase the interpretability and  

possibly discern the amounts of acceptable error, or simply use it to render the data into a 

useful mapping product for use in a different aspect of PA.  

 

 

 

 

 

 

 

 

 

http://aggieair.usu.edu/
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APPENDICES 

Appendix A: Site Selection Footprints 

 

 

Figure 20: Group 1 Footprints. Level of detail is noticeably different between 

resolutions.   
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Figure 21: Group 2 Footprints. Site 3 has very erratic borders which as seen in the 

Landsat7 ETM+ do not follow visual field boarders.  
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Figure 22: Site 3 Footprints. Site 7 footprint does not follow a noticeable field shape 

in the Landsat7 ETM+ imagery, which could possibly affect the VI and PE analyses.  



 

65 

 

 

 

Figure 23: Group 4 Footprints. Great differences between resolutions. NAIP 

imagery shows large individual trees and tree lines within the site, which are 

completely lost within the Landsat7 ETM+ imagery. Features like these will affect 

the pixel that they are contained within.  
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Figure 24: Group 5 Footprints. Just as with Group 4, NAIP imagery shows tree lines 

and other features within each site that are not identified within Landsat7 ETM+ 

imagery.  
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Appendix B: VI Analysis Results 

 

 

Figure 25: Group 1 Landsat7 ETM+ VI Results. VI results, overlying on NAIP base 

imagery for clarity, show a low vegetation trend throughout the entire field, with 

high vegetative values in the northern most part of the field.  
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Figure 26: Group 1 NAIP VI Results. With the smaller pixels, more high vegetative 

areas are highlighted and a better contrast between areas is present. Rather than 

the entire field having low vegetative levels, an improved look at the results show 

more vegetation present as compared to Landsat7 ETM+ values.   
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Figure 27: Group 2 Landsat7 ETM+ VI Results. VI results overlying on NAIP base 

imagery for clarity. Large amounts of low vegetative areas with the central portion 

of field 3 showing a fluctuation of high and low values.  
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Figure 28: Group 2 NDVI VI Results. More detail is shown of the mid range 

(yellow) areas, where vegetation is present, but not at high levels.  
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Figure 29: Group 3 Landsat7 ETM+ VI Results. VI results overlying on NAIP base 

imagery for clarity. Wide spreading of low values across each site except Site 7.   
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Figure 30: Group 3 NAIP VI Results. In comparison to the Landsat7 ETM+ results, 

here NAIP values show abundant vegetation with limited areas of lower vegetative 

levels.  
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Figure 31: Group 4 Landsat7 ETM+ VI Results. VI results overlying on NAIP base 

imagery for clarity. Large amount of low vegetative levels in each site with few high 

values.  
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Figure 32: Group 4 NAIP VI Results. More detail about each site, including the site 

characteristics mentioned in the Site Characteristics table in Chapter 2. More high 

vegetative levels throughout, indicating more vegetation present than seen through 

the Landsat7 ETM+ data. 
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Figure 33: Group 5 Landat7 ETM+ VI Results. VI results overlying on NAIP base 

imagery for clarity. Higher vegetative levels present in these sites as compared to the 

other sites. Water feature is present in Site 13, but site characteristics of other sites 

are not present, such as the tree lines in Site 14 and dirt road in Site 10.  



 

76 

 

 

 

Figure 34: Group 5 NAIP VI Results. Lots of vegetation present in each site and site 

characteristics are more present than with Landsat7 ETM+ data. 
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Appendix C: Percent Error Analysis Results 

 

Table 9: RVI PE Results 

RVI 

Site Info 

Grossly Overestimated Debatable Acceptable 

Below -
100% Above 100% 

Between -
25% and -

100% 

Between 
25% and 

100% 
Between -25% 

and 25% 

Site # # of Pixels PE 
# of 

Pixels 
PE 

# of 
Pixels 

PE 
# of 

Pixels 
PE 

# of 
Pixels 

PE 
# of 

Pixels 

1 436,155 0% 0 <1% 300 <1% 177 3% 13085 96% 418709 

2 46,374 0% 0 0% 0 1% 464 11% 5101 88% 40809 

3 273,157 0% 0 <1% 48 <1% 138 6% 16389 93% 254036 

4 54,382 0% 0 0% 0 55% 29910 2% 1088 43% 23384 

5 117,965 0% 0 0% 0 66% 77857 1% 1180 33% 38928 

6 64,407 0% 0 0% 0 75% 48305 0% 0 25% 16102 

7 40,957 0% 0 0% 0 0% 0 4% 1638 96% 39319 

8 128,512 0% 0 0% 0 36% 46264 1% 1285 63% 80963 

9 81,697 0% 0 <1% 3 16% 13072 <1% 646 83% 67809 

10 605,657 0% 0 0% 0 <1% 595 9% 54509 91% 551148 

11 88,032 0% 0 <1% 2 0% 0 2% 1761 97% 85391 

12 26,173 0% 0 0% 0 0% 0 37% 9684 63% 16489 

13 92,087 0% 0 2% 1842 <1% 169 6% 5525 91% 83799 

14 331,107 0% 0 <1% 2 <1% 8 1% 3311 98% 324485 
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Table 10: NDVI PE Results 

NDVI 

Site Info 
Grossly Overestimated Debatable Acceptable 

Below -100% Above 100% 
Between -25% 

and -100% 
Between 25% 

and 100% 
Between -25% 

and 25% 
Site 

# 
# of 

Pixels 
PE 

# of 
Pixels 

PE 
# of 

Pixels 
PE 

# of 
Pixels 

PE 
# of 

Pixels 
PE 

# of 
Pixels 

1 436,155 14% 61062 12% 52339 45% 196270 10% 43616 19% 82869 

2 46,374 25% 11594 10% 4637 49% 22723 5% 2319 11% 5101 

3 273,157 51% 138713 20% 56384 20% 55019 3% 9653 6% 17459 

4 54,382 62% 33717 6% 3263 18% 9789 9% 4894 5% 2719 

5 117,965 84% 99091 2% 2359 10% 11797 1% 1180 3% 3539 

6 64,407 75% 48305 1% 644 18% 11593 1% 644 5% 3220 

7 40,957 3% 1229 41% 16792 8% 3277 36% 14745 12% 4915 

8 128,512 45% 57830 1% 1285 52% 66826 1% 1285 1% 1285 

9 81,697 24% 19607 1% 817 69% 56371 1% 817 5% 4085 

10 605,657 7% 42396 24% 145358 8% 48453 29% 175641 32% 193810 

11 88,032 30% 26410 13% 11444 42% 36973 5% 4402 10% 8803 

12 26,173 24% 6282 62% 16227 1% 262 5% 1309 8% 2094 

13 92,087 2% 1842 1% 921 5% 4604 12% 11050 80% 73670 

14 331,107 2% 6622 3% 9933 51% 168865 7% 23177 37% 122510 
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Table 11: GNDVI PE Results 

GNDVI 

Site Info 
Grossly Overestimated Debatable Acceptable 

Below -100% Above 100% 
Between -25% 

and -100% 
Between 25% 

and 100% 
Between -25% 

and 25% 
Site 

# 
# of 

Pixels 
PE 

# of 
Pixels 

PE 
# of 

Pixels 
PE 

# of 
Pixels 

PE 
# of 

Pixels 
PE 

# of 
Pixels 

1 436,155 37% 161377 54% 235524 1% 4362 4% 17446 1% 4362 

2 46,374 95% 44055 3% 1391 1% 464 1% 464 0% 0 

3 273,157 96% 262231 2% 5463 <1% 85 <1% 160 <1% 96 

4 54,382 16% 8701 22% 11964 26% 14139 9% 4894 27% 14683 

5 117,965 30% 35390 16% 18874 33% 38928 7% 8258 14% 16515 

6 64,407 22% 14170 15% 9661 66% 42509 10% 6441 19% 12237 

7 40,957 39% 15973 55% 22526 6% 2457 0% 0 0% 0 

8 128,512 2% 2570 16% 20562 34% 43694 21% 26988 27% 34698 

9 81,697 3% 2451 28% 22875 9% 7353 28% 22875 31% 25326 

10 605,657 23% 139301 74% 448186 0% 0 1% 6057 1% 6057 

11 88,032 34% 29931 62% 54580 0% 0 2% 1761 0% 0 

12 26,173 74% 19368 26% 6805 0% 0 0% 0 0% 0 

13 92,087 64% 58936 32% 29468 1% 921 1% 921 1% 921 

14 331,107 5% 16555 90% 297996 0% 0 4% 13244 <1% 11 
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Table 12: SAVI PE Results 

SAVI 

Site Info 

Grossly Overestimated Debatable Acceptable 

Below -
100% Above 100% 

Between -25% 
and -100% 

Between 
25% and 

100% 
Between -25% 

and 25% 
Site 

# 
# of 

Pixels 
PE 

# of 
Pixels 

PE 
# of 

Pixels 
PE 

# of 
Pixels 

PE 
# of 

Pixels 
PE # of Pixels 

1 436,155 16% 69785 11% 47977 45% 196270 10% 43616 18% 78508 

2 46,374 24% 11130 10% 4637 50% 23187 5% 2319 11% 5101 

3 273,157 51% 138713 20% 56384 20% 55049 3% 9653 6% 17430 

4 54,382 61% 33173 10% 5438 16% 8701 8% 4351 5% 2719 

5 117,965 84% 99091 3% 3539 8% 9437 2% 2359 3% 3539 

6 64,407 76% 48949 4% 2576 14% 9017 1% 644 5% 3220 

7 40,957 3% 1229 41% 16792 8% 3277 36% 14745 12% 4915 

8 128,512 45% 57830 <1% 539 52% 66826 <1% 588 2% 2570 

9 81,697 11% 8987 1% 817 69% 56371 1% 817 18% 14705 

10 605,657 6% 36339 25% 151414 8% 48453 29% 175641 32% 193810 

11 88,032 34% 29931 13% 11444 43% 37854 5% 4402 5% 4402 

12 26,173 24% 6282 63% 16489 0% 0 6% 1570 7% 1832 

13 92,087 34% 31310 31% 28547 7% 6446 13% 11971 15% 13813 

14 331,107 2% 6622 3% 9933 51% 168865 7% 23177 37% 122510 
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Figure 35. PE Results Group 1. NDVI and SAVI show more detailed results 

throughout the field than GNDVI and RVI. 
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Figure 36. PE Results Group 2. Site 3 NDVI results show the largest amount of 

Grossly Overestimated and Debatable pixels throughout its center. This is also 

reflected in SAVI due to the similarity in the VI formulas.    
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Figure 37. PE Results Group 3. SAVI and NDVI show similar results, with GNDVI 

showing some possible differences, which could depend on the use of the green band 

over the red. 
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Figure 38. PE Results Group 4. Each VI shows a different set of results for each site.  

The pixel appearance in the NDVI and SAVI is due to sharp differences in the VI’s 

derived values from Landsat 7 ETM+ and NAIP data.  
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Figure 39. PE Results Group 5. Areas around main features within the sites contain 

pixels that fall in the Grossly Overestimated category in both NDVI and SAVI.  




